WorldWideScience

Sample records for vestibular primary afferents

  1. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  2. Kv1 channels and neural processing in vestibular calyx afferents.

    Science.gov (United States)

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  3. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    Science.gov (United States)

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  4. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  5. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    Directory of Open Access Journals (Sweden)

    Martin E Héroux

    Full Text Available To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8 stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.

  6. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  7. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  8. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  9. The primary vestibular projection to the cerebellar cortex in the pigeon (Columba livia)

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, I.E.; Schwarz, D.W.

    1983-06-01

    The cerebellar cortex of the pigeon receiving direct vestibular afferents was delineated by anterograde transport of (/sup 3/H)-amino acids injected into the vestibular nerve. Labelled mossy fiber rosettes in the granular layer were concentrated in lobule X (nodulus) and to a lesser extent, in the ventral portion of lobule IXd (uvula and paraflocculus). A few solitary labelled rosettes were also found in more dorsal portions of lobule IX, as well as in the anterior lobe between lobule II and IV. The lingula remained unlabelled. Discrete injections of (/sup 3/H)-leucine into the cristae of each of the three semicircular canals or the utricular macula yielded a similar distribution of fewer labelled rosettes. A few primary mossy fiber terminals labelled after cochlear injections are attributed to afferents from the lagenar macula. Since effective diffusion of label from the injection site was excluded by controls, it is concluded that projection of individual canal and macula nerves to the vestibulocerebellar cortex is not topographically separated. It is proposed that this extensive convergence of various afferents is required by the cerebellum to compute precise and directionally specific control signals during head rotation in all conceivable planes.

  10. The primary vestibular projection to the cerebellar cortex in the pigeon (Columba livia)

    International Nuclear Information System (INIS)

    Schwarz, I.E.; Schwarz, D.W.

    1983-01-01

    The cerebellar cortex of the pigeon receiving direct vestibular afferents was delineated by anterograde transport of [ 3 H]-amino acids injected into the vestibular nerve. Labelled mossy fiber rosettes in the granular layer were concentrated in lobule X (nodulus) and to a lesser extent, in the ventral portion of lobule IXd (uvula and paraflocculus). A few solitary labelled rosettes were also found in more dorsal portions of lobule IX, as well as in the anterior lobe between lobule II and IV. The lingula remained unlabelled. Discrete injections of [ 3 H]-leucine into the cristae of each of the three semicircular canals or the utricular macula yielded a similar distribution of fewer labelled rosettes. A few primary mossy fiber terminals labelled after cochlear injections are attributed to afferents from the lagenar macula. Since effective diffusion of label from the injection site was excluded by controls, it is concluded that projection of individual canal and macula nerves to the vestibulocerebellar cortex is not topographically separated. It is proposed that this extensive convergence of various afferents is required by the cerebellum to compute precise and directionally specific control signals during head rotation in all conceivable planes

  11. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  12. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.

    Science.gov (United States)

    Curthoys, Ian S; Kim, Juno; McPhedran, Samara K; Camp, Aaron J

    2006-11-01

    The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular neurons were recorded extracellularly in anesthetized guinea pigs and were identified by their location in the vestibular nerve and classed as regular or irregular on the basis of the variability of their spontaneous discharge. If a neuron responded to angular acceleration it was classed as a semicircular canal neuron, if it responded to maintained roll or pitch tilts it was classified as an otolith neuron. Each neuron was then tested by BCV stimuli-either clicks, continuous pure tones (200-1,500 Hz) or short tone bursts (500 Hz lasting 7 ms)-delivered by a B-71 clinical bone-conduction oscillator cemented to the guinea pig's skull. All stimulus intensities were referred to that animal's own auditory brainstem response (ABR) threshold to BCV clicks, and the maximum intensity used was within the animal's physiological range and was usually around 70 dB above BCV threshold. In addition two sensitive single axis linear accelerometers cemented to the skull gave absolute values of the stimulus acceleration in the rostro-caudal direction. The criterion for a neuron being classed as activated was an audible, stimulus-locked increase in firing rate (a 10% change was easily detectable) in response to the BCV stimulus. At the stimulus levels used in this study, semicircular canal neurons, both regular and irregular, were insensitive to BCV stimuli and very few responded: only nine of 189 semicircular canal neurons tested (4.7%) showed a detectable increase in firing in response to BCV stimuli up to the maximum 2 V peak-to-peak level we delivered to the B-71 oscillator (which produced a peak-to-peak skull acceleration of around

  13. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei.

    Science.gov (United States)

    Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M

    1992-01-01

    The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.

  14. Detection thresholds of macaque otolith afferents.

    Science.gov (United States)

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  15. New insights into pathophysiology of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Juan Manuel Espinosa-Sanchez

    2015-02-01

    Full Text Available Vestibular migraine (VM is a common disorder in which genetic, epigenetic and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal grey, locus coeruleus and nucleus raphe magnus are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs and pain. The interactions among several functional and structural neural networks could explain the pathogenic

  16. Expression of vesicular glutamate transporters in peripheral vestibular structures and vestibular nuclear complex of rat.

    Science.gov (United States)

    Zhang, F X; Pang, Y W; Zhang, M M; Zhang, T; Dong, Y L; Lai, C H; Shum, D K Y; Chan, Y S; Li, J L; Li, Y Q

    2011-01-26

    Glutamate transmission from vestibular end organs to central vestibular nuclear complex (VNC) plays important role in transferring sensory information about head position and movements. Three isoforms of vesicular glutamate transporters (VGLUTs) have been considered so far the most specific markers for glutamatergic neurons/cells. In this study, VGLUT1 and VGLUT2 were immunohistochemically localized to axon terminals in VNC and somata of vestibular primary afferents in association with their central and peripheral axon endings, and VGLUT1 and VGLUT3 were co-localized to hair cells of otolith maculae and cristae ampullaris. VGLUT1 and VGLUT2 defined three subsets of Scarpa's neurons (vestibular ganglionic neurons): those co-expressing VGLUT1 and VGLUT2 or expressing only VGLUT2, and those expressing neither. In addition, many neurons located in all vestibular subnuclei were observed to contain hybridized signals for VGLUT2 mRNA and a few VNC neurons, mostly scattered in medial vestibular nucleus (MVe), displayed VGLUT1 mRNA labelling. Following unilateral ganglionectomy, asymmetries of VGLUT1-immunoreactivity (ir) and VGLUT2-ir occurred between two VNCs, indicating that the VNC terminals containing VGLUT1 and/or VGLUT2 are partly of peripheral origin. The present data indicate that the constituent cells/neurons along the vestibular pathway selectively apply VGLUT isoforms to transport glutamate into synaptic vesicles for glutamate transmission. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  18. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    Science.gov (United States)

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  19. Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception.

    Science.gov (United States)

    Yu, Xiong-jie; Dickman, J David; DeAngelis, Gregory C; Angelaki, Dora E

    2015-05-19

    How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task. We find that afferent fibers have similar discrimination thresholds as central cells, and the most sensitive fibers have thresholds that are only twofold or threefold greater than perceptual thresholds. Unlike brainstem and cerebellar nuclei neurons, spike counts from afferent fibers do not exhibit trial-by-trial correlations with perceptual decisions. This finding may reflect the fact that otolith afferent responses are poorly suited for driving heading perception because they fail to discriminate self-motion from changes in orientation relative to gravity. Alternatively, if choice probabilities reflect top-down inference signals, they are not relayed to the vestibular periphery.

  20. Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy

    Directory of Open Access Journals (Sweden)

    Michael Handler

    2017-12-01

    Full Text Available Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i the transformation of labeled datasets to a tetrahedra mesh, (ii nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii inclusion of arbitrary electrode designs, (iv simulation of quasistationary potential distributions, and (v analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.

  1. Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17beta-estradiol.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Scarduzio, Mariangela; Pettorossi, Vito E

    2009-08-26

    In male rat brainstem slices, we investigated the involvement of locally synthesized 17beta-estradiol (E(2)) in the induction in the medial vestibular nucleus (MVN) of long-term potentiation (LTP) by high-frequency stimulation (HFS) of the primary vestibular afferents. We demonstrated that the blockade of aromatase by letrozole or of E(2) receptors (ERalpha and ERbeta) by ICI 182,780 prevented the HFS-induced LTP of the N1 wave of the evoked field potential (FP) without affecting baseline responses. Only prolonged afferent activation could induce low LTP. In contrast, HFS applied under a combined blockade of GABA(A) receptors and aromatase or ERs was still able to induce LTP, but it was significantly lower and slower. These findings demonstrate that E(2) does not have a tonic influence on the activity of the MVN neurons and provide the first evidence of the crucial role played by local synthesis of E(2) in inducing LTP. We suggest that the synthesis of E(2) occurs after aromatase activation during HFS and facilitates the development of vestibular synaptic plasticity by influencing glutamate and GABA transmission.

  2. Central and peripheral components of short latency vestibular responses in the chicken

    Science.gov (United States)

    Nazareth, A. M.; Jones, T. A.

    1998-01-01

    Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.

  3. The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei.

    Science.gov (United States)

    Scarduzio, M; Panichi, R; Pettorossi, V E; Grassi, S

    2012-10-25

    In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. In particular, the IBI plays a relevant role in guiding the shift from LTP to LTD since by using both LBS and SBS LTP is induced by shorter IBI than LTD. By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  5. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  6. Common Vestibular Disorders

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Balatsouras

    2017-01-01

    Full Text Available The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV, Meniere's disease (MD and vestibular neuritis (VN, are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the development of appropriate therapeutic maneuvers resulted in its effective treatment. However, involvement of the horizontal or the anterior canal has been found in a significant rate and the recognition and treatment of these variants completed the clinical picture of the disease. MD is a chronic condition characterized by episodic attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure and a progressive loss of audiovestibular functions. Presence of endolymphatic hydrops on postmortem examination is its pathologic correlate. MD continues to be a diagnostic and therapeutic challenge. Patients with the disease range from minimally symptomatic, highly functional individuals to severely affected, disabled patients. Current management strategies are designed to control the acute and recurrent vestibulopathy but offer minimal remedy for the progressive cochlear dysfunction. VN is the most common cause of acute spontaneous vertigo, attributed to acute unilateral loss of vestibular function. Key signs and symptoms are an acute onset of spinning vertigo, postural imbalance and nausea as well as a horizontal rotatory nystagmus beating towards the non-affected side, a pathological headimpulse test and no evidence for central vestibular or ocular motor dysfunction. Vestibular neuritis preferentially involves the superior vestibular labyrinth and its afferents. Symptomatic medication is indicated only during the acute phase to relieve the vertigo and nausea

  7. Migraine, vertigo and migrainous vertigo: Links between vestibular and pain mechanisms.

    Science.gov (United States)

    Balaban, Carey D

    2011-01-01

    This review develops the hypothesis that co-morbid balance disorders and migraine can be understood as additive effects of processing afferent vestibular and pain information in pre-parabrachial and pre-thalamic pathways, that have consequences on cortical mechanisms influencing perception, interoception and affect. There are remarkable parallel neurochemical phenotypes for inner ear and trigeminal ganglion cells and these afferent channels appear to converge in shared central pathways for vestibular and nociceptive information processing. These pathways share expression of receptors targeted by anti-migraine drugs. New evidence is also presented regarding the distribution of serotonin receptors in the planum semilunatum of the primate cristae ampullaris, which may indicate involvement of inner ear ionic homeostatic mechanisms in audiovestibular symptoms that can accompany migraine.

  8. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  9. How does high-frequency sound or vibration activate vestibular receptors?

    Science.gov (United States)

    Curthoys, I S; Grant, J W

    2015-03-01

    The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.

  10. Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Dieni, C V; Scarduzio, M; Grassi, S

    2011-07-28

    Using intracellular recordings, we investigated the effects of high frequency stimulation (HFS) of the primary vestibular afferents on the evoked excitatory postsynaptic potential (EPSP) and intrinsic excitability (IE) of type-A and type-B neurons of the medial vestibular nucleus (MVN), in male rat brainstem slices. HFS induces long-term potentiation (LTP) of both EPSP and IE, which may occur in combination or separately. Synaptic LTP is characterized by an increase in the amplitude, slope and decay time constant of EPSP and IE-LTP through enhancements of spontaneous and evoked neuron firing and of input resistance (Rin). Moreover, IE-LTP is associated with a decrease in action potential afterhyperpolarization (AHP) amplitude and an increase in interspike slope steepness (ISS). The more frequent effects of HFS are EPSP-LTP in type-B neurons and IE-LTP in type-A neurons. In addition, the development of EPSP-LTP is fast in type-B neurons but slow in type-A, whereas IE-LTP develops slowly in both types. We have demonstrated that activation of N-methyl-d aspartate receptors (NMDARs) is only required for EPSP-LTP induction, whereas metabotropic glutamate receptors type-1 (mGluR1) are necessary for IE-LTP induction as well as the full development and maintenance of EPSP-LTP. Taken together, these findings demonstrate that brief and intense activation of vestibular afferent input to the MVN neurons may provoke synaptic LTP and/or IE-LTP that, induced in combination or separately, may assure the different selectivity of the MVN neuron response enhancement to the afferent signals. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  12. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side...... stimulation that gives rise to the associated conscious vestibular sensation of vertigo....

  13. Tuning and sensitivity of the human vestibular system to low-frequency vibration.

    Science.gov (United States)

    Todd, Neil P McAngus; Rosengren, Sally M; Colebatch, James G

    2008-10-17

    Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90 dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100 Hz. At the best frequency we obtained VOR responses at intensities of less than -70 dB re 1g, which was 15 dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.

  14. Medial vestibular connections with the hypocretin (orexin) system

    Science.gov (United States)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  15. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  16. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.

    Science.gov (United States)

    Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José

    2018-04-25

    The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.

  17. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  18. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  19. Changes in resting-state fMRI in vestibular neuritis.

    Science.gov (United States)

    Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F

    2014-11-01

    Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric

  20. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  1. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat.

    Science.gov (United States)

    Maxwell, D J; Bannatyne, B A; Fyffe, R E; Brown, A G

    1984-04-01

    Two Pacinian corpuscle afferents and two rapidly adapting afferents from Krause corpuscles were intra-axonally labelled with horseradish peroxidase in the lumbosacral enlargement of the cat's spinal cord. Tissue was prepared for combined light and electron microscopical analysis. Boutons from both classes of afferent had similar ultrastructural appearances. They both formed from one to three synaptic junctions with dendritic shafts and spines and received axo-axonic synapses. In addition, both categories of bouton were seen to be presynaptic to structures interpreted as vesicle-containing dendrites. It is concluded that both types of afferent fibre are subject to presynaptic control and that they synapse with dorsal horn neurones which are possibly interneurones involved in primary afferent depolarization and post-synaptic dorsal column neurones.

  2. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  3. Convergence of cranial visceral afferents within the solitary tract nucleus.

    Science.gov (United States)

    McDougall, Stuart J; Peters, James H; Andresen, Michael C

    2009-10-14

    Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.

