WorldWideScience

Sample records for vestibular sensory epithelia

  1. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    at 2 and 6 months post-administration. We found no evidence of morphologic or physiologic recovery. These results indicate that gentamicin-induced partial lesions to vestibular epithelia include hair cell loss (ostensibly reflecting an apoptotic effect) that is far less extensive than the compromise to stimulus-evoked afferent discharge modulation and retraction of afferent calyces (reflecting non-apoptotic effects). Additionally, calyx retraction cannot be completely accounted for by loss of type I hair cells, supporting the possibility for direct action of gentamicin on the afferent dendrite.

  2. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction

    Science.gov (United States)

    Sultemeier, David R.; Hoffman, Larry F.

    2017-01-01

    retracted at 2 and 6 months post-administration. We found no evidence of morphologic or physiologic recovery. These results indicate that gentamicin-induced partial lesions to vestibular epithelia include hair cell loss (ostensibly reflecting an apoptotic effect) that is far less extensive than the compromise to stimulus-evoked afferent discharge modulation and retraction of afferent calyces (reflecting non-apoptotic effects). Additionally, calyx retraction cannot be completely accounted for by loss of type I hair cells, supporting the possibility for direct action of gentamicin on the afferent dendrite. PMID:29163044

  3. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    Science.gov (United States)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  4. Sensorial countermeasures for vestibular spatial disorientation.

    Science.gov (United States)

    Paillard, Aurore C; Quarck, Gaëlle; Denise, Pierre

    2014-05-01

    Spatial disorientation is defined as an erroneous body orientation perceived by pilots during flights. Limits of the vestibular system provoke frequent spatial disorientation mishaps. Although vestibular spatial disorientation is experienced frequently in aviation, there is no intuitive countermeasure against spatial disorientation mishaps to date. The aim of this review is to describe the current sensorial countermeasures and to examine future leads in sensorial ergonomics for vestibular spatial disorientation. This work reviews: 1) the visual ergonomics, 2) the vestibular countermeasures, 3) the auditory displays, 4) the somatosensory countermeasures, and, finally, 5) the multisensory displays. This review emphasizes the positive aspects of auditory and somatosensory countermeasures as well as multisensory devices. Even if some aspects such as sensory conflict and motion sickness need to be assessed, these countermeasures should be taken into consideration for ergonomics work in the future. However, a recent development in aviation might offer new and better perspectives: unmanned aerial vehicles. Unmanned aerial vehicles aim to go beyond the physiological boundaries of human sensorial systems and would allow for coping with spatial disorientation and motion sickness. Even if research is necessary to improve the interaction between machines and humans, this recent development might be incredibly useful for decreasing or even stopping vestibular spatial disorientation.

  5. Isosorbide delays gentamicin-induced vestibular sensory cell death.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2005-01-01

    The efficacy of isosorbide for protection from vestibular sensory cell damage was investigated. The effects of isosorbide on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular sensory cell damage was examined by using an in vitro LIVE/DEAD system. Isosorbide inhibited the production of both NO and ROS. Isosorbide limited the vestibular sensory cell damage caused by gentamicin. It is, therefore, suggested that isosorbide may help to treat inner ear disorders.

  6. Degenerative hairlets on the vestibular sensory cells in mutant bustling (BUS/Idr) mice.

    Science.gov (United States)

    Moriyama, K; Hashimoto, R; Hanai, A; Yoshizaki, N; Yonezawa, S; Otani, H

    1997-01-01

    The bustling mouse (BUS/Idr: bus) is a mutant mouse strain which exhibits deafness, bustling/hyperkinetic behaviour and functional disorders seemingly related to the vestibular system. This phenotype develops in homozygous (bus/bus) mice and has been shown from cross experiments to be genetically induced by a single autosomal recessive gene. We previously detected, with light and electron microscopy, post-natal degeneration of the inner ear sensory cells in homozygotes. In the present study, we examined, by electron microscopy, the development of pathological changes in the sensory epithelia of the macula acustica and crista ampullaris of homozygous mice of various ages, paying special attention to the detailed morphology of the sensory hairlets. The homozygous mice exhibited specific pathological changes: a decrease in the number of hairs; disarrangement of the kinocilium-stereocilia pattern; and, fused and/or very large stereocilia. Homozygotes also frequently exhibited apical cytoplasmic herniation, or bleb of hair cells, as well as a degenerated kinocilium in the sensory epithelium. Heterozygotes showed similar changes, but to a lesser degree and frequency. As for the vestibular organs, similar pathological changes had developed at day, 17 of gestation. These pathological findings and onset suggest that the BUS mouse may be a mutant mouse strain distinct from other reported strains which display similar behaviour, and may be a useful animal model for the study of human degenerative vestibular disorders.

  7. Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways

    OpenAIRE

    Lee, Choongheon; Jones, Timothy A

    2017-01-01

    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransm...

  8. Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways.

    Science.gov (United States)

    Lee, Choongheon; Jones, Timothy A

    2017-09-01

    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransmitter and neuromodulator receptors in the vestibular sensory pathways. Identifying these receptor targets provides a strategic basis to use specific pharmacological tools to modify receptor function in the treatment and management of debilitating balance disorders. A review of the literature reveals that most investigations of the neuropharmacology of peripheral vestibular function have been performed using in vitro or ex vivo animal preparations rather than studying drug action on the normal intact vestibular system in situ. Such noninvasive approaches could aid the development of more accurate and effective intervention strategies for the treatment of dizziness and vertigo. The current review explores the major neuropharmacological targets for drug action in the vestibular system.

  9. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.

    Science.gov (United States)

    Fritzsch, Bernd; Pauley, Sarah; Matei, Veronica; Katz, David M; Xiang, Mengqing; Tessarollo, Lino

    2005-08-01

    We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea.

  10. Development and evolution of the vestibular sensory apparatus of the mammalian ear.

    Science.gov (United States)

    Beisel, Kirk W; Wang-Lundberg, Yesha; Maklad, Adel; Fritzsch, Bernd

    2005-01-01

    Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.

  11. Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia.

    Science.gov (United States)

    Schweizer, Felix E; Savin, David; Luu, Cindy; Sultemeier, David R; Hoffman, Larry F

    2009-11-10

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.

  12. Direct evidence of nitric oxide production in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-01-01

    Production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. The utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with L-arginine, and significantly increased after inoculation with LPS. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role for the vestibular physiology and also be involved in disease of the inner ear.

  13. Influence of sensory information on static balance in older patients with vestibular disorder

    OpenAIRE

    Macedo, Camila; Gazzola,Juliana Maria; Ricci, Natalia Aquaroni [UNIFESP; Doná, Flávia; Ganança, Fernando Freitas

    2015-01-01

    Introduction: With aging, the sensory systems suffer an accumulation of degenerative, infectious and/or traumatic processes that may hinder the body balance maintenance. Objective: To assess the influence of sensory information on static body balance of elderly individuals with vestibular disorders. Methods: Cross-sectional study of elderly individuals with vestibular disorders. The Clinical Test of Sensory Interaction and Balance and posturography integrated with virtual reality (Balance Reh...

  14. Glutamate-induced production of nitric oxide in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-06-01

    Glutamate-induced production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. Utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with glutamate, NMDA and AMPA. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role in the glutamate-induced ototoxicity and also be involved in disease of the inner ear.

  15. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Amir Abbas Ebrahimi

    2018-01-01

    Full Text Available The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys with the profound sensorineural hearing loss (PTA>90 dB. They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP. For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT was completed pre- and post-intervention with SPS (Synapsys, Marseille, France. Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS, vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05. The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  16. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction.

    Science.gov (United States)

    Ebrahimi, Amir Abbas; Jamshidi, Ali Ashraf; Movallali, Guita; Rahgozar, Mehdi; Haghgoo, Hojjat Allah

    2017-11-01

    The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys) with the profound sensorineural hearing loss (PTA>90 dB). They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP). For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT) was completed pre- and post-intervention with SPS (Synapsys, Marseille, France). Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS), vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05). The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  17. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control.

    Science.gov (United States)

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-09-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10 min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber. The sensory contribution values of the visual, somatosensory, and vestibular systems were calculated using center of pressure of the total trajectory length value in these measuring conditions. [Results] The center of pressure of the total trajectory length on foam rubber in post and post10 were significantly lower than that in the pre. The sensory contribution values of vestibular in post10 stages were significantly higher than that in pre-stage. [Conclusion] Gaze stabilization exercise can improve the static body balance in a condition that particularly requires vestibular function. The possible mechanism involves increasing sensory contribution of the vestibular system for postural control by the gaze stabilization exercise, which may be useful to derive sensory reweighting of the vestibular system for rehabilitation.

  18. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control

    Science.gov (United States)

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-01-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10 min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber. The sensory contribution values of the visual, somatosensory, and vestibular systems were calculated using center of pressure of the total trajectory length value in these measuring conditions. [Results] The center of pressure of the total trajectory length on foam rubber in post and post10 were significantly lower than that in the pre. The sensory contribution values of vestibular in post10 stages were significantly higher than that in pre-stage. [Conclusion] Gaze stabilization exercise can improve the static body balance in a condition that particularly requires vestibular function. The possible mechanism involves increasing sensory contribution of the vestibular system for postural control by the gaze stabilization exercise, which may be useful to derive sensory reweighting of the vestibular system for rehabilitation. PMID:28931974

  19. Influence of sensory information on static balance in older patients with vestibular disorder.

    Science.gov (United States)

    Macedo, Camila; Gazzola, Juliana Maria; Ricci, Natalia Aquaroni; Doná, Flávia; Ganança, Fernando Freitas

    2015-01-01

    With aging, the sensory systems suffer an accumulation of degenerative, infectious and/or traumatic processes that may hinder the body balance maintenance. To assess the influence of sensory information on static body balance of elderly individuals with vestibular disorders. Cross-sectional study of elderly individuals with vestibular disorders. The Clinical Test of Sensory Interaction and Balance and posturography integrated with virtual reality (Balance Rehabilitation Unit) were used. Posturography parameters analyzed included center of pressure and velocity of body sway. 123 individuals with mean age of 73.11 were assessed. Worst performance was observed in the Clinical Test of Sensory Interaction and Balance condition of visual dome-unstable surface. Differences between conditions were: firm surface-open eyes/firm surface-closed eyes, unstable surface-open eyes/unstable surface-closed eyes (pvestibular interaction; and firm surface-visual-vestibular interaction/unstable surface. Worse performances were observed in conditions firm surface-closed eyes, firm surface-vertical optokinetic stimulus, F-visual-vestibular interaction, and unstable surface-closed eyes. There was a difference in the center of pressure between firm surface-closed eyes/firm surface-saccadic stimulus, with a worse performance in the condition of firm surface-closed eyes, and of velocity of body sway, between firm surface-saccadic stimulus/firm surface-horizontal optokinetic stimulus (pvestibular disorders is worse when the sensory conditions are more challenging, i.e. stable and unstable surfaces, visual stimuli, such as optokinetic and visual-vestibular interaction, and with the eyes closed. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  1. Convergence of Vestibular and Neck Proprioceptive Sensory Signals in the Cerebellar Interpositus

    Science.gov (United States)

    Luan, Hongge; Gdowski, Martha Johnson; Newlands, Shawn D.; Gdowski, Greg T.

    2013-01-01

    The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body’s movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1–C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6 –T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head’s movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements. PMID:23325256

  2. Influence of sensory information on static balance in older patients with vestibular disorder

    Directory of Open Access Journals (Sweden)

    Camila Macedo

    2015-02-01

    Full Text Available Introduction: With aging, the sensory systems suffer an accumulation of degenerative, infectious and/or traumatic processes that may hinder the body balance maintenance. Objective: To assess the influence of sensory information on static body balance of elderly individuals with vestibular disorders. Methods: Cross-sectional study of elderly individuals with vestibular disorders. The Clinical Test of Sensory Interaction and Balance and posturography integrated with virtual reality (Balance Rehabilitation UnitTM were used. Posturography parameters analyzed included center of pressure and velocity of body sway. Results: 123 individuals with mean age of 73.11 were assessed. Worst performance was observed in the Clinical Test of Sensory Interaction and Balance condition of visual dome-unstable surface. Differences between conditions were: firm surface-open eyes/firm surface-closed eyes, unstable surface-open eyes/unstable surface-closed eyes (p < 0.001, and unstable surface-closed eyes/unstable surface-visual dome. Considering center of pressure and velocity of body sway, significant differences were observed between the following conditions: firm surface-open eyes/firm surface-closed eyes: firm surface-saccadic stimulus/firm surfacevertical optokinetic stimulus; firm surface-optokinetic stimuli/firm surface-visual-vestibular interaction; and firm surface-visual-vestibular interaction/unstable surface. Worse performances were observed in conditions firm surface-closed eyes, firm surface-vertical optokinetic stimulus, F-visual-vestibular interaction, and unstable surface-closed eyes. There was a difference in the center of pressure between firm surface-closed eyes/firm surface-saccadic stimulus, with a worse performance in the condition of firm surface-closed eyes, and of velocity of body sway, between firm surface-saccadic stimulus/firm surface-horizontal optokinetic stimulus (p < 0.001. Conclusion: Static body balance in elderly individuals with

  3. Nitric oxide in guinea pig vestibular sensory cells following gentamicin exposure in vitro.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2001-04-01

    Gentamicin-induced production of nitric oxide (NO) in the vestibular end organs of the guinea pig was investigated using the new fluorescence indicator 4,5-diaminofluorescein diacetate for direct detection of NO. Utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with gentamicin. This increase in fluorescence was inhibited by the presence of the non-specific inhibitor for nitric oxide synthase, L-N(G)-nitroarginine methylester, and by the non-specific N-methyl-D-aspartic acid antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate. These findings indicate that NO may play an important role in the ototoxicity of aminoglycoside.

  4. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control

    OpenAIRE

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-01-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10?min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber...

  5. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology.

    Science.gov (United States)

    Oman, Charles M; Cullen, Kathleen E

    2014-08-01

    The origin of the internal "sensory conflict" stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input ("reafference") to these neurons are canceled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model-presumably located in the cerebellum) with the actual sensory feedback. The un-canceled component ("exafference") resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular "sensory conflict" neurons had been postulated as early as 1982, but their existence and putative role in posture control and motion sickness have been long debated. Here, we review the development of "sensory conflict" theories in relation to recent evidence for brainstem and cerebellar reafference cancelation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulate nearby brainstem emetic centers-via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness.

  6. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    Science.gov (United States)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  7. Simultaneous detection of both nitric oxide and reactive oxygen species in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2002-01-01

    Gentamicin-induced production of reactive oxygen species (ROS) and of nitric oxide (NO) in the vestibular end organs of the guinea pig was investigated by applying two new fluorescence indicators, 4,5-diaminofluorescein diacetate for direct detection of NO and dihydrotetramethylrosamine for ROS. The vestibular sensory cells produced both NO and ROS after exposure to gentamicin. A nonspecific inhibitor of NO synthase, L-NAME, inhibited the production of NO but did not appear to affect the production of ROS following exposure to gentamicin. In contrast, a radical scavenger, D-methionine, or the neurotrophin BDNF suppressed the production of ROS, in turn stimulating NO production. These findings could indicate that both NO and ROS play an important role in aminoglycoside ototoxicity. Copyright 2002 S. Karger AG, Basel

  8. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention.

    Science.gov (United States)

    Fritzsch, B; Matei, V A; Nichols, D H; Bermingham, N; Jones, K; Beisel, K W; Wang, V Y

    2005-06-01

    Inner ear hair cells have been suggested as attractors for growing afferent fibers, possibly through the release of the neurotrophin brain-derived neurotrophic factor (BDNF). Atoh1 null mice never fully differentiate hair cells and supporting cells and, therefore, may show aberrations in the growth and/or retention of their innervation. We investigated the distribution of cells positive for Atoh1- or Bdnf-mediated beta-galactosidase expression in Atoh1 null and Atoh1 heterozygotic mice and correlated the distribution of these cells with their innervation. Embryonic day (E) 18.5 Atoh1 null and heterozygotic littermates show Atoh1- and BDNF-beta-galactosidase-positive cells in comparable distributions in the canal cristae and the cochlea apex. Atoh1-beta-galactosidase-positive but only occasional Bdnf-beta-galactosidase-positive cells are found in the utricle, saccule, and cochlea base of Atoh1 null mutant mice. Absence of Bdnf-beta-galactosidase expression in the utricle and saccule of Atoh1 null mice is first noted at E12.5, a time when Atoh1-beta-galactosidase expression is also first detected in these epithelia. These data suggest that expression of Bdnf is dependent on ATOH1 protein in some but does not require ATOH1 protein in other inner ear cells. Overall, the undifferentiated Atoh1- and Bdnf-beta-galactosidase-positive cells show a distribution reminiscent of that in the six sensory epithelia in control mice, suggesting that ear patterning processes can form discrete patches of Atoh1 and Bdnf expression in the absence of ATOH1 protein. The almost normal growth of afferent and efferent fibers in younger embryos suggests that neither fully differentiated hair cells nor BDNF are necessary for the initial targeted growth of fibers. E18.5 Atoh1 null mice have many afferent fibers to the apex of the cochlea, the anterior and the posterior crista, all areas with numerous Bdnf-beta-galactosidase-positive cells. Few fibers remain to the saccule, utricle, and the base

  9. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Directory of Open Access Journals (Sweden)

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  10. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  11. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device?

    Science.gov (United States)

    Sienko, K H; Whitney, S L; Carender, W J; Wall, C

    2017-01-01

    This narrative review highlights findings from the sensory augmentation field for people with vestibular deficits and addresses the outstanding questions that are critical to the translation of this technology into clinical and/or personal use. Prior research has demonstrated that the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies can improve balance during static and dynamic stance tasks within a laboratory setting. However, its application in improving gait requires additional investigation, as does its efficacy as a rehabilitation device for people with vestibular deficits. In some locomotor studies involving sensory augmentation, gait velocity decreased and secondary task performance worsened, and subjects negatively altered their segmental control strategies when cues were provided following short training sessions. A further question is whether the retention and/or carry-over effects of training with a sensory augmentation technology exceed the retention and/or carry-over effects of training alone, thereby supporting its use as a rehabilitation device. Preliminary results suggest that there are short-term improvements in balance performance following a small number of training sessions with a sensory augmentation device. Long-term clinical and home-based controlled training studies are needed. It is hypothesized that sensory augmentation provides people with vestibular deficits with additional sensory input to promote central compensation during a specific exercise/activity; however, research is needed to substantiate this theory. Major obstacles standing in the way of its use for these critical applications include determining exercise/activity specific feedback parameters and dosage strategies. This paper summarizes the reported findings that support sensory augmentation as a balance aid and rehabilitation device, but does not critically examine efficacy or the quality of the research methods used in the

  12. Adaptation of postural recovery responses to a vestibular sensory illusion in individuals with Parkinson disease and healthy controls.

    Science.gov (United States)

    Lester, Mark E; Cavanaugh, James T; Foreman, K Bo; Shaffer, Scott W; Marcus, Robin; Dibble, Leland E

    2017-10-01

    The ability to adapt postural responses to sensory illusions diminishes with age and is further impaired by Parkinson disease. However, limited information exists regarding training-related adaptions of sensory reweighting in these populations. This study sought to determine whether Parkinson disease or age would differentially affect acute postural recovery or adaptive postural responses to novel or repeated exposure to sensory illusions using galvanic vestibular stimulation during quiet stance. Acutely, individuals with Parkinson disease demonstrated larger center of pressure coefficient of variation compared to controls. Unlike individuals with Parkinson disease and asymptomatic older adults, healthy young adults acutely demonstrated a reduction in Sample Entropy to the sensory illusion. Following a period of consolidation Sample Entropy increased in the healthy young group, which coincided with a decreased center of pressure coefficient of variation. Similar changes were not observed in the Parkinson disease or older adult groups. Taken together, these results suggest that young adults learn to adapt to vestibular illusion in a more robust manner than older adults or those with Parkinson disease. Further investigation into the nature of this adaptive difference is warranted. Published by Elsevier Ltd.

  13. An Engineering Model to Test for Sensory Reweighting: Nonhuman Primates Serve as a Model for Human Postural Control and Vestibular Dysfunction.

    Science.gov (United States)

    Thompson, Lara A; Haburcakova, Csilla; Goodworth, Adam D; Lewis, Richard F

    2018-01-01

    Quantitative animal models are critically needed to provide proof of concept for the investigation of rehabilitative balance therapies (e.g., invasive vestibular prostheses) and treatment response prior to, or in conjunction with, human clinical trials. This paper describes a novel approach to modeling the nonhuman primate postural control system. Our observation that rhesus macaques and humans have even remotely similar postural control motivates the further application of the rhesus macaque as a model for studying the effects of vestibular dysfunction, as well as vestibular prosthesis-assisted states, on human postural control. Previously, system identification methodologies and models were only used to describe human posture. However, here we utilized pseudorandom, roll-tilt balance platform stimuli to perturb the posture of a rhesus monkey in normal and mild vestibular (equilibrium) loss states. The relationship between rhesus monkey trunk sway and platform roll-tilt was determined via stimulus-response curves and transfer function results. A feedback controller model was then used to explore sensory reweighting (i.e., changes in sensory reliance), which prevented the animal from falling off of the tilting platform. Conclusions involving sensory reweighting in the nonhuman primate for a normal sensory state and a state of mild vestibular loss led to meaningful insights. This first-phase effort to model the balance control system in nonhuman primates is essential for future investigations toward the effects of invasive rehabilitative (balance) technologies on postural control in primates, and ultimately, humans.

  14. Progression of changes in the sensorial elements of the cochlear and peripheral vestibular systems: The otitis media continuum.

    Science.gov (United States)

    Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira

    2017-08-01

    Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impaired tunnel-maze behavior in rats with sensory lesions: vestibular and auditory systems.

    Science.gov (United States)

    Schaeppi, U; Krinke, G; FitzGerald, R E; Classen, W

    1991-01-01

    Maze behavior of rodents provides insight into processes of learning and memory and also serves to assess cognitive functions in neurotoxicity tests. Neurotoxic agents may impair maze behavior by acting upon different parts of the nervous system. To assess the dependence of maze learning upon vestibular and/or auditory input, the two systems were lesioned. Daily treatment of rat pups with streptomycin (400 mg/kg sc) on postnatal day 11 to 22 caused irreversible impairment of vestibular and auditory functions, whereas, 20 injections of neomycin in adult rats (100 mg/kg sc, postnatal weeks 8 to 11) led to hearing loss only. Hearing loss was assessed by absence of Preyer's reflex and impaired vestibular function by loss or shortened duration of postrotatory nystagmus. Learning in the unbaited 6-arm radial maze was tested at the age of 2 to 3 mon using a maze configuration that allowed to assess order of arm entries ("working memory") and left-right discrimination within each arm ("reference memory"). Treatment with streptomycin but not with neomycin led to impaired order of arm entries. Since treatment with streptomycin failed to induce any signs of brain lesions, impaired maze learning is considered to result from destruction of vestibular hair cell receptors with subsequent vestibular impairment and not from hearing loss or cognitive impairment.

  16. Neuro-vestibular and Sensory-motor Challenges Associated with NASA Mission Architectures for Moon and Mars

    Science.gov (United States)

    Paloski, William H.

    2004-01-01

    Data from six-month low Earth orbit space flight missions suggest that that substantial neuro-vestibuladsensory-motor adaptation will take place during six-month transit missions to and from Mars. Could intermittent or continuous artificial gravity be used to offset these effects? To what degree would the effects of adaptation to this rotational cure affect its potential benefits? Also, little information exists regarding the gravity thresholds for maintaining functional performance of complex sensory-motor tasks such as balance control and locomotion. Will sensory-motor coordination systems adapt to 30-90 days of 1/6 g on the lunar surface or 18 months of 3/8 g on the Martian surface? Would some form of gravity replacement therapy be required on the surface? And, will transitions between 0 g and 1/6 g or 1/3 g present as great a challenge to the vestibular system as transitions between 0 g and 1 g? Concerted research and development efforts will be required to obtain the answers.

  17. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.

    Science.gov (United States)

    Meredith, Frances L; Rennie, Katherine J

    2016-08-01

    During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled Reviews 2016>. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Vestibular mechanisms.

    Science.gov (United States)

    Precht, W

    1979-01-01

    It is apparent from this and other reviews of the subject that our knowledge of vestibular function is most complete for the primary canal and otolithic afferents. Relatively little progress has been made in the understanding of receptor mechanisms and the functional importance of the efferent vestibular system. Since most of it has been summarized previously the latter were not considered here. Considerably more knowledge has accumulated in the field of central vestibular mechanisms, particularly those related to eye movements. Recent advances in functional synaptology of direct and indirect vestibuloocular pathways are described. It appears that the indirect pathways are essential for the central integration of the peripheral head velocity into a central eye position signal. Candidates for the neural integrator are presented and discussed and their connectivity described both for the horizontal and the relatively poorly studied vertical eye movement system. This field will certainly be studied extensively during the next years. Another interesting field is the role of the cerebellum in the control the vestibuloocular reflex. Recent data and hypotheses, including the problem of cerebellar plasticity, are summarized and evaluated. That the vestibular nuclei are by no means a simple relay system for specific vestibular signals destined for other sensory or motor centers is evidenced in this review by the description of multiple canal-canal, canalotolith, and visual-vestibular convergence at the nuclear level. Canal-otolith and polysensory convergence in vestibular neurons enables them to correct for the inherent inadequacies of the peripheral canal system in the low frequency range. The mechanisms of polysensory interaction in the central vestibular system will undoubtedly be an important and interesting field for future research.

  19. Vestibular compensation following vestibular neurotomy.

    Science.gov (United States)

    Devèze, A; Montava, M; Lopez, C; Lacour, M; Magnan, J; Borel, L

    2015-09-01

    Four studies assessing vestibular compensation in Menière's disease patients undergoing unilateral vestibular neurotomy, using different analysis methods, are reviewed, with a focus on the different strategies used by patients according to their preoperative sensory preference. Four prospective studies performed in a university tertiary referral center were reviewed, measuring the pattern of vestibular compensation in Menière's disease patients before and after unilateral vestibular neurotomy on various assessment protocols: postural syndrome assessed on static posturography and gait analysis; perceptual syndrome assessed on subjective visual vertical perception; and oculomotor syndrome assessed on ocular cyclotorsion. Vestibular compensation occurred at variable intervals depending on the parameter investigated. Open-eye postural control and gait/walking returned to normal one month after neurotomy. Fine balance analysis found that visual perception of the vertical and ocular cyclotorsion impairment persisted at long-term follow-up. Clinical postural disturbance persisted only when visual afferents were cut off (eyes closed). These impairments were the expression of a postoperative change in postural strategy related to the new use of visual and non-visual references. Understanding pre-operative interindividual variation in balance strategy is critical to screening for postural instability and tailoring vestibular rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Hyper-responsivity to touch and vestibular stimuli as a predictor of positive response to sensory integration procedures by autistic children.

    Science.gov (United States)

    Ayres, A J; Tickle, L S

    1980-06-01

    Sensory processing disturbance in autistic children as a predictor of response to sensory integrative procedures was investigated. Ten autistic children, ages 3-1/2 to 13 years (mean, 7.4 years), were initially evaluated in regard to their hypo-, hyper-, or normal responsivity to visual, auditory, tactile, vestibular, proprioceptive, olfactory, and gustatory stimuli. After evaluation, each child received therapy that provided somatosensory and vestibular stimulation and elicited adaptive responses to these stimuli. At the end of one year of therapy, each child's progress was judged in relationship to that of the others, and the group was divided into the six best and the four poorest respondents. Stepwise discriminant analysis identified which initial test variables predicted good or poor responses to therapy. The good respondents showed tactile defensiveness, avoidance of movement, gravitational insecurity, and an orienting response to an air puff. Results suggest that children who registered sensory input but failed to modulate it responded better to therapy than those who were hypo-responsive or failed to orient to sensory input.

  1. Central vestibular system: vestibular nuclei and posterior cerebellum.

    Science.gov (United States)

    Barmack, Neal H

    2003-06-15

    The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a

  2. Vestibular damage in chronic ototoxicity: a mini-review.

    Science.gov (United States)

    Sedó-Cabezón, Lara; Boadas-Vaello, Pere; Soler-Martín, Carla; Llorens, Jordi

    2014-07-01

    Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles. Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons. Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the afferent terminals, of differing severity depending on the ototoxicity model. One major pathway frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity. In addition, greater involvement of the afferent terminals may occur, particularly the calyx units contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory loss associated with chronic exposure and aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The vestibular body: Vestibular contributions to bodily representations.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Haggard, Patrick

    2016-01-01

    Vestibular signals are integrated with signals from other sensory modalities. This convergence could reflect an important mechanism for maintaining the perception of the body. Here we review the current literature in order to develop a framework for understanding how the vestibular system contributes to body representation. According to recent models, we distinguish between three processes for body representation, and we look at whether vestibular signals might influence each process. These are (i) somatosensation, the primary sensory processing of somatic stimuli, (ii) somatoperception, the processes of constructing percepts and experiences of somatic objects and events and (iii) somatorepresentation, the knowledge about the body as a physical object in the world. Vestibular signals appear to contribute to all three levels in this model of body processing. Thus, the traditional view of the vestibular system as a low-level, dedicated orienting module tends to underestimate the pervasive role of vestibular input in bodily self-awareness.

  4. Vestibular Function and Depersonalization/Derealization Symptoms.

    Science.gov (United States)

    Jáuregui Renaud, Kathrine

    2015-01-01

    Patients with an acquired sensory dysfunction may experience symptoms of detachment from self or from the environment, which are related primarily to nonspecific symptoms of common mental disorders and secondarily, to the specific sensory dysfunction. This is consistent with the proposal that sensory dysfunction could provoke distress and a discrepancy between the multi-sensory frame given by experience and the actual perception. Both vestibular stimuli and vestibular dysfunction can underlie unreal experiences. Vestibular afferents provide a frame of reference (linear and angular head acceleration) within which spatial information from other senses is interpreted. This paper reviews evidence that symptoms of depersonalization/derealization associated with vestibular dysfunction are a consequence of a sensory mismatch between disordered vestibular input and other sensory signals of orientation.

  5. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  6. Vestibular migraine

    DEFF Research Database (Denmark)

    Lempert, Thomas; Olesen, Jes; Furman, Joseph

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  7. Miniature EPSPs and sensory encoding in the primary afferents of the vestibular lagena of the toadfish, Opsanus tau.

    Science.gov (United States)

    Locke, R; Vautrin, J; Highstein, S

    1999-05-28

    The synaptic activity transmitted from vestibular hair cells of the lagena to primary afferent neurons was recorded in vitro using sharp, intracellular microelectrodes. At rest, the activity was composed of miniature excitatory postsynaptic potentials (mEPSPs) at frequencies from 5 to 20/s and action potentials (APs) at frequencies betwen 0 and 10/s. mEPSPs recorded from a single fiber displayed a large variability. For mEPSPs not triggering APs, amplitudes exhibited an average coefficient of variance (CV) of 0.323 and rise times an average CV of 0.516. APs were only triggered by mEPSPs with larger amplitudes (estimated 4-6 mV) and/or steeper maximum rate of rise (10.9 mV/ms, +/- 3.7 SD, n=4 experiments) compared to (3.50 mV/ms, +/-0.07 SD, n=6 experiments) for nontriggering mEPSPs. The smallest mEPSPs showed a fast rise time (0.99 ms between 10% and 90% of peak amplitude) and limited variability across fibers (CV:0.18) confirming that they were not attenuated signals, but rather represented single-transmitter discharges (TDs). The mEPSP amplitude and rise-time relationship suggests that many mEPSPs represented several, rather than a single pulse of secretion of TDs. According to the estimated overall TD frequency, the coincidence of TDs contributing to the same mEPSP were not statistically independent, indicating a positive interaction between TDs that is reminiscent of the way subminiature signals group to form miniature signals at the neuromuscular junction. Depending on the duration and intensity of efferent stimulation, a complete block of AP initiation occurred either immediately or after a delay of a few seconds. Efferent stimulation did not significantly change AP threshold level, but abruptly decreased mEPSP frequency to a near-complete block that followed the block of APs. Maximum mEPSP rate of rise decreased during, and recovered progressively after, efferent stimulation. After termination of efferent stimulation, mEPSP amplitude did not recover

  8. Vestibular Contributions to Human Memory

    OpenAIRE

    Smith, Laura; N/A,

    2017-01-01

    The vestibular system is an ancient structure which supports the detection and control of self-motion. The pervasiveness of this sensory system is evidenced by the diversity of its anatomical projections and the profound impact it has on a range of higher level functions, particularly spatial memory. The aim of this thesis was to better characterise the association between the vestibular system and human memory; while many studies have explored this association from a biological perspective f...

  9. Personality changes in patients with vestibular dysfunction

    OpenAIRE

    Paul eSmith; Cynthia eDarlington

    2013-01-01

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflex...

  10. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    We review studies on regulatory volume decrease (RVD) and regulatory volume increase (RVI) of major ion and water transporting vertebrate epithelia. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared...... function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...

  11. Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution.

    Science.gov (United States)

    Duncan, Jeremy S; Fritzsch, Bernd

    2012-01-01

    We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of "auditory neurons" that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound

  12. The thalamocortical vestibular system in animals and humans

    OpenAIRE

    LOPEZ, Christophe; Blanke, Olaf

    2011-01-01

    The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data fro...

  13. Perspectives on aging vestibular function

    Directory of Open Access Journals (Sweden)

    Eric eAnson

    2016-01-01

    Full Text Available Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities like standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multi-sensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multi-sensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  14. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    OpenAIRE

    Mathews, Miranda A.; Camp, Aaron J.; Murray, Andrew J.

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate...

  15. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].

    Science.gov (United States)

    Stolbkov, Iu K; Gerasimenko, Iu P

    2014-06-01

    Locomotion is the most important mode of our movement in space. The role of the vestibular system during human locomotion is not well studied, mainly due to problems associated with its isolation stimulation. It is difficult to stimulate this system in isolation during locomotion because the real movement of the head to activate the vestibular end-organs inevitably leads to the activation of other sensory inputs. Galvanic stimulation is not a natural way to stimulate the vestibular system, but it has the advantage providing an isolated stimulation of the vestibular inputs. This technique is relatively novel in the examination of vestibular contributions during human locomotion. In our review we consider the current data regarding the effect of vestibular signals on human locomotion by using galvanic vestibular stimulation.

  16. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    Directory of Open Access Journals (Sweden)

    Miranda A. Mathews

    2017-08-01

    Full Text Available Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN, and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  17. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits.

    Science.gov (United States)

    Mathews, Miranda A; Camp, Aaron J; Murray, Andrew J

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  18. Vestibular perception is slow: a review.

    Science.gov (United States)

    Barnett-Cowan, Michael

    2013-01-01

    Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.

  19. Anatomy of the vestibular system: a review.

    Science.gov (United States)

    Khan, Sarah; Chang, Richard

    2013-01-01

    A sense of proper sensory processing of head motion and the coordination of visual and postural movements to maintain equilibrium is critical to everyday function. The vestibular system is an intricate organization that involves multiple levels of sensory processing to achieve this goal. This chapter provides an overview of the anatomical structures and pathways of the vestibular system. The five major vestibular structures are located in the inner ear and include: the utricle, the saccule, and the lateral, superior, and posterior semicircular canals. Hair cells on the neuroepithelium of the peripheral vestibular organs carry sensory impulses to primary processing centers in the brainstem and the cerebellum. These areas send input via ascending and descending projections to coordinate vital reflexes, such as the vestibuloocular reflex and the vestibulospinal reflex, which allow for the proper orientation of the eyes and body in response to head motion. Specific connections regarding higher level cortical vestibular structures are poorly understood. Vestibular centers in the brainstem, cerebellum, and cerebral cortex function to integrate sensory information from the peripheral vestibular organs, visual system, and proprioceptive system to allow for proper balance and orientation of the body in its environment.

  20. Improvements in dizziness and imbalance results from using a multi disciplinary and multi sensory approach to Vestibular Physical Therapy - A case study

    Directory of Open Access Journals (Sweden)

    Kim R Gottshall

    2015-08-01

    Full Text Available This paper discusses a case study of a 41 year old active duty male service member who sustained a motorcycle accident and head trauma and underwent multidisciplinary vestibular physical therapy for treatment. He was initially treated with traditional physical therapy applications of treadmill walking and standing balance with some symptom improvements, but was not able to maintain a running speed that would allow him to remain on active duty status. Further treatment utilizing a Computer Assisted Rehabilitation Environment (CAREN was performed in order to increase difficulty levels and recover more functionality. This treatment is able to elicit vestibular deficits seen in the community as it requires subjects to walk and balance while performing tasks within a virtual scenario with platform motion, visual surround and flow, and cognitive processing. After six weeks of therapy, twice weekly, improvements in clinical vestibular measures were observed as well as walking speed and patient confidence. The subject was able to return to full duty after treatment. This case study provides supportive evidence that multidimensional tasking in a virtual environment provides a safe but demanding form of vestibular therapy for patients needing more challenging tasks than those provided with traditional therapy techniques. Those persons requiring higher levels of performance before returning to work (e.g. pilots, special operators, etc. may find this type of therapy beneficial.

  1. Improvements in dizziness and imbalance results from using a multi disciplinary and multi sensory approach to Vestibular Physical Therapy - a case study.

    Science.gov (United States)

    Gottshall, Kim R; Sessoms, Pinata H

    2015-01-01

    This paper discusses a case study of a 41-year-old active duty male service member who sustained head trauma from a motorcycle accident and underwent multidisciplinary vestibular physical therapy rehabilitation. He was initially treated with traditional physical therapy applications of treadmill walking and standing balance with some symptom improvements, but was not able to maintain a running speed that would allow him to return to full active duty status. Further treatment utilizing a Computer Assisted Rehabilitation Environment was performed in order to increase level of difficulty and further enhance function. This treatment is able to elicit vestibular deficits seen in the community as it requires subjects to walk and balance while performing tasks within a virtual scenario incorporating platform motion, visual surround and flow, and cognitive processing. After 6 weeks of therapy, twice weekly, improvements in clinical vestibular measures were observed as well as walking speed and patient confidence. The patient was able to return to full duty after treatment. This case study provides supportive evidence that multidimensional tasking in a virtual environment provides a safe but demanding form of vestibular therapy for patients needing more challenging tasks than those provided with traditional therapy techniques. Those persons requiring higher levels of performance before returning to full duty (e.g., pilots, special operators, etc.) may find this type of therapy beneficial.

  2. Personality changes in patients with vestibular dysfunction.

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L

    2013-10-29

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalization and derealization symptoms such as feeling "spaced out", "body feeling strange" and "not feeling in control of self". We propose in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction (TPJ).

  3. International Clinical Protocol on Vestibular Disorders (Dizziness).

    Science.gov (United States)

    Trinus, Kostiantyn; Claussen, Claus-Frenz

    2017-12-01

    26-28 May at 43 Congress of Neurootological and Equilibriometric Society (Budapest, Hungary) International Clinical Protocol on Vestibular Disorders (Dizziness) being discussed and accepted as Consensus Document. Cochrane reports estimates that dizziness has prevalence of 22.9% in the last 12 months and an incidence of 3.1%. Only 1.8% of adults consulted a physician in the last 12 months. Cochrane reviews suggest that the evidence base for dizziness evaluation is weak, thus necessitates the creation of evidence-based document. Protocol is based at the new concept of vestibular system, which involves the vestibular peripheral sensors, space orientation tetrad, vestibular presentations in the brain cortex and vestibular effectory projections in the brain. Labyrinth consists of sensors, for which six modalities are adequate: 1. acceleration, 2. gravitation, 3. low frequency whole-body vibration, 4. Infrasound, 5. magnetic impulse, 6. metabolic changes. Vestibular system from rhomboid fosse gets the inputs from visual, acoustic, somatosensory organs, integrating them and forming space perception and orientation. Interaction with space is realized through sensory, motor, vegetative and limbic projections. So, vestibular disturbances may manifest as paropsia, tinnitus, numbness. Vestibular evoked potentials (not VEMP) and craniocorpography have highest sensitivity (90% and more). As vestibular dysfunction has recurrent character patients need monitoring.

  4. Personality Changes in Patients with Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-10-01

    Full Text Available The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalisation and derealisation symptoms such as feeling ‘spaced out’, ‘body feeling strange’ and ‘not feeling in control of self’. We suggest in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through the information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction.

  5. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Science.gov (United States)

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  6. Microgravity in the STS-29 space shuttle discovery affected the vestibular system of chick embryos

    Science.gov (United States)

    Fermin, C. D.; Martin, D.; Jones, T.; Vellinger, J.; Deuser, M.; Hester, P.; Hullinger, R.

    1996-01-01

    Out of 32 embryos flown (16 @ E2 + 16 @ E9) for 5 days, 16 survived. All sixteen E2 were dead at landing. Eight were opened and eight were incubated at 1.0G. Autopsy showed that 4 E2 survived over 24 hours in space. Eight E14 hatched without anatomical malformations, and 8 E14 were fixed. The height of the macular epithelia was 31 mu m (mean) in control and 26 mu m in flight chicks. The cross-sectional area of macular nuclei of control was 17 mu m(2) for hair cells and 14 mu m(2) in supporting cells. In flight, cross-sectional area was 17 mu m(2) in hair cells and 15 mu m(2) in supporting cells (n=250). The shape factor of cartilage cells (1.0 = perfect circle) between control (mean = 0.70) and flight (mean = 0.72), and the area of cartilaginous cells between controls (mean = 9 mu m(2)) and flight (mean = 9 mu m(2)) did not differ (n=300). The nuclei of support cells were closer to the basement membrane in flight than in control chicks. The immunoreactivity of otoconia with anti keratan, fibronectin or chrondroitin sulfate was not different between flight and control ears. There were more afferent fibers inside the macular epithelia of flight (p<0.05) than control. Three of 8 flight animals had elevated vestibular thresholds (VT), with normal mean response amplitudes and latencies. Modified afferent innervation patterns requiring weeks to compensate are sufficient to elevate VT, and should be investigated further. Other reversible (sublethal) microgravity effects on sensory epithelia (vacuoles, swelling, etc) require quantification.

