WorldWideScience

Sample records for vesuvius module molten

  1. Development of the VESUVIUS module. Molten jet breakup modeling and model verification

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, K. [Nuclear Power Engineering Corp., Tokyo (Japan); Nagano, Katsuhiro; Araki, Kazuhiro

    1998-01-01

    With the in-vessel vapor explosion issue ({alpha}-mode failure) now considered to pose an acceptably small risk to the safety of a light water reactor, ex-vessel vapor explosions are being given considerable attention. Attempts are being made to analytically model breakup of continuous-phase jets, however uncertainty exists regarding the basic phenomena. In addition, the conditions upon reactor vessel failure, which determine the starting point of the ex-vessel vapor explosion process, are difficult to quantify. Herein, molten jet ejection from the reactor pressure vessel is characterized. Next, the expected mode of jet breakup is determined and the current state of analytical modeling is reviewed. A jet breakup model for ex-vessel scenarios, with the primary breakup mechanism being the Kelvin-Helmholtz instability, is described. The model has been incorporated into the VESUVIUS module and comparisons of VESUVIUS calculations against FARO L-06 experimental data show differences, particularly in the pressure curve and amount of jet breakup. The need for additional development to resolve these differences is discussed. (author)

  2. VESUVIUS PENTALOGUE: Interdisciplinary Science for Disaster Resilience and Sustainability of Populations Surrounding Vesuvius

    Science.gov (United States)

    Dobran, F.

    2015-12-01

    VESUVIUS PENTALOGUE is an elaboration of VESUVIUS 2000 scientific initiative aimed at volcanic risk reduction in the Vesuvius area. Its 5 building blocks are: (1) The current strategy of volcanic risk management (massive deportation of population) is both problematic and unacceptable. (2) A continuing close habitation of the population with the volcano should be the crucial cultural point to be pursued. This can be accomplished through a redefinition of the danger zone around Summa-Vesuvius as follows: (a) An exclusion nucleus should be established that prohibits all future human settlements and discourage the existing ones; (b) A resilience belt, housing most of the current population, should be established; (c) A sustainable area should be established beyond the resilience belt, allowing for both sustainable practices and temporary resettlements of the "resilience belt" citizens. (3) The built environment construction codes for the population of the danger zone should be established by utilizing Plinian eruption scenarios, scenario-based seismic hazard assessment and zonation, (c) dynamic structural analyses, (d) global volcanic simulations modeling of thermo-fluid dynamic eruption processes. (4) The volcanic risk information and education should involve an effective volcanic risk information campaign and active public preparedness strategy. This should be implemented for the exclusion nucleus, resilience belt, and sustainable area regions surrounding Summa-Vesuvius. A Volcanic Risk Education Safety Program should be implemented in all schools located within each of the above areas surrounding the volcano. (5)The political Authorities and the scientific community should produce a "memorandum of understanding" that univocally establishes an effective collaboration, and periodic progress reports that keep the populations informed on the improvements leading to the realization of the above objectives. For further details see www.gvess.org.

  3. Magma reservoir at Mt. Vesuvius: Deeper than 10 km

    International Nuclear Information System (INIS)

    Natale, M.; Luongo, G.; Nunziata, C.; Panza, G.F.

    2005-07-01

    One- and two-dimensional Vp models were obtained by TomoVes experiment, all characterized by low Vp in the uppermost 500 m and a sharp discontinuity at about 2-3 km beneath the volcano. Large amplitude late arrivals were identified as P- to S-phases converted at the top, between 8 and 10 km deep, of a low velocity layer with a dramatic drop of Vs, from approximately 3.6 km/s to less than 1.0 km/s. Here we synthesize the interpretation of Rayleigh wave dispersion measurements, made by several authors, to delineate the extent of such anomalous layer of hot, partially molten, crust material. Our non-linear inversion of broad-band dispersion measurements, gives a thickness not greater than 0.35 km, if we assume Vs equal to 1.0 km/s. The volume occupied by this very low velocity layer, sill shaped, is compatible with the size of Mt. Vesuvius cone, but it develops above a much larger hot mass which could be the parental source as the erupted products are only few percent of magma chamber. (author)

  4. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  5. Education as a key objective of the interdisciplinary volcanic risk mitigation strategy VESUVIUS PENTALOGUE for developing resilient and sustainable areas around Vesuvius

    Science.gov (United States)

    Dobran, F.; Imperatrice, A.

    2017-12-01

    VESUVIUS PENTALOGUE requires the achievement of 5 key objectives for Summa-Vesuvius area: (1) Development of temporary settlements for the inhabitants close to their native homeland until the volcanic crisis subsides; (2) Division of the danger zone into an exclusion nucleus that prohibits all future human settlements and discourages the existing ones, a resilience belt that houses most of the current populations, and a sustainable area beyond the resilience belt that allows for sustainable practices and temporary resettlements of resilience belt citizens following the volcanic crises; (3) Development of built environment construction codes for the population of the danger zone by utilizing plinian eruption scenarios, scenario-based seismic hazard assessment and zonation, global volcanic simulator, and dynamic structural analysis; (4) Implementation of volcanic risk information and education campaigns for different risk areas surrounding the volcano; and (5) Production of a memorandum of understanding between the authorities and scientific communities, and production of periodic progress reports for keeping the populations informed on the developments leading to the realization of the above objectives.For the past 20 years we have devoted considerable efforts towards the achievement of educational objectives. We worked with local volunteers and social and cultural organizations and with our colleagues delivered over 200 public and school seminars in 15 communities around Vesuvius, organized 2 international scientific meetings for allowing the public and high school children to interact directly with the scientists working on this volcano, and established numerous contacts with school teachers for helping them engage their students on Vesuvius from the scientific, artistic, social, and cultural perspectives. Every year GVES has been the promoter of Vesuvius area manifestations where the school children have the opportunities to expose their works on this volcano and

  6. Scientists vs. Vesuvius: limits of volcanology

    Science.gov (United States)

    Carlino, Stefano; Somma, Renato

    2014-05-01

    Recently, Italian newspapers reported the statements of Japanese and American volcanologists which declared the high hazard related to the future occurrence of catastrophic eruption at Vesuvius. Is this a reliable picture from scientific point of view? The evaluation of volcanic hazard is based on a general statistical law for which the chances of an eruptive event increase when energy decreases. This law is constructed on the basis of empirical data. Thus, the possibility that a plinian-like eruption occurs, for each volcano, is rare and further reduced for worst-case scenario. However, empirical data are not supported by a robust scientific theory, experimentally verifiable through an exact forecast of a long-term eruption, both in time limits and in energy. Today, the lack of paradigms able to predict in a deterministic way such a complex phenomena, limit the field of the scientists that cannot go further evaluations of a purely probabilistic nature. From this point of view volcanology cannot be considered an hard quantitative Science. The declaration according to which Vesuvius, sooner or later, will produce a catastrophic eruption, yet apparently obvious if we consider the very high degree of urbanization, is not supported by any experimentally verifiable theory. Therefore, the statement according to which Vesuvius next eruptive event will be catastrophic is false. In probabilistic terms, it is actually the least possible scenario. Recognizing the cognitive limits in this research field means to encourage research itself towards the determination of more solid paradigms, in order to get more exact forecasts about such complex phenomena. The scientific compromise of defining risk scenarios, rather than deterministic evaluations about future eruptive events, precisely reflects the limits of research that have to be contemplated even by Civil Protection. Having considered these limits, every risk scenario, even the most conservative, will be ineffective in

  7. EXPEL - a computing module for molten fuel/coolant interactions in fast reactor sub-assemblies

    International Nuclear Information System (INIS)

    Fishlock, T.P.

    1975-10-01

    This report describes a module for computing the effects of a molten fuel/coolant interaction in a fast reactor subassembly. The module is to be incorporated into the FRAX code which calculates the consequences of hypothetical whole core accidents. Details of the interaction are unknown and in consequence the model contains a large number of parameters which must be set by assumption. By variation of these parameters the interaction may be made mild or explosive. Results of a parametric survey are included. (author)

  8. Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy

    Science.gov (United States)

    Jolis, E. M.; Freda, C.; Troll, V. R.; Deegan, F. M.; Blythe, L. S.; McLeod, C. L.; Davidson, J. P.

    2013-11-01

    We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.

  9. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    Science.gov (United States)

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  10. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  11. Holistic Analysis For The Interpretation of The Structure of Mt. Somma - Vesuvius

    Science.gov (United States)

    Luongo, G.; Tizzani, P.; Solaro, G.

    The aim of this research is to define a unitary structural model of Mount Somma U Vesuvius, by holistic interpretation of geophysical and geological data. Surface structures pattern shows two different geometrical distribution, radial and horse-shoe shaped. Generally the radial distribution of fractures are due to stress field produced by an active magmatic pressure source; some of them resemble to the regional tec- tonics ones. These fractures are interpreted by an active circular hole model. Instead the collapse structures observed on the Southern side of volcano have been associated to the loading of volcanic edifice. The regional heat flow (100-110 mW/m2) and the hypocentral distribution of the seismicity data let us to obtain the local crust rheolog- ical stratification. In our case the brittle U ductile transition below the volcano is at depth of about 5 km. The loading of the volcanic edifice produces a deviatoric stress of 30 MPa in unconfined weight condition. This stress field can generate the present seismicity at Mt. Vesuvius. Moreover an overpressure acts along the Southern side of the volcano due to the dipping of the carbonate basement toward Tyrrhenian sea, according to the gravimetric Bouguer anomalies. From above considerations we have performed that the Mt. Somma U Vesuvius deformation is due to the spreading of the volcanic edifice togheter carbonate basement. This deformation is characterized by a displacement component in SW of Southern sector of the volcano.direction due to the basement dipping. Finally is reasonable to suppose that the unrest of Mt.Vesuvius may be the result of the basement tectonics and loading of volcanic edifice. In this interpretation the ascent of magma could be the consequence of this process. Ground deformation and seismicity monitoring could provide informations on the instability of Southern sector of the volcano.

  12. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    Science.gov (United States)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  13. Characteristics of the seismicity of Vesuvius and Campi Flegrei during the year 2000

    Directory of Open Access Journals (Sweden)

    G. Talarico

    2001-06-01

    Full Text Available This paper describes the characteristics of the seismicity in the volcanic Neapolitan area during the year 2000 recorded by the monitoring seismic network of the Osservatorio Vesuviano. In particular, a detailed analysis of the seismicity of Vesuvius is presented. We compared the seismic velocity models available for the Vesuvius area locating the earthquakes recorded in the year 2000 and on the basis of the results, we introduce for routine earthquake location the new velocity model obtained by the seismic tomography experiments (TomoVes performed in the area. We also determined the focal mechanisms and analysed the seismicity rate, comparing the results with those obtained for the past years. After the introduction of the new acquisition system at the Osservatorio Vesuviano, a re-calibration of the duration magnitude scale was necessary to avoid biases related to the different instrumental response. Consequently, we re-calibrated the magnitude relation used for the Vesuvius earthquakes, obtaining a new formula to be used for the earthquakes recorded by the new acquisition system. Finally, we give a description of the seismic activity in the Campi Flegrei area during the summer of 2000.

  14. Aeromagnetic survey of the Somma-Vesuvius volcanic area

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2005-06-01

    Full Text Available In this paper we present and discuss the results of a geophysical airborne survey carried out in the Somma-Vesuvius volcanic area, Southern Italy, in 1999. The helicopter-borne survey was aimed at giving new detailed insights into the distribution of the magnetization of the area and, therefore, into the volcanological characteristics of the region, enhancing the knowledge given by a previous low resolution survey carried out at a regional scale by Agip. The new survey was carried out by flying on a surface parallel to the topography of the area, along flight lines spaced 600 m apart. The obtained total field map is dominated by a large anomaly related to the Mt. Somma-Vesuvius complex itself and characterized by a roughly elliptical shape. High-frequency anomalies occur in the edifice and in the area east of it, partly produced by cultural noise due to the densely inhabited area. The compilation of the maps of the analytic signal and of the horizontal derivative of the field allowed the location of the lateral boundaries of the magnetic sources of the area and represents a first step toward the interpretation of the maps in terms of geological structures.

  15. A detailed analysis of some local earthquakes at Somma-Vesuvius

    Directory of Open Access Journals (Sweden)

    C. Troise

    1999-06-01

    Full Text Available In this paper, we analyze local earthquakes which occurred at Somma-Vesuvius during two episodes of intense seismic swarms, in 1989 and 1995 respectively. For the selected earthquakes we have computed accurate hypocentral locations, focal mechanisms and spectral parameters. We have also studied the ground acceleration produced by the largest events of the sequences (ML 3.0, at various digital stations installed in the area during the periods of higher seismic activity. The main result is that seismicity during the two swarm episodes presents similar features in both locations and focal mechanisms. Strong site dependent effects are evidenced in the seismic radiation and strong amplifications in the frequency band 10-15 Hz are evident at stations located on the younger Vesuvius structure, with respect to one located on the ancient Somma structure. Furthermore, seismic stations show peak accelerations for the same events of more than one order of magnitude apart.

  16. Diagnosis of time of increased probability of volcanic earthquakes at Mt. Vesuvius zone

    International Nuclear Information System (INIS)

    Rotwain, I.; Kuznetsov, I.; De Natale, G.; Peresan, A.; Panza, G.F.

    2003-06-01

    The possibility of intermediate-term earthquake prediction at Mt. Vesuvius by means of the algorithm CN is explored. CN was originally designed to identify the Times of Increased Probability (TIPs) for the occurrence of strong tectonic earthquakes, with magnitude M ≥ M 0 , within a region a priori delimited. Here the algorithm CN is applied, for the first time, to the analysis of volcanic seismicity. The earthquakes recorded at Mt. Vesuvius, during the period from February 1972 to October 2002, are considered and the magnitude threshold M 0 , selecting the events to be predicted, is varied within the range: 3.0 - 3.3. Satisfactory prediction results are obtained, by retrospective analysis, when a time scaling is introduced. In particular, when the length of the time windows is reduced by a factor 2.5 - 3, with respect to the standard version of CN algorithm, more than 90% of the events with M ≥ M 0 occur within the TIP intervals, with TIPs occupying about 30% of the total time considered. The control experiment 'Seismic History' demonstrates the stability of the obtained results and indicates that the algorithm CN can be applied to monitor the preparation of impending earthquakes with M ≥ 3.0 at Mt. Vesuvius. (author)

  17. Shallow structure of the Somma Vesuvius volcano from 3D inversion of gravity data

    Science.gov (United States)

    Cella, Federico; Fedi, Maurizio; Florio, Giovanni; Grimaldi, Marino; Rapolla, Antonio

    2007-04-01

    A gravity investigation was carried out in the Somma-Vesuvius complex area (Campania, Italy) based on a dataset recently enlarged with new measurements. These cover the volcanic top and fill some other important spatial gaps in previous surveys. Besides the new gravity map of the Vesuvius, we also present the results of a 3D inverse modelling, carried out by using constraints from deep well exploration and seismic reflection surveys. The resulting density model provides a complete reconstruction of the top of the carbonate basement. This is relevant mostly on the western side of the survey area, where no significant information was previously available. Other new information regards the Somma-Vesuvius structure. It consists of an annular volume of rocks around the volcanic vent and that extends down to the carbonate basement. It results to be denser with respect to the surrounding sedimentary cover of the Campanian Plain and to the material located just along the central axis of the volcanic structure. The coherence between these features and other geophysical evidences from previous studies, will be discussed together with the other results of this research.

  18. Electric effects induced by artificial seismic sources at Somma-Vesuvius volcano

    Directory of Open Access Journals (Sweden)

    Rosa Di Maio

    2013-11-01

    Full Text Available In this paper, we present a series of self-potential measurements at Somma-Vesuvius volcanic area acquired in conjunction with an active seismic tomography survey. The aim of our study is both to provide further confirmation to the occurrence of seismo-electric coupling and to identify sites suitable for self-potential signal monitoring at Somma-Vesuvius district. The data, which were collected along two perpendicular dipoles, show significant changes on the natural electric field pattern. These variations, attributable to electrokinetic processes triggered by the artificial seismic waves, were observed after explosions occurred at a distance less than 5 km from the SP dipole arrays. In particular, we found that the NW-SE component of the natural electric field was more sensible to the shots than the NE-SW one, and the major effects did not correspond to the nearest shots. Such evidences were interpreted considering the underground electrical properties as deduced by previous detailed resistivity and self-potential surveys performed in the study area.

  19. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  20. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  1. Social and environmental impact of volcaniclastic flows related to 472 AD eruption at Vesuvius from stratigraphic and geoarcheological data

    Science.gov (United States)

    Di Vito, Mauro A.; de Vita, Sandro; Rucco, Ilaria; Bini, Monica; Zanchetta, Giovanni; Aurino, Paola; Cesarano, Mario; Ebanista, Carlo; Rosi, Mauro; Ricciardi, Giovanni

    2017-04-01

    There is a growing number of evidences in the surrounding plain of Somma-Vesuvius volcano which indicate that along with primary volcanic processes (i.e. fallout, pyroclastic density currents) the syn-eruptive and post-eruptive volcaniclastic remobilization has severely impacted the ancient civilizations, which flourished in the area. This represents an important starting point for understanding the future hazard related to a potential (and not remote) renewal of volcanic activity of the Campaniana volcanoes. We present geoarcheological and stratigraphic data obtained from the analysis of more than 160 sections in the Campanian plain showing the widespread impact of volcaniclastic debris flows and floods originated from the rapid remobilization of the products of the AD 472 eruption of Somma-Vesuvius, both on the environment and on the human landscape. This eruption was one of the two sub-Plinian historical events of Somma Vesuvius. This event largely impacted the northern and eastern territory surrounding the volcano with deposition of a complex sequence of pyroclastic-fallout and -current deposits. These sequences were variably affected by syn- and post-eruptive mobilization both along the Somma-Vesuvius slopes and the Apennine valleys with the emplacement of thick mud- and debris-flows which strongly modified the preexisting paleogeography of the Plain with irretrievable damages to the agricultural and urban landscape. The multidisciplinary approach to the study of the sequences permitted to reconstruct the palaeoenvironment before the eruption and the timing of the emplacement of both pyroclastic and volcanoclastic deposits. The preexisting landscape was characterized by intense human occupation, although showing strong evidences of degradation and abandonment due to the progressive decline of the Roman Empire. The impact of volcaniclastic flows continued for decades after the eruption as highlighted in the studied sequences by stratigraphic and archaeologic

  2. Some considerations on the state of Vesuvius in the Middle Ages and the precursors of the 1631 eruption

    Directory of Open Access Journals (Sweden)

    A. Nazzaro

    1998-06-01

    Full Text Available The volcanologic literature concerning Vesuvius and its activity, since the great eruption of 1631, is particularly abundant and helpful in order to investigate topics of remarkable interest on the eruptive history of the Neapolitan volcano. One of these topics relates to the precursory phenomena of the eruption of 1631. This problem it is of great importance for a better knowledge of the eruptive trends of the volcano since the 1631 eruption is the reference for any Civil Defence plan regarding the Vesuvius volcano. In addition, knowledge of the medieval activity of Vesuvius is important because it furnishes useful data for research into some unfamiliar aspects of the volcano's history, e.g., the existence of a 1500 eruption and consequently the duration of the inactivity period before 1631. It is generally assumed that the precursors of this eruption occurred less than one month before its beginning. In particular, the earthquakes would have come about 10 days before the eruption. Moreover a soil uplift is reported about 20 days beforehand. On the basis of a careful analysis of some important sources, books and manuscripts, we will see that the outline of the phenomena was much more complex.

  3. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    International Nuclear Information System (INIS)

    Kaplan, A. F. H.

    2012-01-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO 2 -laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  4. Diagnosis of time of increased probability of volcanic earthquakes at Mt. Vesuvius zone

    CERN Document Server

    Rotwain, I; Kuznetsov, I V; Panza, G F; Peresan, A

    2003-01-01

    The possibility of intermediate-term earthquake prediction at Mt. Vesuvius by means of the algorithm CN is explored. CN was originally designed to identify the Times of Increased Probability (TIPs) for the occurrence of strong tectonic earthquakes, with magnitude M >= M sub 0 , within a region a priori delimited. Here the algorithm CN is applied, for the first time, to the analysis of volcanic seismicity. The earthquakes recorded at Mt. Vesuvius, during the period from February 1972 to October 2002, are considered and the magnitude threshold M sub 0 , selecting the events to be predicted, is varied within the range: 3.0 - 3.3. Satisfactory prediction results are obtained, by retrospective analysis, when a time scaling is introduced. In particular, when the length of the time windows is reduced by a factor 2.5 - 3, with respect to the standard version of CN algorithm, more than 90% of the events with M >= M sub 0 occur within the TIP intervals, with TIPs occupying about 30% of the total time considered. The co...

  5. Long time-series of chemical and isotopic compositions of Vesuvius fumaroles: evidence for deep and shallow processes

    Directory of Open Access Journals (Sweden)

    Berardino Bocchino

    2011-06-01

    Full Text Available Long time-series of chemical and isotopic compositions of Vesuvius fumaroles were acquired in the framework of the volcanic surveillance in the 1998-2010 period. These allow the identification of processes that occur at shallow levels in the hydrothermal system, and variations that are induced by deep changes in volcanic activity. Partial condensation processes of fumarolic water under near-discharge conditions can explain the annual 18O and deuterium variabilities that are observed at Vesuvius fumaroles. Significant variations in the chemical compositions of fumaroles occurred over the 1999-2002 period, which accompanied the seismic crisis of autumn 1999, when Vesuvius was affected by the most energetic earthquakes of its last quiescence period. A continuous increase in the relative concentrations of CO2 and He and a general decrease in the CH4 concentrations are interpreted as the consequence of an increment in the relative amount of magmatic fluids in the hydrothermal system. Gas equilibria support this hypothesis, showing a PCO2 peak that culminated in 2002, increasing from values of ~40 bar in 1998 to ~55-60 bar in 2001-2002. We propose that the seismic crisis of 1999 marked the arrival of the magmatic fluids into the hydrothermal system, which caused the observed geochemical variations that started in 1999 and culminated in 2002.

  6. 19 years of tilt data on Mt. Vesuvius: state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Ciro Ricco

    2013-11-01

    Full Text Available Mt. Vesuvius, located along the SW border of the Campania Plane graben, is one of the most studied volcanoes worldwide, from both the volcanological and the geophysical, geochemical and geodetic point of view. In order to better understand its dynamics, the deformation of the volcano has been already studied since the early ’70s by setting up levelling lines and, since a few years later, through trilateration networks, whereas ground tilt monitoring started in 1993. Tilt variations were recorded by an automatic surface station set up at the Osservatorio Vesuviano (O.V. bunker (OVO and data recorded were transmitted to the O.V. Surveillance Centre in Naples. Afterwards, in 1996 two more identical stations were set up close to Torre del Greco (CMD, and close to Trecase (TRC. In 2002 the data acquisition system was replaced, while at the end of 2011 a Lily borehole sensor was set up at 26 m depth, replacing the old TRC tilt station. The paper describes in details the tilt network of Mt. Vesuvius, its development over time and the data processing procedure; moreover, the ground deformation pattern is discussed, as inferred from the study of 19 years of data and its change during the seismic crises of 1995-1996 and 1999-2000. From the information obtained from the tiltmetric monitoring, a complex deformation pattern can be deduced, strongly dependent on the position of the sites in which the sensors were set up with respect to the morphology of the volcanic edifice and its structural outlines. If we consider the signals as they were recorded, although previously corrected for the influences of the thermo-elastic strain on the sensors, the tilting occurs mainly in the SW direction with rates of about 11 µradians/year on both the western and eastern flanks and of about 13 µradians/year on the southern one. Because tilt vectors point in the long term outward from the summit and towards the subsiding area, this supports the hypothesis of a southern

  7. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  8. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  9. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Directory of Open Access Journals (Sweden)

    Stoppa Francesco

    2017-03-01

    Full Text Available Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  10. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-03-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  11. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  12. Waiting for a catastrophe from the eruption of Vesuvius or Phlegraean Fields volcanoes from the lack of autoregulation of the territories at risk

    Science.gov (United States)

    Dobran, F.

