WorldWideScience

Sample records for vestimentiferan physiological ecology

  1. Energetics, physiology and vertebrate ecology.

    Science.gov (United States)

    Karasov, W H

    1986-10-01

    The magnitude of energy flow through individual animals and their populations is potentially limited by several physiological factors. These include thermal constraints affecting the time available for foraging, physiological design constraints affecting foraging mode and the rate of prey capture, and digestive constraints on how much food can be processed per day. Over short periods (hours or less), maximal rates of metabolism may determine survival during exposure to cold or when fleeing predators. Energetics, physiology and ecology can be usefully integrated within the context of the concept of maximum rate of energy flow. Copyright © 1986. Published by Elsevier Ltd.

  2. Physiological ecology meets climate change.

    Science.gov (United States)

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-03-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.

  3. Macro-Ecology of Gulf of Mexico Cold Seeps

    Science.gov (United States)

    Cordes, Erik E.; Bergquist, Derk C.; Fisher, Charles R.

    2009-01-01

    Shortly after the discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents, similar ecosystems were found at cold seeps in the Gulf of Mexico. Over the past two decades, these sites have become model systems for understanding the physiology of the symbiont-containing megafauna and the ecology of seep communities worldwide. Symbiont-containing bivalves and siboglinid polychaetes dominate the communities, including five bathymodiolin mussel species and six vestimentiferan (siboglinid polychaete) species in the Gulf of Mexico. The mussels include the first described examples of methanotrophic symbiosis and dual methanotrophic/thiotrophic symbiosis. Studies with the vestimentiferans have demonstrated their potential for extreme longevity and their ability to use posterior structures for subsurface exchange of dissolved metabolites. Ecological investigations have demonstrated that the vestimentiferans function as ecosystem engineers and identified a community succession sequence from a specialized high-biomass endemic community to a low-biomass community of background fauna over the life of a hydrocarbon seep site.

  4. New directions in ecological physiology

    National Research Council Canada - National Science Library

    Feder, M.E; Bennett, A.F; Burggren, W.W; Huey, R.B

    1987-01-01

    .... Twenty leading ecological physiologists and evolutionary biologists have contributed critical evaluations of developments in their respective areas, highlighting major conceptual advances as well...

  5. Physiological, ethological and ecological features of Hermetia illucen

    OpenAIRE

    Marzouk, Sammer

    2016-01-01

    The Black Soldier Fly [Hermetia illucens] is a true fly in the family Stratiomyidae and subclass Pterygota. H.illucens has been a topic of interest in the ecological research world for many years. H.illucens possesses special physiological, ethological and ecological features that may allow H.illucens to become a model organism. This literature review looks at the physiological, ethological and ecological features of H.illucens. Existing literature about H.illucens has been searched and analy...

  6. Physiology, ecology and industrial applications of aroma formation in yeast.

    Science.gov (United States)

    Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J

    2017-08-01

    Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.

    Science.gov (United States)

    Clarke, Andrew

    2013-09-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.

  8. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  9. Bioaccumulation of mercury in a vestimentiferan worm living in Kagoshima Bay, Japan.

    Science.gov (United States)

    Ando, Tetsuo; Yamamoto, Megumi; Tomiyasu, Takashi; Hashimoto, Jun; Miura, Tomoyuki; Nakano, Atsuhiro; Akiba, Suminori

    2002-11-01

    The present study reports on the mercury concentrations of the vestimentiferan worm, Lamellibrachia satsuma, (Annelida: Pogonophora) found near hydrothermal vents at a depth of 80-100 m in the northern parts of Kagoshima Bay. The vestimentiferan worms had total mercury concentrations of 238 ng/g in the anterior muscle of the body and 164 ng/g in the posterior trophosome. Methylmercury constituted only 7.6% of total mercury detected anteriorly and 16.3% posteriorly. The mean total mercury concentration in filtrated ambient seawater of the worm habitat was 1.1 ng/l. The worm should accumulate mercury in seawater by a one-step into the anterior and posterior parts as 2.2 x 10(%) and 1.5 x 10(5) times those of the filtered ambient seawater, respectively. The bioaccumulation factor of mercury by the worms with only their respiration would be actually larger than that by other marine animals through food webs. The high bioaccumulation factor of mercury in the worms suggest the following two possibilities: (i) the biological half-life of organomercury in the worm could be exceptionally long; or (ii) the lifetime of vestimentiferan worms examined in the present study could be extremely long. Various metals in one specimen of the worm were analyzed by using ICP-MS, and then gold as well as silver were detected in the worm. Gold was detected for the first time from marine animals.

  10. Neuroanatomy of the vestimentiferan tubeworm Lamellibrachia satsuma provides insights into the evolution of the polychaete nervous system.

    Directory of Open Access Journals (Sweden)

    Norio Miyamoto

    Full Text Available Vestimentiferan tubeworms are marine invertebrates that inhabit chemosynthetic environments, and although recent molecular phylogenetic analyses have suggested that vestimentiferan tubeworms are derived from polychaete annelids, they show some morphological features that are different from other polychaetes. For example, vestimentiferans lack a digestive tract and have less body segments and comparative neuroanatomy can provide essential insight into the vestimentiferan body plan and its evolution. In the present study, we investigated the adult nervous system in the vestimentiferan Lamellibrachia satsuma using antibodies against synapsin, serotonin, FMRMamide and acetylated α-tubulin. We also examined the expressions of neural marker genes, elav and synaptotagmin to reveal the distribution of neuronal cell bodies. Brain anatomy shows simple organization in Lamellibrachia compared to other polychaetes. This simplification is probably due to the loss of the digestive tract, passing through the body between the brain and the subesophageal ganglion. In contrast, the ventral nerve cord shows a repeated organizational structure as in the other polychaetes, despite the absence of the multiple segmentation of the trunk. These results suggest that the brain anatomy is variable depending on the function and the condition of surrounding tissues, and that the formation of the rope ladder-like nervous system of the ventral nerve cord is independent from segmentation in polychaetes.

  11. Overview of the physiological ecology of carbon metabolism in seagrasses.

    Science.gov (United States)

    Touchette; Burkholder

    2000-07-30

    carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy

  12. Post-wildfire physiological ecology of an Australian microbat.

    Science.gov (United States)

    Doty, Anna C; Stawski, Clare; Law, Brad S; Geiser, Fritz

    2016-10-01

    Historical patterns of wildfires are being altered as a result of changing climate and therefore are becoming an increasingly pressing global issue. How small mammals deal physiologically with changes in landscape and food availability due to fire remains largely unknown, although recent studies on small heterothermic terrestrial mammals have shown an increase in post-fire torpor use to reduce energy and foraging requirements. However, data on the behavioural and physiological responses of bats after fires are scarce, although potentially these volant species may differ from terrestrial mammals. Therefore, we investigated the post-fire thermal biology and activity of lesser long-eared bats (Nyctophilus geoffroyi) using temperature-telemetry in Warrumbungle National Park, NSW, which experienced a devastating wildfire in 2013. The study comprised two field seasons, one in 2013 within 4 months after the fire, and one in 2015 two years after the fire to identify potential changes in behaviour and physiology. Interestingly, soon after the fire, bats showed significantly shorter torpor bout duration (11.8 ± 12.5 h) and longer normothermia duration (8.7 ± 4.6 h) in comparison to those in 2015 (torpor bout duration: 24.1 ± 23.5 h; normothermia duration: 2.5 ± 1.5 h). Insect availability was significantly (20-fold) higher in 2013 than in 2015, which was likely an important factor resulting in the short average torpor bout duration by N. geoffroyi after the fire. Our data indicate that volant bats appear to show the opposite post-fire behavioural and physiological responses to small terrestrial mammals, showing longer normothermic and active periods and shorter torpor bouts to capitalise on an increase in available post-fire resources.

  13. Developing animals flout prominent assumptions of ecological physiology.

    Science.gov (United States)

    Burggren, Warren W

    2005-08-01

    Every field of biology has its assumptions, but when they grow to be dogma, they can become constraining. This essay presents data-based challenges to several prominent assumptions of developmental physiologists. The ubiquity of allometry is such an assumption, yet animal development is characterized by rate changes that are counter to allometric predictions. Physiological complexity is assumed to increase with development, but examples are provided showing that complexity can be greatest at intermediate developmental stages. It is assumed that organs have functional equivalency in embryos and adults, yet embryonic structures can have quite different functions than inferred from adults. Another assumption challenged is the duality of neural control (typically sympathetic and parasympathetic), since one of these two regulatory mechanisms typically considerably precedes in development the appearance of the other. A final assumption challenged is the notion that divergent phylogeny creates divergent physiologies in embryos just as in adults, when in fact early in development disparate vertebrate taxa show great quantitative as well as qualitative similarity. Collectively, the inappropriateness of these prominent assumptions based on adult studies suggests that investigation of embryos, larvae and fetuses be conducted with appreciation for their potentially unique physiologies.

  14. Geobacter: the microbe electric's physiology, ecology, and practical applications.

    Science.gov (United States)

    Lovley, Derek R; Ueki, Toshiyuki; Zhang, Tian; Malvankar, Nikhil S; Shrestha, Pravin M; Flanagan, Kelly A; Aklujkar, Muktak; Butler, Jessica E; Giloteaux, Ludovic; Rotaru, Amelia-Elena; Holmes, Dawn E; Franks, Ashley E; Orellana, Roberto; Risso, Carla; Nevin, Kelly P

    2011-01-01

    Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili

  15. 有光層におけるハオリムシの発見 / Discovery of Vestimentiferan Tube-worms in the Euphotic Zone

    OpenAIRE

    Jun, Hashimoto; TOMOYUKI, MIURA; Katsunori, Fujikura; Joyo, OSSAKA; Faculty of Fisheries, Kagoshima University; Deep Sea Research Department, Japan Marine Science and Technology Center; Tamagawa University

    1993-01-01

    To date, vestimentiferan tube-worms have been considered to be a typical member of the deep-sea biological communities supported by chemosynthetic production. In 1993, during a series of surveys exploring the biological community accompanied by submarine fumaroles called "Tagiri" by local fishermen, thousands of vestimentiferans were discovered to form clusters at a depth of 82 m in Kagoshima Bay, southern Japan. The tube-worms were collected by means of a small dredge attached to a deep-tow ...

  16. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  17. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    Full Text Available Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep, oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1 obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8% indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms

  18. Physiological Ecology of Microorganisms in Subglacial Lake Whillans

    Science.gov (United States)

    Vick-Majors, Trista J.; Mitchell, Andrew C.; Achberger, Amanda M.; Christner, Brent C.; Dore, John E.; Michaud, Alexander B.; Mikucki, Jill A.; Purcell, Alicia M.; Skidmore, Mark L.; Priscu, John C.

    2016-01-01

    Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d−1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW

  19. The Physiology and Ecology of Diapause in Marine Copepods

    Science.gov (United States)

    Baumgartner, Mark F.; Tarrant, Ann M.

    2017-01-01

    Diapause is a type of dormancy that requires preparation, typically precedes the onset of unfavorable conditions, and necessitates a period of arrest before development can proceed. Two ecologically important groups of copepods have incorporated diapausing stages into their life histories. In freshwater, estuarine, and coastal environments, species within the Centropagoidea superfamily can produce resting eggs containing embryos that may be quiescent, diapausing, or in some intermediate state. Resting eggs sink into the sediments, remain viable over months to years, and form a reservoir from which the planktonic population is reestablished. In coastal and oceanic environments, copepods within the Calanidae and Eucalanidae families can enter diapause during late juvenile (copepodid) or adult stages. These copepods accumulate large amounts of lipids before they migrate into deep water and diapause for several months. Through respiration, diapausing copepods may sequester more carbon in the deep ocean than any other biogeochemical process, and changes in diapause phenology associated with climate change (particularly reduction in diapause duration) could have a significant impact not only on regional ecosystems, but on global climate as well.

  20. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium

    Directory of Open Access Journals (Sweden)

    Laurie L. Richardson

    2014-12-01

    Full Text Available Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis.

  1. Fungi in freshwaters: ecology, physiology and biochemical potential.

    Science.gov (United States)

    Krauss, Gerd-Joachim; Solé, Magali; Krauss, Gudrun; Schlosser, Dietmar; Wesenberg, Dirk; Bärlocher, Felix

    2011-07-01

    Research on freshwater fungi has concentrated on their role in plant litter decomposition in streams. Higher fungi dominate over bacteria in terms of biomass, production and enzymatic substrate degradation. Microscopy-based studies suggest the prevalence of aquatic hyphomycetes, characterized by tetraradiate or sigmoid spores. Molecular studies have consistently demonstrated the presence of other fungal groups, whose contributions to decomposition are largely unknown. Molecular methods will allow quantification of these and other microorganisms. The ability of aquatic hyphomycetes to withstand or mitigate anthropogenic stresses is becoming increasingly important. Metal avoidance and tolerance in freshwater fungi implicate a sophisticated network of mechanisms involving external and intracellular detoxification. Examining adaptive responses under metal stress will unravel the dynamics of biochemical processes and their ecological consequences. Freshwater fungi can metabolize organic xenobiotics. For many such compounds, terrestrial fungal activity is characterized by cometabolic biotransformations involving initial attack by intracellular and extracellular oxidative enzymes, further metabolization of the primary oxidation products via conjugate formation and a considerable versatility as to the range of metabolized pollutants. The same capabilities occur in freshwater fungi. This suggests a largely ignored role of these organisms in attenuating pollutant loads in freshwaters and their potential use in environmental biotechnology. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Cyanobacteria in Antarctica: ecology, physiology and cold adaptation.

    Science.gov (United States)

    Pandey, K D; Shukla, S P; Shukla, P N; Giri, D D; Singh, J S; Singh, P; Kashyap, A K

    2004-07-01

    Cyanobacterial species composition of fresh water and terrestrial ecosystems and chemical environment of water in Schirmacher Oasis in Continental Antarctica was investigated. Over 35 species of cyanobacteria were recorded. Diazotrophic species both heterocystous and unicellular contributed more than half to the count except in lake ecosystem. The species composition varied among the fresh water as well as terrestrial ecosystems. The physico-chemical analyses of water revealed its poor nurient content which might have supported the growth of diazotrophic cyanobacteria in an Antarctic environment. Among the cyanobacteria Oscillatoria, Phormidium and Nostoc commune were the dominant flora in most of the habitats. The physiological characteristics of isolated cyanobacteria strains indicated that N2-fixation, nitrate uptake, nitrate-reduction, ammonium-uptake, GS-transferase activity and photosynthesis was unaffected at low temperature (5 degrees C) which indicated low temperature adaptation for Antarctic cyanobacteria. This phenomenon was not evident in different strains of tropical origin. The temperature optima for N2-fixation for the different Antarctic cyanobacterial strains was in the range of 15-25 degrees C, nearly 10 degrees C lower than their respective reference strains of tropical origin. Similar results were obtained for cyanobacteria-moss association. The low endergonic activation energy exhibited by the above metabolic activities supported the view that cyanobacteria were adapted to Antarctic ecosystem.

  3. Evolution, ecology and physiology of amphibious killifishes (Cyprinodontiformes).

    Science.gov (United States)

    Turko, A J; Wright, P A

    2015-10-01

    The order Cyprinodontiformes contains an exceptional diversity of amphibious taxa, including at least 34 species from six families. These cyprinodontiforms often inhabit intertidal or ephemeral habitats characterized by low dissolved oxygen or otherwise poor water quality, conditions that have been hypothesized to drive the evolution of terrestriality. Most of the amphibious species are found in the Rivulidae, Nothobranchiidae and Fundulidae. It is currently unclear whether the pattern of amphibiousness observed in the Cyprinodontiformes is the result of repeated, independent evolutions, or stems from an amphibious common ancestor. Amphibious cyprinodontiforms leave water for a variety of reasons: some species emerse only briefly, to escape predation or capture prey, while others occupy ephemeral habitats by living for months at a time out of water. Fishes able to tolerate months of emersion must maintain respiratory gas exchange, nitrogen excretion and water and salt balance, but to date knowledge of the mechanisms that facilitate homeostasis on land is largely restricted to model species. This review synthesizes the available literature describing amphibious lifestyles in cyprinodontiforms, compares the behavioural and physiological strategies used to exploit the terrestrial environment and suggests directions and ideas for future research. © 2015 The Fisheries Society of the British Isles.

  4. A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts.

    Directory of Open Access Journals (Sweden)

    Cédric L Meunier

    Full Text Available Stoichiometric homeostasis is the ability of an organism to keep its body chemical composition constant, despite varying inputs. Stoichiometric homeostasis therefore constrains the metabolic needs of consumers which in turn often feed on resources not matching these requirements. In a broader context, homeostasis also relates to the capacity of an organism to maintain other biological parameters (e.g. body temperature at a constant level over ambient environmental variations. Unfortunately, there are discrepancies in the literature and ecological and physiological definitions of homeostasis are disparate and partly contradictory. Here, we address this matter by reviewing the existing knowledge considering two distinct groups, regulators and conformers and, based on examples of thermo- and osmoregulation, we propose a new approach to stoichiometric homeostasis, unifying ecological and physiological concepts. We suggest a simple and precise graphical way to identify regulators and conformers: for any given biological parameter (e.g. nutrient stoichiometry, temperature, a sigmoidal relation between internal and external conditions can be observed for conformers while an inverse sigmoidal response is characteristic of regulators. This new definition and method, based on well-studied physiological mechanisms, unifies ecological and physiological approaches and is a useful tool for understanding how organisms are affected by and affect their environment.

  5. Effects of Mulching Mode on Canopy Physiological, Ecological Characteristics and Yield of Upland Rice

    OpenAIRE

    Zhang, Yu-Zhu; Liu, Yang; Zeng, Xiang; Chen, Kai-Lin; Ze-hui HUANG; Hong-ke XIE

    2011-01-01

    The effects of mulching mode on population physiology and ecology of rice were studied using a combination P88S/1128 as the material under three mulching cultivation modes including plastic film mulching, straw mulching and liquid film mulching, as well as bare cultivation (control). The results indicated that mulching mode had significant effects on micro-meteorological factors and individual growth of rice, as shown by an increase of relative humidity, a better internal micro-meteorological...

  6. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    Science.gov (United States)

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  7. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  8. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  9. At the crossroads of physiology and ecology: food supply and the timing of avian reproduction.

    Science.gov (United States)

    Davies, Scott; Deviche, Pierre

    2014-06-01

    This article is part of a Special Issue “Energy Balance”. The decision of when to breed is crucial to the reproductive success and fitness of seasonally breeding birds. The availability of food for adults prior to breeding has long been thought to play a critical role in timing the initiation of seasonal reproductive events, in particular laying. However, unequivocal evidence for such a role remains limited and the physiological mechanisms by which an increase in food availability results in seasonal activation of the reproductive system are largely speculative. This lack of mechanistic information partly reflects a lack of integration of ecological and physiological approaches to study seasonal reproduction. Indeed, most work pertaining to the role of food availability for adults on the timing of avian reproduction has been ecological and has focused almost exclusively on female traits associated with reproductive timing (e.g., lay date and clutch size). By contrast, most work on the physiological bases of the relationship between food availability and the timing of reproduction has investigated male traits associated with reproductive development (e.g., reproductive hormones and gonadal development). To advance our understanding of these topics, we review the role of proximate factors including food availability, social factors, and ambient temperature in the control of breeding decisions, and discuss the role of three potential candidates (leptin, glucocorticoids, and GnIH-neuropeptide Y) that may mediate the effects of food availability on these decisions. We emphasize that future progress in this area is heavily contingent upon the use of physiology-based approaches and their integration into current ecological frameworks. Published by Elsevier Inc.

  10. Comparative genomics in ecological physiology: toward a more nuanced understanding of acclimation and adaptation.

    Science.gov (United States)

    Whitehead, Andrew

    2012-03-15

    Organisms that live in variable environments must adjust their physiology to compensate for environmental change. Modern functional genomics technologies offer global top-down discovery-based tools for identifying and exploring the mechanistic basis by which organisms respond physiologically to a detected change in the environment. Given that populations and species from different niches may exhibit different acclimation abilities, comparative genomic approaches may offer more nuanced understanding of acclimation responses, and provide insight into the mechanistic and genomic basis of variable acclimation. The physiological genomics literature is large and growing, as is the comparative evolutionary genomics literature. Yet, expansion of physiological genomics experiments to exploit taxonomic variation remains relatively undeveloped. Here, recent advances in the emerging field of comparative physiological genomics are considered, including examples of plants, bees and fish, and opportunities for further development are outlined particularly in the context of climate change research. Elements of robust experimental design are discussed with emphasis on the phylogenetic comparative approach. Understanding how acclimation ability is partitioned among populations and species in nature, and knowledge of the relevant genes and mechanisms, will be important for characterizing and predicting the ecological and evolutionary consequences of human-accelerated environmental change.

  11. Anticolonial climates: physiology, ecology, and global population, 1920s-1950s.

    Science.gov (United States)

    Bashford, Alison

    2012-01-01

    Historiography on tropical medicine and determinist ideas about climate and racial difference rightly focuses on links with nineteenth- and twentieth-century colonial rule. Occasionally and counterintuitively, however, these ideas have been redeployed as anticolonial argument. This article looks at one such instance; the racial physiology of Indian economist, ecologist, and anticolonial nationalist Radhakamal Mukerjee (1889-1968). It argues that the explanatory context was mid-twentieth-century discussion of global population growth, which raised questions of density and belonging to land. Ecology offered a new language and scientific system within which people and place were conceptually integrated, in this instance to anticolonial ends.

  12. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Science.gov (United States)

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  13. Ecoimmunology and microbial ecology: Contributions to avian behavior, physiology, and life history.

    Science.gov (United States)

    Evans, Jessica K; Buchanan, Katherine L; Griffith, Simon C; Klasing, Kirk C; Addison, BriAnne

    2017-02-01

    Bacteria have had a fundamental impact on vertebrate evolution not only by affecting the evolution of the immune system, but also generating complex interactions with behavior and physiology. Advances in molecular techniques have started to reveal the intricate ways in which bacteria and vertebrates have coevolved. Here, we focus on birds as an example system for understanding the fundamental impact bacteria have had on the evolution of avian immune defenses, behavior, physiology, reproduction and life histories. The avian egg has multiple characteristics that have evolved to enable effective defense against pathogenic attack. Microbial risk of pathogenic infection is hypothesized to vary with life stage, with early life risk being maximal at either hatching or fledging. For adult birds, microbial infection risk is also proposed to vary with habitat and life stage, with molt inducing a period of increased vulnerability. Bacteria not only play an important role in shaping the immune system as well as trade-offs with other physiological systems, but also for determining digestive efficiency and nutrient uptake. The relevance of avian microbiomes for avian ecology, physiology and behavior is highly topical and will likely impact on our understanding of avian welfare, conservation, captive breeding as well as for our understanding of the nature of host-microbe coevolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  15. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms.

    Science.gov (United States)

    McCormick, Lillian R; Levin, Lisa A

    2017-09-13

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with 'fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  16. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    Science.gov (United States)

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  17. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance.

    Science.gov (United States)

    Hikosaka, Kouki

    2004-12-01

    The photosynthesis-nitrogen relationship is significantly different among species. Photosynthetic capacity per unit leaf nitrogen, termed as photosynthetic nitrogen-use efficiency (PNUE), has been considered an important leaf trait to characterise species in relation to their leaf economics, physiology, and strategy. In this review, I discuss (1) relations between PNUE and species ecology, (2) physiological causes and (3) ecological implications of the interspecific difference in PNUE. Species with a high PNUE tend to have high growth rates and occur in disturbed or high productivity habitats, while those with a low PNUE occur in stressful or low productivity habitats. PNUE is an important leaf trait that correlates with other leaf traits, such as leaf mass per area (LMA) and leaf life span, irrespective of life form, phylogeny, and biomes. Various factors are involved in the interspecific difference. In particular, nitrogen allocation within leaves and the mesophyll conductance for CO(2) diffusion are important. To produce tough leaves, plants need to allocate more biomass and nitrogen to make thick cell walls, leading to a reduction in the mesophyll conductance and in nitrogen allocation to the photosynthetic apparatus. Allocation of biomass and nitrogen to cell walls may cause the negative relationship between PNUE and LMA. Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.

  18. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    Science.gov (United States)

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  19. Acoustic Communication in Butterflyfishes: Anatomical Novelties, Physiology, Evolution, and Behavioral Ecology.

    Science.gov (United States)

    Tricas, Timothy C; Webb, Jacqueline F

    2016-01-01

    Coral reef fishes live in noisy environments that may challenge their capacity for acoustic communication. Butterflyfishes (Family Chaetodontidae) are prominent and ecologically diverse members of coral reef communities worldwide. The discovery of a novel association of anterior swim bladder horns with the lateral line canal system in the genus Chaetodon (the laterophysic connection) revealed a putative adaptation for enhancement of sound reception by the lateral line system and/or the ear. Behavioral studies show that acoustic communication is an important component of butterflyfish social behavior. All bannerfish (Forcipiger, Heniochus, and Hemitaurichthys) and Chaetodon species studied thus far produce several sound types at frequencies of 1000 Hz. Ancestral character state analyses predict the existence of both shared (head bob) and divergent (tail slap) acoustic behaviors in these two clades. Experimental auditory physiology shows that butterflyfishes are primarily sensitive to stimuli associated with hydrodynamic particle accelerations of ≤500 Hz. In addition, the gas-filled swim bladder horns in Chaetodon are stimulated by sound pressure, which enhances and extends their auditory sensitivity to 1700-2000 Hz. The broadband spectrum of ambient noise present on coral reefs overlaps with the frequency characteristics of their sounds, thus both the close social affiliations common among butterflyfishes and the evolution of the swim bladder horns in Chaetodon facilitate their short-range acoustic communication. Butterflyfishes provide a unique and unexpected opportunity to carry out studies of fish bioacoustics in the lab and the field that integrate the study of sensory anatomy, physiology, evolution, and behavioral ecology.

  20. Physiological ecology in the 21st century: advancements in biologging science.

    Science.gov (United States)

    Block, Barbara A

    2005-04-01

    Top pelagic predators such as tunas, sharks, marine turtles and mammals have historically been difficult to study due to their large body size and vast range over the oceanic habitat. In recent years the development of small microprocessor-based data storage tags that are surgically implanted or satellite-linked provide marine researchers a novel avenue for examining the movements, physiology and behaviors of pelagic animals in the wild. When biological and physical data obtained from the tags are combined with satellite derived sea surface temperature and ocean color data, the relationships between the movements, behaviors and physical ocean environment can be examined. Tag-bearing marine animals can function as autonomous ocean profilers providing oceanographic data wherever their long migrations take them. The biologging science is providing ecological physiologists with new insights into the seasonal movements, habitat utilization, breeding behaviors and population structures in of marine vertebrates. In addition, the data are revealing migration corridors, hot spots and physical oceanographic patterns that are key to understanding how organisms such as bluefin tunas use the open ocean environment. In the 21st century as ecosystem degradation and global warming continue to threaten the existence of species on Earth, the field of physiological ecology will play a more pivotal role in conservation biology.

  1. Tadpole nutritional ecology and digestive physiology: Implications for captive rearing of larval anurans.

    Science.gov (United States)

    Pryor, Gregory S

    2014-01-01

    The adaptive tadpole stage allows anurans to exploit food resources in two vastly different environments, and the transition from aquatic larvae to terrestrial carnivores is both dramatic and complex. As seen in many other members of the freshwater aquatic community, the nutritional requirements and characteristic feeding strategies of anuran larvae (tadpoles) are extremely diverse, ranging from herbivory to carnivory and including predation and cannibalism, oophagy, coprophagy, filter-feeding, and hindgut microbial fermentation. Whereas tadpoles as a group are commonly considered herbivorous or omnivorous, many are specialists; understanding species-specific dietary habits is critical for captive rearing projects in zoos and amphibian habitat conservation efforts. Practical applications of this review also encompass studies of amphibian declines, herpetoculture, ecology and evolution, and comparative gastrointestinal morphology and physiology. © 2014 Wiley Periodicals, Inc.

  2. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas.

    Science.gov (United States)

    Jacques, Marie-Agnès; Arlat, Matthieu; Boulanger, Alice; Boureau, Tristan; Carrère, Sébastien; Cesbron, Sophie; Chen, Nicolas W G; Cociancich, Stéphane; Darrasse, Armelle; Denancé, Nicolas; Fischer-Le Saux, Marion; Gagnevin, Lionel; Koebnik, Ralf; Lauber, Emmanuelle; Noël, Laurent D; Pieretti, Isabelle; Portier, Perrine; Pruvost, Olivier; Rieux, Adrien; Robène, Isabelle; Royer, Monique; Szurek, Boris; Verdier, Valérie; Vernière, Christian

    2016-08-04

    How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.

  3. Effects of Mulching Mode on Canopy Physiological, Ecological Characteristics and Yield of Upland Rice

    Directory of Open Access Journals (Sweden)

    Yu-zhu ZHANG

    2011-09-01

    Full Text Available The effects of mulching mode on population physiology and ecology of rice were studied using a combination P88S/1128 as the material under three mulching cultivation modes including plastic film mulching, straw mulching and liquid film mulching, as well as bare cultivation (control. The results indicated that mulching mode had significant effects on micro-meteorological factors and individual growth of rice, as shown by an increase of relative humidity, a better internal micro-meteorological environment of rice population, a significant reduction under the rice canopy temperature, especially during high-temperature periods. Rice plants under mulching cultivation conditions displayed a stronger transpiration and lower leaf temperature, thereby improving the ability of anti-high temperature stress and markedly increasing the photosynthetic rate. Furthermore, the yield components of rice were significantly optimized under mulching cultivation, of which with plastic film mulching displayed the highest grain number per panicle and seed-setting rate, and a yield increase of 16.81% compared with the control; and with straw mulching displayed an increase of effective panicle number and a 9.59% increase of total yield compared to the control.

  4. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    Science.gov (United States)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  5. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    Science.gov (United States)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from

  6. Plant physiological ecology and the global changes Ecofisiologia vegetal e as mudanças globais

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Alves Delfino Barbosa

    2012-06-01

    Full Text Available The global changes are marked by alteration on the normal patterns of important biochemical and biophysical processes of the Earth. However, the real effects as well as the feedbacks of the global changes over vegetation are still unclear. Part of this uncertainty can be attributed to the inattention of stakeholders and scientists towards vegetation and its complex interrelations with the environment, which drive plant physiological processes in different space-time scales. Notwithstanding, some key subjects of the global changes could be better elucidated with a more plant physiological ecology approach. We discuss some issues related to this topic, going through some limitations of approaching vegetation as a static component of the biosphere as the other sub-systems of the Earth-system change. With this perspective, this review is an initial reflection towards the assessment of the role and place of vegetation structure and function in the global changes context. We reviewed the Earth-system and global changes terminology; attempted to illustrate key plant physiological ecology researches themes in the global changes context; consider approaching plants as complex systems in order to adequately quantify systems characteristics as sensibility, homeostasis, and vulnerability. Moreover, we propose insights that would allow vegetation studies and scaling procedures in the context of the Earth-system. We hope this review will assist researchers on their strategy to identify, understand and anticipate the potential effects of global changes over the most vulnerable vegetation processes from the leaf to the global levels.As mudanças globais englobam importantes alterações nos padrões normais de processos bioquímicos e biofísicos da Terra. Os reais efeitos e retroalimentações das mudanças globais sobre a vegetação ainda são incertos. Parte das incertezas pode ser atribuída à falta de atenção de cientistas e políticos para a vegeta

  7. Physiology

    Science.gov (United States)

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  8. Herbivory and Body Size: Allometries of Diet Quality and Gastrointestinal Physiology, and Implications for Herbivore Ecology and Dinosaur Gigantism

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W. H.; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM. PMID:24204552

  9. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Directory of Open Access Journals (Sweden)

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  10. Characterizing physiological status in three breeds of bulls reared under ecological and climate conditions of the Altai region

    Directory of Open Access Journals (Sweden)

    L.V. Osadchuk

    2017-06-01

    Full Text Available Ecological and climatic factors have an impact on the health, productivity and reproduction of the cattle. The goal of this work is the study of physiological status of servicing bulls reared under ecological and climate conditions of the Altai region, by defining the differences between Red-Steppe, Simmental and Black-and-White breeds in spermatogenic, hormonal, biochemical and hematological parameters. Samples of peripheral blood and ejaculates were taken from 48 grown-up servicing bulls (average age 5.6±0.3 years in autumn period. It was established that Red-Steppe bulls have higher concentrations of nonorganic phosphorus, leucocytes, erythrocytes, hemoglobin, hematocrit and erythrocyte sedimentation rate in comparison with animals of Simmental breed, and the hemoglobin concentration and hematocrit are also higher in comparison with Black-and-White breed. It was noted that bulls of Black-and-White breed have a higher level of cortisol in comparison with the other breeds. The lowest level of serum urea and total protein and increased serum activity of creatine kinase and γ-glutamyl transferase, as well as the heaviest body weight were observed in Simmental breed bulls. The differences between breeds in a wide spectrum of physiological measures reflect not only genetically determined peculiarities of homeostatic mechanism, but also may reflect different ability to adapt to local ecological and climate conditions of the Altai region. Spermatogenic, biochemical and hematological measures in bull sires reared in the Altai region were similar to those in bulls bred in other Russian regions and some other countries. The measures reported could serve as reference values and therefore represent ‘normal’ values of physiological status for these bull sires reared in this ecological and climatic zone, but could be utilized in further studies for comprehensive monitoring of cattle breeding stock in other ecological and climatic zones of the Siberian

  11. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies.

    Science.gov (United States)

    Durkin, Alanna; Fisher, Charles R; Cordes, Erik E

    2017-08-01

    The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

  12. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies

    Science.gov (United States)

    Durkin, Alanna; Fisher, Charles R.; Cordes, Erik E.

    2017-08-01

    The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

  13. Lamellibrachia sagami sp. nov., a new vestimentiferan tubeworm (Annelida: Siboglinidae) from Sagami Bay and several sites in the northwestern Pacific Ocean.

    Science.gov (United States)

    Kobayashi, Genki; Miura, Tomoyuki; Kojima, Shigeaki

    2015-09-14

    A new vestimentiferan tubeworm species of the genus Lamellibrachia Webb, 1969 is described. It was collected from cold seep areas off Hatsushima in Sagami Bay and at the Daini Tenryu Knoll in the Nankai Trough (606-1170 m depth). Lamellibrachia sagami sp. nov. differs from seven congeneric species in the following character states; showing a wider range of diameter of vestimental and trunk plaques than L. barhami, L. luymesi, L. satsuma and L. anaximandri; and having more numerous sheath lamellae (3-6 pairs) than L. juni (2-3 pairs) but fewer than L. victori (7 pairs) and L. columna (8-16 pairs).