  4. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Capocchi, G; Zampolini, M; Pettorossi, V E

    1995-11-20

    The role of GABA in NMDA-dependent long term depression (LTD) in the medial vestibular nuclei (MVN) was studied on rat brainstem slices. High frequency stimulation (HFS) of the primary vestibular afferents induces a long lasting reduction of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the MVN. The induction but not the maintenance of this depression was abolished by AP5, a specific blocking agent for glutamate NMDA receptors. The involvement of GABA in mediating the depression was checked by applying the GABAA and GABAB receptor antagonists, bicuculline and saclofen, before and after HFS. Under bicuculline and saclofen perfusion, HFS provoked a slight potentiation of the N2 wave, while the N2 depression clearly emerged after drug wash-out. This indicates that GABA is not involved in inducing the long term effect, but it is necessary for its expression. Similarly, the LTD reversed and a slight potentiation appeared when both drugs were administered after its induction. Most of these effects were due to the bicuculline, suggesting that GABAA receptors contribute to LTD more than GABAB do. According to our results, it is unlikely that the long lasting vestibular depression is the result of a homosynaptic LTD. On the contrary, our findings suggest that the depression is due to an enhancement of the GABA inhibitory effect, caused by an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  5. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  6. Stereotactic radiotherapy of vestibular schwannoma. Hearing preservation, vestibular function, and local control following primary and salvage radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Florian; Mueller, Jan; Wimmer, Caterina; Goerig, Nicole; Knippen, Stefan; Semrau, Sabine; Fietkau, Rainer; Lettmaier, Sebastian [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany); Iro, Heinrich; Grundtner, Philipp [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Otorhinolaryngology - Head and Neck Surgery, Erlangen (Germany); Eyuepoglu, Ilker; Roessler, Karl [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2017-03-15

    The aim of this publication is to present long-term data on functional outcomes and tumor control in a cohort of 107 patients treated with stereotactic radiotherapy (RT) for vestibular schwannoma. Included were 107 patients with vestibular schwannoma (primary or recurrent following resection) treated with stereotactic RT (either fractioned or single-dose radiosurgery) between October 2002 and December 2013. Local control and functional outcomes were determined. Analysis of hearing preservation was limited to a subgroup of patients with complete audiometric data collected before treatment and during follow-up. Vestibular function test (FVT) results could be analyzed in a subset of patients and were compared to patient-reported dizziness. After a mean follow-up of 46.3 months, actuarial local control for the whole cohort was 100% after 2, 97.6% after 5, and 94.1% after 10 years. In patients with primary RT, serviceable hearing was preserved in 72%. Predictors for preservation of serviceable hearing in multivariate analysis were time of follow-up (odds ratio, OR = 0.93 per month; p = 0.021) and pre-RT tumor size (Koos stage I-IIa vs. IIb-IV; OR = 0.15; p = 0.031). Worsening of FVT results was recorded in 17.6% (N = 3). Profound discrepancy of patient-reported dizziness and FVT results was observed after RT. In patients with primary RT, worsening of facial nerve function occurred in 1.7% (N = 1). Stereotactic RT of vestibular schwannoma provides good functional outcomes and high control rates. Dependence of hearing preservation on time of follow-up and initial tumor stage has to be considered. (orig.) [German] Praesentation von Langzeitdaten zu funktionellen Ergebnissen und Tumorkontrolle nach stereotaktischer Radiotherapie (RT) in einer Kohorte von 107 Patienten mit Akustikusneurinom. Zwischen Oktober 2002 und Dezember 2013 wurden 107 Patienten mit Akustikusneurinom (primaer oder rezidiviert nach vorangegangener Resektion) mittels stereotaktischer RT behandelt

  7. Low-frequency stimulation cancels the high-frequency-induced long-lasting effects in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E; Zampolini, M

    1996-05-15

    In rat brainstem slices, we investigated the effects of low-frequency stimulation (LFS) of the primary vestibular afferents on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN). LFS induced long-term effects, the sign of which depended on whether the vestibular neurons were previously conditioned by HFS. In unconditioned slices, LFS evoked modifications of the responses that were similar to those observed after HFS but had a smaller extension. In fact, LFS caused long-lasting potentiation of the N1 wave in the MVN ventral portion (Vp) and long-lasting depression of the N2 wave in the MVN dorsal portion (Dp), whereas it provoked small and variable effects on the N1 wave. By contrast, when the synaptic transmission was already conditioned, LFS influenced the synaptic responses oppositely, reducing or annulling the HFS long-term effects. This phenomenon was specifically induced by LFS, because HFS was not able to cause it. The involvement of NMDA receptors in mediating the LFS long-term effects was supported by the fact that AP-5 prevented their induction. In addition, the annulment of HFS long-term effects by LFS was also demonstrated by the shift in the latency of the evoked unitary potentials after LFS. In conclusion, we suggest that the reduction of the previously induced conditioning could represent a cancellation mechanism, useful to quickly adapt the vestibular system to continuous different needs and to avoid saturation.

  8. Histological identification of phrenic afferent projections to the spinal cord.

    Science.gov (United States)

    Nair, Jayakrishnan; Bezdudnaya, Tatiana; Zholudeva, Lyandysha V; Detloff, Megan R; Reier, Paul J; Lane, Michael A; Fuller, David D

    2017-02-01

    Limited data are available regarding the spinal projections of afferent fibers in the phrenic nerve. We describe a method that robustly labels phrenic afferent spinal projections in adult rats. The proximal end of the cut phrenic nerve was secured in a microtube filled with a transganglionic tracer (cholera toxin β-subunit, CT-β, or Cascade Blue) and tissues harvested 96-h later. Robust CT-β labeling occurred in C3-C5 dorsal root ganglia cell bodies and phrenic afferent projections were identified in the mid-cervical dorsal horn (laminae I-III), intermediate grey matter (laminae IV, VII) and near the central canal (laminae X). Afferent fiber labeling was reduced or absent when CT-β was delivered to the intrapleural space or directly to the hemidiaphragm. Soaking the phrenic nerve with Cascade Blue also produced robust labeling of mid-cervical dorsal root ganglia cells bodies, and primary afferent fibers were observed in spinal grey matter and dorsal white matter. Our results show that the 'nerve soak' method effectively labels both phrenic motoneurons and phrenic afferent projections, and show that primary afferents project throughout the ipsilateral mid-cervical gray matter. Copyright © 2016. Published by Elsevier B.V.

  9. Tuning of spinal networks to frequency components of spike trains in individual afferents.

    Science.gov (United States)

    Koerber, H R; Seymour, A W; Mendell, L M

    1991-10-01

    Cord dorsum potentials (CDPs) evoked by primary afferent fiber stimulation reflect the response of postsynaptic dorsal horn neurons. The properties of these CDPs have been shown to vary in accordance with the type of primary afferent fiber stimulated. The purpose of the present study was to determine the relationships between frequency modulation of the afferent input trains, the amplitude modulation of the evoked CDPs, and the type of primary afferent stimulated. The somata of individual primary afferent fibers were impaled in the L7 dorsal root ganglion of alpha-chloralose-anesthetized cats. Action potentials (APs) were evoked in single identified afferents via the intracellular microelectrode while simultaneously recording the response of dorsal horn neurons as CDPs, or activity of individual target interneurons recorded extracellularly or intracellularly. APs were evoked in afferents using temporal patterns identical to the responses of selected afferents to natural stimulation of their receptive fields. Two such physiologically realistic trains, one recorded from a hair follicle and the other from a slowly adapting type 1 receptor, were chosen as standard test trains. Modulation of CDP amplitude in response to this frequency-modulated afferent activity varied according to the type of peripheral mechanoreceptor innervated. Dorsal horn networks driven by A beta afferents innervating hair follicles, rapidly adapting pad (Krause end bulb), and field receptors seemed "tuned" to amplify the onset of activity in single afferents. Networks driven by afferents innervating down hair follicles and pacinian corpuscles required more high-frequency activity to elicit their peak response. Dorsal horn networks driven by afferents innervating slowly adapting receptors including high-threshold mechanoreceptors exhibited some sensitivity to the instantaneous frequency, but in general they reproduced the activity in the afferent fiber much more faithfully. Responses of

  10. Influence of vestibular activation on respiration in humans

    Science.gov (United States)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  11. Role of platelet-activating factor in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1998-06-01

    In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.

  12. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  13. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  14. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    Science.gov (United States)

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular

  16. Spinal cord stimulation paresthesia and activity of primary afferents.

    Science.gov (United States)

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  17. Electrical vestibular stimulation after vestibular deafferentation and in vestibular schwannoma.

    Directory of Open Access Journals (Sweden)

    Swee Tin Aw

    Full Text Available BACKGROUND: Vestibular reflexes, evoked by human electrical (galvanic vestibular stimulation (EVS, are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas. METHODS: EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0] mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD, 12 unilateral vestibular deafferented (UVD, four unilateral vestibular schwannoma (UVS patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS. RESULTS: After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response. CONCLUSIONS: The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.

  18. Can Postural Instability Respond to Galvanic Vestibular Stimulation in Patients with Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Hiroshi Kataoka

    2016-01-01

    Full Text Available Objective Galvanic vestibular stimulation (GVS activates the vestibular afferents, and these changes in vestibular input exert a strong influence on the subject’s posture or standing balance. In patients with Parkinson’s disease (PD, vestibular dysfunction might contribute to postural instability and gait disorders. Methods Current intensity was increased to 0.7 mA, and the current was applied to the patients for 20 minutes. To perform a sham stimulation, the current intensity was increased as described and then decreased to 0 mA over the course of 10 seconds. The patient’s status was recorded continuously for 20 minutes with the patient in the supine position. Results Three out of 5 patients diagnosed with PD with postural instability and/or abnormal axial posture showed a reduction in postural instability after GVS. The score for item 12 of the revised Unified Parkinson’s Disease Rating Scale part 3 was decreased in these patients. Conclusions The mechanism of postural instability is complex and not completely understood. In 2 out of the 5 patients, postural instability was not changed in response to GVS. Nonetheless, the GVS-induced change in postural instability for 3 patients in our study suggests that GVS might be a therapeutic option for postural instability.

  19. Vestibular migraine

    DEFF Research Database (Denmark)

    Lempert, Thomas; Olesen, Jes; Furman, Joseph

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  20. Cyclic estrogenic fluctuation influences synaptic transmission of the medial vestibular nuclei in female rats.

    Science.gov (United States)

    Pettorossi, Vito E; Frondaroli, Adele; Grassi, Silvarosa

    2011-04-01

    The estrous cycle in female rats influences the basal synaptic responsiveness and plasticity of the medial vestibular nucleus (MVN) neurons through different levels of circulating 17β-estradiol (cE(2)). The aim of this study was to verify, in the female rat, whether cyclic fluctuations of cE(2) influence long-term synaptic effects induced by high frequency afferent stimulation (HFS) in the MVN, since we found that HFS in the male rat induces fast long-term potentiation (fLTP), which depends on the neural synthesis of E(2) (nE(2)) from testosterone (T). We analyzed the field potential (FP) evoked in the MVN by vestibular afferent stimulation, under basal conditions, and after HFS, in brainstem slices of female rats during high levels (proestrus, PE) and low levels (diestrus, DE) of cE(2). Selective blocking agents of converting T enzymes were used. Unlike in the male rat, HFS induced three effects: fLTP through T conversion into E(2), and slow LTP (sLTP) and long-term depression (LTD), through T conversion into DHT. The occurrence of these effects depended on the estrous cycle phase: the frequency of fLTP was higher in DE, and those of sLTP and LTD were higher in PE. Conversely, the basal FP was also higher in PE than in DE.

  1. Vestibular Dysfunction in Patients with Enlarged Vestibular Aqueduct.

    Science.gov (United States)

    Zalewski, Chris K; Chien, Wade W; King, Kelly A; Muskett, Julie A; Baron, Rachel E; Butman, John A; Griffith, Andrew J; Brewer, Carmen C

    2015-08-01

    Enlarged vestibular aqueduct (EVA) is the most common inner ear malformation. While a strong correlative relationship between EVA and hearing loss is well established, its association with vestibular dysfunction is less well understood. In this study, we examine the effects of EVA on the vestibular system in patients with EVA. Prospective, cross-sectional study of a cohort ascertained between 1999 and 2013. National Institutes of Health Clinical Center, a federal biomedical research facility. In total, 106 patients with unilateral or bilateral EVA, defined as a midpoint diameter greater than 1.5 mm, were referred or self-referred to participate in a study of the clinical and molecular aspects of EVA. Clinical history was ascertained with respect to the presence or absence of various vestibular signs and symptoms and history of head trauma. Videonystagmography (VNG), cervical vestibular evoked myogenic potential (cVEMP), and rotational vestibular testing (RVT) were performed to assess the vestibular function. Of the patients with EVA, 45% had vestibular signs and symptoms, and 44% of tested patients had abnormal VNG test results. An increased number of vestibular signs and symptoms was correlated with the presence of bilateral EVA (P = .008) and a history of head injury (P VNG results also correlated with a history of head injury (P = .018). Vestibular dysfunction is common in patients with EVA. However, not all patients with vestibular signs and symptoms have abnormal vestibular test results. Clinicians should be aware of the high prevalence of vestibular dysfunction in patients with EVA. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  2. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  3. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...... are associated with distinctive disease of the peripheral vestibular tissue structures, suggesting anterograde degeneration and that dizziness in these patients may be caused by deficient peripheral vestibular nerve fibers, neurons, and end organs. In smaller tumors, a highly localized disease occurs, which...

  4. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  5. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  6. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  7. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation

  8. Gastric electrical stimulation decreases gastric distension-induced central nociception response through direct action on primary afferents.

    Directory of Open Access Journals (Sweden)

    Wassila Ouelaa

    Full Text Available BACKGROUND & AIMS: Gastric electrical stimulation (GES is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. METHODS: Gastric pain was induced by performing gastric distension (GD in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation, while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. RESULTS: GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9-T10, the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. CONCLUSIONS: GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception.

  9. Vestibular involvement in adults with HIV/AIDS.

    Science.gov (United States)

    Heinze, Barbara M; Vinck, Bart M; Hofmeyr, Louis M; Swanepoel, De Wet

    2014-04-01

    common in subjects with HIV. Primary health care providers could screen HIV positive patients to ascertain if there are symptoms of vestibular involvement. If there are any, then they may consider further vestibular assessments and subsequent vestibular rehabilitation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Grassi, S

    2001-01-01

    In rat brainstem slices, we investigated the differential role of nitric oxide (NO) and platelet-activating factor (PAF) in long-term potentiation (LTP) induced in the ventral portion of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferents. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) and the PAF receptor antagonist ginkgolide B (BN-52021) were administered before and after induction of potentiation. The effect of carboxy-PTIO was to completely prevent LTP. By contrast, BN-52021 only reduced the amplitude of HFS potentiation, which could develop fully at the drug washout or decline to zero, becoming a short-term phenomenon, in the case of long-lasting PAF receptor block. Both drugs, when given after HFS, had no effect on the already established potentiation, but whilst BN-52021 showed an influence within 5 min of the LTP induction, carboxy-PTIO did not affect the response once HFS was delivered. Moreover, we showed that the NO donor, sodium nitroprusside, and methylcarbamyl PAF (mc-PAF) induced LTP which was associated with an increase in glutamate release as shown by reduction in the paired-pulse facilitation ratio. The mc-PAF LTP was prevented by the NO scavenger, while NO LTP was only reduced by BN-52021. We suggest that NO and PAF are implicated as retrograde messengers in two different phases of vestibular LTP: NO in the induction phase; and PAF in the full expression phase.