  7. Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse.

    Science.gov (United States)

    Fan, Jianguo; Jia, Li; Li, Yan; Ebrahim, Seham; May-Simera, Helen; Wood, Alynda; Morell, Robert J; Liu, Pinghu; Lei, Jingqi; Kachar, Bechara; Belluscio, Leonardo; Qian, Haohua; Li, Tiansen; Li, Wei; Wistow, Graeme; Dong, Lijin

    2017-05-23

    The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.

  8. Bionic balance organs: progress in the development of vestibular prostheses.

    Science.gov (United States)

    Smith, Paul F

    2017-09-01

    The vestibular system is a sensory system that is critically important in humans for gaze and image stability as well as postural control. Patients with complete bilateral vestibular loss are severely disabled and experience a poor quality of life. There are very few effective treatment options for patients with no vestibular function. Over the last 10 years, rapid progress has been made in developing artificial 'vestibular implants' or 'prostheses', based on cochlear implant technology. As of 2017, 13 patients worldwide have received vestibular implants and the results are encouraging. Vestibular implants are now becoming part of an increasing effort to develop artificial, bionic sensory systems, and this paper provides a review of the progress in this area.

  9. Occluding junctions of invertebrate epithelia.

    Science.gov (United States)

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2016-01-01

    Invertebrate diversity and architecture is immense. This is achieved by the organization and function of four tissue types found in most metazoan phyla-epithelial, connective, muscle and nervous tissue. Epithelial tissue is found in all extant animals (parazoan and metazoan alike). Epithelial cells form cellular sheets that cover internal or external surfaces and regulate the passage of material between separated compartments. The transepithelial movement of biological material between compartments can occur across the transcellular pathway (i.e. across cells) or the paracellular pathway (i.e. between cells) and the latter is regulated by occluding junctions that typically link cells in a subapical domain. In this review, information on occluding junctions of invertebrate epithelia is consolidated and discussed in the context of morphology, ultrastructure and physiology. In addition, an overview of what is currently known about invertebrate occluding junction proteins and their role in maintaining the integrity of invertebrate epithelia and regulating the barrier properties of these tissues is presented.

  10. Neuroprotection of vestibular sensory cells from gentamicin ototoxicity obtained using nitric oxide synthase inhibitors, reactive oxygen species scavengers, brain-derived neurotrophic factors and calpain inhibitors.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti; Shimizu, Akira; Watanabe, Hiroshi

    2003-01-01

    In order to devise a new treatment for inner ear disorders, the efficacy of a nitric oxide synthase inhibitor (L-N(G)-nitroarginine methylester [L-NAME]), a radical scavenger (D-methionine), a neurotrophin (brain-derived neurotrophic factor [BDNF]) and a calpain inhibitor (leupeptin) for protection from hair cell damage was investigated. The effects of these drugs on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular hair cell damage was examined by using an in vitro LIVE/DEAD system. L-NAME inhibited the production of NO, D-methionine and BDNF restricted the production of ROS and leupeptin inhibited neither NO nor ROS. All the drugs used limited the vestibular hair cell damage caused by gentamicin. The combinations L-NAME + BDNF, L-NAME + leupeptin and D-methionine + BDNF had a significantly stronger preventive effect on hair cell damage. It is suggested that combined treatment with a radical inhibitor and either a neurotrophin or calpain inhibitor may help to treat inner ear disorders more effectively.

  11. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  12. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    that this may be caused by both cochlear and retrocochlear mechanisms. Multiple mechanisms may also be at play in the case of dizziness, which may broaden perspectives of therapeutic approach. This study presents a systematic and detailed assessment of vestibular histopathology in temporal bones from patients...... with VS. METHODS: Retrospective analysis of vestibular system histopathology in temporal bones from 17 patients with unilateral VS. The material was obtained from The Copenhagen Temporal Bone Collection. RESULTS: Vestibular schwannomas were associated with atrophy of the vestibular ganglion, loss of fiber...... density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...

  13. Evaluation of postural control in unilateral vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Rafaela Maia Quitschal

    2014-07-01

    Full Text Available INTRODUCTION: Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. OBJECTIVE: To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. METHOD: This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. RESULTS: For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. CONCLUSION: Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction.

  14. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    Directory of Open Access Journals (Sweden)

    Cécile eTravo

    2012-06-01

    Full Text Available In a previous study (Brugeaud et al., 2007, we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fundamental trait of altered vestibular endorgans and to decipher the cellular mechanisms that support such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa’s ganglion from young and adult rodents. We demonstrate that under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. This reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.

  15. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Pialasse

    Full Text Available Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20 or severe (n = 16 spine deformation were compared to those of healthy control adolescents (n = 16. Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.

  16. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Directory of Open Access Journals (Sweden)

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  17. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study.

    Science.gov (United States)

    Brugnera, Cibele; Bittar, Roseli Saraiva Moreira; Greters, Mário Edvin; Basta, Dietmar

    2015-01-01

    Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR). To evaluate the effectiveness of Vertiguard™ biofeedback equipment as a sensory substitution (SS) of the vestibular system in patients who did not obtain sufficient improvement from VR. This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG), which received the vibrotactile stimulus from Vertiguard™ for ten days, and a control group (CG), which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT) protocol of the Computerized Dynamic Posturography (CDP) and two scales of balance self-perception, Activities-specific Balance Confidence (ABC) and Dizziness Handicap Inventory (DHI), were used. After treatment, only the SG showed statistically significant improvement in C5 (p=0.007) and C6 (p=0.01). On the ABC scale, there was a significant difference in the SG (p=0.04). The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p=0.04). The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard™ system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation.

    Science.gov (United States)

    Cronin, Thomas; Arshad, Qadeer; Seemungal, Barry M

    2017-01-01

    The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections-from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals-typically in combination with other sensory and motor systems-may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  19. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation

    Directory of Open Access Journals (Sweden)

    Thomas Cronin

    2017-10-01

    Full Text Available The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections—from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals—typically in combination with other sensory and motor systems—may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  20. Adaptive plasticity in vestibular influences on cardiovascular control

    Science.gov (United States)

    Yates, B. J.; Holmes, M. J.; Jian, B. J.

    2000-01-01

    Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.

  1. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    Science.gov (United States)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  2. Vestibular function assessment using the NIH Toolbox

    Science.gov (United States)

    Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry

    2013-01-01

    Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = −0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540

  3. Vestibular function assessment using the NIH Toolbox.

    Science.gov (United States)

    Rine, Rosemarie M; Schubert, Michael C; Whitney, Susan L; Roberts, Dale; Redfern, Mark S; Musolino, Mark C; Roche, Jennica L; Steed, Daniel P; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F; Beaumont, Jennifer; Carey, John P; Shepard, Neil P; Jacobson, Gary P; Wrisley, Diane M; Hoffman, Howard J; Furman, Gabriel; Slotkin, Jerry

    2013-03-12

    Development of an easy to administer, low-cost test of vestibular function. Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41-0.94) and sensitivity and specificity (50%-73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42-0.48) and dynamic posturography (r = -0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system.

  4. Integrated annotation and analysis of in situ hybridization images using the ImAnno system: application to the ear and sensory organs of the fetal mouse.

    Directory of Open Access Journals (Sweden)

    Raymond Romand

    Full Text Available An in situ hybridization (ISH study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5, with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000 concomitantly expressed in the five embryonic epithelia, among which many (∼12% were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.

  5. Organizing sensory information for postural control in altered sensory environments.

    Science.gov (United States)

    McCollum, G; Shupert, C L; Nashner, L M

    1996-06-07

    Healthy human subjects can maintain adequate balance despite distorted somatosensory or visual feedback or vestibular feedback distorted by a peripheral vestibular disorder. Although it is not precisely known how this sensorimotor integration task is achieved, the nervous system coordinates information from multiple sensory systems to produce motor commands differently in different sensory environments. These different ways of coordinating sensory information and motor commands can be thought of as "sensorimotor states". The way the nervous system distributes the monitoring of postural sway among states is analysed in this paper as a logical structure of transitions between states. The form of the transition structure is specified and distinguished from a finite state machine. The hypothesis that the nervous system could use a transition structure to maintain balance is tested by developing transition structures which are consistent with a set of experimental observations of postural control in healthy subjects and three groups of patients with peripheral vestibular disease.

  6. The thalamocortical vestibular system in animals and humans.

    Science.gov (United States)

    Lopez, Christophe; Blanke, Olaf

    2011-06-24

    The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data from electrophysiology and neuroanatomy in animals by comparing them with data from neuroimagery and neurology in humans. Multiple thalamic nuclei are involved in vestibular processing, including the ventroposterior complex, the ventroanterior-ventrolateral complex, the intralaminar nuclei and the posterior nuclear group (medial and lateral geniculate nuclei, pulvinar). These nuclei contain multisensory neurons that process and relay vestibular, proprioceptive and visual signals to the vestibular cortex. In non-human primates, the parieto-insular vestibular cortex (PIVC) has been proposed as the core vestibular region. Yet, vestibular responses have also been recorded in the somatosensory cortex (area 2v, 3av), intraparietal sulcus, posterior parietal cortex (area 7), area MST, frontal cortex, cingulum and hippocampus. We analyze the location of the corresponding regions in humans, and especially the human PIVC, by reviewing neuroimaging and clinical work. The widespread vestibular projections to the multimodal human PIVC, somatosensory cortex, area MST, intraparietal sulcus and hippocampus explain the large influence of vestibular signals on self-motion perception, spatial navigation, internal models of gravity, one's body perception and bodily self-consciousness. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    NARCIS (Netherlands)

    Nguyen, T. A. K.; Cavuscens, Samuel; Ranieri, Maurizio; Schwarz, Konrad; Guinand, Nils; van de Berg, Raymond; van den Boogert, Thomas; Lucieer, Floor; van Hoof, Marc; Guyot, Jean-Philippe; Kingma, Herman; Micera, Silvestro; Perez Fornos, Angelica

    2017-01-01

    The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no

  9. Vestibular syndrome: a change in internal spatial representation.

    Science.gov (United States)

    Borel, L; Lopez, C; Péruch, P; Lacour, M

    2008-12-01

    The vestibular system contributes to a wide range of functions from reflexes to spatial representation. This paper reviews behavioral, perceptive, and cognitive data that highlight the role of changes in internal spatial representation on the vestibular syndrome. Firstly, we review how visual vertical perception and postural orientation depend on multiple reference frames and multisensory integration and how reference frames are selected according to the status of the peripheral vestibular system (i.e., unilateral or bilateral hyporeflexia), the environmental constraints (i.e., sensory cues), and the postural constraints (i.e., balance control). We show how changes in reference frames are able to modify vestibular lesion-induced postural and locomotor deficits and propose that fast changes in reference frame may be considered as fast-adaptive processes after vestibular loss. Secondly, we review data dealing with the influence of vestibular loss on higher levels of internal representation sustaining spatial orientation and navigation. Particular emphasis is placed on spatial performance according to task complexity (i.e., the required level of spatial knowledge) and to the sensory cues available to define the position and orientation within the environment (i.e., real navigation in darkness or visual virtual navigation without any actual self-motion). We suggest that vestibular signals are necessary for other sensory cues to be properly integrated and that vestibular cues are involved in extrapersonal space representation. In this respect, vestibular-induced changes would be based on a dynamic mental representation of space that is continuously updated and that supports fast-adaptive processes.

  10. Vestibular animal models: contributions to understanding physiology and disease

    OpenAIRE

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E.

    2016-01-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research inclu...

  11. Vitamin A and ciliated cells. I. Respiratory epithelia.

    Science.gov (United States)

    Biesalski, H K; Stofft, E; Wellner, U; Niederauer, U; Bässler, K H

    1986-06-01

    To estimate the role of vitamin A on ciliated cells we investigated whether ciliated cells undergo any alteration during vitamin A deficiency. The epithelia examined include the ciliated cells of the respiratory tract and the ciliated sensory cells of the inner ear, the tongue, and the olfactory cells. This part of the paper will describe the ciliated epithelium of the tracheobronchial tract and its relation to vitamin A status. During vitamin A deficiency a partial loss of ciliae can be observed before any squamous metaplasia (which usually occurs during longer lasting vitamin A deficiency) develops. The scanning electron microscopic data illustrate the altered surface of the epithelium during vitamin A deficiency better than transmission electron microscopy.

  12. Vestibular rehabilitation using a wide field of view virtual environment.

    Science.gov (United States)

    Sparto, P J; Furman, J M; Whitney, S L; Hodges, L F; Redfern, M S

    2004-01-01

    This paper presents a theoretical justification for using a wide field of view (FOV) virtual reality display system for use in vestibular rehabilitation. A wide FOV environment offers some unique features that may be beneficial to vestibular rehabilitation. Primarily, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. If this hypothesis is correct, then wide FOV systems will have an advantage over narrow field of view input devices such as head mounted or desktop displays. Devices that we have incorporated into our system that are critical for monitoring improvement in this clinical population will also be described.

  13. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  14. The Modulation of Hippocampal Theta Rhythm by the Vestibular System.

    Science.gov (United States)

    Aitken, Phillip; Zheng, Yiwen; Smith, Paul F

    2017-11-22

    The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3-12 Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, either using natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus and the septum, to the hippocampus, is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia. Copyright © 2017, Journal of Neurophysiology.

  15. Recent Evidence About the Effectiveness of Vestibular Rehabilitation.

    Science.gov (United States)

    Whitney, Susan L; Alghadir, Ahmad H; Anwer, Shahnawaz

    2016-03-01

    Vestibular rehabilitation of persons with peripheral and central vestibular disorders requires a thorough evaluation and a customized plan of care. Collaboration of the various members of the treatment team optimizes outcomes. Early intervention appears to be better than referring patients who have developed chronic symptoms of balance loss, dizziness, anxiety, and depression. There is a body of emerging evidence that supports that the central nervous system has the capability to reweigh sensory inputs in order to improve function. There continues to be a dearth of knowledge related to how to treat persons with otolithic dysfunction as compared to those with semicircular canal damage. With the use of vestibular rehabilitation, patients are less likely to fall, are less dizzy, balance and gait improve, and quality of life is enhanced. Recent Cochrane reviews and a clinical practice guideline support the use of vestibular rehabilitation for persons with vestibular dysfunction. Typical symptoms and their management including dysregulated gait, falling, fear of falling, increased sway in standing, visual blurring, symptoms with complex visual scenes in the periphery, and weakness are all discussed with ideas for intervention. Any patient with a vestibular disorder may benefit from a trial of vestibular rehabilitation. A discussion of recent evidence and innovations related to vestibular rehabilitation is also included.

  16. Vertigo and the processing of vestibular information: A review in the context of predictive coding.

    Science.gov (United States)

    Klingner, Carsten M; Axer, Hubertus; Brodoehl, Stefan; Witte, Otto W

    2016-12-01

    This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights into several important questions regarding specific properties of the vestibular system. Particularly, we discuss why the vestibular network is more spatially distributed than other sensory networks, why a mismatch in the vestibular system is more clinically disturbing than in other sensory systems, why the vestibular system is only marginally affected by most cerebral lesions, and whether there is a primary vestibular cortex. The use of predictive coding as a theoretical framework further points to some problems with the current interpretation of results that are gained from vestibular stimulation studies. In particular, we argue that cortical responses of vestibular stimuli cannot be interpreted in the same way as responses of other sensory modalities. Finally, we discuss the implications of the new insights, hypotheses and problems that were identified in this review on further directions of research of vestibular information processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Common Vestibular Disorders

    OpenAIRE

    Balatsouras, Dimitrios G

    2017-01-01

    The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV), Meniere's disease (MD) and vestibular neuritis (VN), are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the ...

  18. Physiological consequences : Cardiopulmonary, vestibular, and sensory aspects

    NARCIS (Netherlands)

    Welsch, H.; Albery, W.; Banks, R.D.; Bles, W.

    2000-01-01

    Discussing the physiological consequences of enhanced fighter manoeuvrability (EFM), aspects of cardiopulmonary reactions will be seen during high G manoeuvres, especially the combination of negative G-load followed by high G-onset manoeuvres ("push-pull"). The aircraft's capability to reach high

  19. Vestibular perception following acute unilateral vestibular lesions.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Little is known about the vestibulo-perceptual (VP system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO and VP function in 25 patients with vestibular neuritis (VN acutely (2 days after onset and after compensation (recovery phase, 10 weeks. Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2 and velocity steps of 90°/s (acceleration 180°/s(2. We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of

  20. New Insights into Pathophysiology of Vestibular Migraine

    Science.gov (United States)

    Espinosa-Sanchez, Juan M.; Lopez-Escamez, Jose A.

    2015-01-01

    Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory–inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM

  1. New insights into pathophysiology of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Juan Manuel Espinosa-Sanchez

    2015-02-01

    Full Text Available Vestibular migraine (VM is a common disorder in which genetic, epigenetic and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal grey, locus coeruleus and nucleus raphe magnus are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs and pain. The interactions among several functional and structural neural networks could explain the pathogenic

  2. How Vestibular Neurons Solve the Tilt/Translation Ambiguity: Comparison of Brainstem, Cerebellum, and Thalamus

    OpenAIRE

    Dora E. Angelaki; Yakusheva, Tatyana A.

    2009-01-01

    The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibular nuclei, rostral fastigial nuclei, cerebellar nodulus/uvula, and thalamus respond during combinat...

  3. Sensory (re)weighting in spatial orientation

    NARCIS (Netherlands)

    Alberts, B.B.G.T.

    2016-01-01

    Determining the orientation of our body as well as objects in space, more commonly referred to as spatial orientation, involves the processing of various sensory signals, including visual, vestibular, and proprioceptive signals. The brain needs to integrate these sensory signals, which are noisy and

  4. Transformation of Vestibular Signals for the Control of Standing in Humans.

    Science.gov (United States)

    Forbes, Patrick A; Luu, Billy L; Van der Loos, H F Machiel; Croft, Elizabeth A; Inglis, J Timothy; Blouin, Jean-Sébastien

    2016-11-09

    During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms

  5. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  6. Vestibular Rehabilitation Therapy: Review of Indications, Mechanisms, and Key Exercises

    Science.gov (United States)

    Song, Hyun Seok; Kim, Ji Soo

    2011-01-01

    Vestibular rehabilitation therapy (VRT) is an exercise-based treatment program designed to promote vestibular adaptation and substitution. The goals of VRT are 1) to enhance gaze stability, 2) to enhance postural stability, 3) to improve vertigo, and 4) to improve activities of daily living. VRT facilitates vestibular recovery mechanisms: vestibular adaptation, substitution by the other eye-movement systems, substitution by vision, somatosensory cues, other postural strategies, and habituation. The key exercises for VRT are head-eye movements with various body postures and activities, and maintaining balance with a reduced support base with various orientations of the head and trunk, while performing various upper-extremity tasks, repeating the movements provoking vertigo, and exposing patients gradually to various sensory and motor environments. VRT is indicated for any stable but poorly compensated vestibular lesion, regardless of the patient's age, the cause, and symptom duration and intensity. Vestibular suppressants, visual and somatosensory deprivation, immobilization, old age, concurrent central lesions, and long recovery from symptoms, but there is no difference in the final outcome. As long as exercises are performed several times every day, even brief periods of exercise are sufficient to facilitate vestibular recovery. Here the authors review the mechanisms and the key exercises for each of the VRT goals. PMID:22259614

  7. Vestibular animal models: contributions to understanding physiology and disease.

    Science.gov (United States)

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  8. [Neuronal plasticity of otolith-related vestibular system].

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Zhang, Fu-Xing; Ma, Chun-Wai; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    This review focuses on our effort in addressing the development and lesion-induced plasticity of the gravity sensing system. After severance of sensory input from one inner ear, there is a bilateral imbalance in response dynamics and spatial coding behavior between neuronal subpopulations on the two sides. These data provide the basis for deranged spatial coding and motor deficits accompanying unilateral labyrinthectomy. Recent studies have also confirmed that both glutamate receptors and neurotrophin receptors within the bilateral vestibular nuclei are implicated in the plasticity during vestibular compensation and development. Changes in plasticity not only provide insight into the formation of a spatial map and recovery of vestibular function but also on the design of drugs for therapeutic strategies applicable to infants or vestibular disorders such as vertigo and dizziness.

  9. Vestibulary rehabilitation--election treatment method for compensating vestibular impairment.

    Science.gov (United States)

    Georgescu, Mădălina; Stoian, Sorina; Mogoantă, Carmen Aurelia; Ciubotaru, Gh V

    2012-01-01

    This paper aims to reveal the actual benefit of vestibular rehabilitation (VR) in patients with unilateral vestibular loss. Case report of a young female patient with acute unilateral vestibular loss due to facial nerve schwannoma developed above the internal auditory canal (IAC) from where it seems to have entered the IAC. Betahistine associated to VR treatment was recommended due to persisting imbalance after tumor removal. The benefit of the combined therapy was evaluated objectively (sensory organization test) and subjectively (questionnaires regarding self-perception of the deficit in quality of life). Both evaluations revealed great improvement in stability (SOT scores) as well as in health-related quality of life (HRQoL)--improvement of self-perception scores of disequilibrium in all questionnaires used. Combined recommended treatment (betahistine and VR) improves HRQoL after acute unilateral vestibular loss. It reduces self-perceived disability and intensity of symptoms during usual activities.

  10. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  11. The role of the thalamus in the human subcortical vestibular system.

    Science.gov (United States)

    Conrad, Julian; Baier, Bernhard; Dieterich, Marianne

    2014-01-01

    Most of our knowledge concerning central vestibular pathways is derived from animal studies while evidence of the functional importance and localization of these pathways in humans is less well defined. The termination of these pathways at the thalamic level in humans is even less known. In this review we summarize the findings concerning the central subcortical vestibular pathways in humans and the role of these structures in the central vestibular system with regard to anatomical localization and function. Also, we review the role of the thalamus in the pathogenesis of higher order sensory deficits such as spatial neglect, pusher syndrome or thalamic astasia and the correlation of these phenomena with findings of a vestibular tone imbalance at the thalamic level. By highlighting thalamic structures involved in vestibular signal processing and relating the different nomenclatures we hope to provide a base for future studies on thalamic sensory signal processing.

  12. Latent nystagmus: vestibular nystagmus with a twist.

    Science.gov (United States)

    Brodsky, Michael C; Tusa, Ronald J

    2004-02-01

    Latent nystagmus is a horizontal binocular oscillation that is evoked by unequal visual input to the 2 eyes. It develops primarily in humans with congenital esotropia. To investigate the interrelationship between latent and peripheral vestibular nystagmus and their corollary neuroanatomical pathways. Examination of subcortical neuroanatomical pathways producing latent nystagmus and review of the neurophysiological mechanisms by which they become activated in congenital esotropia. The vestibular nucleus presides over motion input from the eyes and labyrinths. Latent nystagmus corresponds to the optokinetic component of ocular rotation that is driven monocularly by nasal optic flow during a turning movement of the body in lateral-eyed animals. Congenital esotropia alters visual pathway development from the visual cortex to subcortical centers that project to the vestibular nucleus, allowing this primitive subcortical motion detection system to generate latent nystagmus under conditions of monocular fixation. Latent nystagmus is the ocular counterpart of peripheral vestibular nystagmus. Its clinical expression in humans proclaims the evolutionary function of the eyes as sensory balance organs.

  13. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    Directory of Open Access Journals (Sweden)

    Christophe eLopez

    2013-12-01

    Full Text Available The consequences of vestibular disorders on balance, oculomotor control and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience, altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization. In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness.

  14. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction.

    Science.gov (United States)

    Hillier, Susan L; McDonnell, Michelle

    2011-02-16

    This is an update of a Cochrane Review first published in The Cochrane Library in Issue 4, 2007.Unilateral peripheral vestibular dysfunction (UPVD) can occur as a result of disease, trauma or postoperatively. The dysfunction is characterised by complaints of dizziness, visual or gaze disturbances and balance impairment. Current management includes medication, physical manoeuvres and exercise regimes, the latter known collectively as vestibular rehabilitation (VR). To assess the effectiveness of vestibular rehabilitation in the adult, community-dwelling population of people with symptomatic unilateral peripheral vestibular dysfunction. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; ISRCTN and additional sources for published and unpublished trials. The most recent search was 1 July 2010, following a previous search in March 2007. Randomised trials of adults living in the community, diagnosed with symptomatic unilateral peripheral vestibular dysfunction. We sought comparisons of VR versus control (placebo etc.), other treatment (non-VR, e.g. pharmacological) or another form of VR. We considered the outcome measures of frequency and severity of dizziness or visual disturbance; changes in balance impairment, function or quality of life; and measure/s of physiological status with known functional correlation. Both authors independently extracted data and assessed trials for risk of bias. We included 27 trials, involving 1668 participants, in the review. Trials addressed the effectiveness of VR against control/sham interventions, medical interventions or other forms of VR. Individual and pooled data showed a statistically significant effect in favour of VR over control or no intervention. The exception to this was when movement-based VR was compared to physical manoeuvres for benign

  15. Enlarged Vestibular Aqueducts and Childhood Hearing Loss

    Science.gov (United States)

    ... Infections, and Deafness Enlarged Vestibular Aqueducts and Childhood Hearing Loss On this page: What are vestibular aqueducts? How ... How are enlarged vestibular aqueducts related to childhood hearing loss? Research suggests that most children with enlarged vestibular ...

  16. [Therapy of vestibular vertigo].

    Science.gov (United States)

    Hamann, K F

    1993-05-01

    The non-surgical treatment of vestibular disorders must be based on current knowledge of vestibular pathophysiology. It is generally accepted that after vestibular lesions a self-repair mechanism exists that allows a more or less complete recovery. In cases of persisting vestibular complaints the physician's duty consists in stimulation of these pre-existing mechanisms. This can be done by physical exercises, as has been recommended since the work of Cawthorne and Cooksey in 1946. This concept is meanwhile supported by modern neurophysiological research. This article describes a short training program consisting of exercises for fixation during rotations, smooth pursuit, optokinetic nystagmus and motor learning mechanisms. Physical exercises can be reinforced by nootropic drugs.

  17. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  18. Vestibular function testing.

    LENUS (Irish Health Repository)

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  19. Common Vestibular Disorders

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Balatsouras

    2017-01-01

    Full Text Available The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV, Meniere's disease (MD and vestibular neuritis (VN, are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the development of appropriate therapeutic maneuvers resulted in its effective treatment. However, involvement of the horizontal or the anterior canal has been found in a significant rate and the recognition and treatment of these variants completed the clinical picture of the disease. MD is a chronic condition characterized by episodic attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure and a progressive loss of audiovestibular functions. Presence of endolymphatic hydrops on postmortem examination is its pathologic correlate. MD continues to be a diagnostic and therapeutic challenge. Patients with the disease range from minimally symptomatic, highly functional individuals to severely affected, disabled patients. Current management strategies are designed to control the acute and recurrent vestibulopathy but offer minimal remedy for the progressive cochlear dysfunction. VN is the most common cause of acute spontaneous vertigo, attributed to acute unilateral loss of vestibular function. Key signs and symptoms are an acute onset of spinning vertigo, postural imbalance and nausea as well as a horizontal rotatory nystagmus beating towards the non-affected side, a pathological headimpulse test and no evidence for central vestibular or ocular motor dysfunction. Vestibular neuritis preferentially involves the superior vestibular labyrinth and its afferents. Symptomatic medication is indicated only during the acute phase to relieve the vertigo and nausea

  20. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  1. Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss.

    Science.gov (United States)

    Barros, Camila Giacomo Carneiro; Bittar, Roseli Saraiva Moreira; Danilov, Yuri

    2010-06-07

    The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort((R))) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the surface of the tongue was created by a dynamic pattern of electrical pulses and the patient was able to adjust the intensity of stimulation and spatially centralize the stimulus on the electrode array. Patients were directed to continuously adjust head orientation and to maintain the stimulus pattern at the center of the array. Postural tasks that present progressive difficulties were given during the use of the device. Pre- and post-treatment distribution of the sensory organization test (SOT) composite score showed an average value of 38.3+/-8.7 and 59.9+/-11.3, respectively, indicating a statistically significant improvement (p=0.01). Electrotactile tongue biofeedback significantly improved the postural control of the study group, even if they had not improved with conventional VR. The electrotactile tongue biofeedback system was able to supply additional information about head position with respect to gravitational vertical orientation in the absence of vestibular input, improving postural control. Patients with BVL can integrate electrotactile information in their postural control in order to improve stability after conventional VR. These results were obtained and verified not only by the subjective questionnaire but also by the SOT composite score. The limitations of the study are the small sample size and short duration of the follow-up. The current findings show that the sensory substitution mediated by electrotactile tongue biofeedback may contribute to the improved balance experienced by these patients compared to VR. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of postural control in unilateral vestibular hypofunction.

    Science.gov (United States)

    Quitschal, Rafaela Maia; Fukunaga, Jackeline Yumi; Ganança, Maurício Malavasi; Caovilla, Heloísa Helena

    2014-01-01

    Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    OpenAIRE

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental...

  4. Perspectives on Aging Vestibular Function

    National Research Council Canada - National Science Library

    Anson, Eric; Jeka, John

    2016-01-01

    Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing...

  5. Neurotransmitters in the vestibular system.

    Science.gov (United States)

    Balaban, C D

    2016-01-01

    Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders. © 2016 Elsevier B.V. All rights reserved.

  6. Epithelia, an evolutionary novelty of metazoans.

    Science.gov (United States)

    Leys, Sally P; Riesgo, Ana

    2012-09-01

    At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium. Copyright © 2011 Wiley Periodicals, Inc.

  7. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  8. Proposta de um protocolo para reabilitação vestibular em vestibulopatias periféricas

    OpenAIRE

    Rogatto, Adriana Roberta Degressi; Pedroso, Laira; Almeida, Sara Regina Meira; Oberg, Telma Dagmar

    2010-01-01

    INTRODUCTION: Vestibular rehabilitation has been recognized as a treatment of choice for patients with persistent vertigo due to peripheral vestibular dysfunction, providing significant improvements in quality of life. Among the treatments listed have been exercises Cawthorne and Cooksey, sensory integration and body-moving platforms. OBJECTIVE: The research objective was to invent the protocol of exercises in balance with the exercises of Cawthorne and Cooksey associated to the Sensory Integ...

  9. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review.

    Science.gov (United States)

    Porciuncula, Franchino; Johnson, Connie C; Glickman, Leslie B

    2012-01-01

    Adults with bilateral vestibular hypofunction (BVH) experience significant disability. A systematic review assessed evidence for vestibular rehabilitation (VR). NUMBER OF STUDIES: 14 studies. Search identification of studies based on inclusion criteria: (a) population: adults with BVH of peripheral origin; (b) interventions: vestibular exercises, balance training, education, or sensory prosthetics; (c) comparison: single interventions or compared to another psychophysical intervention, placebo, or healthy population; (d) outcomes: based on International Classification of Functioning, Disability and Health (ICF) Body Functions and Structure, Activity, and Participation; (e) study designs: prospective and interventional, Levels of Evidence I to III per Centre of Evidence-based Medicine grading. Coding and appraisal based on ICF framework and strength of evidence synthesis. Five Level II studies and nine Level III studies: All had outcomes on gaze and postural stability, five with outcomes on gait speed and perceptions of oscillopsia and disequilibrium. (a) Moderate evidence strength on improved gaze and postural stability (ICF-Body Functions) following exercise-based VR; (b) Inadequate number of studies supporting benefit of VR on ICF-Participation outcomes; (c) Sensory prosthetics in early phase of development. Moderate evidence strength in support of VR from an impairment level; clinical practice and research needed to explore interventions extending to ICF-Activity and Participation.

  10. The normal distribution and projections of constitutive NADPH-d/NOS neurons in the brainstem vestibular complex of the rat.

    Science.gov (United States)

    Saxon, D W; Beitz, A J

    2000-09-11

    The vestibular system is a highly conserved sensory system in vertebrates that is largely responsible for maintenance of one's orientation in space, posture, and balance and for visual fixation of objects during motion. In light of the considerable literature indicating an involvement of nitric oxide (NO) in sensory systems, it is important to determine whether NO is associated with vestibular pathways. To study the relationship of NO to vestibular pathways, we first examined the normal distribution of constitutive NADPH-diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), in the vestibular complex (VC) and then examined its association with selected vestibular projection neurons. Survey of the four major vestibular nuclei revealed that only the medial vestibular nucleus contained significant numbers of perikarya stained for NADPH-d/NOS. By contrast, all the vestibular nuclei contained a network of fine processes that stained positive for NADPH-d, although the density of this network varied among the individual nuclei. To determine whether NADPH-d/NOS neurons project to vestibular efferent targets, injections of the retrograde tracer Fluoro-Gold were made into known targets of second-order vestibular neurons. Vestibular neurons containing constitutive NADPH-d/NOS were found to project predominantly to the oculomotor nucleus. A small number of neurons also participate in vestibulothalamic and intrinsic vestibular connections. These results indicate that NADPH-d/NOS neurons are prevalent in the MVN and that a subpopulation of these neurons project to the oculomotor complex. Nitric oxide is probably released locally from axons located throughout the vestibular complex but may play a particularly important role in vestibulo-ocular pathways. Copyright 2000 Wiley-Liss, Inc.

  11. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  12. Vestibular tributaries to the vein of the vestibular aqueduct

    DEFF Research Database (Denmark)

    Hansen, Jesper Marsner; Qvortrup, Klaus; Friis, Morten

    2010-01-01

    CONCLUSION: The vein of the vestibular aqueduct drains blood from areas extensively lined by vestibular dark cells (VDCs). A possible involvement in the pathogenesis of an impaired endolymphatic homeostasis can be envisioned at the level of the dark cells area. OBJECTIVES: The aim of this study...... was to investigate the vascular relationship between the vein of the vestibular aqueduct and the vestibular apparatus, with focus on the VDCs. METHODS: Sixteen male Wistar rats were divided into groups of 6 and 10. In the first group, 2 µm thick sections including the vein of the vestibular aqueduct, utricle...... relation to the VDCs in the utricle and the crista ampullaris of the lateral semicircular canal in the vestibular apparatus. One major vein emanated from these networks, which emptied into the vein of the vestibular aqueduct. Veins draining the saccule and the common crus of the superior and posterior...

  13. Dyscalculia and vestibular function.

    Science.gov (United States)

    Smith, P F

    2012-10-01

    A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Laboratory testing of the vestibular system.

    Science.gov (United States)

    Clarke, Andrew H

    2010-10-01

    Recent reports on vestibular testing, relevant to clinical diagnosis, are reviewed.Besides the case history and bedside examination, objective measurement of the vestibuloocular reflex in all of its facets remains the cornerstone in the diagnostic process. In recent years, this has been enhanced considerably by reliable unilateral tests for the otolith organs, most notably by vestibular-evoked myogenic potential recording and estimation of subjective visual vertical. In addition, progress has been made in the investigation of multisensory interaction, involving visual acuity and posturography.Technological developments include improved eye movement measurement techniques, electrotactile and vibrotactile sensory enhancement or substitution, the use of virtual reality devices and motion stimulators such as hexapods and the rediscovery of galvanic vestibular stimulation as a research and diagnostic tool. The recent introduction of new tests, together with the development of novel technologies, is gradually increasing the scope of the physical and bedside examination of the dizzy patient (see chapter 'Medical management of peripheral disorders' in this issue). The use of more complex equipment, such as rotating chairs, linear sleds, hexapods and posturography platforms, is likely to become limited to specialized laboratories and rehabilitation centers in future years. Further, high resolution magnetic resonance tomography (MRT) and computed tomography have allowed insight into the morphology and determination of malformations of the human labyrinth.

  15. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  17. Age-Related Vestibular Loss: Current Understanding and Future Research Directions.

    Science.gov (United States)

    Arshad, Qadeer; Seemungal, Barry M

    2016-01-01

    The vestibular system sub-serves a number of reflex and perceptual functions, comprising the peripheral apparatus, the vestibular nerve, the brainstem and cerebellar processing circuits, the thalamic relays, and the vestibular cerebral cortical network. This system provides signals of self-motion, important for gaze and postural control, and signals of traveled distance, for spatial orientation, especially in the dark. Current evidence suggests that certain aspects of this multi-faceted system may deteriorate with age and sometimes with severe consequences, such as falls. Often the deterioration in vestibular functioning relates to how the signal is processed by brain circuits rather than an impairment in the sensory transduction process. We review current data concerning age-related changes in the vestibular system, and how this may be important for clinicians dealing with balance disorders.

  18. Age-Related Vestibular Loss: Current Understanding and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Dominic Allen

    2016-12-01

    Full Text Available The vestibular system sub-serves a number of reflex and perceptual functions, comprising the peripheral apparatus, the vestibular nerve, the brainstem and cerebellar processing circuits, the thalamic relays, and the vestibular cerebral cortical network. This system provides signals of self-motion, important for gaze and postural control, and signals of traveled distance, for spatial orientation, especially in the dark. Current evidence suggests that certain aspects of this multi-faceted system may deteriorate with age and sometimes with severe consequences, such as falls. Often the deterioration in vestibular functioning relates to how the signal is processed by brain circuits rather than an impairment in the sensory transduction process. We review current data concerning age-related changes in the vestibular system, and how this may be important for clinicians dealing with balance disorders.

  19. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  20. The challenge of vestibular migraine.

    Science.gov (United States)

    Sargent, Eric W

    2013-10-01

    Migraine is a common illness and migraine-related dizziness occurs in up to 3% of the population. Because the diagnosis is controversial and may be difficult, many patients go undiagnosed and untreated. This review summarizes current understanding of the taxonomy and diagnosis of vestibular migraine, the relation of vestibular migraine to labyrinthine disease, and the treatment of the condition in adults and children. The categories of migraine accepted by the International Headache Society do not reflect the complex presentations of patients suspected of having vestibular migraine. In clinical practice and research, criteria are increasingly accepted that divide patients suspected of vestibular migraine into 'definite vestibular migraine' and 'probable vestibular migraine.' Because vertigo itself may trigger migraine, patients with vestibular migraine should be suspected of having vestibular end-organ disease until proven otherwise. Treatment remains controversial because of a notable lack of randomized controlled studies of vestibular migraine treatment. For now, the best strategy for the treatment of suspected vestibular migraine patients is dietary/lifestyle modification, antinausea/antiemetics for acute vertigo, and preventive medication for patients who have continued disruptive symptoms. Patients with vestibular migraine should be monitored regularly for the development of latent audiovestibular end-organ disease.

  1. Current concepts of the vestibular system reviewed: 1. The role of the vestibulospinal system in postural control.

    Science.gov (United States)

    Keshner, E A; Cohen, H

    1989-05-01

    This paper reviews the research findings that support the presence of vestibulospinal reflexes in corrections for head and body instability. Studies of the importance of labyrinthine inputs to the central nervous system organization of eye, head, and body movements demonstrate that the vestibular nuclei are more than a simple relay station for labyrinthine activity. At all levels of the vestibular system beyond the primary vestibular afferents, parallel processing of labyrinthine signals occurs with input from other sensory systems. Thus, output of the vestibular nuclear complex (VNC) is not equivalent to the labyrinthine input. It is the VNC output that influences motor behavior. Various sensory inputs are available to the nervous system to detect and correct postural instability. Most notably, vestibular, visual, and proprioceptive signals contribute significantly to the stabilizing responses in humans. The intent of this paper is to review experimental results rather than to discuss treatment interventions. Wherever possible, conclusions are drawn as to the clinical implications of current research findings.

  2. P2X receptors in epithelia

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2015-01-01

    basolateral P2X receptors stimulate ion secretion via an increase of [Ca2+]i. In absorptive epithelia like the renal tubule P2X receptor stimulation mediates the inhibition of NaCl, Mg2+ and water transport in the thick ascending limb and the distal convoluted tubule, respectively. The underlying signaling......P2X receptors are ubiquitously expressed in all epithelial tissues but their functional roles are less well studied. Here we review the current state of knowledge by focusing on functional effects of P2X receptor in secretory and in absorptive tissues. In glandular tissue like the parotid gland...... pathways that inhibit epithelial absorption are currently not well understood. Epithelial P2X7 receptors show pronounced up-regulation during varies diseased states highlighting a role of purinergic signaling in epithelial pathophysiology. Importantly, functional effects of epithelial P2X receptors cover...

  3. Exhibition of Stochastic Resonance in Vestibular Perception

    Science.gov (United States)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    (OTO) with SVS up to 700 µA. A sinusoidal galvanic vestibular stimulation (GVS) perceptual threshold was also measured on each test day and used to normalize the SVS levels across subjects. In roll-tilt thresholds with SVS, the characteristic SR curve was qualitatively exhibited in 10 of 12 subjects, and the improvement in motion threshold was significant in 6 subjects, indicating that optimal SVS improved passive body motion perception in a way that is consistent with classical SR theory. A probabilistic comparison to numeric simulations further validated these experimental results. On the second test session, 4 out of the 10 SR exhibitors showed repeated improvement with SVS compared to the no SVS condition. Data collection is ongoing for the last two test sessions in which SCC and OTO only perceptual motion recognition thresholds are being measured with SVS. The final results of these test sessions will give insight into whether vestibular perceptual SR can occur when only one type of vestibular sensor is sensing motion or if it is more evident when sensory integration between the SCC and OTO is occurring during the motion. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and to gain a more fundamental understanding of how SVS causes SR in the vestibular system. In the context of human space flight, results from this research will help in understanding how SVS may be practically implemented in the future as a component of a comprehensive countermeasure plan for G-transition adaptation.