  14. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling.

    Science.gov (United States)

    Mahadevan, Radhakrishnan; Palsson, Bernhard Ø; Lovley, Derek R

    2011-01-01

    There is a wide diversity of unexplored metabolism encoded in the genomes of microorganisms that have an important environmental role. Genome-scale metabolic modelling enables the individual reactions that are encoded in annotated genomes to be organized into a coherent whole, which can then be used to predict metabolic fluxes that will optimize cell function under a range of conditions. In this Review, we summarize a series of studies in which genome-scale metabolic modelling of Geobacter spp. has resulted in an in-depth understanding of their central metabolism and ecology. A similar iterative modelling and experimental approach could accelerate elucidation of the physiology and ecology of other microorganisms inhabiting a diversity of environments, and could guide optimization of the practical applications of these species.

  15. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses

    Directory of Open Access Journals (Sweden)

    Gilmore D.P.

    2001-01-01

    Full Text Available This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  16. Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique

    Science.gov (United States)

    Heatwole, Harold; Lillywhite, Harvey; Grech, Alana

    2016-09-01

    Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.

  17. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  18. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Science.gov (United States)

    K.D. Klepzig; A.S. Adams; J. Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological,evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  19. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    NARCIS (Netherlands)

    Holmgren, M.; Gomez-Aparicio, L.; Quero, J.L.; Valladares, F.

    2012-01-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical

  20. A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation

    NARCIS (Netherlands)

    Milot, E.; Cohen, A.A.; Vézina, F.; Buehler, D.M.; Matson, K.D.; Piersma, T.

    2014-01-01

    1.The body condition of free-ranging animals affects their response to stress, decisions, ability to fulfil vital needs and, ultimately, fitness. However, this key attribute in ecology remains difficult to assess, and there is a clear need for more integrative measures than the common univariate

  1. A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation

    NARCIS (Netherlands)

    Milot, Emmanuel; Cohen, Alan A.; Vezina, Francois; Buehler, Deborah M.; Matson, Kevin D.; Piersma, Theunis

    1. The body condition of free-ranging animals affects their response to stress, decisions, ability to fulfil vital needs and, ultimately, fitness. However, this key attribute in ecology remains difficult to assess, and there is a clear need for more integrativemeasures than the common univariate

  2. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide?

    Science.gov (United States)

    Holland, Aleicia; Kinnear, Susan

    2013-06-27

    To date, most research on freshwater cyanotoxin(s) has focused on understanding the dynamics of toxin production and decomposition, as well as evaluating the environmental conditions that trigger toxin production, all with the objective of informing management strategies and options for risk reduction. Comparatively few research studies have considered how this information can be used to understand the broader ecological role of cyanotoxin(s), and the possible applications of this knowledge to the management of toxic blooms. This paper explores the ecological, toxicological, and genetic evidence for cyanotoxin production in natural environments. The possible evolutionary advantages of toxin production are grouped into two main themes: That of "competitive advantage" or "physiological aide". The first grouping illustrates how compounds produced by cyanobacteria may have originated from the need for a cellular defence mechanism, in response to grazing pressure and/or resource competition. The second grouping considers the contribution that secondary metabolites make to improved cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth rates. The discussion also includes other factors in the debate about possible evolutionary roles for toxins, such as different modes of exposures and effects on non-target (i.e., non-competitive) species. The paper demonstrates that complex and multiple factors are at play in driving evolutionary processes in aquatic environments. This information may provide a fresh perspective on managing toxic blooms, including the need to use a "systems approach" to understand how physico-chemical conditions, as well biological stressors, interact to trigger toxin production.

  3. Ecology

    Science.gov (United States)

    Ternjej, Ivancica; Mihaljevic, Zlatko

    2017-10-01

    Ecology is a science that studies the mutual interactions between organisms and their environment. The fundamental subject of interest in ecology is the individual. Topics of interest to ecologists include the diversity, distribution and number of particular organisms, as well as cooperation and competition between organisms, both within and among ecosystems. Today, ecology is a multidisciplinary science. This is particularly true when the subject of interest is the ecosystem or biosphere, which requires the knowledge and input of biologists, chemists, physicists, geologists, geographists, climatologists, hydrologists and many other experts. Ecology is applied in a science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments.

  4. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  5. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    Science.gov (United States)

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits.

    Science.gov (United States)

    Chou, Hsuan; Pathmasiri, Wimal; Deese-Spruill, Jocelin; Sumner, Susan; Buchwalter, David B

    2017-08-01

    Aquatic insects play critical roles in freshwater ecosystems and temperature is a fundamental driver of species performance and distributions. However, the physiological mechanisms that determine the thermal performance of species remain unclear. Here we used a metabolomics approach to gain insights into physiological changes associated with a short-term, sublethal thermal challenge in the mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae). Larvae were subjected to a thermal ramp (from 22 to 30°C at a rate of 1°C/h) and metabolomics analysis (both Nuclear Magnetic Resonance (NMR) Spectroscopy and Gas Chromatography coupled Time-of-Flight Mass Spectrometry (GC-TOF-MS)) indicated that processes related to energetics (sugar metabolism) and membrane stabilization primarily differentiated heat treated larvae from controls. Limited evidence of anaerobic metabolism was observed in the heat treated larvae at 30°C, a temperature that is chronically lethal to larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Combining ecological momentary assessment with objective, ambulatory measures of behavior and physiology in substance-use research.

    Science.gov (United States)

    Bertz, Jeremiah W; Epstein, David H; Preston, Kenzie L

    2017-11-16

    Whereas substance-use researchers have long combined self-report with objective measures of behavior and physiology inside the laboratory, developments in mobile/wearable electronic technology are increasingly allowing for the collection of both subjective and objective information in participants' daily lives. For self-report, ecological momentary assessment (EMA), as implemented on contemporary smartphones or personal digital assistants, can provide researchers with near-real-time information on participants' behavior and mood in their natural environments. Data from portable/wearable electronic sensors measuring participants' internal and external environments can be combined with EMA (e.g., by timestamps recorded on questionnaires) to provide objective information useful in determining the momentary context of behavior and mood and/or validating participants' self-reports. Here, we review three objective ambulatory monitoring techniques that have been combined with EMA, with a focus on detecting drug use and/or measuring the behavioral or physiological correlates of mental events (i.e., emotions, cognitions): (1) collection and processing of biological samples in the field to measure drug use or participants' physiological activity (e.g., hypothalamic-pituitary-adrenal axis activity); (2) global positioning system (GPS) location information to link environmental characteristics (disorder/disadvantage, retail drug outlets) to drug use and affect; (3) ambulatory electronic physiological monitoring (e.g., electrocardiography) to detect drug use and mental events, as advances in machine learning algorithms make it possible to distinguish target changes from confounds (e.g., physical activity). Finally, we consider several other mobile/wearable technologies that hold promise to be combined with EMA, as well as potential challenges faced by researchers working with multiple mobile/wearable technologies simultaneously in the field. Published by Elsevier Ltd.

  8. Interpreting the Possible Ecological Role(s of Cyanotoxins: Compounds for Competitive Advantage and/or Physiological Aide?

    Directory of Open Access Journals (Sweden)

    Susan Kinnear

    2013-06-01

    Full Text Available To date, most research on freshwater cyanotoxin(s has focused on understanding the dynamics of toxin production and decomposition, as well as evaluating the environmental conditions that trigger toxin production, all with the objective of informing management strategies and options for risk reduction. Comparatively few research studies have considered how this information can be used to understand the broader ecological role of cyanotoxin(s, and the possible applications of this knowledge to the management of toxic blooms. This paper explores the ecological, toxicological, and genetic evidence for cyanotoxin production in natural environments. The possible evolutionary advantages of toxin production are grouped into two main themes: That of “competitive advantage” or “physiological aide”. The first grouping illustrates how compounds produced by cyanobacteria may have originated from the need for a cellular defence mechanism, in response to grazing pressure and/or resource competition. The second grouping considers the contribution that secondary metabolites make to improved cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth rates. The discussion also includes other factors in the debate about possible evolutionary roles for toxins, such as different modes of exposures and effects on non-target (i.e., non-competitive species. The paper demonstrates that complex and multiple factors are at play in driving evolutionary processes in aquatic environments. This information may provide a fresh perspective on managing toxic blooms, including the need to use a “systems approach” to understand how physico-chemical conditions, as well biological stressors, interact to trigger toxin production.

  9. Water supplementation affects the behavioral and physiological ecology of Gila monsters (Heloderma suspectum) in the Sonoran Desert.

    Science.gov (United States)

    Davis, Jon R; DeNardo, Dale F

    2009-01-01

    In desert species, seasonal peaks in animal activity often correspond with times of higher rainfall. However, the underlying reason for such seasonality can be hard to discern because the rainy season is often associated with shifts in temperature as well as water and food availability. We used a combination of the natural climate pattern of the Sonoran Desert and periodic water supplementation to determine the extent to which water intake influenced both the behavioral ecology and the physiological ecology of a long-lived desert lizard, the Gila monster (Heloderma suspectum) (Cope 1869). Water-supplemented lizards had lower plasma osmolality (i.e., were more hydrated) and maintained urinary bladder water reserves better during seasonal drought than did control lizards. During seasonal drought, water-supplemented lizards were surface active a significantly greater proportion of time than were controls. This increased surface activity can lead to greater food acquisition for supplemental Gila monsters because tail volume (an index of caudal lipid stores) was significantly greater in supplemented lizards compared with controls in one of the two study years.

  10. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    Science.gov (United States)

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that

  11. Toward an appreciation of hydrothennal-vent animals: Their environment, physiological ecology, and tissue stable isotope values

    Science.gov (United States)

    Fisher, Charles R.

    In the last few years several comprehensive reviews of the biology of hydrothermal vent organisms and communities have been published. In this contribution I will not attempt to exhaustively review the literature, list the fauna, or the known sites, but rather present a conceptual basis for understanding the relation between the dominant metazoan "primary producers" in hydrothermal vent communities and their environment. In addition to the other chapters in this volume, interested readers are encouraged to consult the following reviews for a more detailed discussion of particular aspects of vent biology. The community ecology of hydrothermal vents is reviewed by Grassle [1986], Tunnicliffe [1991], and Lutz and Kennish [1993]. Tunnicliffe [1991] contains the most complete species lists and general site descriptions currently available. Fisher [1990] reviews the literature on chemoautotrophic symbioses and presents species lists of the hosts to chemoautotrophic symbionts known at that time. Those lists are updated in Nelson and Fisher [1995] and the physiology of the associations reviewed from a distinctly bacterial (symbiont) viewpoint. The 1992 review by Childress and Fisher takes a detailed look at the physiology of vent fauna, with a full coverage of subjects such as rate processes, blood function, and chemical composition, which are not covered in depth in the other reviews, but are of special relevance to this contribution. Uses (and abuses) of stable isotopes are discussed in several of the above reviews, and are also reviewed specifically by Conway et al. [1994], Fiala-Médioni et al. [1993], and Kennicutt et al. [1992].

  12. Functional Hypoxia in Insects: Definition, Assessment, and Consequences for Physiology, Ecology, and Evolution.

    Science.gov (United States)

    Harrison, Jon F; Greenlee, Kendra J; Verberk, Wilco C E P

    2018-01-07

    Insects can experience functional hypoxia, a situation in which O2 supply is inadequate to meet oxygen demand. Assessing when functional hypoxia occurs is complex, because responses are graded, age and tissue dependent, and compensatory. Here, we compare information gained from metabolomics and transcriptional approaches and by manipulation of the partial pressure of oxygen. Functional hypoxia produces graded damage, including damaged macromolecules and inflammation. Insects respond by compensatory physiological and morphological changes in the tracheal system, metabolic reorganization, and suppression of activity, feeding, and growth. There is evidence for functional hypoxia in eggs, near the end of juvenile instars, and during molting. Functional hypoxia is more likely in species with lower O2 availability or transport capacities and when O2 need is great. Functional hypoxia occurs normally during insect development and is a factor in mediating life-history trade-offs.

  13. The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria.

    Science.gov (United States)

    Yema, Lilen; Litchman, Elena; de Tezanos Pinto, Paula

    2016-12-01

    Dolichospermum flos-aquae and Cylindrospermopsis raciborskii are two cyanobacteria species which cause harmful blooms around the world. Both these species share the capacity to fix atmospheric nitrogen in heterocytes (cell where fixation occurs). While Dolichospermum can express heterocytes at rather regular intervals across the filament, Cylindrospermopsis can only express heterocytes at the end of the filament. The aim of this study was to experimentally assess the role of heterocyte position in the eco-physiological responses of these bloom forming cyanobacteria. Replicated monocultures of each species were grown at different eutrophication scenarios (limiting and sufficient nitrogen and phosphorus concentrations, in factorial design). Dolichospermum reached high biomass regardless of the nitrogen (and phosphorus) provided, suggesting that this species could bloom in situations with and without nitrogen limitation. In contrast, Cylindrospermopsis reached high biomass only when nitrogen supply was high; its biomass was 15-20 times lower when relying on nitrogen fixation. Hence, despite its ability to fix nitrogen, blooms of Cylindrospermopsis would be expected only under high total nitrogen availability. In Dolichospermum heterocytes occurred only in the scenarios without supplied nitrogen while in Cylindrospermopsis heterocytes occurred regardless of nitrogen availability. Yet, in both species nitrogen fixation occurred (heterocytes were functional) only when nitrogen was limiting, and nitrogen fixation increased significantly at higher phosphorus concentration. Finally, in the absence of supplied nitrogen, filament length in Dolichospermum was the longest, while filaments in Cylindrospermopsis were the shortest (up to 13 times shorter than at nitrogen sufficiency). Therefore, heterocyte expression in Dolichospermum, and filament length in Cylindrospermopsis seem good proxies of nitrogen fixation. The eco-physiological responses recorded here help understand the

  14. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes.

    Science.gov (United States)

    Horodysky, Andrij Z; Cooke, Steven J; Graves, John E; Brill, Richard W

    2016-01-01

    Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental-applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock

  15. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes

    Science.gov (United States)

    Horodysky, Andrij Z.; Cooke, Steven J.; Graves, John E.; Brill, Richard W.

    2016-01-01

    Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock

  16. Ecology.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on various ecological topics. The bulletins have these titles: Schoolyard Laboratories, Owls and Predators, The Forest Community, Life in Freshwater Marshes, Camouflage in the Animal World, Life in the Desert, The…

  17. Forest response to CO{sub 2} enrichment: Physiology and ecology of loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    Strain, B.R.; Thomas, R.B.

    1997-03-10

    This report covers the results of a long-term project with the primary objective of developing and testing hypotheses on the environmental and physiological controls of loblolly pine response to atmospheric CO{sub 2} enrichment. Earlier research under DOE funding had provided information from loblolly pine and other plant species which allowed the development of specific hypotheses. Phase 1 of this research was a two year pot study of loblolly seedlings to determine the interaction of CO{sub 2} enrichment with soil nutrition. Phase 2 began with the enrichment of loblolly seedlings being grown in the ground, rather than pots, and continued through December 1995. Phase 3 began in April 1994 with the enrichment of undisturbed Piedmont North Carolina old field undergoing succession, including herbaceous annual plants, perennial grasses, and loblolly pine tree seedlings. Phase 3 was designed to gather preliminary information on a regenerating loblolly forest to be used for the development of hypotheses and measurement techniques for a long-term Free Air CO{sub 2} Enrichment (FACE) study of regenerating forest in Duke Forest.

  18. [Impacts of algal blooms accumulation on physiological ecology of water hyacinth].

    Science.gov (United States)

    Wu, Ting-ting; Liu, Guo-feng; Han, Shi-qun; Zhou, Qing; Tang, Wan-ying

    2015-01-01

    Blue-green algae bloom will consume plenty of dissolved oxygen in water, which affects the growth of aquatic plants. The effects of water hyacinth growth and physiological response changes under 25 degrees C, 5 different concentrations of cyanobacteria gathered were studied and which would provide a theoretical basis to mitigate adverse impacts and improve water purification effect. The results showed that water quality indexes including dissolved oxygen (DO), pH dropped in algae density below 60 g x L(-1), with the increase of algae density. And the level of oxidation-reduction potential dropped to about 100 mV. The removal rates of TN, TP and COD were 58%-78%, 43%-68% and 59%-73%, leaf soluble protein, soluble sugar, MDA contents increased, respectively; and the MDA content became higher with the increase of algae density. It indicated that the water hyacinth could adapt to the adversity condition as algae density less than 60 g x L(-1). While algae density above 60 g x L(-1), water quality indexes significantly decreased, respectively and the water was in hypoxia or anoxia conditions. Plant leaves soluble sugar contents had a change trend of low-high-low. It indicated that the removal rates of TN, TP decreased with the increase of algae density and water hyacinth had irreversible stress. Plant root length, total length, fresh weight in different treatments, increased compared with the beginning of the experiment, the increase of root length, total length and fresh weight were 0.29-2.44 times, 0.41-0.76 times and 0.9-1.43 times. The increase of root length, total length decreased with the increase of algae density. According to the results, the cyanobacteria should avoid of excessive accumulation as using the floating plant to purify the water.

  19. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos.

    Science.gov (United States)

    Ovejero Aguilar, Ramiro J A; Jahn, Graciela A; Soto-Gamboa, Mauricio; Novaro, Andrés J; Carmanchahi, Pablo

    2016-01-01

    Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. As expected, there was a marked adrenal (p-value = .3.4e-12) and gonadal (p-value = 0.002656) response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male

  20. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

    Directory of Open Access Journals (Sweden)

    Ramiro J.A. Ovejero Aguilar

    2016-11-01

    Full Text Available Background Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA and Gonadal (HPG axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T and Glucocorticoid (GCs in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods All of the data for individuals were collected by non-invasive methods (fecal samples to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results As expected, there was a marked adrenal (p-value = .3.4e−12 and gonadal (p-value = 0.002656 response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839. Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50 between the adrenal and gonadal system. The marked endocrine (r2 = 0.806 and gonad (r2 = 0

  1. Phenoseasonal subcanopy light dynamics and the effects of light on the physiological ecology of a common understory shrub, Lindera benzoin.

    Directory of Open Access Journals (Sweden)

    Janice E Hudson

    Full Text Available The purpose of this work was to quantify the variation of subcanopy spatiotemporal light dynamics over the course of a year and to link it to the physiological ecology of the understory shrub, Lindera benzoin L. Blume (northern spicebush. Covering all seven phenoseasons of a deciduous forest, this work utilized a line quantum sensor to measure the variation in subcanopy light levels under all sky conditions at different times of the day. A total of 4,592 individual subcanopy measurements of photosynthetic photon flux density (PPFD, μmol m-2 s-1 were taken as 15-second spatially-integrated one-meter linear averages to better understand the dynamism of light exposure to L. benzoin. Both open (n = 2, one continuous and one instantaneous and subcanopy location (n = 25 measurements of PPFD were taken on each sampling date in and near the forested plot (Maryland, USA. In addition, we explored the effect of four photointensity-photoperiod combinations on the growth of L. benzoin under controlled conditions to compare to field conditions. On average, understory PPFD was less than 2% of open PPFD during the leafed months and an average of 38.8% of open PPFD during leafless winter months, indicating that: (1 often overlooked woody surfaces intercept large amounts of light; and (2 spicebush within the plot receive limited light even in early spring before canopy leaf-out. Statistical results suggested phenoseason accounted for nearly three-quarters of the variation in incident radiation between the three plant canopy heights. Spicebush under controlled conditions exhibited the highest fitness levels at an intensity of 164.5 μmol m-2 s-1 for 12-hour duration. Similarly, spicebush growth in the field occurred at subcanopy locations receiving higher incidence of PPFD (i.e., >128 μmol m-2 s-1. Results suggest that the ecological niche for these plants is very specific in terms of light intensity.

  2. Phenoseasonal subcanopy light dynamics and the effects of light on the physiological ecology of a common understory shrub, Lindera benzoin.

    Science.gov (United States)

    Hudson, Janice E; Levia, Delphis F; Hudson, Sean A; Bais, Harsh P; Legates, David R

    2017-01-01

    The purpose of this work was to quantify the variation of subcanopy spatiotemporal light dynamics over the course of a year and to link it to the physiological ecology of the understory shrub, Lindera benzoin L. Blume (northern spicebush). Covering all seven phenoseasons of a deciduous forest, this work utilized a line quantum sensor to measure the variation in subcanopy light levels under all sky conditions at different times of the day. A total of 4,592 individual subcanopy measurements of photosynthetic photon flux density (PPFD, μmol m-2 s-1) were taken as 15-second spatially-integrated one-meter linear averages to better understand the dynamism of light exposure to L. benzoin. Both open (n = 2, one continuous and one instantaneous) and subcanopy location (n = 25) measurements of PPFD were taken on each sampling date in and near the forested plot (Maryland, USA). In addition, we explored the effect of four photointensity-photoperiod combinations on the growth of L. benzoin under controlled conditions to compare to field conditions. On average, understory PPFD was less than 2% of open PPFD during the leafed months and an average of 38.8% of open PPFD during leafless winter months, indicating that: (1) often overlooked woody surfaces intercept large amounts of light; and (2) spicebush within the plot receive limited light even in early spring before canopy leaf-out. Statistical results suggested phenoseason accounted for nearly three-quarters of the variation in incident radiation between the three plant canopy heights. Spicebush under controlled conditions exhibited the highest fitness levels at an intensity of 164.5 μmol m-2 s-1 for 12-hour duration. Similarly, spicebush growth in the field occurred at subcanopy locations receiving higher incidence of PPFD (i.e., >128 μmol m-2 s-1). Results suggest that the ecological niche for these plants is very specific in terms of light intensity.

  3. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  4. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  5. Phenoseasonal variability of subcanopy PAR and the effects of photointensity and photoperiod on the physiological ecology of Lindera benzoin

    Science.gov (United States)

    Hudson, J. E.; Levia, D. F., Jr.; Hudson, S.; Bais, H.; Legates, D. R.

    2015-12-01

    This work represents a novel approach to measuring photosynthetic photon flux density (PPFD), and spatiotemporal light dynamics, by utilizing an instrument capable of providing a 15-second spatially-integrated one meter linear average of the PPFD, obtaining measurements at multiple locations and elevations in the subcanopy over a full year for all cloud conditions. Nearly 4,600 individual observations of photosynthetically active radiation (PAR, 400-700 nm) were made over the seven phenoseasons of a deciduous forest in the Piedmont Region, Maryland. Additionally, to quantify of the effect of various photointensities on the physiological ecology of Lindera benzoin L. Blume (northern spicebush) grown in the lab, health was determined by monitoring physical growth and biomass, and by UV-vis spectrophotometry analysis of leaf extract. Results show understory PAR is typically less than 40% of open PAR. Leafless subcanopy PAR values were almost 10 times higher than leafed season PAR, and sunflecks often three orders of magnitude higher than mean subcanopy PAR during the leafed season. Phenoseason is responsible for nearly three-quarters of the variation between plant canopy levels. Spicebush growth occurred at study locations receiving higher incidence of PAR (> 64th percentile). UV-vis spectrophotometry analysis showed significant differences in root to shoot ratios, biomass, initial stomatal conductance, chlorophyll a and b, and carotenoids. Spicebush under lab conditions significantly alter their biomass and individual pigments and pigment ratios in response to high intensity light conditions. Results suggest temporal light sequences in the field may be a very important factor in the functional ecology of northern spicebush.

  6. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors.

    Science.gov (United States)

    Connelly, Stephanie; Shin, Seung G; Dillon, Robert J; Ijaz, Umer Z; Quince, Christopher; Sloan, William T; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory

  7. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    Science.gov (United States)

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory

  8. The ecological and physiological bases of variation in the phenology of gonad growth in an urban and desert songbird.

    Science.gov (United States)

    Davies, Scott; Lane, Samuel; Meddle, Simone L; Tsutsui, Kazuyoshi; Deviche, Pierre

    2016-05-01

    Birds often adjust to urban areas by advancing the timing (phenology) of vernal gonad growth. However, the ecological and physiological bases of this adjustment are unclear. We tested whether the habitat-related disparity in gonad growth phenology of male Abert's towhees, Melozone aberti, is due to greater food availability in urban areas of Phoenix, Arizona USA or, alternatively, a habitat-related difference in the phenology of key food types. To better understand the physiological mechanism underlying variation in gonad growth phenology, we compared the activity of the reproductive system at all levels of hypothalamo-pituitary-gonadal (HPG) axis. We found no habitat-associated difference in food availability (ground arthropod biomass), but, in contrast to the seasonal growth of leaves on desert trees, the leaf foliage of urban trees was already developed at the beginning of our study. Multiple estimates of energetic status did not significantly differ between the non-urban and urban towhees during three years that differed in the habitat-related disparity in gonad growth and winter precipitation levels. Thus, our results provide no support for the hypothesis that greater food abundance in urban areas of Phoenix drives the habitat-related disparity in gonad growth phenology in Abert's towhees. By contrast, they suggest that differences in the predictability and magnitude of change in food availability between urban and desert areas of Phoenix contribute to the observed habitat-related disparity in gonad growth. Endocrine responsiveness of the gonads may contribute to this phenomenon as desert - but not urban - towhees had a marked plasma testosterone response to GnRH challenge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Responses of Periphyton to Fe2O3 Nanoparticles: A Physiological and Ecological Basis for Defending Nanotoxicity.

    Science.gov (United States)

    Tang, Jun; Zhu, Ningyuan; Zhu, Yan; Liu, Junzhuo; Wu, Chenxi; Kerr, Philip; Wu, Yonghong; Lam, Paul K S

    2017-09-19

    The toxic effects of nanoparticles on individual organisms have been widely investigated, while few studies have investigated the effects of nanoparticles on ubiquitous multicommunity microbial aggregates. Here, periphyton as a model of microbial aggregates, was employed to investigate the responses of microbial aggregates exposed continuously to Fe2O3 nanoparticles (5.0 mg L-1) for 30 days. The exposure to Fe2O3 nanoparticles results in the chlorophyll (a, b, and c) contents of periphyton increasing and the total antioxidant capacity decreasing. The composition of the periphyton markedly changes in the presence of Fe2O3 nanoparticles and the species diversity significantly increases. The changes in the periphyton composition and diversity were due to allelochemicals, such as 3-methylpentane, released by members of the periphyton which inhibit their competitors. The functions of the periphyton represented by metabolic capability and contaminant (organic matter, nitrogen, phosphorus and copper) removal were able to acclimate to the Fe2O3 nanoparticles exposure via self-regulation of morphology, species composition and diversity. These findings highlight the importance of both physiological and ecological factors in evaluating the long-term responses of microbial aggregates exposed to nanoparticles.

  10. Parallelism in the oxygen transport system of the lake whitefish: the role of physiological divergence in ecological speciation.

    Science.gov (United States)

    Evans, Melissa L; Praebel, Kim; Peruzzi, Stefano; Bernatchez, Louis

    2012-08-01

    In North America, populations of lake whitefish (Coregonus clupeaformis) have evolved sympatric 'dwarf' and 'normal' ecotypes that are associated with distinct trophic niches within lakes. Trophic specialization should place diverging physiological demands on individuals, and thus, genes and phenotypes associated with energy production represent ideal candidates for studies of adaptation. Here, we test for the parallel divergence of traits involved in oxygen transport in dwarf and normal lake whitefish from Québec, Canada and Maine, USA. We observed significant differences in red blood cell morphology between the ecotypes. Specifically, dwarfs exhibited larger nuclei and a higher nucleus area/total cell area than normal whitefish in all of the lakes examined. In addition, isoelectric focusing gels revealed variation in the haemoglobin protein components found in whitefish. Dwarf and normal whitefish exhibited a similar number of protein components, but the composition of these components differed, with dwarf whitefish bearing a greater proportion of cathodic components compared to the normals. Furthermore, dwarf whitefish showed significant haemoglobin gene upregulation in the brain compared with the levels shown in normals. Together, our results indicate that metabolic traits involved in oxygen transport differ between the whitefish ecotypes and the strong parallel patterns of divergence observed across lakes implicates ecologically driven selection pressures. We discuss the function of these traits in relation to the differing trophic niches occupied by the whitefish and the potential contributions of trait plasticity and genetic divergence to energetic adaptation. © 2012 Blackwell Publishing Ltd.

  11. Ecology and Physiology of a Black Bear Population in Great Dismal Swamp and Reproductive Physiology in the Captive Female Black Bear

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study was designed to provide information on demographics and ecology of the black bear population in Great Dismal Swamp National Wildlife Refuge for the...

  12. Combining In Situ and Culture-based `Omic and Biogeochemical Measures to Identify the Physiological Ecology of a Blooming Diatom in the Amazon River Plume

    Science.gov (United States)

    Alexander, H.; Durkin, C. A.; Dyhrman, S.

    2016-02-01

    The Amazon River is the largest riverine fresh water input to the ocean and forms a plume that may extend over 1.3 x 106 km2, providing a significant source of nutrients that contributes to enhanced regional export flux and carbon sequestration. While we know that the enriched nutrient environment of the plume should promote phytoplankton success, it is difficult to discern the physiological basis of one organism's success over another. Characterizing the physiological ecology of individual species is increasingly tractable with the application of `omic approaches in situ. In the spring of 2013, a large centric diatom of the genus Coscinodiscus was observed in a mesohaline region of the Amazon River plume at high abundance relative to other diatoms both in the surface low salinity lens and in sediment traps deployed in this region. Using a combination of physiological, biogeochemical, rate, and `omic measurements, the metabolic state of the blooming Coscinodiscus species was examined in situ and in incubation experiments designed to characterize the physiological response to changes in nutrient supply ratios. In addition to field measurements, an isolate of the blooming Coscinodiscus species was brought into uni-algal culture and used to generate a de novo transcriptome assembly spanning gene sets expressed over a range of physiological conditions. This unique aspect of the research approach provided a reference transcriptome for improved (6 fold) identification of Coscinodiscus metatranscriptome reads. Taken together, the data from this multi-faceted approach, indicate the strong control of nitrogen on Coscinodiscus physiology in this system, as evidenced by cell counts and chlorophyll patterns as well as the modulation of Coscinodiscus marker genes like a nitrogen-regulated nitrate transporter. Future work that uses a similar approach may be a valuable path forward in discerning the physiological ecology of key species in other systems.

  13. Foundations of space biology and medicine. Volume 2, book 2: Ecological and physiological bases of space biology and medicine

    Science.gov (United States)

    Calvin, M. (Editor); Gazenko, O. G. (Editor)

    1975-01-01

    The influence on living organisms of radiant energy, the psychophysical problems of space flight, methods of physiological investigations in flight, and the transmission of information are considered.

  14. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum biovar 2 in agricultural drainage water

    NARCIS (Netherlands)

    Elsas, van J.D.; Kastelein, P.; Vries, de P.M.; Overbeek, van L.S.

    2001-01-01

    The fate of Ralstonia solanacearum bv. 2, the causative agent of brown rot in potato, in aquatic habitats of temperate climate regions is still poorly understood. In this study, the population dynamics and the physiological response of R. solanacearum bv. 2 were tested in sterile pure water and in

  15. The use of tunable diode laser absorption spectroscopy for rapid measurements of the delta13C of animal breath for physiological and ecological studies.

    Science.gov (United States)

    Engel, Sophia; Lease, Hilary M; McDowell, Nate G; Corbett, Alyssa H; Wolf, Blair O

    2009-05-01

    In this study we introduce the use of tunable diode laser absorption spectroscopy (TDLAS) as a technique for making measurements of the delta13C of animal 'breath' in near real time. The carbon isotope ratios (delta13C) of breath CO2 trace the carbon source of the materials being metabolized, which can provide insight into the use of specific food resources, e.g. those derived from plants using C3 versus C4 or CAM photosynthetic pathways. For physiological studies, labeled substrates and breath analyses provide direct evidence of specific physiological (e.g. fermentative digestion) or enzymatic (e.g. sucrase activity) processes. Although potentially very informative, this approach has rarely been taken in animal physiological or ecological research. In this study we quantify the utilization of different plant resources (photosynthetic types--C3 or C4) in arthropod herbivores by measuring the delta13C of their 'breath' and comparing it with bulk tissue values. We show that breath delta13C values are highly correlated with bulk tissues and for insect herbivores reflect their dietary guild, in our case C3-specialists, C4-specialists, or generalists. TDLAS has a number of advantages that will make it an important tool for physiologists, ecologists and behaviorists: it is non-invasive, fast, very sensitive, accurate, works on animals of a wide range of body sizes, per-sample costs are small, and it is potentially field-deployable. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Morpho-physiological Traits and Mineral Composition on Local Maize Population Growing in Agro Ecological Conditions in Kosova

    Directory of Open Access Journals (Sweden)

    Sali ALIU

    2013-05-01

    Full Text Available Twelve local maize populations were evaluated at the experimental farm, University of Prishtina, Kosovo. The study was conducted to assess the magnitude of genetic variation in local maize populations for different morphological-physiological and chemical composition under field and laboratory conditions. Randomized complete block design (RCBD with three replications was used for laying out the experiment. The results showed that there were significant differences for most morphological and physiological traits under study. The mean grain yield of all populations was 102.96 g plant-1. The protein and oil contents ranged between 11.53 to 9.43% and 4.23 to 4.87% respectively. The cellulose content varied from 6.03 to 6.37%. There were also big differences regarding phenotypic correlations. The present study revealed considerable amount of diversity among the local maize populations which could be manipulated for further improvement in maize breeding.

  17. Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa).

    Science.gov (United States)

    Dittbrenner, Nils; Triebskorn, Rita; Moser, Isabelle; Capowiez, Yvan

    2010-11-01

    Earthworms play key roles in soils and sub-lethal effects of environmental toxicants on these organisms should be taken seriously, since they might have detrimental effects on higher ecological levels. In laboratory experiments we have assessed sub-lethal effects (body mass change and cast production) of imidacloprid on two earthworm species commonly found in different agricultural soils (Lumbricus terrestris and Aporrectodea caliginosa). After 7 days of exposure in contaminated soil, a significant loss of body mass was found in both species exposed to imidacloprid concentrations as low as 0.66 mg kg(-1) dry soil. These losses ranged from 18.3 to 39% for A. caliginosa and from 7.4 to 32.4% for L. terrestris, respectively. Changes in cast production, a new biomarker previously validated using L. terrestris, was assessed by soil sieving using the recommended mesh size (5.6 mm) for L. terrestris and three different mesh sizes for A. caliginosa (5.6, 4 and 3.15 mm). The 4 mm mesh size proved to be the most suitable sieve size for A. caliginosa. Cast production increased by 26.2% in A. caliginosa and by 28.1% in L. terrestris at the lowest imidacloprid concentration tested (0.2 mg kg(-1) dry soil), but significantly decreased at higher concentrations (equal to and above 0.66 mg kg(-1) dry soil) in both earthworm species after the 7 days exposure experiment. These decreases in cast production ranged from 44.5 to 96.9% in A. caliginosa and from 42.4 to 95.7% in L. terrestris. The EC(50) for cast production were 0.84 (L. terrestris) and 0.76 mg kg(-1) dry soil (A. caliginosa), respectively. The detected sub-lethal effects were found close to the predicted environmental concentration (PEC) of imidacloprid, which is in the range of 0.33-0.66 mg kg(-1) dry soil. The biomarkers used in the present study, body mass change and changes in cast production, may be of ecological relevance and have shown high sensitivity for imidacloprid exposure of earthworms. The measurement of

  18. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance

    Science.gov (United States)

    Coe, Kirsten K.; Belnap, Jayne; Grote, Edmund E.; Sparks, Jed P.