  11. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    OpenAIRE

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor – 5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  12. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  13. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials...

  14. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body.

    Science.gov (United States)

    Sugiyama, Yoichiro; Suzuki, Takeshi; Yates, Bill J

    2011-05-01

    Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.

  15. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  16. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  17. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  18. Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis

    Science.gov (United States)

    Dai, Chenkai; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan; Melvin, Thuy-Anh; Cullen, Kathleen E.; Della Santina, Charles C.

    2012-01-01

    By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith endorgans can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular-deficient via bilateral gentamicin treatment and unilaterally implanted them with a head mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of one week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2–5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans. PMID:21374081

  19. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  20. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Dutia, Mayank B; Pettorossi, Vito E

    2007-07-01

    In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal

  1. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence.

    Science.gov (United States)

    Curthoys, Ian S

    2017-04-01

    The classical view of the otoliths-as flat plates of fairly uniform receptors activated by linear acceleration dragging on otoconia and so deflecting the receptor hair bundles-has been replaced by new anatomical and physiological evidence which shows that the maculae are much more complex. There is anatomical spatial differentiation across the macula in terms of receptor types, hair bundle heights, stiffness and attachment to the overlying otolithic membrane. This anatomical spatial differentiation corresponds to the neural spatial differentiation of response dynamics from the receptors and afferents from different regions of the otolithic maculae. Specifically, receptors in a specialized band of cells, the striola, are predominantly type I receptors, with short, stiff hair bundles and looser attachment to the overlying otoconial membrane than extrastriolar receptors. At the striola the hair bundles project into holes in the otolithic membrane, allowing for fluid displacement to deflect the hair bundles and activate the cell. This review shows the anatomical and physiological evidence supporting the hypothesis that fluid displacement, generated by sound or vibration, deflects the short stiff hair bundles of type I receptors at the striola, resulting in neural activation of the irregular afferents innervating them. So these afferents are activated by sound or vibration and show phase-locking to individual cycles of the sound or vibration stimulus up to frequencies above 2000 Hz, underpinning the use of sound and vibration for clinical tests of vestibular function.

  2. Central projections and entries of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  3. Anatomy and physiology of phrenic afferent neurons.

    Science.gov (United States)

    Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F; Sunshine, Michael D; Bolser, Donald C; Fox, Emily J; Davenport, Paul W; Fuller, David D

    2017-12-01

    Large-diameter myelinated phrenic afferents discharge in phase with diaphragm contraction, and smaller diameter fibers discharge across the respiratory cycle. In this article, we review the phrenic afferent literature and highlight areas in need of further study. We conclude that 1 ) activation of both myelinated and nonmyelinated phrenic sensory afferents can influence respiratory motor output on a breath-by-breath basis; 2 ) the relative impact of phrenic afferents substantially increases with diaphragm work and fatigue; 3 ) activation of phrenic afferents has a powerful impact on sympathetic motor outflow, and 4 ) phrenic afferents contribute to diaphragm somatosensation and the conscious perception of breathing. Much remains to be learned regarding the spinal and supraspinal distribution and synaptic contacts of myelinated and nonmyelinated phrenic afferents. Similarly, very little is known regarding the potential role of phrenic afferent neurons in triggering or modulating expression of respiratory neuroplasticity. Copyright © 2017 the American Physiological Society.

  4. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  5. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    Science.gov (United States)

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAP max ) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAP max , when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAP max and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAP max Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAP max to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing. NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but

  6. [Effectiveness of Self-efficacy Promoting Vestibular Rehabilitation Program for Patients with Vestibular Hypofunction].

    Science.gov (United States)

    Lee, Hyun Jung; Choi-Kwon, Smi

    2016-10-01

    In this study an examination was done of the effect of self-efficacy promoting vestibular rehabilitation (S-VR) on dizziness, exercise selfefficacy, adherence to vestibular rehabilitation (VR), subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness in patients with vestibular hypofunction. This was a randomized controlled study. Data were collected 3 times at baseline, 4 and 8 weeks after beginning the intervention. Outcome measures were level of dizziness, exercise self-efficacy, and level of adherence to VR. Subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness were also obtained. Data were analyzed using Windows SPSS 21.0 program. After 4 weeks of S-VR, there was no difference between the groups for dizziness, subjective and objective vestibular functions. However, exercise self-efficacy and adherence to VR were higher in the experimental group than in the control group. After 8 weeks of S-VR, dizziness (p=.018) exercise self-efficacy (pexercise self-efficacy, subjective vestibular function and adherence to VR. Objective vestibular function and vestibular compensation were also improved in the experimental group at the end of 8 weeks of S-VR.

  7. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  8. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    Directory of Open Access Journals (Sweden)

    Christophe eLopez

    2013-12-01

    Full Text Available The consequences of vestibular disorders on balance, oculomotor control and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience, altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization. In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness.

  9. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  10. Vestibular rehabilitation outcomes in the elderly with chronic vestibular dysfunction.

    Science.gov (United States)

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-11-01

    Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction.

  11. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Directory of Open Access Journals (Sweden)

    Esther Bernal Valls

    2006-12-01

    Full Text Available El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a representative way, what evidences this is a profitable process for this kind of patients. The good results suggest that vestibular exercises permit a postural stability and a decrease in the perception of disequilibrium.

  12. Role of group II metabotropic glutamate receptors 2/3 and group I metabotropic glutamate receptor 5 in developing rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2005-08-22

    In brainstem slices from developing rats, metabotropic glutamate receptors mGluR2/3 and mGluR5 play different inhibitory roles in synaptic transmission and plasticity of the medial vestibular nuclei. The mGluR2/3 block (LY341495) reduces the occurrence of long-term depression after vestibular afferent high frequency stimulation at P8-P10, and increases that of long-term potentiation, while the mGluR5 block prevents high frequency stimulation long-term depression. Later on, the receptor block does not influence high frequency stimulation effects. In addition, while mGluR2/3 agonist (APDC) always provokes a transient reduction of synaptic responses, that of mGluR5 (CHPG) induces long-term depression per se at P8-P10. These results show a key role of mGluR5 in inducing high frequency stimulation long-term depression in developing medial vestibular nuclei, while mGluR2/3 modulate synaptic transmission, probably through presynaptic control of glutamate release.

  13. Vestibular perception following acute unilateral vestibular lesions.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Little is known about the vestibulo-perceptual (VP system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO and VP function in 25 patients with vestibular neuritis (VN acutely (2 days after onset and after compensation (recovery phase, 10 weeks. Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2 and velocity steps of 90°/s (acceleration 180°/s(2. We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of

  14. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  15. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  16. Neural Correlates of Sensory Substitution in Vestibular Pathways Following Complete Vestibular Loss

    Science.gov (United States)

    Sadeghi, Soroush G.; Minor, Lloyd B.; Cullen, Kathleen E.

    2012-01-01

    Sensory substitution is the term typically used in reference to sensory prosthetic devices designed to replace input from one defective modality with input from another modality. Such devices allow an alternative encoding of sensory information that is no longer directly provided by the defective modality in a purposeful and goal-directed manner. The behavioral recovery that follows complete vestibular loss is impressive and has long been thought to take advantage of a natural form of sensory substitution in which head motion information is no longer provided by vestibular inputs, but instead by extra-vestibular inputs such as proprioceptive and motor efference copy signals. Here we examined the neuronal correlates of this behavioral recovery after complete vestibular loss in alert behaving monkeys (Macaca mulata). We show for the first time that extra-vestibular inputs substitute for the vestibular inputs to stabilize gaze at the level of single neurons in the VOR premotor circuitry. The summed weighting of neck proprioceptive and efference copy information was sufficient to explain simultaneously observed behavioral improvements in gaze stability. Furthermore, by altering correspondence between intended and actual head movement we revealed a four-fold increase in the weight of neck motor efference copy signals consistent with the enhanced behavioral recovery observed when head movements are voluntary versus unexpected. Thus, taken together our results provide direct evidence that the substitution by extra-vestibular inputs in vestibular pathways provides a neural correlate for the improvements in gaze stability that are observed following the total loss of vestibular inputs. PMID:23077054

  17. Neurophysiology of vestibular rehabilitation.

    Science.gov (United States)

    Hain, Timothy C

    2011-01-01

    The vestibular system is a sophisticated human control system. Accurate processing of sensory input about rapid head and postural motion is critical. Not surprisingly, the body uses multiple, partially redundant sensory inputs and motor outputs, combined with a very competent central repair capability. The system as a whole can adapt to substantial peripheral vestibular dysfunction. The Achilles' heel of the vestibular system is a relative inability to repair central vestibular dysfunction.

  18. Neurophysiology of vestibular rehabilitation

    OpenAIRE

    Hain Timothy, C.

    2011-01-01

    The vestibular system is a sophisticated human control system. Accurate processing of sensory input about rapid head and postural motion is critical. Not surprisingly, the body uses multiple, partially redundant sensory inputs and motor outputs, combined with a very competent central repair capability. The system as a whole can adapt to substantial peripheral vestibular dysfunction. The Achilles' heel of the vestibular system is a relative inability to repair central vestibular dysfunction.

  19. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  20. Progress Toward Development of a Multichannel Vestibular Prosthesis for Treatment of Bilateral Vestibular Deficiency

    Science.gov (United States)

    FRIDMAN, GENE Y.; DELLA SANTINA, CHARLES C.

    2014-01-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation–inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  1. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Science.gov (United States)

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  2. Vestibular neuritis: three-dimensional videonystagmography and vestibular evoked myogenic potential results.

    Science.gov (United States)

    Chen, C W; Young, Y H; Wu, C H

    2000-10-01

    Eight patients diagnosed with vestibular neuritis received the newly developed three-dimensional videonystagmography (3D VNG) and vestibular evoked myogenic potential (VEMP) examination in order to localize the lesion site. Two (25%) of the 8 patients exhibited spontaneous nystagmus with 3 components, indicating that both the horizontal semicircular canal (HSCC) and anterior semicircular canal (ASCC) were affected. The remaining 6 patients (75%) displayed only horizontal nystagmus, meaning that only the HSCC was involved. Seven (88%) of the 8 patients had bilateral normal VEMPs, revealing sparing of the posterior semicircular canal (PSCC). In a comparative study, another seven patients with vestibular neuritis 1 year post-treatment also received the caloric test, 3D VNG and VEMP examination. Only one patient exhibited spontaneous nystagmus. An absent caloric response of the lesioned side persisted in 5 (71%) of the 7 patients. However, all patients showed normal VEMPs bilaterally. 3D VNG and VEMP examination indicates that vestibular neuritis mainly affects the superior division of the vestibular nerve, which innervates the HSCC and ASCC. Meanwhile, the function of the PSCC and saccule, innervated by the inferior vestibular nerve, is preserved.

  3. Opposite long-term synaptic effects of 17β-estradiol and 5α-dihydrotestosterone and localization of their receptors in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Grassi, Silvarosa; Scarduzio, Mariangela; Panichi, Roberto; Dall'Aglio, Cecilia; Boiti, Cristiano; Pettorossi, Vito E

    2013-08-01

    In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17β-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and β) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERβ, and AR and most of them co-localized ERβ and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Patients with vestibular loss, tullio phenomenon, and pressure-induced nystagmus: vestibular atelectasis?

    Science.gov (United States)

    Wenzel, Angela; Ward, Bryan K; Schubert, Michael C; Kheradmand, Amir; Zee, David S; Mantokoudis, Georgios; Carey, John Patrick

    2014-06-01

    To propose an etiology for a syndrome of bilateral vestibular hypofunction and sound and/or pressure-evoked eye movements with normal hearing thresholds. Retrospective case series. Tertiary care referral center. Four patients with bilateral vestibular hypofunction, sound and/or pressure-evoked nystagmus and normal hearing thresholds were identified over a 3-year period. No evidence of other known vestibular disorders was identified. None of these patients presented with a history of exposure to toxins, radiation, aminoglycosides or chemotherapy; head trauma; or a family history of inherited vestibular loss. All patients underwent high-resolution CT scan of the temporal bones to evaluate for labyrinthine dehiscence. Additionally, all individuals underwent audiometric testing to ANSI standards, vestibular-evoked myogenic potentials (VEMP) testing using either click stimulus cervical VEMPs (cVEMPs), or tone burst ocular VEMPs (oVEMPs). Bithermal caloric stimulation was used to measure horizontal semicircular canal function, with either videonystagmography (VNG) or electronystagmography (ENG) to record eye movements. Individual responses of each of the 6 semicircular canals (SCC) to rapid head rotations were tested with the bedside head impulse test. We identified 4 patients with a combination of bilateral vestibular hypofunction and sound and/or pressure-induced eye movements, normal-hearing thresholds and no evidence for any other vestibular disorder. We suggest that this unique combination of symptoms should be considered as the clinical presentation of vestibular atelectasis, which has been previously described histologically as collapse of the endolymph-containing portions of the labyrinth.

  5. Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome With Vertigo.

    Science.gov (United States)

    Martin-Sanz, Eduardo; Rueda, Almudena; Esteban-Sanchez, Jonathan; Yanes, Joaquin; Rey-Martinez, Jorge; Sanz-Fernandez, Ricardo

    2017-08-01

    To evaluate vestibular restoration and the evolution of the compensatory saccades in acute severe inflammatory vestibular nerve paralysis, including vestibular neuritis and Ramsay Hunt syndrome with vertigo. Prospective. Tertiary referral center. Vestibular neuritis (n = 18) and Ramsay Hunt syndrome patients with vertigo (n = 13) were enrolled. After treatment with oral corticosteroids, patients were followed up for 6 months. Functional recovery of the facial nerve was scored according to the House-Brackman grading system. Caloric and video head impulse tests were performed in every patient at the time of enrolment. Subsequently, successive video head impulse test (vHIT) exploration was performed at the 1, 3, and 6-month follow-up. Eighteen patients with vestibular neuritis and 13 with Ramsay Hunt syndrome and associated vertigo were included. Vestibular function was significantly worse in patients with Ramsay Hunt syndrome than in those with vestibular neuritis. Similar compensatory saccades velocity and latency values were observed in both groups, in both the caloric and initial vHIT tests. Successive vHIT results showed a significantly higher vestibulo-ocular reflex gain recovery in vestibular neuritis patients than in Ramsay Hunt syndrome patients. A significantly faster reduction in the latency, velocity, and organization of the compensatory saccades was observed in neuritis than in Ramsay Hunt syndrome patients. In addition to the recovery of the vestibulo-ocular reflex, the reduction of latency, velocity and the organization of compensatory saccades play a role in vestibular compensation.