  4. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  5. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil.

    Science.gov (United States)

    Newlands, Shawn D; Perachio, Adrian A

    2003-06-15

    The primary purpose of this article is to review the anatomy of central projections of the vestibular nerve in amniotes. We also report primary data regarding the central projections of individual horseradish peroxidase (HRP)-filled afferents innervating the saccular macula, horizontal semicircular canal ampulla, and anterior semicircular canal ampulla of the gerbil. In total, 52 characterized primary vestibular afferent axons were intraaxonally injected with HRP and traced centrally to terminations. Lateral and anterior canal afferents projected most heavily to the medial and superior vestibular nuclei. Saccular afferents projected strongly to the spinal vestibular nucleus, weakly to other vestibular nuclei, to the interstitial nucleus of the eighth nerve, the cochlear nuclei, the external cuneate nucleus, and nucleus y. The current findings reinforce the preponderance of literature. The central distribution of vestibular afferents is not homogeneous. We review the distribution of primary afferent terminations described for a variety of mammalian and avian species. The tremendous overlap of the distributions of terminals from the specific vestibular nerve branches with one another and with other sensory inputs provides a rich environment for sensory integration.

  6. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation

    Directory of Open Access Journals (Sweden)

    Jack eDigiovanna

    2016-04-01

    Full Text Available The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of ‘optimal’ stimulation configurations for humans. Here we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time-point, we further examined how it affected subsequent pulse rate and pulse amplitude modulation. Pulse amplitude modulation was more effective than pulse rate modulation for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost pulse amplitude modulation. Co-modulation of pulse rate and amplitude has been experimentally shown to induce both

  7. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Science.gov (United States)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  8. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains.

    Science.gov (United States)

    Jones, Sherri M; Jones, Timothy A

    2014-03-01

    A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease. American Academy of Audiology.

  9. The role of stereo vision in visual-vestibular integration.

    Science.gov (United States)

    Butler, John S; Campos, Jennifer L; Bülthoff, Heinrich H; Smith, Stuart T

    2011-01-01

    Self-motion through an environment stimulates several sensory systems, including the visual system and the vestibular system. Recent work in heading estimation has demonstrated that visual and vestibular cues are typically integrated in a statistically optimal manner, consistent with Maximum Likelihood Estimation predictions. However, there has been some indication that cue integration may be affected by characteristics of the visual stimulus. Therefore, the current experiment evaluated whether presenting optic flow stimuli stereoscopically, or presenting both eyes with the same image (binocularly) affects combined visual-vestibular heading estimates. Participants performed a two-interval forced-choice task in which they were asked which of two presented movements was more rightward. They were presented with either visual cues alone, vestibular cues alone or both cues combined. Measures of reliability were obtained for both binocular and stereoscopic conditions. Group level analyses demonstrated that when stereoscopic information was available there was clear evidence of optimal integration, yet when only binocular information was available weaker evidence of cue integration was observed. Exploratory individual analyses demonstrated that for the stereoscopic condition 90% of participants exhibited optimal integration, whereas for the binocular condition only 60% of participants exhibited results consistent with optimal integration. Overall, these findings suggest that stereo vision may be important for self-motion perception, particularly under combined visual-vestibular conditions.

  10. Vestibular loss promotes procedural response during a spatial task in rats.

    Science.gov (United States)

    Machado, Marie-Laure; Lelong-Boulouard, Véronique; Philoxene, Bruno; Davis, Audrey; Denise, Pierre; Besnard, Stéphane

    2014-05-01

    Declarative memory refers to a spatial strategy using numerous sources of sensory input information in which visual and vestibular inputs are assimilated in the hippocampus. In contrast, procedural memory refers to a response strategy based on motor skills and familiar gestures and involves the striatum. Even if vestibular loss impairs hippocampal activity and spatial memory, vestibular-lesioned rats remain able to find food rewards during complex spatial memory task. Since hippocampal lesions induce a switch from declarative memory to procedural memory, we hypothesize that vestibular-lesioned rats use a strategy other than that of hippocampal spatial response to complete the task and to counterbalance the loss of vestibular information. We test, in a reverse T-maze paradigm, the types of strategy vestibular-lesioned rats preferentially uses in a spatial task. We clearly demonstrate that all vestibular-lesioned rats shift to a response strategy to solve the spatial task, while control rats use spatial and response strategies equally. We conclude that the loss of vestibular informations leading to spatial learning impairments is not offset at the hippocampus level by integration process of other sense mainly visual informations; but favors a response strategy through procedural memory most likely involving the striatum, cerebellum, and motor learning. Copyright © 2014 Wiley Periodicals, Inc.

  11. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation.

    Science.gov (United States)

    Kammermeier, Stefan; Singh, Arun; Bötzel, Kai

    2017-01-01

    Human multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation. 14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording. Vestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects ("grand average") bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study. Galvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level. Differential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  12. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  13. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    Science.gov (United States)

    ... vestibular schwannoma is key to preventing its serious consequences. There are three options for managing a vestibular ... Disorders Balance Problems and Disorders - National Institute on Aging Enlarged Vestibular Aqueducts and Childhood Hearing Loss Genetics ...

  14. Is Vestibular Neuritis an Immune Related Vestibular Neuropathy Inducing Vertigo?

    Directory of Open Access Journals (Sweden)

    A. Greco

    2014-01-01

    Full Text Available Objectives. To review the current knowledge of the aetiology of vestibular neuritis including viral infections, vascular occlusion, and immunomediated mechanisms and to discuss the pathogenesis with relevance to pharmacotherapy. Systematic Review Methodology. Relevant publications on the aetiology and treatment of vestibular neuritis from 1909 to 2013 were analysed. Results and Conclusions. Vestibular neuritis is the second most common cause of peripheral vestibular vertigo and is due to a sudden unilateral loss of vestibular function. Vestibular neuronitis is a disorder thought to represent the vestibular-nerve equivalent of sudden sensorineural hearing loss. Histopathological studies of patients who died from unrelated clinical problems have demonstrated degeneration of the superior vestibular nerve. The characteristic signs and symptoms include sudden and prolonged vertigo, the absence of auditory symptoms, and the absence of other neurological symptoms. The aetiology and pathogenesis of the condition remain unknown. Proposed theories of causation include viral infections, vascular occlusion, and immunomediated mechanisms. The management of vestibular neuritis involves symptomatic treatment with antivertiginous drugs, causal treatment with corticosteroids, and physical therapy. Antiviral agents did not improve the outcomes.

  15. Afferent diversity and the organization of central vestibular pathways

    OpenAIRE

    Goldberg, Jay M.

    2000-01-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitiv...

  16. Anatomical and Physiological Considerations in Vestibular Dysfunction and Compensation

    OpenAIRE

    Jones, Sherri M.; Jones, Timothy A.; Mills, Kristal N.; Gaines, G Christopher

    2009-01-01

    Sensory information from the vestibular, visual, and somatosensory/proprioceptive systems are integrated in the brain in complex ways to produce a final motor output to muscle groups for maintaining gaze, head and body posture, and controlling static and dynamic balance. The balance system is complex, which can make differential diagnosis of dizziness quite challenging. On the other hand, this complex system is organized anatomically in a variety of pathways and some of these pathways have be...

  17. Cell renewal in adjoining intestinal and tracheal epithelia of Manduca.

    Science.gov (United States)

    Nardi, James B; Bee, Charles Mark; Miller, Lou Ann; Mathur, Divya; Ohlstein, Benjamin

    2011-04-01

    Cell renewal continuously replaces dead or dying cells in organs such as human and insect intestinal (midgut) epithelia; in insects, control of self-renewal determines insects' responses to any of the myriad pathogens and parasites of medical and agricultural importance that enter and cross their midgut epithelia. Regenerative cells occur in the midgut epithelia of many, if not all, insects and are probably derived from a distinctive population of stem cells. The control of proliferation and differentiation of these midgut regenerative cells is assumed to be regulated by an environment of adjacent cells that is referred to as a regenerative cell niche. An antibody to fasciclin II marks cell surfaces of tracheal regenerative cells associated with rapidly growing midgut epithelia. Tracheal regenerative cells and their neighboring midgut regenerative cells proliferate and differentiate in concert during the coordinated growth of the midgut and its associated muscles, nerves and tracheal cells. Published by Elsevier Ltd.

  18. Neuropharmacology of Vestibular System Disorders

    OpenAIRE

    Soto, Enrique; Vega, Rosario

    2010-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in...

  19. Prophylactic treatment of vestibular migraine

    OpenAIRE

    Salmito, Márcio Cavalcante; Duarte, Juliana Antoniolli; Morganti, Lígia Oliveira Golçalves; Brandão, Priscila Valéria Caus; Nakao, Bruno Higa; Villa, Thais Rodrigues; Ganança,Fernando Freitas

    2017-01-01

    Abstract Introduction: Vestibular migraine (VM) is now accepted as a common cause of episodic vertigo. Treatment of VM involves two situations: the vestibular symptom attacks and the period between attacks. For the latter, some prophylaxis methods can be used. The current recommendation is to use the same prophylactic drugs used for migraines, including β-blockers, antidepressants and anticonvulsants. The recent diagnostic definition of vestibular migraine makes the number of studies on its ...

  20. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  1. Brief report: Further evidence of sensory subtypes in autism.

    Science.gov (United States)

    Lane, Alison E; Dennis, Simon J; Geraghty, Maureen E

    2011-06-01

    Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the triad of sensory subtypes reported earlier. Subtypes were differentiated from each other based on degree of SP dysfunction, taste/smell sensitivity and vestibular/proprioceptive processing. Further elucidation of two of the subtypes was also achieved in this study. Children with a primary pattern of sensory-based inattention could be further described as sensory seekers or non-seekers. Children with a primary pattern of vestibular/proprioceptive dysfunction were also differentiated on movement and tactile sensitivity.

  2. Ontogenetic development of vestibular reflexes in amphibians

    Directory of Open Access Journals (Sweden)

    Hans Straka

    2016-11-01

    Full Text Available Vestibulo-ocular reflexes ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt vestibulo-ocular reflexes (VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1-8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets.

  3. Convergence of Linear Acceleration and Yaw Rotation Signals on non-Eye Movement Neurons in the Vestibular Nucleus of Macaques.

    Science.gov (United States)

    Newlands, Shawn D; Abbatematteo, Ben; Wei, Min; Carney, Laurel H; Luan, Hongge

    2017-10-04

    Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident, these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a non-linear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. Copyright © 2017, Journal of Neurophysiology.

  4. What can posturography tell us about vestibular function?

    Science.gov (United States)

    Black, F. O.

    2001-01-01

    Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed.

  5. [BEHAVIOURAL AND FUNCTIONAL VESTIBULAR DISTURBANCES AFTER SPACE FLIGHT. 1. MAMMALS].

    Science.gov (United States)

    Lychakov, D V

    2015-01-01

    The review contains data on functional changes in mammals caused by changes in the operation of vestibular system after space flight. These data show that the vestibular system of mammals responds to weightlessness challenge differently at various ontogenetic stages. Orbital space flight conditions have a weak effect on the developing vestibular system during embryonic period. The weightlessness conditions have rather beneficial effect on development of the fetuses. During the early postnatal period, when optimal sensory-motor tactics are created, the prolonged stay under conditions of space flight leads to development of novel, "extraterrestrial" sensory-motor programs that can be fixed in CNS, apparently, for the whole life. In adult individuals after landing essential vestibular changes and disturbances may occur that depend on the spaceflight duration. The adult organism must simultaneously solve two contradicting problems--it should adapt to weightlessness conditions, and should not adapt to them to pass the process of readaptation after returning easier. Thus, individuals must protect themselves against weightlessness influence to keep the intact initial state of health. The protection methods against weightlessness ought to be adjusted according to the duration of space flight. It should be mentioned that not all functional changes registered in adult individuals after landing can be adequately explained. Some of these changes may have chronic or even pathological character. The question of necessity to examine the influence of weightlessness on an aging (senile) organism and on its vestibular system is raised for the first time in this review. In our opinion the development of space gerontology, as a special branch of space biology and medicine, is of undoubted interest, and in the future it may be of practical importance especially taking into account the steadily growing age of cosmonauts (astronauts).

  6. Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear.

    Science.gov (United States)

    Bird, Jonathan E; Daudet, Nicolas; Warchol, Mark E; Gale, Jonathan E

    2010-09-15

    Epithelial homeostasis is essential for sensory transduction in the auditory and vestibular organs of the inner ear, but how it is maintained during trauma is poorly understood. To examine potential repair mechanisms, we expressed β-actin-enhanced green fluorescent protein (EGFP) in the chick inner ear and used live-cell imaging to study how sensory epithelia responded during aminoglycoside-induced hair cell trauma. We found that glial-like supporting cells used two independent mechanisms to rapidly eliminate dying hair cells. Supporting cells assembled an actin cable at the luminal surface that extended around the pericuticular junction and constricted to excise the stereocilia bundle and cuticular plate from the hair cell soma. Hair bundle excision could occur within 3 min of actin-cable formation. After bundle excision, typically with a delay of up to 2-3 h, supporting cells engulfed and phagocytosed the remaining bundle-less hair cell. Dual-channel recordings with β-actin-EGFP and vital dyes revealed phagocytosis was concurrent with loss of hair cell integrity. We conclude that supporting cells repaired the epithelial barrier before hair cell plasmalemmal integrity was lost and that supporting cell activity was closely linked to hair cell death. Treatment with the Rho-kinase inhibitor Y-27632 did not prevent bundle excision but prolonged phagocytic engulfment and resulted in hair cell corpses accumulating within the epithelium. Our data show that supporting cells not only maintain epithelial integrity during trauma but suggest they may also be an integral part of the hair cell death process itself.

  7. Enlarged vestibular aqueduct (EVA) related with recurrent benign paroxysmal positional vertigo (BPPV).

    Science.gov (United States)

    Manzari, Leonardo

    2008-01-01

    The vestibular aqueduct is a bony canal related to the bony labyrinth of the inner ear and represents the non-sensory components of the endolymph-filled, closed, membranous labyrinth. The association of congenital sensorineural hearing loss with a large or enlarged vestibular aqueduct is well known as the large vestibular aqueduct syndrome (LVAS). The enlarged VA (EVA) comprises abnormalities not only in the structure of the inner ear, but also in the physiology of the auditory and vestibular systems. The clinical picture of this clinical entity is variable [Yetiser S, Kertment M, Ozkaptan Y. Vestibular disturbance in patients with Large Vestibular Aqueduct Syndrome (LVAS). Acta Otolaryngol (StochK) 1999;119: 641-646]. Signs and symptoms of the auditory impairment are more commonly described in the literature: hearing loss ranges from mild to profound, arising from fluctuating to stepwise progressive or sudden. Vestibular disturbances, ranging from mild imbalance to episodic vertigo, are rarely described in the literature. Benign paroxysmal positional vertigo (BPPV) is a labyrinthine disorder with a typical behavior: intense crises of rotational vertigo induced by postural changes of the head, with short duration and usually good responsiveness to rehabilitative maneuvers. These maneuvers are effective in about 80% of patients with BPPV. BPPV often recurs. About 1/3 of patients have a recurrence in the first year after treatment, and by five years, about half of all patients have a recurrence. Vestibular aqueduct has been demonstrated by conventional tomography and computed tomography (CT), however, CT scans cannot show the membranous labyrinth itself. On MR images it is not the vestibular aqueduct that is visualized but its contents, the endolymphatic duct and sac, and can show the abnormalities of the fluid spaces related to the membranous labyrinth. It is proposed that recurrent benign paroxysmal positional vertigo (BPPV) is related with volumetric abnormalities

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. Vestibular pathways involved in cognition

    Directory of Open Access Journals (Sweden)

    Martin eHitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the vestibular cortical projections areas, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  10. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  11. True incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  12. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation.

    Directory of Open Access Journals (Sweden)

    Arjan C ter Horst

    Full Text Available When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement.

  13. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation.

    Science.gov (United States)

    ter Horst, Arjan C; Koppen, Mathieu; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement.

  14. Hypervascular vestibular Schwannoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja Young; Yu, In Kyu [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2014-11-15

    Most vestibular schwannoma is hypovascular with well known poor tumor staining in cerebral angiography. However, hypervascular vestibular schwannoma might be observed as a rare subtype with increased risk of bleeding during surgery. Multimodal imaging features which represent hypervascularity of the tumor can be observed in hypervascular vestibular schwannoma. Here we report a case of hypervascular vestibular schwannoma with brief literature review.

  15. The dizzy patient: don't forget disorders of the central vestibular system.

    Science.gov (United States)

    Brandt, Thomas; Dieterich, Marianne

    2017-06-01

    Vertigo and dizziness are among the most common complaints in neurology clinics, and they account for about 13% of the patients entering emergency units. In this Review, we focus on central vestibular disorders, which are mostly attributable to acute unilateral lesions of the bilateral vestibular circuitry in the brain. In a tertiary interdisciplinary outpatient dizziness unit, central vestibular disorders, including vestibular migraine, comprise about 25% of the established diagnoses. The signs and symptoms of these disorders can mimic those of peripheral vestibular disorders with sustained rotational vertigo. Bedside examinations, such as the head impulse test and ocular motor testing to determine spontaneous and gaze-evoked nystagmus or skew deviation, reliably differentiate central from peripheral syndromes. We also consider disorders of 'higher vestibular functions', which involve more than one sensory modality as well as cognitive domains (for example, orientation, spatial memory and navigation). These disorders include hemispatial neglect, the room tilt illusion, pusher syndrome, and impairment of spatial memory and navigation associated with hippocampal atrophy in cases of peripheral bilateral vestibular loss.

  16. Vestibular nucleus neurons respond to hindlimb movement in the decerebrate cat.

    Science.gov (United States)

    Arshian, Milad S; Hobson, Candace E; Catanzaro, Michael F; Miller, Daniel J; Puterbaugh, Sonya R; Cotter, Lucy A; Yates, Bill J; McCall, Andrew A

    2014-06-15

    The vestibular nuclei integrate information from vestibular and proprioceptive afferents, which presumably facilitates the maintenance of stable balance and posture. However, little is currently known about the processing of sensory signals from the limbs by vestibular nucleus neurons. This study tested the hypothesis that limb movement is encoded by vestibular nucleus neurons and described the changes in activity of these neurons elicited by limb extension and flexion. In decerebrate cats, we recorded the activity of 70 vestibular nucleus neurons whose activity was modulated by limb movements. Most of these neurons (57/70, 81.4%) encoded information about the direction of hindlimb movement, while the remaining neurons (13/70, 18.6%) encoded the presence of hindlimb movement without signaling the direction of movement. The activity of many vestibular nucleus neurons that responded to limb movement was also modulated by rotating the animal's body in vertical planes, suggesting that the neurons integrated hindlimb and labyrinthine inputs. Neurons whose firing rate increased during ipsilateral ear-down roll rotations tended to be excited by hindlimb flexion, whereas neurons whose firing rate increased during contralateral ear-down tilts were excited by hindlimb extension. These observations suggest that there is a purposeful mapping of hindlimb inputs onto vestibular nucleus neurons, such that integration of hindlimb and labyrinthine inputs to the neurons is functionally relevant. Copyright © 2014 the American Physiological Society.

  17. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  18. Vestibular rehabilitation outcomes in the elderly with chronic vestibular dysfunction.

    Science.gov (United States)

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-11-01

    Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction.

  19. Vestibular factors influencing the biomedical support of humans in space

    Science.gov (United States)

    Lichtenberg, Byron K.

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1- g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1- g

  20. Diabetic polyneuropathy may increase the handicap related to vestibular disease.

    Science.gov (United States)

    Aranda, Catalina; Meza, Anabel; Rodríguez, Raymundo; Mantilla, María Teresa; Jáuregui-Renaud, Kathrine

    2009-04-01

    We undertook this study to assess the influence of diabetic peripheral neuropathy on self-reported disability and postural control during quiet stance of patients with peripheral vestibular disease, before and after a standardized program of vestibular rehabilitation (Cawthorne & Cooksey exercises). Twenty patients with peripheral vestibular disease participated in the study (mean age 56+/-7.8 years), 10 with and 10 without peripheral neuropathy (age matched). The Dizziness Handicap Inventory and static posturography (eyes open/closed and firm/soft surface) were evaluated prior to rehabilitation and at week 7 of follow-up. Compared to patients without neuropathy, patients with neuropathy had more time elapsed since the diabetes was diagnosed, higher glycemia and HbAc level and higher composite scores on the Dizziness Handicap Inventory, but similar results on static posturography. After rehabilitation, although scores on the Dizziness Handicap Inventory decreased in the two groups, the difference between them persisted. In patients with neuropathy, static posturography showed improvement of postural control only with the eyes closed and soft surface, whereas in patients without neuropathy the postural control improved during all sensory conditions (eyes open/closed and firm/soft surface). In diabetic patients with peripheral vestibular disease, peripheral neuropathy contributes to self-reported disability and may interfere with complete balance recovery.

  1. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    OpenAIRE

    Esther Bernal Valls; Víctor Faus Cuñat; Raquel Bernal Valls

    2006-01-01

    El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a represent...

  2. Uptake of Fluorescent Gentamicin by Peripheral Vestibular Cells after Systemic Administration

    Science.gov (United States)

    Liu, Jianping; Kachelmeier, Allan; Dai, Chunfu; Li, Hongzhe; Steyger, Peter S.

    2015-01-01

    Objective In addition to cochleotoxicity, systemic aminoglycoside pharmacotherapy causes vestibulotoxicity resulting in imbalance and visual dysfunction. The underlying trafficking routes of systemically-administered aminoglycosides from the vasculature to the vestibular sensory hair cells are largely unknown. We investigated the trafficking of systemically-administered gentamicin into the peripheral vestibular system in C56Bl/6 mice using fluorescence-tagged gentamicin (gentamicin-Texas-Red, GTTR) imaged by scanning laser confocal microscopy to determine the cellular distribution and intensity of GTTR fluorescence in the three semicircular canal cristae, utricular, and saccular maculae at 5 time points over 4 hours. Results Low intensity GTTR fluorescence was detected at 0.5 hours as both discrete puncta and diffuse cytoplasmic fluorescence. The intensity of cytoplasmic fluorescence peaked at 3 hours, while punctate fluorescence was plateaued after 3 hours. At 0.5 and 1 hour, higher levels of diffuse GTTR fluorescence were present in transitional cells compared to hair cells and supporting cells. Sensory hair cells typically exhibited only diffuse cytoplasmic fluorescence at all time-points up to 4 hours in this study. In contrast, non-sensory cells rapidly exhibited both intense fluorescent puncta and weaker, diffuse fluorescence throughout the cytosol. The numbers and size of fluorescent puncta in dark cells and transitional cells increased over time. There is no preferential GTTR uptake by the five peripheral vestibular organs’ sensory cells. Control vestibular tissues exposed to Dulbecco’s phosphate-buffered saline or hydrolyzed Texas Red had negligible fluorescence. Conclusions All peripheral vestibular cells rapidly take up systemically-administered GTTR, reaching peak intensity 3 hours after injection. Sensory hair cells exhibited only diffuse fluorescence, while non-sensory cells displayed both diffuse and punctate fluorescence. Transitional cells may

  3. Vestibular end organ injury induced by middle ear treatment with ferric chloride in rats.

    Science.gov (United States)

    Lee, J H; Kim, M S; Park, B R

    2017-02-01

    Sensorineural hearing loss, ataxia, pyramidal signs, and vestibular deficits characterize superficial siderosis of the central nervous system. This study investigated changes in vestibular function, free radical formation, and phosphorylated cJun expression in the vestibular end organs after middle ear treatment with a ferric chloride (FeCl3) solution. A single injection of 70% FeCl3 solution into the unilateral middle ear cavity caused static vestibular symptoms, such as spontaneous nystagmus and head tilt. Asymmetric expression of c-Fos protein was observed in the bilateral vestibular nuclei and prepositus hypoglossal nuclei within 6 h after injection. Histopathologic examinations revealed partial hair cell loss, degeneration of the supporting stroma, and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in the neuroepithelial layer of the crista ampullaris in FeCl3-treated animals. 5-(And-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester and diaminofluorescein-2 diacetate fluorescence and immunoreactivity for nitrotyrosine increased markedly in the sensory neuroepithelial layer and nerve bundles of the crista ampullaris after 2 h. Strong immunoreactivity for phospho-cJun and cJun was observed in the type I hair cells of the crista ampullaris 120 h after injection. Thus, a single short-term treatment with a high concentration of FeCl3 in the unilateral middle ear cavity can induce activation of intracellular signals for cJun protein and oxidative stress through the formation of reactive oxygen species and nitric oxide in vestibular sensory receptors, resulting in vestibular dysfunction. These results suggest that activation of intracellular signals for cJun protein and oxidative stress may be a key component of the pathogenesis of vestibular deficits in patients with superficial siderosis.

  4. The vestibular system: multimodal integration and encoding of self-motion for motor control.

    Science.gov (United States)

    Cullen, Kathleen E

    2012-03-01

    Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions. What neural code is used to represent sensory information in vestibular pathways? How do the interactions between the organism and the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd

    Science.gov (United States)

    Yang, Lihua

    2017-01-01

    Precise heading estimate requires integration of visual optic flow and vestibular inertial motion originating from distinct spatial coordinates (eye- and head-centered, respectively). To explore whether the two heading signals may share a common reference frame along the hierarchy of cortical stages, we explored two multisensory areas in macaques: the smooth pursuit area of the frontal eye field (FEFsem) closer to the motor side, and the dorsal portion of medial superior temporal area (MSTd) closer to the sensory side. In both areas, vestibular signals are head-centered, whereas visual signals are mainly eye-centered. However, visual signals in FEFsem are more shifted towards the head coordinate compared to MSTd. These results are robust being largely independent on: (1) smooth pursuit eye movement, (2) motion parallax cue, and (3) behavioral context for active heading estimation, indicating that the visual and vestibular heading signals may be represented in distinct spatial coordinate in sensory cortices. PMID:29134944

  6. The vestibular system and cognition.

    Science.gov (United States)

    Smith, Paul F

    2017-02-01

    The last year has seen a great deal of new information published relating vestibular dysfunction to cognitive impairment in humans, especially in the elderly. The objective of this review is to summarize and critically evaluate this new evidence in the context of the previous literature. This review will address the recent epidemiological/survey studies that link vestibular dysfunction with cognitive impairment in the elderly; recent clinical investigations into cognitive impairment in the context of vestibular dysfunction, both in the elderly and in the cases of otic capsule dehiscence and partial bilateral vestibulopathy; recent evidence that vestibular impairment is associated with hippocampal atrophy; and finally recent evidence relating to the hypothesis that vestibular dysfunction could be a risk factor for dementia. The main implication of these recent studies is that vestibular dysfunction, possibly of any type, may result in cognitive impairment, and this could be especially so for the elderly. Such symptoms will need to be considered in the treatment of patients with vestibular disorders.

  7. Pharmacology of the vestibular system.

    Science.gov (United States)

    Smith, P F

    2000-02-01

    In the past year significant advances have been made in our understanding of the neurochemistry and neuropharmacology of the peripheral and central vestibular systems. The recognition of the central importance of excitatory amino acids and their receptors at the level of the hair cells, vestibular nerve and vestibular nucleus has progressed further, and the role of nitric oxide in relation to activation of the N-methyl-D-aspartate receptor subtype is becoming increasingly clear. Increasing evidence suggests that excessive N-methyl-D-aspartate receptor activation and nitric oxide production after exposure to aminoglycoside antibiotics is a critical part of hair cell death, and new pharmacological strategies for preventing aminoglycoside ototoxicity are emerging as a result. Conversely, the use of aminoglycosides to lesion the peripheral vestibular system in the treatment of Meniere's disease has been studied intensively. In the vestibular nucleus, new studies suggest the importance of opioid, nociceptin and glucocorticoid receptors in the control of vestibular reflex function. Finally, the mechanisms of action and optimal use of antihistamines in the treatment of vestibular disorders has also received a great deal of attention.

  8. Is the Headache in Patients with Vestibular Migraine Attenuated by Vestibular Rehabilitation?

    OpenAIRE

    Sugaya, Nagisa; ARAI, Miki; Goto, Fumiyuki

    2017-01-01

    Background Vestibular rehabilitation is the most effective treatment for dizziness due to vestibular dysfunction. Given the biological relationship between vestibular symptoms and headache, headache in patients with vestibular migraine (VM) could be improved by vestibular rehabilitation that leads to the improvement of dizziness. This study aimed to compare the effects of vestibular rehabilitation on headache and other outcomes relating to dizziness, and the psychological factors in patien...

  9. Reliability-based weighting of visual and vestibular cues in displacement estimation

    NARCIS (Netherlands)

    Horst, A.C. ter; Koppen, M.G.M.; Selen, L.P.J.; Medendorp, W.P.

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading

  10. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Directory of Open Access Journals (Sweden)

    Esther Bernal Valls

    2006-12-01

    Full Text Available El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a representative way, what evidences this is a profitable process for this kind of patients. The good results suggest that vestibular exercises permit a postural stability and a decrease in the perception of disequilibrium.

  11. Glucose transport by epithelia prepared from harvested enterocytes

    DEFF Research Database (Denmark)

    Kimura, Yasuhiro; van der Merwe, Marie; Bering, Stine Brandt

    2015-01-01

    a simple, novel, and reproducible method for preparing functional epithelia using differentiated enterocytes harvested from the small intestine upper villus of adult mice and preterm pigs with and without necrotizing enterocolitis. Concentrative, rheogenic glucose uptake was used as an indicator...... of epithelial function and was demonstrated by cellular accumulation of tracer (14)C D-glucose and Ussing chamber based short-circuit currents. Assessment of the epithelia by light and immunofluorescent microscopy revealed the harvested enterocytes remain differentiated and establish cell-cell connections...

  12. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  13. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular

  14. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders.

    Science.gov (United States)

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    Visual stimuli can induce vestibular adaptation and recovery of body balance. To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental group) or Cawthorne-Cooksey exercises (control group). The Dizziness Handicap Inventory (DHI), dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. Before and after the intervention, there was no difference between the experimental and control groups (p>0.005) regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p<0.05) in the DHI and the dizziness analog scale, and higher values (p<0.05) in the static balance tests in some of the assessed conditions. The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    Directory of Open Access Journals (Sweden)

    Andréa Manso

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD (experimental group or Cawthorne-Cooksey exercises (control group. The Dizziness Handicap Inventory (DHI, dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. RESULTS: Before and after the intervention, there was no difference between the experimental and control groups (p > 0.005 regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p < 0.05 in the DHI and the dizziness analog scale, and higher values (p < 0.05 in the static balance tests in some of the assessed conditions. CONCLUSION: The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders.

  16. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.

    Science.gov (United States)

    Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W

    2016-12-14

    The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we

  17. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    Science.gov (United States)

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  18. Perspectives on Aging Vestibular Function.

    Science.gov (United States)

    Anson, Eric; Jeka, John

    2015-01-01

    Much is known about age-related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities such as standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multisensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper, we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multisensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  19. Vestibular findings in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2011-07-01

    Full Text Available Introduction: Fibromyalgia (FM is a non-inflammatory musculoskeletal chronic syndrome, whose etiology is unknown, characterized by a diffuse pain, increase in palpation sensitivity and such symptoms as tiredness, insomnia, anxiety, depression, cold intolerance and otologic complaints. Objective: Evaluate the vestibular behavior in fibromyalgia patients. Method: A retrospective transversal study was performed. 25 patients aged between 26 and 65 (average age - 52.2 and standard deviation - 10.3 were evaluated and submitted to the following procedures: anamnesis, otorhinolaryngologic and vestibular evaluation by way of vector electronystamography. Results: a The most evident otoneurologic symptoms were: difficulty or pain when moving the neck and pain was spread to an arm or shoulder (92.0% in each, dizziness (84.0% and headache (76.0%. The different clinical symptoms mostly reported were: depression (80.0%, anxiety (76.0% and insomnia (72.0%; b vestibular examination showed an alteration in 12 patients (48.0% in the caloric test; c an alteration in the peripheral vestibular system prevailed, and d deficient peripheral vestibular disorders were prevalent. Conclusion: This study enabled the importance of the labyrinthic test to be verified, thus emphasizing that this kind of people must be studied better, since a range of rheumatologic diseases can cause severe vestibular changes as a result of their manifestations and impairment areas.

  20. Neuropharmacology of vestibular system disorders.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario

    2010-03-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and drug mechanisms of action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulator receptors and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. A critical review of the pharmacology and highlights of the major advances are discussed in each case.

  1. Eye movements in vestibular disorders.

    Science.gov (United States)

    Kheradmand, A; Colpak, A I; Zee, D S

    2016-01-01

    The differential diagnosis of patients with vestibular symptoms usually begins with the question: is the lesion central or is it peripheral? The answer commonly emerges from a careful examination of eye movements, especially when the lesion is located in otherwise clinically silent areas of the brain such as the vestibular portions of the cerebellum (flocculus, paraflocculus which is called the tonsils in humans, nodulus, and uvula) and the vestibular nuclei as well as immediately adjacent areas (the perihypoglossal nuclei and the paramedian nuclei and tracts). The neural circuitry that controls vestibular eye movements is intertwined with a larger network within the brainstem and cerebellum that also controls other types of conjugate eye movements. These include saccades and pursuit as well as the mechanisms that enable steady fixation, both straight ahead and in eccentric gaze positions. Navigating through this complex network requires a thorough knowledge about all classes of eye movements to help localize lesions causing a vestibular disorder. Here we review the different classes of eye movements and how to examine them, and then describe common ocular motor findings associated with central vestibular lesions from both a topographic and functional perspective. © 2016 Elsevier B.V. All rights reserved.

  2. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets

    NARCIS (Netherlands)

    J.T. Fisher (John); S.R. Tyler (Scott); Y. Zhang (Yulong); B.J. Lee (Ben); X. Liu (Xiaoming); X. Sun (Xinying); H. Sui (Hongshu); B. Liang (Bo); M. Luo (Ma); W. Xie (Weiliang); I. Yi (Iasson); W. Zhou (Weili); Y. Song (Yiqing); N. Keiser (Nicholas); K. Wang (Kai); H.R. de Jonge (Hugo); J.F. Engelhardt (John)

    2013-01-01

    textabstractCystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to

  3. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances.

    Science.gov (United States)

    Darlington, C L; Smith, P F

    2000-10-01

    The aim of this review is to summarise and critically evaluate studies of vestibular compensation published over the last 2 years, with emphasis on those concerned with the molecular mechanisms of this process of lesion-induced plasticity. Recent studies of vestibular compensation have confirmed and extended the previous findings that: (i) compensation of the static ocular motor and postural symptoms occurs relatively rapidly and completely compared to the dynamic symptoms, many of which either do not compensate substantially or else compensate variably due to sensory substitution and the development of sensori-motor strategies which suppress or minimize symptoms; (ii) static compensation is associated with, and may be at least partially caused by a substantial recovery of resting activity in the ipsilateral vestibular nucleus complex (VNC), which starts to develop very quickly following the unilateral vestibular deafferentation (UVD) but does not correlate perfectly with the development of some aspects of static compensation (e.g., postural compensation); and (iii) many complex biochemical changes are occurring in the VNC, cerebellum and even areas of the central nervous system like the hippocampus, following UVD. However, despite many recent studies which suggest the importance of excitatory amino acid receptors such as the N-methyl-D-aspartate receptor, expression of immediate early gene proteins, glucocorticoids, neurotrophins and nitric oxide in the vestibular compensation process, how these various factors are linked and which of them may have a causal relationship with the physiological changes underlying compensation, remains to be determined.

  4. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  5. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  6. Effects of the vestibular system on human development, part 2: Effects of vestibular stimulation on mentally retarded, emotionally disturbed, and learning-disabled individuals.

    Science.gov (United States)

    Weeks, Z R

    1979-07-01

    In Part 1 of this two-part series, studies concerned with the effects of vestibular stimulation on human development and function were reviewed and some implications for therapy were suggested. In Part 2, three categories of dysfunction with possible links to the vestibular system are discussed. Studies in the category of mental retardation evaluate motor development and sensory preference. Possible vestibular associations with emotional disturbance are examined by review of studies concerned with etiology, motor activity, speech, and clinical observations. A brief review of studies concerned with early identification and speech and language factors of learning-disabled children constitutes the third category. Interpretations are drawn and some implications for therapy are made.

  7. Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography.

    Science.gov (United States)

    Becker-Bense, Sandra; Buchholz, Hans-Georg; Baier, Bernhard; Schreckenberger, Mathias; Bartenstein, Peter; Zwergal, Andreas; Brandt, Thomas; Dieterich, Marianne

    2016-01-01

    The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic

  8. Relationship of Vertigo and Postural Instability in Patients With Vestibular Schwannoma.

    Science.gov (United States)

    Nam, Gi-Sung; Jung, Chan Min; Kim, Ji Hyung; Son, Eun Jin

    2018-01-09

    Growth of vestibular schwannomas (VS) causes progressive vestibular symptoms and postural instability. Since the tumor grows slowly, compensation of decaying vestibular input may decrease subjective symptoms of dizziness. This study aims to estimate the relationship of subjective vestibular symptoms and objective postural instability in patients with VS. A retrospective review of 18 patients newly diagnosed with VS and with subjective vertigo symptoms was performed. The Results of vestibular function tests including the sensory organization test (SOT) using computerized dynamic posturography, caloric test, and self-report measures of subjective dizziness handicap (Dizziness Handicap Inventory) and visual analogue scale were compared according to the onset of vertigo symptoms. In VS patients, SOT showed decreased equilibrium score for all vestibular function related conditions, condition (C) 5 and 6, and composite (COMP) score. COMP scores were not correlated with visual analogue scale or Dizziness Handicap Inventory scores. Acute onset group included six patients and insidious onset group, 12 patients. Equilibrium scores for C5 and C6, and COMP scores were lower for insidious onset group, but the difference was not statistically significant. Our findings confirmed postural instability is prevalent in VS patients. SOT parameters did not differ significantly between acute onset and insidious onset groups, but increased tumor size and canal weakness were noted in the insidious onset group. Clinicians should consider that postural instability is likely present even in patients who do not complain of acute vertigo, and appropriate counseling should be discussed with the patients.

  9. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions.

    Science.gov (United States)

    Zhou, Guangwei; Brodsky, Jacob R

    2015-06-01

    To conduct objective assessment of children with balance and vestibular complaints following sports-related concussions and identify the underlying deficits by analyzing laboratory test outcomes. Case series with chart review. Pediatric tertiary care facility. Medical records were reviewed of 42 pediatric patients with balance and/or vestibular complaints following sports-related concussions who underwent comprehensive laboratory testing on their balance and vestibular function. Patients' characteristics were summarized and results analyzed. More than 90% of the children with protracted dizziness or imbalance following sports-related concussion had at least 1 abnormal finding from the comprehensive balance and vestibular evaluation. The most frequent deficit was found in dynamic visual acuity test, followed by Sensory Organization Test and rotational test. Patient's balance problem associated with concussion seemed to be primarily instigated by vestibular dysfunction. Furthermore, semicircular canal dysfunction was involved more often than dysfunction of otolith organs. Yet, children experienced a hearing loss following sports-related concussion. Vestibular impairment is common among children with protracted dizziness or imbalance following sports-related concussion. Our study demonstrated that proper and thorough evaluation is imperative to identify these underlying deficits and laboratory tests were helpful in the diagnosis and recommendation of following rehabilitations. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    Science.gov (United States)

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system. Copyright 2006 Wiley Periodicals, Inc.

  11. [Effect of nitric oxide in vestibular compensation].

    Science.gov (United States)

    Jiang, Zi-dong; Zhang, Lian-shan

    2003-10-01

    To study the effect of nitric oxide (NO) in vestibular compensation after unilateral vestibular deafferentation. Eighteen animals were divided into two groups, 6 of group a as control, 12 of group b received gentamicin intratympanic injection in the left ear. Half of the animals were killed respectively after 5 days and 10 days. Vestibular endorgan and brainstem tissue sections were subjected to NADPH-d reactive test of NOS for histochemical examination. In group a, NOS-like reactivity in both sides of vestibular endorgan and nucli. In group b during 5 days, NOS-like reactivity in right side of vestibular endorgan and nucli, those of the left side were negative. During 10 days, NOS-like reactivity only in the right side of vestibular endorgan. Changes of NOS expression in the contralateral vestibular nucli might have played a role in vestibular compensation.

  12. Influence of Sensory Dependence on Postural Control

    Science.gov (United States)

    Santana, Patricia A.; Mulavara, Ajitkumar P.; Fiedler, Matthew J.

    2011-01-01

    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight.

  13. The sense of self-motion, orientation and balance explored by vestibular stimulation.

    Science.gov (United States)

    St George, Rebecca J; Fitzpatrick, Richard C

    2011-02-15

    The sense of orientation during locomotion is derived from our spatial relationship with the external environment, sensed predominantly by sight and sound, and from internal signals of motion, generated by the vestibular sense and the pattern of efferent and afferent signals to the muscles and joints. The sensory channels operate in different reference frames and have different time-dependent adaptive properties and yet the inputs are combined by the central nervous system to create an internal representation of self-motion. In normal circumstances vestibular, visual and proprioceptive cues provide congruent information on locomotor trajectory; however, in cases of sensory discord there must be a recalibration of sensory signals to provide a unitary representation. We develop a means of studying these fusion processes by perturbing each channel in isolation about a consistent behavioural axis. This review focuses on creating the vestibular perturbation of the orientation sense by transmastoidal galvanic stimulation, a technique generally used to evoke balance reflexes. Vector summation across the population of semicircular canal afferents creates a net signal that is interpreted by the brain as a vector of angular acceleration in a craniocentric reference frame. The signal feeds perceptual processes of orientation after transformation that resolves the 3-D signal onto the terrestrial or behavioural plane. Changing head posture changes the interpretation of the galvanic vestibular signal for balance and orientation responses. With appropriate head alignments during locomotion, the galvanic stimulus can be used to either steer trajectory over the terrestrial plane or perturb balance.