    2012-01-01

    In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO2 Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO2, and the effect of high temperature events on the photosynthetic performance of moss grown in CO2-enriched air. Moss exposed to elevated CO2 exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35–40°C), mosses from the elevated CO2 environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO2-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry.

  19. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO₂: evidence for enhanced photosynthetic thermotolerance.

    Science.gov (United States)

    Coe, Kirsten K; Belnap, Jayne; Grote, Edmund E; Sparks, Jed P

    2012-04-01

    In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO₂ Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO₂, and the effect of high temperature events on the photosynthetic performance of moss grown in CO₂-enriched air. Moss exposed to elevated CO₂ exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35-40°C), mosses from the elevated CO₂ environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO₂-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry. Copyright © Physiologia Plantarum 2012.

  20. The roles of ecological fitting, phylogeny and physiological equivalence in understanding realized and fundamental host ranges in endoparasitoid wasps.

    Science.gov (United States)

    Harvey, J A; Ximénez de Embún, M G; Bukovinszky, T; Gols, R

    2012-10-01

    Co-evolutionary theory underpins our understanding of interactions in nature involving plant-herbivore and host-parasite interactions. However, many studies that are published in the empirical literature that have explored life history and development strategies between endoparasitoid wasps and their hosts are based on species that have no evolutionary history with one another. Here, we investigated novel associations involving two closely related solitary endoparasitoids that originate from Europe and North America and several of their natural and factitious hosts from both continents. The natural hosts of both species are also closely related, all being members of the same family. We compared development and survival of both parasitoids on the four host species and predicted that parasitoid performance is better on their own natural hosts. In contrast with this expectation, survival, adult size and development time of both parasitoids were similar on all (with one exception) hosts, irrespective as to their geographic origin. Our results show that phylogenetic affinity among the natural and factitious hosts plays an important role in their nutritional suitability for related parasitoids. Evolved traits in parasitoids, such as immune suppression and development, thus enable them to successfully develop in novel host species with which they have no evolutionary history. Our results show that host suitability for specialized organisms like endoparasitoids is closely linked with phylogenetic history and macro-evolution as well as local adaptation and micro-evolution. We argue that the importance of novel interactions and 'ecological fitting' based on phylogeny is a greatly underappreciated concept in many resource-consumer studies. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  1. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles.

    Science.gov (United States)

    Scully, Erin D; Geib, Scott M; Carlson, John E; Tien, Ming; McKenna, Duane; Hoover, Kelli

    2014-12-12

    Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.

  2. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Tene Fossog, Billy; Antonio-Nkondjio, Christophe; Kengne, Pierre; Njiokou, Flobert; Besansky, Nora J; Costantini, Carlo

    2013-01-07

    Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form), and in slope (steeper for the S form and shallower for the M form). These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting a greater mean and variance compared to the S

  3. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Tene Fossog Billy

    2013-01-01

    Full Text Available Abstract Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Results Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form, and in slope (steeper for the S form and shallower for the M form. These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting

  4. Visual ecology

    National Research Council Canada - National Science Library

    Cronin, Thomas W; Johnsen, Sönke; Marsahll, N. Justin; Warrant, Eric

    2014-01-01

    ... ecology. . Physiology, Comparative. . Eye- Evolution. I. Title. QP.C  .'- dc British Library Cataloging-in-Publication Data is available This book...

  5. The integration of diet, physiology, and ecology of nectar-feeding birds La integración de la dieta, fisiología, y ecología en aves nectarívoras

    Directory of Open Access Journals (Sweden)

    TODD J. McWHORTER

    2000-09-01

    Full Text Available Balance between energy acquisition and expense is critical for the survival and reproductive success of organisms. Energy budgets may be limited by environmental factors as well as by animal design. These restrictions may be especially important for small endotherms such as hummingbirds, which have exceedingly high energy demands. Many nectar-feeding bird species decrease food intake when sugar concentration in food is increased. This feeding response can be explained by two alternative hypotheses: compensatory feeding and physiological constraint. The compensatory feeding hypothesis predicts that if birds vary intake to maintain a constant energy intake to match energy expenditures, then they should increase intake when expenditures are increased. Broad-tailed hummingbirds (Selasphorus platycercus and Green-backed fire crown hummingbirds (Sephanoides sephaniodes were presented with diets varying in energy density and exposed to various environmental temperatures. Birds decreased volumetric food intake in response to sugar concentration. However, when they were exposed to lower environmental temperatures, and hence increased thermoregulatory demands, they did not increase their rate of energy consumption and lost mass. These results support the existence of a physiological constraint to the energy budgets of hummingbirds. Digestive and peripheral organ function limitations may impose severe challenges to the energy budgets of these small endotherms, and therefore play a significant role in determining their distribution, ecology, and natural history.El balance entre la adquisición y el uso de energía es crítico para la reproducción y sobrevivencia. Los presupuestos energéticos de los organismos pueden estar limitados tanto por factores ambientales como por su fisiología. Estas restricciones pueden ser especialmente importantes para pequeños endotérmos como los colibríes (picaflores que tienen costos energéticos altos por unidad de masa

  6. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    OpenAIRE

    Tene Fossog Billy; Antonio-Nkondjio Christophe; Kengne Pierre; Njiokou Flobert; Besansky Nora J; Costantini Carlo

    2013-01-01

    Abstract Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglom...

  7. Physiological correlates of ecological divergence along an urbanization gradient : differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    OpenAIRE

    Fossog, B. T.; Antonio-Nkondjio, C.; Kengne, Pierre; Njiokou, F.; Besansky, N J; Costantini, Carlo

    2013-01-01

    Background: Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates o...

  8. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    Science.gov (United States)

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal population...

  9. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA.

    Science.gov (United States)

    Esteve-Gassent, Maria D; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P; Patino, Ramiro; Li, Andrew Y; Medina, Raul F; de León, Adalberto A Pérez; Rodríguez-Vivas, Roger Iván

    2016-05-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. © 2016 Wiley Periodicals, Inc.

  10. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    Science.gov (United States)

    Esteve-Gassent, Maria D.; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P.; Patino, Ramiro; Li, Andrew Y.; Medina, Raul F.; Pérez de León, Adalberto A.; Rodríguez-Vivas, Roger Iván

    2016-01-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern US and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multi host-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. PMID:27062414

  11. Field physiology: physiological insights from animals in nature.

    Science.gov (United States)

    Costa, Daniel P; Sinervo, Barry

    2004-01-01

    Whereas comparative physiology documents the range of physiological variation across a range of organisms, field physiology provides insight into the actual mechanisms an organism employs to maintain homeostasis in its everyday life. This requires an understanding of an organism's natural history and is prerequisite to developing hypotheses about physiological mechanisms. This review focuses on a few areas of field physiology that exemplify how the underlying physiology could not have been understood without appropriate field measurements. The examples we have chosen highlight the methods and inference afforded by an application of this physiological analysis to organismal function in nature, often in extreme environments. The specific areas examined are diving physiology, the thermal physiology of large endothermic fishes, reproductive physiology of air breathing vertebrates, and endocrine physiology of reproductive homeostasis. These areas form a bridge from physiological ecology to evolutionary ecology. All our examples revolve around the central issue of physiological limits as they apply to organismal homeostasis. We view this theme as the cornerstone of physiological analysis and supply a number of paradigms on homeostasis that have been tested in the context of field physiology.

  12. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen.

    Science.gov (United States)

    Vidovic, Sinisa; Korber, Darren R

    2016-01-01

    Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.

  13. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    OpenAIRE

    Esteve-Gassent, Maria D.; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P.; Patino, Ramiro; Li, Andrew Y; Raul F Medina; Pérez de León, Adalberto A.; Rodríguez-Vivas, Roger Iván

    2016-01-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environm...

  14. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    Science.gov (United States)

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  15. [Ecology and ecologies].

    Science.gov (United States)

    Valera, Luca

    2011-01-01

    Ecology (from the Greek words οιχοσ, "house" and λογια "study of") is the science of the "house", since it studies the environments where we live. There are three main ways of thinking about Ecology: Ecology as the study of interactions (between humans and the environment, between humans and living beings, between all living beings, etc.), Ecology as the statistical study of interactions, Ecology as a faith, or rather as a science that requires a metaphysical view. The history of Ecology shows us how this view was released by the label of "folk sense" to gain the epistemological status of science, a science that strives to be interdisciplinary. So, the aim of Ecology is to study, through a scientific methodology, the whole natural world, answering to very different questions, that arise from several fields (Economics, Biology, Sociology, Philosophy, etc.). The plurality of issues that Ecology has to face led, during the Twentieth-century, to branch off in several different "ecologies". As a result, each one of these new approaches chose as its own field a more limited and specific portion of reality.

  16. Seed Germination Ecology of the Cold Desert Annual Isatis violascens (Brassicaceae): Two Levels of Physiological Dormancy and Role of the Pericarp.

    Science.gov (United States)

    Zhou, Yuan M; Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2015-01-01

    The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75-80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy.

  17. Seed Germination Ecology of the Cold Desert Annual Isatis violascens (Brassicaceae: Two Levels of Physiological Dormancy and Role of the Pericarp.

    Directory of Open Access Journals (Sweden)

    Yuan M Zhou

    Full Text Available The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3 and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD and 75-80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy.

  18. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Björn Voss

    Full Text Available Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS. Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.

  20. (International meetings on ecology)

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Garten, C.T. Jr.; Turner, M.G.

    1990-09-25

    the travelers attended the Fifth International Congress of Ecology (INTECOL) in Yokohama, Japan, and two presented invited papers and chaired symposia. One traveler also attended the OJI International Seminar in Gifu, Japan and the Fukuoka Symposium on Theoretical Ecology in Fukuoka, Japan and presented invited papers. At these scientific gatherings, a large number of symposia and specific presentations were relevant to current research at Oak Ridge National Laboratory (ORNL), especially in the areas of landscape dynamics, plant physiology, and aquatic ecosystems.

  1. Nasal Physiology

    Science.gov (United States)

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  2. Physiology and ecology of forest trees. ; Nitrogen nutrition and metabolism (inorganic nitrogen anabolism) of tree plants as main subject. Shinrin jumoku no seiri to seitai. ; Mokuhon shokubutsu no chisso eiyo to taisha (muki chisso doka) wo chushin ni

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. (Kyoto Institute of Technology, Kyoto (Japan). Faculty of Textile Science)

    1993-09-25

    This paper summarizes physiology and ecology of forest trees, with inorganic nitrogen anabolism as the main subject. It was revealed that leaves of extensive species of tree plants have an important nitric acid anabolic capability. In the anabolism of NH4[sup +] absorbed into roots of plants, the glutamine generated by a glutamine synthetic enzyme/glutamic acid synthetic enzyme system plays an important role. The largest significance of plants utilizing NO3[sup -] is that they keep independent nutrition function using NO3[sup -] and NH4[sup +] as the nitrogen sources to use them for their own growth. A nitric acid reducing enzyme (NR) activity was discovered in soft cells in tree trunks of Tsuga heterophylla, which is thought as one of the reasons for the major commutation pattern of nitrogen into leaves being an organic pattern. The NR activity in leaves of Tsuga heterophylla utilizes NOx in the atmosphere emitted from factories and automobiles directly for the growth of the above-ground part of trees. The resultant excessive growth of trees and the presence of excessive nitrogen are thought as an important factor of forest decays as they cause the imbalance with nitrogen supply from soil and the depletion of inorganic nutrients. 38 refs., 4 figs.

  3. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  4. Ecological Schoolyards.

    Science.gov (United States)

    Danks, Sharon Gamson

    2000-01-01

    Presents design guidelines and organizational and site principles for creating schoolyards where students can learn about ecology. Principles for building schoolyard ecological systems are described. (GR)

  5. Seed isotopic analysis as a tool to understand ecological processes influencing plant development and physiology: the case study of Quercus rotundifolia Lam. in a desertification gradient in Mediterranean areas

    Science.gov (United States)

    Oliveira, Tatiana; Silva, Anabela; Rodrigues, Carla; Antunes Antunes, Cristina; Pinho, Pedro; Ramos, Alzira; João Pereira, Maria; Branquinho, Cristina; Máguas, Cristina

    2014-05-01

    Plant responses to climate change highly depend on the temporal variability in precipitation events and on plant specific strategies, such as drought tolerance and resilience. Within the different plant organs, seeds have become an important research tool in the past years to study plant development and nutrients allocation. Key features of seeds such as the tendency to accumulate and store nutrient compounds open many possibilities to explore isotope analysis (13C, 15N and 18O), with many outcomes in fields from ecology to food traceability. The application of light stable isotopes to plant materials have been used to study both physiological (i.e. photosynthesis and stomatal conductance), nutrients uptake and metabolism (origin of nitrogen and symbiotic associations) as well as many ecological processes, which will produce a distinctive isotope fingerprint on the plant tissues. Thus, the isotopic composition of certain bio and geo-elements of seeds, yielding relevant information on plant ecophysiology, are able to relate the plant functioning with local climatic conditions (e.g., temperature and precipitation). The application of isotope analysis in this way can be used as a proxy to understand complex environmental degradation processes such as land degradation in drylands resulting from various factors including climatic variations and human activities. In this study acorns of Quercus ilex plants were sampled during 2012-2013 in a region of southern Portugal, according to (i) soil land-use; (ii) aridity and desertification indexes. The approach developed combined plant seed analysis (seed morphology and compounds quantification) with isotope ratio mass spectrometry (δ13C, δ15N and δ18O) as a "tool" to study changes in plant ecophysiology over time and space. Seeds allow studies at specific temporal scale (development period) which varies according to its biology and depends on the climatic conditions where the plant is grown (i.e, seed's biomass integrate

  6. Nutritional Physiology and Ecology of Honey Bees.

    Science.gov (United States)

    Wright, Geraldine A; Nicolson, Susan W; Shafir, Sharoni

    2018-01-07

    Honey bees feed on floral nectar and pollen that they store in their colonies as honey and bee bread. Social division of labor enables the collection of stores of food that are consumed by within-hive bees that convert stored pollen and honey into royal jelly. Royal jelly and other glandular secretions are the primary food of growing larvae and of the queen but are also fed to other colony members. Research clearly shows that bees regulate their intake, like other animals, around specific proportions of macronutrients. This form of regulation is done as individuals and at the colony level by foragers.

  7. Physiological ecology of the frankincense tree

    NARCIS (Netherlands)

    Mengistu Woldie, T.

    2011-01-01

     



































    Keywords: Boswellia papyrifera, carbon

  8. Nutrition, ecology and nutritional ecology: towardan integrated framework

    DEFF Research Database (Denmark)

    Raubenheimer, David; Simpson, Steven J.; Mayntz, David

    2009-01-01

    1. The science of nutritional ecology spans a wide range of fields, including ecology, nutrition, behaviour, morphology, physiology, life history and evolutionary biology. But does nutritional ecology have a unique theoretical framework and research program and thus qualify as a field of research...... in its own right? 2. We suggest that the distinctive feature of nutritional ecology is its integrative nature, and that the field would benefit from more attention to formalizing a theoretical and quantitative framework for developing this. 3. Such a framework, we propose, should satisfy three minimal...

  9. Rowing Physiology.

    Science.gov (United States)

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  10. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  11. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  12. Reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  13. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bente...

  14. Landscape Ecology

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Brandt, Jesper; Svenningsen, Stig Roar

    2017-01-01

    Landscape ecology is an interdisciplinary field of research and practice that deals with the mutual association between the spatial configuration and ecological functioning of landscapes, exploring and describing processes involved in the differentiation of spaces within landscapes......, and the ecological significance of the patterns which are generated by such processes. In landscape ecology, perspectives drawn from existing academic disciplines are integrated based on a common, spatially explicit mode of analysis developed from classical holistic geography, emphasizing spatial and landscape...... pattern analysis and ecological interaction of land units. The landscape is seen as a holon: an assemblage of interrelated phenomena, both cultural and biophysical, that together form a complex whole. Enduring challenges to landscape ecology include the need to develop a systematic approach able...

  15. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    Science.gov (United States)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  16. Restoration Ecology

    Science.gov (United States)

    Jordan, William R.; Gilpin, Michael E.; Aber, John D.

    1990-08-01

    This book explores the ecological concepts and ideas involved in the practice of habitat restoration by taking a theoretical approach that will appeal to ecologists concerned with the structure and dynamics of communities. The contributors examine aspects of this new realization and its implications for both ecology and the practice of habitat restoration. What emerges is the outline of a new paradigm for ecological research and the basis for a stronger relationship between theory and practice in this area.

  17. Soil Ecology

    Science.gov (United States)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  18. Integrative Physiology of Fasting.

    Science.gov (United States)

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. Copyright © 2016 John Wiley & Sons, Inc.

  19. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  20. Ecological diversity

    National Research Council Canada - National Science Library

    Pielou E. C

    1975-01-01

    The richness and variety-in a word, the diversity-of natural ecological communities have never been more highly valued than they are now, as they become increasingly threatened by the environmental crisis...

  1. Cognitive ecology.

    Science.gov (United States)

    Hutchins, Edwin

    2010-10-01

    Cognitive ecology is the study of cognitive phenomena in context. In particular, it points to the web of mutual dependence among the elements of a cognitive ecosystem. At least three fields were taking a deeply ecological approach to cognition 30 years ago: Gibson's ecological psychology, Bateson's ecology of mind, and Soviet cultural-historical activity theory. The ideas developed in those projects have now found a place in modern views of embodied, situated, distributed cognition. As cognitive theory continues to shift from units of analysis defined by inherent properties of the elements to units defined in terms of dynamic patterns of correlation across elements, the study of cognitive ecosystems will become an increasingly important part of cognitive science. Copyright © 2010 Cognitive Science Society, Inc.

  2. Community Ecology

    CERN Document Server

    1988-01-01

    This book presents the proceedings of a workshop on community ecology organized at Davis, in April, 1986, sponsored by the Sloan Foundation. There have been several recent symposia on community ecology (Strong et. al., 1984, Diamond and Case, 1987) which have covered a wide range of topics. The goal of the workshop at Davis was more narrow: to explore the role of scale in developing a theoretical approach to understanding communities. There are a number of aspects of scale that enter into attempts to understand ecological communities. One of the most basic is organizational scale. Should community ecology proceed by building up from population biology? This question and its ramifications are stressed throughout the book and explored in the first chapter by Simon Levin. Notions of scale have long been important in understanding physical systems. Thus, in understanding the interactions of organisms with their physical environment, questions of scale become paramount. These more physical questions illustrate the...

  3. Physiological Acoustics

    Science.gov (United States)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  4. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  5. Swimming physiology.

    Science.gov (United States)

    Holmér, I

    1992-05-01

    Swimming takes place in a medium, that presents different gravitational and resistive forces, respiratory conditions and thermal stress compared to air. The energy cost of propulsion in swimming is high, but a considerable reduction occurs at a given velocity as result of regular swim training. In medley swimmers the energy cost is lowest for front crawl, followed by backstroke, butterfly and breast-stroke. Cardiac output is probably not limiting for performance since swimmers easily achieve higher values during running. Maximal heart rate, however, is lowered by approx. 10 beats/min during swimming compared to running. Most likely active muscle mass is smaller and rate of power production lesser in swimming. Local factors, such as peripheral circulation, capillary density, perfusion pressure and metabolic capacity of active muscles, are important determinants of the power production capacity and emphasize the role of swim specific training movements. Improved swimming technique and efficiency are likely to explain much of the continuous progress in performance. Rational principles based on improved understanding of the biomechanics and physiology of swimming should be guidelines for swimmers and coaches in their efforts to explore the limits of human performance.

  6. Physiological anthropology: past and future.

    Science.gov (United States)

    Steegmann, A Theodore

    2006-01-01

    Environmental studies in adaptive human biology by North American anthropologists have a history of strong investigative research. From both laboratory and field work, we have gained major insights into human response to physical and social challenges. While these results were considered by most professionals to belong within evolutionary biology, in fact the intellectual structure sprang almost entirely from physiological equilibrium models. Consequently, physiological process itself was the focus. Further, most of the physiological patterns were not linked directly to important outcomes such as work output, reproductive success or survival. About 1975, American physiological anthropologists, led by Paul Baker, turned to studies of health, change and stress response. These studies were strong, but were still neither genetic nor evolutionary in intellectual structure. Evolutionary human biology was taken over by a new body of theory now called "behavior ecology", positing that selfish genes control human behavior to promote their own reproduction. This was paralleled by strong use of evolutionary theory in some areas of molecular biology. However, although physiological anthropologists have not focused on evolution, we have been developing powerful causal models that incorporate elements of physiology, morphology, physical environment and cultural behavior. In these "proximate" biocultural models, it is of little importance whether outcomes such as work or energy management are genetically based. Our future offers two major challenges. First, we must confirm causal links between specific physiological patterns and outcomes of practical importance to individuals and societies. Second, if we are to take our place in evolutionary biology, the one overarching theory of life on earth, we must understand the heritability of physiological traits, and determine whether they play a role in survival and reproduction.

  7. The evolutionary ecology of C4 plants.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2014-12-01

    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche--growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Information Ecology

    DEFF Research Database (Denmark)

    Christiansen, Ellen Tove

    2006-01-01

    The paper describes a pedagogical didactical paradigm for teaching student-designers how to deal with context issues. Form/context-relationships are conceptualized as information ecologies and described as behavioral settings using a key concept developed by social psychologist R.A. Baker...... in the 1960ties, and chosen here because it integrates cultural and psychological trajectories in a theory of living settings. The pedagogical-didactical paradigm comprises three distinct information ecologies, named after their intended outcome: the problem-setting, the exploration-setting, and the fit......-setting. It is specified how context issues can be treated within each of these information ecologies. The paper concludes by discussing the outcome of applying this paradigm with respect to the student-designers’ competence as reflective practitioners....

  9. The foundations of space biology and medicine. Volume 2: Ecological and physiological bases of space biology and medicine. Part 3: Effect on the organism of dynamic flight factors. Chapter 1: Principles of gravitational biology

    Science.gov (United States)

    Smith, A. H.

    1972-01-01

    The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.

  10. Trash Ecology

    Science.gov (United States)

    Lind, Georgia J.

    2004-01-01

    A hands on activity involving density, frequency and biomass using transects, quadrats and a local good deed by cleaning up the neighborhood while practicing important techniques in ecology is detailed. The activity is designed for KCC-STEP, whose primary goal is to expand the scientific knowledge and research experiences of their students, who…

  11. Ecological restoration

    Science.gov (United States)

    Christopher D. Barton; John I. Blake; Donald W. Imm

    2005-01-01

    The long history of human settlement, agriculture, and industry at the Savannah River Site (SRS) has created extensive opportunities for ecological restoration. Two hundred years of farming, drainage, dam construction, stream channeling, fire protection, subsistence hunting and fishing, exotic animal and plant introduction, and selective timber harvesting have caused...

  12. Nobel Prize in Physiology or Medicine 20161

    Indian Academy of Sciences (India)

    an interest in studying. Mycobacterium tuberculosis. Jyoti Rao, a scientist at. NCCS, Pune, is a microbiologist with an interest in ecology and sociobiology, and exploring the interface of science and art. The Nobel Prize in Physiology or Medicine 2016 was awarded to Yoshinori Ohsumi of the Tokyo Institute of Technology,.

  13. [Human physiology: kidney].

    Science.gov (United States)

    Natochin, Iu V

    2010-01-01

    The content of human physiology as an independent part of current physiology is discussed. Substantiated is the point that subjects of human physiology are not only special sections of physiology where functions are inherent only in human (physiology of intellectual activity, speech, labor, sport), but also in peculiarities of functions, specificity of regulation of each of physiological systems. By the example of physiology of kidney and water-salt balance there are shown borders of norm, peculiarities of regulation in human, new chapters of renal physiology which have appeared in connection with achievements of molecular physiology.

  14. Ecological Stoichiometry of Ocean Plankton.

    Science.gov (United States)

    Moreno, Allison R; Martiny, Adam C

    2018-01-03

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  15. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: implications for ecologists

    NARCIS (Netherlands)

    Crommenacker, van de J.; Horrocks, N.P.C.; Versteegh, M.A.; Tieleman, B.I.; Komdeur, J.; Matson, K.D.

    2010-01-01

    One route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of

  16. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird : implications for ecologists

    NARCIS (Netherlands)

    van de Crommenacker, Janske; Horrocks, Nicholas P. C.; Versteegh, Maaike A.; Komdeur, Jan; Tieleman, B. Irene; Matson, Kevin D.

    2010-01-01

    One route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of

  17. Ecology and biotechnology of the genus Shewanella.

    Science.gov (United States)

    Hau, Heidi H; Gralnick, Jeffrey A

    2007-01-01

    The shewanellae are aquatic microorganisms with worldwide distribution. Their hallmark features include unparalleled respiratory diversity and the capacity to thrive at low temperatures. As a genus the shewanellae are physiologically diverse, and this review provides an overview of the varied roles they serve in the environment and describes what is known about how they might survive in such extreme and harsh environments. In light of their fascinating physiology, these organisms have several biotechnological uses, from bioremediation of chlorinated compounds, radionuclides, and other environmental pollutants to energy-generating biocatalysis. The ecology and biotechnology of these organisms are intertwined, with genomics playing a key role in our understanding of their physiology.

  18. Sound ecologies

    Directory of Open Access Journals (Sweden)

    Duffy, Michelle

    2010-01-01

    Full Text Available Discussions about what constitutes ‘the rural’ invariably focus on notions of spatial location – of inhabiting spaces apart from that of the metropolitan. Deeply embedded in our images of what it means to be Australian, nonetheless our intellectual framing of ‘the rural’ as something outback and beyond has significant implications for our relations with these spaces. The relatively recent phenomenon of sea- and tree-changes has struck many unawares, and not simply because a good latté is so hard to find. Although a frivolous remark, such an apparent lack does shift our focus to a bodily scale of the rural; how is rural place re/made through our experiences of it? This article originates out of on-going research that explores the practice of listening and sound and the ways in which the body can draw attention to the intuitive, emotional, and psychoanalytical processes of subjectivity and place-making. Drawing on Nigel Thrift’s concept of an ecology of place, I suggest that contemporary heightened concerns with regards to loss and lack in rural Australia has led to a nascent emotional economy – one in which individual and intimate connections to the rural require a rethinking of how we live community and belonging. In such a terrain, what does it mean to be rural?

  19. Indigenous Ecological Knowledge and Modern Western Ecological ...

    African Journals Online (AJOL)

    Indigenous knowledge is often dismissed as 'traditional and outdated', and hence irrelevant to modern ecological assessment. This theoretical paper critically examines the arguments advanced to elevate modern western ecological knowledge over indigenous ecological knowledge, as well as the sources and uses of ...

  20. Diet-Induced Thermogenesis in Insects: A Developing Concept in Nutritional Ecology

    Science.gov (United States)

    Terry M. Trier; William J. Mattson

    2003-01-01

    Diet-induced thermogenesis (DIT) is a concept that has been well known in one form or another for more than a century in vertebrate nutrition and physiological ecology. Yet, it is practically unknown in the physiology and nutritional ecology of insects. We suggest that DIT is a ubiquitous mechanism occurring in most if not all organisms and functions to maintain...

  1. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  2. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  3. The biology of human sexuality: evolution, ecology and physiology

    OpenAIRE

    PW Bateman; NC Bennett

    2006-01-01

    Many evolutionary biologists argue that human sexual behaviour can be studied in exactly the same way as that of other species. Many sociologists argue that social influences effectively obscure, and are more important than, a reductionist biological approach to human sexual behaviour. Here,we authors attempt to provide a broad introduction to human sexual behaviour from a biological standpoint and to indicate where the ambiguous areas are. We outline the evolutionary selective pressures that...

  4. Physiological ecology of Mougeotia (Zygnemataceae) from an experimentally acidified lake

    Energy Technology Data Exchange (ETDEWEB)

    Arancibia-Avila, P.E.

    1994-01-01

    Filamentous green algae were collected in July, 1989, from metaphytic blooms that occurred in the acidified (pH 5.2) basin, but not an unacidified reference basin (pH 6.1) of Little Rock Lake, Vilas Co., WI. Isolates of a Mougeotia species and Spirogyra reflexa were cultured at pH 5.5, with aeration. Measurements Of O[sub 2] production in a factorial experiment revealed optimal irradiance and temperature for photosynthesis in Mougeotia were 2500 [mu]E[center dot]m[sup [minus]2][center dot]s[sup [minus]l] and 25[degrees]C. Additional O[sub 2] evolution measurements showed that the optimal pH for Mougeotia photosynthesis was 8, but that net photosynthesis was positive from pH 8 to 3. Further studies indicated that Mougeotia was tolerant to concentrations of zinc and aluminum that were greater than levels observed in the acidified basin of the lake. Since inorganic carbon (C[sub i]) is known to limit Mougeotia photosynthesis and growth in acidified lakes, the occurrence of carbonic anhydrase (CA) as a mechanism for uptake and concentration of C[sub i] was investigated. No CA activity was detected in S. reflexa. In contrast, both external and internal CA were measured in Mougeotia at pH 3.7 and at pH 8. By comparison to pH 8, at pH 3.7 external CA activity increased by a factor of about 2. An antibody to Chlamydomonas external CA was used to localize CA in the plasma membrane and cell wall of both Chlamydomonas and Mougeotia. When unaerated (DIC-limited) Mougeotia was grown in SD11 medium supplemented with 1% glucose, chlorophyll a levels were significantly higher than for cultures grown without sugar. Chloroplast morphology was also judged superior for sugar-supplemented cultures. The data suggest that Mougeotia possesses a DIC-concentrating system, and may also be able to import DOC (glucose).

  5. Ecological and evolutionary physiology of desert birds : A progress report

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI

    The adaptive significance of mechanisms of energy and water conservation among species of desert rodents, which avoid temperature extremes by remaining within a burrow during the day, is well established. Conventional wisdom holds that arid-zone birds, diurnal organisms that endure the brunt of

  6. Physiological ecology of nitrogen utilisation by forest plants

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, A. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    1998-12-31

    The work described in this thesis explores key processes of nitrogen (N) utilisation by forest plants. Storage, transport and uptake of N were investigated in a number of plant species common in Swedish forests. N supply was manipulated to simulate the currently increasing N deposition on these ecosystems. Free amino acids were found to be used for seasonal N storage in rhizomes of all investigated understorey species. Thus, concentrations were low in the middle of the vegetative growth period and high in late autumn and early spring. Amino acid concentrations of plant tissues increased in response to N fertilization. Arginine was a major component of the amino acid pool in many of the studied species although, especially in nitrophilic herbs, asparagine was also prominent. Species which stored arginine in rhizomes used mainly glutamine for xylem N transport, whereas species which stored asparagine also used it for transport. In Pinus sylvestris L. glutamine was important for xylem N transport while arginine dominated in the phloem. In response to N fertilization, arginine concentrations in both foliage and xylem increased whereas glutamine increased in phloem. Plant growth under controlled conditions, with ammonium supplied as the sole N source, resulted in elevated concentrations of free amino acids in plant tissues compared to growth on a mixture of ammonium and nitrate. Elevated amino acid concentrations were associated with retarded growth in species naturally confined to nitrate-rich soils. Growth of plants naturally confined to ammonium-dominated soils was similar on ammonium and the mixture of ammonium and nitrate. In the field, plants were found to be able to assimilate organic N, as well as inorganic N, from the soil solution. Indeed, the results show that plants with ecto- (Picea abies (L.) Karst. and P. sylvestris), ericoid- (Vaccinium myrtillus L.) and arbuscular (Deschampsia flexuosa (L.) Trin.) mycorrhizal associations all took up intact glycine. Species-related differences in the capacity to assimilate inorganic fertilizer N occurred, and uptake was greater in D. flexuosa than in V. myrtillus growing together. In V. myrtillus, the fertilizer-induced increase in amino acid concentrations were correlated with increased incidence of attack by pathogens and herbivores on current annual shoots 220 refs, 5 figs, 2 tabs

  7. Physiological ecology: an evolutionary approach to resource use

    National Research Council Canada - National Science Library

    Townsend, Colin R; Calow, Peter

    1981-01-01

    ... and reproduction in plants, animals and microorganisms. Data and theory from many disciplines are drawn together in a stimulating collection of essays which discuss allocation strategies and their consequences for a wide range of examples, from bacteria...

  8. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  9. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  10. Forest Fire Ecology.

    Science.gov (United States)

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  11. Taoism and Deep Ecology.

    Science.gov (United States)

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  12. Physiology in conservation translocations

    Science.gov (United States)

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  13. Trace elements and arsenic speciation in tissues of tube dwelling polychaetes from hydrothermal vent ecosystems (East Pacific Rise): An ecological role as antipredatory strategy?

    Science.gov (United States)

    Di Carlo, Marta; Giovannelli, Donato; Fattorini, Daniele; Le Bris, Nadine; Vetriani, Costantino; Regoli, Francesco

    2017-12-01

    Hydrothermal vent systems are inhabited by dense benthic communities adapted to extreme conditions such as high temperature, hydrogen sulphide (H2S) and elevated fluxes of metals. In the present work, a wide range of trace elements (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, V and Zn) were measured in tissues of three tube dwelling annelids, Alvinella pompejana, Alvinella caudata and Riftia pachyptila, which colonize distinct habitats of the East Pacific Rise (EPR) at 2500 m depth. Metals concentrations in alvinellids were often 2-4 orders of magnitude higher than those commonly found in marine organisms, while much lower values were observed in the vestimentiferan polychaete. Mobility of trace elements was further characterized in tissues of A. pompejana where metals appeared mostly in insoluble forms, i.e. associated with hydrated oxides and sulphides. Arsenic was mainly present in a weakly insoluble form and with concentrations in the branchial tentacles of alvinellids, approximately 5-15 fold higher than those measured in the thorax. Chemical speciation of this element in tissues of the three polychaete species revealed a major contribution of methylated arsenic compounds, like dimethylarsinate (DMA) and, to a lower extent, monomethylarsonate (MMA) and trimethylarsine oxide (TMAO). Although the biotransformation of inorganic arsenic might represent a detoxification mechanism in polychaetes from hydrothermal vents, the elevated levels of methylated forms of arsenic in branchial tissues also suggest an ecological role of this element as an antipredatory strategy for more vulnerable tissues toward generalist consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ecological restoration [book review

    Science.gov (United States)

    Eric J. Gustafson

    2010-01-01

    Ecological restoration has increased in prominence in recent years as environmental policies have slowed the rate of environmental degradation in many parts of the world and practitioners have looked for active ways to reverse the damage. Because of the vast number of types and contexts of degraded ecological systems, the field of ecological restoration is still very...