  6. Applicability of transoral endoscopic parathyroidectomy through vestibular route for primary sporadic hyperparathyroidism: A South Indian experience.

    Science.gov (United States)

    Bhargav, P R K; Sabaretnam, M; Amar, V; Devi, N Vimala

    2018-05-04

    Primary hyperparathyroidism is one of the most common endocrine disorders requiring surgical parathyroidectomy for its definitive treatment. Surgical exploration is traditionally performed through conventional open neck approach. A wide range of minimal access and minimally invasive endoscopic techniques (gas less and with gas) have been attempted in the past two decades. In this context, we evaluated the feasibility and safety of an innovative transoral endoscopic parathyroidectomy (EP) technique, which represents a paradigm shift in transluminal endocrine surgery. This is a prospective study conducted at a tertiary care Endocrine Surgery Department in South India between May 2016 and August 2017. We employed a novel transoral, lower vestibular route for EP. All the clinical, investigative, operative, pathological and post-operative data were collected from our prospectively filled database. Statistical analysis was performed with SPSS 20.0 version. Under inhalational general anaesthesia, access to the neck was obtained with 3 ports (central frenulotomy and two lateral port sites), dissected in subplatysmal plane and insufflated with 6 mm Hg CO 2 for working space. Rest of surgical steps is similar to conventional open parathyroidectomy. Out of the 38 hyperparathyroidism cases operated during the study, 12 (32%) were operated by this technique. Mean operative time was 112 ± 15 min (95-160). The post-operative course was uneventful with no major morbidity, hypocalcemia or recurrent laryngeal nerve palsy. Cure and diagnosis were confirmed by> 50% fall in intraoperative parathyroid hormone levels and histopathology (all were benign solitary adenomas). Through this study, we opine that this novel transoral vestibular route parathyroidectomy is a feasibly applicable approach for primary sporadic hyperparathyroidism, especially with solitary benign adenomas.

  7. Subjective visual horizontal during follow-up after unilateral vestibular deafferentation with gentamicin.

    Science.gov (United States)

    Tribukait, A; Bergenius, J; Brantberg, K

    1998-07-01

    The subjective visual horizontal (SVH) was measured by means of a small, rotatable, luminous line in darkness in the upright head and body position and at 10, 20 and 30 degrees of tilt to the right and left before, and repeatedly during a follow-up period of 1 year after intratympanic gentamicin instillations in 12 patients with recurrent vertigo attacks. This treatment caused a loss of the bithermal caloric responses on the diseased side. Shortly after treatment there was a significant tilt of SVH towards the treated side (group mean = 10.6 degrees). Repeated testing made it possible to characterize mathematically the changes with time for SVH. For the group of patients as a whole this otolithic component of vestibular compensation was best described by a power function, SVH = 8.65t(-0.16) degrees, where t is time in days after maximum tilt of SVH. After 1 year, SVH was still significantly tilted towards the treated side (group mean = 3.16 degrees). Gentamicin treatment also caused a significant reduction in the perception of head and body tilt towards the deafferented side, while the perception of tilt towards the healthy side did not show any significant changes. During follow-up there was a gradual improvement in the perception of tilt towards the treated side. However, a significant asymmetry in roll-tilt perception was still present 1 year after deafferentation. There was no correlation between SVH in the upright position and roll-tilt perception, suggesting that these parameters are to some extent dependent on different afferent input from the vestibular organ. They were also found to be complementary for the detection of vestibular disturbance.

  8. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  9. An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells.

    Science.gov (United States)

    Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Veronica; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Magistretti, Jacopo; Masetto, Sergio

    2017-11-01

    Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K + current, I K,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K + concentrations, altering the biophysical properties of I K,L . We found that in the absence of the calyx, I K,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of I K,L . Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K + current, I K,L . The biophysical properties and molecular profile of I K,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of I K,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of I K,L were affected by an unstable K + equilibrium potential (V eq K + ). Both the outward and inward K + currents shifted V eq K + consistent with K + accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated I K,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). I K,L also

  10. Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.

    Science.gov (United States)

    Schoppik, David; Bianco, Isaac H; Prober, David A; Douglass, Adam D; Robson, Drew N; Li, Jennifer M B; Greenwood, Joel S F; Soucy, Edward; Engert, Florian; Schier, Alexander F

    2017-11-22

    Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without

  11. Posture, head stability, and orientation recovery during vestibular regeneration in pigeons.

    Science.gov (United States)

    Dickman, J David; Lim, Insook

    2004-09-01

    Compensatory behavior such as oculomotor, gaze, and postural responses that occur during movement largely depend upon a functioning vestibular system. In the present study, the initial loss and subsequent recovery of postural and head stability in pigeons undergoing vestibular regeneration were examined. Adult pigeons were trained to manipulate a straight run chamber to peck an illuminated key for fluid reward. Six behavioral measures assessing performance, posture, and head stability were quantified. These included run latency, steps (walking), path negotiation (lane changes), gaze saccades, head bobs, and head shakes. Once normative values were obtained for four birds, complete lesion of all receptor cells and denervation of the epithelia in the vestibular endorgans were produced using a single intralabyrinthine application of streptomycin sulfate. Each bird was then tested at specific times during regeneration and the same behavioral measures examined. At 7 days post-streptomycin treatment (PST), all birds exhibited severe postural and head instability, with tremors, head shakes, staggering, and circling predominating. No normal trial runs, walking, gaze saccades, or head bobs were present. Many of these dysfunctions persisted through 3-4 weeks PST. Gradually, tremor and head shakes diminished and were replaced with an increasing number of normal head bobs during steps and gaze saccades. Beginning at 4 weeks PST, but largely inaccurate, was the observed initiation of directed steps, less staggering, and some successful path negotiation. As regeneration progressed, spatial orientation and navigation ability increased and, by 49 days PST, most trials were successful. By 70 days PST, all birds had recovered to pretreatment levels. Thus, it was observed that ataxia must subside, coincident with normalized head and postural stability prior to the recovery of spatial orientation and path navigation recovery. Parallels in recovery were drawn to hair cell regeneration

  12. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  13. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  14. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  16. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  17. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  18. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  19. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.

    Science.gov (United States)

    Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory

    2015-07-01

    To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance

  20. [Acute pancreatitis and afferent loop syndrome. Case report].

    Science.gov (United States)

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  1. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception.

    Science.gov (United States)

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X; Cullen, Kathleen E

    2015-02-25

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.

  2. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  3. A study on vestibular-evoked myogenic potentials via galvanic vestibular stimulation in normal people

    Directory of Open Access Journals (Sweden)

    Ying Cheng

    2018-03-01

    Discussions: Galvanic vestibular stimulation could elicit biphasic EMG responses from SCM via the vestibular nerve but not from the otolith organs. Galvanic stimulation together with air conducted sound (ACS or bone conducted vibration (BCV can elicit VEMPs and may enable the differentiation of retrolabyrinthine lesions from labyrinthine lesions in vestibular system.

  4. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    Science.gov (United States)

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  5. The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey

    Directory of Open Access Journals (Sweden)

    James O. Phillips

    2018-05-01

    Full Text Available Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM or current amplitude modulated (AM. In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.

  6. Vestibular migraine: who is the patient?

    Science.gov (United States)

    Colombo, Bruno; Teggi, Roberto

    2017-05-01

    Vestibular migraine has been classified as a specific entity in which vestibular symptomatology is defined as part of the migrainous disorder. New and appropriate diagnostic criteria have been proposed by the Barany and International Headache Societies. The diagnosis of vestibular migraine mainly depends on the patient history. The NIVE project is a prospectic multicentric study on vestibular migraine. The aim of this project is to evaluate demographics, epidemiology, clinical manifestations of migraine and vertigo in a large cohort of Caucasian patients affected by vestibular migraine.

  7. Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Pettorossi, Vito Enrico

    2004-11-01

    The influence of visual experience deprivation on changes in synaptic plasticity during postnatal development was studied in the ventral part of the rat medial vestibular nuclei (vMVN). We analysed the differences in the occurrence, expressed as a percentage, of long-term depression (LTD) and long-term potentiation (LTP) induced by high frequency stimulation (HFS) of the primary vestibular afferents in rats reared in the light (LR) and those in the dark (DR). In LR rats, HFS only induced LTD in the early stages of development, but the occurrence of LTD progressively decreased to zero before their eyes opened, while that of LTP enhanced from zero to about 50%. Once the rats' eyes had opened, LTD was no longer inducible while LTP occurrence gradually reached the normal adult value (70%). In DR rats, a similar shift from LTD to LTP was observed before their eyes opened, showing only a slightly slower LTD decay and LTP growth, and the LTD annulment was delayed by 1 day. By contrast, the time courses of LTD and LTP development in DR and LR rats showed remarkable differences following eye opening. In fact, LTD occurrence increased to about 50% in a short period of time and remained high until the adult stage. In addition, the occurrence of LTP slowly decreased to less than 20%. The effect of light-deprivation was reversible, since the exposure of DR rats to light, 5 days after eye opening, caused a sudden disappearance of LTD and a partial recover of LTP occurrence. In addition, we observed that a week of light deprivation in LR adult rats did not affect the normal adult LTP occurrence. These results provide evidence that in a critical period of development visual input plays a crucial role in shaping synaptic plasticity of the vMVN, and suggest that the visual guided shift from LTD to LTP during development may be necessary to refine and consolidate vestibular circuitry.

  8. Electric Current Transmission Through Tissues of the Vestibular Labyrinth of a Patient: Perfection of the Vestibular Implant

    Science.gov (United States)

    Demkin, V. P.; Shchetinin, P. P.; Melnichuk, S. V.; Kingma, H.; Van de Berg, R.; Pleshkov, M. O.; Starkov, D. N.

    2018-03-01

    An electric model of current transmission through tissues of the vestibular labyrinth of a patient is suggested. To stimulate directly the vestibular nerve in surgical operation, terminations of the electrodes are implanted through the bone tissue of the labyrinth into the perilymph in the vicinity of the vestibular nerve. The biological tissue of the vestibular labyrinth surrounding the electrodes and having heterogeneous composition possesses conductive and dielectric properties. Thus, when a current pulse from the vestibular implant is applied to one of the electrodes, conductive disturbance currents may arise between the electrodes and the vestibular nerves that can significantly deteriorate the direct signal quality. To study such signals and to compensate for the conductive disturbance currents, an equivalent electric circuit with actual electric impedance properties of tissues of the vestibular system is suggested, and the time parameters of the conductive disturbance current transmission are calculated. It is demonstrated that these parameters can reach large values. The suggested electric model and the results of calculations can be used for perfection of the vestibular implant.

  9. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  10. Central vestibular dysfunction in an otorhinolaryngological vestibular unit: incidence and diagnostic strategy.

    Science.gov (United States)

    Mostafa, Badr E; Kahky, Ayman O El; Kader, Hisham M Abdel; Rizk, Michael

    2014-07-01

    Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years). Provisional videonystagmography (VNG) results were: 40% benign paroxysmal positional vertigo (BPPV), 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41) had magnetic resonance imaging (MRI) and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23%) were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus). Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  11. Central Vestibular Dysfunction in an Otorhinolaryngological Vestibular Unit: Incidence and Diagnostic Strategy

    Directory of Open Access Journals (Sweden)

    Mostafa, Badr E.

    2014-03-01

    Full Text Available Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years. Provisional videonystagmography (VNG results were: 40% benign paroxysmal positional vertigo (BPPV, 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41 had magnetic resonance imaging (MRI and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23% were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus. Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  12. A vestibular phenotype for Waardenburg syndrome?

    Science.gov (United States)

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  13. Atypical Manifestation of Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Webster, Guilherme

    2013-09-01

    Full Text Available Introduction: Vestibular schwannoma (also known as acoustic neuroma is a benign tumor whose cells are derived from Schwann sheaths, which commonly occurs from the vestibular portion of the eighth cranial nerve. Furthermore, vestibular schwannomas account for ∼8% of intracranial tumors in adults and 80 to 90% of tumors of the cerebellopontine angle. Its symptoms are varied, but what stands out most is a unilateral sensorineural hearing loss, with a low index of speech recognition. Objective: Describe an atypical manifestation of vestibular schwannoma. Case Report: The 46-year-old woman had vertigo and binaural hearing loss and fullness, with ear, nose, and throat examination suggestive of cochlear injury. After 6 months, the patient developed worsening of symptoms and onset of right unilateral tinnitus. In further exams the signs of cochlear damage remained, except for the vestibular test (hyporeflexia. Magnetic resonance imaging showed an expansive lesion in the right cerebellopontine angle. Discussion: This report warns about the atypical manifestations of vestibular schwannoma, which must always be remembered in investigating and diagnosing hearing loss.

  14. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  15. CONTRIBUTION OF THE AUDIOLOGICAL AND VESTIBULAR ASSESSMENT TO THE DIFFERENTIAL AND ETIOLOGICAL DIAGNOSIS OF PERIPHERIC VESTIBULAR SYNDROMES

    Directory of Open Access Journals (Sweden)

    Loreta Ungureanu

    2012-09-01

    Full Text Available Scope of the study: Vestibular pathology is a complex one, requiring a minute clinical evaluation, as well as numerous paraclinical investigations. The present study analyzes the contribution of the modern methods of vestibular and auditive investigation to the diagnosis of dizziness. Materials and method: The results of the investigations performed on 84 patients with peripheric vestibular syndrome, on whom a complete audiological and vestibular assessment had been also made, have been retrospectively analyzed. Results: Anamnestic data and the results of evaluation permitted classification of peripheric vestibular pathology according to topo-lesional and etiological criteria. The most frequently diagnosed diseases were: benign paroxysmal positional vertigo, Ménière syndrome and vestibular neuronitis. Conclusions: Testing of the vestibulo-ocular and vestibulo-spinal reflexes through videonystagmoscopy and, respectively, computerized dynamic posturography, besides tonal vocal audiometry and precocious auditive potentials, is especially important for a positive diagnosis and etiological differentiation of vestibular syndromes.

  16. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  17. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions.

    Science.gov (United States)

    Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E

    2017-11-01

    Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of

  18. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  19. Aging of the Human Vestibular System

    OpenAIRE

    Zalewski, Christopher K.

    2015-01-01

    Aging affects every sensory system in the body, including the vestibular system. Although its impact is often difficult to quantify, the deleterious impact of aging on the vestibular system is serious both medically and economically. The deterioration of the vestibular sensory end organs has been known since the 1970s; however, the measurable impact from these anatomical changes remains elusive. Tests of vestibular function either fall short in their ability to quantify such anatomical deteri...