    2017-12-01

    Vesuvius and Phlegraean Fields volcanoes in the Bay of Naples produce large-scale eruptions with periods that range from centuries and several millennia for the former and tens of thousands of years for the latter. The city of Naples with one million inhabitants is situated between these volcanoes and is surrounded with another two million people. The eruptions of Vesuvius have during the past 2000 years destroyed many local communities and Naples is built on the Phlegraean Fields eruption deposits of 15,000 years ago. The Vesuvius Observatory monitors these volcanoes for seismicity, ground deformation, and gas emissions, and was an independent entity until 15 years ago when it passed under the control of the central government in Rome. The Observatory lost its ability to work directly with local authorities to make rapid decisions in case of volcanic emergencies and the central decision-making process risks to produce catastrophic consequences that are much worse than those from Katrina. As in the Katrina situation, the central authority risk management strategy is flawed because it is politicized and lacks the knowledge of the territory at risk for taking timely decisions. In the Neapolitan area there are many actors with different interests and without an effective collaboration between volunteers, businesses, social, cultural and professional groups there is an excessive likelihood that an emergency decision will end in tragedy. The evacuation plans for Neapolitan volcanoes call for relocating more than two million people and the key issues are who will give the evacuation order, on what basis, and when, because by waiting for too long can produce a catastrophe and by reacting too early can drain the national treasury and cause significant social and political consequences. To avoid this dilemma is to replace massive evacuation or deportation plans of geologists with a risk reduction strategy that produces an autoregulation of the territory that is resilient

  13. Volcanic risk perception of young people in the urban areas of Vesuvius: Comparisons with other volcanic areas and implications for emergency management

    Science.gov (United States)

    Carlino, S.; Somma, R.; Mayberry, G.C.

    2008-01-01

    More than 600 000 people are exposed to volcanic risk in the urban areas near the volcano, Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards. Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparison with volcanic crises in other regions, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities. ?? 2008.

  14. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  15. Development of a Chemical Equilibrium Model for a Molten Core-Concrete Interaction Analysis Module

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Lee, Dae Young; Park, Chang Hwan [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    This molten core could interact with the reactor cavity region which consists of concrete. In this process, components of molten core react with components of concrete through a lot of chemical reactions. As a result, many kinds of gas species are generated and those move up forming rising bubbles into the reactor containment atmosphere. These rising bubbles are the carrier of the many kinds of the aerosols coming from the MCCI (Molten Core Concrete Interaction) layers. To evaluate the amount of the aerosols released from the MCCI layers, the amount of the gas species generated from those layers should be calculated. The chemical equilibrium state originally implies the final state of the multiple chemical reactions; therefore, investigating the equilibrium composition of molten core can be applicable to predict the gas generation status. The most common way for finding the chemical equilibrium state is a minimization of total Gibbs free energy of the system. In this paper, the method to make good guess of initial state is suggested and chemical reaction results are compared with results of CSSI report No 164. Total mass of system and the number of atoms of each element are conserved. The tendency of calculation results is similar with results presented in CSNI Report except a few species. These differences may be caused by absence of Gibbs energy data of the species such as Fe{sub 2}SiO{sub 4}, CaFe{sub 2}O{sub 4}, U(OH){sub 3}, UO(OH), UO{sub 2}(OH), U{sub 3}O{sub 7}, La, Ce.

  16. Archaeomagnetic dating of Copper Age furnaces at Croce di Papa village and relations on Vesuvius and Phlegraean Fields volcanic activity

    Science.gov (United States)

    Principe, Claudia; Gogichaishvili, Avto; Arrighi, Simone; Devidze, Marina; La Felice, Sonia; Paolillo, Annarita; Giordano, Daniele; Morales, Juan

    2018-01-01

    Metallurgic furnaces, discovered in the archaeological site of Croce di Papa, Nola, at 15 km NE from the Vesuvius summit, were dated here by using archaeomagnetic technique. They are positioned between the deposits of the Vesuvius eruption of Pomici di Avellino and of the Phlegraean eruption of Agnano-Monte Spina. A revision of available age data and associated uncertainties for these two eruptions was carried out in order to provide constraints on the Croce di Papa furnaces age determination. The adopted archaeomagnetic technique provides an accurate age of 3136-3027 BCE corresponding to 5085 to 4976 a BP that represents the upper age limit of the Agnano-Monte Spina eruption. This study provides evidences for the existence of human settlements in the Campanian Plain in the first century of the forth millennium BC and allow to assess the limited impact of the Agnano-Monte Spina eruption on climate and human settlement.

  17. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy

    Science.gov (United States)

    Convertito, Vincenzo; Zollo, Aldo

    2011-08-01

    In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.

  18. Impact on breeding rate of different Molten Salt reactor core structures

    International Nuclear Information System (INIS)

    Wang Haiwei; Mei Longwei; Cai Xiangzhou; Chen Jingen; Guo Wei; Jiang Dazhen

    2013-01-01

    Background: Molten Salt Reactor (MSR) has several advantages over the other Generation IV reactor. Referred to the French CNRS research and compared to the fast reactor, super epithermal neutron spectrum reactor type is slightly lower and beading rate reaches 1.002. Purpose: The aim is to explore the best conversion zone layout scheme in the super epithermal neutron spectrum reactor. This study can make nuclear fuel as one way to solve the energy problems of mankind in future. Methods: Firstly, SCALE program is used for molten salt reactor graphite channel, molten salt core structure, control rods, graphite reflector and layer cladding structure. And the SMART modules are used to record the important actinides isotopes and their related reaction values of each reaction channel. Secondly, the thorium-uranium conversion rate is calculated. Finally, the better molten salt reactor core optimum layout scheme is studied comparing with various beading rates. Results: Breading zone layout scheme has an important influence on the breading rate of MSR. Central graphite channels in the core can get higher neutron flux irradiation. And more 233 Th can convert to 233 Pa, which then undergoes beta decay to become 233 U. The graphite in the breading zone gets much lower neutron flux irradiation, so the life span of this graphite can be much longer than that of others. Because neutron flux irradiation in the uranium molten salt graphite has nearly 10 times higher than the graphite in the breading zone, it has great impact on the thorium-uranium conversion rates. For the super epithermal neutron spectrum molten salt reactors, double salt design cannot get higher thorium-uranium conversion rates. The single molten salt can get the same thorium-uranium conversion rate, meanwhile it can greatly extend the life of graphite in the core. Conclusions: From the analysis of calculation results, Blanket breeding area in different locations in the core can change the breeding rates of thorium

  19. 3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)

    Science.gov (United States)

    Berrino, Giovanna; Camacho, Antonio G.

    2008-06-01

    To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography. The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account

  20. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  1. Three decades of seismic activity at Mt. Vesuvius: 1972-1999

    International Nuclear Information System (INIS)

    De Natale, Giuseppe; Troise, Claudia; Kuznetzov, Igor; Kronrod, Tanya; Peresan, Antonella; Sarao, Angela; Panza, Gluliano F.

    2002-06-01

    We analyse the seismic catalogue of the local earthquakes which occurred at Somma- Vesuvius volcano in the past three decades (1972-2000). The seismicity in this period can be described as composed by a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analyses of the b value in the whole period evidences a well defined pattern, with values of b progressively decreasing, from about 1.8, at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identity a sub-structure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with large isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for almost all the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro- earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit to outline any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a general increasing trend in the seismic activity in the volcanic system and by a

  2. Molten material-containing vessel

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko

    1998-01-01

    The molten material-containing vessel of the present invention comprises a vessel main body having an entrance opened at the upper end, a lid for closing the entrance, an outer tube having an upper end disposed at the lower surface of the lid, extended downwardly and having an closed lower end and an inner tube disposed coaxially with the outer tube. When a molten material is charged from the entrance to the inside of the vessel main body of the molten material-containing vessel and the entrance is closed by the lid, the outer tube and the inner tube are buried in the molten material in the vessel main body, accordingly, a fluid having its temperature elevated by absorption of the heat of the molten material rises along the inner circumferential surface of the outer tube, abuts against the lower surface of the lid and cooled by exchanging heat with the lid and forms a circulating flow. Since the heat in the molten material is continuously absorbed by the fluid, transferred to the lid and released from the lid to the atmospheric air, heat releasing efficiency can be improved compared with conventional cases. (N.H.)

  3. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  4. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  5. Spatial and temporal distribution of vertical ground movements at Mt. Vesuvius in the period 1973-2009

    Directory of Open Access Journals (Sweden)

    Folco Pingue

    2013-11-01

    Full Text Available Since the early ’70s vertical ground movements at Mount Vesuvius area have been investigated and monitored by the Osservatorio Vesuviano (Isti-tuto Nazionale di Geofisica Vulcanologia - Osservatorio Vesuviano since 2001. This monitoring began with the installation of a high-precision leveling line in the region at medium-high elevations on the volcano. The deformation pattern and expected strain field assessment methods in the volcanic structure induced by inner sources has demanded in subsequent years the expansion of the leveling network up to cover the whole volcanic area, enclosing part of leveling lines of other institutions. As a result of this expansion, the Mt. Vesuvius Area Leveling Network (VALN has today reached a length of about 270 km and consists of 359 benchmarks. It is configured in 21 circuits and is connected, westward, to the Campi Flegrei leveling network and, northward, to the Campania Plain leveling network. The data collected have been carefully re-analyzed for random and systematic errors and for error propagation along the leveling lines to identify the areas affected by significant ground movements. For each survey, the data were rigorously adjusted and vertical ground movements were evaluated by differentiating the heights calculated by the various measurements conducted by the Osservatorio Vesuviano from 1973 to 2009.

  6. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    Science.gov (United States)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five

  7. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail: ueno@gemini.rc.kyushu-u.ac.jp; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)

    2009-02-21

    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  8. Combined system of accelerator molten-salt breeder (AMSB) apd molten-salt converter reactor (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.; Kato, Y.; Ohmichi, T.; Ohno, H.

    1983-01-01

    A design and research program is discUssed of the development of accelerator molten-salt breeder (AMSB) consisting of a proton accelerator and a molten fluoride target. The target simultaneously serves as a blanket for fissionable material prodUction. An addition of some amoUnt of fissile nuclides to a melt expands the AMSB potentialities as the fissionable material production increases and the energy generation also grows up to the level of self-provision. Besides the blanket salts may be used as nuclear fuel for molten-salt converter reactor (MSCR). The combined AM SB+MSCR system has better parameters as compared to other breeder reactors, molten-salt breeder reactors (MSBR) included

  9. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  10. PRE design of a molten salt thorium reactor loop

    International Nuclear Information System (INIS)

    Caire, Jean-Pierre; Roure, Anthony

    2007-01-01

    This study is a contribution to the 2004 PCR-RSF program of the Centre National de la Recherche Scientifique (CNRS) devoted to research on high temperature thorium molten salt reactors. A major issue of high temperature molten salt reactors is the very large heat duty to be transferred from primary to secondary loop of the reactor with minimal thermal losses. A possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps was investigated. The loop was assumed to use two counter current flows of the same LiF, BeF 2 , ZrF 4 , UF 4 molten salt flowing through the reactor. The 3D model used the coupling of k-ε turbulent Navier-Stokes equations and thermal applications of the Heat Transfer module of COMSOL Multiphysics. For a reactor delivering 2700 MWth, the model required a set of 114 identical exchangers. Each one was optimized to limit the heat losses to 2882 W. The pipes made of a succession of graphite, ceramics, Hastelloy-N alloy and insulating Microtherm layers led to a thermal loss limited to 550 W per linear meter. In such conditions, the global thermal losses represent only 0.013% of the reactor thermal power for elements covered with an insulator only 3 cm thick. (author)

  11. Viscosity controlled magma-carbonate interaction: a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia).

    Science.gov (United States)

    Blythe, L. S.; Misiti, V.; Masotta, M.; Taddeucci, J.; Freda, C.; Troll, V. R.; Deegan, F. M.; Jolis, E. M.

    2012-04-01

    Magma-carbonate interaction is increasingly seen as a viable and extremely important cause of magma contamination, and the generation of a crustally sourced CO2 phase (Goff et al., 2001; Freda et al., 2010). Even though the process is well recognized at certain volcanoes e.g. Popocatépetl, (Mexico); Merapi, (Indonesia); and Colli Albani, (Italy) (Goff et al., 2001; Deegan et al., 2010; Freda et al., 2010), neither the kinetics of carbonate assimilation nor its consequences for controlling the explosivity of eruptions have been constrained. Here we show the results of magma-carbonate interaction experiments conducted at 1200 °C and 0.5 GPa for varying durations (0 s, 60 s, 90 s and 300 s) for the Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) volcanic systems. We performed experiments using glassy starting materials specific to each volcano (shoshonite for Mt. Vesuvius, basaltic-andesite for Mt. Merapi) with different degrees of hydration (anhydrous vs hydration with ~ 2 wt % water) and using carbonate fragments of local origin; see Deegan et al., (2010) and Jolis et al., (2011). Experimental products include a gas phase (CO2-rich) and two melt phases, one pristine (Ca-normal) and one contaminated (Ca-rich) separated by a 'contamination front' which propagates outwards from the carbonate clast. Vesicles appear to nucleate in the contaminated glass and then migrate into the pristine one. Both contamination front propagation and bubble migration away from the carbonate are slower in anhydrous basaltic-andesite (Merapi anhydrous series) than in hydrated basaltic-andesite and shoshonite (Merapi and Vesuvius hydrated series), suggesting that assimilation speed is strongly controlled by the degree of hydration and the SiO2 content, both of which influence melt viscosity and hence diffusivity. As the carbonate dissolution proceeds in our experiments, initially dissolved and eventually exsolved CO2 builds up in the contaminated Ca-rich melt phase. Once melt volatile

  12. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  13. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  14. Molten fuel studies at Winfrith

    International Nuclear Information System (INIS)

    Edwards, A.J.; Knowles, J.B.; Tattersall, R.B.

    1988-01-01

    This report describes the experimental facilities available for molten fuel studies at Winfrith. These include a large facility capable of testing components at full LMFBR subassembly scale and also a high pressure facility for experiments at pressures up to 25 MPa, covering the whole range of temperatures and pressures of interest for the PWR. If the hypothetical accident conditions initiating the release of molten fuel do not produce an explosive transfer of thermal energy on contact of molten fuel with the reactor coolant, then an intermediate rate of heat transfer over several hundred milliseconds may occur. Theoretical work is described which is being carried out to predict the resulting pressurisation and the degree of mechanical loading on the reactor structure. Finally the current programme of molten fuel studies and recent progress are reviewed, and future plans, which are chiefly focussed on the study of thermal interactions between molten fuel and sodium coolant for the LMFBR are outlined. (author)

  15. Sampling device for radioactive molten salt

    International Nuclear Information System (INIS)

    Shindo, Masato

    1998-01-01

    The present invention provides a device for accurately sampling molten salts to which various kinds of metals in a molten salt storage tank are mixed for analyzing them during a spent fuel dry type reprocessing. Namely, the device comprises a sampling tube having an opened lower end to be inserted into the radioactive molten salts stored in a tank and keeps reduced pressure from the upper end, and a pressure reducing pipeline having one end connected to the sampling tube and other end connected to an evacuating pump. In this device, the top end of the sampling tube is inserted to a position for sampling the radioactive molten salts (molten salts). The pressure inside the evacuating pipeline connected to the upper portion of the sampling tube is reduced for a while. In this case, the inside of the pressure reducing pipeline is previously evacuated by the evacuating pump so as to keep a predetermined pressure. Since the pressure in the sampling tube is lowered, molten salts are inserted into the sampling tube, the sampling tube is withdrawn, and the molten salts flown in the sampling tube are analyzed. (I.S.)

  16. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  17. High-resolution radon monitoring and hydrodynamics at Mount Vesuvius

    Science.gov (United States)

    Cigolini, Corrado; Salierno, Francesco; Gervino, Gianpiero; Bergese, Paolo; Marino, Ciro; Russo, Massimo; Prati, Paolo; Ariola, Vincenzo; Bonetti, Roberto; Begnini, Stefania

    A yearlong high-resolution radon survey has been carried on at Mount Vesuvius, starting in May 1998. Radon activities were acquired by exposing charcoal canisters and track-etch detectors. Sampling stations were deployed along two major summit faults and around the caldera bottom. Volcanically-related earthquakes, with MD ≥ 2.5, may be discriminated from regional seismic events since their cumulative radon anomalies are recorded from stations located along all the above structural features. On the contrary, radon anomalies correlated to regional earthquakes, with MD ≥ 4, are essentially recorded by the sampling sites located along the two summit faults (whose roots extend deeper into the Tertiary basement rocks that underlay the volcano). Radon migration to the surface is ruled by convection within a porous medium of relatively low porosity (ϕ ≈ 10-5), suggesting that fluid motion is strongly localised along fractures. It is suggested that fluid pressure build up, followed by fluid release and migration during incipient fracturing of the porous medium, precede the onset of volcanically-induced earthquakes.

  18. Earthquakes and Uplift At Somma-vesuvius Before The 79 A.d. Eruption

    Science.gov (United States)

    Marturano, A.

    In the morning of 24 August of the year 79 A. D. the famous eruption of Pompei be- gan with a phreatomagmatic manifestation. For several years a number of earthquakes are likely to have occurred at Vesuvius together with unrest episodes. The event of 5 February 62 A.D., which is the best known and the strongest earthquake ever gener- ated by the Vesuvius, and that of 64, are the only events that can be historiographically dated. However, a number of historical epigraphical and archeological evidences ad- vocate the view that several seismic crisis occurred, characterized by strong enough earthquakes to damage the building structures. At Pompei, plenty of evidence of gener- alized, sometimes hasty, reconstructions (even of refined buildings), had erroneously validated the view of a decaying town; more likely, people were only suspiciously waiting for more imminent dangers to come. In 79 A.D. several restoration works were under way to repair the damage caused by an earthquake which had occurred shorty time before. Probably the seismicity was particularly intense in the early years of sixth decad, as well as in the early and in the end of the seventh, just before the erup- tion. At this same time the civic aqueduct of Pompei was out of use. Deep trenches ran along most of the streets for the layng of new tubes. From the 43 fountains of the town didnSt gush a drop of water, and the Castellum aquae was not supplied by regional aqueduct coming from near Apennines crossing the Campanian Plain from North to South. Two different chemical calcareous deposits in the roman water main attest two sources and two water supply stops at least. This phenomenon is interpreted with a relative uplift of the volcano respect to the external areas begun several years before 79 eruption in according with the sensible seismic precursors observed for long a time.

  19. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  20. The MU-RAY project: detector technology and first data from Mt. Vesuvius

    International Nuclear Information System (INIS)

    Ambrosino, F; Cimmino, L; Garufi, F; Lauria, A; Masone, V; Anastasio, A; Basta, D; Energico, S; Bonechi, L; Brianzi, M; Ciaranfi, R; Bross, A; Callier, S; Taille, C de La; Caputo, A; D'Auria, L; Giudicepietro, F; Macedonio, G; Martini, M; D'Alessandro, R

    2014-01-01

    Muon Radiography allows to map the density of a volcanic cone. It is based on the measurement of the attenuation of the flux of muons present in the cosmic radiation on the ground. The MU-RAY project has developed an innovative detector designed for the muon radiography. The main features are the low electric power consumption, robustness and transportability, good spatial resolution and muon time of flight measurement. A 1 m 2 detector prototype has been constructed. and collected data at Mt. Vesuvius for approximately 1 month in spring 2013. A second campaign of measurement has been performed at the Puy de Dôme, France, in the last four months of 2013. In this article the principles of muon radiography, the MU-RAY detector and the first results from the collected data will be described

  1. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  2. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  3. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1985-01-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF 4 -ThF 4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  4. Thirty years of precise gravity measurements at Mt. Vesuvius: an approach to detect underground mass movements

    Directory of Open Access Journals (Sweden)

    Giovanna Berrino

    2013-11-01

    Full Text Available Since 1982, high precision gravity measurements have been routinely carried out on Mt. Vesuvius. The gravity network consists of selected sites most of them coinciding with, or very close to, leveling benchmarks to remove the effect of the elevation changes from gravity variations. The reference station is located in Napoli, outside the volcanic area. Since 1986, absolute gravity measurements have been periodically made on a station on Mt. Vesuvius, close to a permanent gravity station established in 1987, and at the reference in Napoli. The results of the gravity measurements since 1982 are presented and discussed. Moderate gravity changes on short-time were generally observed. On long-term significant gravity changes occurred and the overall fields displayed well defined patterns. Several periods of evolution may be recognized. Gravity changes revealed by the relative surveys have been confirmed by repeated absolute measurements, which also confirmed the long-term stability of the reference site. The gravity changes over the recognized periods appear correlated with the seismic crises and with changes of the tidal parameters obtained by continuous measurements. The absence of significant ground deformation implies masses redistribution, essentially density changes without significant volume changes, such as fluids migration at the depth of the seismic foci, i.e. at a few kilometers. The fluid migration may occur through pre-existing geological structures, as also suggested by hydrological studies, and/or through new fractures generated by seismic activity. This interpretation is supported by the analyses of the spatial gravity changes overlapping the most significant and recent seismic crises.

  5. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  6. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    Science.gov (United States)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical

  7. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  8. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  9. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  10. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  11. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  12. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  13. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  14. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  15. A method of measuring a molten metal liquid pool volume

    Science.gov (United States)

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  16. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  17. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  18. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  19. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  20. Molten fuel-moderator interaction

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Kynstautas, R.

    1987-02-01

    A critical review of the current understanding of vapor explosions was carried out. It was concluded that, on the basis of actual industrial accidents and large scale experiments, energetic high yield steam explosion cannot be regarded as an improbable event if large quantities of molten fuel and coolant are mixed together. This study also reviewed a hydrodynamic transient model proposed by Henry and Fauske Associates to assess a molten fuel-moderator interaction event. It was found that the proposed model negates a priori the possibility of a violent event, by introducing two assumptions: 1) fine fragmentation of the molten fuel, and ii) rapid heat transfer from the fine fragments to form steam. Using the Hicks and Menzies thermodynamic model, maximum work potential and pressure rise in the calandria were estimated. However, it is recommended that a more representative upper bound model based on an underwater explosion of a pressurized volume of steam be developed

  1. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  2. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  3. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  4. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  5. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  6. Evidence for Late Pleistocene uplift at the Somma-Vesuvius apron near Pompeii

    Science.gov (United States)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana

    2011-05-01

    Detailed stratigraphic and micropalaeontological analyses of samples from boreholes at the Somma-Vesuvius apron, between Pompeii and the sea, allowed reconstruction of Late Quaternary palaeoenvironmental evolution of the Sarno coastal plain. In all, 116 samples were recovered from seven boreholes drilled from 2-10 m a.s.l. to 16.5-26 m b.s.l. Microfossil assemblages, with special regard to benthic foraminifers and ostracods, were used to reconstruct the depositional palaeoenvironment. Fossil remains show that all the pre-79 AD fossiliferous sediments from 2 to - 24 m a.s.l. were deposited in shallow marine waters for a long time despite an appreciable sea level rise. The data indicate alternation of both shallow marine and subaerial conditions during the last ~ 15 kyr, evidencing ground uplift of the area of about 75 m at a rate of ~ 5 mm/year. Marine sediment accumulation (~ 6 m/kyr) and tectonic uplift long offset the sea level rise, and as a consequence, submerged areas remained the same as well.

  7. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  8. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  9. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  10. New rational nuclear energy system composed of accelerator molten-salt breeder (AMSB) and molten-salt power stations (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.

    1985-01-01

    For the next century, it was predicted that some rational fission energy system breeding in significantly short doubling time less than 10 years should be developed replacing the fossil fuels. In practice, this rationality, that is, simplicity and high economy could be realized by the natural combination of: molten salt fuel concept; accelerator (spallation) breeding concept; and Thorium fuel cycle concept, in the symbiont system of Accelerator Molten-Salt breeders and Molten-Salt Power Stations. The economy of this system might significantly become better than the other breeder systems, although the prediction in Chapter 6 was too much conservative. Its more important aspect is the low cost of future R and D, which depend on the rational character of Molten-Fluoride Technology and really is verified by the basic R and D cost (only $0.13 B) in Oak Ridge N.L. It is interesting that molten-salt technology will be able to apply to chemical processing of U-Pu oxide fuels by the developing effort by USSR in near future. This fact and the demand of small power stations such as 150MWe MSCR presented here will be able to bridge between the present and the next century

  11. Piezomagnetic effects induced by artificial sources at Mt. Vesuvius (Italy: preliminary results of an experimental survey

    Directory of Open Access Journals (Sweden)

    R. Napoli

    1998-06-01

    Full Text Available In order to put new constrains on magnetic effects associated with mechanical stresses, high frequency monitoring of the geomagnetic field was carried out during a seismic tomography experiment (TOMOVES'96 project at Mt. Vesuvius. Eight proton precession and one Cesium magnetometers were installed along a profile on the SW flank of the volcano to observe possible magnetic changes induced by explosions. Measurements were performed at different sampling frequencies (10 Hz, 0.5 Hz and 0.1 Hz. A remarkable change in the intensity of the magnetic field was observed in only one case. The magnetic transient lasted 12-13 min, reaching the maximum amplitude of slightly less than 15 nT.