  14. Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia.

    Science.gov (United States)

    Peng, Han; Park, Jong Kook; Lavker, Robert M

    2017-01-01

    Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.

  15. Role of the vestibular end organs in experimental motion sickness - A primate model

    Science.gov (United States)

    Igarashi, Makoto

    1990-01-01

    Experimental studies of the role of vestibular end organs in motion sickness experienced by squirrel monkeys are reviewed. The first experiments in motion-sickness-susceptible squirrel monkeys were performed under a free-moving condition with horizontal rotation and vertical oscillation. In the following experiments, the vestibular-visual conflict in the pitch plane was given to the chair-restrained (upright position) squirrel monkeys. Results of this study showed that the existence of otolith afferents, which continually signal the directional change of gravity and linear acceleration vectors, was necessary for the elicitation of emesis by the sensory conflict in pitch.

  16. Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion

    Science.gov (United States)

    MacNeilage, Paul R.; Glasauer, Stefan

    2017-01-01

    Achieved motor movement can be estimated using both sensory and motor signals. The value of motor signals for estimating movement should depend critically on the stereotypy or predictability of the resulting actions. As predictability increases, motor signals become more reliable indicators of achieved movement, so weight attributed to sensory signals should decrease accordingly. Here we describe a method to quantify this predictability for head movement during human locomotion by measuring head motion with an inertial measurement unit (IMU), and calculating the variance explained by the mean movement over one stride, i.e., a metric similar to the coefficient of determination. Predictability exhibits differences across activities, being most predictable during running, and changes over the course of a stride, being least predictable around the time of heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to sensory-motor weighting via a statistically optimal model based on two key assumptions: (1) average head movement provides a conservative estimate of the efference copy prediction, and (2) noise on sensory signals scales with signal magnitude. The model suggests that differences in predictability should lead to changes in the weight attributed to vestibular sensory signals for estimating head movement. In agreement with the model, prior research reports that vestibular perturbations have greatest impact at the time points and during activities where high vestibular weight is predicted. Thus, we propose a unified explanation for time-and activity-dependent modulation of vestibular effects that was lacking previously. Furthermore, the proposed predictability metric constitutes a convenient general method for quantifying any kind of kinematic variability. The probabilistic model is also general; it applies to any situation in which achieved movement is estimated from both motor signals and zero-mean sensory signals with signal

  17. Alignment of angular velocity sensors for a vestibular prosthesis

    Directory of Open Access Journals (Sweden)

    DiGiovanna Jack

    2012-02-01

    Full Text Available Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.

  18. Recovery of Vestibular Ocular Reflex Function and Balance Control after a Unilateral Peripheral Vestibular Deficit

    OpenAIRE

    John eAllum

    2012-01-01

    This review describes the effect of unilateral peripheral vestibular deficit (UPVD) on balance control for stance and gait tests. Because a UPVD is normally defined based on vestibular ocular reflex (VOR) tests, we compared recovery observed in balance control with patterns of recovery in VOR function. Two general types of UPVD are considered; acute vestibular neuritis (AVN) and vestibular neurectomy. The latter was subdivided into vestibular loss after cerebellar pontine angle tumor surgery ...

  19. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery

    OpenAIRE

    Lacour, Michel; Bernard-Demanze, Laurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to per...

  20. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    OpenAIRE

    LACOUR eMichel; BERNARD DEMANZE eLaurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to p...

  1. Compensation following bilateral vestibular damage

    Directory of Open Access Journals (Sweden)

    Bill J Yates

    2011-12-01

    Full Text Available Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that nonlabyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  2. Compensation following bilateral vestibular damage.

    Science.gov (United States)

    McCall, Andrew A; Yates, Bill J

    2011-01-01

    Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  3. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  4. An adaptive vestibular rehabilitation technique.

    Science.gov (United States)

    Crane, Benjamin T; Schubert, Michael C

    2017-05-23

    There is a large variation in vestibular rehabilitation (VR) results depending on type of therapy, adherence, and the appropriateness for the patient's level of function. A novel adaptive vestibular rehabilitation (AVR) program was developed and evaluated. Technology and procedure development, and prospective multicenter trial. Those with complete unilateral vestibular hypofunction and symptomatic at least 3 months with a Dizziness Handicap Inventory (DHI) >30 were eligible. Patients were given a device to use with their own computer. They were instructed to use the program daily, with each session lasting about 10 minutes. The task consisted of reporting orientation of the letter C, which appeared when their angular head velocity exceeded a threshold. The letter size and head velocity required were adjusted based on prior performance. Performance on the task was remotely collected by the investigator as well as a weekly DHI score. Four patients aged 31 to 74 years (mean = 51 years) were enrolled in this feasibility study to demonstrate efficacy. Two had treated vestibular schwannomas and two had vestibular neuritis. Starting DHI was 32 to 56 (mean = 42), which was reduced to 0 to 16 (mean = 11.5) after a month of therapy, a clinically and statistically significant (P VR in terms of cost and customization for patient ability and obtained a major improvement in symptoms. This study demonstrated a clinically and statistically significant decrease in symptoms after 4 weeks of therapy. 2b Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  5. The effect of vestibular rehabilitation supplemented by training of the breathing rhythm or proprioception exercises, in patients with chronic peripheral vestibular disease.

    Science.gov (United States)

    Jáuregui-Renaud, Kathrine; Villanueva Padrón, Laura Alejandra; Cruz Gómez, Nora Silvia

    2007-01-01

    To assess the effect of performing vestibular rehabilitation using the Cawthorne & Cooksey exercises supplemented by training of the breathing rhythm or proprioception exercises on self-reported disability and postural control, in patients with chronic, peripheral, vestibular disease. Fifty one patients with peripheral vestibular disease and abnormal caloric test participated in the study (mean age 43 +/- S.D. 9 years). They were assigned to one of 3 treatment groups: I. Cawthorne &} Cooksey exercises with training of the breathing rhythm (n=17); II. Cawthorne & Cooksey exercises with proprioception exercises (n=17) and III. Cawthorne & Cooksey exercises with no additional intervention (n=17). The Dizziness Handicap Inventory and static posturography were evaluated prior to treatment and at week 8 of follow-up. Prior to treatment, composite scores on the Dizziness Handicap Inventory and static posturography were similar in the 3 groups. After treatment, a decrease of the composite score of at least 18 points was observed more frequently in patients of the respiration group (94%), compared to the proprioception group (53%) and the Cawthorne & Cooksey group (70%) (p=0.03); while the proprioception group showed a significant decrease of oscillation during all sensory conditions of static posturography (p< 0.05). The results suggest that regulation of the breathing pattern may have an influence on disability related to chronic vestibular disease, while proprioception exercises may improve postural control. However, further studies are needed to evaluate if training of the breathing rhythm could be an additional tool for vestibular rehabilitation.

  6. Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry.

    Science.gov (United States)

    Lysakowski, A; Singer, M

    2000-11-27

    Efferent innervation of the vestibular labyrinth is known to be cholinergic. More recent studies have also demonstrated the presence of the neuropeptide calcitonin gene-related peptide in this system. Nitric oxide is one of a new class of neurotransmitters, the gaseous transmitters. It acts as a second messenger and neurotransmitter in diverse physiological systems. We decided to investigate the anatomical distribution of the synthetic enzyme for nitric oxide, nitric oxide synthase (NOS), to clarify the role of nitric oxide in the vestibular periphery. NADPH diaphorase histochemical and NOS I immunohistochemical studies were done in the adult chinchilla and rat vestibular brainstem; diaphorase histochemistry was done in the chinchilla periphery. Retrograde tracing studies to verify the presence of NOS in brainstem efferent neurons were performed in young chinchillas. Our light microscopic results show that NOS I, as defined mainly by the presence of NADPH diaphorase, is present in a subpopulation of both brainstem efferent neurons and peripheral vestibular efferent boutons. Our ultrastructural results confirm these findings in the periphery. NADPH diaphorase is also present in a subpopulation of type I hair cells, suggesting that nitric oxide might be produced in and act locally upon these cells and other elements in the sensory epithelium. A hypothesis about how nitric oxide is produced in the vestibular periphery and how it may interact with other elements in the vestibular sensory apparatus is presented in the discussion. Copyright 2000 Wiley-Liss, Inc.

  7. Aging of vestibular function evaluated using correlational vestibular autorotation test

    Directory of Open Access Journals (Sweden)

    Hsieh LC

    2014-09-01

    Full Text Available Li-Chun Hsieh,1,2 Hung-Ching Lin,2,3 Guo-She Lee4,5 1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan; 3Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taipei, Taiwan; 4Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5Department of Otolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Background: Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT. In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT system that included a small, light sensor (less than 20 g with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods: We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results: Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05. The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old.Conclusion: Vestibular function evaluated using mean CCC revealed a decline with

  8. Classification of children with autism spectrum disorder by sensory subtype: a case for sensory-based phenotypes.

    Science.gov (United States)

    Lane, Alison E; Molloy, Cynthia A; Bishop, Somer L

    2014-06-01

    This study examines whether sensory differences can be used to classify meaningful subgroups of children with autism spectrum disorder (ASD). Caregivers of children with ASD aged 2-10 years (n = 228) completed the Short Sensory Profile. Model-based cluster analysis was used to extract sensory subtypes. The relationship of these subtypes to age, gender, autism symptom severity, and nonverbal intelligence quotient (IQ) was further explored. Four distinct sensory subtypes were identified: (a) sensory adaptive; (b) taste smell sensitive; (c) postural inattentive; and (d) generalized sensory difference. The sensory subtypes differ from each other on two dimensions: (a) the severity of reported sensory differences; and (b) the focus of differences across auditory, taste, smell, vestibular and proprioceptive domains. Examination of the clinical features of each subtype reveals two possible mechanisms of sensory disturbance in autism: (a) sensory hyperreactivity; and (b) difficulties with multisensory processing. Further, the sensory subtypes are not well explained by other variables such as age, gender, IQ, and autism symptom severity. We conclude that classification of children using sensory differences offers a promising method by which to identify phenotypes in ASD. Sensory-based phenotypes may be useful in identifying behavioral features responsive to specific interventions thereby improving intervention effectiveness. Further validation of the sensory-based phenotypes by establishing neural and physiological correlates is recommended. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Stereotactic radiotherapy for vestibular schwannoma

    DEFF Research Database (Denmark)

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL......; Web of Science; CAB Abstracts; ISRCTN and additional sources for published and unpublished trials. The date of the search was 24 July 2014. SELECTION CRITERIA: Randomised controlled trials (RCTs) exploring the efficacy of stereotactic radiotherapy compared with observation alone, microsurgical...

  10. Localization of nitric oxide synthase isoforms (NOS I, II and III) in the vestibular end organs of the guinea pig.

    Science.gov (United States)

    Takumida, M; Anniko, M

    1998-01-01

    The localization of nitric oxide (NO) synthase (NOS) isoforms was investigated in the vestibular organ of the pigmented guinea pig by indirect immunohistochemistry. The cytoplasm of both type I and type II vestibular sensory cells as well as vestibular ganglion cells showed both NOS I and III immunoreactivity, whereas there was no reactivity in their nuclei and sensory hairs. The afferent nerve chalices were usually not stained. NOS III staining was also observed in the nerve fibers contacting type II cells and in the subepithelial tissue. The endothelial lining of the blood vessels displayed reactivity for NOS III. The cytoplasm of fluid transporting cells showed weak staining for NOS I and moderate staining for NOS III. Immunostaining for NOS II did not display any reactivity in general. These findings may suggest that NO is a mediator of neurotransmission in the vestibular system in sensory cells and ganglia. NO in the fluid transporting cells may play an important role for maintaining the endolymph and ion homeostasis, and NOS III in vascular endothelial cells implies regulatory effects of NO on vascular wall tonus and vestibular blood supply.

  11. Topological defects in epithelia govern cell death and extrusion

    Science.gov (United States)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  12. Paracellular calcium transport across renal and intestinal epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Rievaj, Juraj; Dimke, Henrik

    2014-01-01

    absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular...... recent molecular insights into both the mechanism of secondarily active paracellular Ca(2+) movement and the identity of claudins that permit the passage of Ca(2+) through the tight junction of these epithelia....

  13. Epigenetic Analysis of Laser Capture Microdissected Fetal Epithelia1

    OpenAIRE

    Seelan, Ratnam S.; Warner, Dennis R.; Mukhopadhyay, Partha M.; Sarah A Andres; Smolenkova, Irina A.; Wittliff, James L.; Pisano, M. Michele; Greene, Robert M.

    2013-01-01

    Laser capture microdissection (LCM) is a superior method for non-destructive collection of specific cell populations from tissue sections. While DNA, RNA and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microR...

  14. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    Science.gov (United States)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  15. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    Science.gov (United States)

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  16. Vestibular, balance, microvascular and white matter neuroimaging characteristics of blast injuries and mild traumatic brain injury: Four case reports.

    Science.gov (United States)

    Gattu, Ramtilak; Akin, Faith W; Cacace, Anthony T; Hall, Courtney D; Murnane, Owen D; Haacke, E Mark

    2016-01-01

    Case reports are presented on four Veterans, aged 29-46 years, who complained of chronic dizziness and/or postural instability following blast exposures. Two of the four individuals were diagnosed with mild traumatic brain injury and three of the four were exposed to multiple blasts. Comprehensive vestibular, balance, gait, audiometry and neuroimaging procedures were used to characterize their injuries. Vestibular assessment included videonystagmography, rotary chair and cervical and ocular vestibular evoked myogenic potentials. Balance and gait testing included the sensory organization test, preferred gait speed and the dynamic gait index. Audiometric studies included pure tone audiometry and middle-ear measurements. Neuroimaging procedures included high resolution structural magnetic resonance imaging, susceptibility-weighted imaging and diffusion-tensor imaging. Based on the neuroimaging and vestibular and balance test results, it was found that all individuals had diffuse axonal injuries and all had one or more micro-hemorrhages or vascular anomalies. Three of the four individuals had abnormal vestibular function, all had abnormally slow walking speeds and two had abnormal gait and balance dysfunction. The use of contemporary neuroimaging studies in conjunction with comprehensive vestibular and balance assessment provided a better understanding of the pathophysiology and pathoanatomy of dizziness following blast exposures than standard vestibular and balance testing alone.

  17. Mouse Models for Pendrin-Associated Loss of Cochlear and Vestibular Function

    Directory of Open Access Journals (Sweden)

    Philine Wangemann

    2013-12-01

    Full Text Available The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.

  18. The cognitive neurology of the vestibular system.

    Science.gov (United States)

    Seemungal, Barry M

    2014-02-01

    The aim is to reappraise the current state about what we know of vestibular cognition. The review focuses on cognition and perception, and hence the stress on human studies. In addition, the cerebral cortex is the main but not exclusive brain region of interest. There is a brief mention of vestibular ocular function if only to demonstrate the differential processing between reflex and perception. The effect of vestibular activation on some aspects of cognition, for example neglect, is not reviewed, as there have been no recent landmark findings in this area. The vestibular cerebellum is pivotal in the differential gating of vestibular perceptual and ocular signals to the cerebral cortex. The neuroanatomical correlates mediating vestibular sensations of self-motion ('am I moving?') and spatial orientation ('where am I now?') are distinct. Vestibular-motion perception is supported by a widespread white matter network. Vestibular activation specifically reduces visual motion cortical excitability, whereas other visual cortical regions show an increase in excitability. As the vestibular ocular reflex (VOR) and self-motion perception can be uncoupled both behaviourally and in neural correlate, deficits underlying vestibular patients' symptoms may not be revealed by simple VOR assessment. Given the pivotal cerebellar role in gating vestibular signals to perceptual regions, modulating mechanisms of cerebellar plasticity, for example by combining training with medication or brain stimulation, may prove fruitful in treating the symptoms of chronic dizzy patients.

  19. Negative emotional stimuli enhance vestibular processing.

    Science.gov (United States)

    Preuss, Nora; Ellis, Andrew W; Mast, Fred W

    2015-08-01

    Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information. (c) 2015 APA, all rights reserved).

  20. The Effect of Vestibular Stimulation on Motor Functions of Children With Cerebral Palsy.

    Science.gov (United States)

    Tramontano, Marco; Medici, Alessandra; Iosa, Marco; Chiariotti, Alessia; Fusillo, Giulia; Manzari, Leonardo; Morelli, Daniela

    2017-07-01

    Cerebral palsy (CP) has been defined as a nonprogressive disease of movement and posture development. Physical therapy techniques use different forms of sensory stimulation to improve neuromotor development. The aim of this study was to assess the efficacy of a vestibular stimulation training in improving motor functions in cerebral palsy. Fourteen children with CP were randomly separated into two different groups in a cross-over trial. Over a period of 10 weeks, each group performed 10 sessions of 50 min of neurodevelopmental treatment (NDT) and 10 sessions of vestibular training (VR). Children were evaluated with the Gross Motor Function Measurement-88 scale, the Goal Attainment Scale and the root mean square of head accelerations. A significant improvement in the GAS-score (p = .003) was noted after NDT+VR. Vestibular stimulation integrated with NDT proved to be an effective complementary strategy for facilitating motor functioning.

  1. Perspectival Structure and Vestibular Processing

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2016-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...

  2. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  3. Ultrastructure of projections to the oculomotor nucleus and inferior olive from vestibular and cerebellar neurons involved in compensatory eye movements

    NARCIS (Netherlands)

    P.R. Wentzel (Pierre)

    1998-01-01

    textabstractEarly in the evolution of vertebrates eye movements were strictly primitive reflexes that were predominantly controlled by vestibular and visual sensory stimuli. Later during phylogeny, along with the development of the fovea of the retina, vertebrates acquired the ability to make

  4. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem.

    Science.gov (United States)

    Baizer, Joan S

    2009-11-17

    Vestibular information is essential for the control of posture, balance, and eye movements. The vestibular nerve projects to the four nuclei of the vestibular nuclear complex (VNC), as well as to several additional brainstem nuclei and the cerebellum. We have found that expression of the calcium-binding proteins calretinin (CR) and calbindin (CB), and the synthetic enzyme for nitric oxide synthase (nNOS) define subdivisions of the medial vestibular nucleus (MVe) and the nucleus prepositus (PrH), in cat, monkey, and human. We have asked if the pattern of expression of nonphosphorylated neurofilament protein (NPNFP) might define additional subdivisions of these or other nuclei that participate in vestibular function. We studied the distribution of cells immunoreactive to NPNFP in the brainstems of 5 cats and one squirrel monkey. Labeled cells were scattered throughout the four nuclei of the VNC, as well as in PrH, the reticular formation (RF) and the external cuneate nucleus. We used double-label immunofluorescence to visualize the distribution of these cells relative to other neurochemically defined subdivisions. NPNFP cells were excluded from the CR and CB regions of the MVe. In PrH, NPNFP and nNOS were not colocalized. Cells in the lateral vestibular nucleus and RF colocalized NPNFP and a marker for glutamatergic neurons. We also found that the cholinergic cells and axons of cranial nerve nuclei 3, 4, 6, 7,10 and 12 colocalize NPNFP. The data suggest that NPNFP is expressed by a subset of glutamatergic projection neurons of the vestibular brainstem. NPNFP may be a marker for those cells that are especially vulnerable to the effects of normal aging, neurological disease or disruption of sensory input.

  5. Postural Effects of Vestibular Manipulation Depend on the Physical Activity Status.

    Directory of Open Access Journals (Sweden)

    Julien Maitre

    Full Text Available The purpose of this study was to compare the effects of galvanic vestibular stimulation (GVS on postural control for participants of different physical activity status (i.e. active and non-active. Two groups of participants were recruited: one group of participants who regularly practised sports activities (active group, n = 17, and one group of participants who did not practise physical and/or sports activities (non-active group, n = 17. They were compared in a reference condition (i.e bipedal stance with eyes open and four vestibular manipulation condition (i.e. GVS at 0.5 mA and 3 mA, in accordance with two designs lasting 20 seconds. The centre of foot pressure displacement velocities were compared between the two groups. The main results indicate that the regular practice of sports activities counteracts postural control disruption caused by GVS. The active group demonstrated better postural control than the non-active group when subjected to higher vestibular manipulation. The active group may have developed their ability to reduce the influence of inaccurate vestibular signals. The active participants could identify the relevant sensory input, thought a better central integration, which enables them to switch faster between sensory inputs.

  6. Vestibular Stimulation for Stress Management in Students.

    Science.gov (United States)

    Kumar, Sai Sailesh; Rajagopalan, Archana; Mukkadan, Joseph Kurien

    2016-02-01

    Although several methods are developed to alleviate stress among college students, logistic limitations in adopting them have limited their utility. Hence, we aimed to test a very practical approach to alleviate stress among college students by achieving vestibular stimulation using swings. In this study 60 male and female participants were randomly assigned into vestibular stimulation or control groups. Depression, anxiety, stress scores, sleep quality, heart rate, blood pressure, Autonomic functions, respiratory, haematological, cognitive function, Quality of life were recorded before and after 1(st), 7(th), 14(th), 21(st), 28(th) days of vestibular stimulation. STAI S and STAI T scores were significantly improved on day 28(th) following vestibular stimulation. Diastolic and mean arterial blood pressure were significantly decreased and remained within normal limits in vestibular group on day 28(th) following vestibular stimulation. Postural fall in blood pressure was significantly improved on day 14 onwards, following vestibular stimulation. Respiratory rate was significantly improved on day 7 onwards, following vestibular stimulation. PSQI sleep disturbance, PSQI sleep latency, PSQI total score and bleeding time was significantly improved following vestibular stimulation. Our study supports the adoption of vestibular stimulation for stress management. Hence, placement of swings in college campuses must be considered, which may be a simple approach to alleviate stress among college students.

  7. Vestibular Findings in Military Band Musicians

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2014-04-01

    Full Text Available Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years. They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%, hearing difficulties (47.3%, dizziness (36.8%, headache (26.3%, intolerance to intense sounds (21.0%, and earache (15.7%. Seven musicians (37.0% showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%. There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  8. Vestibular findings in military band musicians.

    Science.gov (United States)

    Zeigelboim, Bianca Simone; Gueber, Crislaine; Silva, Thanara Pruner da; Liberalesso, Paulo Breno Noronha; Gonçalves, Claudia Giglio de Oliveira; Faryniuk, João Henrique; Marques, Jair Mendes; Jurkiewicz, Ari Leon

    2014-04-01

    Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years). They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%), hearing difficulties (47.3%), dizziness (36.8%), headache (26.3%), intolerance to intense sounds (21.0%), and earache (15.7%). Seven musicians (37.0%) showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%). There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  9. Mechanisms of vestibular compensation: recent advances.

    Science.gov (United States)

    Dutia, Mayank B

    2010-10-01

    This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.

  10. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Directory of Open Access Journals (Sweden)

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  11. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Science.gov (United States)

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, ppostural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.

  12. PREHAB vs. REHAB - presurgical treatment in vestibular schwannoma surgery enhances recovery of postural control better than postoperative rehabilitation: Retrospective case series.

    Science.gov (United States)

    Tjernström, Fredrik; Fransson, Per-Anders; Kahlon, Babar; Karlberg, Mikael; Lindberg, Sven; Siesjö, Peter; Magnusson, Måns

    2018-01-01

    To evaluate post-surgical postural stability when treating patients with remaining vestibular function with intratympanic gentamicin (PREHAB) prior to schwannoma surgery. 44 consecutive patients with some form remaining vestibular function scheduled for vestibular schwannoma surgery. 20 were medically deafferented with intratympanic gentamicin before surgery and 24 were not. Both groups were of the same age, had the same tumor size, same type of surgery, and same perioperative sensory rehabilitation (training exercises), and no surgical complications. Postural stability measured as energy expenditure while standing on a force platform during vibratory stimulation of the calf muscles, performed prior to surgery (or gentamicin treatment) and 6 months after surgery. Patients pretreated with gentamicin had significantly better postural stability at the time for follow-up (p learning as the vestibular function slowly attenuates; no concomitant central nervous dysfunction due to effects from neurosurgery, thus allowing time for a separate unimpeded recovery process with more limited challenges and objectives; and the initiation and certain progression of sensory reweighting processes allowed prior to surgery. In contrast, worse compensation could be due to; immobilization from nausea after surgery, harmful amount of stress and cognitive dysfunction from the combination of surgical and sensory trauma and an abrupt vestibular deafferentation and its consequences on sensory reweighting.

  13. Efficacy of vestibular rehabilitation on chronic unilateral vestibular dysfunction.

    Science.gov (United States)

    Topuz, Oya; Topuz, Bülent; Ardiç, F Necdet; Sarhuş, Merih; Ogmen, Gülsen; Ardiç, Füsun

    2004-02-01

    To assess the efficacy of vestibular rehabilitation exercises on patients with chronic unilateral vestibular dysfunction. Prospective study. Physical Medicine and Rehabilitation Clinic and Otolaryngology Clinic of a tertiary referral hospital. One-hundred and twenty-five patients with unilateral chronic vestibular dysfunction were included in the study. Eight-week, two-staged (clinic and home) vestibular rehabilitation programme with components of Cawthorne-Cooksey and Norre exercises was applied. Dizziness Handicap Inventory (DHI) and visual analogue scale (VAS) were completed three times (at the beginning, end of the second week and end of the treatment). Data for 112 patients in the first stage and 93 patients in the second stage were evaluated because of insufficient compliance of the other patients. The mean DHI score was decreased from 50.42 +/- 24.12 points to 21.21 +/- 15.97 points (p < 0.001) at the end of first two weeks, and to 19.93 +/- 19.33 points at the end of the whole treatment. The mean VAS score was decreased from 5.87 +/- 2.27 to 2.02 +/- 1.75 (p < 0.001) at the end of second week, and to 1.51 +/- 1.29 at the end of eighth week. In respect to both VAS and DHI scores, improvement was noted in 67 patients (77.4%). Age, gender and disability level had no predictive value about therapy outcome. There was a fast recovery in the supervised exercise session, whereas there was no significant difference in the home exercise session. These findings suggest that either supervised exercise is better than home exercise or that 10 supervised sessions are sufficient to get the end result.

  14. Physical therapy for persons with vestibular disorders.

    Science.gov (United States)

    Whitney, Susan L; Alghwiri, Alia; Alghadir, Ahmad

    2015-02-01

    Persons with vestibular disorders experience symptoms of dizziness and balance dysfunction, resulting in falls, as well as impairments of daily life. Various interventions provided by physical therapists have been shown to decrease dizziness and improve postural control. In the present review, we will focus on the role of physical therapy in the management of vestibular symptoms in patients with peripheral and central vestibular disorders. Persons with both acute and chronic central and peripheral vestibular disorders improve with vestibular rehabilitation. New interventions during the past 5 years have been designed to enhance recovery from problems with balance and dizziness. Examples include the use of virtual reality, vibrotactile feedback, optokinetic flow, YouTube videos, and innovative methods to change the gain of the vestibulo-ocular reflex (VOR). Patients with central and peripheral vestibular disorders benefit from physical therapy interventions. Advances in physical therapy interventions include new methods to stimulate adaptation of the VOR and the vestibulospinal systems.

  15. Impaired tilt perception in Parkinson's disease: a central vestibular integration failure.

    Directory of Open Access Journals (Sweden)

    Giovanni Bertolini

    Full Text Available Impaired balance control is a hallmark symptom in Parkinson's disease (PD. Altered sensory-motor integration contributes to the deficiency. We aimed to determine whether impaired vestibular signal processing added to the disorder. We exposed patients (N = 11; 68±6y and age-matched healthy subjects (hS: N = 19; 65±11y on a motion platform in complete darkness to two consecutive forward tilt movements (12 series; N = 24; overall 288 trials and asked them to indicate which tilt was perceived larger. By combing tilt movements with translations we manipulated vestibular sensory input in order to investigate whether putative impairment resulted from a deficiency of the sensory organs (semicircular canals in 'single-SCC-cue-condition', otoliths in 'single-OT-cue-condition' themselves or to a sensory integration failure ('multi-cue-condition'.Tilt discrimination in the multi-cue-condition was inferior in patients compared to hS (p = 0.02. No significant differences between the two groups were found for both single-cue-conditions. Comparison of multi-cue-condition with a prediction resulting from the combination of both single-cue-conditions by optimal observer theory revealed that patients (p = 0.04, in contrast to hS, failed to efficiently combine SCC and OT information to improve tilt perception.We found that PD patients distinguished forward tilts less precise than hS, suggesting impaired vestibular perception. Tilt discrimination in patients, moreover, did not improve as much as in hS in conditions where both SCC and OT information was available compared to conditions where only SCC or OT cues were activated. The latter provides evidence that tilt misperception in PD most likely results from an integration failure of vestibular signals.

  16. Estimulación vestibular en Educación Infantil

    Directory of Open Access Journals (Sweden)

    Alfonso LÁZARO LÁZARO

    2008-01-01

    Full Text Available El autor propone la incorporación del trabajo sobre la postura y el equilibrio en Educación Infantil como una manera de promover la estimulación sensorial. La información vestibular proporciona al niño referencias que serán muy necesarias para su desarrollo y para la adquisición de futuros aprendizajes.

  17. Motor development after vestibular deprivation in rats.

    Science.gov (United States)

    Geisler, H C; Gramsbergen, A

    1998-07-01

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control, which is characterized by a retarded EMG development in postural muscles. Our results indicate that the developing nervous system cannot compensate for a vestibular deficit during the early phase of ontogeny.

  18. Changing perspective: The role of vestibular signals

    OpenAIRE

    Deroualle, Diane; Borel, Liliane; Deveze, Arnaud; Lopez, Christophe

    2015-01-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking....

  19. Prosthetic implantation of the human vestibular system.

    Science.gov (United States)

    Golub, Justin S; Ling, Leo; Nie, Kaibao; Nowack, Amy; Shepherd, Sarah J; Bierer, Steven M; Jameyson, Elyse; Kaneko, Chris R S; Phillips, James O; Rubinstein, Jay T

    2014-01-01

    A functional vestibular prosthesis can be implanted in human such that electrical stimulation of each semicircular canal produces canal-specific eye movements while preserving vestibular and auditory function. A number of vestibular disorders could be treated with prosthetic stimulation of the vestibular end organs. We have previously demonstrated in rhesus monkeys that a vestibular neurostimulator, based on the Nucleus Freedom cochlear implant, can produce canal-specific electrically evoked eye movements while preserving auditory and vestibular function. An investigational device exemption has been obtained from the FDA to study the feasibility of treating uncontrolled Ménière's disease with the device. The UW/Nucleus vestibular implant was implanted in the perilymphatic space adjacent to the three semicircular canal ampullae of a human subject with uncontrolled Ménière's disease. Preoperative and postoperative vestibular and auditory function was assessed. Electrically evoked eye movements were measured at 2 time points postoperatively. Implantation of all semicircular canals was technically feasible. Horizontal canal and auditory function were largely, but not totally, lost. Electrode stimulation in 2 of 3 canals resulted in canal-appropriate eye movements. Over time, stimulation thresholds increased. Prosthetic implantation of the semicircular canals in humans is technically feasible. Electrical stimulation resulted in canal-specific eye movements, although thresholds increased over time. Preservation of native auditory and vestibular function, previously observed in animals, was not demonstrated in a single subject with advanced Ménière's disease.

  20. Vestibular insights into cognition and psychiatry.

    Science.gov (United States)

    Gurvich, Caroline; Maller, Jerome J; Lithgow, Brian; Haghgooie, Saman; Kulkarni, Jayashri

    2013-11-06

    The vestibular system has traditionally been thought of as a balance apparatus; however, accumulating research suggests an association between vestibular function and psychiatric and cognitive symptoms, even when balance is measurably unaffected. There are several brain regions that are implicated in both vestibular pathways and psychiatric disorders. The present review examines the anatomical associations between the vestibular system and various psychiatric disorders. Despite the lack of direct evidence for vestibular pathology in the key psychiatric disorders selected for this review, there is a substantial body of literature implicating the vestibular system in each of the selected psychiatric disorders. The second part of this review provides complimentary evidence showing the link between vestibular dysfunction and vestibular stimulation upon cognitive and psychiatric symptoms. In summary, emerging research suggests the vestibular system can be considered a potential window for exploring brain function beyond that of maintenance of balance, and into areas of cognitive, affective and psychiatric symptomology. Given the paucity of biological and diagnostic markers in psychiatry, novel avenues to explore brain function in psychiatric disorders are of particular interest and warrant further exploration. © 2013 Elsevier B.V. All rights reserved.

  1. Vestibular activation, smooth pursuit tracking, and psychosis.

    Science.gov (United States)

    Jones, A M; Pivik, R T

    1985-04-01

    Pursuit tracking and vestibular activation procedures were combined in an investigation to determine if smooth pursuit tracking deficits could be related to abnormalities of visual-vestibular interaction in psychiatric patients. In actively psychotic patients, but not in comparison groups of schizophrenic outpatients with remitted symptomatology or normal controls, a significant failure of visual fixation to suppress caloric nystagmus was related to a higher incidence of disordered tracking during both baseline and postirrigation conditions. Other vestibular irregularities including dysrhythmia and reduced fast phase velocity were observed in these same patients. The results are supportive of a central deficit in visual-vestibular interaction that may contribute to pursuit tracking deficits in psychosis.

  2. The role of the vestibular assessment.

    Science.gov (United States)

    Phillips, J S; FitzGerald, J E; Bath, A P

    2009-11-01

    To evaluate the role of vestibular assessment in the management of the dizzy patient. A retrospective review of case notes and vestibular assessment reports of 100 consecutive patients referred for vestibular assessment. Sixty of the 100 patients had an abnormal vestibular assessment. Eleven patients had benign paroxysmal positional vertigo as the sole diagnosis, of whom nine had not had a Dix-Hallpike manoeuvre performed before referral. Of patients referred for vestibular rehabilitation, 76 per cent had an abnormal electrophysiological assessment. After vestibular assessment, 35 patients were discharged with no further follow-up appointments in the ENT department. All patients should have a Dix-Hallpike manoeuvre performed prior to referral for vestibular assessment. The majority of our patients undergoing vestibular rehabilitation had abnormal test results, although a significant number did not. Prior to referral, it is worth considering the implication of a 'normal' and 'abnormal' result for the management of the patient. Careful consideration should be given to the development of dedicated dizziness clinics run by practitioners with a specialist interest in balance disorders, in order to ensure appropriate requests for vestibular assessment.

  3. Epidemiology and natural history of vestibular schwannomas

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Caye-Thomasen, Per

    2012-01-01

    This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma. A treatm......This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma....... A treatment strategy based on the natural history of tumor growth and hearing also is discussed....

  4. Move it or lose it--is stimulation of the vestibular system necessary for normal spatial memory?

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L; Zheng, Yiwen

    2010-01-01

    Studies in both experimental animals and human patients have demonstrated that peripheral vestibular lesions, especially bilateral lesions, are associated with spatial memory impairment that is long-lasting and may even be permanent. Electrophysiological evidence from animals indicates that bilateral vestibular loss causes place cells and theta activity to become dysfunctional; the most recent human evidence suggests that the hippocampus may cause atrophy in patients with bilateral vestibular lesions. Taken together, these studies suggest that self-motion information provided by the vestibular system is important for the development of spatial memory by areas of the brain such as the hippocampus, and when it is lost, spatial memory is impaired. This naturally suggests the converse possibility that activation of the vestibular system may enhance memory. Surprisingly, there is some human evidence that this may be the case. This review considers the relationship between the vestibular system and memory and suggests that the evolutionary age of this primitive sensory system as well as how it detects self-motion (i.e., detection of acceleration vs. velocity) may be the reasons for its unique contribution to spatial memory. Copyright 2009 Wiley-Liss, Inc.

  5. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.

    Science.gov (United States)

    Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory

    2015-07-01

    To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance

  6. Estimation of Optimum Stimulus Amplitude for Balance Training using Electrical Stimulation of the Vestibular System

    Science.gov (United States)

    Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable

  7. Changing perspective: The role of vestibular signals.

    Science.gov (United States)

    Deroualle, Diane; Borel, Liliane; Devèze, Arnaud; Lopez, Christophe

    2015-12-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking. Yet, no study merged natural full-body vestibular stimulations and explicit visuo-spatial perspective taking tasks in virtual environments. In Experiment 1, we combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the viewpoint of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the viewpoint of a distant avatar. Our results showed that vestibular signals influence perspective taking in a direction-specific way: participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. In Experiment 2, participants realized 3D object mental rotations, which did not involve perspective taking, during the same whole-body vestibular stimulation. Our results demonstrated that vestibular stimulation did not affect 3D object mental rotations. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking (self-centered mental imagery), but not a general effect on mental imagery. Findings from this study suggest that vestibular signals contribute to one of the most crucial mechanisms of social cognition: understanding others' actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Effectiveness of Self-efficacy Promoting Vestibular Rehabilitation Program for Patients with Vestibular Hypofunction].

    Science.gov (United States)

    Lee, Hyun Jung; Choi-Kwon, Smi

    2016-10-01

    In this study an examination was done of the effect of self-efficacy promoting vestibular rehabilitation (S-VR) on dizziness, exercise selfefficacy, adherence to vestibular rehabilitation (VR), subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness in patients with vestibular hypofunction. This was a randomized controlled study. Data were collected 3 times at baseline, 4 and 8 weeks after beginning the intervention. Outcome measures were level of dizziness, exercise self-efficacy, and level of adherence to VR. Subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness were also obtained. Data were analyzed using Windows SPSS 21.0 program. After 4 weeks of S-VR, there was no difference between the groups for dizziness, subjective and objective vestibular functions. However, exercise self-efficacy and adherence to VR were higher in the experimental group than in the control group. After 8 weeks of S-VR, dizziness (p=.018) exercise self-efficacy (pVR (pVR is effective in reducing dizziness, and improving exercise self-efficacy, subjective vestibular function and adherence to VR. Objective vestibular function and vestibular compensation were also improved in the experimental group at the end of 8 weeks of S-VR.

  9. Proposta de um protocolo para reabilitação vestibular em vestibulopatias periféricas

    OpenAIRE

    Rogatto, Adriana Roberta Degressi; Pedroso, Laira; Almeida, Sara Regina Meira; Oberg, Telma Dagmar

    2010-01-01

    INTRODUÇÃO: A reabilitação vestibular tem sido reconhecida como tratamento de escolha para pacientes com persistência da vertigem, por causa da disfunção vestibular periférica, proporcionando acentuada melhora na qualidade de vida. Dentre os tratamentos indicados, tem-se os exercícios de Cawthorne e Cooksey, integração sensorial e plataformas com movimentação corpórea. OBJETIVO: O objetivo da pesquisa foi criar um protocolo de exercícios em um balanço, associando os exercícios de Cawthorne e ...

  10. Posturografia com estímulos de realidade virtual nas diferentes disfunções vestibulares Posturography with virtual reality stimuli in different vestibular dysfunctions

    Directory of Open Access Journals (Sweden)

    Marcelo Eiji Inoue Yamamoto

    2012-03-01

    . METHODS: Retrospective study, with files of 100 patients with topographic diagnosis of peripheral or central vestibular dysfunction and 100 healthy individuals that composed the control group, of both genders, with ages varying between 7 and 86 years. For the posturography, the Balance Rehabilitation Unit (BRU TM, of Medicaa® was used. The following parameters were analyzed: stability limits, elliptical area, and speed of oscillation in ten sensory conditions. RESULTS: Mean values ​​of the stability limit, the elliptical area and the speed of oscillation in the experimental group was significant when compared to the control group in all conditions. The mean parameters of the female experimental group were significant when compared to the control group in all conditions. Patients with central vestibular dysfunction obtained higher values than patients with peripheral vestibular dysfunction in the variables elliptical area and speed of oscillation, however with lower value of the area of the stability limit. CONCLUSION: Posturography with virtual reality stimuli was an effective assessment method for detecting alterations related to the variables stability limits, elliptical area, and speed of oscillation, since the control group performed better, both between groups and between genders. Among the vestibular dysfunctions, individuals with peripheral condition performed better than those with central vestibular dysfunction in all the variables analyzed on posturography.

  11. Does Sensory Function Decline Independently or Concomitantly with Age? Data from the Baltimore Longitudinal Study of Aging

    Science.gov (United States)

    Gadkaree, Shekhar K.; Sun, Daniel Q.; Li, Carol; Lin, Frank R.; Ferrucci, Luigi; Simonsick, Eleanor M.

    2016-01-01

    Objectives. To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods. Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results. A total of 276 participants (mean age 70 years, range 26–93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70–79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion. Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70–79). PMID:27774319

  12. The sensory component of the facial nerve of a reptile (Lacerta viridis).

    Science.gov (United States)

    Jacobs, V L

    1979-04-01

    The sensory fibers of the facial nerve in Lacerta viridis have been studied with a silver impregnation method to follow the course of axonal degeneration. Destruction of the geniculate ganglion demonstrated the degenerated sensory component of the facial nerve adjacent to the anterior vestibular root. Within the lateral vestibular area the facial sensory fibers consist of numerous rootlets separated by vestibular fibers and cells. These rootlets may join to form a main or paired sensory tract that passes through the vestibular nuclei to enter the tractus solitarius and divide into a small ascending prefacial component and a major descending prevagal division. A few fibers continue into the postvagal part of tractus solitarius and extend caudally to terminate in the nucleus commissura infima. Prefacial fibers terminate along the periventricular gray while prevagal fibers terminate within the tractus solitarius on the dendrites of cells of nucleus tractus solitarius and near the periphery of the dorsal motor nucleus of X. There was no noticeable degeneration in the descendens tractus trigemini. Terminal degeneration to descendens nucleus trigemini and motor nucleus of VII followed the tractus solitarius course. Most facial sensory fibers are probably related to taste and other visceral information.