  20. Perspectives on aging vestibular function

    Directory of Open Access Journals (Sweden)

    Eric eAnson

    2016-01-01

    Full Text Available Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities like standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multi-sensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multi-sensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  1. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  2. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  3. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors.

    Science.gov (United States)

    Puyal, Julien; Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Demêmes, Danielle; Raymond, Jaqueline; Pettorossi, Vito Enrico

    2003-12-01

    The effects of high frequency stimulation (HFS) of the primary vestibular afferents on synaptic transmission in the ventral part of the medial vestibular nuclei (vMVN) were studied during postnatal development and compared with the changes in the expression of the group I metabotropic glutamate receptor (mGluR) subtypes, mGluR1 and mGluR5. During the first stages of development, HFS always induced a mGluR5- and GABAA-dependent long-term depression (LTD) which did not require NMDA receptor and mGluR1 activation. The probability of inducing LTD decreased progressively throughout the development and it was zero at about the end of the second postnatal week. Conversely, long-term potentiation (LTP) appeared at the beginning of the second week and its occurrence increased to reach the adult value at the end of the third week. Of interest, the sudden change in the LTP frequency occurred at the time of eye opening, about the end of the second postnatal week. LTP depended on NMDA receptor and mGluR1 activation. In parallel with the modifications in synaptic plasticity, we observed that the expression patterns and localizations of mGluR5 and mGluR1 in the medial vestibular nuclei (MVN) changed during postnatal development. At the earlier stages the mGluR1 expression was minimal, then increased progressively. In contrast, mGluR5 expression was initially high, then decreased. While mGluR1 was exclusively localized in neuronal compartments and concentrated at the postsynaptic sites at all stages observed, mGluR5 was found mainly in neuronal compartments at immature stages, then preferentially in glial compartments at mature stages. These results provide the first evidence for a progressive change from LTD to LTP accompanied by a distinct maturation expression of mGluR1 and mGluR5 during the development of the MVN.

  4. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans.

    Science.gov (United States)

    Kaufmann, H; Biaggioni, I; Voustianiouk, A; Diedrich, A; Costa, F; Clarke, R; Gizzi, M; Raphan, T; Cohen, B

    2002-04-01

    It has been proposed that a vestibular reflex originating in the otolith organs and other body graviceptors modulates sympathetic activity during changes in posture with regard to gravity. To test this hypothesis, we selectively stimulated otolith and body graviceptors sinusoidally along different head axes in the coronal plane with off-vertical axis rotation (OVAR) and recorded sympathetic efferent activity in the peroneal nerve (muscle sympathetic nerve activity, MSNA), blood pressure, heart rate, and respiratory rate. All parameters were entrained during OVAR at the frequency of rotation, with MSNA increasing in nose-up positions during forward linear acceleration and decreasing when nose-down. MSNA was correlated closely with blood pressure when subjects were within +/-90 degrees of nose-down positions with a delay of 1.4 s, the normal latency of baroreflex-driven changes in MSNA. Thus, in the nose-down position, MSNA was probably driven by baroreflex afferents. In contrast, when subjects were within +/-45 degrees of the nose-up position, i.e., when positive linear acceleration was maximal along the naso-ocipital axis, MSNA was closely related to gravitational acceleration at a latency of 0.4 s. This delay is too short for MSNA changes to be mediated by the baroreflex, but it is compatible with the delay of a response originating in the vestibular system. We postulate that a vestibulosympathetic reflex, probably originating mainly in the otolith organs, contributes to blood pressure maintenance during forward linear acceleration. Because of its short latency, this reflex may be one of the earliest mechanisms to sustain blood pressure upon standing.

  5. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    Science.gov (United States)

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  6. Acute Bilateral Superior Branch Vestibular Neuropathy

    Directory of Open Access Journals (Sweden)

    Dario A. Yacovino

    2018-05-01

    Full Text Available The rapid onset of a bilateral vestibular hypofunction (BVH is often attributed to vestibular ototoxicity. However, without any prior exposure to ototoxins, the idiopathic form of BVH is most common. Although sequential bilateral vestibular neuritis (VN is described as a cause of BVH, clinical evidence for simultaneous and acute onset bilateral VN is unknown. We describe a patient with an acute onset of severe gait ataxia and oscillopsia with features compatible with acute BVH putatively due to a bilateral VN, which we serially evaluated with clinical and laboratory vestibular function testing over the course of 1 year. Initially, bilateral superior and horizontal semicircular canals and bilateral utricles were impaired, consistent with damage to both superior branches of each vestibular nerve. Hearing was spared. Only modest results were obtained following 6 months of vestibular rehabilitation. At a 1-year follow-up, only the utricular function of one side recovered. This case is the first evidence supporting an acute presentation of bilateral VN as a cause for BVH, which would not have been observed without critical assessment of each of the 10 vestibular end organs.

  7. Metabolic disorders of the vestibular system.

    Science.gov (United States)

    Rybak, L P

    1995-01-01

    This article reviews the impact of metabolic disorders on vestibular function. Diabetes mellitus is a disorder of glucose metabolism that can be associated with vestibular dysfunction. Vertigo can be alleviated by diet management in many cases. Elevated levels of blood lipids have been implicated in cochleovestibular disorders. Treatment with a lipid-lowering drug has resulted in improved auditory and vestibular function in a placebo-controlled trial. Hypothyroidism may affect different parts of the vestibular system depending on the severity and duration of thyroid deficiency. Severe congenital hypothyroidism can cause central vestibular disorders affecting the cerebellum, whereas mild hypothyroidism may result in peripheral vestibulopathy. Endogenous alterations in concentrations of estrogen and progesterone in the premenstrual syndrome or with the use of exogenous hormones such as oral contraceptives may trigger vertigo. Metabolic evaluations for unexplained vertigo should include a lipoprotein profile, with cholesterol and triglyceride levels, glucose tolerance test, and thyroid hormone measurements. Nutritional and drug therapy may be useful to reverse the vestibular dysfunction.

  8. Afferent loop syndrome: Role of sonography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Ho; Lim, Jae Hoon; Ko, Young Tae [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Afferent loop syndrome(ALS) is caused by obstruction of the afferent loop after subtotal gastrectomy with Billroth II gastrojejunostomy. Prompt diagnosis of ALS is important as perforation of the loop occurs. The aim of study is to ascertain the sonography and CT to diagnose ALS. We describe the radiologic findings in ten patients with ALS. The cause of ALS, established at surgery, included cancer recurrence (n=4), internal hernia (n=4), marginal ulcer (n=1), and development of cancer at the anastomosis site (n=1). Abdominal X-ray and sonography were performed in all cases, upper GI series in five cases and computed tomography in two cases. The dilated afferent loop was detected in only two cases out often patients in retrospective review of abdominal X-ray. ALS with recurrence of cancer was diagnosed in three cases by upper GI series. Of the cases that had sonography, the afferent loop was seen in the upper abdomen crossing transversely over the midline in all ten patients. The cause of ALS were predicated on the basis of the sonograms in three of the five patients. In two cases of computed tomography, the dilated afferent loop and recurrent cancer at the remnant stomach were seen.Our experience suggests that the diagnosis of afferent syndrome can be made on the basis of the typical anatomic location and shape of the dilated bowel loop in both sonography and computed tomography.

  9. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  10. Task-dependent vestibular feedback responses in reaching.

    Science.gov (United States)

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  11. Hereditary familial vestibular degenerative diseases.

    NARCIS (Netherlands)

    Sun, J.; Alphen, A.M. van; Wagenaar, M.; Huygen, P.L.M.; Hoogenraad, C.C.; Hasson, T.; Koekkoek, S.K.; Bohne, B.A.; Zeeuw, C.I. de

    2001-01-01

    Identification of genes involved in hereditary vestibular disease is growing at a remarkable pace. Mutant mouse technology can be an important tool for understanding the biological mechanism of human vestibular diseases.

  12. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  13. Aging of the Human Vestibular System

    Science.gov (United States)

    Zalewski, Christopher K.

    2015-01-01

    Aging affects every sensory system in the body, including the vestibular system. Although its impact is often difficult to quantify, the deleterious impact of aging on the vestibular system is serious both medically and economically. The deterioration of the vestibular sensory end organs has been known since the 1970s; however, the measurable impact from these anatomical changes remains elusive. Tests of vestibular function either fall short in their ability to quantify such anatomical deterioration, or they are insensitive to the associated physiologic decline and/or central compensatory mechanisms that accompany the vestibular aging process. When compared with healthy younger individuals, a paucity of subtle differences in test results has been reported in the healthy older population, and those differences are often observed only in response to nontraditional and/or more robust stimuli. In addition, the reported differences are often clinically insignificant insomuch that the recorded physiologic responses from the elderly often fall within the wide normative response ranges identified for normal healthy adults. The damaging economic impact of such vestibular sensory decline manifests itself in an exponential increase in geriatric dizziness and a subsequent higher prevalence of injurious falls. An estimated $10 to $20 billion dollar annual cost has been reported to be associated with falls-related injuries and is the sixth leading cause of death in the elderly population, with a 20% mortality rate. With an estimated 115% increase in the geriatric population over 65 years of age by the year 2050, the number of balanced-disordered patients with a declining vestibular system is certain to reach near epidemic proportions. An understanding of the effects of age on the vestibular system is imperative if clinicians are to better manage elderly patients with balance disorders, dizziness, and vestibular disease. PMID:27516717

  14. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  15. Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience.

    Science.gov (United States)

    Sager, Omer; Beyzadeoglu, Murat; Dincoglan, Ferrat; Demiral, Selcuk; Uysal, Bora; Gamsiz, Hakan; Oysul, Kaan; Dirican, Bahar; Sirin, Sait

    2013-01-01

    The primary goal of treatment for vestibular schwannoma is to achieve local control without comprimising regional cranial nerve function. Stereotactic radiosurgery has emerged as a viable therapeutic option for vestibular schwannoma. The aim of the study is to report our 15-year single center experience using linear accelerator-based stereotactic radiosurgery in the management of patients with vestibular schwannoma. Between July 1998 and January 2013, 68 patients with unilateral vestibular schwannoma were treated using stereotactic radiosurgery at the Department of Radiation Oncology, Gulhane Military Medical Academy. All patients underwent high-precision stereotactic radiosurgery using a linear accelerator with 6-MV photons. Median follow-up time was 51 months (range, 9-107). Median age was 45 years (range, 20-77). Median dose was 12 Gy (range, 10-13) prescribed to the 85%-95% isodose line encompassing the target volume. Local tumor control in patients with periodic follow-up imaging was 96.1%. Overall hearing preservation rate was 76.5%. Linear accelerator-based stereotactic radiosurgery offers a safe and effective treatment for patients with vestibular schwannoma by providing high local control rates along with improved quality of life through well-preserved hearing function.

  16. Wear of the Primary WaveOne single file when shaping vestibular root canals of first maxillary molar.

    Science.gov (United States)

    Aracena, Daniel; Borie, Eduardo; Betancourt, Pablo; Aracena, Angella; Guzmán, Mario

    2017-03-01

    It is very important for a clinician to know the increased wear of mechanized files when establishing endodontic therapy. The aim of this study was to check the wear of the Primary WaveOne file upon shaping two, four and six maxillary molar vestibular canals. The deterioration of 40 files, divided into four groups, was evaluated microscopically: group 1, control (unused); group 2, two canals; group 3, four canals; and group 4, six canals. After instrumentation, the files were embedded in resin and sectioned at their apical third into three equal parts. To analyze the wear of edges in the different sections, AutoCAD software was used and analysis of variance (ANOVA) was then performed to compare the mean rake angles. The files with two and four uses showed slight wear, whereas those with six applications showed significant wear ( p <0.05). Primary WaveOne files can be used in up to four root canals without their edges losing effectiveness. Key words: Files wear, reciprocating motion, shaping capacity, WaveOne.

  17. A Study of Relationship between the Acoustic Sensitivity of Vestibular System and the Ability to Trigger Sound-Evoked Muscle Reflex of the Middle Ear in Adults with Normal Hearing

    Directory of Open Access Journals (Sweden)

    S.F. Emami

    2014-07-01

    Full Text Available Introduction & Objective: The vestibular system is sound sensitive and the sensitivity is related to the saccule. The vestibular afferents are projected to the middle ear muscles (such as the stapedius. The goal of this research was studying the relationship between the vestibular hearing and the sound-evoked muscle reflex of the middle ear to 500 HZ. Materials & Methods: This study was a cross sectional-comparison done in audiology department of Sheikholreis C‍‍linic (Hamadan, Iran. The study groups consisted of thirty healthy people and thirty patients with benign paroxysmal positional vertigo. Inclusion criteria of the present study were to have normal hearing on pure tone audiometry, acoustic reflex, and speech discrimination scores. Based on ipsilateral acoustic reflex test at 500HZ, they were divided to normal and abnormal groups. Then they were evaluated by cervical vestibular evoked myogenic potentials (cVEMPs and finally classified in three groups (N Normal ear , (CVUA Contra lateral vertiginous ear with unaffected saccular sensitivity to sound,(IVA Ipsilateral vertiginous ear with affected saccular sensitivity to sound. Results: Thirty affected ears (IVA with decreased vestibular excitability as detected by ab-normal cVEMPs, revealed abnormal findings of acoustic reflex at 500HZ. Whereas, both un-affected (CVUA and normal ears (N had normal results. Multiple comparisons of mean values of cVEMPs (p13,n23 and acoustic reflex at500HZ among the three groups were sig-nificant. The correlation between acoustic reflex at 500HZ and p13 latencies was significant. The n23 latencies showed significant correlation with acoustic reflex at 500HZ. Conclusion: The vestibular sensitivity to sound retains the ability to trigger sound-evoked re-flex of the middle ear at 500 HZ. (Sci J Hamadan Univ Med Sci 2014; 21 (2:99-104

  18. Vestibular findings in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2011-07-01

    Full Text Available Introduction: Fibromyalgia (FM is a non-inflammatory musculoskeletal chronic syndrome, whose etiology is unknown, characterized by a diffuse pain, increase in palpation sensitivity and such symptoms as tiredness, insomnia, anxiety, depression, cold intolerance and otologic complaints. Objective: Evaluate the vestibular behavior in fibromyalgia patients. Method: A retrospective transversal study was performed. 25 patients aged between 26 and 65 (average age - 52.2 and standard deviation - 10.3 were evaluated and submitted to the following procedures: anamnesis, otorhinolaryngologic and vestibular evaluation by way of vector electronystamography. Results: a The most evident otoneurologic symptoms were: difficulty or pain when moving the neck and pain was spread to an arm or shoulder (92.0% in each, dizziness (84.0% and headache (76.0%. The different clinical symptoms mostly reported were: depression (80.0%, anxiety (76.0% and insomnia (72.0%; b vestibular examination showed an alteration in 12 patients (48.0% in the caloric test; c an alteration in the peripheral vestibular system prevailed, and d deficient peripheral vestibular disorders were prevalent. Conclusion: This study enabled the importance of the labyrinthic test to be verified, thus emphasizing that this kind of people must be studied better, since a range of rheumatologic diseases can cause severe vestibular changes as a result of their manifestations and impairment areas.