  12. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  13. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-05-01

    The molten fluoride salt compatibility studies carried out during the period 1974--76 in support of the Molten-Salt Reactor Program are summarized. Thermal-convection and forced-circulation loops were used to measure the corrosion rate of selected alloys. Results confirmed the relationship of time, initial chromium concentration, and mass loss developed by previous workers. The corrosion rates of Hastelloy N and Hastelloy N modified by the addition of 1--3 wt percent Nb were well within the acceptable range for use in an MSBR. 13 figures, 3 tables

  14. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  15. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  16. Molten salt engineering for thorium cycle. Electrochemical studies as examples

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    1998-01-01

    A Th-U nuclear energy system utilizing accelerator driven subcritical molten salt breeder reactor has several advantages compared to conventional U-Pu nuclear system. In order to obtain fundamental data on molten salt engineering of Th-U system, electrochemical study was conducted. As the most primitive simulated study of beam irradiation of molten salt, discharge electrolysis was investigated in molten LiCl-KCl-AgCl system. Stationary discharge was generated under atmospheric argon gas and fine Ag particles were obtained. Hydride ion (H - ) behavior in molten salts was also studied to predict the behavior of tritide ion (T - ) in molten salt fuel. Finally, hydrogen behavior in metals at high temperature was investigated by electrochemical method, which is considered to be important to confine and control tritium. (author)

  17. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvius and Phlegraean fields

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2006-12-15

    This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)

  19. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  20. Experimental studies of oxidic molten corium-vessel steel interaction

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V.

    2001-01-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere

  1. Experimental studies of oxidic molten corium-vessel steel interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. E-mail: niti-npc@sbor.net; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V

    2001-12-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.

  2. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  3. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  4. Dynamics of the Molten Contact Line

    Science.gov (United States)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten

  5. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  6. Core-concrete molten pool dynamics and interfacial heat transfer

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles

  7. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  8. 46 CFR 151.50-55 - Sulfur (molten).

    Science.gov (United States)

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a.... Heat transfer media shall be steam, and alternate media will require specific approval of the... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping...

  9. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  10. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  11. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  12. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  13. Fundamental experiment on simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Toda, S.; Katsumura, Y.

    1994-01-01

    If a complete and prolonged failure of coolant flow were to occur in a LWR or FBR, fission product decay heat would cause the fuel to overheat. If no available action to cool the fuel were taken, it would eventually melt. Ibis could lead to slumping of the molten core material and to the failure of the reactor pressure vessel and deposition of these materials into the concrete reactor cavity. Consequently, the molten core could melt and decompose the concrete. Vigorous agitation of the molten core pool by concrete decomposition gases is expected to enhance the convective heat transfer process. Besides the decomposition gases, melting concrete (slag) generated under the molten core pool will be buoyed up, and will also affect the downward heat transfer. Though, in this way, the heat transfer process across the interface is complicated by the slag and the gases evolved from the decomposed concrete, it is very important to make its process clear for the safety evaluation of nuclear reactors. Therefore, in this study, fundamental experiments were performed using simulated materials to observe the behaviors of the hot pool, slag and gases at the interface. Moreover, from the experimental observation, a correlation without empirical constants was proposed to calculate the interface heat transfer. The heat transfer across the interface would depend on thermo-physical interactions between the pool, slag and concrete which are changed by their thermal properties and interface temperature and so on. For example, the molten concrete is miscible in molten oxidic core debris, but is immiscible in metallic core debris. If a contact temperature between the molten core pool and the concrete falls below the solidus of the pool, solidification of the pool will occur. In this study, the case of immiscible slag in the pool is treated and solidification of the pool does not occur. Thus, water, paraffin and air were selected as the simulated molten core pool, concrete, and decomposition

  14. Application of lithium in molten-salt reduction processes

    International Nuclear Information System (INIS)

    Gourishankar, K. V.

    1998-01-01

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li 2 O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes

  15. Structure of molten Bi-Sb-alloys by means of neutron diffraction

    International Nuclear Information System (INIS)

    Lamparter, P.; Knoll, W.; Steeb, S.

    1976-01-01

    The structural investigations with melts can be subdivided into two groups: The first group contains molten metals and molten alloys, and one can state that the structure of molten metals and of molten alloys nowadays is rather well understood. Interference functions of molten metals may be described by a hard sphere model. This is valid also for molten alloys with statistical distribution. For the second group, namely molten non-metals and molecular melts, the interference functions as well as the pair correlation functions are very offen rather complicated and not well understood. The present study is concerned with the transition region between these two groups. It is shown that the melts of the Bi-Sb system exhibit a change from metallic to non-metallic structure. Regarding the experimental details: the experiments were done with the two-axes spectrometer D 4 at the high-flux reactor at Grenoble. The containers consisted of cylindrical quartz tubes with a wall thickness of 0.1 cm. The furnace consisted of a direct-heated vanadium tube. The wavelength of the neutrons was 0.695 A. The final result is that the structure in molten Bi-Sb-alloys consists of primitive tetrahedra with coordination number 3. There are less tetrahedra in molten Bi than in molten Sb. Also with rising temperature the number of tetrahedra decreases. It is shown how to compose the coordination numbers of two structures to get the observed coordination number. The observed values are always the mean values of the two structures. (orig./HK) [de

  16. Volcanic precursors in light of eruption mechanisms at Vesuvius

    Directory of Open Access Journals (Sweden)

    Roberto Scandone

    2013-11-01

    Full Text Available Vesuvius entered a quiescent stage after the eruption of March-April 1944. The eruption was not much different or larger than other before, like for example the one of 1906, but it occurred at the end of a long period during which it was observed a decreasing trend of explosivity of eruptions [Scandone et al. 2008]. The parallel increase in the frequency of slow effusive eruptions, with respect to violent strombolian eruptions, point out to a process of average slower rate of magma ascent possibly due to a progressive sealing of the ascent path of magma to the surface. The small caldera collapse following the 1944 explosive phase effectively sealed the upper conduit, and since then the volcano entered a quiescence stage that was unusual with respect to the pattern of activity of the previous 300 years when the maximum repose time had been of 7 years (after the eruption of 1906. Most of the uncertainty on the duration of the present stage and character of a future renewal of activity derives by the basic questions regarding the nature of the current repose: due to a diminished supply of magma, related with structural condition or a sealing of the upper ascent path to the surface? Possibly the variation of structural conditions caused average slower ascent rates of magma favoring its cooling in the upper part of the crust, and effectively sealing the ascent path.

  17. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  18. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  19. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  20. Molten salts processes and generic simulation

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo

    2001-01-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO 2 and PuO 2 in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  1. Groundwater geochemistry of the Mt. Vesuvius area: implications for volcano surveillance and relationship with hydrological and seismic signals

    Directory of Open Access Journals (Sweden)

    Cinzia Federico

    2013-11-01

    Full Text Available Geochemical data obtained between 1998 and 2011 at the Mt. Vesuvius aquifer are discussed, focusing on the effects of both the hydrological regime and the temporal pattern of local seismicity. Water samples were collected in a permanent network of wells and springs located in the areas that are mostly affected by the ascent of magmatic volatiles, and their chemical composition and dissolved gas content were analyzed. As well as the geochemical parameters that describe the behavior of groundwater at Mt. Vesuvius, we discuss the temporal distribution of volcano-tectonic earthquakes. The seismological data set was collected by the stations forming the permanent and mobile network of the Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Vesuviano (INGV-OV. Our analysis of seismic data collected during 1998-2011 identified statistically significant variations in the seismicity rate, marked by phases of decreasing activity from October 1999 to May 2001 and increasing activity from August 2004 to mid-2006. The water chemistry shows peculiar patterns, characterized by a changeable input of CO2-rich and saline water, which must be related to either a changing stress field or an increased input of CO2-rich vapor. The water chemistry data from 1999 to 2003 account for both higher fluid pressure (which induced the seismic crisis of 1999 that peaked with a 3.6-magnitude earthquake in October 1999 and the increased input of CO2-rich fluids. The highest emission of CO2 from the crater fumaroles and the corresponding increase in dissolved carbon in groundwater characterize the phase of low seismicity. The termination of the phase of intense deep degassing is associated with a change in water chemistry and a peculiar seismic event that was recorded in July 2003. All these seismic and geochemical patterns are interpreted according to temporal variations in the regional and local stress field.

  2. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  3. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  4. Study on mechanical interaction between molten alloy and water

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Ueda, Nobuyuki; Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi

    1999-01-01

    Simulant experiments using low melting point molten alloy and water have been conducted to observe both fragmentation behavior of molten jet and boiling phenomena of water, and to measure both particle size and shape of fragmented solidified jet, focusing on post-pin-failure molten fuel-coolant interaction (FCl) which was important to evaluate the sequence of the initiating phase for metallic fueled FBR. In addition, characteristics of coolant boiling phenomena on FCIs have been investigated, focusing on the boiling heat transfer in the direct contact heat transfer mode. As a results, it is concluded that the fragmentation of poured molten alloy jet is affected by a degree of boiling of water and is classified into three modes by thermal conditions of both the instantaneous contact interface temperature of two liquids and subcooling of water. In the case of forced convection boiling in direct contact mode, it is found that the heat transfer performance is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy. As a results of preliminary investigation of FCI behavior for metallic fuel core based on these results, it is expected that the ejected molten fuel is fragmented into almost spherical particles due to the developed boiling of sodium. (author)

  5. A basic study on fluoride-based molten salt electrolysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon [Seoul National University, Seoul (Korea); Kim, Kwang Bum [Yonsei University, Seoul (Korea); Park, Byung Gi [Seoul National University, Seoul (Korea)

    2001-04-01

    The objective of this project is to study on the physicochemical properties of fluoride molten salt, to develop numerical model for simulation of molten salt electrolysis, and to establish experimental technique of fluoride molten salt. Physicochemical data of fluoride molten salt are investigated and summarized. The numerical model, designated as REFIN is developed with diffusion-layer theory and electrochemical reaction kinetics. REFIN is benchmarked with published experimental data. REFIN has a capability to simulate multicomponent electrochemical system at transient conditions. Experimental device is developed to measure electrochemical properties of structural material for fluoride molten salt. Ni electrode is measured with cyclic voltammogram in the conditions of 600 .deg. C LiF-BeF{sub 2} and 700 .deg. C LiF-BeF{sub 2}. 74 refs., 23 figs., 57 tabs. (Author)

  6. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  7. Molten core retention assembly

    International Nuclear Information System (INIS)

    Lampe, R.F.

    1976-01-01

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods

  8. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  9. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    Directory of Open Access Journals (Sweden)

    Noriyoshi Matsumi

    2014-11-01

    Full Text Available Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl imide (LiNTf2, the resulting 1-(2-hydroxyethyl-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported.

  10. Dynamics and control of molten-salt breeder reactor

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-08-01

    Full Text Available Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  11. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  12. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  13. Development of viscometers for molten salts

    International Nuclear Information System (INIS)

    Hayashi, Hirokazu; Kato, Yoshio; Ogawa, Toru; Sato, Yuzuru.

    1997-06-01

    Viscometers specially designed for molten salts were made. One is a oscillating cup type and the other is a capillary type. In the case of the oscillating cup viscometer, the viscosity is determined absolutely through the period and the logarithmic decrement of oscillation with other physical parameters. The period and the logarithmic decrement are calculated from the time intervals between two photo-detectors' intercepts of the reflected laser beam. The capillary viscometer used is made of quartz and the sample is sealed under vacuum, which is placed in a transparent furnace. Efflux time is measured by direct visual observation. Cell constants are determined with distilled water as a calibrating liquid. Viscosities of molten KCl are measured with each viscometer. The differences between measured and standard values of molten KCl at several temperatures are within 5% for the oscillating cup viscometer and within 3% for the capillary viscometer. (author)

  14. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  15. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  16. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  17. Controlling the discharge of molten material

    International Nuclear Information System (INIS)

    Geel, J. van; Dobbels, F.; Theunissen, W.

    1980-01-01

    A method and device are described for controlling the discharge of molten material from a melter or an intermediate vessel, in which a primary outflow is fed to an overflow system, the working level of which is regulated by means of pneumatic pressure on a communicating chamber pertaining to the overflow system. Molten material may be led into a primary overflow by means of a pneumatic lift. The material melted may be a glass used for disposing of radioactive liquid wastes. (author)

  18. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  19. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  20. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  1. Experimental studies on natural circulation in molten salt loops

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2015-01-01

    Molten salts are increasingly getting attention as a coolant and storage medium in solar thermal power plants and as a liquid fuel, blanket and coolant in Molten Salt Reactors (MSR’s). Two different test facilities named Molten Salt Natural Circulation Loop (MSNCL) and Molten Active Fluoride salt Loop (MAFL) have been setup for thermal hydraulics, instrument development and material related studies relevant to MSR and solar power plants. The working medium for MSNCL is a molten nitrate salt which is a mixture of NaNO 3 and KNO 3 in 60:40 ratio and proposed as one of the coolant option for molten salt based reactor and coolant as well as storage medium for solar thermal power application. On the other hand, the working medium for MAFL is a eutectic mixture of LiF and ThF 4 and proposed as a blanket salt for Indian Molten Salt Breeder Reactor (MSBR). Steady state natural circulation experiments at different power level have been performed in the MSNCL. Transient studies for startup of natural circulation, loss of heat sink, heater trip and step change in heater power have also been carried out in the same. A 1D code LeBENC, developed in-house to simulate the natural circulation characteristics in closed loops, has been validated with the experimental data obtained from MSNCL. Further, LeBENC has been used for Pretest analysis of MAFL. This paper deals with the description of both the loops and experimental studies carried out in MSNCL. Validation of LeBENC along with the pretest analysis of MAFL using the same are also reported in this paper. (author)

  2. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  3. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  4. Thermal behavior of molten corium during TMI-2 core relocation event

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sienicki, J.J.

    1988-01-01

    During the TMI-2 accident, a pool of molten corium formed in the central region of the core and was contained by solidified crusts. Failure of the crust surrounding the molten material, at approximately 224 min, resulted in a relocation of an estimated 20-25 tons of molten corium through peripheral fuel assemblies in the east side of the vessel, as well as through the core barrel assembly (CBA) at the periphery of the core. This paper presents the results of an analyses carried out to investigate the thermal interactions of molten corium with the CBA structures during the relocation event. The principal objectives of the analyses are: (a) to assess the potential for relocation to take place through the CBA versus the flow of molten core material directly downward through the core via the fuel assemblies; and (b) to understand the distribution of prior molten corium observed during vessel defueling examinations. 5 refs., 1 fig

  5. Experimental study on forced convection boiling heat transfer on molten alloy

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Ueda, Nobuyuki; Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi

    1999-01-01

    In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy

  6. Compatibility of AlN ceramics with molten lithium

    Energy Technology Data Exchange (ETDEWEB)

    Yoneoka, Toshiaki; Sakurai, Toshiharu; Sato, Toshihiko; Tanaka, Satoru [Tokyo Univ., Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    AlN ceramics were a candidate for electrically insulating materials and facing materials against molten breeder in a nuclear fusion reactor. In the nuclear fusion reactor, interactions of various structural materials with solid and liquid breeder materials as well as coolant materials are important. Therefore, corrosion tests of AlN ceramics with molten lithium were performed. AlN specimens of six kinds, different in sintering additives and manufacturing method, were used. AlN specimens were immersed into molten lithium at 823 K. Duration for the compatibility tests was about 2.8 Ms (32 days). Specimens with sintering additive of Y{sub 2}O{sub 3} by about 5 mass% formed the network structure of oxide in the crystals of AlN. It was considered that the corrosion proceeded by reduction of the oxide network and the penetration of molten lithium through the reduced pass of this network. For specimens without sintering additive, Al{sub 2}O{sub 3} containing by about 1.3% in raw material was converted to fine oxynitride particles on grain boundary or dissolved in AlN crystals. After immersion into lithium, these specimens were found to be sound in shape but reduced in electrical resistivity. These degradation of the two types specimens were considered to be caused by the reduction of oxygen components. On the other hand, a specimen sintered using CaO as sintering additive was finally became appreciably high purity. This specimen showed good compatibility for molten lithium at least up to 823 K. It was concluded that the reduction of oxygen concentration in AlN materials was essential in order to improve the compatibility for molten lithium. (author)

  7. Indian programme on molten salt cooled nuclear reactors

    International Nuclear Information System (INIS)

    DuIera, I.V.; Vijayan, P.K.; Sinha, R.K.

    2013-01-01

    Bhabha Atomic Research Centre (BARC) is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of molten fluoride salts and is capable of supplying process heat at 1000 ℃ to facilitate hydrogen production by splitting water. BARC has also initiated studies for a reactor concept in which salts of molten fluoride fuel and coolant in fluid form, flows through the reactor core of graphite moderator, resulting in nuclear fission within the molten salt. For thorium fuel cycle, this concept is very attractive, since the fuel can be re-processed on-line, enabling it to be an efficient neutron breeder. (author)

  8. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  9. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  10. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  11. Molten metal feed system controlled with a traveling magnetic field

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1991-01-01

    This patent describes a continuous metal casting system in which the feed of molten metal controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir

  12. Visualization study of molten metal-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.

    1999-01-01

    The purpose of this study is to visualize the behavior of molten metal dropped into water during the premixing process by means of neutron radiography which makes use of the difference in the attenuation characteristics of materials. For this purpose, a high-sensitive, high-frame-rate imaging system using neutron radiography was constructed and was applied to visualization of the behavior of molten metal dropped into water. The test rig consisted of a furnace and a test section. The furnace could heat the molten metal up to 650 C. The test section was a rectangular tank made of aluminum alloy. The tank was filled with heavy water and molten Wood's metal was dropped into heavy water. Visualization study was carried out with use of the high-frame-rate neutron radiography to see the breakup of molten metal jet or lump dropped into heavy water pool. In the images obtained, water, steam or air bubbles, molten metal jets or droplets, cloud of small particles of molten metal after atomization could be distinguished. The debris of Wood's metal was collected after the experiment, and the relation between the break-up behavior and the size and the shape of the debris particles was investigated. (orig.)

  13. Molten salt reactors and possible scenarios for future nuclear power deployment

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Mathieu, L.; Heuer, D.; Loiseaux, J. M.; Billebaud, A.; Brissot, R.; David, S.; Garzenne, C.; Laulan, O.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Meplan, O.; Michel-Sendis, F.; Nuttin, A.; Perdu, F.

    2004-01-01

    An important fraction of the nature energy demand may be satisfied by nuclear power. In this context, the possibilities of worldwide nuclear deployment are studied. We are convinced that the Molten Salt Reactors may play a central role in this deployment. The Molten Salt Reactor needs to be coupled to a reprocessing unit in order to extract the Fission Products which poison the core. The efficiency of this reprocessing has a crucial influence on reactor behavior especially for the breeding ratio. The Molten Salt Breeder Reactor project was based on an intensive reprocessing for high breeding purposes. A new concept of Thorium Molten Salt Reactor is presented here. Including this new concept in the worldwide nuclear deployment, to satisfy these power needs, we consider three typical scenarios, based on three reactor types: Pressurized Water Reactor, Fast Neutron Reactor and Thorium Molten Salt Reactor. The aim of this paper is to demonstrate, in a first hand that a Thorium Molten Salt Reactor can be realistic, with correct temperature coefficients and at least iso-breeder with slow reprocessing and new geometry; on the other hand that such Molten Salt Reactors enable a successful nuclear deployment, while minimizing fuel and waste management problems. (authors)

  14. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  15. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  16. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  17. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  18. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  19. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  20. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  1. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  2. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  3. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  4. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  5. Postaccident heat removal: large-scale molten-fuel-sodium interaction experiments

    International Nuclear Information System (INIS)

    Johnson, T.R.; Pavlik, J.R.; Baker, L. Jr.

    1975-02-01

    Kilogram-scale interactions between molten UO 2 and sodium were performed in an unrestrained geometry to study the resulting energetics and fragmentation. The molten UO 2 was producted by the exothrmic reaction between uranium and MoO 3 powders. Under the conditions of the experiments completed to date, the short-rise-time pressure pulses created in the liquid phase had negligible work potential, and their magnitude did not increase with the amount of molten fuel. No significant gas-phase shock pressures were generated. The largest potential for mechanical work was the sodium vapor generated over a period of roughly 1 sec. About 20 percent of the heat was effective in generating vapor. The ex- perimental results show a marked tendency of molten UO 2 to form particulate after passage through only a few inches of sodium. Particle size distributions obtained under the conditions of the experiments were not significantly different from those obtained in prior small-scale tests and in TREAT tests. Also, the results indicate that the metallic component of the molten mixture formed larger particles than the oxide component. (U.S.)

  6. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  7. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  8. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  9. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  10. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  11. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  12. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  13. Time-of-flight pulsed neutron diffraction of molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Y; Misawa, M; Suzuki, K [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1975-06-01

    In this work, the pulsed neutron diffraction of molten alkali metal nitrate and bismuth trihalide was measured by the time-of-flight method. An electron linear accelerator was used as the pulsed neutron source. All the measurements were carried out with the T-O-F neutron diffractometer installed on the 300 MeV electron lineac. Molten NaNO/sub 3/ and RbNO/sub 3/ were adopted as the samples for alkali metal nitrate. The measurement is in progress for KNO/sub 3/ and LiNO/sub 3/. As the first step of the study on bismuth-bismuth trihalide system, the temperature dependence of structure factors was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/ in the liquid state. The structure factors Sm(Q) for molten NaNO/sub 3/ at 340/sup 0/C and RbNO/sub 3/ at 350/sup 0/C were obtained, and the form factor F/sub 1/(Q) for single NO/sub 3//sup -/ radical with equilateral triangle structure was calculated. In case of molten NaNO/sub 3/, the first peak of Sm(Q) is simply smooth and a small hump can be observed in the neighbourhood of the first minimum Q position. The first peak of Sm(Q) for molten RbNO/sub 3/ is divided into two peaks, whereas a hump at the first minimum becomes big, and shifts to the low Q side of the second peak. The size of the NO/sub 3//sup -/ radical in molten NaNO/sub 3/ is a little smaller than that in molten RbNO/sub 3/. The values of the bond length in the NO/sub 3//sup -/ radical are summarized for crystal state and liquid state. The temperature dependence of the structure factor S(Q) was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/, and shown in a figure.

  14. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  15. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  16. Recovery of metal chlorides from their complexes by molten salt displacement

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes a process for recovering zirconium or hafnium chloride from a complex of zirconium or hafnium tetrachloride and phosphorus oxychloride. The process comprising: introducing liquid complex of zirconium or hafnium tetrachloride and phosphorus oxychloride into an upper portion of a feed column containing zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor. The liquid complex absorbing zirconium or hafnium tetrachloride vapor and producing a bottoms liquid and also producing a phosphorus oxychloride vapor stripped of zirconium or hafnium tetrachloride; introducing the bottoms liquid into a molten salt containing displacement reactor, the reactor containing molten salt comprising at least 30 mole percent lithium chloride and at least 30 mole percent of at least one other alkali metal chloride, the reactor being heated to 30-450 0 C to displace phosphorus oxychloride from the complex and product zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor and zirconium or hafnium tetrachloride-containing molten salt; introducing the zirconium or hafnium tetrachloride vapor and the phosphorus oxychloride vapor into the feed column below the point of introduction of the liquid stream; introducing the zirconium or hafnium tetrachloride containing-molten salt into a recovery vessel where zirconium or hafnium tetrachloride is removed from the molten salt to produce zirconium or hafnium tetrachloride product and zirconium or hafnium chloride-depleted molten salt; and recycling the zirconium or hafnium tetachloride-depleted molten salt to the displacement reactor

  17. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  18. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  19. Thermal interaction of molten copper with water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-01-01

    Experimental work was performed to study the thermal interaction between molten copper particles (in the range of temperature from the copper melting point to about 1800 0 C) and water from about 15-80 0 C. The transient temperatures of the copper particles and water before and during their thermal interaction were measured. The history of the phenomena was filmed by means of a high speed FASTAX camera (to 8000 f/s). Classification of the observed phenomena and description of the heat-transfer modes were derived. One among the phenomena was the thermal explosion. The necessary conditions for the thermal explosion are discussed and their physical interpretation is given. According to the hypothesis proposed, the thermal explosion occurs when the molten metal has the temperature of its solidification and the heat transfer on its surface is sufficiently intensive. The 'sharp-change' of the crystalline structure during the solidification of the molten metal is the cause of the explosion fragmentation. (author)

  20. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  1. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  2. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  3. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  4. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  5. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  6. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  7. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  8. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  9. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  10. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  11. Overview on CO{sub 2} Valorization: Challenge of Molten Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Chery, Déborah; Lair, Virginie; Cassir, Michel, E-mail: michel.cassir@chimie-paristech.fr [Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL Research University, Paris (France)

    2015-10-02

    The capture and utilization of CO{sub 2} is becoming progressively one of the significant challenges in the field of energetic resources. Whatever the energetic device, it is impossible to avoid completely the production of greenhouse gas, even parting from renewable energies. Transforming CO{sub 2} into a valuable fuel, such as alcohols, CO, or even C, could constitute a conceptual revolution in the energetic bouquet offering a huge application domain. Although several routes have been tested for this purpose, on which a general panorama will be given here, molten carbonates are attracting a renewed interest aiming at dissolving and reducing carbon dioxide in such melts. Because of their unique properties, molten carbonates are already used as electrolytes in molten carbonate fuel cells; they can also provoke a breakthrough in a new economy considering CO{sub 2} as an energetic source rather than a waste. Molten carbonates’ science and technology is becoming a strategic field of research for energy and environmental issues. Our aim in this review is to put in evidence the benefits of molten carbonates to valorize CO{sub 2} and to show that it is one of the most interesting routes for such application.