  15. Effects of low temperature and drought on the physiological and ...

    African Journals Online (AJOL)

    Water deficiency and low temperature are two important ecological factors which affect the distribution and cultivation of oil palm. To find out how oil palm adapts to the environmental conditions, the dynamics of a series of important physiological components derived from the leaves of potted oil palm seedlings under ...

  16. Philosophy of ecology

    CERN Document Server

    Brown, Bryson; Peacock, Kent A

    2011-01-01

    The most pressing problems facing humanity today - over-population, energy shortages, climate change, soil erosion, species extinctions, the risk of epidemic disease, the threat of warfare that could destroy all the hard-won gains of civilization, and even the recent fibrillations of the stock market - are all ecological or have a large ecological component. in this volume philosophers turn their attention to understanding the science of ecology and its huge implications for the human project. To get the application of ecology to policy or other practical concerns right, humanity needs a clear and disinterested philosophical understanding of ecology which can help identify the practical lessons of science. Conversely, the urgent practical demands humanity faces today cannot help but direct scientific and philosophical investigation toward the basis of those ecological challenges that threaten human survival. This book will help to fuel the timely renaissance of interest in philosophy of ecology that is now oc...

  17. [Ecological monitoring in agro-ecological systems].

    Science.gov (United States)

    Baĭkov, B D

    1983-01-01

    The fundamental principles of the ecologic monitoring in the antropogenic ecosystems are dealt with. Analyzed are the structure and function of the agroecologic systems, and, on the basis of the particular aspects established a concept is developed of the ecologic control at autoecologic and biocoenologic level. An analysis is likewise made of the ecologic sequelae resulting from the chemical war launched by the American aggressors in Vietnam and the specific trends therefrom in the substantiation of the ecologic monitoring. Stated is the necessity of profound investigations to establish the bioaccumulation of dioxine, a poisonous agent which was contained in herbicides and defoliants used in the war, and which was distinguished by exclusively high toxicity, producing teratogenic and cancerogenic effects and possessing high resistance in the environment.

  18. Taking physiology to the field: using physiological approaches to answer questions about animals in their environments.

    Science.gov (United States)

    Goldstein, David L; Pinshow, Berry

    2006-01-01

    Both technological and conceptual advances continue to enhance our ability to evaluate physiological mechanisms in free-living animals. Although complex and uncontrolled natural environments may challenge our ability to define causal mechanistic relationships, they provide opportunities not available in more conventional laboratory settings. Among these opportunities are the ability to observe the interplay between physiology and behavior, the potential inspiration to physiological studies from novel observations in the field, and the ability to evaluate the extent to which particular physiological systems are challenged under natural conditions. As we accumulate information about physiological function in the field, we are often forced to reconsider established paradigms: hibernating bears may contract their muscles to maintain strength and tone, testosterone levels in male stonechats maintaining territories in winter are exceptionally low, wintering emperor penguins may risk overheating, and large desert mammals may eschew brain-cooling mechanisms. Measuring and quantifying the organismal response to a changing environment provides a link between mechanistic physiology and behavior, ecology, and evolution and gives us new tools to understand population, community, and ecosystem-level processes.

  19. TINNITUS WHAT AND WHERE: AN ECOLOGICAL FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Grant Donald Searchfield

    2014-12-01

    Full Text Available Tinnitus is an interaction of the environment, cognition and plasticity. The connection between the individual with tinnitus and their world seldom receives attention in neurophysiological research. As well as changes in cell excitability, an individual’s culture and beliefs, work and social environs may all influence how tinnitus is perceived. In this review an ecological framework for current neurophysiological evidence is considered. The model defines tinnitus as the perception of an auditory object in the absence of an acoustic event. It is hypothesized that following deafferentation: adaptive feature extraction, schema and semantic object formation processes lead to tinnitus in a manner predicted by Adaptation Level Theory (1, 2. Evidence from physiological studies are compared to the tenants of the proposed ecological model. The consideration of diverse events within an ecological context may unite seemingly disparate neurophysiological models.

  20. Reproduction, physiology and biochemistry

    Science.gov (United States)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  1. State of the interface between conservation and physiology: a bibliometric analysis

    Science.gov (United States)

    Lennox, Robert; Cooke, Steven J.

    2014-01-01

    Contemporary conservation science benefits from the perspectives of a variety of different disciplines, including a recent synergy with physiology, an interface known as ‘conservation physiology’. To evaluate the degree of interaction between conservation and animal/plant physiology, we conducted three bibliometric analyses. We first pursued the use of the term ‘conservation physiology’ since its first definition in 2006 to determine how frequently it has been used and in which publications. Secondly, we evaluated the occurrence of conservation terms in animal and plant physiology journals, physiological terms in conservation journals, and a combination of terms in ecology journals. Thirdly, we explored trends in a subset of conservation physiology articles published between 2006 and 2012. We identified a surge in the use of the term ‘conservation physiology’ in 2012, after only a slow increase in usage between 2006 and 2011. Conservation journals tend to have been significantly more active in publishing conservation physiology than animal physiology, plant physiology or ecology journals. However, we found evidence that ecology and animal physiology journals began to incorporate more conservation physiology after 2006, while conservation- and plant physiology-themed journals did not. Among 299 conservation physiology articles that we identified, vertebrate taxa have been over-represented in conservation physiology compared with their relative taxonomic abundance, invertebrate taxa have been under-represented, and plants have been represented in proportion to their relative taxonomic abundance; however, those findings are reasonably consistent with publication trends in conservation biology. Diffuse distribution of conservation physiology papers throughout the literature may have been a barrier to the growth of the subdiscipline when the interface was emerging. The introduction of the focused journal Conservation Physiology in 2013 may address that

  2. Physiology of Ramadan fasting

    OpenAIRE

    Shokoufeh Bonakdaran

    2016-01-01

    Considering the emphasis of Islam on the importance of fasting, Muslims attempt to fast from dawn until sunset during the holy month of Ramadan. Fasting is associated with several benefits for normal and healthy individuals. However, it could pose high risks to the health of diabetic patients due to certain physiological changes. This study aimed to compare the physiological changes associated with fasting in healthy individuals and diabetic patients during Ramadan. Furthermore, we reviewed t...

  3. Respiratory physiology at altitude.

    Science.gov (United States)

    Sandberg, C; Naylor, J

    2011-03-01

    The changes in respiratory physiology that occur with increasing altitude are driven by the fall in the partial pressure of oxygen that occurs with decreasing barometric pressure. At altitude, respiratory system changes occur which impact on each step of the oxygen cascade that occurs within the body. These changes are pivotal to the process of acclimatisation to altitude. The study of human respiratory physiology at altitude has the potential to produce research that will be translational to disease states characterised by hypoxaemia.

  4. Using ecological production functions to link ecological ...

    Science.gov (United States)

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into E

  5. Ecological and Economic Importance of Bats (Order Chiroptera)

    OpenAIRE

    Kasso, Mohammed; Balakrishnan, Mundanthra

    2013-01-01

    Order Chiroptera is the second most diverse and abundant order of mammals with great physiological and ecological diversity. They play important ecological roles as prey and predator, arthropod suppression, seed dispersal, pollination, material and nutrient distribution, and recycle. They have great advantage and disadvantage in economic terms. The economic benefits obtained from bats include biological pest control, plant pollination, seed dispersal, guano mining, bush meat and medicine, aes...

  6. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  7. Comparative physiology of a central hardwood old-growth forest canopy and forest gap

    Science.gov (United States)

    A. R. Gillespie; J. Waterman; K. Saylors

    1993-01-01

    Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...

  8. Development of Ecological Buildings

    Directory of Open Access Journals (Sweden)

    Andrius Keizikas

    2011-04-01

    Full Text Available The article presents research on ecological buildings and their influence on the constructional sphere. The aim of the paper is to reveal the essence of ecological architecture showing substantial progress and its potential to stimulate architectural and technological growth. The article also describes relations between the ideas of ecological buildings and the ‘passive house’ concepts and aspects of development as well as describes the possibilities of improving building sustainability and energy efficiency. Article in Lithuanian

  9. Ecological risk assessment

    National Research Council Canada - National Science Library

    Suter, Glenn W; Barnthouse, L. W. (Lawrence W)

    2007-01-01

    Ecological risk assessment is commonly applied to the regulation of chemicals, the remediation of contaminated sites, the monitoring of importation of exotic organisms, the management of watersheds...

  10. Ecological Exposure Research: Water

    Science.gov (United States)

    Overview of ecological exposure water research, including invasive species, Functional Process Zones (FPZs), biomarkers, pharmaceuticals in water, headwater streams, DNA barcoding, wetland ecosystem services, and sediment remediation.

  11. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  12. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification

    National Research Council Canada - National Science Library

    Poulton, Alex J; Painter, Stuart C; Young, Jeremy R; Bates, Nicholas R; Bowler, Bruce; Drapeau, Dave; Lyczsckowski, Emily; Balch, William M

    2013-01-01

    ...). The Patagonian Shelf is a site of intense annual coccolithophore blooms during austral summer. During December 2008, we made intensive measurements of the ecology, biogeochemistry, and physiology of a coccolithophore bloom...

  13. An ecological dynamics framework for the acquisition of perceptual-motor skills in climbing

    NARCIS (Netherlands)

    Seifert, Ludovic; Orth, Dominic; Button, Chris; Brymer, Eric; Davids, Keith

    2016-01-01

    Uncertainty in extreme sports performance environments, like rock and ice climbing, provides considerable psycho-emotional and physiological demands which challenge the acquisition of perceptual-motor skills. An ecological dynamics theoretical framework adopts concepts and tools of nonlinear

  14. p53 gene discriminates two ecologically divergent sister species of pine voles

    National Research Council Canada - National Science Library

    Quina, A S; Bastos-Silveira, C; Miñarro, M; Ventura, J; Jiménez, R; Paulo, O S; da Luz Mathias, M

    2015-01-01

    ... (Microtus lusitanicus) and Mediterranean (M. duodecimcostatus) pine voles are two recently separated sister species with fossorial lifestyles whose different ecological, physiological and morphological phenotypes reflect the better adaptation of M...

  15. Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological sciences. Other websites ...

  16. The Face of Physiology

    Directory of Open Access Journals (Sweden)

    Paul White

    2008-10-01

    Full Text Available This article explores the relationship between the physiology of the emotions and the display of character in Victorian Britain. Charles Bell and others had begun to link certain physiological functions, such as respiration, with the expression of feelings such as fear, regarding the heart and other internal organs as instruments by which the emotions were made visible. But a purely functional account of the emotions, which emerged through the development of reflex physiology during the second half of the century, would dramatically alter the nature of feelings and the means of observing them. At the same time, instinctual or acquired sympathy, which had long underpinned the accurate reading of expressions, became a problem to be surmounted by new 'objectively'. Graphic recording instruments measuring a variety of physiological functions and used with increasing frequency in clinical diagnostics became of fundamental importance for tracing the movement of feelings during the period prior to the development of cinematography. They remained, in the form of devices such as the polygraph, a crucial and controversial means of measuring affective states, beneath the potentially deceptive surface of the body.

  17. Starting Physiology: Bioelectrogenesis

    Science.gov (United States)

    Baptista, Vander

    2015-01-01

    From a Cartesian perspective of rational analysis, the electric potential difference across the cell membrane is one of the fundamental concepts for the study of physiology. Unfortunately, undergraduate students often struggle to understand the genesis of this energy gradient, which makes the teaching activity a hard task for the instructor. The…

  18. Physiology of alpine skiing.

    Science.gov (United States)

    Turnbull, J R; Kilding, A E; Keogh, J W L

    2009-04-01

    The extreme environment of cold, altitude and movement complexity makes alpine ski racing a difficult sport to study. This review comprises >30 years of research and includes 29 on-snow investigations of specific physiology relating to the various ski racing disciplines, nine off-snow investigations of the physiological capacities of ski racers of varying ability and four review articles. Alpine ski racing appears to involve a complex integration of many different physiological systems, none of which may be more important than the other to overall performance. While technical ability appears to be the greatest influencing factor on performance, the ability to continually exhibit technical competence through a long competitive season requires high capabilities within all physiological systems. Identifying the optimal approach and time to concurrently develop these systems is a challenge for sport scientists. Further research is required using modern portable investigative tools for determining aerobic and anaerobic demands and abilities, especially in the areas of muscle function and relative energy system contribution during both single and multiple runs on varying terrain.

  19. Physiology of Sleep.

    Science.gov (United States)

    Carley, David W; Farabi, Sarah S

    2016-02-01

    IN BRIEF Far from a simple absence of wakefulness, sleep is an active, regulated, and metabolically distinct state, essential for health and well-being. In this article, the authors review the fundamental anatomy and physiology of sleep and its regulation, with an eye toward interactions between sleep and metabolism.

  20. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Physiology of Breastfeeding

    Science.gov (United States)

    This powerpoint presentation summaries physiology of lactation and the impact of a variety of clinical practices on lactation from delivery through weaning. Factors that inhibit lactogenesis stage II are explained, including retained placenta, excess blood loss during delivery, and hypoplastic brea...

  2. The Physiology of Motivation.

    Science.gov (United States)

    Stellar, Eliot

    1994-01-01

    A theory of the physiology of motivation is presented. The basic assumption is that the amount of motivated behavior is a direct function of the amount of activity in certain excitatory centers of the hypothalamus. Activities of these centers are determined by factors in four general classes. (SLD)

  3. Research on gravitational physiology

    Science.gov (United States)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  4. Renal Physiology of Pregnancy

    Science.gov (United States)

    Cheung, Katharine L.; Lafayette, Richard A.

    2014-01-01

    Pregnancy involves remarkable orchestration of physiologic changes. The kidneys are central players in the evolving hormonal milieu of pregnancy, responding and contributing to the changes in the environment for the pregnant woman and fetus. The functional impact of pregnancy on kidney physiology is widespread, involving practically all aspects of kidney function. The glomerular filtration rate increases 50% with subsequent decrease in serum creatinine, urea, and uric acid values. The threshold for thirst and antidiuretic hormone secretion are depressed, resulting in lower osmolality and serum sodium levels. Blood pressure drops approximately 10 mmHg by the second trimester despite a gain in intravascular volume of 30% to 50%. The drop in systemic vascular resistance is multifactorial, attributed in part to insensitivity to vasoactive hormones, and leads to activation of the renin-aldosterone-angiostensin system. A rise in serum aldosterone results in a net gain of approximately 1000 mg of sodium. A parallel rise in progesterone protects the pregnant woman from hypokalemia. The kidneys increase in length and volume, and physiologic hydronephrosis occurs in up to 80% of women. This review will provide an understanding of these important changes in kidney physiology during pregnancy, which is fundamental in caring for the pregnant patient. PMID:23928384

  5. Biosemiotics and ecological monitoring

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2001-01-01

    of the qualitative and relational aspects that can only be grasped by considering the semiotic networks operative in complex ecological and cultural systems. In this paper, it is suggested that a biosemiotic approach to ecology may prove useful for the modelling process, which in turn will allow the construction...

  6. Audubon Ecology Study Program.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    The materials in the set include a student reader "The Story of Ecology," a leaders' guide, and a large, pictorial wall chart. The student reader is divided into 10 units relating to a definition of ecology, the sun and life, air and the water cycle, major divisions of the earth, plants and food chains, distribution of plants and animals,…

  7. CAREERS IN ECOLOGY

    Science.gov (United States)

    Many non-scientists treat "ecology" and "environmentalism" as roughly interchangeable words, thus the word "ecologist" commonly has come to signify a particular part of the political spectrum. As used in the scientific community and in this presentation, however, ecology is loos...

  8. Ecology of Bacillaceae

    NARCIS (Netherlands)

    Mandic-Mulec, Ines; Stefanic, Polonca; Van Elsas, Jan Dirk; Driks, A.; Eichenberger, P.

    2016-01-01

    Members of the family Bacillaceae are among the most robust bacteria on Earth, which is mainly due to their ability to form resistant endospores. This trait is believed to be the key factor determining the ecology of these bacteria. However, they also perform fundamental roles in soil ecology (i.e.,

  9. Terrestrial Ecology Guide.

    Science.gov (United States)

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  10. Ecological Soil Screening Level

    Science.gov (United States)

    The Eco-SSL derivation process is used to derive a set of risk-based ecological soil screening levels (Eco-SSLs) for many of the soil contaminants that are frequently of ecological concern for plants and animals at hazardous waste sites.

  11. Dynamics in artifact ecologies

    DEFF Research Database (Denmark)

    Bødker, Susanne; Klokmose, Clemens Nylandsted

    2012-01-01

    artifacts influence the use of others. Understanding this interplay becomes more and more essential for interaction design as our artifact ecologies grow. This paper continues a recent discourse on artifact ecologies. Through interviews with iPhone users, we demonstrate that relationships between artifacts...

  12. ECOLOGICAL RISK ASSESSMENT

    Science.gov (United States)

    The Ecological Soil Screening Level (Eco-SSL) Work Group, composed of scientists and risk assessors from EPA, Environment Canada, DOE, Army, Navy, Air Force, states, industry, academia, and consulting companies, has been working on the development of scientifically sound, ecologi...

  13. Teaching Ecology in School.

    Science.gov (United States)

    Zverev, I.D.

    1981-01-01

    Presents a translation from a Russian language pamphlet on ecology education in the Soviet Union. Written by the director of the Laboratory for Nature Conservation Education in Moscow, the article discusses the emerging interest in ecology in Soviet schools, the relationship between human society and the environment, and the need to imbue students…

  14. Developments in Numerical Ecology

    African Journals Online (AJOL)

    methods, fractal theory, path analysis, spatial analysis and a series of ... Indeed, it should be recommended reading for Masters and Doctoral ... technique chosen. In short, this book is truly about the integrated methodology of numerical ecology, and not about the perhaps paradoxical field of theoretical ecology. As the ...

  15. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  16. Predictive systems ecology.

    Science.gov (United States)

    Evans, Matthew R; Bithell, Mike; Cornell, Stephen J; Dall, Sasha R X; Díaz, Sandra; Emmott, Stephen; Ernande, Bruno; Grimm, Volker; Hodgson, David J; Lewis, Simon L; Mace, Georgina M; Morecroft, Michael; Moustakas, Aristides; Murphy, Eugene; Newbold, Tim; Norris, K J; Petchey, Owen; Smith, Matthew; Travis, Justin M J; Benton, Tim G

    2013-11-22

    Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.

  17. When logic fails ecology.

    Science.gov (United States)

    Lockwood, Dale R

    2008-03-01

    Ecology plays an important role in society, informing policy and management decisions across a variety of issues. As such, regularities in processes would indicate higher levels of predictive outcomes and would reduce the amount of research required for specific issues that policy makers need addressed. Scientific laws are considered the pinnacle of success and usefulness in addressing regularities or universal truths. Ecology studies complex interactions of individuals with unique behaviors, making the identification of laws problematic. Two equations, Malthusian growth and the logistic equation, continue to receive attention and are frequently cited as exemplar laws in ecology. However, an understanding of scientific laws shows that neither are good candidates for law status. In this paper, I will discuss why ecology is not well structured for scientific laws, as they are currently understood. Finally, I will consider alternative proposals for the role of laws in ecology and alternate forms of laws that may be applicable.

  18. Urban Sound Ecologies

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh; Samson, Kristine

    2013-01-01

    share the characteristics of site specificity. However, this article will consider the artwork in a broader context by re-examining how sound installations relate to the urban environment. For that purpose, this article brings together ecology terms from acoustic ecology of the sound theories...... of the 1970s while developing them into recent definitions of ecology in urban studies. Finally, we unfold our framing of urban sound ecologies with three case analyses: a sound intervention in Berlin, a symphony for wind instruments in Copenhagen and a video walk in a former railway station in Kassel....... The article concludes that the ways in which recent sound installations work with urban ecologies vary. While two of the examples blend into the urban environment, the other transfers the concert format and its mode of listening to urban space. Last, and in accordance with recent soundscape research, we point...

  19. What is dental ecology?

    Science.gov (United States)

    Cuozzo, Frank P; Sauther, Michelle L

    2012-06-01

    Teeth have long been used as indicators of primate ecology. Early work focused on the links between dental morphology, diet, and behavior, with more recent years emphasizing dental wear, microstructure, development, and biogeochemistry, to understand primate ecology. Our study of Lemur catta at the Beza Mahafaly Special Reserve, Madagascar, has revealed an unusual pattern of severe tooth wear and frequent tooth loss, primarily the result of consuming a fallback food for which these primates are not dentally adapted. Interpreting these data was only possible by combining our areas of expertise (dental anatomy [FC] and primate ecology [MS]). By integrating theoretical, methodological, and applied aspects of both areas of research, we adopted the term "dental ecology"-defined as the broad study of how teeth respond to the environment. Specifically, we view dental ecology as an interpretive framework using teeth as a vehicle for understanding an organism's ecology, which builds upon earlier work, but creates a new synthesis of anatomy and ecology that is only possible with detailed knowledge of living primates. This framework includes (1) identifying patterns of dental pathology and tooth use-wear, within the context of feeding ecology, behavior, habitat variation, and anthropogenic change, (2) assessing ways in which dental development and biogeochemical signals can reflect habitat, environmental change and/or stress, and (3) how dental microstructure and macro-morphology are adapted to, and reflect feeding ecology. Here we define dental ecology, provide a short summary of the development of this perspective, and place our new work into this context. Copyright © 2012 Wiley Periodicals, Inc.

  20. Methods of studying the functional ecology of protein and organ dynamics in birds

    NARCIS (Netherlands)

    Piersma, Theunis; Klaassen, Marcel; Adams, N.J.; Slotow, R.H.

    1999-01-01

    Birds are capable of adaptive responses to ecological challenges involving changes in body composition, including both body stores and functional tissues. These physiological adjustments may affect aspects of the birds’ ecology, such as choice of diet and microhabitat or susceptibility to aerial

  1. Ecological context determines the choice between prey of different salinities

    NARCIS (Netherlands)

    Gutiérrez, Jorge S; Piersma, Theunis

    2016-01-01

    Food choice has profound implications for the relative intakes of water and salts, and thus for an animal’s physiological state. Discrimination behaviors with respect salt intake have been documented in a number of vertebrate species, but few studies have considered the ecological context in which

  2. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  3. Hair and Physiological Baldness

    Science.gov (United States)

    Mercantini, Edward S.

    1965-01-01

    Human hair is one of the structures of the body about which little is generally known. Disease affecting the hair is often minimized or ignored by physicians because of lack of knowledge of this rudimentary organ. However, the patient's attitude toward hair loss is very different from the doctor's and he feels great concern about such loss. The development, growth and morphology of human hair are briefly presented. Experimental work which will increase our knowledge of hair growth and loss is reviewed. The various forms of physiological alopecia from birth onward are discussed, with special emphasis on the least-known type of physiological baldness, “male-pattern baldness” in the adult female. PMID:14312445

  4. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  5. Physiology of wrestlers` dehydration

    OpenAIRE

    Cengiz, Asim; DEMİRHAN, Bilal

    2014-01-01

    Rapid weight loss via dehydration has profound adverse effects on the wrestler's physiology and muscular endurance even with %1 of body weight loss. Additionally, there is a decline after 4% of weight loss in strength or anaerobic power performance. However, these adverse effects do not seem to impair muscle strength during high-power exertions lasting less than 30 seconds. In fact, for athletes participating in brief-duration, high- power sports, rapid weight loss may give them an advan...

  6. Conceptualizing ecosystem tipping points within a physiological framework.

    Science.gov (United States)

    Harley, Christopher D G; Connell, Sean D; Doubleday, Zoë A; Kelaher, Brendan; Russell, Bayden D; Sarà, Gianluca; Helmuth, Brian

    2017-08-01

    Connecting the nonlinear and often counterintuitive physiological effects of multiple environmental drivers to the emergent impacts on ecosystems is a fundamental challenge. Unfortunately, the disconnect between the way "stressors" (e.g., warming) is considered in organismal (physiological) and ecological (community) contexts continues to hamper progress. Environmental drivers typically elicit biphasic physiological responses, where performance declines at levels above and below some optimum. It is also well understood that species exhibit highly variable response surfaces to these changes so that the optimum level of any environmental driver can vary among interacting species. Thus, species interactions are unlikely to go unaltered under environmental change. However, while these nonlinear, species-specific physiological relationships between environment and performance appear to be general, rarely are they incorporated into predictions of ecological tipping points. Instead, most ecosystem-level studies focus on varying levels of "stress" and frequently assume that any deviation from "normal" environmental conditions has similar effects, albeit with different magnitudes, on all of the species within a community. We consider a framework that realigns the positive and negative physiological effects of changes in climatic and nonclimatic drivers with indirect ecological responses. Using a series of simple models based on direct physiological responses to temperature and ocean pCO 2, we explore how variation in environment-performance relationships among primary producers and consumers translates into community-level effects via trophic interactions. These models show that even in the absence of direct mortality, mismatched responses resulting from often subtle changes in the physical environment can lead to substantial ecosystem-level change.

  7. Recent Developments in Ecological Economics

    DEFF Research Database (Denmark)

    Reader with published articles within the field of ecological economics, mostly from 1997 - 2007......Reader with published articles within the field of ecological economics, mostly from 1997 - 2007...

  8. Pavlov and integrative physiology.

    Science.gov (United States)

    Smith, G P

    2000-09-01

    Ivan Petrovich Pavlov was the first physiologist to win the Nobel Prize. The Prize was given in 1904 for his research on the neural control of salivary, gastric, and pancreatic secretion. A major reason for the success and novelty of his research was the use of unanesthetized dogs surgically prepared with chronic fistulas or gastric pouches that permitted repeated experiments in the same animal for months. Pavlov invented this chronic method because of the limitations he perceived in the use of acute anesthetized animals for investigating physiological systems. By introducing the chronic method and by showing its experimental advantages, Pavlov founded modern integrative physiology. This paper reviews Pavlov's journey from his birthplace in a provincial village in Russia to Stockholm to receive the Prize. It begins with childhood influences, describes his training and mentors, summarizes the major points of his research by reviewing his book Lectures on the Work of the Digestive Glands, and discusses his views on the relationship between physiology and medicine.

  9. [Parasitism and ecological parasitology].

    Science.gov (United States)

    Balashov, Iu S

    2011-01-01

    Parasitism as one of the life modes is a general biological phenomenon and is a characteristic of all viruses, many taxa of bacteria, fungi, protists, metaphytes, and metazoans. Zooparasitology is focused on studies of parasitic animals, particularly, on their taxonomy, anatomy, life cycles, host-parasite relations, biocoenotic connections, and evolution. Ecological parasitology is a component of ecology, as the scientific study of the relation of living organisms with each other and their surroundings. In the present paper, critical analysis of the problems, main postulates, and terminology of the modern ecological parasitology is given.

  10. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  11. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  12. Integrating ecology into biotechnology.

    Science.gov (United States)

    McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip

    2007-06-01

    New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity.

  13. Ecologies of Learning, Ecologies of Creativity

    DEFF Research Database (Denmark)

    Høyrup, Helene

    in the light of the new Danish school reform. How can different learning institutions contribute to a “joint” ecology of learning? What would the benefits be from this in terms of young people’s literacies? On what theoretical basis can such an ecology and co-creation take place? And what kind of didactics...... to be developed, both theoretically and in practical terms. My presentation will take its point of departure in a concrete Danish project titled “Popup Experimentariet – Digital dannelse på skemaet” [The PopUp Experimentarium – Digital Literacy on the Agenda], which is funded by the Danish Cultural Ministry...... are in need of development? It is the aim of the research project to investigate the mentioned questions – and to further qualify the co-creation of literacies by different types of learning institutions....

  14. The evolutionary ecology of the Lygaeidae

    Science.gov (United States)

    Burdfield-Steel, Emily R; Shuker, David M

    2014-01-01

    The Lygaeidae (sensu lato) are a highly successful family of true bugs found worldwide, yet many aspects of their ecology and evolution remain obscure or unknown. While a few species have attracted considerable attention as model species for the study of insect physiology, it is only relatively recently that biologists have begun to explore aspects of their behavior, life history evolution, and patterns of intra- and interspecific ecological interactions across more species. As a result though, a range of new phenotypes and opportunities for addressing current questions in evolutionary ecology has been uncovered. For example, researchers have revealed hitherto unexpectedly rich patterns of bacterial symbiosis, begun to explore the evolutionary function of the family's complex genitalia, and also found evidence of parthenogenesis. Here we review our current understanding of the biology and ecology of the group as a whole, focusing on several of the best-studied characteristics of the group, including aposematism (i.e., the evolution of warning coloration), chemical communication, sexual selection (especially, postcopulatory sexual selection), sexual conflict, and patterns of host-endosymbiont coevolution. Importantly, many of these aspects of lygaeid biology are likely to interact, offering new avenues for research, for instance into how the evolution of aposematism influences sexual selection. With the growing availability of genomic tools for previously “non-model” organisms, combined with the relative ease of keeping many of the polyphagous species in the laboratory, we argue that these bugs offer many opportunities for behavioral and evolutionary ecologists. PMID:25360267

  15. Ecological Provinces of Minnesota

    Data.gov (United States)

    Minnesota Department of Natural Resources — This coverage provides information for the first level of the Ecological Classification System. The boundaries of the polygons of this coverage were derived from...

  16. Ecological Subsections of Minnesota

    Data.gov (United States)

    Minnesota Department of Natural Resources — This coverage provides information for the third level of the Ecological Classification System. The boundaries of the polygons of this coverage were derived from...

  17. Ecological Sections of Minnesota

    Data.gov (United States)

    Minnesota Department of Natural Resources — This coverage provides information for the second level of the Ecological Classification System. The boundaries of the polygons of this coverage were derived from...

  18. Market Squid Ecology Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains ecological information collected on the major adult spawning and juvenile habitats of market squid off California and the US Pacific Northwest....

  19. Revising History with Ecology

    Science.gov (United States)

    Joyce, Davis D.

    1978-01-01

    Describes a college-level United States history/ecology course which examined American attitudes toward the environment, environmental use and abuse, and the conservation movement. For journal availability, see SO 506 393. (Author/DB)

  20. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  1. The evolution of ecological tolerance in prokaryotes

    Science.gov (United States)

    Knoll, A. H.; Bauld, J.

    1989-01-01

    The ecological ranges of Archaeobacteria and Eubacteria are constrained by a requirement for liquid water and the physico-chemical stability limits of biomolecules, but within this broad envelope, prokaryotes have evolved adaptations that permit them to tolerate a remarkable spectrum of habitats. Laboratory experiments indicate that prokaryotes can adapt rapidly to novel environmental conditions, yet geological studies suggest early diversification and long-term stasis within the prokaryotic kingdoms. These apparently contradictory perspectives can be reconciled by understanding that, in general, rates and patterns of prokaryotic evolution reflect the developmental history of the Earth's surface environments. Our understanding of modern microbial ecology provides a lens through which our accumulating knowledge of physiology, molecular phylogeny and the Earth's history can be integrated and focussed on the phenomenon of prokaryotic evolution.

  2. Enhancing knowledge of rangeland ecological processes with benchmark ecological sites

    Science.gov (United States)

    A benchmark ecological site is one that has the greatest potential to yield data and information about ecological functions, processes, and the effects of management or climate changes on a broad area or critical ecological zone. A benchmark ecological site represents other similar sites in a major ...

  3. Marine Ecological Environment Management Based on Ecological Compensation Mechanisms

    Directory of Open Access Journals (Sweden)

    Qunzhen Qu

    2016-12-01

    Full Text Available The level of marine environmental management is a key factor in the successful implementation of marine power strategies. The improvement in management levels of marine environments requires innovation in marine management. In other words, the transformation of marine environmental management into marine ecological environment management must be done in order to achieve sustainable development of the marine economy. As an environmental economic policy that combines both administrative and market measures, ecological compensation mechanisms have significant advantages in marine ecological environment management. Based on the study of the current development of ecological compensation mechanisms in China, through the analysis of the connotation of marine ecological civilization, existing marine ecological protection practices and marine environmental management methods, this paper posits that the current marine ecological environment management in China should be established on the basis of ecological compensation mechanisms. At present, a lack of laws and regulations for overall marine ecological environment management is the key factor restricting the practice of marine ecological environment management. Therefore, it is necessary to explore the current path of marine ecological environment management in China from the perspective of the construction of legal system of ecological compensation law, the establishment of ecological compensation fees, ecological taxes and ecological compensation fund systems, and the clear status for a marine ecological management and supervision body.

  4. Ecological Econophysics for Degrowth

    OpenAIRE

    Salvador Pueyo

    2014-01-01

    This paper outlines a synthesis of ecological economics with econophysics and other complexity approaches to economics. Arguably, the resulting “ecological econophysics” will be scientifically sounder than mainstream economics and much better suited to addressing a major challenge of our times: the development of democratically-based policies to reduce economic throughput to an environmentally sustainable level without triggering economic crises and without excluding part of the world’s popul...

  5. ECOLOGICAL WEED MANAGEMENT

    OpenAIRE

    Radicetti, Emanuele

    2012-01-01

    Nowadays there is much concern over environmental and human health impacts on weed management practices which has led agricultural producers and scientists in many countries to seek innovative strategies for weed control. As weed management systems are being developed, ecological knowledge will become more and more important and the complexity of weed management must be considered. Therefore understanding weed-crop ecology will lead to more effective weed prevention, management, and control t...

  6. Ecological thinking: Four qualities

    OpenAIRE

    Kelly, James G.

    2010-01-01

    The article proposes a journey on the ecological premises or attributes of ecological thinking. Identifies its four main qualities and probes to demonstrate how at present there is some empirical evidence upon which such premises may be anchored. The first is focused on the interdependencies of persons and social environments, the second is that research methodologies may be congruent with the culture of place, the third that to the community psychologist is required t...

  7. Translational ecology for hydrogeology.

    Science.gov (United States)

    Schlesinger, William H

    2013-01-01

    Translational ecology--a special discipline aimed to improve the accessibility of science to policy makers--will help hydrogeologists contribute to the solution of pressing environmental problems. Patterned after translational medicine, translational ecology is a partnership to ensure that the right science gets done in a timely fashion, so that it can be communicated to those who need it. © 2013, National Ground Water Association.