  13. Vestibular Function and Activities of Daily Living

    Directory of Open Access Journals (Sweden)

    Aisha Harun MD

    2015-09-01

    Full Text Available Objective: Vestibular dysfunction increases with age and is associated with mobility difficulties and fall risk in older individuals. We evaluated whether vestibular function influences the ability to perform activities of daily living (ADLs. Method: We analyzed the 1999 to 2004 National Health and Nutrition Examination Survey of adults aged older than 40 years ( N = 5,017. Vestibular function was assessed with the Modified Romberg test. We evaluated the association between vestibular function and difficulty level in performing specific basic and instrumental ADLs, and total number of ADL impairments. Results: Vestibular dysfunction was associated with significantly higher odds of difficulty with nine ADLs, most strongly with difficulty managing finances (odds ratio [ OR ] = 2.64, 95% confidence interval [CI] = [1.18, 5.90]. In addition, vestibular dysfunction was associated with a significantly greater number of ADL impairments (β = .21, 95% CI = [0.09, 0.33]. This effect size was comparable with the influence of heavy smoking (β = .21, 95% CI = [0.06, 0.36] and hypertension (β = .10, 95% CI = [0.02, 0.18] on the number of ADL impairments. Conclusion: Vestibular dysfunction significantly influences ADL difficulty, most strongly with a cognitive rather than mobility-based task. These findings underscore the importance of vestibular inputs for both cognitive and physical daily activities.

  14. Motor development after vestibular deprivation in rats

    NARCIS (Netherlands)

    Geisler, HC; Gramsbergen, A

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control,

  15. Visual-Vestibular Conflict Detection Depends on Fixation.

    Science.gov (United States)

    Garzorz, Isabelle T; MacNeilage, Paul R

    2017-09-25

    Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kinesthetic and Vestibular Information Modulate Alpha Activity during Spatial Navigation: A Mobile EEG Study

    Directory of Open Access Journals (Sweden)

    Benedikt Valerian Ehinger

    2014-02-01

    Full Text Available In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG. Participants traversed one leg of a triangle, turned on the spot, continued along the second leg and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information or not at all within a 2x2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing, and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas, we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  17. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study.

    Science.gov (United States)

    Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  18. [Vestibular rehabilitation in elderly patients with dizziness].

    Science.gov (United States)

    Zanardini, Francisco Halilla; Zeigelboim, Bianca Simone; Jurkiewicz, Ari Leon; Marques, Jair Mendes; Martins-Bassetto, Jackeline

    2007-01-01

    The aging of the population is a natural process and is manifested by a decline in the functions of several organs. Vestibular rehabilitation (VR) is a therapeutic process that seeks to promote a significant reduction in the symptoms of the labyrinth. To verify the benefits of VR exercises through the application of the Dizziness Handicap Inventory (DHI) questionnaire--Brazilian version--pre and post rehabilitation. Participants of this study were eight elderly patients with dizziness, ages between 63 and 82 years, three male and five female. The following procedures were carried out: medical history, otologic inspection, vestibular evaluation with vectoelectronystagmography (VENG), application of the DHI questionnaire and of the Cawthorne (1944) and Cooksey (1946) VR exercises. Regarding the auditory and vestibular complaints which were referred to in the medical history, the following was observed: presence of tinnitus, hearing loss, postural vertigo and of unbalance. In the evaluation of the vestibular function alterations were observed for all of the participants, mainly in the caloric test, with a prevalence of unilateral and bilateral hypofunction. In the vestibular exam the following was observed: three cases of unilateral peripheral vestibular deficit syndrome, three cases of bilateral peripheral vestibular deficit syndrome, one case of bilateral central vestibular deficit syndrome and one case of irritating bilateral central vestibular syndrome. There was a statistically significant improvement of the following aspects after VR: physical (p=0.00413), functional (p=0.00006) and emotional (p=0.03268). The VR protocol favored the improvement of life quality of the participants and was of assistance in the process of vestibular compensation.

  19. Galvanic vestibular stimulation improves the results of vestibular rehabilitation.

    Science.gov (United States)

    Carmona, Sergio; Ferrero, Antonela; Pianetti, Guillermina; Escolá, Natalia; Arteaga, María Victoria; Frankel, Lilian

    2011-09-01

    Here, we present findings from a three-step investigation of the effect of galvanic vestibular stimulation (GVS) in normal subjects and in subjects undergoing vestibular rehabilitation (VR). In an initial study, we examined the body sway of 10 normal subjects after one minute of 2 mA GVS. The effect of the stimulation lasted for at least 20 minutes in all subjects and up to two hours in 70% of the subjects. We then compared a group of patients who received conventional VR (40 patients) with a group that received a combination of VR and GVS. Results suggest a significant improvement in the second group. Finally, we attempted to establish the optimal number of GVS sessions and to rule out a placebo effect. Fifteen patients received "systematic" GVS: five sessions, once a week. Five patients received "nonsystematic" galvanic stimulation in a sham protocol, which included two stimulations of the clavicle. These data were analyzed with Fisher's exact test and indicated that the best results were obtained after three sessions of GVS and no placebo effect was observed. © 2011 New York Academy of Sciences.

  20. Comparative biology of rAAV transduction in ferret, pig and human airway epithelia.

    Science.gov (United States)

    Liu, X; Luo, M; Guo, C; Yan, Z; Wang, Y; Engelhardt, J F

    2007-11-01

    Differences between rodent and human airway cell biology have made it difficult to translate recombinant adeno-associated virus (rAAV)-mediated gene therapies to the lung for cystic fibrosis (CF). As new ferret and pig models for CF become available, knowledge about host cell/vector interactions in these species will become increasingly important for testing potential gene therapies. To this end, we have compared the transduction biology of three rAAV serotypes (AAV1, 2 and 5) in human, ferret, pig and mouse-polarized airway epithelia. Our results indicate that apical transduction of ferret and pig airway epithelia with these rAAV serotypes closely mirrors that observed in human epithelia (rAAV1>rAAV2 congruent withrAAV5), while transduction of mouse epithelia was significantly different (rAAV1>rAAV5>rAAV2). Similarly, ferret, pig and human epithelia also shared serotype-specific differences in the polarity (apical vs basolateral) and proteasome dependence of rAAV transduction. Despite these parallels, N-linked sialic acid receptors were required for rAAV1 and rAAV5 transduction of human and mouse airway epithelia, but not ferret or pig airway epithelia. Hence, although the airway tropisms of rAAV serotypes 1, 2 and 5 are conserved better among ferret, pig and human as compared to mouse, viral receptors/co-receptors appear to maintain considerable species diversity.

  1. Synchronised vestibular signals increase the P300 event-related potential elicited by auditory oddballs.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Wilkinson, David; Denby, Emma; Ferguson, Heather

    2016-10-01

    The perception of beat within an auditory rhythm can be facilitated when accompanied by synchronised movements. Electrophysiological investigation shows that this facilitatory effect is associated with a larger P300 amplitude. It has remained unclear, however, which movement-related processes drive this P300 effect. To investigate whether vestibular signals play a role, we administered alternating, sub-sensory (mean=.3mA) galvanic current to the vestibular nerves of participants while they counted the number of oddballs presented in a stream of tones played at a rate of 1Hz. Consistent with a vestibular effect, the P300 elicited by the oddballs was increased during stimulation relative to a sham condition, but only when the frequency of the alternating current matched that at which the tones were played. This finding supports the general idea that the vestibular system is involved in audio-motor synchronisation and is the first to show by electrophysiological means that it influences cognitive processes involved in beat perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preoperative balance control compensation in patients with a vestibular schwannoma: does tumor size matter?

    Science.gov (United States)

    Ribeyre, Laurence; Frère, Julien; Gauchard, Gérome; Lion, Alexis; Perrin, Philippe; Spitz, Elisabeth; Parietti-Winkler, Cécile

    2015-04-01

    The influence of tumor size on postural control of patients with vestibular schwannoma (VS) remains to be determined. This study aimed to compare the postural performances of VS patients, according to the size of the tumor, with healthy subjects. The six conditions (C1-C6) of the sensory organization test (SOT) were carried out in 87 patients, split into four groups according to the Koos classification (stage I-IV), and in 72 aged-matched controls to evaluate postural control. The vestibular reflectivity and compensation were estimated with videonystagmography. Among patients, lower C5 and C6 scores were found in stage I and IV patients than in stage II and III patients, whereas vestibular compensation did not impact the tumor size influence on the postural control. The scores were significantly (pbalance control. The tumor size could be seen as a determining factor in the implementation of adaptive mechanisms that lead to the postural compensation and might be dissociated from vestibular compensation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Genetic disorders of the vestibular system.

    Science.gov (United States)

    Eppsteiner, Robert W; Smith, Richard J H

    2011-10-01

    This review highlights the current body of literature related to the genetics of inherited vestibular disorders and provides a framework for the characterization of these disorders. We emphasize peripheral causes of vestibular dysfunction and highlight recent advances in the field, point out gaps in understanding, and focus on key areas for future investigation. The discovery of a modifier gene that leads to a more severe Usher syndrome phenotype calls into question the assumption that Usher syndrome is universally a monogenic disorder. Despite the use of several investigational approaches, the genetic basis of Menière's disease remains poorly understood. Evidence for a vestibular phenotype associated with DFNB1 suggests that mutations in other genes causally related to nonsyndromic hearing loss also may have an unrecognized vestibular phenotype. Our understanding of the genetic basis for vestibular disorders is superficial. Significant challenges include defining the genetics of inherited isolated vestibular dysfunction and understanding the pathological basis of Menière's disease. However, improved characterization of inherited vestibular dysfunction, coupled with advanced genetic techniques such as targeted genome capture and massively parallel sequencing, provides an opportunity to investigate these diseases at the genetic level.

  4. Embryological development and large vestibular aqueduct syndrome.

    Science.gov (United States)

    Pyle, G M

    2000-11-01

    Large vestibular aqueduct syndrome (LVAS) is a significant cause of hearing loss in early childhood. Many theories on the origins and causes of LVAS have been proposed, including arrest or maldevelopment of the vestibular labyrinth in embryonic life. Prior studies have described postnatal and adult vestibular aqueduct anatomy, but none has analyzed aqueduct growth throughout embryonic life. This study was undertaken to characterize the growth of the developing vestibular aqueduct to gain a better understanding of the possible origins of LVAS. Basic science, temporal bone histopathological study. Serial sections from 48 temporal bones from human embryos ranging in age from 5 weeks' gestation to full term were studied with computer image analysis. Measurements of vestibular aqueduct internal and external aperture, midportion diameter, and length were analyzed to obtain a growth model of development. The vestibular aqueduct grows in a nonlinear fashion throughout embryonic life. All parameters fit a similar growth curve and never reached a maximum or began narrowing during development. Growth in one parameter correlated well with growth of another. There was good side-to-side correlation with all but the external aperture. Most of the membranous labyrinth reaches adult size by 20 weeks' gestation, but the vestibular aqueduct grows throughout embryonic life. The measurements and growth model obtained in this study are not consistent with the theory that LVAS results from an arrest in development early in fetal life. The data suggest that LVAS may result from postnatal and early childhood maldevelopment.

  5. Neuropharmacological basis of vestibular system disorder treatment.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario; Seseña, Emmanuel

    2013-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Clinicians are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and of drug action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulators dynamics and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. The critical analysis of the literature reveals that there is a significant lack of information defining the real utility of diverse drugs used in clinical practice. The development of basic studies addressing drug actions at the molecular, cellular and systems level, combined with reliable and well controlled clinical trials, would provide the scientific basis for new strategies for the treatment of vestibular disorders.

  6. THE EFFECT OF THE C-LEG KNEE PROSTHESIS ON SENSORY DEPENDENCY AND FALLS DURING SENSORY ORGANIZATION TESTING

    OpenAIRE

    Highsmith, M. Jason; Kahle, Jason T.; Shepard, Neil T.; Kaufman, Kenton R.

    2014-01-01

    A mechanistic explanation for previously observed safety improvements with microprocessor-controlled prosthetic knees is needed. A repeated measures design of 15 subjects with unilateral transfemoral amputation was used to assess changes between baseline use of their standard of care, mechanical pros-theses, and a C-Leg microprocessor-controlled prosthetic knee. The primary outcome measures were sensory dependency scores for somatosensory, visual, vestibular, and visual preference, which were...

  7. Idiopathic spasmodic torticollis is not associated with abnormal kinesthetic perception from neck proprioceptive and vestibular afferences.

    Science.gov (United States)

    Anastasopoulos, Dimitri; Nasios, Gregor; Mergner, Thomas; Maurer, Christoph

    2003-05-01

    Proceeding from recent evidence for a sensory involvement in the pathophysiology of idiopathic spasmodic torticollis (ST), we asked whether the abnormal head posture of these patients is associated with distortions of their internal spatial reference frames due to abnormal processing of neck proprioceptive and/or vestibular input. Twelve ST patients were instructed to estimate, by adjusting a light pointer in the dark, their head and trunk mid-sagittal directions (as representatives of ego-centric references) and to reproduce a remembered target location in space (space centric reference). They did so before and after horizontal head and trunk rotations, which evoked isolated or combined vestibular and/or neck stimulation. In ST patients, unlike in normal controls, pre-stimulus estimates of the head and trunk mid-sagittal directions (baselines) showed a pronounced across-subjects variability, with essentially normal mean values. Their post-stimulus estimates in all tasks, after correction for the individual baseline errors, were normal with respect to both amplitude and variability, independent of stimulus direction, modality and rotation dynamics. Our findings suggest that ST patients have a rather inaccurate knowledge of their head posture, but can effectively use neck proprioceptive input and vestibular cues when estimating head and trunk displacements in ego-centric and space centric spatial orientation tasks. We propose that an offset of a non-sensory set point signal in the neck proprioceptive loop for head-on-trunk control may be responsible for the pathological head deviation in ST.

  8. How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.

    Science.gov (United States)

    Angelaki, Dora E; Yakusheva, Tatyana A

    2009-05-01

    The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibular nuclei, rostral fastigial nuclei, cerebellar nodulus/uvula, and thalamus respond during combinations of tilt and translation. We focus primarily on cerebellar cortex responses, as nodulus/uvula Purkinje cells reliably encode translation rather than net gravito-inertial acceleration. In contrast, neurons in the vestibular and rostral fastigial nuclei, as well as the ventral lateral and ventral posterior nuclei of the thalamus represent a continuum, with some encoding translation and some net gravito-inertial acceleration. This review also outlines how Purkinje cells use semicircular canal signals to solve the ambiguity problem and how this solution fails at low frequencies. We conclude by attempting to bridge the gap between the proposed roles of nodulus/uvula in tilt/translation discrimination and velocity storage.

  9. Posture, head stability, and orientation recovery during vestibular regeneration in pigeons.

    Science.gov (United States)

    Dickman, J David; Lim, Insook

    2004-09-01

    Compensatory behavior such as oculomotor, gaze, and postural responses that occur during movement largely depend upon a functioning vestibular system. In the present study, the initial loss and subsequent recovery of postural and head stability in pigeons undergoing vestibular regeneration were examined. Adult pigeons were trained to manipulate a straight run chamber to peck an illuminated key for fluid reward. Six behavioral measures assessing performance, posture, and head stability were quantified. These included run latency, steps (walking), path negotiation (lane changes), gaze saccades, head bobs, and head shakes. Once normative values were obtained for four birds, complete lesion of all receptor cells and denervation of the epithelia in the vestibular endorgans were produced using a single intralabyrinthine application of streptomycin sulfate. Each bird was then tested at specific times during regeneration and the same behavioral measures examined. At 7 days post-streptomycin treatment (PST), all birds exhibited severe postural and head instability, with tremors, head shakes, staggering, and circling predominating. No normal trial runs, walking, gaze saccades, or head bobs were present. Many of these dysfunctions persisted through 3-4 weeks PST. Gradually, tremor and head shakes diminished and were replaced with an increasing number of normal head bobs during steps and gaze saccades. Beginning at 4 weeks PST, but largely inaccurate, was the observed initiation of directed steps, less staggering, and some successful path negotiation. As regeneration progressed, spatial orientation and navigation ability increased and, by 49 days PST, most trials were successful. By 70 days PST, all birds had recovered to pretreatment levels. Thus, it was observed that ataxia must subside, coincident with normalized head and postural stability prior to the recovery of spatial orientation and path navigation recovery. Parallels in recovery were drawn to hair cell regeneration

  10. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    OpenAIRE

    Arash Bayat; Nader Saki

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. T...

  11. Potencial evocado miogênico vestibular

    OpenAIRE

    Felipe,Lilian; Kingma, Herman; Gonçalves, Denise Utsch

    2012-01-01

    INTRODUÇÃO: O Potencial Evocado Miogênico Vestibular (VEMP) é um teste promissor para a avaliação do sistema vestíbulo-cólico descendente. Este reflexo depende da integridade da mácula sacular, do nervo vestibular inferior, dos núcleos vestibulares, das vias vestíbulo-espinhais e do músculo efetor. OBJETIVO: Realizar revisão sistemática de literatura pertinente por meio de bases de dados (COCHRANE, MEDLINE, LILACS, CAPES). CONCLUSÃO: A aplicação clínica do VEMP expandiu-se nos últimos anos, c...

  12. Vestibular rehabilitation in a university hospital

    OpenAIRE

    Flávia da Silva Tavares; Maria Francisca Colella dos Santos; Keila Alessandra Baraldi Knobel

    2008-01-01

    A Reabilitação Vestibular visa melhorar o equilíbrio global, a qualidade de vida e orientação espacial dos pacientes com tontura. OBJETIVOS: Traçar o perfil dos pacientes atendidos no Ambulatório de Reabilitação Vestibular do Setor de Otoneurologia de um hospital universitário e verificar os resultados obtidos no período de novembro/2000 a dezembro/2004. MATERIAL E MÉTODO: Levantamento de dados contidos nas fichas dos 93 pacientes submetidos à Reabilitação Vestibular no período. FORMA DE ESTU...

  13. Afferent diversity and the organization of central vestibular pathways.

    Science.gov (United States)

    Goldberg, J M

    2000-02-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron's discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could

  14. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    Science.gov (United States)

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  15. Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome With Vertigo.

    Science.gov (United States)

    Martin-Sanz, Eduardo; Rueda, Almudena; Esteban-Sanchez, Jonathan; Yanes, Joaquin; Rey-Martinez, Jorge; Sanz-Fernandez, Ricardo

    2017-08-01

    To evaluate vestibular restoration and the evolution of the compensatory saccades in acute severe inflammatory vestibular nerve paralysis, including vestibular neuritis and Ramsay Hunt syndrome with vertigo. Prospective. Tertiary referral center. Vestibular neuritis (n = 18) and Ramsay Hunt syndrome patients with vertigo (n = 13) were enrolled. After treatment with oral corticosteroids, patients were followed up for 6 months. Functional recovery of the facial nerve was scored according to the House-Brackman grading system. Caloric and video head impulse tests were performed in every patient at the time of enrolment. Subsequently, successive video head impulse test (vHIT) exploration was performed at the 1, 3, and 6-month follow-up. Eighteen patients with vestibular neuritis and 13 with Ramsay Hunt syndrome and associated vertigo were included. Vestibular function was significantly worse in patients with Ramsay Hunt syndrome than in those with vestibular neuritis. Similar compensatory saccades velocity and latency values were observed in both groups, in both the caloric and initial vHIT tests. Successive vHIT results showed a significantly higher vestibulo-ocular reflex gain recovery in vestibular neuritis patients than in Ramsay Hunt syndrome patients. A significantly faster reduction in the latency, velocity, and organization of the compensatory saccades was observed in neuritis than in Ramsay Hunt syndrome patients. In addition to the recovery of the vestibulo-ocular reflex, the reduction of latency, velocity and the organization of compensatory saccades play a role in vestibular compensation.

  16. Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing.

    Science.gov (United States)

    Antunes, Joana; Silva, Deborah S B S; Balamurugan, Kuppareddi; Duncan, George; Alho, Clarice S; McCord, Bruce

    2016-10-01

    The accurate identification of body fluids from crime scenes can aid in the discrimination between criminal and innocent intent. This research aimed to determine if the levels of DNA methylation in the locus PFN3A could be used to discriminate vaginal epithelia from other body fluids. In this work we bisulfite-modified and amplified DNA samples from blood, saliva, semen, and vaginal epithelia using primers for PFN3A. Through pyrosequencing we were able to show that vaginal epithelia present distinct methylation levels when compared to other body fluids. Mixtures of different body fluids present methylation values that correlate with single-source body fluid samples and the primers for PFN3A are specific for primates. This report successfully demonstrated that the analysis of methylation in the PFN3A locus can be used for vaginal epithelia discrimination in forensic samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proposed diagnostic criteria for cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS)

    Science.gov (United States)

    Roberts, Leslie; McLean, Catriona A.; MacDougall, Hamish G.; Halmagyi, G. Michael; Storey, Elsdon

    2016-01-01

    Abstract Purpose of review: Diagnosis of ataxic disorders is an important clinical challenge upon which prognostication, management, patient solace, and, above all, the hope of future treatment all rely. Heritable diseases and the possibility of affected offspring carry the added burden of portending adverse health, social and financial ramifications. Recent findings: Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited multisystem ataxia compromising cerebellar, vestibular, and sensory function. It is not uncommon, but despite early attempts the genetic defect is yet to be identified. As the search for the causative gene continues, we have found it useful to further define this syndrome in terms of its likely phenotype. Summary: We propose staged diagnostic criteria based on the identified pathology in CANVAS. We envisage that these criteria will aid the clinician in diagnosing CANVAS and the researcher in further elucidating this complex disorder. PMID:26918204

  18. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia.

    Science.gov (United States)

    Bragulla, Hermann H; Homberger, Dominique G

    2009-04-01

    Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different

  19. Molecular aging of the mammalian vestibular system.

    Science.gov (United States)

    Brosel, Sonja; Laub, Christoph; Averdam, Anne; Bender, Andreas; Elstner, Matthias

    2016-03-01

    Dizziness and imbalance frequently affect the elderly and contribute to falls and frailty. In many geriatric patients, clinical testing uncovers a dysfunction of the vestibular system, but no specific etiology can be identified. Neuropathological studies have demonstrated age-related degeneration of peripheral and central vestibular neurons, but the molecular mechanisms are poorly understood. In contrast, recent studies into age-related hearing loss strongly implicate mitochondrial dysfunction, oxidative stress and apoptotic cell death of cochlear hair cells. While some data suggest that analogous biological pathomechanisms may underlie vestibular dysfunction, actual proof is missing. In this review, we summarize the available data on the molecular causes of vestibular dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Idiopathic scoliosis and the vestibular system

    National Research Council Canada - National Science Library

    Hawasli, Ammar H; Hullar, Timothy E; Dorward, Ian G

    2015-01-01

    ... in the etiology of scoliosis. In this article, we discuss putative mechanisms for adolescent idiopathic scoliosis and review the current evidence supporting a role for the vestibular system in adolescent idiopathic...

  1. Cell topology, geometry, and morphogenesis in proliferating epithelia.

    Science.gov (United States)

    Gibson, William T; Gibson, Matthew C

    2009-01-01

    Epithelia are sheets of tightly adherent cells that line both internal and external surfaces in a vast array of metazoans. During development, an intrinsic consequence of coupling tight adhesion with cellular proliferation is the emergence of an epithelial form characterized by a stereotyped distribution of polygonal cell shapes. Despite the near universality of this constraint on cell shape and tissue organization, very little is known about the possible implications of cell pattern geometry for mechanical properties of tissues or key biological processes, such as planar polarization, tissue remodeling, and cell division. In this chapter, through an examination of increasingly complex models, we highlight what is known about the role of mitotic proliferation in the emergence of epithelial cell geometry, and examine some possible implications for tissue morphogenesis. Ideally, continued progress in this area will address a major conceptual challenge in biology, which is to understand aspects of morphogenesis that are not explicitly directed by genetic control, but instead emerge from the complex interactions between geometric and biomechanical properties of epithelial tissues.

  2. Hydrodynamic instabilities, waves and turbulence in spreading epithelia.

    Science.gov (United States)

    Blanch-Mercader, C; Casademunt, J

    2017-10-04

    We present a hydrodynamic model of spreading epithelial monolayers described as polar viscous fluids, with active contractility and traction on a substrate. The combination of both active forces generates an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity with characteristic time scales that depend on contact forces. Our viscous fluid model provides a comprehensive understanding of a variety of observations on the slow dynamics of epithelial monolayers, remarkably those that seemed to be characteristic of elastic media. The model also makes simple predictions to test the non-elastic nature of the mechanical waves, and provides new insights into collective cell dynamics, explaining plithotaxis as a result of strong flow-polarity coupling, and quantifying the non-locality of force transmission. In addition, we study the nonlinear regime of waves deriving an exact map of the model into the complex Ginzburg-Landau equation, which provides a complete classification of possible nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence, which in turn could explain the chaotic dynamics often observed in epithelia.

  3. Epigenetic Analysis of Laser Capture Microdissected Fetal Epithelia1

    Science.gov (United States)

    Seelan, Ratnam S.; Warner, Dennis R.; Mukhopadhyay, Partha M.; Andres, Sarah A.; Smolenkova, Irina A.; Wittliff, James L.; Pisano, M. Michele; Greene, Robert M.

    2013-01-01

    Laser capture microdissection (LCM) is a superior method for non-destructive collection of specific cell populations from tissue sections. While DNA, RNA and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous® Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus® PicoPure® RNA Isolation kit (Life Technologies). The approach was validated using real-time PCR to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of miRNA expression levels and CpG methylation. PMID:23911529

  4. Epigenetic analysis of laser capture microdissected fetal epithelia.

    Science.gov (United States)

    Seelan, Ratnam S; Warner, Dennis R; Mukhopadhyay, Partha M; Andres, Sarah A; Smolenkova, Irina A; Wittliff, James L; Michele Pisano, M; Greene, Robert M

    2013-11-01

    Laser capture microdissection (LCM) is a superior method for nondestructive collection of specific cell populations from tissue sections. Although DNA, RNA, and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA (gDNA) for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus PicoPure RNA Isolation kit (Life Technologies). The approach was validated using real-time polymerase chain reaction (PCR) to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of microRNA expression levels and CpG methylation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Keratin 8 expression in head and neck epithelia

    Directory of Open Access Journals (Sweden)

    Berghaus Alexander

    2008-09-01

    Full Text Available Abstract Background The intermediate filament forming protein keratin 8 (K8 is a tumour-associated antigen, which was shown to be over-expressed in a variety of malignancies. Here, we present a study of K8 expression in squamous epithelia of the head and neck area, including normal mucosa, hyperplastic and dysplastic leukoplakia, carcinomas of different sub-localisations, and lymph node metastases. Methods K8 expression was assessed upon immunohistochemistry with specific antibodies in cryosections of primary tumours of the head and neck area. Results K8 expression was characteristic of transformed tissue and marked early stages of disease, i.e. dysplastic oral leukoplakia, but not normal or hyperplastic epithelium. With the exception of carcinomas of the larynx and the tongue, K8 expression also strictly differentiated carcinomas from normal epithelium of the same origin. Furthermore, K8high was characteristic of cells, which had detached from the sites of primary tumours and had been invading the surrounding tissue at the time point of surgery. Conclusion K8 is an excellent marker for head and neck malignancies, which allows for early detection as well as for visualisation of potentially disseminating tumour cells in vivo.

  6. Visual-vestibular integration motion perception reporting

    Science.gov (United States)

    Harm, Deborah L.; Reschke, Millard R.; Parker, Donald E.

    1999-01-01

    Self-orientation and self/surround-motion perception derive from a multimodal sensory process that integrates information from the eyes, vestibular apparatus, proprioceptive and somatosensory receptors. Results from short and long duration spaceflight investigations indicate that: (1) perceptual and sensorimotor function was disrupted during the initial exposure to microgravity and gradually improved over hours to days (individuals adapt), (2) the presence and/or absence of information from different sensory modalities differentially affected the perception of orientation, self-motion and surround-motion, (3) perceptual and sensorimotor function was initially disrupted upon return to Earth-normal gravity and gradually recovered to preflight levels (individuals readapt), and (4) the longer the exposure to microgravity, the more complete the adaptation, the more profound the postflight disturbances, and the longer the recovery period to preflight levels. While much has been learned about perceptual and sensorimotor reactions and adaptation to microgravity, there is much remaining to be learned about the mechanisms underlying the adaptive changes, and about how intersensory interactions affect perceptual and sensorimotor function during voluntary movements. During space flight, SMS and perceptual disturbances have led to reductions in performance efficiency and sense of well-being. During entry and immediately after landing, such disturbances could have a serious impact on the ability of the commander to land the Orbiter and on the ability of all crew members to egress from the Orbiter, particularly in a non-nominal condition or following extended stays in microgravity. An understanding of spatial orientation and motion perception is essential for developing countermeasures for Space Motion Sickness (SMS) and perceptual disturbances during spaceflight and upon return to Earth. Countermeasures for optimal performance in flight and a successful return to Earth require

  7. Navigating sensory conflict in dynamic environments using adaptive state estimation.

    Science.gov (United States)

    Klein, Theresa J; Jeka, John; Kiemel, Tim; Lewis, M Anthony

    2011-12-01

    Most conventional robots rely on controlling the location of the center of pressure to maintain balance, relying mainly on foot pressure sensors for information. By contrast,humans rely on sensory data from multiple sources, including proprioceptive, visual, and vestibular sources. Several models have been developed to explain how humans reconcile information from disparate sources to form a stable sense of balance. These models may be useful for developing robots that are able to maintain dynamic balance more readily using multiple sensory sources. Since these information sources may conflict, reliance by the nervous system on any one channel can lead to ambiguity in the system state. In humans, experiments that create conflicts between different sensory channels by moving the visual field or the support surface indicate that sensory information is adaptively reweighted. Unreliable information is rapidly down-weighted,then gradually up-weighted when it becomes valid again.Human balance can also be studied by building robots that model features of human bodies and testing them under similar experimental conditions. We implement a sensory reweighting model based on an adaptive Kalman filter in abipedal robot, and subject it to sensory tests similar to those used on human subjects. Unlike other implementations of sensory reweighting in robots, our implementation includes vision, by using optic flow to calculate forward rotation using a camera (visual modality), as well as a three-axis gyro to represent the vestibular system (non-visual modality), and foot pressure sensors (proprioceptive modality). Our model estimates measurement noise in real time, which is then used to recompute the Kalman gain on each iteration, improving the ability of the robot to dynamically balance. We observe that we can duplicate many important features of postural sw ay in humans, including automatic sensory reweighting,effects, constant phase with respect to amplitude, and a temporal

  8. Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit.

    Directory of Open Access Journals (Sweden)

    John eAllum

    2012-05-01

    Full Text Available This review describes the effect of unilateral peripheral vestibular deficit (UPVD on balance control as observed in stance and gait tests. Normally, a UPVD is defined based on vestibular ocular reflex (VOR function. Therefore, we compare recovery observed in balance control over time with similar patterns of recovery or lack thereof in VOR function. Three types of UPVD are considered; acute vestibular neuritis, vestibular loss prior to and after cerebellar pontine angle tumor (CPAT surgery during which a vestibular neurectomy was performed, and vestibular loss following neurectomy to eliminate disabling Ménière’s disease.To measure balance control, body-worn gyroscopes, mounted near the body’s centre of mass, were used for stance and gait tests. Measurement variables were the pitch (anterior-posterior and roll (lateral sway angles and angular velocities of the lower trunk-pelvis. All three groups showed balance deficits during stance tasks on foam, especially with eyes closed when stable control is highly dependent on vestibular inputs. Deficits in balance control during gait were present but were more profound for complex gait tasks such as tandem gait. Differences emerged between the groups concerning the severity of the deficit and its recovery. Generally, the effects of acute neuritis were more severe but recovered rapidly, deficits due to vestibular neurectomy were less severe but longer lasting. These results paralleled deficits in VOR function and raise questions about two modes of neural plasticity occurring in the vestibular system following vestibular loss: one mode being the limited central compensation for the loss, and the second mode being some restoration of peripheral vestibular function. Future work will need to correlate deficits in balance control during stance and gait more exactly with VOR deficits and carefully consider the differences between insufficient central compensation compared to inadequate peripheral

  9. BASIC CONCEPTS IN UNDERSTANDING RECOVERY OF FUNCTION IN VESTIBULAR REFLEX NETWORKS DURING VESTIBULAR COMPENSATION

    Directory of Open Access Journals (Sweden)

    Kenna ePeusner

    2012-02-01

    Full Text Available Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural deficits with the symptoms at rest, the static symptoms, partially or completely normalizing shortly after the lesion due to a process known as vestibular compensation. The symptoms are thought to result from changes in the activity of vestibular sensorimotor reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investigations have focused on studying these neurons after lesions. At present, the neuronal plasticity underlying early recovery from the static symptoms is not fully understood. Here we propose that knowledge of the reflex identity and input-output connections of the recorded neurons is essential to link the responses to animal behavior. We further propose that the cellular mechanisms underlying vestibular compensation can be sorted out by characterizing the synaptic responses and time course for change in morphologically-defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses on the perspective gained by performing electrophysiological and immunolabeling studies on a specific subset of morphologically-defined, glutamatergic vestibular reflex projection neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent findings from other studies on vestibular nuclei neurons, but no comprehensive review of the literature is intended since broad reviews already exist. From recording excitatory and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed. This work is important for it defines for the first time the excitatory and inhibitory nature of the changing synaptic inputs and the time course for changes in a morphologically-defined subset of vestibular reflex projection neurons during early stages of vestibular compensation.

  10. RELATIONSHIPS AMONG COMMON VISION AND VESTIBULAR TESTS IN HEALTHY RECREATIONAL ATHLETES

    Science.gov (United States)

    Heick, John D.; Bay, Curt; Dompier, Thomas P.; Valovich McLeod, Tamara C.

    2017-01-01

    Background Disruption of the visual and vestibular systems is commonly observed following concussion. Researchers have explored the utility of screening tools to identify deficits in these systems in concussed patients, but it is unclear if these tests are measuring similar or distinct phenomena. Purpose To determine the relationships between common vestibular tests including the King-Devick (K-D) test, Sensory Organization Test (SOT), Head Shake-Sensory Organization Test (HS-SOT), and Dynamic Visual Acuity (DVA) test, when administered contiguously, to healthy recreational athletes aged 14 to 24 years. Study Design This study used a prospective design to evaluate relationships between the K-D, SOT, HS-SOT, and DVA tests in 60 healthy individuals. Methods Sixty participants (30 males, 30 females; mean age, 19.9 ± 3.74 years) completed the four tests in a single testing session. Results Results did not support a relationship between any pair of the K-D, SOT, HS-SOT, and DVA tests. Pearson correlations between tests were poor, ranging from 0.14 to 0.20. As expected the relationship between condition 2 of the SOT and HS-SOT fixed was strong (ICC=0.81) as well as condition 5 of the SOT with HS-SOT sway (ICC=0.78). The test-retest reliability of all 4 tests was evaluated to ensure the relationships of the 4 tests were consistent between test trials and reliability was excellent with intraclass correlations ranging from 0.79 to 0.97. Conclusions The lack of relationships in these tests is clinically important because it suggests that the tests evaluate different aspects of visual and vestibular function. Further, these results suggest that a comprehensive assessment of visual and vestibular deficits following concussion may require a multifaceted approach. Level of Evidence 2b: Individual Cohort Study. PMID:28900564

  11. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis

    Directory of Open Access Journals (Sweden)

    Mathieu eBeraneck

    2012-02-01

    Full Text Available The sensorimotor transformations performed by central vestibular neurons (2°VN constantly adapt as the animal faces conflicting sensory information or sustains injuries. In order to ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2°VN intrinsic properties. Here, we review evidence which demonstrates modulation and plasticity of 2°VN intrinsic properties. We first present partition of rodents 2°VN into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type and their putative roles in vestibular functions. The intrinsic properties of 2°VN can be swiftly modulated by a wealth of neuromodulators, to adapt rapidly, for example, to temporary changes of the ecophysiological surroundings. To illustrate how intrinsic excitability can rapidly be modified in physiological conditions and therefore be targeted in the clinic, we present the modulation of vestibular reflexes in relation to the neuromodulatory fluctuation of the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly yet deeply modified in response to major perturbations as is the case following a unilateral labyrinthectomy (UL. We revisit the experimental evidence which demonstrate that drastic alterations of the 2°VN intrinsic properties occur following UL, however with a slow dynamic, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of a distributed process which progress from the global, large scale coping mechanisms (e.g. changes in behavioural strategies to the local, small scale ones (e.g. changes in intrinsic properties. Within this framework, the compensation of dynamic deficits improves with time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we propose perspectives and working hypotheses to pave the way for future research aiming at

  12. Idiopathic scoliosis and the vestibular system.

    Science.gov (United States)

    Hawasli, Ammar H; Hullar, Timothy E; Dorward, Ian G

    2015-02-01

    Despite its high prevalence, the etiology underlying idiopathic scoliosis remains unclear. Although initial scrutiny has focused on genetic, biochemical, biomechanical, nutritional and congenital causes, there is growing evidence that aberrations in the vestibular system may play a role in the etiology of scoliosis. In this article, we discuss putative mechanisms for adolescent idiopathic scoliosis and review the current evidence supporting a role for the vestibular system in adolescent idiopathic scoliosis. A comprehensive search of the English literature was performed using PubMed ( http://www.ncbi.nlm.nih.gov/pubmed ). Research articles studying interactions between adolescent idiopathic scoliosis and the vestibular system were selected and evaluated for inclusion in a literature review. Eighteen manuscripts of level 3-4 clinical evidence to support an association between adolescent idiopathic scoliosis (AIS) and dysfunction of the vestibular system were identified. These studies include data from physiologic and morphologic studies in humans. Clinical data are supported by animal model studies to suggest a causative link between the vestibular system and AIS. Clinical data and a limited number of animal model studies suggest a causative role of the vestibular system in AIS, although this association has not been reproduced in all studies.

  13. Current treatment options in vestibular migraine

    Directory of Open Access Journals (Sweden)

    Mark eObermann

    2014-12-01

    Full Text Available Approximately 1% of the general population in western industrialized countries suffers from vestibular migraine. However, it remains widely unknown and often under diagnosed even despite the recently published diagnostic criteria for vestibular migraine. Treatment trials that specialize on vestibular migraine are scarce and systematic randomized controlled clinical trials are only now emerging.This review summarizes the knowledge on the currently available treatment options that were tested specifically for vestibular migraine and gives an evidence-based, informed treatment recommendation with all its limitations.To date only two randomized controlled treatment trials provide limited evidence for the use of rizatriptan and zolmitriptan for the treatment of vestibular migraine attacks because of methodological shortcommings. There is an on-going a multicenter randomized placebo-controlled trial testing metoprolol 95 mg vs. placebo (PROVEMIG-trial. Therefore, the therapeutic recommendations for the prophylactic treatment of vestibular migraine are currently widely based on the guidelines of migraine with and without aura as well as expert opinion.

  14. Nitric oxide in the rat vestibular system.

    Science.gov (United States)

    Harper, A; Blythe, W R; Zdanski, C J; Prazma, J; Pillsbury, H C

    1994-10-01

    Nitric oxide is known to function as a neurotransmitter in the central nervous system. It is also known to be involved in the central nervous system excitatory amino acid neurotransmission cascade. Activation of excitatory amino acid receptors causes an influx of calcium, which activates nitric oxide synthase. The resulting increase in intracellular nitric oxide activates soluble guanylate cyclase, leading to a rise in cyclic guanosine monophosphate. The excitatory amino acids glutamate and aspartate are found in the vestibular system and have been postulated to function as vestibular system neurotransmitters. Although nitric oxide has been investigated as a neurotransmitter in other tissues, no published studies have examined the role of nitric oxide in the vestibular system. Neuronal NADPH-diaphorase has been characterized as a nitric oxide synthase. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing nitric oxide during the reaction. We used a histochemical stain characterized by Hope et al. (Proc Natl Acad Sci 1991;88:2811) as specific for neuronal nitric oxide synthase to localize the enzyme in the rat vestibular system. An immunocytochemical stain was used to examine rat inner ear tissue for the presence of the enzyme's end product, L-citrulline, thereby demonstrating nitric oxide synthase activity. Staining of vestibular ganglion sections showed nitric oxide synthase presence and activity in ganglion cells and nerve fibers. These results indicate the presence of active nitric oxide synthase in these tissues and suggest modulation of vestibular neurotransmission by nitric oxide.

  15. Unilateral Vestibular Loss Impairs External Space Representation

    Science.gov (United States)

    Borel, Liliane; Redon-Zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Devèze, Arnaud; Magnan, Jacques; Péruch, Patrick

    2014-01-01

    The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation), and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss. PMID:24523916

  16. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  17. Vestibular schwannoma: negative growth and audiovestibular features.