  12. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1989-01-01

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  13. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  14. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  15. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  16. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  17. Modelization of the SECM in molten salts environment

    International Nuclear Information System (INIS)

    Lucas, M.; Slim, C.; Di Caprio, D.; Delpech, S.; Stafiej, J.

    2013-01-01

    We develop a cellular automata simulation of SECM (Scanning Electrochemical Microscopy)experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present also the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, or surface obtained by an Eden model process. We show that with a simple cellular automata model we can reasonably well simulate the results of SECM setup. The stochastic resolution of the diffusion equations is made possible by the parallel code implemented on GPU

  18. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  19. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  20. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  1. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  2. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  3. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  4. Evaluation of a molten salt electrolyte for direct reduction of actinides

    International Nuclear Information System (INIS)

    Alangi, Nagaraj; Anupama, P.; Mukherjee, Jaya; Gantayet, L.M.

    2011-01-01

    Use of molten fluoride salt towards direct reduction of actinides and lanthanides by molten salt electrolysis is of interest for problems related to metallic nuclear fuels. The performance of the molten salt bath is dependent on the pre-conditioning of the molten salt. A procedure for conditioning of LiF-BaF 2 salt mixtures has been developed based on systematic electrochemical experimental investigations using voltammetry with graphite and platinum as electrode materials. We utilize the linear sweep voltammetry (LSV) as a diagnostic tool for assessment of the electrolyte condition. This technique is fast and offers the advantage of in-situ/online measurement eliminating the need for sampling. The conditioning procedure that was developed was tried on LiF-CaF 2

  5. Proceedings of the workshop on molten salts technology and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirokazu; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Applications of molten salts technology to separation and synthesis of materials have been studied eagerly, which would develop new fields of materials science. Research Group for Actinides Science, Department of Materials Science, Japan Atomic Energy Research Institute (JAERI), together with Reprocessing and Recycle Technology Division, Atomic Energy Society of Japan, organized the Workshop on Molten Salts Technology and Computer Simulation at Tokai Research Establishment, JAERI on July 18, 2001. In the workshop eleven lectures were made and lively discussions were there on the fundamentals and applications of the molten salts technology that covered the structure and basic properties of molten salts, the pyrochemical reprocessing technology and the relevant computer simulation. The 10 of the presented papers are indexed individually. (J.P.N.)

  6. Propagation mechanisms of molten fuel/moderator interactions

    International Nuclear Information System (INIS)

    Frost, D.L.; Ciccarelli, G.

    1991-06-01

    It is well known that a vapor explosion can result when molten is suddenly brought into contact with a cold volatile liquid such as water. However, the rapid melt fragmentation and heat transfer processes that occur during a propagating melt-water interaction are poorly understood. Experiments were carried out in the present work to investigate the fragmentation processes for single molten metal drops in water. To determine the time scale for the fragmentation of a drop, liquid metal drops (in thermal equilibrium with the water) as well as hot molten drops surrounded by a vapor film were subjected to underwater shocks with overpressures of up to about 20 MPa. In the hot molten drop tests, the induction time for the initiation of the explosion is typically less than 100 μs; at a corresponding time in the cold drop tests, very little or no direct hydrodynamic fragmentation of the drop has occurred. Therefore, in the hot drop case the fragmentation of the drop is dominated by thermal effects; i.e., the heat transfer from the melt to the water leads to violent boiling, pressurization, and drop fragmentation. The melt-water interaction consists of several cycles involving bubble growth and collapse. The strength of the interaction was not found to be a strong function of initial shock pressure (for molten tin drops with trigger pressures of up to 20 MPa), but depends on the thermal energy in the melt: high-temperature thermite drops generated a larger first bubble than lower temperature melt drops. A model for the fine fragmentation process for a hot drop is proposed that is based on thermal effects. The fragmentation processes governed by thermal effects observed in the present experiments are expected to play an important role in the escalation of a local interaction to a large-scale coherent vapor explosion, and are not accounted for in current transient models for propagating vapor explosions

  7. Molten fluoride mixtures as possible fission reactor fuels

    International Nuclear Information System (INIS)

    Grimes, W.R.

    1978-01-01

    Molten mixtures of fluorides with UF 4 as a component have been used as combined fuel and primary heat transfer agent in experimental high-temperature reactors and have been proposed for use in breeders or converters of 233 U from thorium. Such use places stringent and diverse demands upon the fluid fuel. A brief review of chemical behavior of molten fluorides is given to show some of their strengths and weaknesses for such service

  8. Experimental study on thermal interaction between a high-temperature molten jet and plates

    International Nuclear Information System (INIS)

    Sato, K.; Saito, M.; Furutani, A.; Isozaki, M.; Imahori, S.; Konishi, K.

    1994-01-01

    This paper summarizes the recent simulant experiments to study molten corium-structure interactions under postulated core disruptive accident (CDA) conditions in liquid-metal fast breeder reactors (LMFMRs). These experiments were conducted in the MELT-II facility generating high-temperature molten simulants by an induction heating technique. From a series of molten jet-structure interaction experiments, the effects of the solidified crust layer and molten layer on the erosion behavior were identified, and analytical models were developed to assess the structure erosion rate with and without crust formation. Especially, we revealed the inherent mitigation mechanism that when the molten oxide jet with high melting point falls down onto the structure plate, solidified crust of the oxide can significantly reduce the erosion rate. (author)

  9. Molten salt reactors. The AMSTER concept

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.

    2001-01-01

    This article presents the concept of actinide molten salt transmuter (AMSTER). This reactor is graphite-moderated and is dedicated to the burning of actinides. The main difference with a molten salt reactor is that its liquid fuel undergoes an on-line partial reprocessing in which fission products are extracted and heavy nuclei are reintroduced into the fuel. In order to maintain the reactivity regular injections of 235 U-salt are made. In classical reactors, fuel burn-up is limited by the swelling of the cladding and the radiation fuel pellets resistance, in AMSTER there is no limitation to the irradiation time of the fuel, so all the actinides can be burnt or transmuted. (A.C.)

  10. On the ionic equilibrium between complexes in molten fluoroaluminates

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tankeshwar, K.; Tosi, M.P.

    1991-02-01

    We discuss theoretically (i) the effect of the alkali cation species on the ionic equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in molten alkali fluoroaluminates, and (ii) the possible presence of (AlF 5 ) 2 - complexes in molten cryolite, in relation to very recent Raman scattering experiments by Gilbert and Materne. (author). 7 refs, 2 tabs

  11. Molten metal feed system controlled with a traveling magnetic field

    Science.gov (United States)

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  12. Molten-salt reactor strategies viewed from fuel conservation effect, (1)

    International Nuclear Information System (INIS)

    Furuhashi, Akira

    1976-01-01

    Saving of material requirements in the long-term fuel cycle is studied by introducing molten-salt reactors with good neutron economy into a projection of nuclear generating capacity in Japan. In this first report an examination is made on the effects brought by the introduction of molten-salt converter reactors starting with Pu which are followed by 233 U breeders of the same type. It is shown that the sharing of some Pu in the light water- and fast breeder-reactor system with molten-salt reactors provides a more rapid transition to the self-supporting, breeding cycle than the simple fast breeding system, thus leading to an appreciable fuel conservation. Considerations are presented on the strategic repartition of generating capacity among reactor types and it is shown that all of the converted 233 U should be promptly invested to molten-salt breeders to quickly establish the dual breeding system, instead of recycling to converters themselves. (auth.)

  13. Internal cation mobilities in molten lithium. Potassium fluoride

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Ohashi, Ryo; Chou, Pao-Hwa; Takagi, Ryuzo

    2006-01-01

    Relative differences between internal cation mobilities in molten (Li, K) F have been measured by countercurrent electromigration (Klemm method) at 1023 K. Internal mobilities of K + are larger than those of Li + in all composition on which we have measured so far. More striking feature is that the isotherms have minimum of mobilities at ca. x K =0.5. The local structural parameters would be highly related to the ionic conduction behavior in molten fluorides. (author)

  14. Behaviour of molten reactor fuels under accident conditions

    International Nuclear Information System (INIS)

    Xavier Swamikannu, A.; Mathews, C.K.

    1980-01-01

    The behaviour of molten reactor fuels under accident conditions has received considerable importance in recent times. The chemical processes that occur in the molten state among the fuel, the clad components and the concrete of the containment building under the conditions of a core melt down accident in oxide fuelled reactors have been reviewed with the purpose of identifying areas of developmental work required to be performed to assess and minimize the consequences of such an accident. This includes the computation and estimation of vapour pressure of various gaseous species over the fuel, the clad and the coolant, providing of sacrificial materials in the concrete in order to protect the containment building in order to prevent release of radioactive gases into the atmosphere and understanding the distribution and chemical state of fission products in the molten fuel in order to provide for the effective removal of their decay heats. (auth.)

  15. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  16. A study on the corrosion test of equipment material handling hot molten salt

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Jeong, M.S.; Hong, S.S.; Cho, S.H.; Shin, Y.J.; Park, H.S.; Zhang, J.S.

    1999-02-01

    On this technical report, corrosion behavior of austenitic stainless steels of SUS 316L and SUS 304L in molten salt of LiCl-Li 2 O has been investigated in the temperature range of 650 - 850 dg C. Corrosion products of SUS 316L in molten salt consisted of two layers, an outer layer of LiCrO 2 and inner layer of Cr 2 O 3 .The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl-Li 2 O. The corrosion rate increased slowly with the increase of temperature up to 750 dg C, but above 750 dg C rapid increase in corrosion rate observed. SUS 316L stainless steel showed slower corrosion rate and higher activation energy for corrosion than SUS 304L, exhibiting higher corrosion resistance in the molten salt. In heat-resistant alloy, dense protective oxide scale of LiCrO 2 was formed in molten salt of LiCl. Whereas in mixed molten salt of LiCl-Li 2 O, porous non-protective scale of Li(Cr, Ni, Fe)O 2 was formed. (Author). 44 refs., 4 tabs., 16 figs

  17. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  18. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System.

    Science.gov (United States)

    Williams, Ammon N; Phongikaroon, Supathorn

    2017-04-01

    In the pyrochemical separation of used nuclear fuel (UNF), fission product, rare earth, and actinide chlorides accumulate in the molten salt electrolyte over time. Measuring this salt composition in near real-time is advantageous for operational efficiency, material accountability, and nuclear safeguards. Laser-induced breakdown spectroscopy (LIBS) has been proposed and demonstrated as a potential analytical approach for molten LiCl-KCl salts. However, all the studies conducted to date have used a static surface approach which can lead to issues with splashing, low repeatability, and poor sample homogeneity. In this initial study, a novel molten salt aerosol approach has been developed and explored to measure the composition of the salt via LIBS. The functionality of the system has been demonstrated as well as a basic optimization of the laser energy and nebulizer gas pressure used. Initial results have shown that this molten salt aerosol-LIBS system has a great potential as an analytical technique for measuring the molten salt electrolyte used in this UNF reprocessing technology.

  19. Measurement of emittance of metal interface in molten salt

    International Nuclear Information System (INIS)

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-01-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO 3 . These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt

  20. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  1. Metallurgical electrochemistry: the interface between materials science and molten salt chemistry

    International Nuclear Information System (INIS)

    Sadoway, D.R.

    1991-01-01

    Even though molten salt electrolysis finds application in the primary extraction of metals (electrowinning), the purification and recycling of metals (electrorefining), and in the formation of metal coatings (electroplating), the technology remains in many respects underexploited. Electrolysis in molten salts as well as other nonaqueous media has enormous potential for materials processing. First, owing to the special attributes of nonaqueous electrolytes electrochemical processing in these media has an important role to play in the generation of advanced materials, i.e., materials with specialized chemistries or tailored microstructures (electrosynthesis). Secondly, as environmental quality standards rise beyond the capabilities of classical metals extraction technologies to comply, molten salt electrolysis may prove to be the only acceptable route from ore to metal. Growing public awareness of pollution from the metals industry could stimulate a renaissance in molten salt electrochemistry. Challenges facing metallurgical electrochemistry as relates to the environment fall into two categories: (1) improving existing electrochemical technology, and (2) developing clean electrochemical technology to displace current nonelectrochemical technology. In both instances success hinges upon the discovery of advanced materials and the ecologically sound extraction of metals, the close coupling between materials science and molten salt chemistry is manifest. (author) 6 refs

  2. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    Science.gov (United States)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  3. Investigation of Inner Vacuum Sucking method for degassing of molten aluminum

    International Nuclear Information System (INIS)

    Zeng, Jianmin; Gu, Ping; Wang, Youbing

    2012-01-01

    Hydrogen is a harmful gas element that is appreciably soluble in aluminum and its alloys. Removal of hydrogen from molten aluminum has been one of the most important tasks in aluminum melt processing. In this paper, a patented degassing process, which is based on principle of vacuum metallurgy, is proposed. A porous head that connects a vacuum system is immersed in the molten aluminum. The vacuum is created within the porous head and the dissolved hydrogen will diffuse unidirectionally towards the porous head according to Sievert's law. In this way, the hydrogen in the molten aluminum can be removed. The Fick's diffusion equation is used to explain hydrogen transfer in the molten aluminum. RPT experiments are carried out to evaluate the effectiveness of the new degassing process. The experiments indicate that the hydrogen content can be dramatically reduced by use of this process.

  4. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  5. Basic studies for molten-salt reactor engineering in Japan

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sugiyama, K.; Sakashita, H.

    1985-01-01

    A research project of nuclear engineering for the molten-salt reactor is underway which is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education of Japan. At present, the major effort is devoted only to basic engineering problems because of the limited amount of the grant. The reporters introduce these and related studies that have been carrying out in Japanese universities. Discussions on the following four subjects are summerized in this report: a) Vapour explosion when hight temperature molten-salts are brought into direct contact with water. b) Measurements of exact thermophysical properties of molten-salt. c) Free convection heat transfer with uniform internal heat generation and a constant heating rate from the bottem. d) Stability of frozen salt film on the container surface. (author)

  6. The molten salt reactor: R and D status and perspectives in Europe

    International Nuclear Information System (INIS)

    Renault, Claude; Delpech, Sylvie; Merle-Lucotte, Elsa; Konings, Rudy; Hron, Miloslav; Ignatiev, Victor

    2010-01-01

    The paper concentrates on molten salt fast reactor (MSFR) concepts which are receiving most attention in the EU context. It shows the main R and D achievements and some remaining issues to be addressed in such essential areas as (a) reactor conceptual design, (b) molten salt properties, (c) fuel salt clean-up scheme and (d) high temperature materials. The status and perspectives of molten salt reactor R and D efforts in Europe are then discussed

  7. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  8. Analysis of molten salt thermal-hydraulics using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaji, B.; Csom, G.; Aszodi, A.

    2003-01-01

    To give a good solution for the problem of high level radioactive waste partitioning and transmutation is expected to be a pro missing option. Application of this technology also could extend the possibilities of nuclear energy. Large number of liquid-fuelled reactor concepts or accelerator driven subcritical systems was proposed as transmutors. Several of these consider fluoride based molten salts as the liquid fuel and coolant medium. The thermal-hydraulic behaviour of these systems is expected to be fundamentally different than the behaviour of widely used water-cooled reactors with solid fuel. Considering large flow domains three-dimensional thermal-hydraulic analysis is the method seeming to be applicable. Since the fuel is the coolant medium as well, one can expect a strong coupling between neutronics and thermal-hydraulics too. In the present paper the application of Computational Fluid Dynamics for three-dimensional thermal-hydraulics simulations of molten salt reactor concepts is introduced. In our past and recent works several calculations were carried out to investigate the capabilities of Computational Fluid Dynamics through the analysis of different molten salt reactor concepts. Homogenous single region molten salt reactor concept is studied and optimised. Another single region reactor concept is introduced also. This concept has internal heat exchanges in the flow domain and the molten salt is circulated by natural convection. The analysis of the MSRE experiment is also a part of our work since it may form a good background from the validation point of view. In the paper the results of the Computational Fluid Dynamics calculations with these concepts are presented. In the further work our objective is to investigate the thermal-hydraulics of the multi-region molten salt reactor (Authors)

  9. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  10. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. General synthesis

    International Nuclear Information System (INIS)

    Hery, M.; Lecocq, A.

    1983-03-01

    After a brief recall of the MSBR project, French studies on molten salt reactors are summed up. Theoretical and experimental studies for a graphite moderated 1000 MWe reactor using molten Li, Be, Th and U fluorides cooled by salt-lead direct contact are given. These studies concern the core, molten salt chemistry, graphite, metals (molybdenum, alloy TZM), corrosion, reactor components [fr

  11. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)

  12. Comparison of molten chloride and fluoride salts potentialities for An/Ln separation by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, A.; Peron, F.; Marrot, F.; Lacquement, J. [DRCP/SCPS/LPP - CEA/CEN Valrho - BP 17171 - 30207 Bagnols/Ceze (France)

    2008-07-01

    The objective of this paper is the comparison of molten fluoride and chloride salts potentialities for Am/Nd separation by electrodeposition on inert cathode, on a purely thermodynamic point of view. The molten LiF-CaF{sub 2} eutectic (77-23 mol.%, at 780 deg. C) was considered for this study. Cyclic voltammetry showed a one step Am(III)/Am reduction at a potential of {approx_equal}+0.5 V vs. Li{sup +}/Li. A potential difference of 290 mV between Am and Nd metallic deposition was estimated by square-wave voltammetry. This Am/Nd potential difference is more important than in molten chlorides (220 mV in the LiCl-KCl eutectic at 500 deg. C). Moreover in molten fluoride salt, the americium and neodymium (+II) oxidation state is not stable contrary to the molten chloride one where corrosion of deposited Am would be potential. However this larger potential difference in molten fluorides is quite balanced by the higher working temperature. (authors)

  13. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  14. Workshop on large molten pool heat transfer summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Workshop on Large Molten Heat Transfer held at Grenoble (France) in March 1994 was organised by CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) with the cooperation of the Principal Working Group on Coolant System Behaviour (FWG2) and in collaboration with the Grenoble Nuclear Research Centre of the French Commissariat a l'Energie Atomique (CEA). Conclusions and recommendations are given for each of the five sessions of the workshops: Feasibility of in-vessel core debris cooling through external cooling of the vessel; Experiments on molten pool heat transfer; Calculational efforts on molten pool convection; Heat transfer to the surrounding water - experimental techniques; Future experiments and ex-vessel studies (open forum discussion)

  15. Mechanism study of freeze-valve for molten salt reactor (MSR)

    International Nuclear Information System (INIS)

    Qinhua, Zhang

    2014-01-01

    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  16. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  17. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.

  18. Experimental and theoretical studies in Molten Salt Natural Circulation Loop (MSNCL)

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Jana, S.S.; Bagul, R.K.; Singh, R.R.; Maheshwari, N.K.; Belokar, D.G.; Vijayan, P.K.

    2014-12-01

    High Temperature Reactors (HTR) and solar thermal power plants use molten salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt and molten nitrate salt are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000°C to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt. With these requirements, a Molten Salt Natural Circulation Loop (MSNCL) has been designed, fabricated, installed and commissioned in Hall-7, BARC for thermal hydraulic, instrumentation development and material compatibility related studies. Steady state natural circulation experiments with molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratio) have been carried out in the loop at different power level. Various transients viz. startup of natural circulation, step power change, loss of heat sink and heater trip has also been studied in the loop. A well known steady state correlation given by Vijayan et. al. has been compared with experimental data. In-house developed code LeBENC has also been validated against all steady state and transient experimental results. The detailed description of MSNCL, steady state and transient experimental results and validation of in-house developed code LeBENC have been described in this report. (author)

  19. Experiment on heat transfer in simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.

    1993-01-01

    In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)

  20. Visualization of steam bubbles with evaporation in molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1997-01-01

    An innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer has been developed. In this concept, the SG shell is filled with a molten alloy heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the molten alloy, this phenomenon was visualized by neutron radiography. JRR-3M radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The bubbles with evaporation are risen with vigorous form changing, coalescence and break-up. Because of these vigorous evaporation, this system have the high heat transfer performance. (2) The rising velocities and volumes of bubbles are calculated from pixcel values of images. The velocities of the bubbles with evaporation are about 60 cm/s, which is larger than that of inert gas bubbles in molten alloy (20-40 cm/s). (3) The required heat transfer length of evaporation is calculated from pixcel values of images. The relation between heat transfer length and superheat temperature, obtained through the heat transfer test, is conformed by this calculation. (author)

  1. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Science.gov (United States)

    Tahara, Shuta; Toyama, Hiroshi; Shimakura, Hironori; Fukami, Takanori

    2017-08-01

    MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O- ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 - plannar ionic molecules has also been investigated.

  2. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    2009-01-01

    Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm 3 /min against a 1 m head. (author)

  3. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  4. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  5. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  6. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  7. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    Science.gov (United States)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  8. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  9. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  10. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  11. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G.

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research

  12. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  13. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  14. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  15. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  16. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  17. Concept of the demonstration molten salt unit for the transuranium elements transmutations

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Prusakov, V.; Subbotin, S.; Zakirov, R.; Lelek, V.; Peka, I.

    1999-01-01

    Fluorine reprocessing is discussed of spent fuel and of fluoride molten salt reactor in critical and subcritical modes for plutonium and minor actinides burning. International collaboration for creation of such system is proposed. Additional neutron source in the core will have positive influence on the transmutation processes in the reactor. Demonstration critical molten salt reactor of small power capacity will permit to decide the most part of problems inherent to large critical reactors and subcritical drivers. It could be expected that fluoride molten salt transmuter can work without accelerator as a critical reactor. (author)

  18. Corrosion Behavior of Superalloys in Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo-Haeng; Hur, Jin-Mok; Seo, Chung-Seok; Park, Seoung-Won

    2006-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at ∼ 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  19. Effect of crust increase on natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Choi, Sang Min

    1999-01-01

    An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured as a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments, is the major influential parameter in the crust formation, due to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation was developed as Nu=0.0923 (Ra) 0.0923 (2 X 10 4 7 ). (author)

  20. Deposition of niobium plate on niobium-titanium from molten salts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Shevyrev, A.A.; Stolyarova, L.A.; Sukhorzhevskaya, S.L.

    1993-01-01

    A possibility of using Nb-Ti alloys (50 and 34 mas.% of Ti) as substrates for deposition of niobium coating of chloride-fluoride and fluoride molten salts is studied. Corrosion behaviour of alloys indicates in the electrolytic bath within 970-1070 K interval, coating structure and state of coating-substrate boundary are investigated. Chloride-fluoride molten salt usefullness for making products with niobium coatings is shown

  1. Convective heat transfer the molten metal pool heated from below and cooled by two-phase flow

    International Nuclear Information System (INIS)

    Cho, J. S.; Suh, K. Y.; Chung, C. H.; Park, R. J.; Kim, S. B.

    1998-01-01

    During a hypothetical servere accident in the nuclear power plant, a molten core material may form stratified fluid layers. These layers may be composed of high temperature molten debris pool and water coolant in the lower plenum of the reactor vessel or in the reactor cavity. This study is concerned with the experimental test and numerical analysis on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heat flux conditions are adopted for the bottom heating. The test parameters included the heated bottom surface temperature of the molten metal pool, the input power to the heated bottom surface of the test section, and the coolant injection rate. Numerical analyses were simultaneously performed in a two-dimensional rectangular domain of the molten metal pool to check on the measured data. The numerical program has been developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. In this study, the relationship between the Nusselt number and Rayleigh number in the molten metal pool region was estimated and compared with the dry experiment without coolant nor solidification of the molten metal pool, and with the crust formation experiment with subcooled coolant, and against other correlations. In the experiments, the

  2. Study of an F center in molten KCl

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1984-01-15

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy, the magnetic susceptibility, and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid. The Feynman path of the electron dissolved in molten KCl is highly localized thus justifying the F center model. The effect of varying the e/sup -/-K/sup +/ pseudopotential is also reported.