  8. Ecological Perspectives in HCI

    DEFF Research Database (Denmark)

    Blevis, Eli; Bødker, Susanne; Flach, John

    The aim of the workshop is to provide a forum for researchers and practitioners to discuss the present and future of ecological perspectives in HCI. The participants will reflect on the current uses and interpretations of “ecology” and related concepts in the field. The workshop will assess...... the potential of ecological perspectives in HCI for supporting rich and meaningful analysis, as well as innovative design, of interactive technologies in real-life contexts...

  9. Morality problems in ecology

    Directory of Open Access Journals (Sweden)

    R. M. Abakarova

    2010-01-01

    Full Text Available Having been defined the position of morality in the modern ecological space it was found that ecological crisis increases because of spirit crisis, education crisis and human crisis. Defining the different levels of human spirituality it is revealed that at the highest level the nature is perceived as a human value, a value just as for people living in it.

  10. Predictive ecology: systems approaches.

    Science.gov (United States)

    Evans, Matthew R; Norris, Ken J; Benton, Tim G

    2012-01-19

    The world is experiencing significant, largely anthropogenically induced, environmental change. This will impact on the biological world and we need to be able to forecast its effects. In order to produce such forecasts, ecology needs to become more predictive--to develop the ability to understand how ecological systems will behave in future, changed, conditions. Further development of process-based models is required to allow such predictions to be made. Critical to the development of such models will be achieving a balance between the brute-force approach that naively attempts to include everything, and over simplification that throws out important heterogeneities at various levels. Central to this will be the recognition that individuals are the elementary particles of all ecological systems. As such it will be necessary to understand the effect of evolution on ecological systems, particularly when exposed to environmental change. However, insights from evolutionary biology will help the development of models even when data may be sparse. Process-based models are more common, and are used for forecasting, in other disciplines, e.g. climatology and molecular systems biology. Tools and techniques developed in these endeavours can be appropriated into ecological modelling, but it will also be necessary to develop the science of ecoinformatics along with approaches specific to ecological problems. The impetus for this effort should come from the demand coming from society to understand the effects of environmental change on the world and what might be performed to mitigate or adapt to them.

  11. [Ecological footprint and available ecological capacity in Chongqing region].

    Science.gov (United States)

    Sun, Fan; Mong, Linbing

    2005-07-01

    Based on the statistical data of Chongqing, the ecological footprint of Chongqing was calculated in this paper. The results showed that the per capita ecological footprint was 1.653566 hm2, per capita ecological capacity was 0.280393 hm2, and ecological surplus of deficit was 1.373173 hm2. The per capita ecological footprint was 0.5335 hm2 (47.64%) higher but the per capita ecological capacity was 0.5196 hm2 (64.95%) lower, and the ecological surplus of deficit was about 3.43 times of the average national level. These results showed that the ecological footprint of Chongqing was beyond the available ecological capacity, and its social and economic development was not sustainable. The strategies on reducing ecological deficit in this region, such as reducing ecosystem population, increasing public finance income, and controlling environmental pollution, were also put forward.

  12. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  13. Gastrointestinal Physiology and Function.

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C; Grundy, David

    2017-01-01

    The gastrointestinal (GI) system is responsible for the digestion and absorption of ingested food and liquids. Due to the complexity of the GI tract and the substantial volume of material that could be covered under the scope of GI physiology, this chapter briefly reviews the overall function of the GI tract, and discusses the major factors affecting GI physiology and function, including the intestinal microbiota, chronic stress, inflammation, and aging with a focus on the neural regulation of the GI tract and an emphasis on basic brain-gut interactions that serve to modulate the GI tract. GI diseases refer to diseases of the esophagus, stomach, small intestine, colon, and rectum. The major symptoms of common GI disorders include recurrent abdominal pain and bloating, heartburn, indigestion/dyspepsia, nausea and vomiting, diarrhea, and constipation. GI disorders rank among the most prevalent disorders, with the most common including esophageal and swallowing disorders, gastric and peptic ulcer disease, gastroparesis or delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Many GI disorders are difficult to diagnose and their symptoms are not effectively managed. Thus, basic research is required to drive the development of novel therapeutics which are urgently needed. One approach is to enhance our understanding of gut physiology and pathophysiology especially as it relates to gut-brain communications since they have clinical relevance to a number of GI complaints and represent a therapeutic target for the treatment of conditions including inflammatory diseases of the GI tract such as IBD and functional gut disorders such as IBS.

  14. Pioneering in gravitational physiology

    Science.gov (United States)

    Soffen, G. A.

    1983-01-01

    Gravity affects biology at almost all levels above that of the cell organelle. Attention is presently given to progress made in the understanding of gravitational effects through studies employing centrifuges, clinostats, inverted preparations, linear devices, water immersion, free fall, and short- and long-term spaceflight. The cardiovascular changes which cause malaise and illness during the first few days of extended space missions are the direct result of fluid translocation from the lower extremities. Upon reentry, there is hypovolumnia and a cardiovascular deconditioning that can include tachycardia, changes in arterial blood pressure, narrow pulse pressure, and syncope. Attention is also given to NASA's gravitational physiology reseach program.

  15. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...

  16. Starting physiology: bioelectrogenesis.

    Science.gov (United States)

    Baptista, Vander

    2015-12-01

    From a Cartesian perspective of rational analysis, the electric potential difference across the cell membrane is one of the fundamental concepts for the study of physiology. Unfortunately, undergraduate students often struggle to understand the genesis of this energy gradient, which makes the teaching activity a hard task for the instructor. The topic of bioelectrogenesis encompasses multidisciplinary concepts, involves several mechanisms, and is a dynamic process, i.e., it never turns off during the lifetime of the cell. Therefore, to improve the transmission and acquisition of knowledge in this field, I present an alternative didactic model. The design of the model assumes that it is possible to build, in a series of sequential steps, an assembly of proteins within the membrane of an isolated cell in a simulated electrophysiology experiment. Initially, no proteins are inserted in the membrane and the cell is at a baseline energy state; the extracellular and intracellular fluids are at thermodynamic equilibrium. Students are guided through a sequence of four steps that add key membrane transport proteins to the model cell. The model is simple at the start and becomes progressively more complex, finally producing transmembrane chemical and electrical gradients. I believe that this didactic approach helps instructors with a more efficient tool for the teaching of the mechanisms of resting membrane potential while helping students avoid common difficulties that may be encountered when learning this topic. Copyright © 2015 The American Physiological Society.

  17. Making ecological models adequate

    Science.gov (United States)

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  18. Marx, Engels and Ecology

    Directory of Open Access Journals (Sweden)

    Michael Löwy

    2017-11-01

    Full Text Available This is a brief survey of Marx and Engels’ views on ecology, from the viewpoint of their relevance for 21th Century ecosocialism. While there are some serious limitations in the way both consider the “development of productive forces”, there are powerfull insights in their discussion of the destructive consequences of capitalist expansion for the environment - an expansion that generates a disastrous metabolic rift in the exchanges between human societies and nature. Some ecological Marxists distinguish between “first stage ecosocialists” - who believe that Marx analyses on ecological issues are too incomplete and dated to be of real relevance today - and “second stage ecosocialists” that emphasize the contemporary methodological significance of Marx’s ecological critique of capitalism. This paper tries to argue for a third position (which probably could be accepted by several people of the two groups above: Marx and Engels discussion on ecological issues is incomplete and dated, but inspite these shortcomings, it has real relevance and methodological significance today.

  19. Ecology of Bacillaceae.

    Science.gov (United States)

    Mandic-Mulec, Ines; Stefanic, Polonca; van Elsas, Jan Dirk

    2015-04-01

    Members of the family Bacillaceae are among the most robust bacteria on Earth, which is mainly due to their ability to form resistant endospores. This trait is believed to be the key factor determining the ecology of these bacteria. However, they also perform fundamental roles in soil ecology (i.e., the cycling of organic matter) and in plant health and growth stimulation (e.g., via suppression of plant pathogens and phosphate solubilization). In this review, we describe the high functional and genetic diversity that is found within the Bacillaceae (a family of low-G+C% Gram-positive spore-forming bacteria), their roles in ecology and in applied sciences related to agriculture. We then pose questions with respect to their ecological behavior, zooming in on the intricate social behavior that is becoming increasingly well characterized for some members of Bacillaceae. Such social behavior, which includes cell-to-cell signaling via quorum sensing or other mechanisms (e.g., the production of extracellular hydrolytic enzymes, toxins, antibiotics and/or surfactants) is a key determinant of their lifestyle and is also believed to drive diversification processes. It is only with a deeper understanding of cell-to-cell interactions that we will be able to understand the ecological and diversification processes of natural populations within the family Bacillaceae. Ultimately, the resulting improvements in understanding will benefit practical efforts to apply representatives of these bacteria in promoting plant growth as well as biological control of plant pathogens.

  20. Recent advances in primate nutritional ecology.

    Science.gov (United States)

    Righini, Nicoletta

    2017-04-01

    Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a

  1. Single Cell Physiology

    Science.gov (United States)

    Neveu, Pierre; Sinha, Deepak Kumar; Kettunen, Petronella; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    The possibility to control at specific times and specific places the activity of biomolecules (enzymes, transcription factors, RNA, hormones, etc.) is opening up new opportunities in the study of physiological processes at the single cell level in a live organism. Most existing gene expression systems allow for tissue specific induction upon feeding the organism with exogenous inducers (e.g., tetracycline). Local genetic control has earlier been achieved by micro-injection of the relevant inducer/repressor molecule, but this is an invasive and possibly traumatic technique. In this chapter, we present the requirements for a noninvasive optical control of the activity of biomolecules and review the recent advances in this new field of research.

  2. Ecological city planning

    Directory of Open Access Journals (Sweden)

    Salvador Rueda

    2013-07-01

    Full Text Available A territory, a city, a neighbourhood are all ecosystems; a mixture of chemico-physical and organic elements related to each other. That which defines an ecological system is the set of rules and characteristics which condition its relationships, and its duration in time is guaranteed by its efficiency and internal organization which applied to the city is translated in the reduction of the use of natural resources and in the increase of social organization. To increase the efficiency of the urban systems is the necessary condition for the formulation of ecological city planning favouring the maximum liveability of sites. Liveability is directly correlated to the optimization of numerous elements (public space, equipment, services, building techniques, innovative technology, social cohesion, biodiversity. To carry out such objectives, ecological city planning proposes a new model of town planning on three levels (subsoil, ground level, and upper level.

  3. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...... contains papers which cover other themes thus continuing with the spirit of the meetings in the Nordic Benthological Society (NORBS) by being an open forum for exchanging knowledge on all aspects of benthic ecology. Overall, we feel the proceeding contains a wide selection of very interesting papers...... representing the state-of-the-art of benthic ecology research within, and to a lesser degree, outside the Nordic countries. We wish to thank all the authors for their inspirational contributions to the proceeding, but we feel that a special thanks is due to the invited speakers for their readiness to produce...

  4. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  5. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    Directory of Open Access Journals (Sweden)

    Tye A Nichols

    Full Text Available Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field on a coastal marine fish (the giant kelpfish, Heterostichus rostratus were investigated by measuring the stress responses (cortisol concentration of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound. These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur.

  6. Ecological Communities by Design

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, James K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-26

    In synthetic ecology, a nascent offshoot of synthetic biology, scientists aim to design and construct microbial communities with desirable properties. Such mixed populations of microorganisms can simultaneously perform otherwise incompatible functions. Compared with individual organisms, they can also better resist losses in function as a result of environmental perturbation or invasion by other species. Synthetic ecology may thus be a promising approach for developing robust, stable biotechnological processes, such as the conversion of cellulosic biomass to biofuels. However, achieving this will require detailed knowledge of the principles that guide the structure and function of microbial communities.

  7. Art, Ecology and Institutions

    DEFF Research Database (Denmark)

    Witzke, Anne Sophie

    2013-01-01

    The discourse of ecology and sustainability has gained critical traction in recent years. But how are these concepts framed within the space, language and idea of the exhibition? This panel discussion, moderated by Steven Lam and conducted by email in July 2012, sought to unpack the claims...... and limits of the ecological, looking specifically at various international case studies, within the practice of curatorial and exhibition studies. The discussion begins with a reflection on ‘DON'T/PANIC’ in Durban and ‘Rethink – Contemporary Art and Climate Change’ in Copenhagen, exhibitions that were...

  8. Ecological recovery in ERA

    DEFF Research Database (Denmark)

    EFSA Scientific Committee (Scientific Committee); Topping, Christopher John

    2016-01-01

    EFSA performs environmental risk assessments (ERAs) for single potential stressors such as plant protection products, genetically modified organisms and feed additives and for invasive alien species that are harmful for plant health. In this risk assessment domain, the EFSA Scientific Committee...... ecological recovery for any assessed products, and invasive alien species that are harmful for plant health. This framework proposes an integrative approach based on well-defined specific protection goals, scientific knowledge derived by means of experimentation, modelling and monitoring, and the selection...... of focal taxa, communities, processes and landscapes to develop environmental scenarios to allow the assessment of recovery of organisms and ecological processes at relevant spatial and temporal scales....

  9. Physiological Monitoring in Diving Mammals

    Science.gov (United States)

    2015-09-30

    northern elephant seals." Ecological Monographs 70(3): 353-382. 15 Le Boeuf, B. J., Y. Naito, A. C. Huntley and T. Asaga (1989). "Prolonged...Journal of Zoology 66: 446- 458. Le Boeuf, B. J., D. E. Crocker, D. P. Costa, S. B. Blackwell, P. M. Webb and D. S. Houser (2000). "Foraging ecology of

  10. Beyond positivist ecology: toward an integrated ecological ethics.

    Science.gov (United States)

    Norton, Bryan G

    2008-12-01

    A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.

  11. THE AUTOIMMUNE ECOLOGY.

    Directory of Open Access Journals (Sweden)

    Juan-Manuel eAnaya

    2016-04-01

    Full Text Available Autoimmune diseases (ADs represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology, which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation. As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology. In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics to favor or protect against autoimmunity and its outcomes. Herein we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status, gender and sex hormones, vitamin D, organic solvents and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.

  12. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  13. Southwestern Grassland Ecology

    Science.gov (United States)

    Paulette L. Ford; Deborah U. Potter; Rosemary Pendleton; Burton Pendleton; Wayne A. Robbie; Gerald J. Gottfried

    2004-01-01

    This chapter provides a brief overview, and selected in-depth coverage, of the factors and processes that have formed, and continue to shape, our Southwestern grasslands. In general, this chapter looks at how distributions of grasslands are regulated by soils and climate, and modified by disturbance (natural and/or anthropogenic). The attendant ecological components of...

  14. Ecology and Sustainable Development

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Ecology and Sustainable Development. M D Subash Chandran. Book Review Volume 7 Issue 11 November 2002 pp 80-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/11/0080-0081 ...

  15. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  16. Towards ecological autarky

    NARCIS (Netherlands)

    Dr. Michel van Dartel; dr. Anne Nigten

    2014-01-01

    While the notion of autarky is often contested in terms of feasibility and desirability, art and design projects that deal with autarky seem to moreover suggest positive socio-cultural and ecological effects of autarkic living. A social network model of autarky is introduced to unify these seemingly

  17. Breeding Ecology of Birds

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/008/07/0022-0032. Keywords. Birds. nesting. territory; coloniality; heronries. ecology; nesting strategies. Author Affiliations. Abdul Jamil Urfi1. Department of Environmental Biology, School of Environmental Studies, University of Delhi, Delhi 110007. Resonance – Journal of Science ...

  18. History and Ecological Education.

    Science.gov (United States)

    Cherif, Abour H.

    1988-01-01

    Discusses the main objectives of ecohistory and sources of information for this study. Details five themes that are important for students to know about the history of ecology including the history of Earth, fauna and flora, the human species, human civilization, and changes in the human environment. (CW)

  19. Urban Sound Ecologies

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh; Samson, Kristine

    2013-01-01

    . The article concludes that the ways in which recent sound installations work with urban ecologies vary. While two of the examples blend into the urban environment, the other transfers the concert format and its mode of listening to urban space. Last, and in accordance with recent soundscape research, we point...

  20. Our Ecological Footprint.

    Science.gov (United States)

    Wackernagel, Mathis; Rees, William

    1996-01-01

    Defines an ecological footprint as the land that would be required on this planet to support a certain group's current lifestyle forever. Shows that the United States and southern Canada consume far more energy, materials, foods, and services per capita than the rest of the world population. Suggests numerous activities to raise awareness of the…

  1. Evolving digital ecological networks.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    Full Text Available "It is hard to realize that the living world as we know it is just one among many possibilities" [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved.

  2. Outdoor Ecology School

    Science.gov (United States)

    Cole, Anna Gahl

    2004-01-01

    In this article, the author describes how her high school environmental science students led third graders on a dynamic learning adventure as part of their first annual Outdoor Ecology School. At the water-monitoring site in a nearby national forest, the elementary students conducted field research and scavenger hunts, discovered animal habitats,…

  3. Activity Book: Ocean Ecology.

    Science.gov (United States)

    Learning, 1992

    1992-01-01

    Presents a collection of activities to help elementary students study ocean ecology. The activities have students investigate ocean inhabitants, analyze animal adaptations, examine how temperature and saltiness affect ocean creatures, and learn about safeguarding the sea. Student pages offer reproducible learning sheets. (SM)

  4. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.|info:eu-repo/dai/nl/41327697X; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  5. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  6. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    Science.gov (United States)

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  7. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  8. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  9. Physiology Considerations in Geriatric Patients.

    Science.gov (United States)

    Alvis, Bret D; Hughes, Christopher G

    2015-09-01

    Physiology changes at the structural, functional, and molecular levels as people age, and every major organ system experiences physiologic change with time. The changes to the nervous system result mostly in cognitive impairments, the cardiovascular system develops higher blood pressures with lower cardiac output, the respiratory system undergoes a reduction of arterial oxyhemoglobin levels, the gastrointestinal system experiences delayed gastric emptying and reduction of hepatic metabolism, and the renal system experiences a diminished glomerular filtration rate. Combined, these changes create a complex physiologic condition. This unique physiology must be taken into consideration for geriatric patients undergoing general anesthesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Hemorrhagic shock: The "physiology approach"

    Directory of Open Access Journals (Sweden)

    Fabrizio Giuseppe Bonanno

    2012-01-01

    Full Text Available A shift of approach from ′clinics trying to fit physiology′ to the one of ′physiology to clinics′, with interpretation of the clinical phenomena from their physiological bases to the tip of the clinical iceberg, and a management exclusively based on modulation of physiology, is finally surging as the safest and most efficacious philosophy in hemorrhagic shock. ATLS® classification and recommendations on hemorrhagic shock are not helpful because antiphysiological and potentially misleading. Hemorrhagic shock needs to be reclassified in the direction of usefulness and timing of intervention: in particular its assessment and management need to be tailored to physiology.

  11. Brain Physiology: Research and Theory.

    Science.gov (United States)

    Esler, William K.

    1982-01-01

    Indicates how research about the physiology and chemistry of the brain verifies the educational applications of Piaget's theory. Discusses maturation, experience, social transmission, and equilibration. (Author/DC)

  12. Egg activation in physiological polyspermy

    National Research Council Canada - National Science Library

    Iwao, Yasuhiro

    2012-01-01

    .... While most animals exhibit monospermy, which is ensured by polyspermy blocks to prevent the entry of extra sperm into the egg at fertilization, several animals exhibit physiological polyspermy...

  13. Valuation of ecological resources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  14. Smolt physiology and endocrinology

    Science.gov (United States)

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  15. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  16. Physiology in Modelica

    Directory of Open Access Journals (Sweden)

    Marek Mateják

    2014-05-01

    Full Text Available Modelica is an object-oriented language, in which models can be created and graphically represented by connecting instances of classes from libraries. These connections are not only assignments of values; they can also represent acausal equality. Even more, they can model Kirchhoff’s laws of circuits. In Modelica it is possible to develop library classes which are an analogy of electrical circuit components. The result of our work in this field is Physiolibrary (www.physiolibrary.org – a free, open-source Modelica library for human physiology. By graphical joining instances of Physiolibrary classes, user can create models of cardiovascular circulation, thermoregulation, metabolic processes, nutrient distribution, gas transport, electrolyte regulation, water distribution, hormonal regulation and pharmacological regulation. After simple setting of the parameters, the models are ready to simulate. After simulation, the user can examine variables as their values change over time. Representing the model as a diagram has also great educational advantages, because students are able to better understand physical principles when they see them modeled graphically.

  17. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments

    OpenAIRE

    Koussoroplis, Apostolos-Manuel; Pincebourde, Sylvain; Wacker, Alexander

    2017-01-01

    International audience; Understanding how variance in environmental factors affects physiological performance , population growth, and persistence is central in ecology. Despite recent interest in the effects of variance in single biological drivers, such as temperature, we have lacked a comprehensive framework for predicting how the variances and covariances between multiple environmental factors will affect physiological rates. Here, we integrate current theory on variance effects with co-l...

  18. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology

    OpenAIRE

    Seebacher, Frank; Franklin, Craig E.

    2012-01-01

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causa...

  19. The redoubtable ecological periodic table

    Science.gov (United States)

    Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...

  20. Ecological zones of California deserts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset delineates ecological zones within California deserts. We derived ecological zones by reclassifying LANDFIRE vegetation biophysical setting types, plus...

  1. Framework for Ecological Risk Assessment

    Science.gov (United States)

    This is the first step in a long-term effort to develop risk assessment guidelines for ecological effects. Its primary purpose is to offer a simple, flexible structure for conducting and evaluating ecological risk assessment within EPA.

  2. Applied physiology of cycling.

    Science.gov (United States)

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  3. The Very Large Ecological Array

    Science.gov (United States)

    Hamilton, M. P.; Dawson, T. E.; Thompson, S. E.

    2011-12-01

    -temporal variability is necessary to understand how changes in environmental forcing affects the biophysical functioning of the landscape and, ultimately, the consequences of this variability for organism and community responses (e.g. niche distribution, plant phenology and physiology, or animal behavior). This work will allow VeLEA to meet its goal of targeting observations on representative or sensitive locations for ecosystem change, and to link observed ecological changes to exogenous variability.

  4. Hanford Site Ecological Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    Bilyard, Gordon R.; Sackschewsky, Michael R.; Tzemos, Spyridon

    2002-02-17

    This report reviews the ecological quality profile methodology and results for the Hanford Site. It covers critical ecological assets and terrestrial resources, those in Columbia River corridor and those threatened and engdangered, as well as hazards and risks to terrestrial resources. The features of a base habitat value profile are explained, as are hazard and ecological quality profiles.

  5. The Social-Ecological Ideal.

    Science.gov (United States)

    Gaidamak, A.; Tiittanen, T.

    1992-01-01

    Argues that it is essential for preschool education to explore environmental and ecological values. Discusses cognitive development of socio-ecological knowledge at three age levels. Asserts that folk tales provide good examples of ecological values because beauty usually triumphs over ugliness and good over evil. (CFR)

  6. Challenges of ecological restoration

    DEFF Research Database (Denmark)

    Halme, Panu; Allen, Katherine A.; Aunins, Ainars

    2013-01-01

    The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many...... ecosystem services remain at high level. However, extensive areas of northern forests are heavily exploited and have lost a major part of their biodiversity value. There is a strong requirement to restore these areas towards a more natural condition in order to meet the targets of the Convention...... on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here...

  7. Fundamental ecology is fundamental.

    Science.gov (United States)

    Courchamp, Franck; Dunne, Jennifer A; Le Maho, Yvon; May, Robert M; Thébaud, Christophe; Hochberg, Michael E

    2015-01-01

    The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Chasing Ecological Interactions.

    Science.gov (United States)

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  9. Socio-Ecological Innovation

    DEFF Research Database (Denmark)

    Edgeman, Rick; Eskildsen, Jacob Kjær

    is part of the enterprise cultural fabric, is foundational to enterprise strategy, and contributes to the financial security of the enterprise. Innovation for Sustainability is innovation that is specifically targeted to address ecological and / or societal considerations. That is, Innovation......Socio‐Ecological Innovation or SEI is innovation resulting from strategic integration of sustainable innovation and innovation for sustainability. In particular SEI is regarded as critical to organizations intent on progressing toward Sustainable Enterprise Excellence (SEE) and, indeed, progressing...... toward the asymptotic goal of becoming a continuously relevant and responsible organization (CR2O). Sustainable Innovation is something that is attained only when innovation in an enterprise is regular, systematic, and systemic to the endeavors of the enterprise itself – that is – Sustainable Innovation...

  10. Mechanismic explanation in ecology

    OpenAIRE

    González del Solar, Rafael

    2016-01-01

    La ecología es una ciencia importante, tanto desde el punto de vista práctico como desde el teórico, que recientemente ha comenzado a atraer la atención de los filósofos profesionales. Con todo, la investigación sobre los fundamentos filosóficos de la ecología, en particular sobre sus prácticas explicativas, está aún poco desarrollada; y ello pese a que los propios ecólogos perciben que el debate sobre la explicación ecológica es importante. En esta tesis doctoral comparo las principales tesi...

  11. Crinoid Ecological Morphology

    Science.gov (United States)

    Baumiller, Tomasz K.

    2008-05-01

    Recent studies of crinoids reveal that their connective tissue, known to be mutable, is also contractile, and that certain stalked taxa are capable of crawling and subject to predation by cidaroid sea urchin. Aspects of crinoid functional morphology, ecology, and paleobiology are reviewed in the context of these findings. Mutability and contractility of ligament are important to autotomy, posture maintenance, and motility, and those, in turn, are shown to play a role in how crinoids acquire nutrients, select habitats and respond to predation pressure. A review of predation on crinoids supports the view that it is ecologically significant. Motility, a trait critical for handling predation pressure by stalkless crinoids, is shown to play an analogous role in stalked crinoids. The distribution of traits required for motility among extant and fossil crinoids reveals that their frequency increased dramatically following the Permo-Triassic extinction, with low values characterizing the Paleozoic and high values characterizing the post-Paleozoic.

  12. Editorial: Pedagogical Media Ecologies

    Directory of Open Access Journals (Sweden)

    Dorothee M. Meister

    2014-07-01

    Full Text Available From educational gaming through portable e-readers to cell phones, media are interpenetrating educational spaces and activities. Accordingly, understanding media in environmental or ecological terms has become increasingly important for education internationally. In North America, for example, the centenary of McLuhan’s birth has focused attention on approaches to media – whether oral, textual, electronic or digital– as a kind of environment in which education takes place. In parts of Europe, the so-called mediatic turn – following on the linguistic and iconic turns – has similarly emphasized the role of media as a condition for the possibility of educational activities and programs. With a few exceptions1 the papers in this special issue were first presented at the conference «Educational Media Ecologies: International Perspectives» which took place at the University of Paderborn, Germany, on March 27–28, 2012.2 The event was an interdisciplinary and transatlantic endeavor to bring together a wide range of perspectives on various issues relevant to educational media ecologies,3 and on related debates on mediation, medialization, mediatization, and mediality.4 The purpose of this volume, like the conference, is to foster and deepen international dialogue in the area of educational media. Areas of research and scholarship relevant to this dialogue include educational media, media literacy, educational philosophy, and media and cultural studies. The contributions, described below, put conceptual issues as well as social practices and applications at the center of the debate. Klaus Rummler opens the issue by clarifying the concept of ecology itself. Referencing a range of work over the past 50 years, Rummler describes how ecological models have been cast in sociological, semiotic, cultural, mediatic and other terms, and he explains the implications of these various perspectives for the study of educational contexts. Rummler also

  13. Ecology of prokaryotic viruses.

    Science.gov (United States)

    Weinbauer, Markus G

    2004-05-01

    The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.

  14. Groundwater ecology literature review

    OpenAIRE

    Maurice, L.

    2009-01-01

    Groundwater ecology is the study of ecosystems that occur in the subsurface within groundwater. Groundwater often contains a diverse range of organisms, and those that live in groundwater and generally do not live above the ground surface are called Stygobites. Stygobites species come from several different taxonomic groups of animals. Many animals found in groundwater are Crustaceans (Copepoda, Ostracoda, Amphipoda, Isopoda, Syncarida, Cladocera) but species of Oligocheata and...

  15. Building doctoral ecologies

    DEFF Research Database (Denmark)

    Bengtsen, Søren Smedegaard

    2018-01-01

    During the recent years doctoral education has ultimately left its seclusion within the disciplines and become part of national and global policy agendas, claimed to ensure societal welfare and financial growth. As a consequence more resources have been allocated to the formalization and professi......, and discusses how institutions and doctoral programmes could use such sprawling spaces for learning to build doctoral ecologies and to strengthening existentially based pedagogies within doctoral education....

  16. Physiological plasticity increases resilience of ectothermic animals to climate change

    Science.gov (United States)

    Seebacher, Frank; White, Craig R.; Franklin, Craig E.

    2015-01-01

    Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.

  17. Ecological Econophysics for Degrowth

    Directory of Open Access Journals (Sweden)

    Salvador Pueyo

    2014-05-01

    Full Text Available This paper outlines a synthesis of ecological economics with econophysics and other complexity approaches to economics. Arguably, the resulting “ecological econophysics” will be scientifically sounder than mainstream economics and much better suited to addressing a major challenge of our times: the development of democratically-based policies to reduce economic throughput to an environmentally sustainable level without triggering economic crises and without excluding part of the world’s population, i.e., to implement degrowth. Degrowth will need major structural changes, which leads us to question whether there are limits to the malleability of the economic system’s architecture. A fundamental limit will be encountered if, as suggested by the physics of complexity, long-lasting complex systems always occur midway between an ordered and a disordered state. There is much evidence that this hypothesis holds and that the current economic system satisfies this condition. However, this does not mean that the problems posed by this system should be unavoidable. Ecological econophysics gives clues to identifying alternative economic systems that would also function between order and chaos, but which would have radically different implications for environmental sustainability and social justice.

  18. Resilience Through Ecological Network

    Directory of Open Access Journals (Sweden)

    Grazia Brunetta

    2014-05-01

    Full Text Available The paper explores the strategic role that urban biodiversity and ecosystem services management, natural infrastructure and adaptive governance approaches can play in making our economies and societies more resilient and in linking human societies and the natural environment. Resilience – a concept that entered the debate on urban governance – means the ability of urban systems, considered as linear-systems, to react to external disturbances by returning to some socio-ecological equilibrium steady-state by overcoming a crisis period (Gunderson & al. 2010, Newman & al. 2009. In this view, green infrastructures can assume a strategic role in restoring and enhancing the ecological and environmental livability in urban areas. Starting from the International and European context, the paper discusses innovative programs and interdisciplinary projects and practices (some cases in Turin Metropolitan Area to demonstrate how green infrastructures can increase the adaptive capacity of urban systems in term of resilience. They can contribute to increase the ability of European cities to adapt to climate change and to reduce their ecological footprints, to enhance security and life quality.

  19. Behavioural ecology's ethological roots.

    Science.gov (United States)

    Bolduc, Jean-Sébastien

    2012-09-01

    Since Krebs and Davies's (1978) landmark publication, it is acknowledged that behavioural ecology owes much to the ethological tradition in the study of animal behaviour. Although this assumption seems to be right-many of the first behavioural ecologists were trained in departments where ethology developed and matured-it still to be properly assessed. In this paper, I undertake to identify the approaches used by ethologists that contributed to behavioural ecology's constitution as a field of inquiry. It is my contention that the current practices in behavioural biology owe ethology something much subtler than the simple transposition of Tinbergen's Four Problems for heuristic purposes. Demonstrating what ethology inherited from the long naturalist tradition shows the tensions that strained the field and that later led to the loss of both its unity and its specificity. It also allows for a precise delineating of what behavioural ecology picked up from the ethological practice, and it helps to cast some light on the introduction of economical thinking in behavioural sciences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Ecology and health.

    Science.gov (United States)

    Monge, C

    1978-01-01

    Health is commonly conceived as having fixed and universal aims, while conditions interposed by environmental and cultural conditions are often ignored or at least shunted to one side. Rejecting this point of view, the author asserts that health in any society should be defined in terms of ecological reality--that is, in terms of the cultural and environmental variables affecting the population. He also notes that acceptance of this concept does not imply perpetuation of a natural but static situation. Rather, it implies searching for ways to improve the situation without necessarily striving for international goals that may be unsuitable or impossible to achieve. The concept also implies that we should ask how to define a satisfactory health level for a given set of conditions--and then consider how to achieve that level. The search for answers to these questions and subsequent programs based on the results will require a multidisciplinary approach. Within this context two PAHO facilities, the Pan American Center for Human Ecology and Health (ECO) and the Pan American Center and Engineering and Environmental Sciences (CEPIS), can provide strong support for activities in the Americas. Specifically, ECO is in a good position to collaborate on ecological planning, model-building, and research evaluation, while CEPIS is geared to provide advice and assistance in the key field of environmental sanitation.

  1. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  2. Physiology of Alpine skiing.

    Science.gov (United States)

    Andersen, R E; Montgomery, D L

    1988-10-01

    Physiological profiles of elite Alpine skiers reveal the importance of muscular strength, anaerobic power, anaerobic endurance, aerobic endurance, coordination, agility, balance, and flexibility. On-hill snow training and dryland training programmes should focus on the elevation of these fitness components. Physical characteristics of elite skiers reveal an average height and body mass. Today, successful skiers are taller and heavier than their predecessors. Slalom skiers tend to be leaner than skiers in other events while the downhill racers are the heaviest. Elite skiers have strong legs when peak torque is measured during isometric and isokinetic conditions involving knee extension, which may be a specific adaptation since the skier is in a crouched position for a prolonged period when racing. Leg strength correlates significantly with performance in the downhill and giant slalom events. The glycolytic contribution in the slalom and giant slalom events is about 40% of the total energy cost. Following a race, blood lactate concentration averages 9 to 13 mmol/L. A muscle lactate concentration of 24 mmol/kg wet muscle tissue has been reported. Elite skiers have higher lactate values than advanced or novice skiers. The aerobic demands of competitive Alpine skiing may approach (90 to 95%) of the athlete's maximal aerobic power. Maximal heart rate is achieved during the latter part of the race. Elite skiers have a high VO2max. This may reflect their training programme and not the actual demands of the sport. When turning, muscular activity acts to impede blood flow and oxygen delivery. As a consequence, anaerobic metabolism is increased. Glycogen studies show significant utilisation from both slow and fast twitch muscle fibres. Skilled and unskilled skiers differ with respect to glycogen utilisation. Skilled skiers have greater glycogen depletion in the slow twitch fibres compared to unskilled skiers. Muscle glycogen decreases by about 32 mmol/kg wet muscle tissue

  3. New frontiers in nematode ecology.

    Science.gov (United States)

    Ferris, H

    1993-09-01

    Future areas of emphasis for research and scholarship in nematode ecology are indicated by pressing agricultural and environmental issues, by new directions in applied nematology, and by current technological advances. Studies in nematode ecology must extend beyond observation, counting, and simple statistical analysis. Experimentation and the testing of hypotheses are needed for understanding the biological mechanisms of ecological systems. Opportunities for fruitful experimentation in nematode ecology are emerging at the ecosystem, community, population, and individual levels. Nematode ecologists will best promote their field of study by closely monitoring and participating in the advances, initiatives, developments, and directions in the larger field of ecology.