    Science.gov (United States)

    Stipkovits, E M; Graamans, K; Van Dijk, J E

    2001-11-01

    At the University Medical Center Utrecht, non-operative management was used for 44 patients with a unilateral vestibular schwannoma between 1990 and 1997. During that period, consecutive tumor sizes were determined by magnetic resonance imaging. Three of the 44 patients showed an average decrease in tumor size of 16.7% according to American Academy of Otolaryngology-Head and Neck Surgery standards. This study describes the initial vestibular status and audiometric changes measured over up to 10 years in these three patients. Vestibular function was determined once, by means of the bithermal caloric test, the torsion test, the saccade test, the smooth pursuit test, and the registration of spontaneous nystagmus. The three patients had severe vestibular paresis on the affected side. Pure-tone and speech audiometry were performed at regular intervals. Although the size of their tumors decreased, their hearing gradually deteriorated, just as it does in the majority of patients with a growing or stable vestibular schwannoma. The observations presented here suggest that the development of symptoms in a vestibular schwannoma does not differentiate between patients with a stable, growing or shrinking tumor. The development of symptoms may be the result of the same pathogenetic mechanism.

  18. The vestibular contribution to the head direction signal and navigation.

    Science.gov (United States)

    Yoder, Ryan M; Taube, Jeffrey S

    2014-01-01

    Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction (HD) cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we review the role of the vestibular system in generating various spatial signals in rodents, focusing primarily on HD cells. We also examine the vestibular system's role in navigation and the possible pathways by which vestibular information is conveyed to higher navigation centers.

  19. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation

    Science.gov (United States)

    Balaban, Carey D.; Hoffer, Michael E.; Gottshall, Kim R.

    2012-01-01

    This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on ‘naturalistic’ recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation. PMID:22981400

  20. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.

  1. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  2. Damage to the vestibular inner ear causes long-term changes in neuronal nitric oxide synthase expression in the rat hippocampus.

    Science.gov (United States)

    Zheng, Y; Horii, A; Appleton, I; Darlington, C L; Smith, P F

    2001-01-01

    The vestibular inner ear detects head acceleration and initiates compensatory eye movement and postural reflexes that help keep the visual image of the world stable on the retina, and maintain balance, during unexpected head movement. The most primitive vestibular systems are estimated to have evolved more than 500 million years ago and in mammalian and submammalian species the vestibular reflexes are mediated by basic brainstem pathways (see Wilson and Melvill Jones, 1979 for review). Although the contributions of the vestibular system to higher cognitive function have generally received less attention than its reflexive roles, vestibular sensory information is transmitted to higher centres in the brain and humans with vestibular damage are known to experience debilitating perceptual illusions (see Curthoys and Halmagyi, 1995; Berthoz, 1996 for reviews). Increasing behavioural and neurophysiological evidence suggests that the hippocampus uses information from the vestibular inner ear in order to build up maps of space that can be used in the development of spatial memory during learning tasks (McNaughton et al., 1991; Chapuis et al., 1992; Wiener and Berthoz, 1993; O'Mara et al., 1994; Wiener et al., 1995; Gavrilov et al., 1995; Stackman and Taube, 1996; Vitte et al., 1996; Taube et al., 1996; Save et al., 1998; Peruch et al., 1999; Cuthbert et al., 2000; Russell et al., 2000). However, to date, there has been no indication of the long-term neurochemical effects of the loss of vestibular input on hippocampal function. Since nitric oxide has been implicated in the mechanisms of hippocampal synaptic plasticity associated with the development of short-term memory (e.g. Schuman and Madison, 1991; Schuman et al., 1994; Arancio et al., 1996; Wu et al., 1997; Lu et al., 1999), we examined whether changes occur in the activity and expression of the enzymes responsible for nitric oxide production (nitric oxide synthases) in subregions of the rat hippocampus at different

  3. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J; Cullen, Kathleen E

    2017-04-15

    In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure

  4. Children with attention deficit hyperactivity disorder have impaired balance function: involvement of somatosensory, visual, and vestibular systems.

    Science.gov (United States)

    Shum, Selina B M; Pang, Marco Y C

    2009-08-01

    To compare standing balance performance and sensory organization of balance control in children with attention deficit hyperactivity disorder (combined type) (ADHD-C) and typically developing children. School-aged children (n = 43) with ADHD-C and 50 age- and sex-matched typically developing children participated in the study. Sensory organization of standing balance was evaluated using the Sensory Organization Test (SOT). In addition to the composite equilibrium score, somatosensory, vestibular, and visual ratios, which were indicators of the ability of the child to use information from the respective sensory systems to maintain balance, were computed. Multivariate analysis of covariance (MANCOVA) was used to compare the outcome variables between the 2 groups while controlling for physical activity level. MANCOVA revealed that children with ADHD-C had significantly lower composite equilibrium scores (P visual ratios (P = .001) than control children, by 10.3%, 2.1%, 15.6%, and 16.0%, respectively. Children with ADHD-C had significant deficits in standing balance performance in all conditions that included a disruption of sensory signals. The visual system tends to be more involved in contributing to the balance deficits in children with ADHD-C than the somatosensory and vestibular systems.

  5. Click-evoked responses in vestibular afferents in rats

    National Research Council Canada - National Science Library

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Mustain, William; Xu, Youguo; Zhou, Wu

    2011-01-01

    Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles...

  6. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  7. The effect of bumetanide treatment on the sensory behaviours of a young girl with Asperger syndrome.

    Science.gov (United States)

    Grandgeorge, Marine; Lemonnier, Eric; Degrez, Céline; Jallot, Nelle

    2014-01-31

    Sensory behaviours were not considered as core features of autism spectrum disorders until recently. However, they constitute an important part of the observed symptoms that result in social maladjustment and are currently quite difficult to treat. One promising strategy for the treatment of these behaviours is the use of bumetanide, which was previously shown to reduce the severity of autism spectrum disorders. In this study, we proposed to evaluate sensory behaviours using Dunn's Sensory Profile after 18 months of bumetanide treatment in a 10-year-old girl with Asperger syndrome. Reported improvements covered a large range of sensory behaviours, including auditory, vestibular, tactile, multisensory and oral sensory processing. Although our results were limited to a single case report, we believe that our clinical observations warrant clinical trials to test the long-term efficacy of bumetanide to manage the sensory behaviours of people with autism spectrum disorders.

  8. From ear to uncertainty: Vestibular contributions to cognitive function.

    OpenAIRE

    Paul eSmith; Yiwen eZheng

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, espe...

  9. Auditory and Vestibular Issues Related to Human Spaceflight

    Science.gov (United States)

    Danielson, Richard W.; Wood, Scott J.

    2009-01-01

    Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.

  10. Interactive Healthcare Systems in the Home: Vestibular Rehabilitation

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Grönvall, Erik; Larsen, Simon Bo

    2010-01-01

    Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction.......Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction....

  11. Task, muscle and frequency dependent vestibular control of posture

    OpenAIRE

    Forbes, Patrick A.; Gunter P Siegmund; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...

  12. Longitudinal performance of an implantable vestibular prosthesis.

    Science.gov (United States)

    Phillips, Christopher; Ling, Leo; Oxford, Trey; Nowack, Amy; Nie, Kaibao; Rubinstein, Jay T; Phillips, James O

    2015-04-01

    Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Complications of Microsurgery of Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Jan Betka

    2014-01-01

    Full Text Available Background. The aim of this study was to analyze complications of vestibular schwannoma (VS microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225 removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI was observed in 124 cases (45% immediately after surgery and in 104 cases (33% on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%, headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery.

  14. Visual dependency and dizziness after vestibular neuritis.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Symptomatic recovery after acute vestibular neuritis (VN is variable, with around 50% of patients reporting long term vestibular symptoms; hence, it is essential to identify factors related to poor clinical outcome. Here we investigated whether excessive reliance on visual input for spatial orientation (visual dependence was associated with long term vestibular symptoms following acute VN. Twenty-eight patients with VN and 25 normal control subjects were included. Patients were enrolled at least 6 months after acute illness. Recovery status was not a criterion for study entry, allowing recruitment of patients with a full range of persistent symptoms. We measured visual dependence with a laptop-based Rod-and-Disk Test and severity of symptoms with the Dizziness Handicap Inventory (DHI. The third of patients showing the worst clinical outcomes (mean DHI score 36-80 had significantly greater visual dependence than normal subjects (6.35° error vs. 3.39° respectively, p = 0.03. Asymptomatic patients and those with minor residual symptoms did not differ from controls. Visual dependence was associated with high levels of persistent vestibular symptoms after acute VN. Over-reliance on visual information for spatial orientation is one characteristic of poorly recovered vestibular neuritis patients. The finding may be clinically useful given that visual dependence may be modified through rehabilitation desensitization techniques.

  15. A review of the interrelationship between vestibular dysfunction ...

    African Journals Online (AJOL)

    problems and dyslexia were also associated with dysfunction of the vestibular system. Different tests evaluating vestibular loss were identified of which some can be used successfully by practitionars. Various programmes and activities were identified to successfully rehabilitate vestibular function. For better understanding ...

  16. Origin of vestibular dysfunction in Usher syndrome type 1B.

    NARCIS (Netherlands)

    Sun, J.; Alphen, A.M. van; Wagenaar, M.; Huygen, P.L.M.; Hoogenraad, C.C.; Hasson, T.; Koekkoek, S.K.; Bohne, B.A.; Zeeuw, C.I. de

    2001-01-01

    It is still debated to what extent the vestibular deficits in Usher patients are due to either central vestibulocerebellar or peripheral vestibular problems. Here, we determined the origin of the vestibular symptoms in Usher 1B patients by subjecting them to compensatory eye movement tests and by

  17. [The research progress of large vestibular aqueduct syndrome].

    Science.gov (United States)

    Abulikemu, Yiming; Tang, Liang; Zhang, Jin

    2012-11-01

    Large vestibular aqueduct syndrome (LVAS) is one of common non-syndromic hearing disorders. With the rapid development of medical imaging, audiology, molecular biology, genetics, cochlear implant surgery, we have made remarkable achievements in the diagnosis and treatment of large vestibular aqueduct syndrome. This article reviewed related researches of the large vestibular aqueduct syndrome.

  18. Vestibular Schwannoma or acoustic neuroma

    Directory of Open Access Journals (Sweden)

    Hekmatara M

    1997-04-01

    Full Text Available Vestibular schwannoma is the most common tumor of the posterior fossa of the skull. Patients referred with the primary otologic symptoms such as hearing loss, tinnitus, vertigo, imbalance, and the cranial nerve palsy. Thirty-three patients were operated and treated by a team of otolaryngologist and neurosurgeon, anudiometrist, and internist. Patients'chiefcomplaint was due to 94% hearing loss and 27% tinnitus. They scarcely complain of vertigo. If a patient refers with the palsy or paralysis of facial nerve preoperation, we must think of the facial nerve schwannoma or hemangioma or congential cholestoma or malignant metastases rather than acoustic neuroma. The best way for preoperative diagnosis is audiometry, ABR (Auditory Brain Response, and SDS (speech discrimination score with 90% success, but computer Tomography (CT scan and MRI (Magnetic Resonance Image are the valuable anatomic diagnostic radiographic devices. The best method of operation is translabirynthine approach (TLA, since it has the advantages such as an easy access to nerve paths and being the nearest path to CPA (Cerebellopontine Angle. Physicians ought to talk to patients about the importance of the microscopic surgery, surgical methods, and their probable diverse effects such as hearing loss, facial nerve palsy, and intracranial problems.

  19. Motor learning reduces eye movement variability through reweighting of sensory inputs

    Science.gov (United States)

    Guo, Cong C.; Raymond, Jennifer L.

    2010-01-01

    Motor learning can improve both the accuracy and precision of motor performance. We analyzed changes in the average trajectory and the variability of smooth eye movements during motor learning in rhesus monkeys. Training with a compound visual-vestibular stimulus could reduce the variability of the eye movement responses without altering the average responses. This improvement of eye movement precision was achieved by shifting the reliance of the movements from a more variable, visual signaling pathway to a less variable, vestibular signaling pathway. Thus, cerebellum-dependent motor learning can improve the precision of movements by reweighting sensory inputs with different variability. PMID:21123570

  20. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  1. THE EFFECT OF THE C-LEG KNEE PROSTHESIS ON SENSORY DEPENDENCY AND FALLS DURING SENSORY ORGANIZATION TESTING.

    Science.gov (United States)

    Highsmith, M Jason; Kahle, Jason T; Shepard, Neil T; Kaufman, Kenton R

    2014-01-27

    A mechanistic explanation for previously observed safety improvements with microprocessor-controlled prosthetic knees is needed. A repeated measures design of 15 subjects with unilateral transfemoral amputation was used to assess changes between baseline use of their standard of care, mechanical pros-theses, and a C-Leg microprocessor-controlled prosthetic knee. The primary outcome measures were sensory dependency scores for somatosensory, visual, vestibular, and visual preference, which were calculated based on a Sensory Organization Test. Falls during posturographic assessment were also recorded. Somatosensory system dependency significantly increased ( p = 0.047) while using the C-Leg compared to a nonmicroprocessor prosthetic knee (NMPK). Reliance on visual with vestibular input and reliance on vestibular input alone were not significantly increased with C-Leg use ( p = 0.41 and p = 0.15, respectively). When utilizing the C-Leg, there was a significant reduction in the average number of falls ( p = 0.03). Hence, increased reliance on somatosensory input is a possible explanation for improved balance with use of a microprocessor prosthetic knee (MPK).

  2. Lateral medullary syndrome following injury of the vestibular pathway to the core vestibular cortex: Diffusion tensor imaging study.

    Science.gov (United States)

    Yeo, Sang Seok; Jang, Sung Ho; Kwon, Jung Won

    2017-12-05

    The parieto-insular vestibular cortex (PIVC) is a core region of vestibular input into regions of the cortex. The vestibular nuclei have reciprocal connections with the PIVC. However, little is known about injury of the core vestibular pathway to the PIVC in patients with dorsolateral medullary infarctions. In this study, using diffusion tensor tractography (DTT), we investigated injury of the neural connections between the vestibular nuclei and the PIVC in patients with typical central vestibular disorder. Eight consecutive patients with lateral medullary syndrome and 10 control subjects were recruited for this study. To reconstruct the core vestibular pathway to the PIVC, we defined the seed region of interest (ROI) as the vestibular nuclei of the pons and the target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The core vestibular pathway to the PIVC showed significantly lower tract volume in patients compared with the control group (p0.05). In conclusion, injury of the core vestibular pathway to the PIVC was demonstrated in patients with lateral vestibular syndrome following dorsolateral medullary infarcts. We believe that analysis of the core vestibular pathway to the PIVC using DTT would be helpful in evaluating patients with lateral medullary syndrome. Copyright © 2017. Published by Elsevier B.V.

  3. Vestibular rehabilitation: useful but not universally so.

    Science.gov (United States)

    Krebs, David E; Gill-Body, Kathleen M; Parker, Stephen W; Ramirez, Jose V; Wernick-Robinson, Mara

    2003-02-01

    Although vestibular rehabilitation (VR) is gaining popularity, few data support its utility in improving locomotor stability, and no good predictors exist of whom will benefit most. A double-blind, placebo-controlled randomized trial of vestibular rehabilitation was conducted at a large tertiary care hospital on 124 patients (59 +/- 18 years old) with unilateral (n = 51) or bilateral (n = 73) vestibular hypofunction, of whom 86 completed a 12-week intervention. Of these 86, 27 returned for long-term (1-year) follow-up testing. The primary outcome measure was locomotor stability. Group A (6 weeks of VR) significantly (P VR; there were no group differences at 1 year. Of the 86 who completed the intervention, 52 (61%) had clear locomotor gains. VR is helpful for most patients in providing locomotor stability, but further work is needed to determine the factors that prevent VR from being effective for all patients with vestibulopathy.

  4. Eye Movements as Indicators of Vestibular Dysfunction.

    Science.gov (United States)

    Menshikova, Galina Ya; Kovalev, Artem I; Klimova, Oxana A; Chernorizov, Alexander M

    2015-01-01

    Virtual reality technologies are in wide use in sport psychology. An advantage of this kind of technology is the possibility to assess sportspeople's readiness to perform complex movements. This study is aimed at developing a method for the evaluation of vestibular function disturbances in young skaters. Such disturbances may occur while skaters are performing rotation movements. To achieve this goal, we induced a vection illusion, accompanied by virtual environment rotation in a CAVE virtual reality system. Vestibular disturbances were tested for two groups-professional skaters and people who had very little or no skating experience. The quantitative evaluation of vestibular dysfunction was based on eye movement characteristics, which were recorded in subjects experiencing a vection illusion. © The Author(s) 2015.

  5. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Directory of Open Access Journals (Sweden)

    Nadine Hummel

    Full Text Available Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction. Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  6. Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media.

    Science.gov (United States)

    da Costa Monsanto, Rafael; Erdil, Mehmet; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin

    2016-09-01

    To evaluate the histopathologic changes of dark, transitional, and hair cells of the vestibular system in human temporal bones from patients with chronic otitis media. Comparative human temporal bone study. Otopathology laboratory. To compare the density of vestibular dark, transitional, and hair cells in temporal bones with and without chronic otitis media, we used differential interference contrast microscopy. In the chronic otitis media group (as compared with the age-matched control group), the density of type I and type II hair cells was significantly decreased in the lateral semicircular canal, saccule, and utricle (P otitis media group in the posterior semicircular canal (P = .005), but that of type II cells was not (P = .168). The mean number of dark cells was significantly decreased in the chronic otitis media group in the lateral semicircular canal (P = .014) and in the posterior semicircular canal (P = .002). We observed no statistically significant difference in the density of transitional cells between the 2 groups (P > .1). The findings of our study suggest that the decrease in the number of vestibular sensory cells and dark cells could be the cause of the clinical symptoms of imbalance of some patients with chronic otitis media. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  7. Central projections of vestibular afferents from the horizontal semicircular canal in the carpet shark Cephaloscyllium isabella.

    Science.gov (United States)

    Housley, G D; Montgomery, J C

    1983-12-01

    This study utilizes anterograde axonal transport of cobaltous-lysine and conventional silver-staining techniques to study the central projections of the horizontal semicircular canal branch of the VIII nerve within the vestibular nuclei of the carpet shark Cephaloscyllium isabella. Two major terminating axon fields were observed, one caudal and one rostral to the entrance of the VIII nerve, corresponding to the ventral vestibular nucleus and superior vestibular nucleus, respectively. Both fields appear to be located within the ventral portion of the nuclei indicating an apparent subdivision of the VIII nerve projections within the brainstem. The resolution of the sensitive cobalt tracer indicates the presence of both dendritic and pericellular termination of these primary afferent fibres. In the area immediately caudal to the entrance of the VIII nerve a number of labelled primary afferent fibres project to the ventral region of the intermediate nucleus. Other fibres follow the visceral sensory root VII and terminate proximal to the sulcus limitans of His within the dendritic field of the neurons of the nucleus magnocellularis. Some fibres turn ventromedially from the main group of the ascending fibres and terminate in the area of the inferior reticular formation.

  8. Correlations between postural control and psychological factors in vestibular schwannoma patients.

    Science.gov (United States)

    Ribeyre, Laurence; Spitz, Elisabeth; Frère, Julien; Gauchard, Gerome; Parietti-Winkler, Cécile

    2016-11-03

    Various individual factors have been described to influence postural performances related to vestibular schwannoma. However, psychological factors may also be involved in postural variations. To identify relationships between postural performances, illness perceptions, coping, anxiety-depression and quality of life of patients with vestibular schwannoma. Twenty-six patients who were scheduled for a surgical removal of a vestibular schwannoma underwent posturography tests and were asked to complete psychological questionnaires three days prior to surgery.The Sensory Organization Test, the Illness Perceptions Questionnaire-Revised, the Brief-COPE, the Hospital Anxiety Depression Scale and the World Health Organization Quality of Life instrument were used for assessments. Correlations between posturography and psychological questionnaires were calculated. Balance disorders were associated with (i) impaired quality of life of patients, (ii) anxiety and depression affects, (iii) greater daily consequences, and with (iv) denial coping response. Given the association between balance disorders and psychological factors, health practitioners should be attentive to the deterioration of both aforementioned issues.

  9. The Effect of Otic Melanocyte Destruction on Auditory and Vestibular Function: a Study on Vitiligo Patients

    Directory of Open Access Journals (Sweden)

    Parvane Mahdi

    2016-03-01

    Full Text Available The hallmark of vitiligo is the disappearance of melanocytes from the skin. As a result, of melanocytes presence in the auditory and vestibular apparatus, the involvement of these systems in vitiligo which targets the melanocytes of the whole body is possible; suggesting that vitiligo is a systemic disease rather than a purely cutaneous problem. A total of 21 patients with vitiligo were enrolled in this study. A group of 20 healthy subjects served as a control group. Pure tone audiometry (PTA, auditory brainstem responses (ABR and vestibular evoked myogenic potentials (VEMP were carried out in all participants. High frequency sensory neural hearing loss was seen in 8 (38.09% patients. ABR analysis revealed 10 (47.61% had an abnormal increase in latency of wave III, and 6 (28.57% had an abnormal prolongation of IPL I-III, however, regarding our VEMP findings, there were no recorded responses on left ear of 1 (4.76% patient and latency of p13 was prolonged in 5(23.80% patients. There was no correlation between ages, duration of disease, and any of the recorded parameters (P>0.05. In the present survey, we highlighted the auditory and vestibular involvement in vitiligo patients.

  10. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Science.gov (United States)

    Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L

    2014-01-01

    Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  11. Vestibular rehabilitation following mild traumatic brain injury.

    Science.gov (United States)

    Gurley, James M; Hujsak, Bryan D; Kelly, Jennifer L

    2013-01-01

    Vertigo, dizziness, and imbalance are a symptom complex that is commonly found following concussion. Early metabolic changes following concussion may lead to worsening of the injury and symptoms in individuals not properly managed from the outset. When symptoms do not recover spontaneously, skilled vestibular rehabilitation can be an effective modality in an attempt to normalize the individual's vestibular responses. The purpose of this review is to appraise the current and accepted methods available to the skilled clinician in quantifying and treating vestibular dysfunction following concussion. Incidence and prognostic indicators will be reviewed along with common barriers to recovery. Vestibular Rehabilitation following concussion utilizes similar tools and techniques employed when treating those solely with peripheral pathology. The clinician must not only have a solid understanding of when and why certain exercises are required, but also be willing to accept that less exercise may be indicated in this population. As injury to the system following mild traumatic brain injury can include both peripheral and central structures, the duration of therapy and the time to recovery may be prolonged. Co-morbidities including cognitive and behavioral issues, visual-perceptual dysfunction, metabolic dysfunction, and autonomic dysfunction may hamper the effectiveness of the traditional Vestibular Rehabilitation approach. As successful treatment does not occur in a vacuum, working closely with other disciplines well versed in treating these co-morbid issues will help the individual to obtain optimal recovery. Vestibular Rehabilitation is an effective modality for managing dizziness, vertigo, and imbalance following concussion. Careful consideration of the acuity of the injury, along with effective management of co-morbid conditions will optimize the result.

  12. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    Directory of Open Access Journals (Sweden)

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  13. Vestibular implants studied in animal models: clinical and scientific implications.

    Science.gov (United States)

    Lewis, Richard F

    2016-12-01

    Damage to the peripheral vestibular system can result in debilitating postural, perceptual, and visual symptoms. A potential new treatment for this clinical problem is to replace some aspects of peripheral vestibular function with an implant that senses head motion and provides this information to the brain by stimulating branches of the vestibular nerve. In this review I consider animal studies performed at our institution over the past 15 years, which have helped elucidate how the brain processes information provided by a vestibular (semicircular canal) implant and how this information could be used to improve the problems experienced by patients with peripheral vestibular damage. Copyright © 2016 the American Physiological Society.

  14. Patient with headache and peripheral vestibular dysfunction: case report

    OpenAIRE

    Rossi,Tatiane Maria; Luciano,Naonne Santos Camargo; Oricoli, Polliay Freire; Marchiori,Luciana Lozza de Moraes; Melo, Juliana Jandre

    2009-01-01

    TEMA: a Reabilitação Vestibular constitui-se numa opção de tratamento para pacientes portadores de síndrome vestibular periférica e cefaleia. PROCEDIMENTOS: o paciente, do sexo feminino com 26 anos de idade apresentava síndrome vestibular periférica acompanhada de crises de cefaleia. Foi realizada avaliação e terapia fonoaudiológica com exercícios de habituação vestibular além de fisioterapia e dieta recomendada pelo nutricionista. RESULTADOS: no período de 3 meses com reabilitação vestibular...

  15. Non-linear Galilean vestibular receptive fields.

    Science.gov (United States)

    Bennequin, D; Berthoz, A

    2011-01-01

    We present a set of formulas for the receptive fields of the vestibular neurons that are motivated by Galilean invariance. We show that these formulas explain non-trivial data in neurophysiology, and suggest new hypothesis to be tested in dynamical 3D conditions. Moreover our model offers a way for neuronal computing with 3D displacements, which is reputed to be hard, underlying the vestibular reflexes. This computation is presented in a Bayesian framework. The basis of the model is the necessity of living bodies to work invariantly in space-time, allied to the necessary discreteness of neuronal transmission.

  16. Neurogenesis of cephalic sensory organs of Aplysia californica

    DEFF Research Database (Denmark)

    Wollesen, Tim; Wanninger, Andreas; Klussmann-Kolb, Annette

    2007-01-01

    The opisthobranch gastropod Aplysia californica serves as a model organism in experimental neurobiology because of its simple and well-known nervous system. However, its nervous periphery has been less intensely studied. We have reconstructed the ontogeny of the cephalic sensory organs (labial te...... of FMRFamide-like peptides in the modulation of peripheral sensory processes. This study is the first concerning the neurogenesis of cephalic sensory organs in A. californica and may serve as a basis for future studies of neuronal elements in gastropod molluscs.......The opisthobranch gastropod Aplysia californica serves as a model organism in experimental neurobiology because of its simple and well-known nervous system. However, its nervous periphery has been less intensely studied. We have reconstructed the ontogeny of the cephalic sensory organs (labial...... microscopy to analyze the ciliary distribution of these sensory epithelia. Labial tentacles and the lip develop during metamorphosis, whereas rhinophores appear significantly later, in stage 10 juveniles. Our study has revealed immunoreactivity against FMRFamides and serotonin in all major nerves. The common...

  17. Effects of vestibular rehabilitation therapy on emotional aspects in chronic vestibular patients.

    Science.gov (United States)

    Meli, Annalisa; Zimatore, Giovanna; Badaracco, Carlo; De Angelis, Ezio; Tufarelli, Davide

    2007-08-01

    A strong relationship exists between vestibular dysfunction and anxiety disorders. The aim of this study was to assess the anxiety and depression levels in patients with chronic dizziness and to assess the effects of vestibular rehabilitation (VR) therapy, on the anxiety and depression levels, without a behavioural or pharmacological therapy. Two groups of 40 patients, each affected by chronic vestibular deficit, were studied. The first one underwent VR, and the latter did not. The psychometric tests used were the State-Trait Anxiety Inventory (STAI) and the Centre for Epidemiological Studies Depression Scale (CES-D). Psychological factors influence the level of handicap experienced by chronic dizziness patients, and disequilibrium influences the anxiety and depression levels. STAI and CES-D scales significantly decrease after VR therapy (PVR therapy positively influences the emotional condition of chronic vestibular deficit patients without pharmacological or psychotherapy treatments.

  18. From ear to uncertainty: Vestibular contributions to cognitive function.

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-11-01

    Full Text Available In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in spatial orientation. In this review we summarise the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation, can modulate cognitive function.

  19. Interactions between Stress and Vestibular Compensation - A Review.

    Science.gov (United States)

    Saman, Yougan; Bamiou, D E; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  20. From ear to uncertainty: vestibular contributions to cognitive function.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2013-11-26

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.

  1. Interactions between stress and vestibular compensation – a review

    Directory of Open Access Journals (Sweden)

    Yougan eSaman

    2012-07-01

    Full Text Available Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function, and plasticity have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  2. Interactions between Stress and Vestibular Compensation – A Review

    Science.gov (United States)

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B.

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders. PMID:22866048

  3. Receptors of glutamate and neurotrophin in vestibular neuronal functions.

    Science.gov (United States)

    Chan, Y S; Chen, L W; Lai, C H; Shum, D K Y; Yung, K K L; Zhang, F X

    2003-01-01

    The last decade has witnessed advances in understanding the roles of receptors of neurotrophin and glutamate in the vestibular system. In the first section of this review, the biological actions of neurotrophins and their receptors in the peripheral and central vestibular systems are summarized. Emphasis will be placed on the roles of neurotrophins in developmental plasticity and in the maintenance of vestibular function in the adult animal. This is reviewed in relation to the developmental expression pattern of neurotrophins and their receptors within the vestibular nuclei. The second part is focused on the functional role of different glutamate receptors on central vestibular neurons. The developmental expression pattern of glutamate receptor subunits within the vestibular nuclei is reviewed in relation to the potential role of glutamate receptors in regulating the development of vestibular function. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  4. Physiological principles of vestibular function on earth and in space

    Science.gov (United States)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  5. Vestibular and motor contributions to mobility: limitations of seniors awaiting discharge from hospital care.

    Science.gov (United States)

    Golder, Michelle D; Earl, E Marie; Mallery, Laurie H

    2012-12-01

    Following hospitalization, seniors are at risk of impaired mobility and increased risk of falling, which can lead to injuries and re-admission. The primary purpose of this paper was to evaluate the ability of hospitalized seniors to use vestibular inputs for balance control. The secondary purpose was to examine the influence of vestibular function and lower limb muscle strength on mobility. Experimental and correlation designs were used. Patients (aged 65-90 years), preparing for discharge from an inpatient geriatric rehabilitation unit, were recruited. Vestibular control of standing balance was measured using the Clinical Test of Sensory Interaction for Balance (CTSIB). Mobility was measured with the Timed Up and Go (TUG) Test. Lower limb muscle maximum voluntary isometric contraction (MVIC) strength was tested with portable dynamometry. Wilcoxon signed rank test, with alpha adjusted for multiple comparisons (p ≤ 0.017), was used to compare relevant components of the CTSIB. Stepwise regression was used to assess the influence of vestibular impairment on TUG score. CTSIB(Test6) (median = 7.1 seconds, range = 0.0-30.0) was less than CTSIB(Test1) (30.0 seconds, 30.0-30.0) and CTSIB(Test4) (30.0 seconds, 10.5-30.0) (W = 136, p < 0.017). MVIC scores (Nm·kg⁻¹, mean ± SD) included hip abduction 0.38 ± 0.2, hip flexion 0.32 ± 0.1, hip extension 0.44 ± 0.2, knee flexion 0.31 ± 0.1, knee extension 0.33 ± 0.2, ankle dorsiflexion 0.12 ± 0.1 and ankle plantarflexion 0.23 ± 0.1. Mean TUG score was 26.1 ± 6.0 seconds. Performance on CTSIB(Test6) explained 55% of the variance in TUG scores, whereas hip extension strength explained an additional 6%. Seniors awaiting discharge from hospital had impaired vestibular control of balance that was systematically associated with impaired mobility. Evaluating vestibular function prior to discharge from hospital could improve discharge planning with respect to

  6. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...... channels were determined by a isotope flux assay where up to 44% of the total K+ channel activity could be inhibited by iberiotoxin indicating that BK channels are widely present in kidney epithelia. Consistent with these functional studies, 125I-IbTX-D19Y/Y36F binds to membrane vesicles from outer cortex...

  7. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    Science.gov (United States)

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M.

    2011-01-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function. PMID:21893596

  8. Abnormal sensory integration affects balance control in hemiparetic patients within the first year after stroke

    Directory of Open Access Journals (Sweden)

    Clarissa B. Oliveira

    2011-01-01

    Full Text Available OBJECTIVE: Impairments in balance can be a consequence of changes in the motor, sensory, and integrative aspects of motor control. Abnormal sensory reweighting, i.e., the ability to select the most appropriate sensory information to achieve postural stability, may contribute to balance impairment. The Sensory Organization Test is a component of Computerized Dynamic Posturography that evaluates the impact of visual, vestibular, and somatosensory inputs, as well as sensory reweighting, under conditions of sensory conflict. The aim of this study is to compare balance control in hemiparetic patients during the first year post-stroke and in age-matched neurologically normal subjects using the Berg Balance Scale and Computerized Dynamic Posturography. METHODS: We compared the Berg Balance Scale and Sensory Organization Test scores in 21 patients with hemiparesis after first-ever ischemic stroke and in 21 age-matched, neurologically normal subjects. An equilibrium score was defined for each Sensory Organization Test condition. RESULTS: Berg Balance Scale scores were significantly lower in the patients than in the neurologically normal subjects. Equilibrium scores were significantly lower in the patients than in the neurologically normal subjects for those Sensory Organization Test conditions that did not provide appropriate somatosensory information and under conditions of sensory conflict. A history of falls was more frequent in patients with lower equilibrium scores. CONCLUSION: During the first year after a stroke, defective sensory reweighting significantly impacts balance control in hemiparetic patients. These results are important for the planning of effective rehabilitation interventions.

  9. Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure

    Directory of Open Access Journals (Sweden)

    Økstad Siri

    2006-12-01

    Full Text Available Abstract Background Vestibular neuritis (VN is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. Case presentations We describe three patients with symptoms suggestive of VN, but normal calorics. All 3 had unilateral loss of vestibular evoked myogenic potential. A slight, asymptomatic position dependent nystagmus, with the pathological ear down, was observed. Conclusion We believe that these patients suffer from pure inferior nerve vestibular neuritis.

  10. Vestibular nucleus neurons respond to hindlimb movement in the conscious cat

    Science.gov (United States)

    Miller, Derek M.; DeMayo, William M.; Bourdages, George H.

    2016-01-01

    The limbs constitute the sole interface with the ground during most waking activities in mammalian species; it is therefore expected that somatosensory inputs from the limbs provide important information to the central nervous system for balance control. In the decerebrate cat model, the activity of a subset of neurons in the vestibular nuclei (VN) has been previously shown to be modulated by hindlimb movement. However, decerebration can profoundly alter the effects of sensory inputs on the activity of brain stem neurons, resulting in epiphenomenal responses. Thus, before this study, it was unclear whether and how somatosensory inputs from the limb affected the activity of VN neurons in conscious animals. We recorded brain stem neuronal activity in the conscious cat and characterized the responses of VN neurons to flexion and extension hindlimb movements and to whole body vertical tilts (vestibular stimulation). Among 96 VN neurons whose activity was modulated by vestibular stimulation, the firing rate of 65 neurons (67.7%) was also affected by passive hindlimb movement. VN neurons in conscious cats most commonly encoded hindlimb movement irrespective of the direction of movement (n = 33, 50.8%), in that they responded to all flexion and extension movements of the limb. Other VN neurons overtly encoded information about the direction of hindlimb movement (n = 27, 41.5%), and the remainder had more complex responses. These data confirm that hindlimb somatosensory and vestibular inputs converge onto VN neurons of the conscious cat, suggesting that VN neurons integrate somatosensory inputs from the limbs in computations that affect motor outflow to maintain balance. PMID:27440244

  11. Expression of pluripotency factors in larval epithelia of the frog Xenopus: Evidence for the presence of cornea epithelial stem cells

    Science.gov (United States)

    Perry, Kimberly J.; Thomas, Alvin G.; Henry, Jonathan J.

    2013-01-01

    Understanding the biology of somatic stem cells in self renewing tissues represents an exciting field of study, especially given the potential to harness these cells for tissue regeneration and repair in treating injury and disease. The mammalian cornea contains a population of basal epithelial stem cells involved in cornea homeostasis and repair. Research has been restricted to mammalian systems and little is known about the presence or function of these stem cells in other vertebrates. Therefore, we carried out studies to characterize frog cornea epithelium. Careful examination shows that the Xenopus larval cornea epithelium consists of three distinct layers that include an outer epithelial layer and underlying basal epithelium, in addition to a deeper fibrous layer that contains the main sensory nerve trunks that give rise to numerous branches that extend into these epithelia. These nerves convey sensory and presumably also autonomic innervation to those tissues. The sensory nerves are all derived as branches of the trigeminal nerve/ganglion similar to the situation encountered in mammals, though there appear to be some potentially interesting differences, which are detailed in this paper. We show further that numerous pluripotency genes are expressed by cells in the cornea epithelium, including: sox2, p63, various oct4 homologs, c-myc, klf4 and many others. Antibody localization revealed that p63, a well known mammalian epithelial stem cell marker, was localized strictly to all cells in the basal cornea epithelium. c-myc, was visualized in a smaller subset of basal epithelial cells and adjacent stromal tissue predominately at the periphery of the cornea (limbal zone). Finally, sox2 protein was found to be present throughout all cells of both the outer and basal epithelia, but was much more intensely expressed in a distinct subset of cells that appeared to be either multinucleate or possessed multi-lobed nuclei that are normally located at the periphery of the

  12. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and

  13. Central Vestibular Dysfunction in an Otorhinolaryngological Vestibular Unit: Incidence and Diagnostic Strategy

    Directory of Open Access Journals (Sweden)

    Mostafa, Badr E.

    2014-03-01

    Full Text Available Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years. Provisional videonystagmography (VNG results were: 40% benign paroxysmal positional vertigo (BPPV, 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41 had magnetic resonance imaging (MRI and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23% were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus. Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  14. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  15. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    Directory of Open Access Journals (Sweden)

    LACOUR eMichel

    2015-01-01

    Full Text Available This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation, which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodelling, the instructive role that VR therapy may play in this functional reorganisation, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive and emotional profile of the patient to propose individual or à la carte VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  16. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery.

    Science.gov (United States)

    Lacour, Michel; Bernard-Demanze, Laurence

    2014-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  17. CONTRIBUTION OF THE AUDIOLOGICAL AND VESTIBULAR ASSESSMENT TO THE DIFFERENTIAL AND ETIOLOGICAL DIAGNOSIS OF PERIPHERIC VESTIBULAR SYNDROMES

    Directory of Open Access Journals (Sweden)

    Loreta Ungureanu

    2012-09-01

    Full Text Available Scope of the study: Vestibular pathology is a complex one, requiring a minute clinical evaluation, as well as numerous paraclinical investigations. The present study analyzes the contribution of the modern methods of vestibular and auditive investigation to the diagnosis of dizziness. Materials and method: The results of the investigations performed on 84 patients with peripheric vestibular syndrome, on whom a complete audiological and vestibular assessment had been also made, have been retrospectively analyzed. Results: Anamnestic data and the results of evaluation permitted classification of peripheric vestibular pathology according to topo-lesional and etiological criteria. The most frequently diagnosed diseases were: benign paroxysmal positional vertigo, Ménière syndrome and vestibular neuronitis. Conclusions: Testing of the vestibulo-ocular and vestibulo-spinal reflexes through videonystagmoscopy and, respectively, computerized dynamic posturography, besides tonal vocal audiometry and precocious auditive potentials, is especially important for a positive diagnosis and etiological differentiation of vestibular syndromes.

  18. Time constants of vestibular nuclei neurons in the goldfish: a model with ocular propioception.

    Science.gov (United States)

    Allum, J H; Graf, W

    1977-12-22

    A simple model of the vestibular-ocular reflex with a proprioceptive eye velocity feedback loop is used to simulate recent data on the vestibular responses of neurons in the vestibular nuclei of spinal goldfish. The data support the hypothesis that a proprioceptive feedback loop elongates the vestibular nucleus time constant to equal that of the slow phase eye movements of vestibular nystagmus.

  19. Effects of Sound on the Vestibular System

    Science.gov (United States)

    1976-03-01

    receptors and directly affects central nervous system nuclei. Visual, olfactory, and gustatory responses would be expected if sound directly affected the...AMRL-TR-75-89 EFFECTS OF SOUND ON THE VESTIBULAR SYSTEM MIAMI UNIVERSITY NO OXFORD, OHIO 45056 MARCH 1976 | j...Approvedrfor public release: distribution unlimited AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DMSION Air Force Systems Command Wright.Patterson

  20. Vestibular migraine: clinical and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Ligia Oliveira Gonçalves Morganti

    Full Text Available ABSTRACT INTRODUCTION: Vestibular migraine (VM is one of the most often common diagnoses in neurotology, but only recently has been recognized as a disease. OBJECTIVE: To analyze the clinical and epidemiological profile of patients with VM. METHODS: This was a retrospective, observational, and descriptive study, with analysis of patients' records from an outpatient VM clinic. RESULTS: 94.1% of patients were females and 5.9% were males. The mean age was 46.1 years; 65.6% of patients had had headache for a longer period than dizziness. A correlation was detected between VM symptoms and the menstrual period. 61.53% of patients had auditory symptoms, with tinnitus the most common, although tonal audiometry was normal in 68.51%. Vectoelectronystagmography was normal in 67.34%, 10.20% had hyporeflexia, and 22.44% had vestibular hyperreflexia. Electrophysiological assessment showed no abnormalities in most patients. Fasting plasma glucose and glycemic curve were normal in most patients, while the insulin curve was abnormal in 75%. 82% of individuals with MV showed abnormalities on the metabolism of carbohydrates. CONCLUSION: VM affects predominantly middle-aged women, with migraine headache representing the first symptom, several years before vertigo. Physical, auditory, and vestibular evaluations are usually normal. The most frequent vestibular abnormality was hyperreflexia. Most individuals showed abnormality related to carbohydrate metabolism.

  1. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  2. Stereotactic radiation therapy for large vestibular schwannomas

    NARCIS (Netherlands)

    Mandl, Ellen S.; Meijer, Otto W. M.; Slotman, Ben J.; Vandertop, W. Peter; Peerdeman, Saskia M.

    2010-01-01

    Background and purpose: To evaluate the morbidity and tumor-control rate in the treatment of large vestibular schwannomas (VS) after stereotactic radiation therapy in our institution. Material and methods: Twenty-five consecutive patients (17 men, 8 women) with large VS (diameter 3.0 cm or larger),

  3. Role of Mitochondria-rich Cells for Passive Chloride Transport, discussion of Ussing's Contribution to Our Understanding of Shunt Pathways in Epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Kristensen, Poul; Nedergaard, Signe Nielsen

    2001-01-01

    Toad skin, Mitochondria-rich cells, Chloride channels, Epithelial shunt pathways, Leaky epithelia, Recirculation theory of isotonic transport......Toad skin, Mitochondria-rich cells, Chloride channels, Epithelial shunt pathways, Leaky epithelia, Recirculation theory of isotonic transport...