  3. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  4. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  5. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    Science.gov (United States)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  6. Safety analysis of SISL process module

    International Nuclear Information System (INIS)

    1983-05-01

    This report provides an assessment of various postulated accidental occurrences within an experimental process module which is part of a Special Isotope Separation Laboratory (SISL) currently under construction at the Lawrence Livermore National Laboratory (LLNL). The process module will contain large amounts of molten uranium and various water-cooled structures within a vacuum vessel. Special emphasis is therefore given to potential accidental interactions of molten uranium with water leading to explosive and/or rapid steam formation, as well as uranium oxidation and the potential for combustion. Considerations are also given to the potential for vessel melt-through. Evaluations include mechanical and thermal interactions and design implications both in terms of design basis as well as once-in-a-lifetime accident scenarios. These scenarios include both single- and multiple-failure modes leading to various contact modes and locations within the process module for possible thermal interactions. The evaluations show that a vacuum vessel design based upon nominal operating conditions would appear sufficient to meet safety requirements in connection with both design basis as well as once-in-a-lifetime accidents. Controlled venting requirements for removal of steam and hydrogen in order to avoid possible long-term pressurization events are recommended. Depending upon the resulting accident conditions, the vacuum system (i.e., the roughing system) could also serve this purpose. Finally, based upon accident evaluations of this study, immediate shut-off of all coolant water following an incident leak is not recommended, as such action may have adverse effects in terms of cool-down requirements for the melt crucibles etc. These requirements have not been assessed as part of this study

  7. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    Science.gov (United States)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  8. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  9. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  10. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  11. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  12. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  13. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  14. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  15. A analysis of molten salt separation system for nuclear wastes transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Soon; Park, Byung Gi [Seoul National University, Seoul (Korea, Republic of); Kim, Kwang Bum; Kwon, Ou Sung [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    Typical molten salt separation is ANL-IFR pyroprocessing and ORNL-MSRE pyroprocessing. IFR pyroprocessing is based on Chloride chemistry and electrorefining. MSRE pyroprocessing is base on fluoride chemistry and reductive extraction. Major technologies of molten salt separation are electrorefining, electrowining, reductive extraction, and oxide reduction. Common characteristics of this technologies is to utilize reduction-oxidation phenomena in molten salt. Electrorefining process is modeled on the basis of diffusion layer theory and Butler-Volmor relation. This model is numerically solved by LSODA package. To acquire the technology of electrorefining process, 3-electrode electrochemical cell is developed where electrolyte is 500 degree C LiCl-KCl eutectic molten salt, working electrodes are Ni and Au, and reference electrode is Ag/AgCl. We have investigated the stable potential range using cyclic voltammogram of Ni electrode. We have measured steady state polarization curve of Ni electrode. Then corrosion potential of Ni electrode is -0.38V{sub Ag/AgCl} and corrosion current is 1.23 x 10{sup -4} A/cm{sup 2}. 12 refs., 6 tabs., 24 figs. (author)

  16. Hydro-thermal analysis of the sudden contact of two molten materials

    International Nuclear Information System (INIS)

    Elbeshbeshy, R.A.

    1982-01-01

    High pressure pulses can be generated when extremely hot molten material comes into contact with relatively cold molten material. Such high pressure is attributed to the rapid heat transfer rate between the two materials as a result of a fragmentation process of the hot material. A new mechanism of fragmentation is introduced based on a cavitation mechanism within the hot molten material. Cavitation in a liquid can occur either as a result of superheating the liquid or as a result of a negative pressure (hydrostatic tension) within the liquid. The results of the one-dimensional model in the present study indicates a large negative pressure pulse traveling away from the interface of the two molten materials. It is proposed that this negative pressure can be the driving mechanism for initiating the fragmentation process. This will then lead to an increase in the rate of heat transfer between the two materials, and to an explosion which is thermal in nature. A specific example of UO 2 -Na interactions is discussed

  17. Visualization of direct contact heat transfer between water and molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1996-01-01

    We have been developing an innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer. In this concept, the SG shell is filled with a molten alloys, which is heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the alloy, this phenomenon was visualized by real-time neutron radiography. JRR-3M real-time thermal neutron radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The vigorous evaporation occurs in the molten alloy. This phenomena is different from the known phenomenon such as the evaporation of refrigerant R-113 in the water. (2) The evaporation in the bubble has finished in a moment due to high heat transfer performance between the liquid and molten alloy. (3) It is confirmed that the velocity of bubble with the rapid evaporation and growth is about 50 cm/s. (author)

  18. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  19. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  20. Fuel cycle costs for molten-salt reactors

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1983-01-01

    This report describes FCC (fuel cycle cost) estimates for MSCR (molten-salt converter reactor) and MSBR (molten-salt breeder reactor) compared with those for LWRs (PWR and BWR). The calculation is based on the present worth technique with a given discount rate for each cost item, which enables us to make comparison between FCC's for MSCR, MSBR and LWRs. As far as the computational results obtained here are concerned, shown that the FCC's for MSCR and MSBR are 70 -- 60 % lower than the values for LWRs. And it could be said that the FCC for MSCR (Pu-converter) is about 10 % lower than that for MSBR, because of the smaller amount of fissile inventory of MSCR than the inventory of MSBR. (author)

  1. The multi region molten-salt reactor concept

    International Nuclear Information System (INIS)

    Gyula, Csom; Sandor, Feher; Szieberth, M.; Szabolcs, Czifrus

    2003-01-01

    The molten-salt reactor (MSR) concept is one of the most promising systems for the realisation of transmutation. The objective is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures. The procedure is the multi-step transmutation, in which the transformation is carried out in several consecutive steps of different neutron flux and spectrum. In order to implement this, a multi-region transmutation device, i.e. nuclear reactor or sub-critical system is proposed, in which several separate flow-through irradiation rooms are formed with various neutron spectra and fluxes. The paper presents calculations that were performed for a special 5-region version of the multi-region molten-salt reactor. (author)

  2. Chemical Reactions of Simulated Producer Gas with Molten Tin-Bismuth Alloy

    Science.gov (United States)

    Keith J. Bourne

    2012-01-01

    A pyrolysis and gasification system utilizing molten metal as an energy carrier has been proposed and the initial stages of its design have been completed. However, there are several fundamental questions that need to be answered before the design of this system can be completed. These questions include: How will the molten metal interact with the products of biomass...

  3. A study on conductivity, density, and viscosity of molten salt systems

    International Nuclear Information System (INIS)

    Cho, Kangjo

    1976-01-01

    A relation between the equivalent conductivity and density for molten salts is deduced with the aid of significant structures theory, and the solid state density at melting point is evaluated approximately for some rare-earth metal chlorides and the other chlorides. Furthermore, the relation among the equivalent conductivity, density, and viscosity for some molten salts is discussed. (auth.)

  4. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    International Nuclear Information System (INIS)

    Moir, R.W.; Shaw, H.F.; Caro, A.; Kaufman, L.; Latkowski, J.F.; Powers, J.; Turchi, P.A.

    2008-01-01

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238 U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF 4 , whose melting point is 490 C. The use of 232 Th as a fuel is also being studied. ( 232 Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550 C at the inlet (60 C above the solidus temperature) and ∼650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1 mol%) of UF 3 . The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu 3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233 U production rate is ∼0.6 atoms per 14.1 MeV neutron

  5. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  6. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  7. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  8. Structure and thermodynamic properties of molten alkali chlorides

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-03-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten alkali chlorides in a non-polarizable-ion model. The theory starts from the hypernetted chain approximation and analyzes the role of bridge diagrams both for a two-component ionic plasma on a neutralizing background and for a binary ionic liquid of cations and anions. A simple account of excluded-volume effects suffices for a good description of the pair distribution functions in the two-component plasma, in analogy with earlier work on one-component fluids. The interplay of Coulomb attractions and repulsions in the molten salt requires, on the other hand, the inclusion of (i) excluded-volume effects for the various ion pairs as in a mixture of hard spheres with non-additive radii and (ii) medium-range Coulomb effects reflected mainly in the like-ion correlations. All these effects are included approximately in an empirical evaluation of the bridge functions, with numerical results which compare very well with computer simulation data. A detailed discussion of the results against experimental structural data is then given in the case of molten sodium chloride. (author)

  9. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  10. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  11. High-frequency dynamics in a molten binary alloy

    International Nuclear Information System (INIS)

    Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.

    1999-01-01

    The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)

  12. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  13. Establishment and validation of the model of molten pool in fast reactor

    International Nuclear Information System (INIS)

    Zhou Shufeng; Luo Rui; Wang Zhou; Shi Xiaobo; Yang Xianyong

    2007-01-01

    Running under the beyond design base accidental condition, sodium boiling and dry-out will soon be brought about in LMFBR. If not stopped timely, the fuel pins of the subassembly will be melt and broken to form a molten pool at the bottom of the subassembly. to present a reasonable analysis about the molten pool accident, a method of establishing model according to the mechanism is selected, by which an integral model of the molten pool is established. Validated on the three power groups of BF1 experiments which belong to the France SCARABEE series experimenters, the model shows good results. After compared with the models of GEYSER and BF2 experiments which had been validated before, some conclusions about mechanism of molten pool are derived. Moreover, through comparing the relative parameters such as the discharged heat and the increment of temperature etc., a reasonable analysis about the type of heat transfer is present, on the basis of which some conclusions are derived as well. (authors)

  14. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  15. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina

    1999-01-01

    Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  16. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Teilum, Kaare; Poulsen, Flemming M

    2010-01-01

    Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particul......Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein....... Biophysical studies show that despite the molten globule nature of the domain, it contains a small cooperatively folded core. By NMR spectroscopy, we have demonstrated that the folded core of NCBD has a well ordered conformer with specific side chain packing. This conformer resembles the structure of the NCBD...

  17. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    Science.gov (United States)

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius

  18. Method for converting UF5 to UF4 in a molten fluoride salt

    International Nuclear Information System (INIS)

    Bennett, M.R.; Bamberge, C.E.; Kelmers, A.D.

    1980-01-01

    The subject relates to fuel preparation for molten salt breeder reactors, and more particularly to the reconstitution of spent molten fuel salt after fission product removal. During the course of reactor operation, fission products including rare earths and bred-in protactinium build up in the fuel salt and adversely affect the nuclear properties of the fuel. In order to more efficiently operate the reactor, the level of neutron poison fission products must be kept at a minimum. This is accomplished by continuously removing spent fuel from the primary circuit, processing it to remove fission products, and returning the reprocessed molten salt to the primary circuit. It is desirable for safety and economy that the fuel processing plant be a component of the reactor itself and that the salt be kept in the molten state throughout the processing system. (auth)

  19. Numerical investigation on natural convection and solidification of molten pool with OpenFOAM

    International Nuclear Information System (INIS)

    Wang Xi; Meng Zhaocan; Cheng Xu

    2015-01-01

    The in-vessel retention is adopted by the third generation nuclear power technology as an important severe accident mitigation strategy. The integrity of reactor pressure vessel depends on the heat flux distribution of molten pool. In present study, the solidification model in open source CFD software OpenFOAM was applied to simulate solidification and natural convection which was driven by internal heat source or temperature difference. The stratified molten pool heat transfer experiment carried out by Royal Institute of Technology was analyzed in the paper, and the solidified crust, temperature and heat flux distributions were obtained. The simulation results were compared with experimental data. It is shown that this numerical method can be used in the simulation of natural convection and solidification of molten pool, and it will probably be used in the analysis of molten corium behavior in reactor lower head. (authors)

  20. CFD to modeling molten core behavior simultaneously with chemical phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was

  1. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  2. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  3. Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan

    2011-01-01

    In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented

  4. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Chemistry file

    International Nuclear Information System (INIS)

    1983-03-01

    The chemistry of molten salt reactors was first acquired by foreign literature and developed by experimental studies. Salt preparation, analysis, chemical and electrochemical properties, interaction with metals or graphites and use of molten lead for direct cooling are examined. [fr

  5. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electromagnetic confinement for vertical casting or containing molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  7. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  8. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  9. Contribution to the study of the vertical molten zone process (1963)

    International Nuclear Information System (INIS)

    Lenzin, M.

    1963-01-01

    Construction and use of several molten zone apparatuses operating either vertically or horizontally. Efficient purification of uranyl nitrate hexahydrate but less successful in the case of other hydrated double salts and of zirconyl chloride in the hydrochloric gel form. Demonstration and study of the dissymmetry in the direction of the transport of the impurity during, the purification by a vertical molten zone process. (author) [fr

  10. Lead cooled heterogeneous accelerator driven molten-fluoride blanket for incineration of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Lopatkin, A.V.; Matyushechkin, V.M.; Tretyakov, I.T.; Blagovolin, P.P.; Kazaritsky, V.D.

    1997-01-01

    This paper presents a tentative design description and evaluation of the basic parameters of a lead cooled heterogeneous accelerator driven molten fluoride blanket. The proton beam of a 1 GeV accelerator strikes the blanket from below and generates spallation neutrons in the flow of lead, which serves as a target. These neutrons leave the target zone and get into a heterogeneous blanket with separated volumes of molten salts and lead. Fissile materials are dissolved in the salt. On getting into the molten salt volume the neutrons cause fission (transmutation) of the actinides, the produced heat being removed by circulation of molten lead. Two versions of the blanket design are examined. The first version: molten salt circulates in the fuel channels, while lead cools the channels flowing through the interchannel space (the salt channel design). The second version: it is lead that circulates in the channels, while molten salt takes up the interchannel space (the lead channel design). A preliminary blanket design study showed that both blanket designs possess a potential for improving performance. At present time the blanket design, mentioned above as the salt channel design, seems to be more promising. 1 ref., 2 figs., 2 tabs

  11. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  12. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  13. Structure and dynamic properties on molten cuprous halides

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Sayo-gun, Hyogo 679 5198 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Kato, Yasuhiko [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Kohara, Sinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Sayo-gun, Hyogo 679 5198 (Japan); Maruyama, Kenji [Department of Chemistry, Faculty of Science, 8050 Igarashi 2, Niigata University, Niigata 950 2181 (Japan)

    2006-11-15

    Neutron and X-ray diffraction measurements have been carried out for molten CuI at 650 deg. C. Both structure factors have been obtained in the wavenumber region beyond 20 A{sup -1}. The three partial structure factors and partial correlation functions have been derived from them with the aid of Reverse Monte Carlo analysis. The Cu-Cu correlation function has the first peak at 2.7 A penetrating into the first coordination shell of Cu-I correlation and a structureless tail, while the I-I correlation exibits long-range oscillations behind the first peak located around 4.35 A. The atomic arrangements for molten CuI are visualized in the figures.

  14. Study of trans-uranian incineration in molten salt reactor

    International Nuclear Information System (INIS)

    Valade, M.

    2000-01-01

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  15. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    Science.gov (United States)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  16. Novel ceramic coatings for containment of uranium and reactive molten metals

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Satpute, R.U.; Ramanathan, S.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.; Kutty, T.R.G.

    2005-01-01

    Plasma sprayed aluminium oxide coatings, which are currently used for casting uranium metal are, however, not suitable for long duration handling of molten uranium and is also unstable under reducing conditions. Yttrium oxide and rare earth phosphates are suggested as promising materials for prevention of high temperature corrosion by molten metals. The present paper reports research efforts directed towards development of plasma sprayed coatings of yttria and lanthanum phosphate. Thermal spray grade powders of yttrium oxide and lanthanum phosphate, synthesized using locally available raw materials have been used as feedstock powders for plasma spray deposition. The coatings have been deposited using the indigenously developed 40 kW atmospheric plasma spray system and have been characterized. Results of preliminary experiments on compatibility of yttria and lanthanum phosphate with molten uranium are quite encouraging. (author)

  17. The introduction of the safety of molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Zhang Chunming

    2011-01-01

    This paper introduces the generation TV Nuclear Energy Systems and molten salt reactor which is the only fluid fuel reactor in the Gen-TV. Safety features and attributes of MSR are described. The supply of fuel and the minimum of waste are described. The clean molten salt in the secondary heat transport system transfers the heat from the primary heat exchanger to a high-temperature Brayton cycle that converts the heat to electricity. With the Brayton cycle, the thermal efficiency of the system will be improved. Base on the MSR, the thorium-uranium fuel cycle is also introduced. (authors)

  18. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    International Nuclear Information System (INIS)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the data in predicting the time for a solid skin to form on the molten material

  19. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  20. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  1. Parametric studies on the fuel salt composition in thermal molten salt breeder reactors

    International Nuclear Information System (INIS)

    Nagy, K.; Kloosterman, J.L.; Lathouwers, D.; Van der Hagen, T.H.J.J.

    2008-01-01

    In this paper the salt composition and the fuel cycle of a graphite moderated molten salt self-breeder reactor operating on the thorium cycle is investigated. A breeder molten salt reactor is always coupled to a fuel processing plant which removes the fission products and actinides from the core. The efficiency of the removal process(es) has a large influence on the breeding capacity of the reactor. The aim is to investigate the effect on the breeding ratio of several parameters such as the composition of the molten salt, moderation ratio, power density and chemical processing. Several fuel processing strategies are studied. (authors)

  2. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    International Nuclear Information System (INIS)

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-01-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)

  3. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  4. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  5. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    Science.gov (United States)

    Piochi, M.; de Vivo, B.; Ayuso, R.A.

    2006-01-01

    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18system. ?? 2006 Elsevier B.V. All rights reserved.

  6. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Ghandehariun, S.; Wang, Z.; Naterer, G.F.; Rosen, M.A.

    2015-01-01

    Highlights: • Thermal efficiency of a thermochemical cycle of hydrogen production is improved. • Direct contact heat recovery from molten salt is analyzed. • Falling droplets quenched into water are investigated experimentally. - Abstract: This paper investigates the heat transfer and X-ray diffraction patterns of solidified molten salt droplets in heat recovery processes of a thermochemical Cu–Cl cycle of hydrogen production. It is essential to recover the heat of the molten salt to enhance the overall thermal efficiency of the copper–chlorine cycle. A major portion of heat recovery within the cycle can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show that it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

  7. Visualization of direct contact heat transfer between water and molten alloy by neutron radiography. 1

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1997-01-01

    Design of an innovative Steam Generator (SG) for Liquid Metal Fast Reactors (LMFRs) using liquid-liquid direct contact heat transfer has been developing. In this concept, the SG shell is filled with a molten alloy, which is heated by primary sodium. Water is fed into the high-temperature, molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information needed to discuss the heat transfer mechanisms of direct contact between the water and molten alloy, this phenomenon was observed by neutron radiography. JRR-3M thermal neutron radiography at the Japan Atomic Energy Research Institute was used. This paper deals with the results of visualization of direct contact heat exchange in the molten alloy. (author)

  8. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  9. Studies on the molten salt reactor. Code development and neutronics analysis of MSRE-type design

    International Nuclear Information System (INIS)

    Zhuang Kun; Cao Liangzhi; Zheng Youqi; Wu Hongchun

    2015-01-01

    The molten salt reactor is characterized by its use of the fluid-fuel, which serves both as a fuel and as a coolant simultaneously. The position of delayed neutron precursors continuously changes both in the core and in the external loop due to the fuel circulation, and the fission products are extracted by an online fuel reprocessing unit, which all lead to the modeling methods for the conventional reactors using solid fuel not applicable. This study establishes suitable calculation models for the neutronics analysis of the molten salt reactor and develops a new code named MOREL based on the three-dimensional diffusion steady and transient calculations. Some numerical tests are chosen to verify the code and the numerical results indicate that MOREL can be used for the analysis of the molten salt reactor. After verification, it is applied to analyze the characteristics of a typical molten salt reactor, including the steady characteristics, the influence of fuel circulation on the kinetic behaviors. Besides, the influence of online fuel reprocessing simulation is also examined. The results show that inherent safety is the character of the molten salt reactor from the aspect of reactivity feedback and the fuel circulation has great influence on the kinetic characteristics of molten salt reactor. (author)

  10. SOCOOL-2, Molten Materials Na Coolant Interaction, Temperature and Pressure Transient

    International Nuclear Information System (INIS)

    Padilla, A. Jr.

    1973-01-01

    1 - Description of problem or function: SOCOOL2 calculates the transient temperatures, pressures, and mechanical work energy when a molten material is instantaneously and uniformly dispersed in liquid sodium which is initially under acoustic constraint. 2 - Method of solution: A unit cell consisting of a single spherical particle of molten material surrounded concentrically by sodium is used as the basis for the calculation. Heat transfer from the molten particle to the sodium is calculated by an implicit numerical technique assuming negligible contact resistance at the interface of the particle. The expansion of the heated sodium is calculated by the one-dimensional acoustic equation until vaporization conditions are attained. Upon vaporization, it is assumed that the particle becomes vapor-blanketed and that no further heat transfer to or from the sodium occurs. The heated sodium is then expanded to the specific final pressure in an isentropic expansion process. 3 - Restrictions on the complexity of the problem: The presence of an initial amount of sodium vapor or noncondensable gas cannot be taken into account. Time delays in the process of fragmentation and mixing of the molten material into the sodium cannot be considered. Heat transfer during the two-phase expansion of sodium is neglected

  11. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  12. Low pressure injection sequence sensitivity study of the M1 module of MEDICI

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.; Norkus, J.K.; Welzbacker, R.T.

    1985-01-01

    In order to assess the consequences of a PWR containment failure and the ensuing radiological source term following a severe reactor accident, it is necessary to understand the ex-vessel behavior of the molten core. The M1 module of MEDICI models the dynamic fuel-coolant mixing, energetic interaction, and ejection of fuel and coolant from the reactor cavity following such an accident. A sensitivity study of the low pressure injection sequence was performed utilizing a Box-Behnken statistical design to treat five sets of input variables considered to be significant in the mixing and steam explosion processes. The low pressure injection sequence was studied in which the molten corium is modeled as a pour stream entering the cavity without entraining or sweeping out fuel or coolant

  13. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  14. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  15. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  16. Mutual inductance appliance for measuring the level of a molten metal

    International Nuclear Information System (INIS)

    Zbinden, Marc.

    1982-01-01

    The invention concerns an appliance for measuring the level of a molten metal of the kind using the variation of the mutual inductance between two imbricated windings depending on the level of the free area of the molten metal in the range of levels taken up by the windings. It has a particularly significant use in measuring the level of liquid sodium, especially in nuclear facilities where sodium is used as coolant [fr

  17. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  18. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@wust.edu.cn; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-15

    Highlights: • Uniform ZrC coatings are prepared on flake graphite at 900 °C. • ZrC coatings are composed of nanosized (30–50 nm) particles. • The template growth mechanism is believed to be dominant in the molten salt synthesis process. - Abstract: A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30–50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a “template mechanism” played an important role during the molten salt synthesis.

  19. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  20. Probability safety assessment of LOOP accident to molten salt reactor

    International Nuclear Information System (INIS)

    Mei Mudan; Shao Shiwei; Yu Zhizhen; Chen Kun; Zuo Jiaxu

    2013-01-01

    Background: Loss of offsite power (LOOP) is a possible accident to any type of reactor, and this accident can reflect the main idea of reactor safety design. Therefore, it is very important to conduct a study on probabilistic safety assessment (PSA) of the molten salt reactor that is under LOOP circumstance. Purpose: The aim is to calculate the release frequency of molten salt radioactive material to the core caused by LOOP, and find out the biggest contributor to causing the radioactive release frequency. Methods: We carried out the PSA analysis of the LOOP using the PSA process risk spectrum, and assumed that the primary circuit had no valve and equipment reliability data based on the existing mature power plant equipment reliability data. Results: Through the PSA analysis, we got the accident sequences of the release of radioactive material to the core caused by LOOP and its frequency. The results show that the release frequency of molten salt radioactive material to the core caused by LOOP is about 2×10 -11 /(reactor ·year), which is far below that of the AP1000 LOOP. In addition, through the quantitative analysis, we obtained the point estimation and interval estimation of uncertainty analysis, and found that the biggest contributor to cause the release frequency of radioactive material to the core is the reactor cavity cooling function failure. Conclusion: This study provides effective help for the design and improvement of the following molten salt reactor system. (authors)

  1. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  2. Reactor chemical considerations of the accelerator molten-salt breeders

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Ohno, Hideo; Ohmichi, Toshihiko

    1982-01-01

    A single phase of the molten fluoride mixture is simultaneously functionable as a nuclear reaction medium, a heat medium and a chemical processing medium. Applying this characteristics of molten salts, the single-fluid type accelerator molten-salt breeder (AMSB) concept was proposed, in which 7 LiF-BeF 2 -ThF 4 was served as a target-and-blanket salt (Fig. 1 and Table 1), and the detailed discussion on the chemical aspects of AMSB are presented (Tables 2 -- 4 and Fig.2). Owing to the small total amount of radiowaste and the low concentrations of each element in target salt, AMSB would be chemically managable. The performance of the standard-type AMSB is improved by adding 0.3 -- 0.8 m/o 233 UF 4 as follows(Tables 1 and 4, and Figs. 2 and 3): (a) this ''high-gain'' type AMSB is feasible to design chemically, in which still only small amount of radiowaste is included ; (b) the fissile material production rate will be increased significantly; (c) this target salt is straightly fed as an 233 U additive to the fuel of molten-salt converter reactor (MSCR) ; (d) the dirty fuel salt suctioned from MSCR is batch-reprocessed in the safeguarded regional center, in which many AMSB are facilitated ; (e) the isolated 233 UF 4 is blended in the target salt sent to many MSCRs, and the cleaned residual fertile salt is used as a diluent of AMSB salt ; (f) this simple and rational thorium fuel breeding cycle system is also suitable for the nuclear nonproliferation and for the fabrication of smaller size power-stations. (author)

  3. Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method

    International Nuclear Information System (INIS)

    Kato, Yoshio; Furukawa, Kazuo

    1976-11-01

    The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)

  4. Estimation of zirconium in various process streams in molten salt electrorefining process

    International Nuclear Information System (INIS)

    Suganthi, S.; Vandarkuzhali, S.; Venkatesh, P.; Prabhakara Reddy, B.; Nagarajan, K.