  4. Ecology for a changing earth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.H. (New Mexico Univ., Albuquerque, NM (United States)); Roughgarden, J. (Stanford Univ., CA (United States))

    1990-02-06

    To forecast the ecological impact of global change, research initiatives are needed on the explicit role of humans in ecological systems, and on how ecological processes functioning at different spatial and temporal scales are coupled. Furthermore, to synthesize the results of ecological research for Congress, policymakers, and the general public, a new agency, called the United States Ecological Survey (USES) is urgently required. Also, a national commitment to environmental health, as exemplified by establishing a National Institutes of the Environment (NIE), should be a goal.

  5. European ecological networks and greenways

    DEFF Research Database (Denmark)

    Kristiansen, Ib; Jongman, Rob H.G.; Kulvik, Mart

    2004-01-01

    In the context of European integration, networks are becoming increasingly important in both social and ecological sense. Since the beginning of the 1990s, societal and scientific exchanges are being restructured as the conceptual approaches towards new nature conservation strategies have been...... renewed. Within the framework of nature conservation, the notion of an ecological network has become increasingly important. Throughout Europe, regional and national approaches are in different phases of development, which are all based on recent landscape ecological principles. Ecological networks....... This complex interaction between cultural and natural features results in quite different ways for the elaboration of ecological networks and greenways....

  6. International aspect of ecological innovations

    Directory of Open Access Journals (Sweden)

    Shkola Viktoriya Yurіyivna

    2016-12-01

    Full Text Available The article deals with the international aspect of ecological innovations. Today one of the most significant factors to achieve sustainable development in Ukraine is to activate the ecologically oriented innovative activity. This requires new approaches creation for the innovative processes management system at different economic levels. Ecological or “green” start-ups consist in realization of ideas by non-typical way, how it is possible to save ecology and to gain material benefits. All win in business-model of the similar projects: governments save on waste disposal, citizens are awarded for ecological way of life, and sponsors realize social responsibility.

  7. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish

    National Research Council Canada - National Science Library

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    .... In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus...

  8. Statistical ecology comes of age.

    Science.gov (United States)

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  9. Led by the nose: Olfaction in primate feeding ecology

    Science.gov (United States)

    Nevo, Omer; Heymann, Eckhard W

    2015-01-01

    Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance.1 This view shifted with the growing understanding of its role in social behavior2 and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents.3,4 Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates’ feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food. PMID:26267435

  10. Led by the nose: Olfaction in primate feeding ecology.

    Science.gov (United States)

    Nevo, Omer; Heymann, Eckhard W

    2015-01-01

    Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance. This view shifted with the growing understanding of its role in social behavior and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents. Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates' feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food. © 2015 The Authors Evolutionary Anthropology: Issues, News, and Reviews Published by Wiley Periodicals, Inc.

  11. [Regional ecological construction and mission of landscape ecology].

    Science.gov (United States)

    Xiao, Duning; Xie, Fuju; Wei, Jianbing

    2004-10-01

    The eco-construction on regional and landscape scale is the one which can be used to specific landscape and intercrossing ecosystem in specific region including performing scientific administration of ecosystem and optimizing environmental function. Recently, the government has taken a series of significant projects into action, such as national forest protection item, partly forest restoration, and adjustment of water, etc. Enforcing regional eco-construction and maintaining the ecology security of the nation have become the strategic requisition. In various regions, different eco-construction should be applied, for example, performing ecological safeguard measure in ecological sensitive zone, accommodating the ecological load in ecological fragile zone, etc., which can control the activities of human being, so that, sustainable development can be reached. Facing opportunity and challenge in the development of landscape ecology, we have some key topics: landscape pattern of ecological security, land use and ecological process, landscape changes under human activity stress, quantitative evaluation of the influence on human being activities, evaluation of zonal ecological security and advance warning of ecological risk, and planning and optimizing of model in landscape eco-construction.

  12. The aquadeb project (phase i): Analysing the physiological flexibility processes by using dynamic energy budgets.

    NARCIS (Netherlands)

    Alunno-Bruscia, M.; v.d. Veer, H.; Kooijman, S.A.L.M.

    2009-01-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within

  13. SIZE DOESN’T MATTER: MICROBIAL SELECTION EXPERIMENTS ADDRESS ECOLOGICAL PHENOMENA

    OpenAIRE

    Feldgarden, Michael; Stoebel, Daniel M.; Brisson, Dustin; Dykhuizen, Daniel E.

    2003-01-01

    Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yi...

  14. Physiological Studies of Lactococcus lactis

    DEFF Research Database (Denmark)

    Hansen, Gunda

    was found to facilitate the differentiation and accurate quantification of L. lactis cells in different physiological states, which agreed with the reproductive viability of reference samples and of exponential cells. The high viability of one particular L. lactis strain demonstrated its robustness during......, cell size comparison and pHi determination reflected the increasing physiological impairment during this accelerated stability test, while a preincubation in buffer led to inconsistent flow cytometric results. The comparison of reproductive and growth-independent viability suggested the presence......Aiming at a superior performance, survival and stability of dairy starter cultures requires deeper insights into physiological dynamics and relationships. This PhD thesis contributes to a more comprehensive physiological understanding of Lactococcus lactis under conditions encountered during...

  15. Olfaction: anatomy, physiology and behavior

    OpenAIRE

    Benignus, Vernon A.; Prah, James D.

    1982-01-01

    The anatomy, physiology and function of the olfactory system are reviewed, as are the normal effects of olfactory stimulation. It is speculated that olfaction may have important but unobtrusive effects on human behavior.

  16. Initiatives of Ecological Responsibility

    Directory of Open Access Journals (Sweden)

    Roman Sergeevich Volodin

    2015-12-01

    Full Text Available Preservation of environment is one of the global problems for the mankind. The concept of sustainable development presented at the governmental level in 1987 urged to fix at the interstate level the basic principles of development of humanity in harmony with the nature. The Charter signed in 1991 “Business and sustainable development” proclaimed a new stage of development of world entrepreneurship – business had to become ecologicallyoriented and to form the ecologically-oriented demand. In recent years it is possible to state the huge growth of technologies of effective environmental management, energy saving and energy efficiency. The leading world corporations include reduction of the ecological aspects in priority strategic objectives, as much as possible promoting transition to the use of green technologies. “Green” experience of the Western companies showed that reduction of influence on environment is not only the task of the state, but also the effective instrument to increase competitiveness of the organization. Besides the growth of favorable perception of the company by consumers, it receives considerable decrease in prime cost of the made production or the rendered services due to effective and economical use of natural resources. Russia is among the first countries who accepted the concept of sustainable development at the legislative level, nevertheless, only recently we can note that technologies of rational environmental management, energy saving and energy efficiency became one of priority problems of its development. In the present article the advanced methods of the state and private initiatives in the field of ecological responsibility are considered, and the methods of overcoming the new challenges are offered.

  17. Ecology Beyond Building

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    As the designers of the WWf building in Zeist, The Netherslands a CO2-neutral, self-sufficient office complex, RAU has set the bar for sustainable research and design. Guesteditor Terri Peters visited the firm's studio in Amsterdam to talk to principal Thomas Rau. As Peters relates, Rau prefers t...... to put on the dwindling supply of raw materials rather than the immidiate problems of energy consumption for which there are solutions within reach. With the emphasis on a more far-reaching approach, he places buildings in a wider context of ecological thinking and systems....

  18. Ecological model of extinctions

    CERN Document Server

    Abramson, G

    1997-01-01

    We present numerical results based on a simplified ecological system in evolution, showing features of extinction similar to that claimed for the biosystem on Earth. In the model each species consists of a population in interaction with the others, that reproduces and evolves in time. Each species is simultaneously a predator and a prey in a food chain. Mutations that change the interactions are supposed to occur randomly at a low rate. Extinctions of populations result naturally from the predator-prey dynamics. The model is not pinned in a fitness variable, and natural selection arises from the dynamics.

  19. Ecological Interface Design

    DEFF Research Database (Denmark)

    Vicente, Kim J.; Rasmussen, Jens

    1992-01-01

    A theoretical framework for designing interfaces for complex human-machine systems is proposed. The framework, called ecological interface design (EID), is based on the skills, rules, knowledge taxonomy of cognitive control. The basic goal of EID is twofold: first, not to force processing...... of other approaches to interface design indicates that EID has a unique and significant contribution to make. Third, the results of an initial empirical evaluation also provide some preliminary support for the EID framework. Some issues for future research are outlined....

  20. Conservation physiology of marine fishes: state of the art and prospects for policy

    DEFF Research Database (Denmark)

    McKenzie, David J.; Axelsson, Michael; Chabot, Denis

    2016-01-01

    broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however......The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes......; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could...

  1. [Ecological memory and its potential applications in ecology: a review].

    Science.gov (United States)

    Sun, Zhong-yu; Ren, Hai

    2011-03-01

    Ecological memory (EM) is defined as the capability of the past states or experiences of a community to influence the present or future ecological responses of the community. As a relatively new concept, EM has received considerable attention in the study of ecosystem structure and function, such as community succession, ecological restoration, biological invasion, and natural resource management. This review summarized the definition, components, and categories of EM, and discussed the possible mechanisms and affecting factors of EM. Also, the potential applications of EM were proposed, in order to further understand the mechanisms of community succession and to guide ecological restoration.

  2. Ecological and general systems an introduction to systems ecology

    CERN Document Server

    Odum, Howard T.

    1994-01-01

    Using an energy systems language that combines energetics, kinetics, information, cybernetics, and simulation, Ecological and General Systems compares models of many fields of science, helping to derive general systems principles. First published as Systems Ecology in 1983, Ecological and General Systems proposes principles of self-organization and the designs that prevail by maximizing power and efficiency. Comparisons to fifty other systems languages are provided. Innovative presentations are given on earth homeostasis (Gaia); the inadequacy of presenting equations without network relationships and energy constraints; the alternative interpretation of high entropy complexity as adaptive structure; basic equations of ecological economics; and the energy basis of scientific hierarchy.

  3. Regulatory physiology discipline science plan

    Science.gov (United States)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  4. LANGUAGE ECOLOGY AS LINGUISTIC THEORY

    Directory of Open Access Journals (Sweden)

    Mark Garner

    2017-07-01

    Full Text Available language ecology was proposed by Einar Haugen in 1972 as the study of the interaction of any given language and its environment. Despite some use of the term in the literature, sociolinguistics have failed to develop the potenstial that Haugen saw in an ecological approach. Recent developments in ecological thought, however; when applied to language, raise questions about many basic assumptions of conventional linguistics. For example, from an ecological perspective, language is not a rule-governed system, but a form of patterned behaviour arising from the needs of human socialtity: communication, culture, and community. As Haugen foresaw, language ecology offers an exciting alternative approach to linguistic theory. Key words: language ecology, patterned behaviour, holistic, dynamic, and interactive

  5. ECOLOGICAL GROWTH BOUNDARIES

    Directory of Open Access Journals (Sweden)

    Anna BLUSZCZ

    2017-01-01

    Full Text Available The trends of the society for the continuous growth, combined with the demographic changes, today have led to the important ecological problems on a global scale, which include, among others: the increased use of non-renewable natu-ral resources, an increase of the greenhouse gas emissions, contamination of soil, water, air and the progressive degra-dation of ecosystems. In the face of such serious threats the global initiatives of all countries are important to limit the results of the excessive consumption. The aim of the article is to present the methods of measurement of the consump-tion level of natural resources by the societies and the examination of relationships between the level of development of the societies and the use of resources. The popular measure – the ecological footprint – was used as a measurement method for the consumption of the today’s generations in relation to the regenerative possibilities of the natural envi-ronment. On the other hand, as the assessment method for the level of development of societies – the Human Develop-ment Index (HDI, including three basic areas: the life expectancy, GDP level per capita and education was used. The results of the research indicate that the current trend of the unlimited consumption of the highly developed countries takes place at the expense of the future generations.

  6. Ecological Growth Boundaries

    Science.gov (United States)

    Bluszcz, Anna

    2017-03-01

    The trends of the society for the continuous growth, combined with the demographic changes, today have led to the important ecological problems on a global scale, which include, among others: the increased use of non-renewable natural resources, an increase of the greenhouse gas emissions, contamination of soil, water, air and the progressive degradation of ecosystems. In the face of such serious threats the global initiatives of all countries are important to limit the results of the excessive consumption. The aim of the article is to present the methods of measurement of the consumption level of natural resources by the societies and the examination of relationships between the level of development of the societies and the use of resources. The popular measure - the ecological footprint - was used as a measurement method for the consumption of the today's generations in relation to the regenerative possibilities of the natural environment. On the other hand, as the assessment method for the level of development of societies - the Human Development Index (HDI), including three basic areas: the life expectancy, GDP level per capita and education was used. The results of the research indicate that the current trend of the unlimited consumption of the highly developed countries takes place at the expense of the future generations.

  7. Nutritional physiology of wildlife in a changing world

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, Kathryn S.; Raubenheimer, David

    2017-01-01

    -induced environmental changes and human activities. We find that these effects can be quite extensive, especially as a result of pollution and human-provisioned food sources (despite good intentions). We also discuss the role of nutrition in conservation practices, from the perspective of both in situ and ex situ...... conservation. Though we find that the changes in the nutritional ecology and physiology of wildlife due to human alterations are typically negative and largely involve impacts on foraging behaviour and food availability, the extent to which these will affect the fitness of organisms and result in evolutionary...... composition) and quantity (i.e. food abundance) of dietary items consumed by wildlife have, in many cases, changed. We present representative examples of the extent to which vertebrate foraging behaviour, food availability (quantity and quality) and digestive physiology have been modified due to human...

  8. Ecologically Enhancing Coastal Infrastructure

    Science.gov (United States)

    Mac Arthur, Mairi; Naylor, Larissa; Hansom, Jim; Burrows, Mike; Boyd, Ian

    2017-04-01

    Hard engineering structures continue to proliferate in the coastal zone globally in response to increasing pressures associated with rising sea levels, coastal flooding and erosion. These structures are typically plain-cast by design and function as poor ecological surrogates for natural rocky shores which are highly topographically complex and host a range of available microhabitats for intertidal species. Ecological enhancement mitigates some of these negative impacts by integrating components of nature into the construction and design of these structures to improve their sustainability, resilience and multifunctionality. In the largest UK ecological enhancement trial to date, 184 tiles (15x15cm) of up to nine potential designs were deployed on vertical concrete coastal infrastructure in 2016 at three sites across the UK (Saltcoats, Blackness and Isle of Wight). The surface texture and complexity of the tiles were varied to test the effect of settlement surface texture at the mm-cm scale of enhancement on the success of colonisation and biodiversity in the mid-upper intertidal zone in order to answer the following experimental hypotheses: • Tiles with mm-scale geomorphic complexity will have greater barnacle abundances • Tiles with cm-scale geomorphic complexity will have greater species richness than mm-scale tiles. A range of methods were used in creating the tile designs including terrestrial laser scanning of creviced rock surfaces to mimic natural rocky shore complexity as well as artificially generated complexity using computer software. The designs replicated the topographic features of high ecological importance found on natural rocky shores and promoted species recruitment and community composition on artificial surfaces; thus enabling us to evaluate biological responses to geomorphic complexity in a controlled field trial. At two of the sites, the roughest tile designs (cm scale) did not have the highest levels of barnacle recruits which were

  9. The practice of ecological art

    OpenAIRE

    Kagan, Sacha

    2014-01-01

    The genre of “ecological art”, as originally conceived in the 1990's on the basis of practices that emerged from the late 1960's onwards, covers a variety of artistic practices which are nonetheless united, as social-ecological modes of engagement, by shared principles and characteristics such as: connectivity, reconstruction, ecological ethical responsibility, stewardship of inter-relationships and of commons, non-linear (re)generativity, navigation and dynamic balancing across multiple scal...

  10. Ecological niche of plant pathogens

    OpenAIRE

    Ecaterina Fodor

    2011-01-01

    Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in ni...

  11. La ciencia de lo sustentable: razón de ser del discurso funcional en ecología

    Directory of Open Access Journals (Sweden)

    Gustavo Caponi

    2010-12-01

    Full Text Available The main cognitive target of Ecology is the functional analysis of the ecological processes and systems. It does not suppose, meanwhile, that these processes and systems are designed systems and processes like individual leaving beings. The Ecology, likewise Physiology, is constitutively guided by the presupposition of a privileged state, to be explained, that it is the persistence of the systems and processes that she studied; and its functional analyses obey to this presupposition. Ecology supposes an ideal of natural order, under which consideration this privileged state is thinking as an improbable state of things and, for that, needed of explanation; and, in what concerns this latter point, the analogy between Ecology and Physiology can also result instructive.

  12. Industrial ecology: a new paradigm?

    OpenAIRE

    Eik, Arne

    1999-01-01

    The aim of industrial ecology is to design and re-design industrial systems, by using nature as a metaphor and model. In this way far less non-renewable resources will be used and far less emissions and wastes will be released to the natural environment than up to now. Many approaches to industrial ecology are attempted, varying from those looking upon industrial ecology as a method for waste recycling to those who see industrial ecology as a new paradigm in a wider social perspective . By go...

  13. The dimensionality of ecological networks

    DEFF Research Database (Denmark)

    Eklöf, Anna; Jacob, Ute; Kopp, Jason

    2013-01-01

    How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks...... the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link...... ecologically important species attributes to large-scale community structure....

  14. Ecological footprint of Shandong, China.

    Science.gov (United States)

    Cui, Yu-jing; Luc, Hens; Zhu, Yong-guan; Zhao, Jing-zhu

    2004-01-01

    Ecological footprint has been given much attention and widely praised as an effective heuristic and pedagogic device for presenting current total human resource use in a way that communicates easily to almost everyone since 1996 when Wackernagel and Rees proposed it as a sustainable development indicator. Ecological footprint has been improving on its calculation and still can be a benchmark to measure sustainable development although there are still ongoing debates about specific methods for calculating the ecological footprint. This paper calculates the ecological footprint of Shandong Province, China with the methodology developed by Wackernagel and analyzes the current situation of sustainable development in Shandong.

  15. Conservation physiology of animal migration

    Science.gov (United States)

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  16. Key Questions in Marine Megafauna Movement Ecology

    KAUST Repository

    Hays, Graeme C.

    2016-03-12

    It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology. Technical advances make this an exciting time for animal movement studies, with a range of small, reliable data-loggers and transmitters that can record horizontal and vertical movements as well as aspects of physiology and reproductive biology.Forty experts identified key questions in the field of movement ecology.Questions have broad applicability across species, habitats, and spatial scales, and apply to animals in both marine and terrestrial habitats as well as both vertebrates and invertebrates, including birds, mammals, reptiles, fish, insects, and plankton. © 2016 Elsevier Ltd.

  17. The role thermal physiology plays in species invasion

    Science.gov (United States)

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  18. Civic Ecology: Linking Social and Ecological Approaches in Extension

    Science.gov (United States)

    Krasny, Marianne E.; Tidball, Keith G.

    2010-01-01

    Civic ecology refers to the philosophy and science of community forestry, community gardening, watershed enhancement, and other volunteer-driven restoration practices in cities and elsewhere. Such practices, although often viewed as initiatives to improve a degraded environment, also foster social attributes of resilient social-ecological systems,…

  19. Ecological Research Division Theoretical Ecology Program. [Contains abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

  20. The ecology of an ecology project and some suggested adaptations ...

    African Journals Online (AJOL)

    Mere dissemination of ecology teaching materials is likely to be ineffective in making the classroom teaching of ecology more meaningful. It may be necessary to take a more comprehensive view of the processes by which teachers change their practices. The article addresses both private sector and education department ...

  1. Sustainable ecological systems: Implementing an ecological approach to land management

    Science.gov (United States)

    W. Wallace Covington; Leonard F. DeBano

    1994-01-01

    This conference brought together scientiests and managers from federal, state, and local agencies, along with private-sector interests, to examine key concepts involving sustainable ecological systems, and ways in which to apply these concepts to ecosystem management. Session topics were: ecological consequenses of land and water use changes, biology of rare and...

  2. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Jammer, A.; Gapserl, A.; Luschin-Ebengreuth, N.; Heyneke, E.; Chu, H.; Cantero-Navarro, E.; Grosskinsky, D. K.; Albacete, A.; Stabentheiner, E.; Franzaring, J.; Fangmeier, A.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5531-5542 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Carbohydrate metabolism * dialysis * enzyme activities * kinetic assay * physiological phenotyping * physiological state * protein extraction * signatures Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  3. Role of population genetics in guiding ecological responses to climate.

    Science.gov (United States)

    Rehfeldt, Gerald E; Leites, Laura P; Joyce, Dennis G; Weiskittel, Aaron R

    2017-09-01

    Population responses to climate were assessed using 3-7 years height growth data gathered for 266 populations growing in 12 common gardens established in the 1980s as part of five disparate studies of Pinus contorta var. latifolia. Responses are interpreted according to three concepts: the ecological optimum, the climate where a population is competitively exclusive and in which, therefore, it occurs naturally; the physiological optimum, the climate where a population grows best but is most often competitively excluded; and growth potential, the innate capacity for growth at the physiological optimum. Statistical analyses identified winter cold, measured by the square root of negative degree-days calculated from the daily minimum temperature (MINDD0(1/2) ), as the climatic effect most closely related to population growth potential; the colder the winter inhabited by a population, the lower its growth potential, a relationship presumably molded by natural selection. By splitting the data into groups based on population MINDD0(1/2) and using a function suited to skewed normal distributions, regressions were developed for predicting growth from the distance in climate space (MINDD0(1/2) ) populations had been transferred from their native location to a planting site. The regressions were skewed, showing that the ecological optimum of most populations is colder than the physiological optimum and that the discrepancy between the two increases as the ecological optimum becomes colder. Response to climate change is dependent on innate growth potential and the discrepancy between the two optima and, therefore, is population-specific, developing out of genotype-environment interactions. Response to warming in the short-term can be either positive or negative, but long term responses will be negative for all populations, with the timing of the demise dependent on the amount of skew. The results pertain to physiological modeling, species distribution models, and climate

  4. FORT Molecular Ecology Laboratory

    Science.gov (United States)

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  5. Between Design and Ecology

    DEFF Research Database (Denmark)

    Bjørn, Mona Chor

    Urban green space offers more than recreation – it is a resource and a habitat for flora and wildlife. Since 2000 numerous articles have documented an increased public awareness of urban nature and biodiversity. As a result there has been increased interest in new vegetation types in urban...... and suburban environments. Colourful species-rich forb vegetation may be one possible way to link recreational values, aesthetical preferences and herbaceous vegetation with habitat requirements for diverse flora and fauna in urban and suburban environments. The overall aim of this thesis is to improve our...... such vegetation, based on concepts and theories in plant community ecology. If these communities are based on local forbs there is a continuum in anthropogenic intervention from designed and intensively maintained to semi-natural herbaceous vegetation. Results from a large field experiment show that, after three...

  6. Physiologic effects of bowel preparation

    DEFF Research Database (Denmark)

    Holte, Kathrine; Nielsen, Kristine Grubbe; Madsen, Jan Lysgård

    2004-01-01

    PURPOSE: Despite the universal use of bowel preparation before colonoscopy and colorectal surgery, the physiologic effects have not been described in a standardized setting. This study was designed to investigate the physiologic effects of bowel preparation. METHODS: In a prospective study, 12...... healthy volunteers (median age, 63 years) underwent bowel preparation with bisacodyl and sodium phosphate. Fluid and food intake were standardized according to weight, providing adequate calorie and oral fluid intake. Before and after bowel preparation, weight, exercise capacity, orthostatic tolerance...... preparation has significant adverse physiologic effects, which may be attributed to dehydration. The majority of these findings is small and may not be of clinical relevance in otherwise healthy patients undergoing bowel preparation and following recommendations for oral fluid intake....

  7. Centrifuges in gravitational physiology research

    Science.gov (United States)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  8. Stimulating Student Interest in Physiology: The Intermedical School Physiology Quiz

    Science.gov (United States)

    Cheng, Hwee-Ming

    2010-01-01

    The Intermedical School Physiology Quiz (IMSPQ) was initiated in 2003 during the author's last sabbatical from the University of Malaya. At this inaugural event, there were just seven competing teams from Malaysian medical schools. The challenge trophy for the IMSPQ is named in honor of Prof. A. Raman, who was the first Malaysian Professor of…

  9. From Physiology to Prevention: Further remarks on a physiological imperative

    Directory of Open Access Journals (Sweden)

    B Jouanjean

    2012-05-01

    Full Text Available Physiology, is the fundamental and functional expression of life. It is the study of all the representative functions of Man in all his capacities, and in particular, his capacity to work. It is very possible to establish a link between a physiological and physiopathological state, the capacity of work and the economy, which can be understood as the articulation between the physiological capacities of Man and the production of work. If these functions are innately acquired by Man they are likewise maintained by regulatory functions throughout life. The stability of these regulatory mechanisms represent the state of good health. The management of this state, constitutes Primary Prevention where both chronic and acute physiopathology defines an alteration in these regulatory mechanisms. We deduce from this reasoning that a tripartite management adapted to the physiological situation is viable and that by choosing parameters specific to individual and collective behavior, it is possible to inject, and combine, at each level and to each demand in order to budget a healthcare system in a more balanced and equitable way. 

  10. SRS ecology: Environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Shipley, R.W.; Bowers, J.A. [and others

    1993-09-01

    The purpose of this Document is to provide a source of ecological information based on the exiting knowledge gained from research conducted at the Savannah River Site. This document provides a summary and synthesis of ecological research in the three main ecosystem types found at SRS and information on the threatened and endangered species residing there.

  11. Ecological networks in urban landscapes

    NARCIS (Netherlands)

    Cook, E.A.

    2000-01-01

    This research focuses on the topic of ecological networks in urban landscapes. Analysis and planning of ecological networks is a relatively new phenomenon and is a response to fragmentation and deterioration of quality of natural systems. In agricultural areas and with existing nature

  12. The task of landscape ecology

    NARCIS (Netherlands)

    Barendregt, A.; Jongman, R.H.G.; Smidt, de J.; Wassen, M.

    2007-01-01

    This final chapter is a personal reflection of the authors on this book. To find an answer to the question what the task is of landscape ecology, we split the question in two parts. The first past of the question is about science for society: what is the task of landscape ecology in a changing

  13. Ecology: From Individuals to Collectives

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Ecology: From Individuals to Collectives: A Physicist's Perspective on Ecology. Vishwesha Guttal. Series Article Volume 19 Issue 4 April 2014 pp 368-375. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  15. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  16. Adolescent Suicide: An Ecological Approach.

    Science.gov (United States)

    Ayyash-Abdo, Huda

    2002-01-01

    Proposes an ecological approach to enhance our understanding of how personal, interpersonal, and sociocultural factors contribute to the increased risk for suicide among adolescents. The ecological approach allows exploration of how adolescent suicide is determined by multiple factors related to the adolescent's personal history or ontogenic…

  17. Measuring Your School's Ecological Footprint.

    Science.gov (United States)

    Sawchuk Julie; Cameron Tim

    2000-01-01

    Explaining ecological footprint analyses, this activity consists of a survey as a preliminary activity. Presents the survey questions and a chart of required calculations for ecological footprint activity. Lists the chart in five categories: waste management, energy, water, transportation, green space, and food. Provides information for follow-up…

  18. The Future of Urban Ecology

    DEFF Research Database (Denmark)

    Elle, Morten

    1998-01-01

    This article is discusing the basic conditions for a positive development of urban ecology in Denmark. A number of battles has to be won.......This article is discusing the basic conditions for a positive development of urban ecology in Denmark. A number of battles has to be won....

  19. The Limits of Exercise Physiology

    DEFF Research Database (Denmark)

    Gabriel, Brendan M; Zierath, Juleen R

    2017-01-01

    Many of the established positive health benefits of exercise have been documented by historical discoveries in the field of exercise physiology. These investigations often assess limits: the limits of performance, or the limits of exercise-induced health benefits. Indeed, several key findings have...... been informed by studying highly trained athletes, in addition to healthy or unhealthy people. Recent progress has been made in regard to skeletal muscle metabolism and personalized exercise regimes. In this perspective, we review some of the historical milestones of exercise physiology, discuss how...... these inform contemporary knowledge, and speculate on future questions....

  20. Social-Ecological Guilds: Putting People into Marine Historical Ecology

    Directory of Open Access Journals (Sweden)

    Janna M. Shackeroff

    2011-03-01

    Full Text Available Marine historical ecology provides historic insights into past ocean ecosystems that are crucial to effectively confronting the declining health and resilience in marine ecosystems. A more 'peopled' approach to marine historical ecology is necessary, given the heightened emphasis on human dimensions in marine management. This study examined the historical ecology of Hawaiian coral reef ecosystems through oral histories of diverse ocean experts, representing six traditional, local, and scientific knowledge systems. Based on 61 in-depth interviews with these ocean experts, historical trends, abundance, and distribution over 80 years and a 50-mile region for 271 species emerged. Analyzing trends by ecological guild, e.g., herbivores, proved inappropriate to these data; rather, based on qualitative analyses, five distinct trends encompassing nearly all species emerged in what we term "social-ecological guilds." Ocean expert's observations of change were surprisingly consistent, regardless of their knowledge system, whereas perceptions of change varied widely. The historical picture was far broader and richer when the contributions of six knowledge systems were incorporated, compared to that of any one alone. Social-ecological guilds also matter critically from a management perspective, because understanding how experts from a multiplicity of perspectives observe, interpret, and respond to ecological change can help managers anticipate responses to management activities and perhaps to design better management strategies.

  1. Nigerian Journal of Physiological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological ...

  2. Glycomics: revealing the dynamic ecology and evolution of sugar molecules.

    Science.gov (United States)

    Springer, Stevan A; Gagneux, Pascal

    2016-03-01

    Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ecology-driven stereotypes override race stereotypes.

    Science.gov (United States)

    Williams, Keelah E G; Sng, Oliver; Neuberg, Steven L

    2016-01-12

    Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals' behavior. Harsh and unpredictable ("desperate") ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable ("hopeful") ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology's influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans' stereotypes about racial groups actually reflect stereotypes about these groups' presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2-4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person's race (but not ecology), individuals' inferences about blacks track stereotypes of people from desperate ecologies, and individuals' inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals' inferences reflect the targets' ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one's ecology influences behavior.

  4. Anthropometric and body composition characteristics among preschool children of Coastal, Himalayan and Desert Ecology in India.

    Science.gov (United States)

    Ghosh, Arnab; Kshatriya, Gautam Kumar

    2009-09-01

    The present cross-sectional study was aimed to compare anthropometric and body composition characteristics of preschool children in the three contrasting ecological niches namely Coastal, Himalayan and Desert Ecology. A total of 989 randomly selected children (aged Ecology, 327 children (177 boys and 150 girls) belong to Himalayan Ecology and 356 children (168 boys and 188 girls) belong to Desert Ecology. Anthropometric measures namely height, weight, skinfolds at biceps, triceps, subscapular and suprailiac were measured for each child. Body mass index (BMI), sum of four skinfolds (SF4), trunk extremity ratio (TER), arm muscle circumference (AMC), arm muscle area (AMA) and arm fat area (AFA) was computed accordingly using standard equations. No significant sex difference was observed for the mean age within and between the groups. There existed significant sex differences for SF4, TER across the ecological zones. One way ANOVA with Scheffe's posthoc test revealed that Group II (Himalayan Ecology) had significantly higher means than both Group I (Coastal Ecology) and Group III (Desert Ecology) for BMI, SF4 and AFA. On the other hand, Group I had significantly higher means than Group II and Group III for TER (girls only), AMC and AMA. Percentiles (10th, 25th, 50th, 75th and 95th) were also calculated for anthropometric and body composition variables. It was observed that there existed significant sex differences for anthropometric and body composition variables both within (p ecological zones) except for AFA (p = 0.07). The 50th percentiles of BMI for Coastal, Himalayan and Desert Ecology were 11.65, 13.00 and 11.85, respectively. The 95th percentile of AFA was 4.81, 8.15 and 6.06 respectively. Significant group differences for variables reiterated the fact that ecology does influence nutrition and body composition measures through underlying physiology of growth.

  5. Electronic Textbook in Human Physiology.

    Science.gov (United States)

    Broering, Naomi C.; Lilienfield, Lawrence S.

    1994-01-01

    Describes the development of an electronic textbook in human physiology at the Georgetown University Medical Center Library that was designed to enhance learning and visualization through a prototype knowledge base of core instructional materials stored in digital format on Macintosh computers. The use of computers in the medical curriculum is…

  6. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  7. Exercise Effects on Sleep Physiology

    Directory of Open Access Journals (Sweden)

    Sunao eUchida

    2012-04-01

    Full Text Available This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep changes. Those early studies found only small effects of exercise on sleep. More recent sleep research has explored not only CNS functioning, but somatic physiology as well. As physical exercise mostly affects somatic functions, endocrine and autonomic nervous system (ANS changes that occur during sleep should be affected by daytime exercise. Since endocrinological, metabolic and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, building from standard polysomnographic (PSG techniques. Incorporating measures of somatic physiology in the quantitative assessment of sleep could further our understanding of sleep's function as an auto-regulatory, global phenomenon.

  8. [Physiologic skin changes in pregnancy].

    Science.gov (United States)

    Zerouali, Aida; Zaraa, Inès; Trojjet, Sondes; El Euch, Dalenda; Azeiez, Mohamed Iadh; Mokni, Mourad; Zouari, Faouzia; Ben Osman, Amel

    2011-01-01

    Pregnancy is a period of hormonal, immunological, metabolic and vascular changes. Some of them are considered to be physiologic, but others are real diseases specific or not of pregnancy. The aim of our study is to present the epidemiological and clinical physiologic dermatological changes of pregnancy. We present a transversal monocentric study. One hundred pregnant women attending the department of dermatology of the La Rabta hospital were enrolled. Systematic detailed cutaneous examination was performed by a dermatologist to look for a physiologic skin changes. The mean age was 29 years [20-46 years]. Pigmentary changes were the most preponderant (93%), dominated by the areolar region pigmentation (77%). The glandular changes were noted in 75% of cases. The vascular modifications were observed in 77% of pregnant women. Of these, gingival hyperemia was the most common (46%). Others cutaneous changes were less frequent (stria distensae 45%, nevi changes 35%, molluscum gravidarum 10%). The physiologic cutaneous changes during pregnancy are numerous. Our study confirms the frequency and the variability of these modifications. The pigmentary changes were the most common finding. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Physiology Of Prolonged Bed Rest

    Science.gov (United States)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  10. Pursuing an ecological component for the Effect Factor in LCIA methods

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Bjørn, Anders; Rosenbaum, Ralph K.