  4. A balance of form and function: planar polarity and development of the vestibular maculae.

    Science.gov (United States)

    Deans, Michael R

    2013-05-01

    The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Visual perception of ADHD children with sensory processing disorder.

    Science.gov (United States)

    Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi

    2014-04-01

    The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.

  6. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    Science.gov (United States)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  7. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment.

    Science.gov (United States)

    Keshner, Emily A; Slaboda, Jill C; Buddharaju, Ravi; Lanaria, Lois; Norman, Jeremy

    2011-01-01

    We present results from a series of studies that investigated how multimodal mismatches in a virtual environment modified postural response organization. Adaptation of motor commands to functional circumstances is driven directly by error signals. Thus, motor relearning should increase when performing in environments containing sensory mismatch. We hypothesized that kinematics of the response would be linked to specific characteristics of the sensory array. Sensory weighting was varied by: 1) rotating the visual field about the talo-crural joint or the interaural axis, 2) adding stochastic vibrations at the sole of the foot, and 3) combining galvanic vestibular stimulation with rotations of the visual field. Results indicated that postural responses are shaped by the location of a sensory disturbance and also by the processing demands of the environmental array. Sensory-motor demands need to be structured when developing therapeutic interventions for patients with balance disorders.

  8. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    NARCIS (Netherlands)

    S.F. Janssen (Sarah); T.G.M.F. Gorgels (Theo); K. Bossers (Koen); J.B. ten Brink (Jacoline); A.H.W. Essing (Anke); M.H. Nagtegaal (Marleen); P.J. van der Spek (Peter); N.M. Jansonius (Nomdo); A.A.B. Bergen (Arthur)

    2012-01-01

    textabstractPurpose: The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed

  9. Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology.

    Science.gov (United States)

    Banerjee, S D; Cohn, R H; Bernfield, M R

    1977-05-01

    The role of the basal lamina in maintaining the normal morphology of mouse embryo submandibular epithelia was assessed by examining its production as well as the cellular and organ culture changes associated with its removal and replacement. The lamina was removed from epithelia isolated free of mesenchyme by brief treatment with testicular hyaluronidase in the absence of calcium. The treatment causes rounding-up of the cells, loss of cellular cohesion, appearance of microvilli, and changes in the organization of cytoskeletal structures. The lamina is not removed and the cellular alterations do not occur in the absence of hyaluronidase in calcium-free medium or when both enzyme and calcium are present, possibly because digestion of chondroitin sulfate, a component of the lamina, is inhibited by calcium. Within 2 h after treatment, in the absence of mesenchyme or biological substrata, the epithelia deposits a new lamina, which is identical by several criteria to the preexisting lamina, and reverses the cellular alterations. Epithelia treated with hyaluronidase lose lobular morphology during culture with mesenchyme. Delaying culture with mesenchyme, to allow restoration of the lamina and of normal cellular architecture, prevents the loss of lobular morphology. The results indicate that the basal lamina imposes morphologic stability on the epithelium, while the mesenchyme apparently affects processes involved in changes in morphology, possibly by selective degradation of the basal lamina.

  10. Biological and clinical significance of p75NTR expression in laryngeal squamous epithelia and laryngocarcinoma.

    Science.gov (United States)

    Li, Xiaoming; Shen, Yupeng; Di, Bin; Li, Jun; Geng, Jiangqiao; Lu, Xiuying; He, Zhanguo

    2012-03-01

    The apparent features of p75 neurotrophin receptor (p75(NTR)) expression indicated that p75(NTR) would serve as a potential stem cell marker for normal human laryngeal squamous epithelia. In human laryngeal squamous cell carcinoma (LSCC) p75(NTR) is differentially expressed. The abnormal expression and distribution of p75(NTR) may indicate malignant transformation. To investigate the expression of p75(NTR) and its possible roles in normal laryngeal squamous epithelia and LSCC. We used immunohistochemistry methods to examine normal laryngeal epithelia, para-cancer mucosa with dysplasia, laryngeal papilloma, and LSCC specimens for the expression of p75(NTR), nerve growth factor (NGF), -tyrosine kinase receptor (TrkA), p63, and Ki67. Immunocytochemistry and flow cytometry were used to examine the expression of p75(NTR) in Hep-2 cells. The expression of p75(NTR) was only located in basal cells of normal laryngeal epithelia, consistent with the staining features of epithelial stem cells as evidenced by parallel staining of p63, a putative keratinocyte stem cell marker. p75(NTR) is differentially expressed in LSCC, although no significant relationship was found with many clinicopathologic factors, this expression and distribution may correlate to malignant transformation and tumor proliferation. Co-expression of p75(NTR) and CD133 was confirmed, showing the association of p75(NTR)-positive cells with cancer stem cells in Hep-2 cells.

  11. Unique Biologic Properties of Recombinant AAV1 Transduction in Polarized Human Airway Epithelia

    National Research Council Canada - National Science Library

    Ziying Yan; Diana C. M. Lei-Butters; Xiaoming Liu; Yulong Zhang; Liang Zhang; Meihui Luo; Roman Zak; John F. Engelhardt

    2006-01-01

    .... In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common...

  12. Expression of blood group-related glycoconjugates in the junctional and other oral epithelia of rodents

    DEFF Research Database (Denmark)

    Mackenzie, I C; Dabelsteen, Erik; Rittman, G

    1995-01-01

    BACKGROUND: The junctional epithelium (JE) attaches the gingiva to the non-vital tooth surface and has other unusual properties which protect the underlying periodontal tissues. The JE differs from other gingival and oral epithelia in its unusual expression of cytokeratins typical of both...... and of value to experimental studies of its development....

  13. Vestibular evaluation in children with otitis media with effusion.

    Science.gov (United States)

    Kolkaila, E A; Emara, A A; Gabr, T A

    2015-04-01

    Fifty per cent of children with serous otitis media may have some balance disturbances. To evaluate vestibular function in children with otitis media with effusion. The control group comprised 25 children with bilateral normal hearing and middle-ear function. The study group consisted of 30 children with bilateral otitis media with effusion; these were divided into 2 subgroups according to air-bone gap size. Measures included the Arabic Dizziness Handicap Inventory, an imbalance evaluation sheet for children, vestibular bedside tests for children, and air- and bone-conducted vestibular-evoked myogenic potential testing. Arabic Dizziness Handicap Inventory scores and some vestibular bedside test results were significantly abnormal, with normal video-nystagmography results, in children with otitis media with effusion. Air-conducted vestibular-evoked myogenic potentials were recorded in 73 per cent of children with otitis media with effusion, with significantly delayed latencies. Bone-conducted vestibular-evoked myogenic potentials were successfully detected in 100 per cent of children with otitis media with effusion with similar results to the control group. The Arabic Dizziness Handicap Inventory and vestibular bedside tests are valuable tools for detecting vestibular impairment in children. Bone-conducted vestibular-evoked myogenic potentials are useful for vestibular system evaluation.

  14. Vestibular Rehabilitation in a Patient with Whiplash-associated Disorders

    Directory of Open Access Journals (Sweden)

    Kwo-Shieng Tuo

    2006-12-01

    Full Text Available Whiplash-associated disorders are characterized by multiple physical complaints after a flexion-extension trauma to the neck. They are difficult to treat, and they often result in great impact on the patient's quality of life. In this paper, the comprehensive treatment of a patient with whiplash-associated disorders is presented. The purpose is to highlight the importance of accurate diagnosis and appropriate treatment plans to improve patients' quality of life. This 23-year-old woman experienced a traffic accident which caused severely painful neck disability, numbness over bilateral upper limbs, dizziness, double vision and loss of balance. Among these symptoms, dizziness was the problem that bothered the patient most. She received a comprehensive rehabilitation program including physical modalities, trigger point injections for relief of pain, as well as a vestibular rehabilitation program, which included exercises challenging and improving her balance function, head-eye coordination exercise, visual-ocular control exercise and sensory substitution-promoting exercises. She resumed her previous full-time work after 3 weeks of treatment. This successfully treated case illustrates the importance of correct diagnosis and appropriate treatment for patients who suffer from whiplash-associated disorders.

  15. Postural response characterization in elderly patients with bilateral vestibular hypofunction.

    Science.gov (United States)

    Suarez, Hamlet; Sotta, Gonzalo; San Roman, Cecilia; Arocena, Sofia; Ferreira, Enrique; Geisinger, Dario; Suarez, Alejo; Picerno, Juan

    2013-04-01

    The measurement of the energy consumption (EC) of the body's center of pressure (COP) to maintain the upright stance position was higher in elderly patients with bilateral vestibular hypofunction (BVH) compared with a control group and may be a valid parameter in the assessment of balance disorders. The aim of the study was to evaluate the energy consumption of the COP in elderly patients with BVH. The COP was recorded on a force platform (FP) for eight elderly patients with BVH related to aging and eight normal control group subjects. The EC of the COP was calculated using the discrete wavelet transform. The two groups were tested in standing position on the FP in three sensory conditions:1, eyes open; 2, eyes closed; and 3, standing on a foam pad placed on the force platform. Wilcoxon's rank test and multi-factor analysis of variance were used, with the level of significance set at 0.05. BVH patients showed higher values of EC of the COP signal measured in arbitrary units compared with the control group (conditions 1 and 2). None of the BVH patients could perform the test in condition 3. BVH patients had increased EC in the frequency band between 0.1 and 0.78 Hz when the visual information was canceled (condition 2).

  16. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    Science.gov (United States)

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  17. Optic-flow selective cortical sensory regions associated with self-reported states of vection

    Directory of Open Access Journals (Sweden)

    Maiko eUesaki

    2015-06-01

    Full Text Available Optic flow is one of the most important visual cues to the estimation of self-motion. It has repeatedly been demonstrated that a cortical network including visual, multisensory and vestibular areas is implicated in processing optic flow; namely, visual areas middle temporal cortex (MT+, V6; multisensory areas ventral intra-parietal area (VIP, cingulate sulcus visual area (CSv, precuneus motion area (PcM; and vestibular areas parieto-insular vestibular cortex (PIVC and putative area 2v (p2v. However, few studies have investigated the roles of and interaction between the optic-flow selective sensory areas within the context of self-motion perception.When visual information (i.e. optic flow is the sole cue to computing self-motion parameters, the discrepancy amongst the sensory signals may induce an illusion of self-motion referred to as ‘vection’. This study aimed to identify optic-flow selective sensory areas that are involved in the processing of visual cues to self-motion, by introducing vection as an index and assessing activation in which of those areas reflect vection, using functional magnetic resonance imaging (fMRI. The results showed that activity in visual areas MT+ and V6, multisensory area VIP and vestibular area PIVC was significantly greater while participants were experiencing vection, as compared to when they were experiencing no vection, which may indicate that the activation in MT+, V6, VIP and PIVC reflects vection. The results also place VIP in a good position to integrate visual cues related to self-motion and vestibular information.

  18. Localisation of the nitric oxide (NO)/cGMP-pathway in the vestibular system of guinea pigs.

    Science.gov (United States)

    Hess, A; Bloch, W; Su, J; Stennert, E; Addicks, K; Michel, O

    1998-07-31

    The exact distribution of nitric oxide-synthases (NOS) in the vestibular system has not been described satisfying yet. Immunostaining, using specific antibodies to the three known NOS-isoforms, to cyclic guanosine monophosphate (cGMP) and soluble guanylyl-cyclase (sGC), the second messenger system of nitric oxide (NO), was performed on paraffin sections of temporal bone from guinea pigs. eNOS could be detected in vestibular ganglion cells and in nerve fibres, including the calyces, surrounding the type 1 hair cells (HC). bNOS was found in the sensory epithelium, ganglion cells and in bone, while iNOS could not be found. NOS-detection was accompanied by reactivity to sGC and to cGMP. This finding implies that b- and eNOS-generated NO is involved in regulative processes in neurotransmission and regulation of blood flow.

  19. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth

    Directory of Open Access Journals (Sweden)

    Nikolay Aseyev

    2017-11-01

    Full Text Available The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  20. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth.

    Science.gov (United States)

    Aseyev, Nikolay; Vinarskaya, Alia Kh; Roshchin, Matvey; Korshunova, Tatiana A; Malyshev, Aleksey Yu; Zuzina, Alena B; Ierusalimsky, Victor N; Lemak, Maria S; Zakharov, Igor S; Novikov, Ivan A; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D; Balaban, Pavel M

    2017-01-01

    The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  1. Report sensory analyses veal

    NARCIS (Netherlands)

    Veldman, M.; Schelvis-Smit, A.A.M.

    2005-01-01

    On behalf of a client of Animal Sciences Group, different varieties of veal were analyzed by both instrumental and sensory analyses. The sensory evaluation was performed with a sensory analytical panel in the period of 13th of May and 31st of May, 2005. The three varieties of veal were: young bull,

  2. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  3. Functional and anatomic alterations in the gentamicin-damaged vestibular system in the guinea pig

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, HM; Dijk, T; Stokroos, [No Value; van der Want, TJL; Albers, FWJ

    Hypothesis: The purpose of this study was to investigate the expected functional and morphologic effect of gentamicin on the vestibular system simultaneously by measurement of vestibular evoked potentials and electron microscopic evaluation. Background: Vestibular short-latency evoked potentials to

  4. Clinical vestibular testing assessed with machine-learning algorithms.

    Science.gov (United States)

    Priesol, Adrian J; Cao, Mengfei; Brodley, Carla E; Lewis, Richard F

    2015-04-01

    Dizziness and imbalance are common clinical problems, and accurate diagnosis depends on determining whether damage is localized to the peripheral vestibular system. Vestibular testing guides this determination, but the accuracy of the different tests is not known. To determine how well each element of the vestibular test battery segregates patients with normal peripheral vestibular function from those with unilateral reductions in vestibular function. Retrospective analysis of vestibular test batteries in 8080 patients. Clinical medical records were reviewed for a subset of individuals with the reviewers blinded to the vestibular test data. A group of machine-learning classifiers were trained using vestibular test data from persons who were "manually" labeled as having normal vestibular function or unilateral vestibular damage based on a review of their medical records. The optimal trained classifier was then used to categorize patients whose diagnoses were unknown, allowing us to determine the information content of each element of the vestibular test battery. The information provided by each element of the vestibular test battery to segregate individuals with normal vestibular function from those with unilateral vestibular damage. The time constant calculated from the rotational test ranked first in information content, and measures that were related physiologically to the rotational time constant were 10 of the top 12 highest-ranked variables. The caloric canal paresis ranked eighth, and the other elements of the test battery provided minimal additional information. The sensitivity of the rotational time constant was 77.2%, and the sensitivity of the caloric canal paresis was 59.6%; the specificity of the rotational time constant was 89.0%, and the specificity of the caloric canal paresis was 64.9%. The diagnostic accuracy of the vestibular test battery increased from 72.4% to 93.4% when the data were analyzed with the optimal machine-learning classifier

  5. Comparison of different exercise programs in the rehabilitation of patients with chronic peripheral vestibular dysfunction.

    Science.gov (United States)

    Szturm, T; Ireland, D J; Lessing-Turner, M

    1994-01-01

    The purpose of this study was to evaluate the effects of two exercise programs on balance performance in patients with chronic peripheral vestibular dysfunction and to assess whether these exercise programs induce adaptive modifications of the vestibulo-ocular reflex (VOR). Patients were randomly assigned to one of two groups. (1) Those in the Rehab (Reh) group (n = 11) received a comprehensive exercise program that consisted of balance retraining and goal-directed eye-head exercises under combinations of varied visual and somatosensory sensory conditions. Patients received 45-minute training sessions, three times per week for 12 weeks, and were instructed on a custom home exercise program. (2) Those in the Home group (n = 12) were instructed to perform the Cooksey-Cawthorne eye-head exercises at home, on a daily basis, for 12 weeks. In addition, after completion of the exercise program and a follow-up period, 7 of the participants in the Home group (here defined as the A group) chose to enter the Reh program (here defined as the B group). Balance performance was assessed by measuring the peak-to-peak magnitude and total amount of anterior-posterior body sway, and of horizontal (shear) ground reaction force during six test conditions, in which visual and somatosensory orientation cues were reduced or altered by rotation of the visual surround or support surface in proportion to the subject's sway, and in which vision was eliminated (eyes closed). The VOR response to step chair rotations of 60 degrees/s and 120 degrees/s, and the optokinetic reflex (OKN) response to 60 degrees/s constant velocity optokinetic stimuli were recorded. Left-right difference in VOR gain, VOR time constant, and OKN gain were determined. These tests were performed 1 day prior to start of treatment (TD 1), 6 weeks after start of treatment (TD 2), at the end of the 12-week treatment period (TD 3), and 5 months after end of treatment (TD 4). The findings revealed a significant improvement in

  6. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control

    Directory of Open Access Journals (Sweden)

    Francois M Lambert

    2012-04-01

    Full Text Available Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the CNS to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the central nervous system include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims towards a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of

  7. Understanding the links between vestibular and limbic systems regulating emotions.

    Science.gov (United States)

    Rajagopalan, Archana; Jinu, K V; Sailesh, Kumar Sai; Mishra, Soumya; Reddy, Udaya Kumar; Mukkadan, Joseph Kurien

    2017-01-01

    Vestibular system, which consists of structures in the inner ear and brainstem, plays a vital role is body balance and patient well-being. In recent years, modulating this system by vestibular stimulation techniques are reported to be effective in stress relief and possibly patient's emotional well-being. Emotions refer to an aroused state involving intense feeling, autonomic activation, and related change in behavior, which accompany many of our conscious experiences. The limbic system is primarily involved in the regulation of emotions. Considering the extensive networks between vestibular and limbic system, it is likely that vestibular stimulation techniques may be useful in influencing emotions. Hence, we review here, the possible mechanisms through which vestibular system can influence emotions and highlight the necessary knowledge gaps, which warrants further research to develop vestibular stimulation techniques as a means to treat health conditions associated with emotional disturbances.

  8. Anxiety changes depersonalization and derealization symptoms in vestibular patients.

    Science.gov (United States)

    Kolev, Ognyan I; Georgieva-Zhostova, Spaska O; Berthoz, Alain

    2014-01-01

    Depersonalization and derealization are common symptoms reported in the general population. Objective. The aim of the present study was to establish the relationship between anxiety and depersonalization and derealization symptoms in patients with peripheral vestibular disorders. Twenty-four vestibular patients with anxiety and 18 vestibular patients without anxiety were examined for depersonalization and derealization symptoms. They were also compared to healthy controls. The results revealed that anxiety consistently changes depersonalization and derealization symptoms in vestibular patients. They are more frequent, more severe, and qualitatively different in vestibular patients with anxiety than in those without anxiety. Anxiety has an effect on depersonalization and derealization symptoms in vestibular patients. The various hypotheses about the underlying mechanism of this effect were discussed.

  9. Prediction in the Vestibular Control of Arm Movements.

    Science.gov (United States)

    Blouin, Jean; Bresciani, Jean-Pierre; Guillaud, Etienne; Simoneau, Martin

    2015-01-01

    The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.

  10. The value of close monitoring in vestibular rehabilitation therapy.

    Science.gov (United States)

    Itani, M; Koaik, Y; Sabri, A

    2017-03-01

    Vestibular rehabilitation therapy is a well-established treatment modality for patients with vestibular problems. Performing vestibular rehabilitation therapy in a closely monitored setting may result in a better outcome than a home exercise programme. A retrospective study was conducted of patients undergoing vestibular rehabilitation therapy between June 2005 and November 2012 in a tertiary university hospital. The Dynamic Gait Index, the main outcome measure, was utilised before and after the rehabilitation programme. The magnitude of improvement for all patients was analysed, mainly to compare the home exercise group with the closely monitored therapy group. Only 32 patients underwent the vestibular rehabilitation therapy programme. In all patients, there was significant improvement in the mean Dynamic Gait Index score (from 11.75 to 17.38; p rehabilitation therapy resulted in improved performance status. More studies are needed to establish the efficiency of vestibular rehabilitation therapy and compare closely monitored therapy with tailored home exercise rehabilitation.

  11. Vestibular Aqueduct Midpoint Width and Hearing Loss in Patients With an Enlarged Vestibular Aqueduct.

    Science.gov (United States)

    Ascha, Mustafa S; Manzoor, Nauman; Gupta, Amit; Semaan, Maroun; Megerian, Cliff; Otteson, Todd D

    2017-06-01

    Elucidating the relationship between vestibular aqueduct size and hearing loss progression may inform the prognosis and counseling of patients who have an enlarged vestibular aqueduct (EVA). To examine the association between vestibular aqueduct size and repeated measures of hearing loss. For this retrospective medical record review, 52 patients with a diagnosis of hearing loss and radiologic diagnosis of EVA according to the Valvassori criterion were included. All available speech reception threshold and word recognition score data was retrieved; mixed-effects models were constructed where vestibular aqueduct size, age at diagnosis of hearing loss, and time since diagnosis of hearing loss were used to predict repeated measures of hearing ability. This study was performed at an academic tertiary care center. Variable vestibular aqueduct size, age at first audiogram, length of time after first audiogram. Speech reception threshold (dB) and word recognition score (%) during routine audiogram. Overall, 52 patients were identified (29 females [56%] and 23 males [44%]; median age at all recorded audiograms, 7.8 years) with a total of 74 ears affected by EVA. Median (range) vestibular aqueduct size was 2.15 (1.5-5.9) mm, and a median (range) of 5 (1-18) tests were available for each patient. Each millimeter increase in vestibular aqueduct size above 1.5 mm was associated with an increase of 17.5 dB in speech reception threshold (95% CI, 7.2 to 27.9 dB) and a decrease of 21% in word recognition score (95% CI, -33.3 to -8.0 dB). For each extra year after a patient's first audiogram, there was an increase of 1.5 dB in speech recognition threshold (95% CI, 0.22 to 3.0 dB) and a decrease of 1.7% in word recognition score (95% CI, -3.08 to -0.22 dB). Hearing loss in patients with an EVA is likely influenced by vestibular aqueduct midpoint width. When considering hearing loss prognosis, vestibular aqueduct midpoint width may be useful for the clinician who counsels patients

  12. The classification for "equilibrium triad" sensory loss based on sEMG signals of calf muscles.

    Science.gov (United States)

    Hairong Yu; Kairui Guo; Jie Luo; Kai Cao; Nguyen, Hung T; Su, Steven W

    2017-07-01

    Surface Electromyography (sEMG) has been commonly applied for analysing the electrical activities of skeletal muscles. The sensory system of maintaining posture balance includes vision, proprioception and vestibular senses. In this work, an attempt is made to classify whether the body is missing one of the sense during balance control by using sEMG signals. A trial of combination with different features and muscles is also developed. The results demonstrate that the classification accuracy between vision loss and the normal condition is higher than the one between vestibular sense loss and normal condition. When using different features and muscles, the impact on classification results is also different. The outcomes of this study could aid the development of sEMG based classification for the function of sensory systems during human balance movement.

  13. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  14. Interactions between Stress and Vestibular Compensation – A Review

    OpenAIRE

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting...

  15. The effects of vestibular lesions on hippocampal function in rats.

    Science.gov (United States)

    Smith, Paul F; Horii, Arata; Russell, Noah; Bilkey, David K; Zheng, Yiwen; Liu, Ping; Kerr, D Steve; Darlington, Cynthia L

    2005-04-01

    Interest in interaction between the vestibular system and the hippocampus was stimulated by evidence that peripheral vestibular lesions could impair performance in learning and memory tasks requiring spatial information processing. By the 1990s, electrophysiological data were emerging that the brainstem vestibular nucleus complex (VNC) and the hippocampus were connected polysynaptically and that hippocampal place cells could respond to vestibular stimulation. The aim of this review is to summarise and critically evaluate research published in the last 5 years that has seen major progress in understanding the effects of vestibular damage on the hippocampus. In addition to new behavioural studies demonstrating that animals with vestibular lesions exhibit impairments in spatial memory tasks, electrophysiological studies have confirmed long-latency, polysynaptic pathways between the VNC and the hippocampus. Peripheral vestibular lesions have been shown to cause long-term changes in place cell function, hippocampal EEG activity and even CA1 field potentials in brain slices maintained in vitro. During the same period, neurochemical investigations have shown that some hippocampal subregions exhibit long-term changes in the expression of neuronal nitric oxide synthase, arginase I and II, and the NR1 and NR2A N-methyl-D-aspartate (NMDA) receptor subunits following peripheral vestibular damage. Despite the progress, a number of important issues remain to be resolved, such as the possible contribution of auditory damage associated with vestibular lesions, to the hippocampal effects observed. Furthermore, although these studies demonstrate that damage to the vestibular system does have a long-term impact on the electrophysiological and neurochemical function of the hippocampus, they do not indicate precisely how vestibular information might be used in hippocampal functions such as developing spatial representations of the environment. Understanding this will require detailed

  16. Static Balance in Patients with Vestibular Impairments: A Preliminary Study

    OpenAIRE

    Hossein Talebi; Mohammad Taghi Karimi; Seyed Hamid Reza Abtahi; Niloofar Fereshtenejad

    2016-01-01

    Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments. Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50 ? 7). We evaluated excursion and velocity of center of ...

  17. Anxiety Changes Depersonalization and Derealization Symptoms in Vestibular Patients

    OpenAIRE

    Kolev, Ognyan I.; Georgieva-Zhostova, Spaska O.; Alain Berthoz

    2014-01-01

    Background. Depersonalization and derealization are common symptoms reported in the general population. Objective. The aim of the present study was to establish the relationship between anxiety and depersonalization and derealization symptoms in patients with peripheral vestibular disorders. Methods. Twenty-four vestibular patients with anxiety and 18 vestibular patients without anxiety were examined for depersonalization and derealization symptoms. They were also compared to healthy controls...

  18. Responses evoked by a vestibular implant providing chronic stimulation

    OpenAIRE

    Thompson L.A.; Haburcakova C.; Gong W; Lee D.J.; Wall Iii C.; Merfeld D.M.; Lewis R.F.

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly in...

  19. The Moving History of Vestibular Stimulation as a Therapeutic Intervention

    OpenAIRE

    Grabherr, Luzia; Lenggenhager, Bigna; Macauda, Gianluca

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox’s chair or Hallaran’s swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recogni...

  20. Vestibular stimulation: A simple but effective intervention in diabetes care

    OpenAIRE

    Sailesh, Kumar Sai; Archana, R.; Mukkadan, J. K.

    2015-01-01

    Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential interve...

  1. Internal models and neural computation in the vestibular system

    OpenAIRE

    Green, Andrea M.; Dora E. Angelaki

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem–...

  2. Virtual vestibular re-education. A new technology.

    Science.gov (United States)

    Boniver, R

    2006-01-01

    This paper will provide an introduction to the use of virtual environments for vestibular re-education. The author illustrates some of the ways in which researchers are using virtual reality to improve therapy for vertigo. Users of virtual reality must make adaptations to avoid mismatches between perception due to virtual reality and that due to vestibular and proprioceptive subsystems. Virtual reality may be an interesting new way of studying vestibular compensation in normal and pathological conditions.

  3. The vestibular system: balancing more than just the body.

    Science.gov (United States)

    Lopez, Christophe

    2016-02-01

    The review presents a selection of recent studies in the field of vestibular neuroscience, including how vestibular stimulation modulates space and body perception. Recent neuroimaging studies identified the operculo-insular/retroinsular cortex as the core vestibular cortex and showed how it is reorganized after vestibular dysfunctions. Subliminal galvanic vestibular stimulation (GVS) induces long-term reduction of hemispatial neglect and improves vertical perception in stroke patients, but the underlying mechanisms remain to be identified. Healthy volunteer research suggests that GVS and caloric vestibular stimulation (CVS) modulate visual and somatosensory processing and that beneficial effects of GVS/CVS in stroke patients are not limited to merely rebalancing brain hemispheric activity. Another mechanism would be that GVS/CVS anchors the self to the body, thus promoting an egocentric frame of reference. In addition to 'balancing the body', the vestibular cortical network contributes to modulate space, body and self-awareness. Emerging evidence suggests that the vestibular network expands into dimensions of emotion processing, mental health, and social cognition. Here, the importance of connecting vestibular physiology, affective neuroscience, and social neuroscience to better understand the psychological aspects of vertigo in otoneurology is discussed.

  4. Task, muscle and frequency dependent vestibular control of posture

    Directory of Open Access Journals (Sweden)

    Patrick A Forbes

    2015-01-01

    Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  5. Task, muscle and frequency dependent vestibular control of posture.

    Science.gov (United States)

    Forbes, Patrick A; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system's contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  6. The History and Evolution of Surgery on the Vestibular Labyrinth.

    Science.gov (United States)

    Naples, James G; Eisen, Marc D

    2016-11-01

    The history of surgery on the vestibular labyrinth is rich but sparsely documented in the literature. The story begins over a century ago with the labyrinthectomy in an era that consisted exclusively of ablative surgery for infection or vertigo. Improved understanding of vestibular physiology and pathology produced an era of selective ablation and hearing preservation that includes semicircular canal occlusion for benign paroxysmal positional vertigo. An era of restoration began with a discovery of superior semicircular canal dehiscence and its repair. The final era of vestibular replacement is upon us as the possibility of successful prosthetic vestibular implantation becomes reality. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  7. K+ Currents in Isolated Vestibular Afferent Calyx Terminals

    National Research Council Canada - National Science Library

    Dhawan, Ritu; Mann, Scott E; Meredith, Frances L; Rennie, Katherine J

    2010-01-01

    Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons...

  8. Bedside examination for vestibular screening in occupational medicine

    Directory of Open Access Journals (Sweden)

    Ewa Zamysłowska-Szmytke

    2015-04-01

    Full Text Available Objectives: The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG oculomotor tests (central group and 43 subjects with normal VNG. Material and Methods: Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT, Dynamic Visual Acuity (DVA and gaze nystagmus assessment. Results: Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73% had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. Conclusions: The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes.

  9. Bedside examination for vestibular screening in occupational medicine.

    Science.gov (United States)

    Zamysłowska-Szmytke, Ewa; Szostek-Rogula, Sylwia; Śliwińska-Kowalska, Mariola

    2015-01-01

    The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG) oculomotor tests (central group) and 43 subjects with normal VNG. Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT), Dynamic Visual Acuity (DVA) and gaze nystagmus assessment. Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73%) had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Periosteal Pedicle Flap Harvested during Vestibular Extension for Root Coverage

    Directory of Open Access Journals (Sweden)

    Shubham Kumar

    2015-01-01

    Full Text Available Root exposure along with inadequate vestibular depth is a common clinical finding. Treatment option includes many techniques to treat such defects for obtaining predictable root coverage. Normally, the vestibular depth is increased first followed by a second surgery for root coverage. The present case report describes a single-stage technique for vestibular extension and root coverage in a single tooth by using the Periosteal Pedicle Flap (PPF. This technique involves no donor site morbidity and allows for reflection of sufficient amount of periosteal flap tissue with its own blood supply at the surgical site, thus increasing the chances of success of root coverage with simultaneous increase in vestibular depth.

  11. The Severity of Vestibular Dysfunction in Deafness as a Determinant of Comorbid Hyperactivity or Anxiety.

    Science.gov (United States)

    Antoine, Michelle W; Vijayakumar, Sarath; McKeehan, Nicholas; Jones, Sherri M; Hébert, Jean M

    2017-05-17

    Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2-3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1, which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2, which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin.SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of

  12. Gentamicin perfusion vestibular response and hearing loss.

    Science.gov (United States)

    Light, Joshua P; Silverstein, Herbert; Jackson, Lance E

    2003-03-01

    To compare hearing results as a function of vestibular ablation in the treatment of Ménière's Disease, using gentamicin perfusion. A retrospective review of patients with Ménière's Disease treated by gentamicin perfusion of the inner ear via the MicroWick device. A tertiary otologic referral center. The charts of patients treated with gentamicin perfusion via the MicroWick between the years 1998 and 2000 were reviewed. The results for patients with functional hearing in the affected ear were analyzed and were compared with the results in patients without functional hearing. Audiologic and vestibular test results as well as subjective symptoms. There were 45 patients who met the inclusion criteria. The averages for speech discrimination score and pure tone average before treatment were 92% and 38 dB, and after treatment were 82% and 47 dB. Patients were divided into two groups: Group 1 (20 patients), less than 75% ice air caloric reduced vestibular response (RVR); Group 2 (25 patients), those who reached greater than 75% ice air caloric RVR. There were 8 patients (17.6%) with persistent vertigo; 7 were from Group 1, and 1 was from Group 2, which was statistically significant (p = 0.007)wwww. The pure tone average dropped an average of 3 dB for Group 1 and 15 dB for Group 2. The difference in hearing loss between the two groups was statistically significant (p = 0.01). This study suggests that there is a correlation between the degree of vestibular ablation, the control of vertigo, and the risk of hearing loss. Patients with functional hearing seem to have a similar success rate for vertigo control, compared with patients who already had lost functional hearing before treatment. Future investigation may determine if less than 100% RVR, but greater than 75% RVR, is an alternative end point with adequate vertigo control and reduced risk of hearing loss.

  13. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    Science.gov (United States)

    Bayat, Arash; Saki, Nader

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. The dizziness handicap inventory (DHI) was performed immediately before, and 2 and 8 weeks after treatment. Results: All patients showed a reduction in DHI scores during the study. The average decrease in DHI score was 25.98 points after 2 weeks’ intervention (P0.05). There were no relationships between the scores and gender. Conclusion: Our study demonstrates that VRT is an effective method for the management of elderly patients with UVH, and shows maximal effect on functional aspects. PMID:28819615

  14. Unique biologic properties of recombinant AAV1 transduction in polarized human airway epithelia.

    Science.gov (United States)

    Yan, Ziying; Lei-Butters, Diana C M; Liu, Xiaoming; Zhang, Yulong; Zhang, Liang; Luo, Meihui; Zak, Roman; Engelhardt, John F

    2006-10-06

    The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 > rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 > rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation.

  15. Vestibular schwannoma: an unusual post radiotherapy response.

    Science.gov (United States)

    Uddin, Najam; Iqbal, Muhammad; Memon, Muhammad Ali; Farrukh, Salman

    2014-11-01

    Vestibular schwannoma is a relatively uncommon tumor. Although, it is benign but locally expansile and spreads to damage the adjacent structures. Treatment strategy includes surgery, Stereotactic Radiosurgery (SRS) either by standard or hypofractionated protocols. Due to its benign nature, radiation therapy cannot remove the tumor completely, instead radiation therapy halts the growth of vestibular schwannoma and inactivates this benign tumor. Response of radiation in the form of tumor shrinkage is seen 2 - 2.5 years after the radiations. We report a case of vestibular Schwannoma in which residual tumor of 3.1 cm size following subtotal resection was irradiated of the dose of 54 Gy in 30 equal fractions on 3-Dimensional Conformal Radiation Therapy (3-DCRT). A follow-up CT scan brain after 2 months of radiotherapy showed complete disappearance of the disease categorized as complete response. This is an unusual phenomenon and is likely due to the very rarely seen malignant transformation or presence of malignant component in this benign tumor.

  16. Non surgical treatment of vestibular schwannoma.

    Science.gov (United States)

    Arribas, Leoncio; Chust, María L; Menéndez, Antonio; Arana, Estanislao; Vendrell, Juan B; Crispín, Vicente; Pesudo, Carmen; Mengual, José L; Mut, Alejandro; Arribas, Mar; Guinot, José L

    2015-01-01

    To evaluate the results of local control and complications in the treatment of vestibular schwannoma treated with radiation. A retrospective study of 194 patients diagnosed with vestibular schwannoma, treated consecutively with radiation (either stereotactic radiosurgery or fractionated radiotherapy) from 1997 to 2012. We analyze the local control of tumors, as well as secondary complications to treatment with radiation. A total of 132 (68%) tumors 68% are grade I-II tumors of the Koos classification, 40 (19%) are grade III, and 22 (13%) are grade IV. The tumors associated with neurofibromatosis (NF2), are 3.6% (6 tumors in 4 patients). The tumor control for the overall serie is 97% at 5 years, with a median follow-up of 80.4 months. For large tumors the local control is 91% at 5 years. Free survival of chronic complications is 89% at 5 years. Additionally, 50 tumors were subjected to regular follow-up with MRI without treatment, and 28 (58%) did not experienced tumor growth. Radiation and follow up with MRI, are an alternative to surgery in the treatment of vestibular schwannoma, with a low level of complications inside of multidisciplinary approach. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  17. Molecular studies of vestibular schwannomas: a review.

    Science.gov (United States)

    Welling, D Bradley; Packer, Mark D; Chang, Long-Sheng

    2007-10-01

    To summarize advances in understanding the molecular biology of vestibular schwannomas over the past year. The role of the neurofibromatosis type 2 protein, denoted as merlin or schwannomin, in embryonic development, cellular adherence, and in cell proliferation has become better elucidated in the past year. Likewise, the role of merlin in Schwann cell-axon interaction has been studied. Additionally, two comprehensive analyses of the spectrum of human neurofibromatosis type 2 mutations have been compiled which make up a valuable resource in understanding critical regions of the neurofibromatosis type 2 gene. Neurofibromatosis type 2 screening guidelines for young patients with solitary vestibular schwannomas have been published. The role of electromagnetic radiation via cellular and portable telephones as a predisposing factor to vestibular schwannoma formation has also been the topic of several studies. Based on increased knowledge of the pathways in which merlin functions and the available transgenic and xenograft mouse models, preliminary data regarding directed pharmacotherapy are also summarized. With increased knowledge of the pathologic mechanisms and interacting proteins associated with merlin, the research community is poised to begin trials of targeted interventions in vitro and in the current mouse models.

  18. [Emergency diagnosis of the acute vestibular syndrome].

    Science.gov (United States)

    Tamás, T László; Garai, Tibor; Király, István; Mike, Andrea; Nagy, Csaba; Paukovics, Ágnes; Schmidt, Péter; Szatmári, Ferenc; Tompos, Tamás; Vadvári, Árpád; Szirmai, Ágnes

    2017-12-01

    To diagnose acute vestibular syndrome (AVS) in a prospective study by a new bedside test (providing 1A evidence) based on oculomotor analysis and assessment of hearing loss. To assess the frequency of central and peripheral causes of acute vestibular syndrome in the emergency room. To establish the diagnostic accuracy of acute cranial computed tomography as compared to oculomotor analysis done by video oculography goggles and audiometry. Between 1st March 2016 and 1st March 2017 we documented 125 patients (62 women, 63 men, average age 53 years) in the emergency room of the Petz Aladár County Teaching Hospital using the above bedside and instrumental testing. Diagnosis was verified by cranial magnetic resonance imaging. According to the results of the instrumental examination in AVS in 67% we found a peripheral cause and in 33% a central pathology. In 62% isolated posterior circulation stroke manifested itself by isolated vertigo without additional focal signs and the acute cranial computed tomography showed negative results in 96%. The instrumental examination increased diagnostic accuracy by making the diagnosis of isolated inferior semicircular canal vestibular neuritis possible. The new bedside oculomotor test is suitable for the diagnosis of posterior circulation stroke manifesting with isolated vertigo in early cases, when the routine neuroradiologic methods have a lower sensitivity or are not available. Orv Hetil. 2017; 158(51): 2029-2040.

  19. Sensory hair cell development and regeneration: similarities and differences.

    Science.gov (United States)

    Atkinson, Patrick J; Huarcaya Najarro, Elvis; Sayyid, Zahra N; Cheng, Alan G

    2015-05-01

    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration. © 2015. Published by The Company of Biologists Ltd.

  20. Differential central projections of vestibular afferents in pigeons

    Science.gov (United States)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  1. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...... matrices, and maintained in serum-free, hormone-supplemented media. Transepithelial and intracellular studies showed that both the tracheal and bronchial culture preparations exhibited bioelectric parameters quantitatively similar to those of intact tissues. Similar to the native tissue, the tracheal...... preparation exhibited an equivalent short-circuit circuit (Ieq) that was sensitive to inhibitors of Cl- transport (bumetanide, diphenylamine carboxylic acid) but was insensitive to an inhibitor of Na+ transport, amiloride. In contrast, the bronchial preparation, like the native tissue, exhibited an Ieq...

  2. beta1 integrins are not required for the maintenance of lymphocytes within intestinal epithelia

    DEFF Research Database (Denmark)

    Marsal, Jan; Brakebusch, Cord; Bungartz, Gerd

    2005-01-01

    TCRalphabeta) and type b (CD8alphaalphaTCRgammadelta and CD8alphaalphaTCRalphabeta) intraepithelial lymphocyte (IEL) subsets within the mouse small intestine were found to express functional beta(1) integrin and the beta(1) integrin alpha chain partners alpha(1), alpha(2), and alpha(4). Using inducible beta(1) integrin...... IEL express functional beta(1) integrins, these are not required to maintain lymphocytes within intestinal epithelia. This result is discussed in the light of conventional views of intestinal lymphocyte homing and localization.......beta(1) integrins are thought to play a central role in maintaining lymphocytes within mucosal epithelia via their interactions with extracellular matrix proteins and subepithelial cellular components within and underlying the basement membrane. In the current study type a (CD8alphabeta...