    2012-01-01

    Molten salt electrorefining process is a non-aqueous pyrochemical process suitable for reprocessing spent metallic fuel. In this process the spent fuel is taken at the anode and the fuel elements are selectively electrotransported to a suitable cathode (either a solid steel cathode or liquid cadmium cathode) using molten LiCl-KCI as electrolyte. We have demonstrated electrorefining of UZr alloy at engineering scale level. 1 Kg U-6%Zr alloy was taken at the anode and pure uranium was recovered at a steel cathode using molten LiCIKCI-5%UCI 3 as electrolyte at 773 K. In this paper we present the method of dissolution, sample preparation and estimation of zirconium in various process streams in the electrorefining experiments carried out in our laboratory

  5. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  6. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials (1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF 4 or ThF 4 or some combination thereof. Future systems could look at using PuF 3 or PuF 4 as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory. Preliminary design studies

  7. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  8. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Experimental loop file

    International Nuclear Information System (INIS)

    1983-03-01

    Four test loops were developed for the experimental study of a molten salt reactor with lead salt direct contact. A molten salt loop, completely in graphite, including the pump, showed that this material is convenient for salt containment and circulation. Reactor components like flowmeters, electromagnetic pumps, pressure gauge, valves developed for liquid sodium, were tested with liquid lead. A water-mercury loop was built for lead-molten salt simulation studies. Finally a lead-salt loop (COMPARSE) was built to study the behaviour of salt particles carried by lead in the heat exchanger. [fr

  9. Molten salt reactor technology for long-range and wide-scale nuclear energy system

    International Nuclear Information System (INIS)

    Ignatiev, V.; Alexseev, P.; Menshikov, L.; Prusakov, V.; Subbotine, S.

    1997-01-01

    A possibility of creation of multi-component nuclear power system in which alongside with thermal and fast reactors, molten salt burner reactors, for incineration of weapon grade plutonium, some minor actinides and transmutation of some fission products will be presented. The purposes of this work are to review the present status of the molten salt reactor technology and innovative non-aqueous chemical processing methods, to indicate the importance of the uncertainties remaining, to identify the additional work needed, and to evaluate the probability of success in obtaining improved safety characteristics for new concept of molten salt - burner reactor with external neutron source. 8 refs., 3 figs., 2 tabs

  10. Calculation of β-effective of a molten salt reactor

    International Nuclear Information System (INIS)

    Hirakawa, N.; Sakaba, H.

    1987-01-01

    A method to calculate the β eff of a molten salt reactor was developed taking the effect of the flow of the molten salt into account. The method was applied to the 1000MW MSR design made by ORNL. The change in β eff due to the change in the residence time outside of the core of the fuel salt and to the change in the flow velocity when the total amount of the fuel salt is kept constant were investigated. It was found that β eff was reduced to 47.9% of the value when the fuel salt is at rest for the present design. (author)

  11. Saturated steams pressure of HfCl4-KCl molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smirnov, M.V.; Kudyakov, V.Ya.

    1980-01-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl 4 -KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl 4 ). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride

  12. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  13. Coolant material effect on the heat transfer rates of the molten metal pool with solidification

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1998-01-01

    Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed. The simulant molten pool material is tin (Sn) with the melting temperature of 232 degree C. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results for the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measured from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of the heat loss to the environment on the natural convection heat transfer in the molten pool

  14. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    International Nuclear Information System (INIS)

    Wishau, R.; Ramsey, K.B.; Montoya, A.

    1998-01-01

    This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for 238 Pu contaminated waste. Combustible low-level waste material contaminated with 238 Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble 2328 Pu in the spent salt. The valuable 238 Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of 238 Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered 238 Pu is considered

  15. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  16. Modeling and simulation of a molten salt cavity receiver with Dymola

    International Nuclear Information System (INIS)

    Zhang, Qiangqiang; Li, Xin; Wang, Zhifeng; Zhang, Jinbai; El-Hefni, Baligh; Xu, Li

    2015-01-01

    Molten salt receivers play an important role in converting solar energy to thermal energy in concentrating solar power plants. This paper describes a dynamic mathematical model of the molten salt cavity receiver that couples the conduction, convection and radiation heat transfer processes in the receiver. The temperature dependence of the material properties is also considered. The radiosity method is used to calculate the radiation heat transfer inside the cavity. The outlet temperature of the receiver is calculated for 11 sets of transient working conditions. The simulation results compare well with experimental data, thus the model can be further used in system simulations of entire power plants. - Highlights: • A detailed model for molten salt cavity receiver is presented. • The model couples the conduction, convection and thermal radiation. • The simulation results compare well with experimental data. • The model can be further used for many purposes.

  17. Recent electroanalytical studies in molten fluorides

    International Nuclear Information System (INIS)

    Manning, D.L.; Mamantov, G.

    1976-01-01

    This paper summarizes the voltametric and chronopotentiometric studies of Bi, Fe, Te, oxide and U(IV)/U(III) ratio determinations in molten LiF--BeF 2 --ThF 4 (72-16-12 mole percent) and LiF--BeF 2 --ZrF 4 (65.6-29.4-5.0 mole percent). 54 references, 11 figures

  18. Neutron shielding studies on an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    Merk, Bruno; Konheiser, Jörg

    2014-01-01

    Highlights: • Material damage due to irradiation has already been discovered at the MSRE. • Neutronic analysis of MSFR with curved blanket wall geometry. • Neutron fluence limit at the wall of the outer vessel can be kept for 80 years. • Shielded MSFR core will be of same dimension than a SFR core. - Abstract: The molten salt reactor technology has gained some new interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner reactor vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all internal structures. Based on this new geometry a model for neutron physics calculation is presented. The major steps are: the modeling of the curved geometry in the unstructured mesh neutron transport code HELIOS and the determination of the real neutron flux and power distribution for this new geometry. The developed model is then used for the determination of the neutron fluence distribution in the inner and outer wall of the system. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system will be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem

  19. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Simpson, Mike [Idaho National Lab., (United States)

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  20. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    International Nuclear Information System (INIS)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Simpson, Mike

    2012-01-01

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal

  1. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  2. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  3. Hot corrosion behavior of Ni-based superalloys in lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Lim, Jong Ho; Chung, Joon Ho; Hur, Jin Mok; Seo, Chung Seok; Park, Seoung Won

    2004-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of Ni-based superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  4. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  5. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  6. New insights on lithofacies architecture, sedimentological characteristics and volcanological evolution of pre-caldera (> 22 ka), multi-phase, scoria- and spatter-cones at Somma-Vesuvius

    Science.gov (United States)

    Sparice, Domenico; Scarpati, Claudio; Perrotta, Annamaria; Mazzeo, Fabio Carmine; Calvert, Andrew T.; Lanphere, Marvin A.

    2017-11-01

    Pre-caldera (> 22 ka) lateral activity at Somma-Vesuvius is related to scoria- and spatter-cone forming events of monogenetic or polygenetic nature. A new stratigraphic, sedimentological, textural and lithofacies investigation was performed on five parasitic cones (Pollena cones, Traianello cone, S. Maria a Castello cone and the recently found Terzigno cone) occurring below the Pomici di Base (22 ka) Plinian products emplaced during the first caldera collapse at Somma-Vesuvius. A new Ar/Ar age of 23.6 ± 0.3 ka obtained for the Traianello cone as well as the absence of a paleosol or reworked material between the S. Maria a Castello cone and the Pomici di Base deposits suggest that such cone-forming eruptions occurred near the upper limit of the pre-caldera period (22-39 ky). The stratigraphy of three of these eccentric cones (Pollena cones and Traianello cone) exhibits erosion surfaces, exotic tephras, volcaniclastic layers, paleosols, unconformity and paraconformity between superimposed eruptive units revealing their multi-phase, polygenetic evolution related to activation of separate vents and periods of quiescence. Such eccentric cones have been described as composed of scoria deposits and pure effusive lavas by previous authors. Lavas are here re-interpreted as welded horizons (lava-like) composed of coalesced spatter fragments whose pyroclastic nature is locally revealed by relicts of original fragments and remnants of clast outlines. These welded horizons show, locally, rheomorphic structures allowing to define them as emplaced as clastogenic lava flows. The lava-like facies is transitional, upward and downward, to less welded facies composed of agglutinated to unwelded spatter horizons in which clasts outlines are increasingly discernible. Such textural characteristics and facies variation are consistent with a continuous fall deposition of Hawaiian fire-fountains episodes alternated with Strombolian phases emplacing loose scoria deposits. High enrichment

  7. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  8. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  9. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  10. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  11. Fragmentation of a single molten copper and silver droplets penetrating a sodium pool with solid crust

    International Nuclear Information System (INIS)

    Wataru Itagaki; Ken-ichiro Sugiyama; Satoshi Nishimura; Izumi Kinoshita

    2005-01-01

    As a basic study of molten fuel-coolant interaction in liquid metal fast cooled reactors, we carried out a series of experiments for the fragmentation of molten copper droplet penetrating sodium pool at instantaneous contact interface temperatures below its freezing point. A single molten copper droplet with 5g in weight and with superheating varied from 0 degree C to 131 degree C was dropped into a sodium pool in a wide range of ambient Weber numbers 24 to 228. In addition to the experiment of molten copper droplet, molten silver droplet with 5gs in weight and with superheating varied from 3 degree C to 174 degree C was dropped into the sodium pool at an ambient Weber number of about 80. From the observation of the cross section of solidified silver droplet without fragmentation, it was clearly confirmed that sodium micro jet is driven into the inside from the upper surface of molten droplet keeping liquid phase, which is clear evidence for the thermal fragmentation mechanism proposed in the previous paper. Large scattering in the values of dimensionless mass median diameter observed in the present experimental study is recognized to be dependent on whether latent heat instantaneously released due to the injection of sodium micro jet can be effectively utilized for fragmentation. (authors)

  12. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  13. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  14. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  15. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  16. Galvanic high energy cells with molten electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-01-01

    To develop a galvanic cell with molten salt electrolyte for electric vehicle propulsion and load leveling as well as to fabricate ten prototype cells with a capacity of at least 150 Ah (5 hour rate) and an energy density of 80 Wh/kg was the objective of this project.

  17. Volume reduction of waste contaminated by fission product elements and plutonium using molten salt combustion

    International Nuclear Information System (INIS)

    McKenzie, D.E.; Grantham, L.F.; Paulson, R.B.

    1979-01-01

    In the Molten Salt Combustion Process, transuranic or β-γ organic waste and air are continuously introduced beneath the surface of a sodium carbonate-containing melt at a temperature of about 800 0 C. Complete combustion of the organic material to carbon dioxide and steam occurs without the conversion of nitrogen to nitrogen oxides. The noxious gases formed by combustion of the chloride, sulfur or phosphorus content of the waste instantly react with the melt to form the corresponding sodium compounds. These compounds as well as the ash and radionuclides are retained in the molten salt. The spent salt is either fused cast into an engineered disposal container or processed to recover salt and plutonium. Molten salt combustion reduces the waste to about 2% of its original volume. Many reactor or reprocessing wastes which cannot be incinerated without difficulty are readily combusted in the molten salt. A 50 kg/hr molten salt combustion system is being designed for the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Construction of the combustor started during 1977, and combustor startup was scheduled for the spring of 1978

  18. Dissolution of Si in Molten Al with Gas Injection

    Science.gov (United States)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  19. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  20. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  1. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  2. Inter ionic pair potentials for molten copper halides CuX (X=Br, I)

    International Nuclear Information System (INIS)

    Canan, C.

    2004-01-01

    In this work, the inter-ionic pair interactions of molten CuBr and Cu I are described with three different form of the rigid ion model potentials (RIM) using i) the functional form originally proposed by Vasishta and Rahman ii) the form used Madden and coworkers which is include the polarization contributions iii) the form parameterizied by Tatlipinar et al. The capability of these potentials have been discussed with each other by calculating the static liquid structure. We present the results of the partial pair distributions for molten CuBr at 810K and for molten Cul at 940K comparing with experimental data. The structural calculations are performed by solving the numerically the hypemetted chain approximate theory of liquids

  3. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    International Nuclear Information System (INIS)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    The SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided

  4. Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents

    Science.gov (United States)

    Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.

    2017-04-01

    The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep

  5. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Kinoshita, Izumi; Zhang, Zhi-gang; Sugiyama, Ken-ichiro

    2006-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature =650degC), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (m.p.=660degC) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is found from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust is caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt. (author)

  6. Molten salts as possible fuel fluids for TRU fuelled systems: ISTC no. 1606 approach

    International Nuclear Information System (INIS)

    Ignatiev, V.; Zakirov, R.; Grebenkine, K.

    2001-01-01

    The principle attraction of the molten salt reactor (MSR) technology is the use of fuel/fertile material flexibility (easy of fuel preparation and processing) for gaining additional profits as compared with solid materials. This approach presents important departures from traditional philosophy, applied in current nuclear power plants, and to some extent contradicts the straightforward interpretation of the defence-in-depth principal. Nevertheless we understand there may be potential to use MSR technology to support back end fuel cycle technologies in future commercial environment. The paper aims at reviewing results of the work performed in Russia, relevant to the problems of MSR technology development. Also this contribution aims at evaluation of remaining uncertainties for molten salt burner concept implementation. Fuel properties and behaviour, container materials, and clean-up of fuels with emphasis on experiments will be of priority. Recommendations are made regarding the types of experimental studies needed on a way to implement molten salt technology to the back-end of the fuel cycle. To better understand the potential and limitations of the molten salts as a fuel for reactor of incinerator type, Russian Institutes have submitted to the ISTC the Task no. 1606 Experimental Study of Molten Salt Technology for Safe and Low Waste Treatment of Plutonium and Minor Actinides in Accelerator Driven and Critical Systems. The project goals, technical approach and expected specific results are discussed. (author)

  7. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  8. Saturated steams pressure of HfCl/sub 4/-KCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smirnov, M V; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-02-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl/sub 4/-KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl/sub 4/). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride.

  9. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  10. Molten salt synthesis of ZnNb2O6 powder

    International Nuclear Information System (INIS)

    Guo Liangzhai; Dai Jinhui; Tian Jintao; Zhu Zhibin; He Tian

    2007-01-01

    Pure ZnNb 2 O 6 powder was successfully prepared by the molten salt synthesis method using Nb 2 O 5 and ZnO as raw materials and a mixture of NaCl and KCl as the solvent. The phase form and morphology of the prepared powder were characterized by X-ray diffraction and scanning electron microscopy. The effect of reacting temperature on phase formation was investigated. The results indicated that the single phase ZnNb 2 O 6 powder can be obtained by the molten salt synthesis method at 600 deg. C, and the SEM photographs show that the grains of the powder are rod-like particles

  11. Improvements in modelling (by ESCADRE mod1.0) radiative heat losses through gas and aerosols generated by molten corium-concrete interactions

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1996-01-01

    Aerosols generated during the molten core-concrete interaction (MCCI) influence the reactor cavity thermal hydraulics: the cloud of aerosols, located inside the reactor cavity, restrains the upward-directed heat exchange consequently the cool-down of the high-temperature molten corium for a considerable period of time. IPSN is developing a computer code system for source predictions in severe accident scenarios. This code system is named ESCADRE. WECHSL/CALTHER is internal module dealing with MCCI (it is also a stand-alone code): it models the heat transfers involving the superior volume of the cavity. When modelling the upward-directed power distribution by WECHSL/CALTHER, a faster concrete basemat penetration takes place due to the low heat losses of the closed MCCI cavity enclosure. The model, here presented, is going to be validated with data from the AEROSTAT experiment. This experiment, planned at CEA Cadarache, will evaluate the influence of aerosols on the global power distribution in the reactor cavity. Radiative heat losses are important especially for cavity configurations such as those of new plant designs (equipped with a core-catcher) where the upward power losses are promoted by the corium spreading in a flat cavity

  12. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Zink, Peter A.; Jue, Jan-Fong; Serrano, Brenda E.; Fredrickson, Guy L.; Cowan, Ben F.; Herrmann, Steven D.; Li, Shelly X.

    2010-01-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(double p rime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(double p rime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  13. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  14. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  15. Evaluation of upward heat flux in ex-vessel molten core heat transfer using MELCOR

    International Nuclear Information System (INIS)

    Park, S.Y.; Park, J.H.; Kim, S.D.; Kim, D.H.; Kim, H.D.

    2000-01-01

    The purpose of this study is to share experiences of MELCOR application to resolve the molten corium-concrete interaction (MCCI) issue in the Korea Next Generation Reactor (KNGR). In the evaluation of concrete erosion, the heat transfer modeling from the molten corium internal to the corium pool surface is very important and uncertain. MELCOR employs Kutateladze or Greene's bubble-enhanced heat transfer model for the internal heat transfer. The phenomenological uncertainty is so large that the model provides several model parameters in addition to the phenomenological model for user flexibility. However, the model parameters do not work on Kutateladze correlation at the top of the molten layer. From our experience, a code modification is suggested to match the upward heat flux with the experimental results. In this analysis, minor modification was carried out to calculate heat flux from the top molten layer to corium surface, and efforts were made to find out the best value of the model parameter based on upward heat flux of MACE test M1B. Discussion also includes its application to KNGR. (author)

  16. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  17. Thermodynamic characterization of the molten salt reactor fuel - 5233

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, O.

    2015-01-01

    The Molten Salt Reactor (MSR) has been selected as one of the Generation IV nuclear systems. The very unique feature of this reactor concept is the liquid nature of the fuel which offers numerous advantages concerning the reactor safety. Nowadays, the research in Europe is focused on an innovative concept, the MSFR (Molten Salt Fast Reactor), that combines the generic assets of molten salt as liquid fuel with those related to fast neutron reactors and the thorium fuel cycle. For the design and safety assessment of the MSFR concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of fluorides salts, which is the class of materials that is the best suited for nuclear applications. Potential chemical systems have been critically reviewed and an extensive thermodynamic database describing the most relevant systems has been created at the Institute for Transuranium Elements of the Joint Research Centre (JRC). Thermochemical equilibrium calculations are a very important tool that allows the evaluation of the performance of several salt mixtures predicting their properties and thus the optimization of the fuel composition. The work combines the experimental determination of different salt properties with the modelling of the thermodynamic functions, using the Calphad method. An overview of the experimental work and the thermodynamic assessments will be given in this paper and different fuel options for the MSFR will be discussed. (authors)

  18. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  19. Ionic charge transport in strongly structured molten salts

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Amoruso, M.; Tosi, M.P.

    1999-08-01

    Data on the d.c. ionic conductivity for strongly structured molten halides of divalent and trivalent metals near freezing are interpreted as mainly reflecting charge transport by the halogen ions. On this assumption the Nernst-Einstein relation allows an estimate of the translational diffusion coefficient D tr of the halogen. In at least one case (molten ZnCl 2 ) D tr is much smaller than the measured diffusion coefficient, pointing to substantial diffusion via neutral units. The values of D tr estimated from the Nernst-Einstein relation are analyzed on the basis of a model involving two parameters, i.e. a bond-stretching frequency ω and an average waiting time τ. With the help of Raman scattering data for ω, the values of τ are evaluated and found to mostly lie in the range 0.02 - 0.3 ps for a vast class of materials. (author)

  20. Metal-carbide multilayers for molten Pu containment

    International Nuclear Information System (INIS)

    Summers, T.S.E.; Curtis, P.G.; Juntz, R.S.; Krueger, R.L.

    1991-12-01

    Multilayers composed of nine or ten alternating layers of Ta or W and TaC were studied for the feasibility of their use in containing molten plutonium (Pu) at 1200 degrees C. Single layers of W and TaC were also investigated. A two-source electron beam evaporation process was developed to deposit these coatings onto the inside surface of hemispherical Ta cups about 38 mm in diameter. Pu testing was done by melting Pu in the coated hemispherical cups and holding them under vacuum at 1200 degrees C for two hours. Metallographic examination and microprobe analysis of cross sections showed that Pu had penetrated to the Ta substrate in all cases to some extent. Full penetration to the outer surface of the Ta substrate, however, occurred in only a few of the samples. The fact that full penetration occurred in any of the samples suggests that it would have occurred in uncoated Ta under these testing conditions which in turn suggests that the multilayer coatings do afford some protection against Pu attack. The TaC used for these specimens was wet by Pu under these testing conditions, and following testing, Pu was found uniformly distributed throughout the carbide layers which appeared to be rather porous. Pu was seen in the W and Ta layers only when exposed directly to molten Pu during testing or near defects suggesting that Pu penetrated the multilayers at defects in the coating and traveled parallel to the layers along the carbide layers. These results indicate that the use of alternating metal and ceramic layers for Pu containment should be possible through the use of nonporous ceramic that is not wet by molten Pu and defect-free films

  1. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  2. Investigation of the fragmentation of molten metals dropped into cold water

    International Nuclear Information System (INIS)

    Shiralkar, G.S.

    1976-11-01

    The physical mechanism by which small quantities of molten metal fragment extensively when dropped into a pool of cold water was investigated. Since this subject has been the focus of considerable research in the past, some of the more prominent theories are briefly discussed. Experiments were conducted dropping small solid spheres at a high temperature instead of molten metal drops, and indicate a significant difference from the latter. Several hypotheses were proposed based on the hydrodynamics of the molten drop and tested analytically. The theory that the drop fragmentation is caused by the violent release of dissolved gas from within the drop was investigated experimentally and lead to the conclusion that tin fragmentation probably does not occur in this way. It is felt that a calculation of the dynamics of the vapor film that would be expected to surround the hot drop is needed. This calculation was not performed but several suggestions and estimates have been made. It would seem that the possibility of metal fragmentation by rapid vaporization of water entrapped within the metal drop is well worth investigating

  3. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  4. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  5. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  6. Experimental studies of thermal and chemical interactions between molten aluminum and nuclear dispersion fuels with water

    International Nuclear Information System (INIS)

    Farahani, A.A.

    1997-01-01

    Because of the possibility of rapid physical and chemical molten fuel-water interactions during a core melt accident in noncommercial or experimental reactors, it is important to understand the interactions that might occur if these materials were to contact water. An existing vertical 1-D shock tube facility was improved and a gas sampling device to measure the gaseous hydrogen in the upper chamber of the shock tube was designed and built to study the impact of a water column driven downward by a pressurized gas onto both molten aluminum (6061 alloy) and oxide and silicide depleted nuclear dispersion fuels in aluminum matrices. The experiments were carried out with melt temperatures initially at 750 to 1,000 C and water at room temperature and driving pressures of 0.5 and 1 MPa. Very high transient pressures, in many cases even larger than the thermodynamic critical pressure of the water (∼ 20 MPa), were generated due to the interactions between the water and the crucible and its contents. The molten aluminum always reacted chemically with the water but the reaction did not increase consistently with increasing melt temperature. An aluminum ignition occurred when water at room temperature impacted 28.48 grams of molten aluminum at 980.3 C causing transient pressures greater than 69 MPa. No signs of aluminum ignition were observed in any of the experiments with the depleted nuclear dispersion fuels, U 3 O 8 -Al and U 3 Si 2 -Al. The greater was the molten aluminum-water chemical reaction, the finer was the debris recovered for a given set of initial conditions. Larger coolant velocities (larger driving pressures) resulted in more melt fragmentation but did not result in more molten aluminum-water chemical reaction. Decreasing the water temperature also resulted in more melt fragmentation and did not suppress the molten aluminum-water chemical reaction

  7. Status of the French research in the field of molten salt nuclear reactors

    International Nuclear Information System (INIS)

    Hery, M.; Israel, M.; Fauger, P.; Lecocq, A.