  19. Vestibular characterization in the menstrual cycle Caracterização vestibular no ciclo menstrual

    Directory of Open Access Journals (Sweden)

    Cintia Ishii

    2009-06-01

    Full Text Available Hormonal disorders in the menstrual cycle can affect labyrinthine fluid homeostasis, causing balance and hearing dysfunctions. STUDY DESIGN: Clinical prospective. AIM: compare the results from vestibular tests in young women, in the premenstrual and postmenstrual periods. MATERIALS AND METHODS: twenty women were selected with ages ranging from 18 to 35 years, who were not using any kind of contraceptive method for at least six months, and without vestibular or hearing complaints. The test was carried out in each subject before and after the menstrual period, respecting the limit of ten days before or after menstruation. RESULTS: there was a statistically significant difference in the menstrual cycle phases only in the following vestibular tests: calibration, saccadic movements, PRPD and caloric-induced nystagmus. We also noticed that age; a regular menstrual cycle; hearing loss or dizziness cases in the family; and premenstrual symptoms such as tinnitus, headache, sleep disorders, anxiety, nausea and hyperacusis can interfere in the vestibular test. CONCLUSION: there are differences in the vestibular tests of healthy women when comparing their pre and postmenstrual periods.As alterações hormonais do ciclo menstrual podem comprometer a homeostase dos fluidos labirínticos, gerando alterações no equilíbrio e na audição. FORMA DO ESTUDO: Clínico prospectivo. OBJETIVO: Comparar os resultados dos testes do exame vestibular em mulheres jovens, nos períodos pré e pós-menstrual. MATERIAL E MÉTODO: Foram selecionadas vinte mulheres, entre dezoito e trinta e cinco anos, que não fizessem uso de qualquer tipo de anticoncepcional, com audição normal e sem queixas vestibulares. O exame vestibular foi realizado em cada participante no período pré e no período pós-menstrual, em ordem aleatória, e respeitando o limite de até dez dias antes do início da menstruação e até dez dias após o início da menstruação. RESULTADO: Foi observada

  20. Personality Changes in Patients with Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-10-01

    Full Text Available The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalisation and derealisation symptoms such as feeling ‘spaced out’, ‘body feeling strange’ and ‘not feeling in control of self’. We suggest in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through the information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction.

  1. Vestibular Function and Activities of Daily Living

    Directory of Open Access Journals (Sweden)

    Aisha Harun MD

    2015-09-01

    Full Text Available Objective: Vestibular dysfunction increases with age and is associated with mobility difficulties and fall risk in older individuals. We evaluated whether vestibular function influences the ability to perform activities of daily living (ADLs. Method: We analyzed the 1999 to 2004 National Health and Nutrition Examination Survey of adults aged older than 40 years ( N = 5,017. Vestibular function was assessed with the Modified Romberg test. We evaluated the association between vestibular function and difficulty level in performing specific basic and instrumental ADLs, and total number of ADL impairments. Results: Vestibular dysfunction was associated with significantly higher odds of difficulty with nine ADLs, most strongly with difficulty managing finances (odds ratio [ OR ] = 2.64, 95% confidence interval [CI] = [1.18, 5.90]. In addition, vestibular dysfunction was associated with a significantly greater number of ADL impairments (β = .21, 95% CI = [0.09, 0.33]. This effect size was comparable with the influence of heavy smoking (β = .21, 95% CI = [0.06, 0.36] and hypertension (β = .10, 95% CI = [0.02, 0.18] on the number of ADL impairments. Conclusion: Vestibular dysfunction significantly influences ADL difficulty, most strongly with a cognitive rather than mobility-based task. These findings underscore the importance of vestibular inputs for both cognitive and physical daily activities.

  2. Galvanic Vestibular Stimulation in Hemi-Spatial Neglect

    Directory of Open Access Journals (Sweden)

    David eWilkinson

    2014-01-01

    Full Text Available Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduction persists after stimulation is stopped. To estimate longevity of effect, we therefore conducted a double-blind, randomized, dose-response trial involving a group of stroke patients suffering from left-sided neglect (n=52, mean age=66 years. To determine whether repeated sessions of galvanic vestibular stimulation more effectively induce lasting relief than a single session, participants received 1, 5, or 10 sessions, each lasting 25mins, of sub-sensory, left-anodal right-cathodal noisy direct current (mean amplitude=1mA. Ninety five percent confidence intervals indicated that all three treatment arms showed a statistically significant improvement between the pre-stimulation baseline and the final day of stimulation on the primary outcome measure, the conventional tests of the Behavioural Inattention Test. More remarkably, this change (mean change=28%, SD=18 was still evident 1month later. Secondary analyses indicated an allied increase of 20% in median Barthel Index score, a measure of functional capacity, in the absence of any adverse events or instances of participant non-compliance. Together these data suggest that galvanic vestibular stimulation, a simple, cheap technique suitable for home-based administration, may produce lasting reductions in neglect that are clinically important. Further protocol optimization is now needed ahead of a larger effectiveness study.

  3. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei.

    Science.gov (United States)

    Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco

    2002-11-01

    LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.

  4. Vestibular function testing.

    LENUS (Irish Health Repository)

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  5. Dyscalculia and vestibular function.

    Science.gov (United States)

    Smith, P F

    2012-10-01

    A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Vestibular morphology in the German Waltzing guinea pig.

    Science.gov (United States)

    Kawaguchi, Sachie; Hultcrantz, Malou; Jin, Zhe; Ulfendahl, Mats; Suzuki, Mamoru

    2010-04-01

    The German waltzing guinea pig is a special strain of animal with a recessively inherited inner ear defect, resulting in deafness and a severe vestibular dysfunction. The hearing loss in the cochlea of the German strain is a result of a collapse of the Reissner membrane and the absence of scala media. The vestibular organ has not yet been described. German waltzing guinea pigs (homozygote and heterozygote) of different ages ranging from embryologic age 25 days to adulthood were investigated. The living animals were tested with four different vestibular tests, and the fetuses were controlled according to breeding. The morphology of the vestibular parts (ampulla, saccule, and utricle) was observed by using the light and transmission electron microscopy. Collapse of the membranous labyrinth was found already at embryologic age 50 days and progressed over time. Vestibular dysfunction was noted already from birth. Vestibular atelectasis has been shown to have the same morphology as the reported vestibular dysfunction in the German waltzing guinea pig. Owing to this similarity, this animal can be a good model for vestibular research.

  7. True incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  8. Epidemiology and natural history of vestibular schwannomas

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Caye-Thomasen, Per

    2012-01-01

    This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma. A treatm......This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma...

  9. Vestibular evaluation in children with otitis media with effusion.

    Science.gov (United States)

    Kolkaila, E A; Emara, A A; Gabr, T A

    2015-04-01

    Fifty per cent of children with serous otitis media may have some balance disturbances. To evaluate vestibular function in children with otitis media with effusion. The control group comprised 25 children with bilateral normal hearing and middle-ear function. The study group consisted of 30 children with bilateral otitis media with effusion; these were divided into 2 subgroups according to air-bone gap size. Measures included the Arabic Dizziness Handicap Inventory, an imbalance evaluation sheet for children, vestibular bedside tests for children, and air- and bone-conducted vestibular-evoked myogenic potential testing. Arabic Dizziness Handicap Inventory scores and some vestibular bedside test results were significantly abnormal, with normal video-nystagmography results, in children with otitis media with effusion. Air-conducted vestibular-evoked myogenic potentials were recorded in 73 per cent of children with otitis media with effusion, with significantly delayed latencies. Bone-conducted vestibular-evoked myogenic potentials were successfully detected in 100 per cent of children with otitis media with effusion with similar results to the control group. The Arabic Dizziness Handicap Inventory and vestibular bedside tests are valuable tools for detecting vestibular impairment in children. Bone-conducted vestibular-evoked myogenic potentials are useful for vestibular system evaluation.

  10. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  11. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    Science.gov (United States)

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  12. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    Science.gov (United States)

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  13. [Threefold intraoperative electrophysiological monitoring of vestibular neurectomy].

    Science.gov (United States)

    Hausler, R; Kasper, A

    1991-01-01

    A threefold intraoperative monitoring of facial nerve, auditory nerve and vestibular nerve function was performed in 14 cases of retrosigmoidal neurectomy. The facial nerve was monitoring with a pressure transducer placed against the cheek (Opalarm system). The auditory nerve was monitored with acoustically (click) evoked early potentials and the vestibular nerve was monitored with electrically evoked vestibular potentials obtained by direct stimulation (biphasic current pulses of 0.75-mA p-p, 100 us, 20/s) of the exposed vestibular nerve in the cerebellopontine angle before, during and after neurectomy. A characteristic vertex negative peak having a latency of approximately 2 ms and approximately 0.5 uV amplitude was obtained between a forehead and an ipsilateral ear lobe electrode (2 x 1,000 averaged responses over 10 ms) before the neurectomy. This response disappeared after selective vestibular nerve section proximal to the stimulation site. A diminished response amplitude was measured after incomplete nerve section. Simultaneous acoustic masking had no influence on the vestibular potential. The 14 operated patients became all free of vertiginous spells and drop-attacks except one patient who developed a contralateral Menière's. Facial nerve function remained normal in all. Hearing preservation was obtained in 12 patients (86%). The threefold intraoperative monitoring has turned out to be an additional safety factor for facial and auditory nerve preservation and, thanks to the recording of vestibular potentials, it increased the efficiency of vestibular neurectomy.

  14. Influence of sex and estrous cycle on synaptic responses of the medial vestibular nuclei in rats: role of circulating 17β-estradiol.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Scarduzio, Mariangela; Dieni, Cristina V; Brecchia, Gabriele; Boiti, Cristiano; Pettorossi, Vito E

    2012-02-10

    We investigated the possible influence of sex and estrous cycle on the synaptic responses of neurons in the medial vestibular nucleus (MVN) and their long-term modifications. In brain stem slices of male and female rats during proestrus (PE) and diestrus (DE), we evaluated the field potential evoked in the MVN by vestibular afferent stimulation. Here we find that in PE females the field potential had a lower threshold and higher amplitude than in DE females and in males and also that the stimulus-response curve was shifted to the left. Such difference is related to the level and cyclic fluctuation of circulating 17β-estradiol (E(2)). This is supported by the exogenous administration of E(2) in DE females and males, with low levels of circulating E(2) that enhanced the field potential amplitude to values close to those of PE females. Sex and estrous cycle also influence the MVN synaptic plasticity. This has been shown by investigating the effect of testosterone (T) on the induction of long-term effects, since T is the precursor for the neural synthesis of E(2) (estrogenic pathway), which is involved in the induction of fast long-term potentiation (LTP), or of 5α-dihydrotestosterone (DHT, androgenic pathway) which mediates slow LTP and long-term depression (LTD). We found that T mostly induced LTD in PE females and no effect in DE females, while it only provoked fast LTP in males. We suggest that high level of circulating E(2) may interfere with the conversion of T, by inhibiting the neural estrogenic pathway and facilitating the androgenic one. On the whole these results demonstrate an influence of circulating E(2) on vestibular synaptic transmission and plasticity that in some cases may contribute to the sex and menstrual cycle dependence of symptoms in human vestibular pathology. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial.

    Science.gov (United States)

    Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory

    2012-03-26

    Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.

  16. Body ownership and embodiment: vestibular and multisensory mechanisms.

    Science.gov (United States)

    Lopez, C; Halje, P; Blanke, O

    2008-06-01

    Body ownership and embodiment are two fundamental mechanisms of self-consciousness. The present article reviews neurological data about paroxysmal illusions during which body ownership and embodiment are affected differentially: autoscopic phenomena (out-of-body experience, heautoscopy, autoscopic hallucination, feeling-of-a-presence) and the room tilt illusion. We suggest that autoscopic phenomena and room tilt illusion are related to different types of failures to integrate body-related information (vestibular, proprioceptive and tactile cues) in addition to a mismatch between vestibular and visual references. In these patients, altered body ownership and embodiment has been shown to occur due to pathological activity at the temporoparietal junction and other vestibular-related areas arguing for a key importance of vestibular processing. We also review the possibilities of manipulating body ownership and embodiment in healthy subjects through exposition to weightlessness as well as caloric and galvanic stimulation of the peripheral vestibular apparatus. In healthy subjects, disturbed self-processing might be related to interference of vestibular stimulation with vestibular cortex leading to disintegration of bodily information and altered body ownership and embodiment. We finally propose a differential contribution of the vestibular cortical areas to the different forms of altered body ownership and embodiment.

  17. Bedside examination for vestibular screening in occupational medicine

    Directory of Open Access Journals (Sweden)

    Ewa Zamysłowska-Szmytke

    2015-04-01

    Full Text Available Objectives: The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG oculomotor tests (central group and 43 subjects with normal VNG. Material and Methods: Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT, Dynamic Visual Acuity (DVA and gaze nystagmus assessment. Results: Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73% had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. Conclusions: The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes.

  18. Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment.