    EC50-based) or 1 (assuming that continuous stress affects reproduction rate), but these are all based on biological/physiological responses and do not add a true ecological component to the impact. Such factor simply changes the HC50 by 1 or 0.3 log units. A stressor with equal intensity in two...

  11. Ecology and toxicology of mangrove fauna in Tanzania : with particular reference to the mudskipper

    NARCIS (Netherlands)

    Kruitwagen, Guus

    2007-01-01

    The aim of this study was to investigate the extent of pollution along the coast of Tanzania by studying the effects of pollution on the ecology and physiology of a resident mangrove fish, the barred mudskipper (Periophthalmus argentilineatus). Initially, the position and functioning of the

  12. Physiological differences in preferred temperatures and evaporative water loss rates in two sympatric lacertid species.

    Science.gov (United States)

    Sannolo, Marco; Barroso, Frederico M; Carretero, Miguel A

    2017-12-24

    Sister species living in sympatry offer the opportunity to study the degree of divergence in their ecological, physiological and life-history traits. It has been hypothesized that closely related species with overlapping distribution should differ in their niche to reduce competition for resources. Furthermore, the investigation of sympatric species may shed light on how they may coexist without outcompeting each other. In the present study, we assess the degree of physiological divergence in two sympatric lacertid lizards, Podarcis bocagei and Podarcis guadarramae lusitanicus. These species share a Pliocenic ancestry and overlap at a both geographical and ecological scale. We assessed their thermal preferences and water loss rates, two physiological traits considered stable across congeneric species. We found that the two species differ in both traits, with P. bocagei selecting higher temperature than P. g. lusitanicus and losing more water than the latter at and above its preferred temperature. The results also showed that for both species body size has a relevant impact on thermal and hydric traits, with bigger individuals losing proportionally less water and selecting higher temperatures. These results, combined with previous evidence, suggest that physiological mechanisms, ecological preferences and morphology probably allow these two species to overlap in their distribution while selecting different microhabitats and thus decreasing possible competition between them. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Genomics and ecological overview of the genus Bifidobacterium.

    Science.gov (United States)

    Turroni, Francesca; van Sinderen, Douwe; Ventura, Marco

    2011-09-01

    Members of the genus Bifidobacterium are high G+C Gram positive bacteria belonging to the phylum Actinobacteria, and represent common inhabitants of the gastro-intestinal tract (GIT) of mammals, birds and certain cold-blooded animals. The overall microbial population that resides in the GIT, referred to as the "gut microbiota", is an extremely complex community of microorganisms whose functions are believed to have a significant impact on human physiology. Different ecological relationships between bifidobacteria and their host can be developed, ranging from opportunistic pathogenic interactions (e.g. in the case of Bifidobacterium dentium) to a commensal or even health-promoting relationship (e.g. in the case of Bifidobacterium bifidum and Bifidobacterium breve species). Among the known health-promoting or probiotic microorganisms, bifidobacteria represent one of the most dominant group and some bifidobacterial species are frequently used as the probiotic ingredient in many functional foods. However, despite the generally accepted importance of bifidobacteria as constituents of the human microbiota, there is only limited information available on their phylogeny, physiology and genetics. Moreover, host-microbiota interactions and cross-talk between different members of the gut microbiota are far from completely understood although they represent a crucial factor in the development and maintenance of human physiology and immune system. The aim of this review is to highlight the genetic and functional features of bifidobacteria residing in the human GIT using genomic and ecology-based information. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Mass and energy budgets of animals: Behavioral and ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    Porter, W.P.

    1991-11-01

    The two major aims of our lab are as follows: First, to develop and field-test general mechanistic models that predict animal life history characteristics as influenced by climate and the physical, physiological behavioral characteristics of species. This involves: understanding how animal time and energy budgets are affected by climate and animal properties; predicting growth and reproductive potential from time and energy budgets; predicting mortality based on climate and time and energy budgets; and linking these individual based models to population dynamics. Second to conduct empirical studies of animal physiological ecology, particularly the effects of temperature on time and energy budgets. The physiological ecology of individual animals is the key link between the physical environment and population-level phenomena. We address the macroclimate to microclimate linkage on a broad spatial scale; address the links between individuals and population dynamics for lizard species; test the endotherm energetics and behavior model using beaver; address the spatial variation in climate and its effects on individual energetics, growth and reproduction; and address patchiness in the environment and constraints they may impose on individual energetics, growth and reproduction. These projects are described individually in the following section. 24 refs., 9 figs.

  15. Temporal ecology in the Anthropocene.

    Science.gov (United States)

    Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J

    2014-11-01

    Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.

  16. Emergence Unites Ecology and Society

    Directory of Open Access Journals (Sweden)

    Ronald L. Trosper

    2005-06-01

    Full Text Available The effort to combine analysis of ecosystems and social systems requires a firm theoretical basis. When humans are present in an ecosystem, their actions affect emergent structures; this paper examines forms of emergence that account for the presence of humans. Humans monitor and regulate ecosystems based on their cultural systems. Cultural systems consist of concepts linked in complicated ways that can form consistent world views, can contain inconsistencies, and may or may not accurately model the properties of a social-ecological system. Consequently, human monitoring and regulating processes will differ, depending on cultural systems. Humans, as agents, change or maintain pre-existing material and cultural emergent structures. The presentation is illustrated with a case study of fire-prone forests. The paper shows that explicit attention to emergence serves very well in unifying the following requirements for social-ecological analysis: coherent and observable definitions of sustainability; ways to link ecological and social phenomena; ways to understand cultural reasons for stability and instability in dynamic social-ecological systems; and ways to include human self-evaluation and culture within dynamic models of social-ecological systems. Analysis of cultural emergent structures clarifies many differences in assumptions among the fields of economics, sociology, political science, ecology, and ecological economics. Because it can be readily applied to empirical questions, the framework provides a good way to organize policy analysis that is not dominated by one or another discipline.

  17. Ecology and bioprospecting.

    Science.gov (United States)

    Beattie, Andrew J; Hay, Mark; Magnusson, Bill; de Nys, Rocky; Smeathers, James; Vincent, Julian F V

    2011-05-01

    Bioprospecting is the exploration of biodiversity for new resources of social and commercial value. It is carried out by a wide range of established industries such as pharmaceuticals, manufacturing and agriculture as well as a wide range of comparatively new ones such as aquaculture, bioremediation, biomining, biomimetic engineering and nanotechnology. The benefits of bioprospecting have emerged from such a wide range of organisms and environments worldwide that it is not possible to predict what species or habitats will be critical to society, or industry, in the future. The benefits include an unexpected variety of products that include chemicals, genes, metabolic pathways, structures, materials and behaviours. These may provide physical blueprints or inspiration for new designs. Criticism aimed at bioprospecting has been addressed, in part, by international treaties and legal agreements aimed at stopping biopiracy and many activities are now funded by agencies that require capacity-building and economic benefits in host countries. Thus, much contemporary bioprospecting has multiple goals, including the conservation of biodiversity, the sustainable management of natural resources and economic development. Ecologists are involved in three vital ways: first, applying ecological principles to the discovery of new resources. In this context, natural history becomes a vast economic database. Second, carrying out field studies, most of them demographic, to help regulate the harvest of wild species. Third, emphasizing the profound importance of millions of mostly microscopic species to the global economy.

  18. Desertification: Global ecological problem

    Science.gov (United States)

    Orlovskiy, N. S.

    1986-09-01

    It is suggested that western practices and analyses of desertification fail to take social factors into account, and do not promote progressive technology that would preserve the environment while bringing progress. It is claimed that Soviet practices have minimized ecological damage by use of a different socioeconomic structure and by planning. In Central Asia, efforts since the 1930's have focused on controlling shifting sands with both dry grass and brush, as well as physicochemical means. In Turkmenistan sand dune damage to irrigated fields is completely controlled, although some local areas of desertification have been noted near well sites and in industrialized desert areas. Prevention of land damage in irrigated areas has required careful drainage system construction to avoid mineral deposits while making maximum use of ground water reserves. Technological backwardness is noted in some irrigated areas of Central Asia, and the extent of saline soils of various types is of concern. Disposal of irrigation water after its use is another problem still being resolved in Central Asia. Irrigation and water disposal in the basins of Syrdarya, Amudarya and Ili Rivers have caused a decline in the level of the Aral Sea. In addition, lands in the deltas of the Syrdarya and Amudarya have suffered desertification.

  19. Ecological tax reform

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    An environmental tax reform is seen by many as a possible solution to some crucial problems of modern society - pollution, excessive resource consumption and unemployment. Changes in the system of taxation are here seen as a long term process, one that must cheapen the costs of labour and make the costs of resource use more expensive - a process which can also create major changes in our society as to conceptions of quality, work, consumption etc. The conference presented proposals for an ecological tax and duty system that would contribute to: Changing technology so that it becomes more resource and energy effective. Changing the economic mechanisms so that resource consumption and pollution become more expensive while human resources become cheaper. Changing personal life styles and values so that material consumption becomes less decisive for our choices and priorities. An environmental tax reform is neither without problems nor painless. An economy and an industrial sector based on increasing consumption of energy and raw materials will, in the long run, lead to drawbacks that far outweigh those that are connected with an economic re-orientation whose driving force is another conception of nature. (EG)

  20. Ecological periodic tables: Killer apps for translational ecology

    Science.gov (United States)

    The chemical periodic table, the Linnaean system of classification and the Hertzsprung-Russell diagram are information organizing structures that have transformed chemistry, biology and astronomy, respectively. Ecological periodic tables are information organizing structures wit...

  1. Chemical ecology of marine plankton.

    Science.gov (United States)

    Schwartz, Emily R; Poulin, Remington X; Mojib, Nazia; Kubanek, Julia

    2016-07-28

    Covering: January 2013 to online publication December 2014This review summarizes recent research in the chemical ecology of marine pelagic ecosystems, and aims to provide a comprehensive overview of advances in the field in the time period covered. In order to highlight the role of chemical cues and toxins in plankton ecology this review has been organized by ecological interaction types starting with intraspecific interactions, then interspecific interactions (including facilitation and mutualism, host-parasite, allelopathy, and predator-prey), and finally community and ecosystem-wide interactions.

  2. A classification of ecological boundaries

    Science.gov (United States)

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  3. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  4. The ecology of individuals: incidence and implications of individual specialization.

    Science.gov (United States)

    Bolnick, Daniel I; Svanbäck, Richard; Fordyce, James A; Yang, Louie H; Davis, Jeremy M; Hulsey, C Darrin; Forister, Matthew L

    2003-01-01

    Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can sometimes comprise the majority of the population's niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population's stability, the amount of intraspecific competition, fitness-function shapes, and the population's capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.

  5. Ecology and life history evolution of frugivorous Drosophila parasitoids.

    Science.gov (United States)

    Fleury, Frédéric; Gibert, Patricia; Ris, Nicolas; Allemand, Roland

    2009-01-01

    Parasitoids and their hosts are linked by intimate and harmful interactions that make them well suited to analyze fundamental ecological and evolutionary processes with regard to life histories evolution of parasitic association. Drosophila aspects of what parasitoid Hymenoptera have become model organisms to study aspects that cannot be investigated with other associations. These include the genetic bases of fitness traits variations, physiology and genetics of resistance/virulence, and coevolutionary dynamics leading to local adaptation. Recent research on evolutionary ecology of Drosophila parasitoids were performed mainly on species that thrive in fermenting fruits (genera Leptopilina and Asobara). Here, we review information and add original data regarding community ecology of these parasitoids, including species distribution, pattern of abundance and diversity, host range and the nature and intensity of species interactions. Biology and the evolution of life histories in response to habitat heterogeneity and possible local adaptations leading to specialization of these wasps are reported with special emphasis on species living in southern Europe. We expose the diversity and intensity of selective constraints acting on parasitoid life history traits, which vary geographically and highlight the importance of considering both biotic and abiotic factors with their interactions to understand ecological and evolutionary dynamics of host-parasitoid associations.

  6. Materials Testing - Digital Ecology

    Directory of Open Access Journals (Sweden)

    Seth Wiley

    2013-03-01

    Full Text Available Access to credible building product performance information throughout the design and construction process is critical to enable project development, vet product selections, ensure as-built quality, and successfully complete construction. This is common knowledge and part of common practice for nearly all parties involved in design and construction. The sources of such information can range from vernacular to formal – from common practice to special reference. The focus of this paper is one of the more formal or specialized information sources, performance testing, as well as how such performance testing information can be better used. This paper’s goals are to familiarize the reader with performance testing and to depict a new kind of valuable informational tool (digital ecology. Reference to pertinent nomenclature, description of a real world example, and detailed description of such an informational tool’s values will be provided.The major content of this paper was developed during project-based work and firm-funded internal research at point b design, ltd. over approximately the previous 4 years. The phrase ‘digital ecology’ as herein used is a new concept proposed by the author. The analysis contained in this paper could be applied to the field of operations and maintenance as it is herein applied to design and construction; however, operations and maintenance is beyond the scope of this paper and may be addressed in future papers. It is my hope that this paper will contribute to tangible and real improvements of the built environment via continued, positive development within academic and professional practice.

  7. Physiologic effects of bowel preparation

    DEFF Research Database (Denmark)

    Holte, Kathrine; Nielsen, Kristine Grubbe; Madsen, Jan Lysgård

    2004-01-01

    PURPOSE: Despite the universal use of bowel preparation before colonoscopy and colorectal surgery, the physiologic effects have not been described in a standardized setting. This study was designed to investigate the physiologic effects of bowel preparation. METHODS: In a prospective study, 12...... healthy volunteers (median age, 63 years) underwent bowel preparation with bisacodyl and sodium phosphate. Fluid and food intake were standardized according to weight, providing adequate calorie and oral fluid intake. Before and after bowel preparation, weight, exercise capacity, orthostatic tolerance......, plasma and extracellular volume, balance function, and biochemical parameters were measured. RESULTS: Bowel preparation led to a significant decrease in exercise capacity (median, 9 percent) and weight (median, 1.2 kg). Plasma osmolality was significantly increased from 287 to 290 mmol kg(-1), as well...

  8. PHYSIOLOGY OF ACID BASE BALANCE

    Directory of Open Access Journals (Sweden)

    Awati

    2014-12-01

    Full Text Available Acid-base, electrolyte, and metabolic disturbances are common in the intensive care unit. Almost all critically ill patients often suffer from compound acid-base and electrolyte disorders. Successful evaluation and management of such patients requires recognition of common patterns (e.g., metabolic acidosis and the ability to dissect one disorder from another. The intensivists needs to identify and correct these condition with the easiest available tools as they are the associated with multiorgan failure. Understanding the elements of normal physiology in these areas is very important so as to diagnose the pathological condition and take adequate measures as early as possible. Arterial blood gas analysis is one such tool for early detection of acid base disorder. Physiology of acid base is complex and here is the attempt to simplify it in our day to day application for the benefit of critically ill patients.

  9. Teaching Ecology in Urban Environments.

    Science.gov (United States)

    Fail, Joseph, Jr.

    1995-01-01

    Discusses the teaching of ecology and environmental education in urban environments by using field trips to city parks, airports, nuclear power plants, water treatment plants, sewage treatment plants, incinerators, foundries, and forests. (MKR)

  10. Nutritional Ecology and Human Health.

    Science.gov (United States)

    Raubenheimer, David; Simpson, Stephen J

    2016-07-17

    In contrast to the spectacular advances in the first half of the twentieth century with micronutrient-related diseases, human nutrition science has failed to stem the more recent rise of obesity and associated cardiometabolic disease (OACD). This failure has triggered debate on the problems and limitations of the field and what change is needed to address these. We briefly review the two broad historical phases of human nutrition science and then provide an overview of the main problems that have been implicated in the poor progress of the field with solving OACD. We next introduce the field of nutritional ecology and show how its ecological-evolutionary foundations can enrich human nutrition science by providing the theory to help address its limitations. We end by introducing a modeling approach from nutritional ecology, termed nutritional geometry, and demonstrate how it can help to implement ecological and evolutionary theory in human nutrition to provide new direction and to better understand and manage OACD.

  11. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    Providing a detailed account of the biology and ecology of wetland plants as well as applications of wetland plant science, this book presents a synthesis of studies and reviews from biology, plant...

  12. Global Ecological Land Units (ELUs)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological...

  13. Great Lakes management: Ecological factors

    Science.gov (United States)

    Sonzogni, W. C.; Robertson, A.; Beeton, A. M.

    1983-11-01

    Although attempts to improve the quality of the Great Lakes generally focus on chemical pollution, other factors are important and should be considered Ecological factors, such as invasion of the lakes by foreign species, habitat changes, overfishing, and random variations in organism populations, are especially influential. Lack of appreciation of the significance of ecological factors stems partly from the inappropriate application of the concept of eutrophication to the Great Lakes. Emphasis on ecological factors is not intended to diminish the seriousness of pollution, but rather to point out that more cost-effective management, as well as more realistic expectations of management efforts by the public, should result from an ecosystem management approach in which ecological factors are carefully considered.

  14. An Ecological Diagnostic Classification Plan.

    Science.gov (United States)

    Hurst, James C.; McKinley, Donna L.

    1988-01-01

    Discusses the value of diagnostic classification systems to counseling professionals. Describes the Ecological Diagnostic Classification Plan, an approach to diagnosis that includes the environment as a possible cause of pathology and target of intervention. (Author/KS)

  15. Online ecological and environmental data

    CERN Document Server

    Baldwin, Virginia Ann

    2014-01-01

    Discover important Internet resources for research data made public individually and collectively by researchers from a variety of entities in the fields of environmental studies and ecology Online Ecological and Environmental Data explores innovative projects from a diverse array of institutions that have made environmental and ecological research information freely available online. You will find a wealth of Web site listings with URLs and complete descriptions, data field descriptions, controlled vocabulary examples, and Web screen shots that demonstrate how to use a specific site. The book will help you locate the data, procedures, instruments, notes, and other descriptive information that scientists and engineers need for replicating and building on the research of others. With Online Ecological and Environmental Data, you''ll gain a better understanding of: * the cooperative design, development, and management of interdisciplinary data * cataloging multidisciplinary environmental data * data netw...

  16. Jasmonate signalling in plants shapes plant-insect interaction ecology.

    Science.gov (United States)

    Lortzing, Tobias; Steppuhn, Anke

    2016-04-01

    The phytohormone jasmonic acid (JA) regulates the induction of direct and indirect defences against herbivores. By now, the biochemical pathway of JA-signalling has been well resolved, allowing the use of an interdisciplinary toolbox and spurring the mechanistic investigation of plant-insect interactions. Recent advances show that JA-mediated plant responses are involved in the competitive and trophic interactions between various organisms throughout at least four trophic levels and therefore likely shape natural communities. Moreover, JA-mediated responses can be primed or suppressed by various environmental factors that are related to herbivory or not. Yet, to integrate the complex interactions at the physiological and ecological levels into community ecology, an examination of the often onetime discoveries for general rules and new bioinformatic approaches are required. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Normal Bone Anatomy and Physiology

    OpenAIRE

    Clarke, Bart

    2008-01-01

    This review describes normal bone anatomy and physiology as an introduction to the subsequent articles in this section that discuss clinical applications of iliac crest bone biopsy. The normal anatomy and functions of the skeleton are reviewed first, followed by a general description of the processes of bone modeling and remodeling. The bone remodeling process regulates the gain and loss of bone mineral density in the adult skeleton and directly influences bone strength. Thorough understandin...

  18. Anatomy and physiology of cisternostomy.

    Science.gov (United States)

    Cherian, Iype; Grasso, Giovanni; Bernardo, Antonio; Munakomi, Sunil

    2016-01-01

    Cisternostomy is defined as opening the basal cisterns to atmospheric pressure. This technique helps to reduce the intracranial pressure in severe head trauma as well as other conditions when the so-called sudden "brain swelling" troubles the surgeon. We elaborated the surgical anatomy of this procedure as well as the proposed physiology of how cisternostomy works. This novel technique may change the current trends in neurosurgery.

  19. Exercise Effects on Sleep Physiology

    OpenAIRE

    Uchida, Sunao; Shioda, Kohei; Morita, Yuko; Kubota, Chie; Ganeko, Masashi; Takeda, Noriko

    2012-01-01

    This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS) physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG) waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. The research on the effects of exercise on sleep began, in the 1960s, with a focus primarily on sleep related EEG changes (CN...

  20. Exercise Effects on Sleep Physiology

    OpenAIRE

    Sunao eUchida; Kohei eShioda; Yuko eMorita; Chie eKubota; Masashi eGaneko; Noriko eTakeda; Noriko eTakeda

    2012-01-01

    This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS) physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG) waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep) c...

  1. Civic Ecology: A Postmodern Approach to Ecological Sustainability

    Science.gov (United States)

    Lopes, V. L.

    2013-12-01

    Human agency is transforming the planetary processes at unprecedented rates risking damaging essential life-support systems. Climate change, massive species extinction, land degradation, resources depletion, overpopulation, poverty and social injustice are all the result of human choices and non-sustainable ways of life. The survival of our modern economic systems depends upon insatiable consumption - a simple way of life no longer satisfies most people. Detached, instrumental rationality has created an ideal of liberalism based on individual pursuit of self-interest, leading the way into unprecedented material progress but bringing with it human alienation, social injustice, and ecological degradation. The purpose of this presentation is to introduce a community-based systems response to a growing sense that the interlocked social-ecological crisis is as much a problem of human thought and behavior as it is about identifying carrying capacities and CO2 concentrations in the atmosphere. This approach, referred to here as civic ecology, presents a new and important paradigm shift in sustainability practice that attempts to bring together and integrate ecological ideas and postmodern thinking. As such, it is as much a holistic, dynamic, and synergistic approach to ecological sustainability, as it is a philosophy of life and ethical perspective born of ecological understanding and insight. Civic ecology starts with the proposition that the key factor determining the health of the ecosphere is the behavior of human beings, and therefore many of the most important issues related to sustainability lie in the areas of human thought and culture. Thus, the quest for sustainability must include as a central concern the transformation of psychological and behavioral patterns that have become an imminent danger to planetary health. At the core of this understanding is a fundamental paradigm shift from the basic commitments of modern Western culture to its model of mechanism

  2. Physiological performance and thermal tolerance of major Red Sea macrophytes

    KAUST Repository

    Weinzierl, Michael S.

    2017-12-01

    As anthropogenically-forced ocean temperatures continue to rise, the physiological response of marine macrophytes becomes exceedingly relevant. The Red Sea is a semi-isolated sea- the warmest in the world (SST up to 34°C) - already exhibiting signs of rapid warming rates exceeding those of other tropical oceans. This will have profound effects on the physiology of marine organisms, specifically marine macrophytes, which have direct influence on the dynamic carbonate system of the Red Sea. The aim of this paper is to define the physiological capability and thermal optima and limits of six ecologically important Red Sea macrophytes- ranging from seagrasses to calcifying and non-calcifying algae- and to describe the effects of increasing thermal stress on the performance and limits of each macrophyte in terms of activation energy. Of the species considered, Halophila stipulacae, Halimeda optunia, Halimeda monile and Padina pavonica thrive in thermal extremes and may be more successful in future Red Sea warming scenarios. Specifically, Halimeda opuntia increased productivity and calcification rates up to 38°C, making it the most thermally resilient macrophyte. Halophila stipulacae is the most productive seagrass, and hence has the greatest positive effect on Omega saturation state and offers chemical buffer capacity to future ocean acidification.

  3. Asynchronous evolution of physiology and morphology in Anolis lizards.

    Science.gov (United States)

    Hertz, Paul E; Arima, Yuzo; Harrison, Alexis; Huey, Raymond B; Losos, Jonathan B; Glor, Richard E

    2013-07-01

    Species-rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same "structural niche" (i.e., use the same types of perches) and are similar in body size and shape, but live in different "climatic niches" (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Industrial Design and Ecological Balance

    Directory of Open Access Journals (Sweden)

    Dan-Horia Chinda

    2009-12-01

    Full Text Available This work presents the direct link between the Industrial Production process of prodfucts ad the Ecological disaster we are witnessing today. The main contribution is the definition of the industrial designer's role in this process and the multiple ways the designer can influence and avoid the ecological imbalance. From the design concept to materials and processing, from packing and recycling to transportation, the author clearly defines the designer's complex involvement and offers solutions.

  5. Physiology of in vitro culture

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cañal

    2001-01-01

    Full Text Available The culture procedures described up to the eighties, did not made any mention to the environmental control of in vitro plant development. However, growth rate, development and many of the physiologic-morphologic features of the in vitro grown plants are influenced by the culture vessel. The increasing knowledge about the environmental control of culture vessels under sterile conditions, is helping to change micorpropagation procedures. The in vitro environment with lower rate ventilation, brings about low flow rates of matter and energy, with minimum variations of temperature, high relative humidity and large daily changes of the concentration of CO2 inside the culture vessel. The type of culture vessel (size, shape, fabric and closing system can influence the evolution of the atmosphere along the time of culture. Although submitted to different stresses factors plant can be grown in vitro, but plants can be faulty in their anatomy, morphology and physiology. As a consequence, these plants shown a phenotype unable to survive to ex vitro conditions. Different strategies can be used to control the atmosphere along the different phases of micropropagation, in heterotrophic, mixotrophic or autotrophic cultures. The election of the best strategy will be based on different factors as species, number of transplantes required, or quality-price relationship. enviromental control, tissue culture, micropropagation Keywords: in vitro enviromental, characteristic physiology,

  6. ELECTROKINETICS AND CELL PHYSIOLOGY I.

    Science.gov (United States)

    Jensen, Roy A.; Haas, Felix L.

    1963-01-01

    Jensen, Roy A. (The University of Texas M. D. Anderson Hospital and Tumor Institute, Houston) and Felix L. Haas. Electrokinetics and cell physiology. I. Experimental basis for electrokinetic cell studies. J. Bacteriol. 86:73–78. 1963.—The stable and regular electrokinetic pattern displayed by Bacillus subtilis cell populations was presented as the basis for precisely controlled experimental procedures. The course of electrokinetic behavior characteristic of a cell population was one which paralleled the overall physiology of the culture. The prospects of capitalizing upon this biological feature of the cell were considered in cases where portions of a cell population were separable with respect to some distinct physiological criterion. Such cell fractions may be associated with a discrete and detectable difference in the net charge residing upon the bacterial cell surface. Within a limited pore-size range, membrane filters lost or retained cells, depending upon the electrostatic interaction between cell and filter disc. Fractionation on membrane filters proved to be adjustable and could be controlled by selecting the proper ionic strength in the culture medium. Procedures of this kind have potential for the development of preparative techniques or, alternatively, as experimental vehicles for kinetic analysis. PMID:14051825

  7. Physiological and pathological cardiac hypertrophy.

    Science.gov (United States)

    Shimizu, Ippei; Minamino, Tohru

    2016-08-01

    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Plant Physiological Aspects of Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, E.; Fan, T.W-M.; Higashi, R.M.; Silk, W.K.

    2002-07-10

    The element silicon, Si, represents an anomaly in plant physiology (Epstein, 1994, 1999b). Plants contain the element in amounts comparable to those of such macronutrient elements as phosphorus, calcium, magnesium, viz. at tissue concentrations (dry weight basis) of about 0.1-10%, although both lower and higher values may be encountered. In some plants, such as rice and sugarcane, Si may be the mineral element present in largest amount. In much of plant physiological research, however, Si is considered a nonentity. Thus, not a single formulation of the widely used nutrient solutions includes Si. Experimental plants grown in these solutions are therefore abnormally low in their content of the element, being able to obtain only what Si is present as an unavoidable contaminant of the nutrient salts used, and from the experimental environment and their own seeds. The reason for the astonishing discrepancy between the prominence of Si in plants and its neglect in much of the enterprise of plant physiological research is that Si does not qualify as an ''essential'' element. Ever since the introduction of the solution culture method in the middle of the last century (Epstein, 1999a, b) it has been found that higher plants can grow in nutrient solutions in the formulation of which Si is not included. The only exceptions are the Equisitaceae (horsetails or scouring rushes), for which Si is a quantitatively major essential element.

  9. Ecological effects of environmental change.

    Science.gov (United States)

    Luque, Gloria M; Hochberg, Michael E; Holyoak, Marcel; Hossaert, Martine; Gaill, Françoise; Courchamp, Franck

    2013-05-01

    This Special Issue of Ecology Letters presents contributions from an international meeting organised by Centre National de la Recherche Scientifique (CNRS) and Ecology Letters on the broad theme of ecological effects of global environmental change. The objectives of these articles are to synthesise, hypothesise and illustrate the ecological effects of environmental change drivers and their interactions, including habitat loss and fragmentation, pollution, invasive species and climate change. A range of disciplines is represented, including stoichiometry, cell biology, genetics, evolution and biodiversity conservation. The authors emphasise the need to account for several key ecological factors and different spatial and temporal scales in global change research. They also stress the importance of ecosystem complexity through approaches such as functional group and network analyses, and of mechanisms and predictive models with respect to environmental responses to global change across an ecological continuum: population, communities and ecosystems. Lastly, these articles provide important insights and recommendations for environmental conservation and management, as well as highlighting future research priorities. © 2013 John Wiley & Sons Ltd/CNRS.

  10. The National Ecological Observatory Network

    Science.gov (United States)

    Michener, W. K.

    2006-05-01

    The National Ecological Observatory Network (NEON) is a research platform designed to advance understanding of how ecosystems and organisms respond to variations in climate and changes in land use. NEON is the first long-term ecological observatory conceived as a continental-scale network; equipped with standardized sensors, cyberinfrastructure, and data-collection protocols across the network; and designed to simultaneously address a common set of research questions and support investigator-driven ecological research in all regions of the United States. The Observatory focuses on variations in climate and land use because they are primary drivers of the Nation's environmental challenges, as identified by the National Research Council--i.e., biodiversity, biogeochemical cycles, climate change, hydroecology, infectious disease, invasive species, and land use. At the broadest scale, NEON links the complexity of climate variation to the behavior of ecological systems, a core aspect of ecological complexity. At the same time, because of the complexity of the interactions among humans and ecosystems, the network design includes NEON sites in wild, managed and urban systems within climate domains. Observatory data will also be part of a national education program designed to advance ecological science literacy through new programs and activities that develop and promote scientific ways of thinking.

  11. Thermal physiology: A new dimension of the pace-of-life syndrome.

    Science.gov (United States)

    Goulet, Celine T; Thompson, Mike B; Michelangeli, Marcus; Wong, Bob B M; Chapple, David G

    2017-09-01

    Current syndrome research focuses primarily on behaviour with few incorporating components of physiology. One such syndrome is the pace-of-life syndrome (POLS) which describes covariation between behaviour, metabolism, immunity, hormonal response, and life-history traits. Despite the strong effect temperature has on behaviour, thermal physiology has yet to be considered within this syndrome framework. We proposed the POLS to be extended to include a new dimension, the cold-hot axis. Under this premise, it is predicted that thermal physiology and behaviour would covary, whereby individual positioning along the thermal continuum would coincide with that of the behavioural continuum. This hypothesis was tested by measuring thermal traits of delicate skinks (Lampropholis delicata) and linking it to their behaviour. Principal components analysis and structural equation modelling were used to determine if traits were structured within the POLS and to characterize the direction of their interactions. Model results supported the inclusion of the cold-hot axis into the POLS and indicated that thermal physiology was the driver of this relationship, in that thermal traits either constrained or promoted activity, exploration, boldness and social behaviour. This study highlights the need to integrate thermal physiology within a syndrome framework. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. The Ecology of Acidobacteria: Moving beyond Genes and Genomes

    Science.gov (United States)

    Kielak, Anna M.; Barreto, Cristine C.; Kowalchuk, George A.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    The phylum Acidobacteria is one of the most widespread and abundant on the planet, yet remarkably our knowledge of the role of these diverse organisms in the functioning of terrestrial ecosystems remains surprisingly rudimentary. This blatant knowledge gap stems to a large degree from the difficulties associated with the cultivation of these bacteria by classical means. Given the phylogenetic breadth of the Acidobacteria, which is similar to the metabolically diverse Proteobacteria, it is clear that detailed and functional descriptions of acidobacterial assemblages are necessary. Fortunately, recent advances are providing a glimpse into the ecology of members of the phylum Acidobacteria. These include novel cultivation and enrichment strategies, genomic characterization and analyses of metagenomic DNA from environmental samples. Here, we couple the data from these complementary approaches for a better understanding of their role in the environment, thereby providing some initial insights into the ecology of this important phylum. All cultured acidobacterial type species are heterotrophic, and members of subdivisions 1, 3, and 4 appear to be more versatile in carbohydrate utilization. Genomic and metagenomic data predict a number of ecologically relevant capabilities for some acidobacteria, including the ability to: use of nitrite as N source, respond to soil macro-, micro nutrients and soil acidity, express multiple active transporters, degrade gellan gum and produce exopolysaccharide (EPS). Although these predicted properties allude to a competitive life style in soil, only very few of these prediction shave been confirmed via physiological studies. The increased availability of genomic and physiological information, coupled to distribution data in field surveys and experiments, should direct future progress in unraveling the ecology of this important but still enigmatic phylum. PMID:27303369

  13. Book review: The ecology and behavior of amphibians

    Science.gov (United States)

    Walls, Susan C.

    2008-01-01

    This state‐of‐the‐art book has made its timely emergence amid a crisis of global magnitude: that of population declines, range reductions, and extinctions of numerous species of amphibians. A clear understanding of the fundamental concepts in amphibian biology is crucial to the success of any conservation effort. This volume compiles the information necessary to acquire that basic understanding. It is a comprehensive synthesis of both traditional and contemporary facets of amphibian biology, spanning a breadth of topics ranging from phylogeny, physiology, behavior, population and community ecology, and conservation. As such, it undoubtedly takes its place among contemporary volumes as the single, authoritative source for basic topics relevant to amphibian life.