    1977-01-01

    The research program of the CEA in the field of molten salt nuclear reactors has been concerned with MSBR type reactors (Molten Salt Breeder Reactor). The papers written after having performed the theoretical analysis are entitled: core, circuits, chemistry and economy; they include some criticisms and suggestions. The experimental studies consisted in: graphite studies, chemical studies of the salt, metallic materials, the salt loop and the lead loop [fr

  8. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Zhang Zhigang; Sugiyama, Ken-Ichiro; Kinoshita, Izumi

    2007-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature = 650 deg. C), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (melting point 660 deg. C) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is confirmed from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust has a potential to be caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt

  9. Wettability of TiAlN films by molten aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ping [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan) and Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, 130025 (China)]. E-mail: shenping@jlu.edu.cn; Nose, Masateru [Department of Industrial Art and Craft, Takaoka National College, 180 Futagami-machi, Takaoka City, Toyama 933-8588 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan); Nogi, Kiyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan)

    2006-12-05

    In this study, we made an attempt to measure the wettability of the TiAlN films by molten Al at temperatures between 1073 K and 1273 K using an improved sessile drop method. The true contact angles cannot be obtained for the films deposited on the stainless steel and tungsten substrates due to considerable interdiffusion or reaction between molten Al and the substrate constituents. For the films deposited on the stable alumina single crystals and in contact with clean Al, the true contact angles are possible in the range of 80-100 deg. at 1173-1273 K and the work of adhesion is 0.77-1.08 J m{sup -2}. In the case of oxidized Al, typically at T < 1173 K, however, the wettability and the adhesion are significantly decreased.

  10. Prediction of the amount of hydrogen generated during a molten fuel-coolant interaction

    International Nuclear Information System (INIS)

    Matthern, G.E.; Neuman, J.E.; Madsen, W.W.; Close, J.A.

    1990-01-01

    The model in development predicts the production of hydrogen as a result of a molten fuel-coolant interaction in a water-cooled nuclear reactor. It has three interrelated modules: kinetics, heat transfer, and hydrodynamics. Second and third order rates are assumed for uranium and aluminum respectively, the chosen fuel and cladding. Heat is generated by chemical reaction and radioactive decay and dissipated through radiation and convection. Dispersion of the melt as it descends through a pool of water is modeled using the Weber number, which ratios the shear forces due to the relative velocities of the fluid and the metal to the surface tension of the metal. Hydrogen generation is sensitive to the initial melt temperature and to the assumptions made about the modes of heat transfer, but not the the impact velocity of the metal particle. The hydrogen generation per unit mass of uranium generally increases as the initial particle size decreases suggesting that the kinetics rather than the heat transfer controls the energy balance

  11. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    Science.gov (United States)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  12. Cracking of crude oil in the molten metals

    Directory of Open Access Journals (Sweden)

    Marat A. Glikin

    2014-03-01

    Full Text Available In this paper is investigated the process of crude oil and its individual fractions cracking in the molten metals medium to produce light petroleum products. Thermodynamic calculations demonstrate the possibility of using lead and tin including alloys thereof as the melt. The cracking of West Siberian crude oil is studied at temperatures 400-600 °C. It is detected that as the temperature increases there is increase of aromatic hydrocarbons and olefins content in gasoline while naphthenes, n- and i-paraffins content reduces. Optimal temperature for cracking in molten metals is ~500 °C. The use of a submerged nozzle increases the yield of light petroleum products by ~2%. The research octane number of gasoline produced is 82-87 points. It is determined that the yield of light petroleum products depending on the experimental conditions is increased from 46.9 to 55.1-61.3% wt.   

  13. Physics of coolability of top flooded molten corium

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Singh, R.K.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer. In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied. (author)

  14. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  15. Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants

    Science.gov (United States)

    Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M.; Rao, G. Prabhakara

    2018-04-01

    Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ˜2.5 kHz/mm.

  16. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  17. A study on the modeling of molten corium-concrete interaction

    International Nuclear Information System (INIS)

    Park, Soo Yong

    1994-02-01

    The phenomenon known as molten corium concrete interaction (MCCI) has been recognized as important aspects of severe reactor accidents. The potential hazard of a MCCI is the threat to the integrity of the containment building due to the possibility of a basemat melt through, containment overpressurization by noncondensible gases, or oxidation of combustible gases. Over the past several years, a large experimental and analytical effort has been under taken in corium-concrete interaction phenomena by several organization. The purpose of this paper is to investigate the previous analytical results and computer programs, and finally to establish a new stand alone model which can predict the corium-concrete interaction. A model to predict the behavior of molten corium-concrete interaction in the reactor cavity during vessel ruptured accidents is established. Gas film model, gas bubble model, slag model and periodic contact model are employed as a major heat transfer model between corium and concrete. Solidified debris crust is considered at the boundary of molten corium. Upon the experimental observations, no layer stratification is assumed due to the strong dispersion of the metallic melt in the oxidic phase. With the assumption of temperature profile within the corium pool and crust, the temperature distribution of concrete is found by explicit solution of heat conduction equation. The sideward heat transfer rate can be obtained by considering multiplication factor to the downward heat transfer rate. The multiplication factor is treated as a user input because of its large uncertainty. Comparisons are made with two large scale experiments, SURC-2 and BETA V3.3. There is a reasonable agreement in the corium temperature, erosion depth and gas generation between the experimental data and the predicted results with periodic contact model given the uncertainties in the input data or the measurement. The gas bubble model has the highest heat transfer coefficient, and the

  18. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)

  19. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  20. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    Science.gov (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    and, finally, assess the probability of occurrence of lahars of different volumes. The information utilized to parametrize the BBNs includes: (1) datasets of lahar observations; (2) numerical modelling of tephra fallout and PDCs; and (3) literature data. The BBN framework provides an opportunity to quantitatively combine these different types of evidence and use them to derive a rational approach to lahar forecasting. Lastly, we couple the BBN assessments with a shallow-water physical model for lahar propagation in order to attach probabilities to the simulated hazard footprints. We develop our methodology at Somma-Vesuvius (Italy), an explosive volcano prone to rain-triggered lahars or debris flows whether right after an eruption or during inter-eruptive periods. Accounting for the variability in tephra-fallout and dense-PDC propagation and the main geomorphological features of the catchments around Somma-Vesuvius, the areas most likely of forming medium-large lahars are the flanks of the volcano and the Sarno mountains towards the east.

  1. High Surface Iridium Anodes for Molten Oxide Electrolysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith...

  2. System Requirements Document for the Molten Salt Reactor Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  3. Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (Thorium Molten-Salt nuclear energy synergetics)

    International Nuclear Information System (INIS)

    Furukawa, K.; Furuhashi, A.; Chigrinov, S.E.

    1996-01-01

    Thorium fuel-cycle has benefit on not-only trans-U element reduction but also their incineration. The disadvantage of high gamma activity of fuel, which is useful for improving the resistance to nuclear proliferation and terrorism, can overcome by molten fluorides fuel, and practically by THORIMS-NES, symbiotically coupled with fission Molten-Salt Reactor (FUJI) and fissile-producing Accelerator Molten-Salt Breeder (AMSB). This will have wide excellent advantages in global application, and will be deployed by incinerating Pu and Producing 233 U. Some details of this strategy including time schedule are presented. 14 refs, 2 figs, 4 tabs

  4. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  5. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  6. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  7. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  8. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  9. Destruction of high explosives and wastes containing high explosives using the molten salt destruction process

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-01-01

    This paper reports the Molten Salt Destruction (MSD) Process which has been demonstrated for the destruction of HE and HE-containing wastes. MSD has been used by Rockwell International and by Anti-Pollution Systems to destroy hazardous wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. (Even though the MSD process is applicable to mixed wastes, this paper will emphasize HE-treatment.) The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900 degrees C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam

  10. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  11. Hot corrosion behaviour of austenitic steel-303 in molten chloride and carbonate salts

    International Nuclear Information System (INIS)

    Mohd Misbahul Amin; Shamsul Baharin Jamaludin; Che Mohd Ruzaidi Ghazali; Khairel Rafezi Ahmad

    2007-01-01

    The investigations are presented for the hot corrosion behaviors of Austenitic Steel-303, under influence of the molten chloride and carbonate salts viz KCl and K 2 CO 3 , oxidised at 1123 K for the period of 60 hour at atmospheric condition. The oxidation kinetic are effect of molten chloride and carbonate salts deposition on the oxidation rate were determined. The susceptibility to suffer a deleterious attack on the alloy by internal corrosion increases with increasing the time. In general, the corrosion resistance austenitic steel-303 in molten carbonate salts is much higher than chloride melt, being an active oxidizing agent providing oxygen during fluxing reaction. However, due to profuse evolution of CO/ CO 2 heavy mass losses are observed during corrosion and scales are porous. The test included mass change monitoring and surface layers were examined by means of scanning electron microscopy (SEM) studies. (author)

  12. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  13. Study on application of molten salt oxidation technology (MSO) for PVC wastes treatment

    International Nuclear Information System (INIS)

    Tran Thu Ha; Nguyen Hong Quy; Pham Quoc Ky; Nguyen Quang Long; Vuong Thu Bac; Dang Duc Nhan

    2007-01-01

    The project 'Study on application of molten salt oxidation (MSO) for PVC plastic wastes treatment' aims at three followings: 1) Installation of lab-scale MSO unit with essential compositions builds up foundation for the 2) estimation of waste destruction efficiency of the technology. 3) Based on the results of testing PVC - the chlorinated organic wastes on the lab-scale unit, the ability of the technology application at pilot-scale level will be primary estimated. The adjustment and correction of some compositions in the lab-scale unit theoretically designed during experiment overcame the shortages by design and fabrication such as heat distribution regime, feeding wastes and draining spent salt. These solutions adapt to the technical requirement of operation as well as scientific requirement of the research on MSO process. PVC waste treatment was tested on the MSO lab-scale unit in different conditions of operation temperature, superficial air velocity related to air/oxygen feeding rate, waste feeding rate. The testing results showed that destruction efficiency of chlorine in MSO technology was almost absolute. HCl and Cl 2 emission were insignificant in different operation conditions. HCl and Cl 2 emission depend on resident time and nature of molten salt. However, with inherent attributes of MSO technology emission of CO is not avoided in processing waste treatment. Therefore, finding active solutions for reduction CO emission is essential to complete the technology. The experiments also were carried in conditions of single molten salt (Na 2 CO 3 ) and molten (Na 2 CO 3 - K 2 CO 3 ) eutectic. The comparison of efficiency of these tests gives idea of using molten salt eutectic to reduce operation cost in MSO technology. Based on operation parameters and scientific verification results during experiments, the introductory procedure of waste treatment by MSO process was built up. Thereby, primary estimation of development of the technology in pilot-scale is given

  14. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten-core-debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into (1) molten UO 2 pool heat transfer, (2) long-term molten UO 2 penetration into concrete and (3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  15. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten core debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into 1) molten UO 2 pool heat transfer, 2) long-term molten UO 2 penetration into concrete and 3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  16. Hydrocracking mechanisms in molten zinc chloride. Isotope scrambling and pyrolysis studies

    International Nuclear Information System (INIS)

    Larsen, J.W.; Earnest, S.

    1979-01-01

    Bruceton coal was hydrocracked in molten zinc chloride using H 2 -D 2 mixtures. No H-D was observed. The pyrolysis of Bruceton coal and a lignite in molten zinc chloride and an inert salt was carried out and the tetrahydrofuran and pyridine extractability of the products determined. In the absence of H 2 , zinc chloride is not an effective cracking catalyst. It is tentatively concluded that the catalytically active species is formed from zinc chloride and something in the coal and H 2 . The interactions between zinc chloride and the lignite appear to be significantly different than the interactions between zinc chloride and the bituminous coal. (Auth.)

  17. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  18. Small molten-salt reactors with a rational thorium fuel-cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Mitachi, Kohshi; Kato, Yoshio

    1992-01-01

    In the fission-energy utilization for solving global social and environmental problems including the 'Greenhouse Effect' in the next century, a new strategy should be introduced considering high safety and economy, simplicity, size-flexibility, anti-nuclear proliferation and terrorism, high temperature heat supply, etc., aiming to establish a rational breeding fuelcycle. Thorium Molten-Salt Nuclear Energy Synergetics based on [I] Th utilization, [II] fluid-fuel concept and [III] separation of fissile breeding and power generation functions would be one of the most promising approach. A design study of a standard Molten-Salt Reactor: FUJI-II (350 MWth, 155-161 MWe) ensuring fuel self-sustaining nature (conversion-ratio ∝ 1.0) in spite of small-size, and pilot-plant miniFUJI-II has been proceeded. (orig.)

  19. Lewis-Acid/Base Effects on Gallium Volatility in Molten Chlorides

    International Nuclear Information System (INIS)

    Williams, D.F.

    2001-01-01

    It has been proposed that GaCl 3 can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl 3 is quite volatile (boiling point, 201 C), the behavior of GaCl 3 dissolved in chloride salts is different due to solution effects and is critically dependent on the composition of the solvent salt (i.e., its Lewis-acid/base character). In this report, the behavior of gallium in prototypical Lewis-acid and Lewis-base salts is compared. It was found that gallium volatility is suppressed in basic melts and enhanced in acidic melts. The implications of these results on the potential for simple gallium removal in molten salt systems are significant

  20. Recent developments in the modeling of molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Wilemski, G.

    1984-01-01

    Modeling of porous electrodes and overall performance of molten carbonate fuel cells is reviewed. Aspects needing improvement are discussed. Some preliminary results on internal methane reforming cells are presented. Successful modeling of molten carbonate fuel cells has been carried out at two levels. The first concerns the prediction of overall cell performance and performance decay, i.e., the calculation of current-voltage curves and their decay rates for various cell operating conditions. The second involves the determination of individual porous electrode performance, i.e., how the electrode overpotential is affected by pore structure, gas composition, degree of electrolyte fill, etc. Both levels are treated mechanistically, as opposed to empirically, using fundamental mathematical descriptions of the relevant physical and chemical phenomena, in order to provide quantitative predictive capability

  1. Proposals on the organization of a fuel cycle of the cascade sub-critical molten salt reactor (CSMSR)

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Kormilitsyn, M.V.; Melnik, M.I.; Babikov, L.G.; Ponomarev, L.I.

    2002-01-01

    At present the approach of burning out long-lived radioactive waste (RW) in the reactor core neutron flux is the most feasible one. Currently the way of closing nuclear fuel cycle (NFC) on the basis of the nuclear chemical concept of the cascade sub-critical molten salt reactor (CSMSR) is considered as the most promising one. It is characterised by a number of advantages. CSMSR controlled by a beam of protons or electrons is the optimal reactor for closing the NFC using non-aqueous fluoride methods of fuel reprocessing. They, in comparison with aqueous methods, are characterised by a small waste quantity and are less laborious because of the absence of severe requirements to the product purity. A high productivity of high-temperature electrochemical processes allows the implementation of the fuel recycling process as part of the CSMSR total technological cycle. It can be conducted in the 'on-line' mode in the bypass molten salt circuit that brings the transportation volume of high-activity materials to a minimum. In order to reprocess the CSMSR irradiated molten salt fuel on the basis of salt composition LiF-NaF-(BeF 2 ) an option, based on the following three main operations of the melt treatment, was proposed at SSC RF RIAR: (i) On-line argon treatment of molten salt fuel for removal of gaseous fission products (FP) and also FP that form volatile fluorides and aerosols; (ii) Organisation of the fuel-active metal (probably with a fine-dispersed plutonium alloy) interaction in the on-line mode for removal of 'noble' and 'semi-noble' FP and corrosion products such as Ni, Fe, Cr (when using Pu alloy it allows to regenerate at the same time of the burned-out plutonium component); (iii) Portion-by-portion (fuel composition partially being removed from the CSMSR molten salt circuit) pyroelectrochemical reprocessing of the molten salt composition aimed at the removal of lanthanides - FP followed by a return of actinides to the CSMSR fuel cycle. This technology will allow

  2. Three-dimensional numerical investigation of a Molten Salt reactor concept with the code CFX-5.5

    International Nuclear Information System (INIS)

    Yamaji, B.; Csom, G.; Aszodi, A.

    2002-01-01

    Partitioning and transmutation of actinides and long-lived fission products is a promising option to extend the possibilities and enhance the environmentally acceptable capabilities of nuclear energy. Also the possible implementation of the thorium cycle is considered as a way to reduce the problem of energy resources in the future. For both objectives different molten salt reactor concepts were proposed mainly based on the Molten Salt Reactor Experiment of the Oak Ridge National Laboratory. Not only critical reactors but also accelerator-driven subcritical systems (ADSs) have advantages worth considering for those aims, especially those ones with liquid fuel, such as molten salts. By using liquid fuel which is the coolant medium, too, a basically different thermalhydraulic behavior is expected than in the case of solid fuel and water coolant. In this work our purpose is to present the possible use of Computational Fluid Dynamics (CFD) technology in molten salt thermal hydraulics. The simulations were performed with the three-dimensional code CFX-5.5.(author)

  3. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  4. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  5. Phase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silver

    International Nuclear Information System (INIS)

    Takeda, O.; Okabe, T.H.; Umetsu, Y.

    2004-01-01

    To develop a new recycling process, we examined the direct extraction of neodymium (Nd) metal from Nd-Fe-B magnet scraps using molten silver (Ag) as an extraction medium. Prior to the extraction experiment, the phase equilibrium of the system Ag-Fe-Nd was investigated to estimate the theoretical extraction limit. It was observed that the Fe/Nd 2 Fe 17 mixture equilibrates with the molten Ag-Nd alloy containing 50-52 mol% Nd (57-59 mass% Nd) at 1363 K. The experimental results were in good agreement with the thermodynamic calculation based on literature values. By reacting Nd-Fe-B magnet scraps with molten silver at 1273 K, more than 90% of the neodymium in the scrap was extracted, and an Ag-Nd alloy containing 40-50 mass% Nd was obtained. The neodymium in the Ag-Nd alloy was separated from silver as Nd 2 O 3 by oxidizing the obtained alloy in air. Although the wettability of Nd 2 O 3 with molten silver caused some difficulties in the separation of neodymium from silver, molten silver is shown to be an effective medium for neodymium extraction from magnet scrap

  6. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  7. Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images

    International Nuclear Information System (INIS)

    Tamura, Koji; Yamagishi, Ryuichiro

    2017-01-01

    Molten metal behaviors during the laser cutting of carbon steel and stainless steel specimens up to 300 mm in thickness were observed to dismantle large steel objects for the nuclear decommissioning, where attenuated process images from both steels were observed for detailed process analysis. Circular and rod-like molten metal structures were observed at the laser irradiated region depending on the assist gas flow conditions. Molten metal blow-off and flow processes were observed as cutting processes. The observations were explained by the aerodynamic interaction of the melted surface layer. The method is useful for the detailed observation of the molten metal behaviors, and the results are informative to understand and optimize the laser cutting process of very thick steel specimens. (author)

  8. Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant

    Science.gov (United States)

    Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.

    2007-09-01

    A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.

  9. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo-Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Dae-Young [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Graduate School of Advanced Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Rapidly Solidified Materials Research Center, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2017-07-15

    The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li{sub 2}O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li{sub 2}ZrO{sub 3} was formed after 216 h. During thermal cycling, Li{sub 2}ZrO{sub 3} was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li{sub 2}O. - Highlights: •Corrosion mechanism of MSZin LiCl-Li{sub 2}O molten salt is proposed. •Formation of Li{sub 2}ZrO{sub 3}is main corrosion mechanism. •There were no cracks, pores and spallation after corrosion test. •MSZ shows high corrosion resistance to LiCl-Li{sub 2}O molten salt.

  10. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  11. Study of tritium removal from fusion reactor blankets of molten salt and lithium--aluminum

    International Nuclear Information System (INIS)

    Talbot, J.B.

    1976-03-01

    The sorption of tritium by molten lithium--bismuth (Li--Bi, approx. 15 at. % lithium) and solid equiatomic lithium--aluminum (Li--Al) was investigated experimentally to evaluate the potential applications of both materials in a controlled thermonuclear reactor. The Li--Bi alloy was proposed to countercurrently extract tritium from a molten salt (Li 2 BeF 4 ) blanket. However, because of the low solubility ( 0 C, the extraction process is not attractive

  12. Physical properties of core-concrete systems: Al{sub 2}O{sub 3}-ZrO{sub 2} molten materials measured by aerodynamic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kargl, F. [Institute of Materials Physics in Space, German Aerospace Center (Germany); Nakamori, F.; Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-04-15

    During a molten core–concrete interaction, molten oxides consisting of molten core materials (UO{sub 2} and ZrO{sub 2}) and concrete (Al{sub 2}O{sub 3}, SiO{sub 2}, CaO) are formed. Reliable data on the physical properties of the molten oxides will allow us to accurately predict the progression of a nuclear reactor core meltdown accident. In this study, the viscosities and densities of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) were measured using an aerodynamic levitation technique. The densities of two small samples were estimated from their masses and their volumes (calculated from recorded images of the molten samples). The droplets were forced to oscillate using speakers, and their viscosities were evaluated from the damping behaviors of their oscillations. The results showed that the viscosity of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} compared to that of pure molten Al{sub 2}O{sub 3} is 25% lower for x = 0.172, while it is unexpectedly 20% higher for x = 0.356. - Highlights: •The physical properties of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) have been evaluated. •The measurement was conducted using an aerodynamic levitation technique. •The density and viscosity were measured.

  13. Economic Optimization of a Concentrating Solar Power Plant with Molten-salt Thermocline Storage

    OpenAIRE

    Flueckiger, S. M.; Iverson, B. D.; Garimella, S V

    2014-01-01

    System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar m...

  14. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-05-01

    Full Text Available A large-scale production of necklace-like SiC/SiO2 heterojunctions was obtained by a molten salt-mediated chemical vapor reaction technique without a metallic catalyst or flowing gas. The effect of the firing temperature on the evolution of the phase composition, microstructure, and morphology of the SiC/SiO2 heterojunctions was studied. The necklace-like SiC/SiO2 nanochains, several centimeters in length, were composed of SiC/SiO2 core-shell chains and amorphous SiO2 beans. The morphologies of the as-prepared products could be tuned by adjusting the firing temperature. In fact, the diameter of the SiO2 beans decreased, whereas the diameter of the SiC fibers and the thickness of the SiO2 shell increased as the temperature increased. The growth mechanism of the necklace-like structure was controlled by the vapor-solid growth procedure and the modulation procedure via a molten salt-mediated chemical vapor reaction process.

  15. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  16. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  17. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  18. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  19. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  20. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    International Nuclear Information System (INIS)

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  1. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  2. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  3. Electrolytic experiments of gadolinium and neodymium ions in the fluoride molten salt

    International Nuclear Information System (INIS)

    Sim, J. B.; Hwang, S. C.; Kim, W. H.; Kang, Y. H.; Lee, B. J.; Yoo, J. H.

    2002-01-01

    Electrolytic reductions of Gd 3+ and Nd 3+ ions were carried out to prepare bismuth alloys including Gd and Nd solutes using a molten liquid Bi cathode in the LiF-NaF-KF fluoride salt. It was considered that selective separation of Gd from bismuth alloy is possible by controlling the addition amount of an oxidation agent to a salt phase. Cyclic voltammetry measurements are useful tools not only for in-situ detection of solutes in salt phase in the course of back extraction experiments but also for elucidation of electrochemical reactions of Gd and Nd in the FLINAK molten salt

  4. Preliminary safety analysis of molten salt breeder reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2013-01-01

    Background: The molten salt reactor is one of the six advanced reactor concepts identified by the Generation IV International Forum as a candidate for cooperative development, which is characterized by remarkable advantages in inherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources and proliferation resistance. ORNL finished the conceptual design of Molten Salt Breeder Reactor (MSBR) based on the design, building and operation of Molten Salt Reactor Experiment (MSRE). Purpose: We attempt to implement the preliminary safety analysis of MSBR in order to provide a reference for the design and optimization of MSBR in the future. Methods: According to the conceptual design of MSBR, a model of safety analysis using point kinetics coupled with the simplified heat transfer mechanism is presented. The model is applied to simulate the transient phenomena of MSBR initiated by an abnormal step reactivity addition and an abnormal ramp reactivity addition at full-power equilibrium condition. Results: The thermal power in the core increases rapidly at the beginning and is accompanied by a rise of the fuel and graphite temperatures after 100, 300, 500 and 600 pcm reactivity addition. The maximum outlet temperature of the fuel in the core is at 1250℃ in 500 pcm reactivity addition, but up to 1350℃ in 600 pcm reactivity addition. The maximum of the power and the temperature are delayed and lower in the ramp reactivity addition rather than in the step reactivity addition. Conclusions: Based on the results, when the reactivity inserted is less than 500 pcm in maximum at full power equilibrium condition, the structural material in Hastelloy-N is not melted and can keep integrity without external control action. And it is necessary to try to avoid inserting a reactivity at short time. (authors)

  5. Structure and thermodynamic properties of molten rubidium chloride

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-02-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten RbCl in a non-polarizable-ion model and compared with computer simulation data. The theory, which is quantitatively very successful, hinges on an empirical evaluation of bridge diagrams including both excluded-volume effects and long-range Coulomb effects. (author)

  6. Structure and thermodynamic properties of molten strontium chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Ballone, P.; Tosi, M.P.; Trieste Univ.