    Science.gov (United States)

    Lotfi, Younes; Rezazadeh, Nima; Moossavi, Abdollah; Haghgoo, Hojjat Allah; Rostami, Reza; Bakhshi, Enayatollah; Badfar, Faride; Moghadam, Sedigheh Farokhi; Sadeghi-Firoozabadi, Vahid; Khodabandelou, Yousef

    2017-12-01

    Balance function has been reported to be worse in ADHD children than in their normal peers. The present study hypothesized that an improvement in balance could result in better cognitive performance in children with ADHD and concurrent vestibular impairment. This study was designed to evaluate the effects of comprehensive vestibular rehabilitation therapy on the cognitive performance of children with combined ADHD and concurrent vestibular impairment. Subject were 54 children with combined ADHD. Those with severe vestibular impairment (n=33) were randomly assigned to two groups that were matched for age. A rehabilitation program comprising overall balance and gate, postural stability, and eye movement exercises was assigned to the intervention group. Subjects in the control group received no intervention for the same time period. Intervention was administered twice weekly for 12 weeks. Choice reaction time (CRT) and spatial working memory (SWM) subtypes of the Cambridge Neuropsychological Test Automated Battery (CANTAB) were completed pre- and post-intervention to determine the effects of vestibular rehabilitation on the cognitive performance of the subjects with ADHD and concurrent vestibular impairment. ANCOVA was used to compare the test results of the intervention and control group post-test. The percentage of correct trial scores for the CRT achieved by the intervention group post-test increased significantly compared to those of the control group (p=0.029). The CRT mean latency scores were significantly prolonged in the intervention group following intervention (p=0.007) compared to the control group. No significant change was found in spatial functioning of the subjects with ADHD following 12 weeks of intervention (p>0.05). The study highlights the effect of vestibular rehabilitation on the cognitive performance of children with combined ADHD and concurrent vestibular disorder. The findings indicate that attention can be affected by early vestibular

  19. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Amir Abbas Ebrahimi

    2018-01-01

    Full Text Available The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys with the profound sensorineural hearing loss (PTA>90 dB. They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP. For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT was completed pre- and post-intervention with SPS (Synapsys, Marseille, France. Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS, vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05. The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  20. Achados vestibulares em usuários de aparelho de amplificação sonora individual Vestibular findings in hearing aid users

    Directory of Open Access Journals (Sweden)

    Fabiane Paulin

    2009-01-01

    Full Text Available OBJETIVO: verificar os achados vestibulares em pacientes com perda auditiva neurossenssorial usuários de aparelho de amplificação sonora individual. MÉTODOS: vinte pacientes, 11 do sexo feminino e nove do sexo masculino, com idades entre 39 e 85 anos, com perda auditiva neurossenssorial bilateral de grau moderado e severo foram atendidos em uma Instituição de Ensino Superior e submetidos a uma anamnese, inspeção otológica, avaliação audiológica, imitanciometria e ao exame vestibular por meio da vectoeletronistagmografia. RESULTADOS: a dos 20 pacientes avaliados, 18 (90% apresentaram queixa de zumbido, 15 (75% queixa de tontura e oito (40% queixa de cefaléia; b houve predomínio de alteração na prova calórica e no sistema vestibular periférico; c o resultado do exame vestibular esteve alterado em 14 pacientes (70%, sendo, oito casos (40% de síndrome vestibular periférica irritativa e seis casos (30% de síndrome vestibular periférica deficitária; d verificou-se diferença significativa entre o resultado do exame vestibular e o tempo de uso do aparelho de amplificação sonora individual; e dos cinco pacientes que não referiram nenhum sintoma vestibular, quatro (80% apresentaram alteração no exame. CONCLUSÃO: ressalta-se a sensibilidade e importância do estudo funcional do sistema do equilíbrio neste tipo de população, uma vez que podem ocorrer alterações na avaliação labiríntica independente da presença de sintomas.PURPOSE: to check vestibular findings in patients with sensoneural hearing loss, hearing aid users. METHODS: 20 patients (eleven females and nine males aging from 39 to 85-year-old with bilateral sensorineural hearing loss, from moderate to severe degrees, were attended in a higher education institution evaluated by medical history, otological inspections, complete basic conventional audiological evaluations, acoustic impedance tests and vectoeletronystagmography. RESULTS: a from the 20 evaluated

  1. Bedside examination for vestibular screening in occupational medicine.

    Science.gov (United States)

    Zamysłowska-Szmytke, Ewa; Szostek-Rogula, Sylwia; Śliwińska-Kowalska, Mariola

    2015-01-01

    The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG) oculomotor tests (central group) and 43 subjects with normal VNG. Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT), Dynamic Visual Acuity (DVA) and gaze nystagmus assessment. Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73%) had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. An evidence-based case of acoustic/vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Girish Gupta

    2015-01-01

    Full Text Available A vestibular schwannoma, often called an acoustic neuroma/schwannoma, is a benign primary intracranial tumor of the myelin-forming cells of the vestibulo-cochlear nerve (8 th cranial nerve. This tumor arises from the Schwann cells responsible for the myelin sheath that helps keep peripheral nerves insulated. [1] Approximately, 3000 cases are diagnosed each year in the United States with a prevalence of about 1 in 100,000 worldwide. It comprises 5-10% of all intracranial neoplasms in adults. Incidence peaks in the fifth and sixth decades and both sexes are affected equally. Studies in Denmark published in 2004 show the incidence of 17.4/million. Most acoustic neuromas are diagnosed in patients between the ages of 30 and 60, and men and women appear to be affected equally. [2] The case illustrated here is a rare one of acoustic/vestibular schwannoma a surgical conditions, treated with Lycopodium, which produced improvement on both subjective and objective parameters.

  3. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  4. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors.

    Science.gov (United States)

    Tritto, Simona; Botta, Laura; Zampini, Valeria; Zucca, Gianpiero; Valli, Paolo; Masetto, Sergio

    2009-06-29

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to) H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  5. Interactive Healthcare Systems in the Home: Vestibular Rehabilitation

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Grönvall, Erik; Larsen, Simon Bo

    2010-01-01

    Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction.......Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction....

  6. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue.

    Science.gov (United States)

    Taurone, Samanta; Bianchi, Enrica; Attanasio, Giuseppe; Di Gioia, Cira; Ierinó, Rocco; Carubbi, Cecilia; Galli, Daniela; Pastore, Francesco Saverio; Giangaspero, Felice; Filipo, Roberto; Zanza, Christian; Artico, Marco

    2015-07-01

    Vestibular schwannomas, also known as acoustic neuromas, are benign tumors, which originate from myelin-forming Schwann cells. They develop in the vestibular branch of the eighth cranial nerve in the internal auditory canal or cerebellopontine angle. The clinical progression of the condition involves slow and progressive growth, eventually resulting in brainstem compression. The objective of the present study was to investigate the expression level and the localization of the pro-inflammatory cytokines, transforming growth factor-β1 (TGF-β1) interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), as well as the adhesion molecules, intracellular adhesion molecule-1 and vascular endothelial growth factor (VEGF), in order to determine whether these factors are involved in the transformation and development of human vestibular schwannoma. The present study investigated whether changes in inflammation are involved in tumor growth and if so, the mechanisms underlying this process. The results of the current study demonstrated that pro-inflammatory cytokines, including TGF-β1, IL-1β and IL-6 exhibited increased expression in human vestibular schwannoma tissue compared with normal vestibular nerve samples. TNF-α was weakly expressed in Schwann cells, confirming that a lower level of this cytokine is involved in the proliferation of Schwann cells. Neoplastic Schwann cells produce pro-inflammatory cytokines that may act in an autocrine manner, stimulating cellular proliferation. In addition, the increased expression of VEGF in vestibular schwannoma compared with that in normal vestibular nerve tissue, suggests that this factor may induce neoplastic growth via the promotion of angiogenesis. The present findings suggest that inflammation may promote angiogenesis and consequently contribute to tumor progression. In conclusion, the results of the present study indicated that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in vestibular

  7. Evaluation of postural control in unilateral vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Rafaela Maia Quitschal

    2014-07-01

    Full Text Available INTRODUCTION: Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. OBJECTIVE: To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. METHOD: This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. RESULTS: For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. CONCLUSION: Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction.

  8. Internal Models, Vestibular Cognition, and Mental Imagery: Conceptual Considerations.

    Science.gov (United States)

    Mast, Fred W; Ellis, Andrew W

    2015-01-01

    Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mechanisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cognition will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.

  9. Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Dara Meldrum

    2012-03-01

    Full Text Available Abstract Background Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. Methods/Design In a single (assessor blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis. Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks and at 6 months. Discussion Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Trial registration Clinical trials.gov identifier: NCT01442623

  10. Eliciting Cervical Vestibular-Evoked Myogenic Potentials by Bone-Conducted Vibration via Various Tapping Sites.

    Science.gov (United States)

    Tseng, Chia-Chen; Young, Yi-Ho

    2016-01-01

    This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.

  11. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2009-06-01

    Full Text Available The vestibular evoked myogenic potential (VEMP test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the history, methods, current VEMP status, and discuss its specific application in the diagnosis of the Ménière's Syndrome.O teste do potencial evocado miogênico vestibular (PEMV é um instrumento diagnóstico relativamente novo e ainda em processo de validação em estudos com pacientes portadores de desordens vestibulares específicas. De forma resumida, o PEMV é uma resposta bifásica em resposta a estímulos sonoros gravados a partir de contrações do músculo esternocleidomastóideo e é o único recurso existente para avaliar a função do sáculo e da divisão inferior do nervo vestibular. OBJETIVO: Nesta revisão iremos destacar a história, método de realização, situação atual da pesquisa envolvendo o PEMV, além de discutir as suas aplicações específicas no diagnóstico da síndrome de Ménière.

  12. Stereotactic radiotherapy for vestibular schwannoma

    DEFF Research Database (Denmark)

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL......; Web of Science; CAB Abstracts; ISRCTN and additional sources for published and unpublished trials. The date of the search was 24 July 2014. SELECTION CRITERIA: Randomised controlled trials (RCTs) exploring the efficacy of stereotactic radiotherapy compared with observation alone, microsurgical...

  13. Reaching with the sixth sense

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bulthoff, Heinrich H.

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support volunt...

  14. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system.

    Science.gov (United States)

    Zhang, Jinhui; Chen, Songlin; Cai, Jing; Hou, Zhiqiang; Wang, Xiaohan; Kachelmeier, Allan; Shi, Xiaorui

    2017-03-01

    The vestibular blood-labyrinth barrier (BLB) is comprised of perivascular-resident macrophage-like melanocytes (PVM/Ms) and pericytes (PCs), in addition to endothelial cells (ECs) and basement membrane (BM), and bears strong resemblance to the cochlear BLB in the stria vascularis. Over the past few decades, in vitro cell-based models have been widely used in blood-brain barrier (BBB) and blood-retina barrier (BRB) research, and have proved to be powerful tools for studying cell-cell interactions in their respective organs. Study of both the vestibular and strial BLB has been limited by the unavailability of primary culture cells from these barriers. To better understand how barrier component cells interact in the vestibular system to control BLB function, we developed a novel culture medium-based method for obtaining EC, PC, and PVM/M primary cells from tiny explants of the semicircular canal, sacculus, utriculus, and ampullae tissue of young mouse ears at post-natal age 8-12 d. Each phenotype is grown in a specific culture medium which selectively supports the phenotype in a mixed population of vestibular cell types. The unwanted phenotypes do not survive passaging. The protocol does not require additional equipment or special enzyme treatment. The harvesting process takes less than 2 h. Primary cell types are generated within 7-10 d. The primary culture ECs, PCs, and PVM/M shave consistent phenotypes more than 90% pure after two passages (∼ 3 weeks). The highly purified primary cell lines can be used for studying cell-cell interactions, barrier permeability, and angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex.

    Science.gov (United States)

    Masumura, Chisako; Horii, Arata; Mitani, Kenji; Kitahara, Tadashi; Uno, Atsuhiko; Kubo, Takeshi

    2007-03-23

    Inquiries into the neurochemical mechanisms of vestibular compensation, a model of lesion-induced neuronal plasticity, reveal the involvement of both voltage-gated Ca(2+) channels (VGCC) and intracellular Ca(2+) signaling. Indeed, our previous microarray analysis showed an up-regulation of some calcium signaling-related genes such as the alpha2 subunit of L-type calcium channels, calcineurin, and plasma membrane Ca(2+) ATPase 1 (PMCA1) in the ipsilateral vestibular nuclear complex (VNC) following unilateral vestibular deafferentation (UVD). To further elucidate the role of calcium signaling-related molecules in vestibular compensation, we used a quantitative real-time polymerase chain reaction (PCR) method to confirm the microarray results and investigated changes in expression of these molecules at various stages of compensation (6 h to 2 weeks after UVD). We also investigated the changes in gene expression during Bechterew's phenomenon and the effects of a calcineurin inhibitor on vestibular compensation. Real-time PCR showed that genes for the alpha2 subunit of VGCC, PMCA2, and calcineurin were transiently up-regulated 6 h after UVD in ipsilateral VNC. A subsequent UVD, which induced Bechterew's phenomenon, reproduced a complete mirror image of the changes in gene expressions of PMCA2 and calcineurin seen in the initial UVD, while the alpha2 subunit of VGCC gene had a trend to increase in VNC ipsilateral to the second lesion. Pre-treatment by FK506, a calcineurin inhibitor, decelerated the vestibular compensation in a dose-dependent manner. Although it is still uncertain whether these changes in gene expression are causally related to the molecular mechanisms of vestibular compensation, this observation suggests that after increasing the Ca(2+) influx into the ipsilateral VNC neurons via up-regulated VGCC, calcineurin may be involved in their synaptic plasticity. Conversely, an up-regulation of PMCA2, a brain-specific Ca(2+) pump, would increase an efflux of Ca

  16. Avaliação vestibular em mulheres com disfunção temporomandibular Vestibular evaluation in women with temporomandibular dysfunction

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2007-06-01

    Full Text Available OBJETIVO: avaliar o comportamento vestibular em pacientes com disfunção temporomandibular. MÉTODOS: avaliaram-se 27 pacientes do sexo feminino, na faixa etária de 30 a 53 anos, encaminhadas do Centro de Diagnóstico e Tratamento da Articulação Temporomandibular para o Laboratório de Otoneurologia da Universidade Tuiuti do Paraná. Realizaram-se os seguintes procedimentos: anamnese, inspeção otológica e avaliação vestibular por meio da vectoeletronistagmografia. RESULTADOS: as queixas mais freqüentes foram: dificuldade ou dor ao movimento do pescoço (77,7%, dor irradiada para ombro/braço (77,7%, zumbido e formigamento de extremidade superior (77,7%, tontura e dor de cabeça (66,6%, ansiedade (55,5%, sensação de cabeça oca (51,8%, agitação durante o sono (51,8% e depressão (51,8%. O exame vestibular esteve alterado em 20 pacientes (74,0% na prova calórica. Houve freqüência de alteração no sistema vestibular periférico. Houve predomínio das síndromes vestibulares periféricas deficitárias. CONCLUSÃO: ressalta-se a importância de se estudar a relação do sistema vestibular com a disfunção temporomandibular uma vez que observamos, na presente pesquisa, um número elevado de alteração no exame labiríntico.PURPOSE: to evaluate the vestibular functioning in patients with temporomandibular joint dysfunction. METHODS: 27 female patients were evaluated, with age varying from 30 to 53-year-old, referred from the Centre of Diagnosis and Treatment of Temporomandibular Joint Dysfunction to the Otoneurological Laboratory of Tuiuti University of Paraná. The following exams were carried out: anamnesis, otoscopy and vestibular evaluations through vectoelectronystagmography. RESULTS: the most frequent complaints were: difficulty or pain with movement of the neck (77.7%, pain irradiated to the shoulder/arm (77.7%, tinnitus and paresthesia of superior extremities (77.7% in each one, dizziness and headaches (66,6%, anxiety (55

  17. STATE ANXIETY, SUBJECTIVE IMBALANCE AND HANDICAP IN VESTIBULAR SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Yougan Saman

    2016-07-01

    Full Text Available ABSTRACTEvidence is emerging of a significant clinical and neuro-anatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety and there is a relationship between increased state anxiety and worsening balance function. Aims1.To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit.2.To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. MethodsTwo separate cohorts Vestibular Schwannoma (VS patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials and caloric responses and questionnaire assessment (Vertigo handicap Questionnaire, Vertigo Symptom Scale, State Trait Anxiety InventoryFifteen post resection Vestibular schwannoma patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1. Forty-five patients with VS in-situ and with preserved vestibular function formed the cohort for Experiment 2 (Aim 2. Experiment 1: VS subjects (N=15 with a complete post-resection unilateral vestibular deafferentation completed a State anxiety questionnaire before caloric assessment and again afterwards with the point of maximal vertigo as the reference (Aim 1. Experiment 2: State anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of presenting with balance symptoms (Group 1 N=26 and without balance symptoms (Group 2 N=11 (Aim 2. The presence of balance symptoms was defined as having a positive score on the VSS-VER.ResultsIn experiment 1, a significant difference (p<0.01 was found when comparing

  18. Vestibular and balance issues following sport-related concussion.

    Science.gov (United States)

    Valovich McLeod, Tamara C; Hale, Troy D

    2015-01-01

    To review relevant literature regarding the effect of concussion on vestibular function, impairments, assessments and management strategies. REASONING: Dizziness and balance impairments are common following sport-related concussion. Recommendations regarding the management of sport-related concussion suggest including tests of balance within the multifactorial assessment paradigm for concussive injuries. The literature was searched for guidelines and original studies related to vestibular impairments following concussion, oculomotor and balance assessments and treatment or rehabilitation of vestibular impairments. The databases searched included Medline, CINAHL, Sport Discus and the Cochrane Database of Systematic Reviews through October 2013. Dizziness following concussion occurs in ∼67-77% of cases and has been implicated as a risk factor for a prolonged recovery. Balance impairments also occur after concussion and last 3-10 days post-injury. Assessments of balance can be done using both clinical and instrumented measures with success. Vestibular rehabilitation has been shown to improve outcomes in patients with vestibular impairments, with one study demonstrating success in decreasing symptoms and increasing function following concussion. Best practices suggest that the assessment of vestibular function through cranial nerve, oculomotor and balance assessments are an important aspect of concussion management. Future studies should evaluate the effectiveness of vestibular rehabilitation for improving patient outcomes.