  14. Evolution and current status of ecological phytochemistry.

    Science.gov (United States)

    Macías, Francisco A; Galindo, Jose L G; Galindo, Juan C G

    2007-01-01

    Phytochemical studies have experienced a great deal of change during the last century, not only regarding the number of compounds described, but also in the concept of phytochemistry itself. This change has mainly been related to two key points: the methodologies used in phytochemical studies and the questions regarding 'why secondary metabolites appeared in plants and in other living organisms?' and 'what is their role?'. This transformation in the field has led to new questions concerning such different subjects as evolution, paleobotany, biochemistry, plant physiology and ethnography. However, the main issue is to clarify the role that secondary metabolites play in the plant (and other organisms) and whether the resources invested in their production (C and N allocation, genes encoding their biogenetic pathways, specific enzymes, energy-rich molecules such as ATP and NADPH) have or lack a reasonable reward in terms of advantages for survival. Consequently, in this review the main emphasis will be placed on two subjects related to the evolution of phytochemical studies. The first aim is to describe briefly the influence that the development of the methodologies needed for compound isolation and structure elucidation have had on the field of phytochemistry. The second area to be covered concerns the new theories addressing the role of secondary metabolites from an ecological point of view: co-evolution of plants and their potential enemies (phytophagous insects, microbes, herbivores and other plants), chemical plant defence, adaptative strategies of phytophagues to plant toxins (among them sequestration will be briefly mentioned), and models and theories for carbon and nitrogen allocation. Some final remarks are made to summarize our opinion about the immediate future of phytochemical ecology and phytochemical studies.

  15. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Porcel, Rosa; Azcón, Charo; Aroca, Ricardo

    2012-06-01

    Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.

  16. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    Science.gov (United States)

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  18. Molecular musings in microbial ecology and evolution

    Directory of Open Access Journals (Sweden)

    Case Rebecca J

    2011-11-01

    Full Text Available Abstract A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution and in the other to achieve its goals despite that phenomenon (ecology. The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough

  19. 36 CFR 219.20 - Ecological sustainability.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Ecological sustainability... Sustainability § 219.20 Ecological sustainability. To achieve ecological sustainability, the responsible official... diversity and species diversity are components of ecological sustainability. The planning process must...

  20. Physiological reactivity to phobic stimuli in people with fear of flying.

    Science.gov (United States)

    Busscher, Bert; van Gerwen, Lucas J; Spinhoven, Philip; de Geus, Eco J C

    2010-09-01

    The nature of the relationship between physiological and subjective responses in phobic subjects remains unclear. Phobics have been thought to be characterized by a heightened physiological response (physiological perspective) or by a heightened perception of a normal physiological response (psychological perspective). In this study, we examined subjective measures of anxiety, heart rate (HR), and cardiac autonomic responses to flight-related stimuli in 127 people who applied for fear-of-flying therapy at a specialized treatment center and in 36 controls without aviophobia. In keeping with the psychological perspective, we found a large increase in subjective distress (eta(2)=.43) during exposure to flight-related stimuli in the phobics and no change in subjective distress in the controls, whereas the physiological responses of both groups were indiscriminate. However, in keeping with the physiological perspective, we found that, within the group of phobics, increases in subjective fear during exposure were moderately strong coupled to HR (r =.208, P=.022) and cardiac vagal (r =.199, P=.028) reactivity. In contrast to predictions by the psychological perspective, anxiety sensitivity did not modulate this coupling. We conclude that subjective fear responses and autonomic responses are only loosely coupled during mildly threatening exposure to flight-related stimuli. More ecologically valid exposure to phobic stimuli may be needed to test the predictions from the physiological and psychological perspectives. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    Science.gov (United States)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  2. Archives: Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Nigerian Journal of Physiological Sciences. Journal Home > Archives: Nigerian Journal of Physiological Sciences. Log in or Register to get access to full text downloads.

  3. Anatomy and physiology of chronic scrotal pain.

    Science.gov (United States)

    Patel, Abhishek P

    2017-05-01

    This article reviews the anatomy and physiology of the scrotum and its contents as it pertains to chronic scrotal pain. Physiology of chronic pain is reviewed, as well as the pathophysiology involved in the development of chronic pain.

  4. Physiological determinants of human acute hypoxia tolerance.

    Science.gov (United States)

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  5. Biomechanics and physiology in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van der Woude, L.H.V.; Veeger, H.E.J.; Dallmeijer, A.J.; Janssen, T.W.J.; Rozendaal, L.A.

    2001-01-01

    Manual wheelchair propulsion in daily life and sports is increasingly being studied. Initially, an engineering and physiological perspective was taken. More recently a concomitant biomechanics interest is seen. Themes of biomechanical and physiological studies today are performance enhancing aspects

  6. Physiological Parameters Database for Older Adults

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...

  7. Ecological release in White Sands lizards.

    Science.gov (United States)

    Roches, S Des; Robertson, J M; Harmon, L J; Rosenblum, E B

    2011-12-01

    Ecological opportunity is any change that allows populations to escape selection from competition and predation. After encountering ecological opportunity, populations may experience ecological release: enlarged population size, broadened resource use, and/or increased morphological variation. We identified ecological opportunity and tested for ecological release in three lizard colonists of White Sands, New Mexico (Sceloporus undulatus, Holbrookia maculata, and Aspidoscelis inornata). First, we provide evidence for ecological opportunity by demonstrating reduced species richness and abundance of potential competitors and predators at White Sands relative to nearby dark soils habitats. Second, we characterize ecological release at White Sands by demonstrating density compensation in the three White Sands lizard species and expanded resource use in White Sands S. undulatus. Contrary to predictions from ecological release models, we observed directional trait change but not increased trait variation in S. undulatus. Our results suggest that ecological opportunity and ecological release can be identified in natural populations, especially those that have recently colonized isolated ecosystems.

  8. Ecological release in White Sands lizards

    Science.gov (United States)

    Roches, S Des; Robertson, J M; Harmon, L J; Rosenblum, E B

    2011-01-01

    Ecological opportunity is any change that allows populations to escape selection from competition and predation. After encountering ecological opportunity, populations may experience ecological release: enlarged population size, broadened resource use, and/or increased morphological variation. We identified ecological opportunity and tested for ecological release in three lizard colonists of White Sands, New Mexico (Sceloporus undulatus, Holbrookia maculata, and Aspidoscelis inornata). First, we provide evidence for ecological opportunity by demonstrating reduced species richness and abundance of potential competitors and predators at White Sands relative to nearby dark soils habitats. Second, we characterize ecological release at White Sands by demonstrating density compensation in the three White Sands lizard species and expanded resource use in White Sands S. undulatus. Contrary to predictions from ecological release models, we observed directional trait change but not increased trait variation in S. undulatus. Our results suggest that ecological opportunity and ecological release can be identified in natural populations, especially those that have recently colonized isolated ecosystems. PMID:22393523

  9. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  10. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  11. Interdisciplinary Adventures in Perceptual Ecology

    Science.gov (United States)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  12. Squamation and ecology of thelodonts.

    Science.gov (United States)

    Ferrón, Humberto G; Botella, Héctor

    2017-01-01

    Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water

  13. Squamation and ecology of thelodonts.

    Directory of Open Access Journals (Sweden)

    Humberto G Ferrón

    Full Text Available Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated

  14. Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis

    Directory of Open Access Journals (Sweden)

    Punidan D. Jeyasingh

    2017-04-01

    Full Text Available Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus. These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.

  15. Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis

    Science.gov (United States)

    Jeyasingh, Punidan D.; Goos, Jared M.; Thompson, Seth K.; Godwin, Casey M.; Cotner, James B.

    2017-01-01

    Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms. PMID:28487686

  16. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  17. [Evolvement of ecological footprint model representing ecological carrying capacity].

    Science.gov (United States)

    Cao, Shu-yan; Xie, Gao-di

    2007-06-01

    Ecological footprint (EF) is an important index of ecological carrying capacity. The original EF model is excellent in simplicity, aggregation, comparability, and lifelikeness in presenting results, but short in predictability, configuration, and applicability. To overcome these shortcomings, many researches were conducted to modify and promote the EF model, and developed it from static with single time scale to diversified ones, which included: 1) time series EF model, 2) input-output analysis based EF model, 3) integrated assessment incorporated EF model, 4) land disturbance degree based EF model, and 5) life cycle analysis based EF model, or component EF model. The function of EF as a measurement of ecological carrying capacity was significantly improved, but its accuracy and integrality still need to be advanced.

  18. Ecology-driven stereotypes override race stereotypes

    OpenAIRE

    Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.

    2015-01-01

    Ecological features shape people’s goals, strategies, and behaviors. Our research suggests that social perceivers possess a lay understanding of ecology’s influence on behavior, resulting in ecology-driven stereotypes. Moreover, because race is confounded with ecology in the United States, Americans’ stereotypes about racial groups may actually reflect their stereotypes about these groups’ presumed home ecologies. In a series of studies, we demonstrate that (i) individuals possess ecology-dri...

  19. Conservation physiology across scales: insights from the marine realm

    Science.gov (United States)

    Cooke, Steven J.; Killen, Shaun S.; Metcalfe, Julian D.; McKenzie, David J.; Mouillot, David; Jørgensen, Christian; Peck, Myron A.

    2014-01-01

    As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology—both the challenges and the opportunities that it creates—will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored. PMID:27293645

  20. Assessment of Giant Kelp Physiological State Using Airborne Hyperspectral Imagery

    Science.gov (United States)

    Bell, T. W.; Siegel, D.

    2016-02-01

    Giant kelp is a highly dynamic foundation species that supports an ecologically and economically important ecosystem found throughout the globe. Currently, multispectral sensors (Landsat) provide valuable time series of emergent kelp canopy biomass that are useful for many applications. Hyperspectral sensors can provide information that quantify the quality or physiological condition of the kelp canopy, which can be linked to characteristics such as canopy age and morphology, light exposure, nutrient stress and photosynthetic yield. The HyspIRI Preparatory Airborne Campaign delivered near seasonal hyperspectral imagery of giant kelp canopy using the AVIRIS sensor ( 20 m spatial resolution; 10 nm spectral resolution), to support the proposed spaceborne hyperspectral imager mission. These images, combined with additional AVIRIS imagery, were used to assess giant kelp canopy condition across several years and biogeographical regions, including Monterey Bay, the Santa Barbara Channel, and the Southern California coast. Specifically, we developed novel techniques to infer the chlorophyll a to carbon ratio (Chl:C) from the AVIRIS imagery, derived from field observations of canopy blade reflectance, pigment concentrations and carbon content, and these determinations of Chl:C are used as measures of the physiological state of the kelp canopy. We found that the spatial and temporal variability in physiological condition of the kelp canopy varied with light exposure and timing of nutrient pulses due to coastal upwelling. These observations are consistent with photophysiological theory and field observations. Physiological state dynamics gleaned from airborne sensors and proposed spaceborne hyperspectral sensors enhance our understanding of this important ecosystem engineer, and provide useful information for marine scientists and ecosystem managers.

  1. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    Science.gov (United States)

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species.

  2. Fish cardiovascular physiology and disease.

    Science.gov (United States)

    Sherrill, Johanna; Weber, E Scott; Marty, Gary D; Hernandez-Divers, Stephen

    2009-01-01

    Fish patients with cardiovascular disorders present a challenge in terms of diagnostic evaluation and therapeutic options. Veterinarians can approach these cases in fish using methods similar to those employed for other companion animals. Clinicians who evaluate and treat fish in private, aquarium, zoologic, or aquaculture settings need to rely on sound clinical judgment after thorough historical and physical evaluation. Pharmacokinetic data and treatments specific to cardiovascular disease in fish are limited; thus, drug types and dosages used in fish are largely empiric. Fish cardiovascular anatomy, physiology, diagnostic evaluation, monitoring, common diseases, cardiac pathologic conditions, formulary options, and comprehensive references are presented with the goal of providing fish veterinarians with clinically relevant tools.

  3. Physiologic mastectomy via flank laparotomy.

    Science.gov (United States)

    Allen, Andrew J; Barrington, George M; Parish, Steve M

    2008-11-01

    Physiologic mastectomy can be used as a salvage procedure in cases of chronic suppurative mastitis, gangrenous mastitis, or chronic, severe mastitis associated with organisms liberating endotoxin or exotoxin. The surgical technique involves ligation of the major arterial blood supply (external pudendal artery) to the corresponding half of the mammary gland, which results in decreased systemic absorption of toxins and gland atrophy. The technique is performed with the cow standing, and it is relatively atraumatic. This procedure is a simple, yet effective alternative to radical mastectomy for unresponsive mastitis cases in genetically or otherwise valuable cattle.

  4. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  5. Journal of African Association of Physiological Sciences

    African Journals Online (AJOL)

    Journal of African Association of Physiological Sciences (J. Afr. Assoc. Physiol. Sci.) is an international, bi-annual official publication of African Association of Physiological Sciences. Both print and online forms are available. The journal is aimed at dissemination of information on diverse areas of research in Physiological ...

  6. Bengt Saltin and exercise physiology: a perspective.

    Science.gov (United States)

    Joyner, Michael J

    2017-01-01

    This perspective highlights some of the key contributions of Professor Bengt Saltin (1935-2014) to exercise physiology. The emergence of exercise physiology from work physiology as his career began is discussed as are his contributions in a number of areas. Saltin's open and question-based style of leadership is a model for the future of our field.

  7. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens

    OpenAIRE

    Nam Bui, Thi Phuong; Shetty, Sudarshan; Lagkouvardos, Ilias; Ritari, Jarmo; Chamlagain, Bhawani; Douillard, Francois; Paulin, Lars Göran; Piironen, Vieno; Clavel, Thomas; Plugge, Caroline M.; de Vos, Willem Meindert

    2016-01-01

    Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity, ecology, and physiology. Using a comprehensive phylogenetic approach, Intestinimomas was found to include at least three species that colonize primarily the human and mouse intestine. We focused on the most ...

  8. Ecology for Whom? Deep Ecology and the Death of Anthropocentrism

    OpenAIRE

    Orlando José Ferrer Montaño

    2006-01-01

    Ecología profunda surge como una nueva percepción para visualizar los cambios inexorables que la humanidad enfrenta actualmente. Esta nueva percepción científico-filosófico-religiosa clama por un nuevo tratamiento para la tierra. Sin embargo, esta nueva visión eco-centrada trasciende los límites de cualquiera ciencia particular actual, y clama que las simples reformas no son suficientes. Ecología profunda clama por una reducción de la población humana y cambios en nuestro al...

  9. World-Ecology and Ireland: The Neoliberal Ecological Regime

    Directory of Open Access Journals (Sweden)

    Sharae Deckard

    2016-03-01

    Full Text Available Since the collapse of the Celtic Tiger, the socio-economic particularity of neoliberal capitalism in its Irish manifestation has increasingly been critiqued, but little attention has been paid to neoliberalism as ecology within Ireland. This article conducts an exploratory survey of the characteristics of the Irish neoliberal ecological regime during and after the Celtic Tiger, identifying the opening of new commodity frontiers (such as fracking, water, agro-biotechnology, and biopharma constituted in the neoliberal drive to appropriate and financialize nature. I argue for the usefulness of applying not only the tools of world-systems analysis, but also Jason W. Moore’s world-ecological paradigm, to analysis of Ireland as a semi-periphery. What is crucial to a macro-ecological understanding of Ireland’s role in the neoliberal regime of the world-ecology is the inextricability of its financial role as a tax haven and secrecy jurisdiction zone from its environmental function as a semi-peripheral pollution and water haven. We can adapt Jason W. Moore’s slogan that “Wall Street…becomes a way of organizing all of nature, characterized by the financialization of any income-generating activity” (Moore 2011b: 39 to say that to say that the “IFSC is a way of organizing nature,” with pernicious consequences for water, energy, and food systems in Ireland. Financial service centers and pharmaceutical factories, plantations and cattle ranches, tax havens and pollution havens, empires and common markets are all forms of environment-making that constellate human relations and extra-human processes into new ecological regimes. More expansive, dialectical understandings of “ecology” as comprising the whole of socio-ecological relations within the capitalist world-ecology—from farming to pharma to financialization—are crucial to forming configurations of knowledge able not only to take account of Ireland’s role in the environmental

  10. The ecology of religious beliefs

    Science.gov (United States)

    Botero, Carlos A.; Gardner, Beth; Kirby, Kathryn R.; Bulbulia, Joseph; Gavin, Michael C.; Gray, Russell D.

    2014-01-01

    Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species. PMID:25385605

  11. Ecological Challenges for Closed Systems

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  12. The ecology of religious beliefs.

    Science.gov (United States)

    Botero, Carlos A; Gardner, Beth; Kirby, Kathryn R; Bulbulia, Joseph; Gavin, Michael C; Gray, Russell D

    2014-11-25

    Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species.

  13. Conservation physiology of marine fishes: state of the art and prospects for policy.

    Science.gov (United States)

    McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer

  14. Flow sorting in aquatic ecology

    OpenAIRE

    Reckermann, Marcus

    2000-01-01

    Flow sorting can be a very helpful tool in revealing phytoplankton and bacterial community structure and elaborating specific physiological parameters of isolated species. Droplet sorting has been the most common technique. Despite the high optical and hydro-dynamic stress for the cells to be sorted, many species grow in culture subsequent to sorting. To date, flow sorting has been applied to post-incubation separation in natural water samples to account for group-specific physiological param...

  15. The glycemic index: physiological significance.

    Science.gov (United States)

    Esfahani, Amin; Wong, Julia M W; Mirrahimi, Arash; Srichaikul, Korbua; Jenkins, David J A; Kendall, Cyril W C

    2009-08-01

    The glycemic index (GI) is a physiological assessment of a food's carbohydrate content through its effect on postprandial blood glucose concentrations. Evidence from trials and observational studies suggests that this physiological classification may have relevance to those chronic Western diseases associated with overconsumption and inactivity leading to central obesity and insulin resistance. The glycemic index classification of foods has been used as a tool to assess potential prevention and treatment strategies for diseases where glycemic control is of importance, such as diabetes. Low GI diets have also been reported to improve the serum lipid profile, reduce C-reactive protein (CRP) concentrations, and aid in weight control. In cross-sectional studies, low GI or glycemic load diets (mean GI multiplied by total carbohydrate) have been associated with higher levels of high-density lipoprotein cholesterol (HDL-C), with reduced CRP concentrations, and, in cohort studies, with decreased risk of developing diabetes and cardiovascular disease. In addition, some case-control and cohort studies have found positive associations between dietary GI and risk of various cancers, including those of the colon, breast, and prostate. Although inconsistencies in the current findings still need to be resolved, sufficient positive evidence, especially with respect to renewed interest in postprandial events, suggests that the glycemic index may have a role to play in the treatment and prevention of chronic diseases.

  16. Physiological Effects of Touching Wood

    Directory of Open Access Journals (Sweden)

    Harumi Ikei

    2017-07-01

    Full Text Available This study aimed to clarify the physiological effects of touching wood with the palm, in comparison with touching other materials on brain activity and autonomic nervous activity. Eighteen female university students (mean age, 21.7  ±  1.6 years participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb concentrations were measured in the left/right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV was used as an indicator of autonomic nervous activity. The high-frequency (HF component of HRV, which reflected parasympathetic nervous activity, and the low-frequency (LF/HF ratio, which reflected sympathetic nervous activity, were measured. Plates of uncoated white oak, marble, tile, and stainless steel were used as tactile stimuli. After sitting at rest with their eyes closed, participants touched the materials for 90 s. As a result, tactile stimulation with white oak significantly (1 decreased the oxy-Hb concentration in the left/right prefrontal cortex relative to marble, tile, and stainless steel and (2 increased ln(HF-reflected parasympathetic nervous activity relative to marble and stainless steel. In conclusion, our study revealed that touching wood with the palm calms prefrontal cortex activity and induces parasympathetic nervous activity more than other materials, thereby inducing physiological relaxation.

  17. ELECTROKINETICS AND CELL PHYSIOLOGY II.

    Science.gov (United States)

    Jensen, Roy A.; Haas, Felix L.

    1963-01-01

    Jensen, Roy A. (The University of Texas M. D. Anderson Hospital and Tumor Institute, Houston) and Felix L. Haas. Electrokinetics and cell physiology. II. Relationship of surface charge to onset of bacterial competence for genetic transformation. J. Bacteriol. 86:79–86. 1963.—A reliable cell fractionation scheme, which is sensitive to the electrokinetic properties of Bacillus subtilis cells, has been described in detail. Recipient cell populations, characterized by a wide range of competency for transformation to independence of nutritional markers, were subjected to electrokinetic fractionation. Results indicated that (i) physiological competency is directly related to the electrical charge on the cell surface, (ii) newly competent cells carry a maximal negative charge, (iii) the newly competent cell appears with spontaneous abruptness, (iv) a kinetic flow of competent cells from the highly charged fractions to the lower charged fractions indicates the progressive loss of the surface charge maintained by a competent cell, and (v), by token of the latter statement, cells competent to undergo transformation do so within a range of surface-charge values. PMID:14051826

  18. Physiological compliance and team performance.

    Science.gov (United States)

    Elkins, Amanda N; Muth, Eric R; Hoover, Adam W; Walker, Alexander D; Carpenter, Thomas L; Switzer, Fred S

    2009-11-01

    Physiological compliance (PC) refers to the correlation between physiological measures of team members over time. The goals of this study were to examine ways of measuring PC in heart rate variability (HRV) data and the relationship between PC and team performance. Teams were tasked with entering both real and simulated rooms and "shooting" individuals with a weapon and identifying individuals without a weapon. The linear correlation and directional agreement PC methods were shown to be the most sensitive to differences in performance, with greater PC being associated with better performance. The correlation method when applied to a measure of respiratory sinus arrhythmia (RSA) revealed a significant difference between high and low performers (t[8]=-2.31, p=0.03) and the directional agreement applied to inter-beat-intervals and RSA revealed trend-level differences (t[4.62]=-1.86, p=0.06 and t[8]=-1.68, p=0.07). These results suggest that PC may have merit for predicting team performance.

  19. Constraint lines and performance envelopes in behavioral physiology: the case of the aerobic dive limit.

    Directory of Open Access Journals (Sweden)

    Markus eHorning

    2012-09-01

    Full Text Available Constraint lines - the boundaries that delimit point clouds in bivariate scattergrams - have been applied in macro-ecology to quantify the effects of limiting factors on response variables, but have not been applied to the behavioral performance and physiological ecology of individual vertebrates. I propose that behavioral scattergrams of air-breathing, diving vertebrates contain informative edges that convey insights into physiological constraints that shape the performance envelopes of divers. In the classic example of repeated cycles of apnea and eupnea in diving, airbreathing vertebrates, the need to balance oxygen consumption and intake should differentially constrain recovery for dives within or exceeding the aerobic dive limit. However, the bulk of variance observed in recovery versus dive duration scattergrams originates from undetermined behavioral variables, and deviations from overall stasis may become increasingly apparent at progressively smaller scales of observation. As shown on dive records from 79 Galápagos fur seals, the selection of appropriate time scales of integration yields two distinct recovery boundaries for dive series within and beyond the estimated aerobic dive limit. An analysis of the corresponding constraint lines is independent of central tendencies in data and avoids violating parametric assumptions for large data sets where variables of interest account for only a small portion of observed variance. I hypothesize that the intercept between these constraint lines represents the effective aerobic dive limit, and present physiological and ecological considerations to support this hypothesis.

  20. Water Saving Strategies & Ecological Modernisation

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jensen, Jesper Ole; Elle, Morten

    2005-01-01

    -tainable water management. The paper focuses on the experiences from different water saving initiatives carried out since the mid 80s relating them to some central aspects of Ecological Modernisation theories: · Demands for tools and targets · New tasks and roles for suppliers, consumers and stakeholders...... to 125 l/capita/day in 2002. A series of different strategies, targets and tools have been implemented: Emphasizing demand side instead of supply side, using and communicating indicators, formulating goals for reducing water consumption and developing learning processes in water management. A main......Drawing on case studies of water saving campaigns and new collaborations, the pa-per will serve, on the one hand, as an interpretation of the water saving strategy in Co-penhagen in the light of Ecological Modernisation, and on the other hand, as a critical discussion of Ecological Modernisation...

  1. Ecological modernization of sustainable buildings

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Gram-Hanssen, Kirsten

    2008-01-01

    This article will examine how the contemporary development of sustainable buildings has been influenced by the concept of ecological modernisation. Ecological modernisation is a policy concept describing how environmental considerations are increasingly being integrated into modern society......'s institutions through e.g. new types of co-operation and new applications of economic and market dynamics. The article is based on recent examples from politics and practice in the construction sector in Denmark, where sustainable buildings have gone through great changes - from being primarily isolated cases...... of governance, standardisation and visibility, the conclusion is that in many ways ecological modernisation has penetrated in Danish sustainable buildings and has contributed to a positive development. However, there are aspects of sustainable consumption that this development does not relate to, including...

  2. The Ecology of Human Mobility.

    Science.gov (United States)

    Meekan, Mark G; Duarte, Carlos M; Fernández-Gracia, Juan; Thums, Michele; Sequeira, Ana M M; Harcourt, Rob; Eguíluz, Víctor M

    2017-03-01

    Mobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems. In turn, big data on human movement can be explored in the context of animal movement ecology to provide solutions for urgent conservation problems and management challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Ecology of Human Mobility

    KAUST Repository

    Meekan, Mark G.

    2017-02-03

    Mobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems. In turn, big data on human movement can be explored in the context of animal movement ecology to provide solutions for urgent conservation problems and management challenges.

  4. The beauty of sensory ecology.

    Science.gov (United States)

    Otálora-Luna, Fernando; Aldana, Elis

    2017-08-10

    Sensory ecology is a discipline that focuses on how living creatures use information to survive, but not to live. By trans-defining the orthodox concept of sensory ecology, a serious heterodox question arises: how do organisms use their senses to live, i.e. to enjoy or suffer life? To respond to such a query the objective (time-independent) and emotional (non-rational) meaning of symbols must be revealed. Our program is distinct from both the neo-Darwinian and the classical ecological perspective because it does not focus on survival values of phenotypes and their functions, but asks for the aesthetic effect of biological structures and their symbolism. Our message recognizes that sensing apart from having a survival value also has a beauty value. Thus, we offer a provoking and inspiring new view on the sensory relations of 'living things' and their surroundings, where the innovating power of feelings have more weight than the privative power of reason.

  5. Flying, fasting, and feeding in birds during migration: a nutritional and physiological ecology perspective

    NARCIS (Netherlands)

    McWilliams, S.R.; Guglielmo, C.; Pierce, B.; Klaassen, M.R.J.

    2004-01-01

    Unlike exercising mammals, migratory birds fuel very high intensity exercise (e.g., flight) with fatty acids delivered from the adipose tissue to the working muscles by the circulatory system. Given the primary importance of fatty acids for fueling intense exercise, we discuss the likely limiting

  6. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    Science.gov (United States)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  7. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology

    Science.gov (United States)

    DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos

    2016-01-01

    SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  8. Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula.

    Science.gov (United States)

    Jones, Adam C; Monroe, Emily A; Podell, Sheila; Hess, Wolfgang R; Klages, Sven; Esquenazi, Eduardo; Niessen, Sherry; Hoover, Heather; Rothmann, Michael; Lasken, Roger S; Yates, John R; Reinhardt, Richard; Kube, Michael; Burkart, Michael D; Allen, Eric E; Dorrestein, Pieter C; Gerwick, William H; Gerwick, Lena

    2011-05-24

    Filamentous cyanobacteria of the genus Lyngbya are important contributors to coral reef ecosystems, occasionally forming dominant cover and impacting the health of many other co-occurring organisms. Moreover, they are extraordinarily rich sources of bioactive secondary metabolites, with 35% of all reported cyanobacterial natural products deriving from this single pantropical genus. However, the true natural product potential and life strategies of Lyngbya strains are poorly understood because of phylogenetic ambiguity, lack of genomic information, and their close associations with heterotrophic bacteria and other cyanobacteria. To gauge the natural product potential of Lyngbya and gain insights into potential microbial interactions, we sequenced the genome of Lyngbya majuscula 3L, a Caribbean strain that produces the tubulin polymerization inhibitor curacin A and the molluscicide barbamide, using a combination of Sanger and 454 sequencing approaches. Whereas ∼ 293,000 nucleotides of the draft genome are putatively dedicated to secondary metabolism, this is far too few to encode a large suite of Lyngbya metabolites, suggesting Lyngbya metabolites are strain specific and may be useful in species delineation. Our analysis revealed a complex gene regulatory network, including a large number of sigma factors and other regulatory proteins, indicating an enhanced ability for environmental adaptation or microbial associations. Although Lyngbya species are reported to fix nitrogen, nitrogenase genes were not found in the genome or by PCR of genomic DNA. Subsequent growth experiments confirmed that L. majuscula 3L is unable to fix atmospheric nitrogen. These unanticipated life history characteristics challenge current views of the genus Lyngbya.

  9. Deciphering The Ecological Impact Of The Passenger Pigeon: A Synthesis Of Paleogenetics, Paleoecology, Morphology, And Physiology

    OpenAIRE

    Novak, Ben Jacob

    2016-01-01

    The extinction of the passenger pigeon may have long-term consequences to eastern North American forest ecosystems; however, the past and ongoing consequences of the species’ extinction cannot be understood nor predicted without thorough knowledge of the species’ historic impacts. According to historic accounts, in abundance passenger pigeons generated large-scale understory and canopy disturbances. Key components needed to fully understand the impact of these disturbances remain contentious ...

  10. Why marathon migrants get away with high metabolic ceilings : Towards an ecology of physiological restraint

    NARCIS (Netherlands)

    Piersma, Theunis

    Animals usually are not willing to perform at levels, or for lengths of time, of which they should be maximally capable. In stating this, exercise performance and inferred capacity are gauged with respect to body size and the duration of particular levels of energy expenditure. In such relative

  11. Sulfate-reducing bacteria from mangrove swamps. 2. Their ecology and physiology

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Oak, S.; Chandramohan, D.

    oxidizing SRB were widespread and occurred in numbers up to 6.62 x 103/g dry sediment. The next highest in number were lactate utilizing SRB. On an average there were more propionate and butyrate utilizers than acetate utilizers. While Agasaim at the mouth...

  12. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium

    NARCIS (Netherlands)

    Voss, B.; Bolhuis, H.; Fewer, D.P.; Kopf, M.; Möke, F.; Haas, F.; El-Shehawy, R.; Hayes, P.; Bergman, B.; Sivonen, K.; Dittmann, E.; Scanlan, D.J.; Hagemann, M.; Stal, L.J.; Hess, W.R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft

  13. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impact on ecosystem health

    DEFF Research Database (Denmark)

    Trainer, Vera L.; Bates, Steve S.; Lundholm, Nina

    2012-01-01

    is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy...

  14. Ecological and Physiological Studies of Gymnodinium catenatum in the Mexican Pacific: A Review

    Directory of Open Access Journals (Sweden)

    Christine J. Band-Schmidt

    2010-06-01

    Full Text Available This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associated with water temperatures between 18 and 25 ºC and an increase in nutrients. In vitro studies of G. catenatum strains from different bays along the Pacific coast of Mexico show that this species can grow in wide ranges of salinities, temperatures, and N:P ratios. Latitudinal differences are observed in the toxicity and toxin profile, but the presence of dcSTX, dcGTX2-3, C1, and C2 are usual components. A common characteristic of the toxin profile found in shellfish, when G. catenatum is present in the coastal environment, is the detection of dcGTX2-3, dcSTX, C1, and C2. Few bioassay studies have reported effects in mollusks and lethal effects in mice, and shrimp; however no adverse effects have been observed in the copepod Acartia clausi. Interestingly, genetic sequencing of D1-D2 LSU rDNA revealed that it differs only in one base pair, compared with strains from other regions.

  15. Why marathon migrants get away with high metabolic ceilings: towards an ecology of physiological restraint

    NARCIS (Netherlands)

    Piersma, T.

    2011-01-01

    Animals usually are not willing to perform at levels, or for lengths of time, of which they should be maximally capable. In stating this, exercise performance and inferred capacity are gauged with respect to body size and the duration of particular levels of energy expenditure. In such relative

  16. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter.

    Science.gov (United States)

    Hunter-Cevera, Kristen R; Neubert, Michael G; Olson, Robert J; Solow, Andrew R; Shalapyonok, Alexi; Sosik, Heidi M

    2016-10-21

    Climate affects the timing and magnitude of phytoplankton blooms that fuel marine food webs and influence global biogeochemical cycles. Changes in bloom timing have been detected in some cases, but the underlying mechanisms remain elusive, contributing to uncertainty in long-term predictions of climate change impacts. Here we describe a 13-year hourly time series from the New England shelf of data on the coastal phytoplankter Synechococcus, during which the timing of its spring bloom varied by 4 weeks. We show that multiyear trends are due to temperature-induced changes in cell division rate, with earlier blooms driven by warmer spring water temperatures. Synechococcus loss rates shift in tandem with division rates, suggesting a balance between growth and loss that has persisted despite phenological shifts and environmental change. Copyright © 2016, American Association for the Advancement of Science.

  17. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology.

    Science.gov (United States)

    Pörtner, Hans-O; Bock, Christian; Mark, Felix C

    2017-08-01

    Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting 'total excess aerobic power budget' supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes - mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land. © 2017. Published by The Company of Biologists Ltd.

  18. Lead: Aspects of its ecology and environmental toxicity. [physiological effects of lead compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    An analysis of lead toxicity in the Hawaiian environment was conducted. It was determined that lead enters the environment as an industrial contaminant resulting from the combustion of leaded gasoline. The amount of lead absorbed by the plants in various parts of the Hawaiian Islands is reported. The disposition of lead in the sediments of canals and yacht basins was investigated. The methods for conducting the surveys of lead content are described. Possible consequences of continued environmental pollution by burning leaded gasoline are discussed.

  19. Digital holographic microscopy: a novel tool to study the morphology, physiology and ecology of diatoms

    NARCIS (Netherlands)

    Zetsche, E.-M.; El Mallahi, A.; Meysman, F.J.R.

    2016-01-01

    Recent advances in optical components, computational hardware and image analysis algorithms have led to the development of a powerful new imaging tool, digital holographic microscopy (DHM). So far, DHM has been predominantly applied in the life sciences and medical research, and here, we evaluate

  20. A preliminary characterization of the physiological ecology of overwintering Anopheles mosquitoes in the midwestern USA.

    Science.gov (United States)

    Wallace, John R; Grimstad, Paul R

    2002-06-01

    Field-collected Anopheles quadrimaculatus and An. punctipennis adult mosquitoes from various types of overwintering hibernacula in southwestern Michigan and northern Indiana were examined for cold tolerance. Adult mosquitoes were collected on a monthly basis from October 1997 to April 1998. The mean supercooling point for adult for An. punctipennis was significantly lower than that for An. quadrimaculatus. The lower lethal temperatures for these species were -17 degrees C and -15 degrees C for An. punctipennis and An. quadrimaculatus, respectively.