    1985-05-01

    Self-consistent calculations of pair distribution functions and thermodynamic properties are presented for a pair-potentials model of molten strontium chloride. The calculations extend to a strongly asymmetric ionic liquid an earlier assessment of bridge diagrams in a modified hypernetted chain approach to the liquid structure of alkali halides. Good agreement is found with computer simulation data obtained by de Leeuw with the same set of pair potentials, showing that the present approach incorporates genuine general features of liquid structure theory for multicomponent liquids with strong relative ordering of the component species. It is further shown that the strong correlations between the divalent cations, both in the model and in real molten strontium chloride, can be approximately reproduced on the basis of a simple one-component-plasma model, provided that dielectric screening is allowed for in the real liquid. This allows us to tentatively attribute the significant level of disagreement between a pair potentials model of this liquid and the neutron diffraction data of McGreevy and Mitchell to many-body distortions of the electronic shells of the ions. (author)

  7. Smelting reduction of MgO in molten slag by liquid ferrosilicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q.; Gao, J.; Chen, X.; Wei, X.

    2016-10-01

    The smelting reduction of magnesium oxide was researched in this paper. The effect of molten slag composition and reduction temperature on percent reduction of magnesium oxide were discussed, and kinetics of smelting reduction of magnesium oxide in molten slag was studied. The results showed that the reduction extent of magnesium oxide increased by increasing either one of the following factors: the initial mass ratio of Al{sub 2}O{sub 3}/SiO{sub 2}, the addition of CaF{sub 2}, the initial molar ratio of Si/2MgO, and reaction temperature. The overall smelting reduction was controlled by mass transfer in slag with an apparent activation energy 586 kJ mol{sup -}1. (Author)

  8. Combined gettering and molten salt process for tritium recovery from lithium

    International Nuclear Information System (INIS)

    Sze, D.K.; Finn, P.A.; Bartlit, J.; Tanaka, S.; Teria, T.; Yamawaki, M.

    1988-02-01

    A new tritium recovery concept from lithium has been developed as part of the US/Japan collaboration on Reversed-Field Pinch Reactor Design Studies. This concept combines the γ-gettering process as the front end to recover tritium from the coolant, and a molten salt recovery process to extract tritium for fuel processing. A secondary lithium is used to regenerate the tritium from the gettering bed and, in the process, increases the tritium concentration by a factor of about 20. That way, the required size of the molten salt process becomes very small. A potential problem is the possible poisoning of the gettering bed by the salt dissolved in lithium. 16 refs., 6 figs

  9. Intermediate heat exchanger and steam generator designs for the HYLIFE-II fusion power plant using molten salts

    International Nuclear Information System (INIS)

    Lee, Y.T.; Hoffman, M.A.

    1992-01-01

    The HYLIFE-II fusion power plant employs the molten salt, Flibe, for the liquid jets which form the self-healing 'first wall' of the reactor. The molten salt, sodium fluoroborate then transports the heat from the IHX's to the steam generators. The design and optimization of the IHX's and the steam generators for use with molten salts has been done as part of the HYLIFE-II conceptual design study. The results of this study are described, and reference designs of these large heat exchangers are selected to minimize the cost of electricity while satisfying other important constraints

  10. Simulation tools and new developments of the molten salt fast reactor

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Doligez, X.; Heuer, D.; Allibert, M.; Ghetta, V.

    2010-01-01

    Starting from the Molten Salt Breeder Reactor project of Oak-Ridge, we have performed parametric studies in terms of safety coefficients, reprocessing requirements and breeding capabilities. In the frame of this major re-evaluation of the molten salt reactor (MSR), we have developed a new concept called Molten Salt Fast Reactor or MSFR, based on the Thorium fuel cycle and a fast neutron spectrum. This concept has been selected for further studies by the MSR steering committee of the Generation IV International Forum in 2009. Our reactor's studies of the MSFR concept rely on numerical simulations making use of the MCNP neutron transport code coupled with a code for materials evolution which resolves the Bateman's equations giving the population of each nucleus inside each part of the reactor at each moment. Because of MSR's fundamental characteristics compared to classical solid-fuelled reactors, the classical Bateman equations have to be modified by adding two terms representing the reprocessing capacities and the fertile or fissile alimentation. We have thus coupled neutronic and reprocessing simulation codes in a numerical tool used to calculate the extraction efficiencies of fission products, their location in the whole system (reactor and reprocessing unit) and radioprotection issues. (authors)

  11. Investigating thermal-hydraulic characteristic of molten fluoride salt in a circular pipe using a CFD methodology

    International Nuclear Information System (INIS)

    Chi Chenwei; Ferng Yuhming; Pei Baushei; Liang Jenqhorng

    2011-01-01

    In recent years, the molten salt reactor (MSR) has attracted increasing attention and become one of the most important 'Generation IV reactor' designs. In particular, the fact that molten fluoride salts are utilized as liquid fuel and coolant constitutes the main feature of the reactor. Furthermore, since the molten fluoride salt has a high Prandtl number and contains quite different behaviors to those of ordinary water and gas, an in-depth investigation of molten fluoride salt is thus highly demanded. Hence, it is the central objective of this study to examine the thermal-hydraulic characteristics of molten salt especially for the optimal design of reactor core and its safety operation. In this study, the dependence of pressure drop, Nusselt number and entrance length on the inlet Reynolds number for a molten fluoride salt (LiF(46.5)-NaF(11.5)-KF(42)) are computed using a comprehensive computational fluid dynamics (CFD) methodology. The methodology employs the continuity equation, momentum equation, energy equation, and standard k - ε turbulence model to conduct fluid dynamics simulation. For simplicity, the geometry employed in this study is a circular tube. The simulated results indicated that the pressure drop and Nusselt number and entrance length increase as the inlet Reynolds number increases. And the computed pressure drop corresponds well to theoretical value. It is also given a new correlation of computed entrance length in this paper. In addition, two well-known Nusselt number correlations such as, Hausen, Gnielinski, are employed to make comparisons with the computed results. It is also found that the computed Nusselt numbers overestimate the Hausen ones in the high Reynolds number region. However, the computed Nusselt numbers correspond well to the Gnielinski ones in all the Reynolds numbers region. Also notice that an experimental setup is currently in progress in order to validate the present CFD simulation. (author)

  12. Corrosion of technical ceramics by molten aluminium

    NARCIS (Netherlands)

    Schwabe, U.; Wolff, L.R.; Loo, van F.J.J.; Ziegler, G.

    1992-01-01

    The corrosion of 8 types of ceramics, i.e., 1 grade of hot isostatically pressed reaction-bonded Si3N4 (HIPRBSN), 3 grades of hot pressed Si3N4 (HPSN), and 4 grades of RBSN, and 2 types of SiC (HIPSiC and Si-impregnated SiC (SiSiC)) in molten Al (pure Al and AlZnMgCu1.5) was studied. The HIPRBSN and

  13. Investigation of molten metal droplet deposition and solidification for 3D printing techniques

    International Nuclear Information System (INIS)

    Wang, Chien-Hsun; Tsai, Ho-Lin; Wu, Yu-Che; Hwang, Weng-Sing

    2016-01-01

    This study investigated the transient transport phenomenon during the pile up of molten lead-free solder via the inkjet printing method. With regard to the droplet impact velocity, the distance from nozzle to substrate can be controlled by using the pulse voltage and distance control apparatus. A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We  =  2.1–15.1 and Oh  =  5.4  ×  10 −3 –3.8  ×  10 −3 . The effects of impact velocity and relative distance between two types of molten droplets on the shape of the impact mode are examined. The results show that the optimal parameters of the distance from nozzle to substrate and the spreading factor in this experiment are 0.5 mm and 1.33. The diameter, volume and velocity of the inkjet solder droplet are around 37–65 μ m, 25–144 picoliters, and 2.0–3.7 m s −1 , respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The end-shapes of the 3D micro structure have been found to be dependent upon the distance from nozzle to substrate and the impact velocity of the molten lead-free solder droplet. (paper)

  14. Ion diffusion related to structure in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1996-08-01

    A model first developed by Zwanzig to derive transport coefficients in cold dense fluids directly from the Green-Kubo time correlation formulae allows one to relate macroscopic diffusion coefficients to the local fluid structure. Applications to various ionic diffusion processes in molten salts are reviewed. Consequences of partial structural quenching are also discussed. (author). 28 refs, 3 tabs

  15. Study of an F center in molten KCl

    International Nuclear Information System (INIS)

    Parrinello, M.; Rahman, A.

    1983-05-01

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid

  16. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  17. Evaluation of downmotion time interval molten materials to core catcher during core disruptive accidents postulated in LMFR

    International Nuclear Information System (INIS)

    Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.

    1994-01-01

    Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)

  18. Fluid Mechanics Of Molten Metal Droplets In Additive Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2016-01-01

    Roč. 4, č. 4 (2016), s. 403-412 ISSN 2046-0546 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * droplets * molten metal Subject RIV: BK - Fluid Dynamics http://www.witpress.com/elibrary/cmem-volumes/4/4/1545

  19. A new cell for high temperature EXAFS measurements in molten rare earth fluorides

    International Nuclear Information System (INIS)

    Rollet, Anne-Laure; Bessada, Catherine; Auger, Yannick; Melin, Philippe; Gailhanou, Marc; Thiaudiere, Dominique

    2004-01-01

    A new cell with simple design has been developed for high temperature X-rays absorption measurements in both solid and molten lanthanide fluorides. Two plates of pyrolitic boron nitride are fixed hermetically together around the samples in order to avoid any evaporation and atmosphere interaction. EXAFS spectra of molten mixtures of LiF-LaF 3 measured at the La L III absorption edge are reported up to 900 deg C, and show the ability of this cell to keep the salt and to perform long time acquisition improving the signal to noise ratio

  20. Breakup Behavior of Molten Wood's Metal Jet in Subcooled Water

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2014-10-15

    There are safety characteristics of the metal fueled sodium fast-cooled reactor (SFR), by identifying the possibility of early termination of severe accidents. If the molten fuel is ejected from the cladding, the ejected molten fuel can interact with the coolant in the reactor vessel. This phenomenon is called as fuel-coolant interaction (FCI). The FCI occurs at the initial phase leading to severe accidents like core disruptive accident (CDA) in the SFR. A part of the corium energy is intensively transferred to the coolant in a very short time during the FCI. The coolant vaporizes at high pressure and expands so results in steam explosion that can threat to the integrity of nuclear reactor. The intensity of steam explosion is determined by jet breakup and the fragmentation behavior. Therefore, it is necessary to understand the jet breakup between the molten fuel jet and the coolant in order to evaluate whether the steam explosion occurs or not. The liquid jet breakup has been studied in various areas, such as aerosols, spray and combustion. In early studies, small diameter jets of low density liquids were studied. The jet breakup for large density liquids has been studied in nuclear reactor field with respect to safety. The existence of vapor film layer between the melt and liquid fluid is only in case of large density breakup. This paper deals with the jet breakup experiment in non-boiling conditions in order to analyze hydraulic effect on the jet behavior. In the present study, the wood's metal was used as the jet material. It has similar properties to the metal fuel. The physical properties of molten materials and coolants are listed in Table I, respectively. It is easy to conduct the experiment due to low melting point of the wood's metal. In order to clarify the dominant factors determining jet breakup and size distribution of the debris, the experiment that the molten wood's metal was injected into the subcooled condition was conducted. The

  1. Compatibility of potential containment materials with molten lithium hydride at 800 C

    International Nuclear Information System (INIS)

    Pawel, S.J.

    1993-01-01

    A series of compatibility experiments has been performed for several stainless steels, carbon steels, and a nickel-base alloy in molten lithium hydride at 800 C for comparison with previous experiments on type 304L stainless steel. The results indicate that the mechanism of corrosion is the same for each of 304L, 304, 316L, and 309 stainless steel and that very similar corrosion in molten LiH is expected for each stainless alloy. Deviation from parabolic kinetics at extended exposure time for each stainless alloy is attributed in part to weight gains associated with lithium penetration. Stabilized (Nb and Ti) low carbon (< 0.06%) steels are observed to be essentially inert in LiH at 800 C with stable carbides and no grain growth. Mild steel (type 1020) is decarburized rapidly and exhibits extensive grain growth in LiH at 800 C. Both steels exhibit weight gains during exposure to molten LiH that are also related in part to lithium penetration. Alloy X (UNS N06002) exhibits extreme corrosion with essentially linear kinetics and dissolution of nickel sufficient to form subsurface voids. (orig.)

  2. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  3. Calculations of the Possible Consequences of Molten Fuel Sodium Interactions in Subassembly and Whole Core Geometries

    International Nuclear Information System (INIS)

    Coddington, P.; Fishlock, T.P.; Jakeman, D.

    1976-01-01

    In making assessments of fast reactor safety a number of accident sequences can be postulated in which molten fuel contacts sodium in a number of possible modes. In the absence of an understanding of the way in which reactor materials interact for these contact modes it is necessary to make assessments over a range of plausible conditions and assumptions. This enables those areas where an interaction might cause a new stage in the escalation of the accident to be identified and at the same time to establish what characteristics of the interaction may be important. Whether in real situations interaction of molten reactor materials can have such characteristics can then be considered from both a theoretical and experimental viewpoint. It is suggested that although high efficiency vapour explosions involving large amounts of fuel in which there is rapid and coherent fragmentation are a main source of concern in many accident sequences, interactions with other characteristics may also be important. Two areas which have been identified are: (i) the interactions of low efficiency which need only involve small fractions of the fuel or possibly could include molten clad but which can accelerate sodium and fuel sufficiently to give rise to large reactivity changes. The recent incident at a steel plant in the U.K. in which 100 tons of molten steel was ejected to a height of 10 m from a torpedo ladle when water accidentally poured into it is a particularly striking illustration of such movement; and (ii) interactions giving rise to a much slower and less coherent heat transfer which may require some degree of fragmentation but not the extensive fragmentation by the specific mechanisms associated with vapour explosions but which nevertheless on the reactor scale could lead to high slug impacts on the containment. Accident codes are being constructed in the U.K. to investigate a series of hypothetical incidents. Modules are required for these codes which enable the consequences

  4. Development of galvanic high energy cells with molten salt electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Ely, G.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.; Wunderlich, A.

    1985-01-01

    The development work during the period 1980-1983 was mainly directed towards the development of technical LiAl/FeS cells, the development of separators, tests of cells and modules, and more basic work. An important objective was the improvement of cycle life at constant specific energy. Technical cells with 140 Ah nominal capacity at the five hour rate and 100 Wh.kg/sup -1/ specific energy performed up to 400 full cycles (30 A discharge), while in 10 Ah test cells more than 2000 full cycles have been demonstrated. The improvement of cycle life of technical cells was achieved by the use of improved separators fabricated from MgO-powder and by a vacuum-tight electrical feedthrough. A design concept of a 10 cell module has been developed based upon 200 Ah cell with two positive and three negative plates. A detailed investigation of safety aspects showed that there is no specific risk related to the LiAl/molten salt/FeS system. Thermal management of a 24 kWh battery was investigated and the Ohmic heat generated in the leads seems to be the critical factor. A range of total materials cost between 60 and 130 DM/kWh has been estimated. The price of LiAl/FeS batteries will most probably also be in the range of conventional secondary batteries. The cost/benefit analysis shows a considerable potential of energy conservation by the use of light-weight high energy batteries. Compared with a expected technical life of 7 years a pay-back period between 2 and 6 years seems attractive. However, the economy of the electric vehicle is strongly influenced by the higher purchase price of an electric vehicle and the present energy level.

  5. Molten salt related extensions of the SIMMER-III code and its application for a burner reactor

    International Nuclear Information System (INIS)

    Wang Shisheng; Rineiski, Andrei; Maschek, Werner

    2006-01-01

    Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16-20 November 2003]. The molten salt fuel is a ternary NaF-LiF-BeF 2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF 3 , etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP' 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as

  6. Electrochemical Behavior of La on Liquid Bi electrode in LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Kyu; Han, Hwa Jeong; Park, Byung Gi [Soonchunyang University, Asan (Korea, Republic of)

    2016-05-15

    Pyroprocessing technology aims to achieve a grouped and efficiently separation of all actinide for recycling with a sufficient decontamination of fission products generating the minimum. The main steps of the pyroprocess is electrowinning process, where the remaining elements in a molten salt after electrorifinning process. That process is U, MAs are concurrently recovered at the liquid metal. Recently, a study of the liquid metal and molten salt using an electrochemical is carried out in a variety of fields. However, there is deficient information about the electrode reaction of lanthanide and actinide on the liquid bismuth metal electrodes. In this paper, the electrochemical behavior of La(III), with liquid bismuth was investigated by the electrochemical method. The aim of this study is to investigate the electrochemical behavior of lanthanum or neodymium among lanthanides in molten LiCl-KCl salt at liquid metal bismuth electrode cyclic voltammetry and derive the thermochemical properties. The electrochemical behavior of La was studied in LiCl-KCl-LaCl{sub 3} molten salts using electrochemical techniques Cyclic Voltammetry on liquid Bi electrodes at 773K. During the process of cyclic voltammetry electrolysis, intermetallic compound were observed of La, Lax-Biy, Li-Bi. The diffusion coefficient of La was measured by cyclic voltemmetry and was found to be 8.18x10{sup -5}cm{sup 2}/s.

  7. Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code

    Science.gov (United States)

    Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian

    2017-07-01

    FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.

  8. Stable isotopes of pedogenic carbonates from the Somma-Vesuvius area, southern Italy, over the past 18 kyr: palaeoclimatic implications

    Science.gov (United States)

    Zanchetta, G.; di Vito, M.; Fallick, A. E.; Sulpizio, R.

    2000-12-01

    Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma-Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in 18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1 in 18O of pedogenic carbonate recorded after this eruption. The 13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.

  9. Chemical resistance of valve packing and sealing materials to molten nitrate salt

    International Nuclear Information System (INIS)

    Bradshaw, R.W.

    1986-01-01

    Chemical compatibility between a number of compression packings and sealing materials and molten sodium nitrate-potassium nitrate was evaluated at temperatures of 288 0 C (550 0 F), 400 0 C (750 0 F), and 565 0 C (1050 0 F). The types of packing materials tested included graphite, asbestos, PTFE, aramid, glass and ceramic fibers; perfluoroelastomers, and boron nitride. Several materials were chemically resistant to the molten salt at 288 0 C, but the compatibility of packings at 400 0 C and 565 0 C was not adequate. The chemical and physical phenomena affecting compatibility are discussed and recommendations concerning materials selection are made

  10. Investigations of transport properties of molten sodium fluoride using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Chattaraj, D.; Dash, Smruti

    2013-01-01

    The thermal conductivity and coefficient of shear viscosity of molten sodium fluoride were calculated using Green-Kubo equilibrium molecular dynamics (EMD) simulation. The Green-Kubo method is an equilibrium technique based on the fluctuation-dissipation theorem of statistical thermodynamics. The canonical ensemble (N, V, T) was used in the MD simulation to obtain the transport properties of molten NaF. In this simulation, several state points were investigated using the Born-Meyer-Huggins-Tosi-Fumi interionic potential model. The electrostatic interactions present in this ionic fluid were calculated through the Ewald method. The results obtained in this study were found to be in good agreement with the reported experimental data. (author)

  11. On modeling of beryllium molten depths in simulated plasma disruptions

    International Nuclear Information System (INIS)

    Tsotridis, G.; Rother, H.

    1996-01-01

    Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions. The influence of high heat fluxes on the depth of heat-affected zones of pure beryllium metal and beryllium containing very low levels of surface active impurities is studied by using a two-dimensional transient computer model that solves the equations of motion and energy. Results are presented for a range of energy densities and disruption times. Under certain conditions, impurities, through their effect on surface tension, create convective flows and hence influence the flow intensities and the resulting depths of the beryllium molten layers during plasma disruptions. The calculated depths of the molten layers are also compared with other mathematical models that are based on the assumption that heat is transported through the material by conduction only. 32 refs., 6 figs., 1 tab

  12. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  13. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  14. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  15. Analysis of a molten salt reactor benchmark

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Bajpai, Anil; Degweker, S.B.

    2013-01-01

    This paper discusses results of our studies of an IAEA molten salt reactor (MSR) benchmark. The benchmark, proposed by Japan, involves burnup calculations of a single lattice cell of a MSR for burning plutonium and other minor actinides. We have analyzed this cell with in-house developed burnup codes BURNTRAN and McBURN. This paper also presents a comparison of the results of our codes and those obtained by the proposers of the benchmark. (author)

  16. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  17. Demixing and effective volatility of molten alkali carbonate melts in MCFCs

    Energy Technology Data Exchange (ETDEWEB)

    Brenscheidt, T.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    Since the early investigation of A. Klemm, the demixing of the cations of molten binary salt mixtures with a common anion due to the different mobilities of two different cations had been investigated in numerous experiments and the respective results interpreted in terms of structural features of the melts. 1-1 electrolytes had been preferentially investigated. Okada also reported investigations on lithium carbonate/potassium carbonate mixtures in the temperature range from 980 to 1070 K. From this investigation it is known that the heavier potassium cation is faster than lithium in mixtures which are more concentrated in potassium than x{sub K2CO3} = 0,32 (Chemla effect) whereas below this isotachic concentration lithium is faster. This paper investigates demixing in molten carbonate fuel cells.

  18. Influence of corium oxidation on fission product release from molten pool

    International Nuclear Information System (INIS)

    Bechta, S.V.; Krushinov, E.V.; Vitol, S.A.

    2009-01-01

    Release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate and aerosol particle composition. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA are set. (author)

  19. Transient freezing of molten salts in pipe-flow systems: Application to the direct reactor auxiliary cooling system (DRACS)

    International Nuclear Information System (INIS)

    Le Brun, N.; Hewitt, G.F.; Markides, C.N.

    2017-01-01

    Highlights: • A thermo-hydraulic model has been proposed to simulate the transient freezing of molten salts in complex piping systems. • The passive safety system DRACS in Generation-IV, molten salt reactor is susceptible to failure due to salt freezing. • For the prototypical 0.2 MW reactor considered in this study considerable freezing occurs after 20 minutes leading to reactor temperatures above 900 °C within 4 hours. • Conservative criteria for the most important/least known variables in the design of DRACS have been discussed. • Over-conservative approaches in designing the NDHX should be used with caution as they can promote pipe clogging due to freezing. - Abstract: The possibility of molten-salt freezing in pipe-flow systems is a key concern for the solar-energy industry and a safety issue in the new generation of molten-salt reactors, worthy of careful consideration. This paper tackles the problem of coolant solidification in complex pipe networks by developing a transient thermohydraulic model and applying it to the ‘Direct Reactor Auxiliary Cooling System’ (DRACS), the passive-safety system proposed for the Generation-IV molten-salt reactors. The results indicate that DRACS, as currently envisioned, is prone to failure due to freezing in the air/molten-salt heat exchanger, which can occur after approximately 20 minutes, leading to reactor temperatures above 900 °C within 4 hours. The occurrence of this scenario is related to an unstable behaviour mode of DRACS in which newly formed solid-salt deposit on the pipe walls acts to decrease the flow-rate in the secondary loop, facilitating additional solid-salt deposition. Conservative criteria are suggested to facilitate preliminary assessments of early-stage DRACS designs. The present study is, to the knowledge of the authors, the first of its kind in serving to illustrate possible safety concerns in molten-salt reactors, which are otherwise considered very safe in the literature. Furthermore

  20. Study of tritium removal from fusion reactor blankets of molten salt and lithium--aluminum

    International Nuclear Information System (INIS)

    Talbot, J.B.

    1976-03-01

    The sorption of tritium by molten lithium--bismuth (Li--Bi, approximately 15 at. percent lithium) and solid equiatomic lithium--aluminum (Li--Al) was investigated experimentally to evaluate the potential applications of both materials in a controlled thermonuclear reactor. The Li--Bi alloy was proposed to countercurrently extract tritium from a molten salt (Li 2 BeF 4 ) blanket. However, because of the low solubility (less than 10 ppb) at temperatures ranging from 500 to 700 0 C, the extraction process is not attractive