  3. Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia

    Science.gov (United States)

    Zhao, Rongbao; Diop-Bove, Ndeye; Visentin, Michele; Goldman, I. David

    2013-01-01

    Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered. PMID:21568705

  4. Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia

    DEFF Research Database (Denmark)

    Geyti, Christine Stride; Odgaard, Elvin V. P.; Overgaard, Morten Thaarup

    2008-01-01

    lower in mTAL from P2Y(2) knock out mice (0.050 +/- 0.020 events per second, n = 8) compared to the wild type (0.147 +/- 0.018 events per second, n = 9). These findings indicate that renal epithelia spontaneously release nucleotides leading to P2-receptor-dependent [Ca(2+)](i) oscillations. Thus, tonic......Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve....... Transfection with either hP2Y(6) or hP2Y(2) receptors revealed a striking degree of oscillations. Similar spontaneous [Ca(2+)](i) increases were observed in freshly isolated, perfused mouse medullary thick ascending limb (mTAL). The oscillatory activity was reduced by basolateral apyrase and substantially...

  5. Effect of sound stimulion reciprocal interaction of antagonist muscles of lowe extremities in humans under vestibular loadе

    Directory of Open Access Journals (Sweden)

    I. V. Dregval

    2015-05-01

    Full Text Available Results of the research are evidence of changing muscles reflex activity of human lower extremity under the influence of sound stimulus of various frequency range together with the vestibular burden. The most change of the H-reflex was observed under the sound stimulus of 800 hertz. Not only the proprioceptive but auditory sensory system takes part in the regulation of the brain reflex activity. Existence of different labyrinths actions, according to the situation, on the interneuronic inhibitory ways of the postsynaptic inhibition of the salens muscle’s motoneurons is supposed.

  6. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia.

    Directory of Open Access Journals (Sweden)

    Hongtao Sun

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR and Calcium-activated Chloride Conductance (CaCC each play critical roles in maintaining normal hydration of epithelial surfaces including the airways and colon. TGF-beta is a genetic modifier of cystic fibrosis (CF, but how it influences the CF phenotype is not understood.We tested the hypothesis that TGF-beta potently downregulates chloride-channel function and expression in two CF-affected epithelia (T84 colonocytes and primary human airway epithelia compared with proteins known to be regulated by TGF-beta.TGF-beta reduced CaCC and CFTR-dependent chloride currents in both epithelia accompanied by reduced levels of TMEM16A and CFTR protein and transcripts. TGF-beta treatment disrupted normal regulation of airway-surface liquid volume in polarized primary human airway epithelia, and reversed F508del CFTR correction produced by VX-809. TGF-beta effects on the expression and activity of TMEM16A, wtCFTR and corrected F508del CFTR were seen at 10-fold lower concentrations relative to TGF-beta effects on e-cadherin (epithelial marker and vimentin (mesenchymal marker expression. TGF-beta downregulation of TMEM16A and CFTR expression were partially reversed by Smad3 and p38 MAPK inhibition, respectively.TGF-beta is sufficient to downregulate two critical chloride transporters in two CF-affected tissues that precedes expression changes of two distinct TGF-beta regulated proteins. Our results provide a plausible mechanism for CF-disease modification by TGF-beta through effects on CaCC.

  7. Cellular and Humoral Autoimmunity Directed at Bile Duct Epithelia in Murine Biliary Atresia

    OpenAIRE

    Mack, Cara L.; Tucker, Rebecca M.; Lu, Brandy R.; Sokol, Ronald J.; Fontenot, Andrew P.; Ueno, Yoshiyuki; Gill, Ronald G.

    2006-01-01

    Biliary atresia is an inflammatory fibrosclerosing lesion of the bile ducts that leads to biliary cirrhosis and is the most frequent indication for liver transplantation in children. The pathogenesis of biliary atresia is not known; one theory is that of a virus-induced, subsequent autoimmune-mediated injury of bile ducts. The aim of this study was to determine whether autoreactive T cells and autoantibodies specific to bile duct epithelia are present in the rotavirus (RRV)- induced murine mo...

  8. Sensory atypicalities in dyads of children with autism spectrum disorder (ASD) and their parents.

    Science.gov (United States)

    Glod, Magdalena; Riby, Deborah M; Honey, Emma; Rodgers, Jacqui

    2017-03-01

    Sensory atypicalities are a common feature of autism spectrum disorder (ASD). To date, the relationship between sensory atypicalities in dyads of children with ASD and their parents has not been investigated. Exploring these relationships can contribute to an understanding of how phenotypic profiles may be inherited, and the extent to which familial factors might contribute towards children's sensory profiles and constitute an aspect of the broader autism phenotype (BAP). Parents of 44 children with ASD and 30 typically developing (TD) children, aged between 3 and 14 years, participated. Information about children's sensory experiences was collected through parent report using the Sensory Profile questionnaire. Information about parental sensory experiences was collected via self-report using the Adolescent/Adult Sensory Profile. Parents of children with ASD had significantly higher scores than parents of TD children in relation to low registration, over responsivity, and taste/smell sensory processing. Similar levels of agreement were obtained within ASD and TD parent-child dyads on a number of sensory atypicalities; nevertheless significant correlations were found between parents and children in ASD families but not TD dyads for sensation avoiding and auditory, visual, and vestibular sensory processing. The findings suggest that there are similarities in sensory processing profiles between parents and their children in both ASD and TD dyads. Familial sensory processing factors are likely to contribute towards the BAP. Further work is needed to explore genetic and environmental influences on the developmental pathways of the sensory atypicalities in ASD. Autism Res 2017, 10: 531-538. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  9. ECM-stimulated signaling and actin reorganization in embryonic corneal epithelia are Rho dependent.

    Science.gov (United States)

    Reenstra, Wende R; Orlow, Daniel L; Svoboda, Kathy K H

    2002-10-01

    The goal of this study was to investigate the role of the small guanosine triphosphatase (GTPase), Rho, in the corneal epithelial response to extracellular matrix (ECM) molecules. The avian corneal epithelial model was used to establish that Rho is required for actin reorganization and tyrosine phosphorylation of integrin-mediated signal pathway proteins. Whole embryonic corneal epithelia were isolated without the basal lamina and either transfected with Rho-specific antisense oligonucleotides or treated with Clostridium botulinum C3 exoenzyme and then stimulated with fibronectin (FN) or collagen (COL). The epithelia were evaluated for actin reorganization and protein production including Rho protein levels and tyrosine phosphorylation with Western blot analysis. After an overnight transient transfection with antisense oligonucleotides, Rho protein levels were decreased more than 80%, and tyrosine phosphorylation of all integrin-mediated signal transduction proteins was decreased compared with control epithelia. Intracellular Rho distribution did not change in the presence of antisense oligonucleotides; however, the amount of immunolabeled Rho decreased. Disrupting the signaling cascade with Rho antisense also blocked FN- and COL-stimulated actin cortical mat reformation. C. botulinum C3 exoenzyme, a pharmacologic agent that specifically causes adenosine diphosphate (ADP) ribosylation and inactivation of Rho, also blocked actin reorganization and tyrosine phosphorylation. In contrast, decreasing Raf protein levels did not change FN-mediated actin reorganization or tyrosine phosphorylation. Decreasing Rho protein or blocking its function inhibited ECM-stimulated actin reorganization and signal transduction, as measured by tyrosine phosphorylation.

  10. Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia.

    Science.gov (United States)

    Bui, Phuong; Bagherie-Lachidan, Mazdak; Kelly, Scott P

    2010-04-12

    A primary cultured gill epithelium from the puffer fish Tetraodon nigroviridis was developed to examine the corticosteroid regulation of claudin isoform mRNA abundance in fish gills. Preparations were composed of polygonal epithelial cells exhibiting concentric apical microridges and zonula occludens-1 immunoreactivity along cell margins. No evidence was found to indicate the presence of Na(+)-K(+)-ATPase-immunoreactive or mitochondria-rich cells in cultured preparations. Therefore, epithelia appear to be composed of gill pavement cells (PVCs) only. An RT-PCR profile of 12 salinity responsive gill claudin tight junction (TJ) proteins (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b) revealed the absence of Tncldn6, -10d and -10e in cultured epithelia, suggesting that these isoforms are not associated with gill PVCs. Cortisol treatment of cultured epithelia dose-dependently increased or decreased mRNA abundance of select claudin isoforms. Transcript abundance of several claudin isoforms was unaffected by cortisol treatment. These data provide evidence for the cell specific distribution of claudins in fish gills and suggest that heterogeneous alterations in the abundance of select claudin isoforms contribute to the corticosteroid regulation of gill permeability.

  11. Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia.

    Science.gov (United States)

    Notterpek, L; Roux, K J; Amici, S A; Yazdanpour, A; Rahner, C; Fletcher, B S

    2001-12-04

    Alterations in peripheral myelin protein 22 (PMP22) gene expression are associated with a host of heritable demyelinating peripheral neuropathies, yet the function of the protein remains unknown. PMP22 expression is highest in myelinating Schwann cells of peripheral nerves; however, significant levels of PMP22 mRNAs can be detected in a variety of non-neural tissue, including epithelia. To date, PMP22 protein expression and localization in non-neural tissues have not been studied in detail. In adult rat liver and intestine, and cultured epithelial cells, we detected PMP22-like immunoreactivity associated with markers of the tight junctional complex, including zonula occludens 1 (ZO-1) and occludin. Upon disruption of intercellular contacts, PMP22 was internalized into vesicles that were immunoreactive for both anti-occludin and anti-PMP22 antibodies. Nonionic detergent extraction of cultured epithelial cells did not solubilize PMP22, as the majority of the protein remained in the detergent insoluble fraction, as did ZO-1 and occludin. We also observed the targeting of exogenous myc-tagged PMP22 to apical cell junctions in polarized epithelia and to anti-ZO-1 antibody immunoreactive cell contacts of L fibroblasts. These studies support a role for PMP22 at intercellular junctions of epithelia and may indicate a similar function in myelinating Schwann cells. Furthermore, our findings could provide an explanation for certain phenotypes of PMP22 neuropathy mice that cannot be accounted for by dysmyelination.

  12. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate.

    Science.gov (United States)

    Lewis, Kimberley; Lutgendorff, Femke; Phan, Van; Söderholm, Johan D; Sherman, Philip M; McKay, Derek M

    2010-07-01

    The gut microflora in some patients with Crohn's disease can be reduced in numbers of butyrate-producing bacteria and this could result in metabolic stress in the colonocytes. Thus, we hypothesized that the short-chain fatty acid, butyrate, is important in the maintenance and regulation of the barrier function of the colonic epithelium. Confluent monolayers of the human colon-derived T84 or HT-29 epithelial cell lines were exposed to dinitrophenol (DNP (0.1 mM), uncouples oxidative phosphorylation) + Escherichia coli (strain HB101, 10(6) cfu) +/- butyrate (3-50 mM). Transepithelial resistance (TER), and bacterial internalization and translocation were assessed over a 24-hour period. Epithelial ultrastructure was assessed by transmission electron microscopy. Epithelia under metabolic stress display decreased TER and increased numbers of pseudopodia that is consistent with increased internalization and translocation of the E. coli. Butyrate (but not acetate) significantly reduced the bacterial translocation across DNP-treated epithelia but did not ameliorate the drop in TER in the DNP+E. coli exposed monolayers. Inhibition of bacterial transcytosis across metabolically stressed epithelia was associated with reduced I-kappaB phosphorylation and hence NF-kappaB activation. Reduced butyrate-producing bacteria could result in increased epithelial permeability particularly in the context of concomitant exposure to another stimulus that reduces mitochondria function. We speculate that prebiotics, the substrate for butyrate synthesis, is a valuable prophylaxis in the regulation of epithelial permeability and could be of benefit in preventing relapses in IBD.

  13. Making Sense of the Body: the Role of Vestibular Signals.

    Science.gov (United States)

    Lopez, Christophe

    2015-01-01

    The role of the vestibular system in posture and eye movement control has been extensively described. By contrast, how vestibular signals contribute to bodily perceptions is a more recent research area in the field of cognitive neuroscience. In the present review article, I will summarize recent findings showing that vestibular signals play a crucial role in making sense of the body. First, data will be presented showing that vestibular signals contribute to bodily perceptions ranging from low-level bodily perceptions, such as touch, pain, and the processing of the body's metric properties, to higher level bodily perceptions, such as the sense of owning a body, the sense of being located within this body (embodiment), and the anchoring of the visuo-spatial perspective to this body. In the second part of the review article, I will show that vestibular information seems to be crucially involved in the visual perception of biological motion and in the visual perception of human body structure. Reciprocally, observing human bodies in motion influences vestibular self-motion perception, presumably due to sensorimotor resonance between the self and others. I will argue that recent advances in the mapping of the human vestibular cortex afford neuroscientific models of the vestibular contributions to human bodily self-consciousness.

  14. Long-term hearing preservation in vestibular schwannoma

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  15. Evaluation and treatment of vestibular dysfunction in children.

    Science.gov (United States)

    Rine, Rose Marie; Wiener-Vacher, Sylvette

    2013-01-01

    The effect of vestibular dysfunction since birth is more debilitating than that attained later in life, and unlike adults, children with vestibular dysfunction since or shortly after birth do not recover function without intervention. The purpose of this report is to provide an overview of the etiology of vestibular dysfunction in children as well as the related impairments, and to describe testing methods and evidence based interventions to ameliorate the vestibular related impairments in children. In recent years, investigations have revealed that vestibular dysfunction is more common in children than previously thought, with consequent impairments in motor development, balance and reading abilities. The dysfunction may be due to central or peripheral lesions, each with distinct presentation of symptoms and test results. Common etiologies and clinical presentation of vestibular dysfunction in children are reviewed; appropriate screening and diagnostic techniques and efficacious medical and rehabilitation interventions are presented. Despite advances in clinical and diagnostic testing of vestibular function in children and infants, testing of vestibular function is not typically done. Comprehensive testing of signs and symptoms is critical for diagnosis and implementation of appropriate interventions.

  16. Paediatric Acquired Recto –Vestibular Fistula: Experience In Accra ...

    African Journals Online (AJOL)

    The association of acquired recto-vaginal fistula (RVF) with the human immunodeficiency virus is increasingly being recognized and reported in the literature Congenital recto - vestibular fistulae associated with imperforate anus is not uncommon, but it is rare to see children with acquired recto - vestibular fistula. From 1997 ...

  17. Connections of the vestibular nuclei in the rabbit

    NARCIS (Netherlands)

    A.H. Epema

    1990-01-01

    textabstractThis thesis descnbes the afferent, efferent and intrinsic connections of the vestibular nuclei in the Dutch belted rabbit. Different anatomical tracing techniques were used to study these projections. A description of the vestibular complex was added, since recent data for the rabbit

  18. Vestibular vertigo in emergency neurology and cervical osteochondrosis

    Directory of Open Access Journals (Sweden)

    T S Barykova

    2010-01-01

    had acute peripheral vestibular pathology that required cerebral stroke or hemorrhage to be ruled out according to clinical data in most cases. Intermittent, recurrent, short-term vestibular crisis in the examined group of patients is temporarily or clinically unrelated to an exacerbation of cervical osteochondrosis.

  19. Molecular mechanisms of vestibular compensation in the central vestibular system--review.

    Science.gov (United States)

    Kitahara, T; Takeda, N; Kiyama, H; Kubo, T

    1998-01-01

    Vestibular compensation consists of two stages: the inhibition of the contralesional medial vestibular nucleus (contra-MVe) activities at the acute stage after unilateral labyrinthectomy (UL) and the recovery and maintenance of the ipsilesional MVe (ipsi-MVe) spontaneous activities at the chronic stage after UL. In this paper, we reviewed molecular mechanisms of vestibular compensation in the central vestibular system using several morphological and pharmacological approaches in rats. Based on our examinations, we propose the following hypotheses: i) at the acute stage after UL, the activated neurons in the ipsi-MVe project their axons into the flocculus to inhibit the contra-MVe neurons via the NMDA receptor, nitric oxide (NO) and/or GABA-mediated signalling, resulting in the restoration of balance between intervestibular nuclear activities. ii) At the chronic stage after UL, the flocculus depresses the inhibitory effects on the ipsi-MVe neurons via protein phosphatase 2A (PP2A) beta, protein kinase C (PKC) and glutamate receptor (GluR) delta-2, to help the recovery and maintenance of ipsi-MVe activities.

  20. Postoperative management of nasal vestibular stenosis - The custom-made vestibular device

    NARCIS (Netherlands)

    Menger, Dirk-Jan; Lohuis, Peter J. F. M.; Kerssemakers, Steven; Nolst Trenité, Gilbert J.

    2005-01-01

    Objective: To evaluate the effect of a custom-made postoperative vestibular device on the occurrence and severity), of restenosis. Design: This was a retrospective study conducted at the Department of Otorhinolaryngology/Head and Neck Surgery, Center for Facial Plastic and Reconstructive Surgery of

  1.  A Novel V- Silicone Vestibular Stent: Preventing Vestibular Stenosis andPreserving Nasal Valves

    Directory of Open Access Journals (Sweden)

    Rashid Al Abri

    2012-01-01

    Full Text Available  This report presents a novel style of placing nasal stents. Patientsundergoing surgical procedures in the region of nasal vestibuleand nasal valves are at risk of developing vestibular stenosis andlifelong problems with the external and internal nasal valves;sequels of the repair. The objective of the report is to demonstratea simple and successful method of an inverted V- Stent placementto prevent potential complication of vestibular stenosis and nasalvalve compromise later in life. Following a fall on a sharp edge ofa metallic bed, a sixteen month old child with a deep laceratednasal wound extending from the collumellar base toward thetip of the nose underwent surgical exploration and repair of thenasal vestibule and nasal cavity. A soft silicone stent fashioned asinverted V was placed bilaterally. The child made a remarkablerecovery with no evidence of vestibular stenosis or nasal valveabnormalities. In patients with nasal trauma involving the nasalvestibule and internal and external nasal valves stent placementavoids sequels, adhesions, contractures, synechia vestibularstenosis and fibrosis involving these anatomical structures.The advantages of the described V- stents over the traditionalreadymade ridged nasal stents, tubing’s and composite aural graftsare: a technical simplicity of use, b safety, c less morbidity, dmore comfortable, and e economical. To our knowledge, this isthe first report of such a stent for prevention of vestibular stenosisand preserving nasal valves.

  2. In the presence of others: Self-location, balance control and vestibular processing.

    Science.gov (United States)

    Lopez, C; Falconer, C J; Deroualle, D; Mast, F W

    2015-11-01

    The degree to which others in our environment influence sensorimotor processing has been a particular focus of cognitive neuroscience for the past two decades. This process of self-other resonance, or shared body representation, has only recently been extended to more global bodily processes such as self-location, self-motion perception, balance and perspective taking. In this review, we outline these previously overlooked areas of research to bridge the distinct field of social neuroscience with global self-perception, vestibular processing and postural control. Firstly, we outline research showing that the presence and movement of others can modulate two fundamental experiences of the self: self-location (the experience of where the self is located in space) and self-motion perception (the experience that oneself has moved or has been moved in space). Secondly, we outline recent research that has shown perturbations in balance control as a result of instability in others in our environment. Conversely to this, we also highlight studies in virtual reality demonstrating the potential benefits of the presence of others in our environment for those undergoing vestibular rehabilitation. Thirdly, we outline studies of first- and third-person perspective taking, which is the ability to have or take a visuo-spatial perspective within and out-with the confines of our own body. These studies demonstrate a contamination of perspective taking processes (i.e. automatic, implicit, third-person perspective taking) in the presence of others. This collection of research highlights the importance of social cues in the more global processing of the self and its accompanying sensory inputs, particularly vestibular signals. Future research will need to better determine the mechanisms of self-other resonance within these processes, including the role of individual differences in the susceptibility to the influence of another. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Vestibular schwannoma with contralateral facial pain – case report

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammad

    2003-03-01

    Full Text Available Abstract Background Vestibular schwannoma (acoustic neuroma most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon. Case presentation Among 156 cases of operated vestibular schwannoma, we found one case with unusual presentation of contralateral hemifacial pain. Conclusion The presentation of contralateral facial pain in the vestibular schwannoma is rare. It seems that displacement and distortion of the brainstem and compression of the contralateral trigeminal nerve in Meckel's cave by the large mass lesion may lead to this atypical presentation. The best practice in these patients is removal of the tumour, although persistent contralateral pain after operation has been reported.

  4. Congenital and compensated vestibular dysfunction in childhood: an overlooked entity.

    Science.gov (United States)

    Weiss, Avery H; Phillips, James O

    2006-07-01

    We report five children with previously unrecognized vestibular dysfunction detected by clinical examination and confirmed by quantitative vestibular testing. Patient 1 presented with fluctuating visual acuity and intermittent nystagmus. Patient 2 had congenital hearing loss associated with imbalance, delayed motor development, and cyclic vomiting. Patient 3 had neurotrophic keratitis with an intermittent head tilt, imbalance, and motor delays. Patient 4 showed ataxia and eye movement abnormalities following traumatic brain injury and had reading difficulties. Patient 5 had episodic vertigo and eye movement abnormalities from infancy. Clinical vestibular testing emphasized spontaneous nystagmus, rapid head thrust, and assessment of post-rotatory nystagmus. Quantitative vestibular testing included the sinusoidal chair rotation and velocity step tests, measurement of dynamic visual acuity, post-head-shake nystagmus, and computerized platform posturography. Pediatric neurologists encounter children with congenital and compensated vestibular dysfunction, which can be recognized on the basis of relevant history and clinical abnormalities of the ocular-ocular reflex.

  5. Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation.

    Science.gov (United States)

    Shao, Mei; Popratiloff, Anastas; Hirsch, June C; Peusner, Kenna D

    2009-01-01

    Vestibular compensation refers to the recovery of function occurring after unilateral vestibular deafferentation, but some patients remain uncompensated. Similarly, more than half of the operated chickens compensate three days after unilateral vestibular ganglionectomy (UVG), but the rest remain uncompensated. This review focuses on the studies performed on the principal cells of the chick tangential nucleus after UVG. The tangential nucleus is a major avian vestibular nucleus whose principal cells are all second-order, vestibular reflex projection neurons participating in the vestibuloocular and vestibulocollic reflexes controlling posture, balance, and eye movements. Using whole-cell patch-clamp approach in brain slice preparations, spontaneous spike firing, ionic conductances, and spontaneous excitatory postsynaptic currents (sEPSCs) are recorded in principal cells from controls and operated chickens three days after UVG. In compensated chickens, the proportion of spontaneous spike firing principal cells and their spike discharge rate are symmetric on the lesion and intact sides, with the rates increased over controls. However, in the uncompensated chickens, the spike discharge rate increases on the lesion side, but not on the intact side, where only silent principal cells are recorded. In all the experimental groups, including controls, silent principal cells are distinguished from spontaneous spiking cells by smaller persistent sodium conductances and higher activation thresholds for the fast sodium channel. In addition, silent principal cells on the intact side of uncompensated chickens have larger dendrotoxin-sensitive potassium conductances, with a higher ratio of immunolabeling for surface/cytoplasmic expression of a dendrotoxin-sensitive, potassium channel subunit, Kv1.1. Finally, in compensated chickens, sEPSC frequency is symmetric bilaterally, but in uncompensated chickens sEPSC frequency increased only on the lesion side, where the expression of Kv1

  6. Vestibular characterization in the menstrual cycle Caracterização vestibular no ciclo menstrual

    Directory of Open Access Journals (Sweden)

    Cintia Ishii

    2009-06-01

    Full Text Available Hormonal disorders in the menstrual cycle can affect labyrinthine fluid homeostasis, causing balance and hearing dysfunctions. STUDY DESIGN: Clinical prospective. AIM: compare the results from vestibular tests in young women, in the premenstrual and postmenstrual periods. MATERIALS AND METHODS: twenty women were selected with ages ranging from 18 to 35 years, who were not using any kind of contraceptive method for at least six months, and without vestibular or hearing complaints. The test was carried out in each subject before and after the menstrual period, respecting the limit of ten days before or after menstruation. RESULTS: there was a statistically significant difference in the menstrual cycle phases only in the following vestibular tests: calibration, saccadic movements, PRPD and caloric-induced nystagmus. We also noticed that age; a regular menstrual cycle; hearing loss or dizziness cases in the family; and premenstrual symptoms such as tinnitus, headache, sleep disorders, anxiety, nausea and hyperacusis can interfere in the vestibular test. CONCLUSION: there are differences in the vestibular tests of healthy women when comparing their pre and postmenstrual periods.As alterações hormonais do ciclo menstrual podem comprometer a homeostase dos fluidos labirínticos, gerando alterações no equilíbrio e na audição. FORMA DO ESTUDO: Clínico prospectivo. OBJETIVO: Comparar os resultados dos testes do exame vestibular em mulheres jovens, nos períodos pré e pós-menstrual. MATERIAL E MÉTODO: Foram selecionadas vinte mulheres, entre dezoito e trinta e cinco anos, que não fizessem uso de qualquer tipo de anticoncepcional, com audição normal e sem queixas vestibulares. O exame vestibular foi realizado em cada participante no período pré e no período pós-menstrual, em ordem aleatória, e respeitando o limite de até dez dias antes do início da menstruação e até dez dias após o início da menstruação. RESULTADO: Foi observada

  7. Aspects of cerebral plasticity related to clinical features in acute vestibular neuritis: a "starting point" review from neuroimaging studies.

    Science.gov (United States)

    Micarelli, A; Chiaravalloti, A; Schillaci, O; Ottaviani, F; Alessandrini, M

    2016-04-01

    Vestibular neuritis (VN) is one of the most common causes of vertigo and is characterised by a sudden unilateral vestibular failure (UVF). Many neuroimaging studies in the last 10 years have focused on brain changes related to sudden vestibular deafferentation as in VN. However, most of these studies, also due to different possibilities across diverse centres, were based on different times of first acquisition from the onset of VN symptoms, neuroimaging techniques, statistical analysis and correlation with otoneurological and psychological findings. In the present review, the authors aim to merge together the similarities and discrepancies across various investigations that have employed neuroimaging techniques and group analysis with the purpose of better understanding about how the brain changes and what characteristic clinical features may relate to each other in the acute phase of VN. Six studies that strictly met inclusion criteria were analysed to assess cortical-subcortical correlates of acute clinical features related to VN. The present review clearly reveals that sudden UVF may induce a wide variety of cortical and subcortical responses - with changes in different sensory modules - as a result of acute plasticity in the central nervous system. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  8. State Anxiety Subjective Imbalance and Handicap in Vestibular Schwannoma.

    Science.gov (United States)

    Saman, Yougan; Mclellan, Lucie; Mckenna, Laurence; Dutia, Mayank B; Obholzer, Rupert; Libby, Gerald; Gleeson, Michael; Bamiou, Doris-Eva

    2016-01-01

    Evidence is emerging for a significant clinical and neuroanatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety, and there is a relationship between increased state anxiety and worsening balance function. (1) To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit. (2) To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. Two separate cohorts of vestibular schwannoma (VS) patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials, and caloric responses) and questionnaire assessments [vertigo handicap questionnaire (VHQ), vertigo symptom scale (VSS), and state-trait anxiety inventory (STAIY)]. Fifteen post-resection VS patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1). Forty-five patients with VS in situ formed the cohort for Experiment 2 (Aim 2). Experiment 1: VS subjects (N = 15) with a complete post-resection unilateral vestibular deafferentation completed a state anxiety questionnaire before caloric assessment and again afterward with the point of maximal vertigo as the reference (Aim 1). Experiment 2: state anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of patients with VS in situ presenting with balance symptoms (Group 1, N = 26) and without balance symptoms (Group 2, N = 11) (Aim 2). The presence of balance symptoms was defined as having a positive score on the VSS-VER. In Experiment 1, a significant difference (p handicap (p < 0.001). Anxiety

  9. The molecular biology and novel treatments of vestibular schwannomas.

    Science.gov (United States)

    Fong, Brendan; Barkhoudarian, Garni; Pezeshkian, Patrick; Parsa, Andrew T; Gopen, Quinton; Yang, Isaac

    2011-11-01

    Vestibular schwannomas are histopathologically benign tumors arising from the Schwann cell sheath surrounding the vestibular branch of cranial nerve VIII and are related to the NF2 gene and its product merlin. Merlin acts as a tumor suppressor and as a mediator of contact inhibition. Thus, deficiencies in both NF2 genes lead to vestibular schwannoma development. Recently, there have been major advances in our knowledge of the molecular biology of vestibular schwannomas as well as the development of novel therapies for its treatment. In this article the authors comprehensively review the recent advances in the molecular biology and characterization of vestibular schwannomas as well as the development of modern treatments for vestibular schwannoma. For instance, merlin is involved with a number of receptors including the CD44 receptor, EGFR, and signaling pathways, such as the Ras/raf pathway and the canonical Wnt pathway. Recently, merlin was also shown to interact in the nucleus with E3 ubiquitin ligase CRL4(DCAF1). A greater understanding of the molecular mechanisms behind vestibular schwannoma tumorigenesis has begun to yield novel therapies. Some authors have shown that Avastin induces regression of progressive schwannomas by over 40% and improves hearing. An inhibitor of VEGF synthesis, PTC299, is currently in Phase II trials as a potential agent to treat vestibular schwannoma. Furthermore, in vitro studies have shown that trastuzumab (an ERBB2 inhibitor) reduces vestibular schwannoma cell proliferation. With further research it may be possible to significantly reduce morbidity and mortality rates by decreasing tumor burden, tumor volume, hearing loss, and cranial nerve deficits seen in vestibular schwannomas.

  10. Moving in a Moving World: A Review on Vestibular Motion Sickness.

    Science.gov (United States)

    Bertolini, Giovanni; Straumann, Dominik

    2016-01-01

    Motion sickness is a common disturbance occurring in healthy people as a physiological response to exposure to motion stimuli that are unexpected on the basis of previous experience. The motion can be either real, and therefore perceived by the vestibular system, or illusory, as in the case of visual illusion. A multitude of studies has been performed in the last decades, substantiating different nauseogenic stimuli, studying their specific characteristics, proposing unifying theories, and testing possible countermeasures. Several reviews focused on one of these aspects; however, the link between specific nauseogenic stimuli and the unifying theories and models is often not clearly detailed. Readers unfamiliar with the topic, but studying a condition that may involve motion sickness, can therefore have difficulties to understand why a specific stimulus will induce motion sickness. So far, this general audience struggles to take advantage of the solid basis provided by existing theories and models. This review focuses on vestibular-only motion sickness, listing the relevant motion stimuli, clarifying the sensory signals involved, and framing them in the context of the current theories.

  11. Moving in a moving world: a review on vestibular motion sickness

    Directory of Open Access Journals (Sweden)

    Giovanni eBertolini

    2016-02-01

    Full Text Available Motion sickness is a common disturbance occurring in healthy people as a physiological response to exposure to motion stimuli that are unexpected on the basis of previous experience. The motion can be either real, and therefore perceived by the vestibular system, or illusory, as in the case of visual illusion. A multitude of studies has been performed in the last decades, substantiating different nauseogenic stimuli, studying their specific characteristics, proposing unifying theories and testing possible countermeasures. Several reviews focused on one of these aspects, however the link between specific nauseogenic stimuli and the unifying theories and models is often not clearly detailed. Readers unfamiliar with the topic, but studying a condition that may involve motion sickness, can therefore have difficulties to understand why a specific stimulus will induce motion sickness. So far, this general audience struggles to take advantage of the solid basis provided by existing theories and models. This review focuses on vestibular-only motion sickness, listing the relevant motion stimuli, clarifying the sensory signals involved and framing them in the context of the current theories.

  12. Neurosonology Accuracy for Isolated Acute Vestibular Syndromes.

    Science.gov (United States)

    Tábuas-Pereira, Miguel; Sargento-Freitas, João; Isidoro, Luís; Silva, Fernando; Galego, Orlando; Nunes, César; Cordeiro, Gustavo; Cunha, Luís

    2017-12-01

    The clinical approach to acute vestibular syndromes is often complex for the physician. Neurosonology offers a noninvasive method to study the cervicocephalic circulation when a vascular etiology is suspected. We aim to evaluate the diagnostic accuracy of a vascular neurosonological exam in isolated acute vestibular syndrome. All patients submitted to cerebrovascular ultrasound and magnetic resonance imaging during the period between 2011 and 2015 with acute isolated vestibular syndrome. Those with any clinical sign of brainstem lesion on presentation were excluded. All patients performed the neuroimaging study (brain computed tomography and magnetic resonance imaging) and neurologic surveillance. Neurosonological exam included all intra- and extracranial segments of the vertebrobasilar circulation. Positive ultrasound exam was defined as the presence of stenotic or occlusive disease in any of these segments related to the infarcted area. A total of 108 patients were included: 60 (53.6%) were males (mean age: 60.75 years (standard deviation, 14.17)). In 27 patients (25.0%) a cerebral ischemic lesion was found to be the cause of the vertigo. Neurosonological assessment showed a sensitivity of 40.7% (95% confidence interval (CI): 22.4; 61.2), specificity of 100% (95% CI: 95.5; 100.0), positive predictive value (PPV) of 100% (95% CI: 71.5; 100.0), and negative predictive value (NPV) of 83.5% (95% CI: 74.6; 90.3). Our study suggests that cerebrovascular ultrasound is a highly specific method for the diagnosis of cerebrovascular vertigo. However, its low sensitivity makes it a poor candidate for screening. © 2017 by the American Institute of Ultrasound in Medicine.

  13. The sensory-motor theory of rhythm and beat induction 20 years on: A new synthesis and future perspectives.

    Directory of Open Access Journals (Sweden)

    Neil Philip Todd

    2015-08-01

    Full Text Available Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd 1994, 1995, and that a sense of motion from sound is mediated by the vestibular system (Todd 1992, 1993. These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al. 1999. A neurological substrate was proposed which might form the biological basis of the theory (Todd et al. 2002. The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al. 2014ab. These behavioural and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1 Rhythm perception is a form of vestibular perception; (2 Rhythm perception evokes both external and internal guidance of somatotopic representations; (3 A link from the limbic system to the internal guidance pathway mediates the dance habit; (4 The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research.

  14. UNCOMMON SENSORY METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2015-02-01

    Full Text Available Sensory science is the young but the rapidly developing field of the food industry. Actually, the great emphasis is given to the production of rapid techniques of data collection, the difference between consumers and trained panel is obscured and the role of sensory methodologists is to prepare the ways for evaluation, by which a lay panel (consumers can achieve identical results as a trained panel. Currently, there are several conventional methods of sensory evaluation of food (ISO standards, but more sensory laboratories are developing methodologies that are not strict enough in the selection of evaluators, their mechanism is easily understandable and the results are easily interpretable. This paper deals with mapping of marginal methods used in sensory evaluation of food (new types of profiles, CATA, TDS, napping.

  15. Sensory correlations in autism.

    Science.gov (United States)

    Kern, Janet K; Trivedi, Madhukar H; Grannemann, Bruce D; Garver, Carolyn R; Johnson, Danny G; Andrews, Alonzo A; Savla, Jayshree S; Mehta, Jyutika A; Schroeder, Jennifer L

    2007-03-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different processing modalities using total scores. Analysis also showed a significant correlation between processing modalities for both high and low thresholds, with the exception that auditory high threshold processing did not correlate with oral low threshold or touch low threshold processing. Examination of the different age groups suggests that sensory disturbance correlates with severity of autism in children, but not in adolescents and adults. Evidence from this study suggests that: all the main modalities and multisensory processing appear to be affected; sensory processing dysfunction in autism is global in nature; and sensory processing problems need to be considered part of the disorder.

  16. Accessibility and sensory experiences

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2010-01-01

    This article introduces a new design concept; sensory accessibility. While acknowledging the importance of sensory experiences in architectural quality, as well as the importance of accommodating user needs the concept combines three equally important factors; architecture, the senses...... and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...... physical access to the built environment by accommodating physical disabilities. While the existing concept of accessibility ensures the physical access of everyone to a given space, sensory accessibility ensures the choice of everyone to stay and be able to participate and experience....

  17. EL SINDROME VESTIBULAR EN EL ADULTO MAYOR

    OpenAIRE

    Suárez, Hamlet; Suárez, Alejo

    2016-01-01

    El vértigo, la inestabilidad y las caídas tienen una incidencia relevante en el adulto mayor, disminuye su calidad de vida y puede ser causa de muerte en esta población. Este artículo describe las presentaciones clínicas y el abordaje de la evaluación de la patología vestibular en este grupo de edad, utilizando diferentes instrumentos para el diagnóstico así como también las reglas generales del tratamiento.

  18. EL SINDROME VESTIBULAR EN EL ADULTO MAYOR

    Directory of Open Access Journals (Sweden)

    Dr. Hamlet Suárez

    2016-11-01

    Full Text Available El vértigo, la inestabilidad y las caídas tienen una incidencia relevante en el adulto mayor, disminuye su calidad de vida y puede ser causa de muerte en esta población. Este artículo describe las presentaciones clínicas y el abordaje de la evaluación de la patología vestibular en este grupo de edad, utilizando diferentes instrumentos para el diagnóstico así como también las reglas generales del tratamiento.

  19. Vestibular schwannoma presenting with sudden facial paralysis.

    Science.gov (United States)

    Wexler, D B; Fetter, T W; Gantz, B J

    1990-04-01

    Facial paralysis is an unusual manifestation of vestibular schwannoma, and generally signifies an advanced stage of tumor growth. We describe a case of eighth-nerve schwannoma that presented initially with rapid-onset complete unilateral facial paralysis. At the time of operation the nerve was found to be electrically intact despite marked compression by tumor. The facial nerve was preserved and facial motion has partially recovered postoperatively. All unexplained persistent facial paralysis should be evaluated by magnetic resonance imaging with paramagnetic contrast enhancement.

  20. Symptomatic recovery in Miller Fisher Syndrome parallels vestibular-perceptual and not vestibular-ocular reflex function

    Directory of Open Access Journals (Sweden)

    Barry M Seemungal

    2011-02-01

    Full Text Available Unpleasant visual symptoms including oscillopsia and dizziness may occur when there is unexpected motion of the visual world across the subject’s retina (‘retinal-slip’ as in an acute spontaneous nystagmus or on head movement with an acute ophthalmoplegia. In contrast, subjects with chronic ocular dysmotility, e.g. congenital nystagmus or CPEO (chronic progressive external ophthalmoplegia, are typically symptom free. The adaptive processes that render chronic patients asymptomatic are obscure but may include a suppression of oscillopsia perception as well as an increased tolerance to perceived oscillopsia. Such chronic asymptomatic patients display an attenuation of vestibular-mediated angular velocity perception, implying a possible contributory role in the adaptive process. In order to assess causality between symptoms, signs (i.e. eye-movements and vestibular perceptual function, we prospectively assessed symptom ratings and ocular-motor and perceptual vestibular function, in a patient with acute but transient ophthalmoplegia due to Miller Fisher Syndrome (as a model of visuo-vestibular adaptation. The data show that perceptual measures of vestibular function display a significant attenuation as compared to ocularmotor measures during the acute, symptomatic period. Perhaps significantly, both symptomatic recovery and normalisation of vestibular perceptual function were delayed and then occurred in a parallel fashion. This is the first report showing that symptomatic recovery of visuo-vestibular symptoms is better paralleled by vestibular-perceptual testing than VOR (vestibular ocular reflex measures. The findings may have implications for the understanding of patients with chronic vestibular symptoms where VOR testing is often unhelpful.

  1. Reabilitação vestibular na criança: estudo preliminar Vestibular rehabilitation in children: preliminary study

    Directory of Open Access Journals (Sweden)

    Roseli S. M. Bittar

    2002-08-01

    Full Text Available Forma de estudo: Clínico prospectivo. Objetivo: O estudo analisa prospectivamente os resultados da Reabilitação Vestibular pelo método de Cawtorne & Cooksey em 22 crianças, portadoras de vestibulopatia periférica, associada ou não a sintomas centrais, com idade média de 8,6 anos. Material e método: Os exames quantitativos da função vestibular utilizados para quantificar a vestibulopatia foram a eletronistagmografia e a prova rotatória pendular decrescente (PRPD, mas a história clínica altamente sugestiva de processo vestibular foi considerada diagnóstica mesmo na presença de exames normais. Resultado: Os resultados apontam a Reabilitação Vestibular como uma opção válida no tratamento das vestibulopatias na infância, uma vez que não houve casos não responsivos ao tratamento.Study design: Clinical prospective. Aim: The authors analyze prospectively 22 children (mean age 8,6 years with vestibulopathy treated with Vestibular Rehabilitation in order to verify its results. Material and methody: Twenty two children with peripheral vestibular disorders associated or not to central symptoms were submitted to vestibular stimulation by the method of Cawthorne & Cooksey. The methods used to quantify the vestibular abnormalities were the electronystagmography and rotational chair testing, but a suggestive history of vestibular disorder was accepted even the exams were normal. Results: All the patients improved and our results suggest that VR is a therapeutic alternative for the treatment of vestibular disorders in the children.

  2. STATE ANXIETY, SUBJECTIVE IMBALANCE AND HANDICAP IN VESTIBULAR SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Yougan Saman

    2016-07-01

    Full Text Available ABSTRACTEvidence is emerging of a significant clinical and neuro-anatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety and there is a relationship between increased state anxiety and worsening balance function. Aims1.To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit.2.To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. MethodsTwo separate cohorts Vestibular Schwannoma (VS patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials and caloric responses and questionnaire assessment (Vertigo handicap Questionnaire, Vertigo Symptom Scale, State Trait Anxiety InventoryFifteen post resection Vestibular schwannoma patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1. Forty-five patients with VS in-situ and with preserved vestibular function formed the cohort for Experiment 2 (Aim 2. Experiment 1: VS subjects (N=15 with a complete post-resection unilateral vestibular deafferentation completed a State anxiety questionnaire before caloric assessment and again afterwards with the point of maximal vertigo as the reference (Aim 1. Experiment 2: State anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of presenting with balance symptoms (Group 1 N=26 and without balance symptoms (Group 2 N=11 (Aim 2. The presence of balance symptoms was defined as having a positive score on the VSS-VER.ResultsIn experiment 1, a signif