  19. Effects of primary caregiver participation in vestibular rehabilitation for unilateral neglect patients with right hemispheric stroke: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dai CY

    2013-04-01

    Full Text Available Chin-Ying Dai,1,2 Yu-Hui Huang,3,4 Li-Wei Chou,5,6 Shiao-Chi Wu,7 Ray-Yau Wang,8 Li-Chan Lin9 1School of Nursing, National Yang Ming University, Taipei, Taiwan; 2Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan; 3Department of Physical Medicine and Rehabilitation, Chung Shan Medical University Hospital, Taichung, Taiwan; 4School of Medicine, Chung Shan Medical University, Taichung, Taiwan; 5Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; 6School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; 7Institute of Health and Welfare Policy, National Yang-Ming University, Taipei, Taiwan; 8Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan; 9Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan, Republic of China Introduction: The current study aims to investigate the effects of primary caregiver participation in vestibular rehabilitation (VR on improving the measures of neglect, activities of daily living (ADL, balance, and falls of unilateral neglect (UN patients. Methods: This study is a single-blind randomized controlled trial. Both experimental (n = 24 and control groups (n = 24 received conventional rehabilitation. The experimental group undertook VR for a month. During the first and second weeks, a registered nurse trained the experimental group in VR. The primary caregivers in the experimental group supervised and guided their patients in VR during the third and fourth weeks. The outcome measures were neglect, ADL, balance, and falls. Results: The two groups of UN patients showed a significant improvement in neglect, ADL, and balance over time. Based on the generalized estimating equations model, an interaction was observed between groups and times. Significant interactions were observed between the VR group

  20. GABAergic systems in the vestibular nucleus and their contribution to vestibular compensation.

    Science.gov (United States)

    Gliddon, Catherine M; Darlington, Cynthia L; Smith, Paul F

    2005-01-01

    GABA and the GABAA and GABAB receptors play a pivotal role in the coordination of the central vestibular pathways. The commissural inhibition, which exists between the two vestibular nucleus complexes (VNCs) and which is responsible for enhancing the dynamic sensitivity of VNC neurons to head acceleration, is known to be substantially mediated by GABA acting on GABAA and GABAB receptors. After unilateral vestibular deafferentation (UVD), the large asymmetry in spontaneous resting activity between the two VNCs is reinforced and exacerbated by the GABAergic interaction between the ipsilateral and contralateral sides. Although it has been suggested that reduced GABAergic inhibition of the ipsilateral VNC may be partially responsible for the recovery of resting activity that underlies vestibular compensation of the static symptoms of UVD, at present there are few data available to test this hypothesis systematically. There is some evidence that GABA concentrations change in the ipsilateral VNC during the development of compensation; however, it is unclear whether these changes relate to GABA release or to metabolic pools of GABA. Most biochemical studies of GABA receptors have been conducted at the gene expression level. Therefore, it is unclear whether changes in the receptor protein also occur, although the most recent data suggest that changes in GABAA and GABAB receptor density in the VNC are unlikely. The few radioligand binding data relate to GABAA receptors with benzodiazepine binding sites only. A decrease in the sensitivity of ipsilateral VNC neurons from compensated animals to GABA receptor agonists has been reported; however, these studies have employed brainstem slices and therefore the functional identity of the neurons involved has been unclear. Although it seems likely that some changes in central GABAergic systems accompany the recovery of resting activity in the ipsilateral VNC during the development of vestibular compensation, at the present stage

  1. Headache and Dizziness: How to Differentiate Vestibular Migraine from Other Conditions.

    Science.gov (United States)

    Cohen, Joshua M; Escasena, Carlos A

    2015-07-01

    Headache and dizziness are two of the most common symptoms prompting medical evaluation and may be seen in many primary and secondary headache and dizziness syndromes. Many of these disease processes share common characteristics making determination of the diagnosis extremely challenging. As more is understood about the concurrence of these symptoms, new diagnostic considerations have emerged, and the beta version of the latest edition of the International Classification of Headache Disorders describes a new entity termed vestibular migraine that may affect many patients presenting with headache and dizziness. This article examines the epidemiology of headache and dizziness, describes the presenting features of patients with conditions which often express these two symptoms, discusses recommendations for evaluation and testing for these patients, and serves to aid in the differentiation between vestibular migraine and other potential diagnoses.

  2. Complications of Microsurgery of Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Jan Betka

    2014-01-01

    Full Text Available Background. The aim of this study was to analyze complications of vestibular schwannoma (VS microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225 removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI was observed in 124 cases (45% immediately after surgery and in 104 cases (33% on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%, headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery.

  3. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.

    Directory of Open Access Journals (Sweden)

    Julian Conrad

    Full Text Available Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1 whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2 whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF were tested for symptoms of hemineglect.Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing.Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction.A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.

  4. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  5. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat.

    Science.gov (United States)

    Baizer, Joan S; Baker, James F

    2005-07-01

    The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.

  6. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  7. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    Science.gov (United States)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  8. Vestibular factors influencing the biomedical support of humans in space.

    Science.gov (United States)

    Lichtenberg, B K

    1988-01-01

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From

  9. [Vestibular testing abnormalities in individuals with motion sickness].

    Science.gov (United States)

    Ma, Yan; Ou, Yongkang; Chen, Ling; Zheng, Yiqing

    2009-08-01

    To evaluate the vestibular function of motion sickness. VNG, which tests the vestibular function of horizontal semicircular canal, and CPT, which tests vestibulospinal reflex and judge proprioceptive, visual and vestibular status, were performed in 30 motion sickness patients and 20 healthy volunteers (control group). Graybiel score was recorded at the same time. Two groups' Graybiel score (12.67 +/- 11.78 vs 2.10 +/- 6.23; rank test P<0.05), caloric test labyrinth value [(19.02 +/- 8.59) degrees/s vs (13.58 +/- 5.25) degrees/s; t test P<0.05], caloric test labyrinth value of three patients in motion sickness group exceeded 75 degrees/s. In computerized posturography testing (CPT), motion sickness patients were central type (66.7%) and disperse type (23.3%); all of control group were central type. There was statistical significance in two groups' CTP area, and motion sickness group was obviously higher than control group. While stimulating vestibulum in CPT, there was abnormality (35%-50%) in motion sickness group and none in control group. Generally evaluating CPT, there was only 2 proprioceptive hypofunction, 3 visual hypofunction, and no vestibular hypofunction, but none hypofunction in control group. Motion sickness patients have high vestibular susceptible, some with vestibular hyperfunction. In posturography, a large number of motion sickness patients are central type but no vestibular hypofunction, but it is hard to keep balance when stimulating vestibulum.

  10. [Infrared videonystagmography in vestibular diagnosis].

    Science.gov (United States)

    Frisina, A; Piazza, F; Quaranta, N

    2000-01-01

    Vestibular examination relied upon electronystagmography (ENG) for more than 50 years. This method is based on recording of nystagmus (Ny) without any possibility to see the ocular movements directly. More recently, infrared videonystagmography (VNG) entered the diagnostic protocol of vestibular disorders. VNG permits to record and visualize Ny, both in the darkness and with open eyes. Aim of the present study was to verify the possible advantages of VNG versus ENG for functional evaluation of the vestibular system in patients suffering from otoneurological disorders. To that purpose, VNG and ENG tracings were recorded in 12 patients. The preliminary results show that there are not significant differences in quantitative evaluation of Ny between the two methods. Anyhow, VNG has some technical and clinical advantages that make it the method of choice.

  11. Optimal duration of therapy in the recovery period of vestibular diseases

    Directory of Open Access Journals (Sweden)

    M. V. Zamergrad

    2014-01-01

    Full Text Available Dizziness is a common symptom in neurological and general medical practice. In most cases it is caused by diseases of the central or peripheral vestibular system. The most common vestibular system diseases include benign paroxysmal postural vertigo, dizziness, Meniere's disease, vestibular neuronitis, and cerebrovascular diseases. One of the main treatments for the diseases accompanied by dizziness is vestibular rehabilitation that is a complex of exercises, the goal of which is to stimulate vestibular compensation. Adequate vestibular compensation allows a patient to get rid of dizziness and unsteadiness even though vestibular system injury is irreversible. Some medications are able to enhance the efficiency of vestibular rehabilitation. At the same time, the optimal duration of treatment for the most common vestibular disorders has not beenadequately explored. The paper gives the results of an observational program, whose purpose was to determine the optimal duration of vestibular rehabilitation in combination with the use of tanakan in patients with non-progressive unilateral peripheral vestibular disorder.Patients and methods. Data on 46 patients aged 19 to 70 years who underwent vestibular rehabilitation and took tanakan for vertigo caused by vestibular neuronitis (n = 44, labyrinthitis (n =1, or Ramsay Hunt syndrome (n = 1 were analyzed. All the patients were examined four times. The symptoms were recorded and the histories of disease were considered. The degree of vestibular disorders, including vertigo, was assessed when collecting complaints. The symptoms of vertigo were objectivized using its vertigo rating scale and five-point subjective rating scale for vertigo. All the patients underwent standard somatic and neurological examinations and videonystagmography. During the first visit after diagnosis, vestibular exercises were chosen for the patients and tanakan was used in a dose of 40 mg thrice daily to accelerate

  12. Vestibular feedback maintains reaching accuracy during body movement

    Science.gov (United States)

    Reynolds, Raymond F.

    2016-01-01

    Key points Reaching movements can be perturbed by vestibular input, but the function of this response is unclear.Here, we applied galvanic vestibular stimulation concurrently with real body movement while subjects maintained arm position either fixed in space or fixed with respect to their body.During the fixed‐in‐space conditions, galvanic vestibular stimulation caused large changes in arm trajectory consistent with a compensatory response to maintain upper‐limb accuracy in the face of body movement.Galvanic vestibular stimulation responses were absent during the body‐fixed task, demonstrating task dependency in vestibular control of the upper limb.The results suggest that the function of vestibular‐evoked arm movements is to maintain the accuracy of the upper limb during unpredictable body movement, but only when reaching in an earth‐fixed reference frame. Abstract When using our arms to interact with the world, unintended body motion can introduce movement error. A mechanism that could detect and compensate for such motion would be beneficial. Observations of arm movements evoked by vestibular stimulation provide some support for this mechanism. However, the physiological function underlying these artificially evoked movements is unclear from previous research. For such a mechanism to be functional, it should operate only when the arm is being controlled in an earth‐fixed rather than a body‐fixed reference frame. In the latter case, compensation would be unnecessary and even deleterious. To test this hypothesis, subjects were gently rotated in a chair while being asked to maintain their outstretched arm pointing towards either earth‐fixed or body‐fixed memorized targets. Galvanic vestibular stimulation was applied concurrently during rotation to isolate the influence of vestibular input, uncontaminated by inertial factors. During the earth‐fixed task, galvanic vestibular stimulation produced large polarity‐dependent corrections in arm

  13. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  14. Vestibular schwannoma with contralateral facial pain – case report

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammad

    2003-03-01

    Full Text Available Abstract Background Vestibular schwannoma (acoustic neuroma most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon. Case presentation Among 156 cases of operated vestibular schwannoma, we found one case with unusual presentation of contralateral hemifacial pain. Conclusion The presentation of contralateral facial pain in the vestibular schwannoma is rare. It seems that displacement and distortion of the brainstem and compression of the contralateral trigeminal nerve in Meckel's cave by the large mass lesion may lead to this atypical presentation. The best practice in these patients is removal of the tumour, although persistent contralateral pain after operation has been reported.

  15. A vestibular sensation: probabilistic approaches to spatial perception.

    Science.gov (United States)

    Angelaki, Dora E; Klier, Eliana M; Snyder, Lawrence H

    2009-11-25

    The vestibular system helps maintain equilibrium and clear vision through reflexes, but it also contributes to spatial perception. In recent years, research in the vestibular field has expanded to higher-level processing involving the cortex. Vestibular contributions to spatial cognition have been difficult to study because the circuits involved are inherently multisensory. Computational methods and the application of Bayes theorem are used to form hypotheses about how information from different sensory modalities is combined together with expectations based on past experience in order to obtain optimal estimates of cognitive variables like current spatial orientation. To test these hypotheses, neuronal populations are being recorded during active tasks in which subjects make decisions based on vestibular and visual or somatosensory information. This review highlights what is currently known about the role of vestibular information in these processes, the computations necessary to obtain the appropriate signals, and the benefits that have emerged thus far.

  16. Vestibular Function Impairment in Alzheimer's Disease.

    Science.gov (United States)

    Nakamagoe, Kiyotaka; Fujimiya, Suguru; Koganezawa, Tadachika; Kadono, Kotarou; Shimizu, Kotone; Fujizuka, Natsu; Takiguchi, Shino; Ueno, Tomoyuki; Monzen, Tatsuya; Tamaoka, Akira

    2015-01-01

    Falls and fractures due to impaired balance in patients with Alzheimer's disease (AD) have an adverse effect on the clinical course of the disease. To evaluate balance impairment in AD from the viewpoint of vestibular functional impairment. The subjects were 12 patients with AD, 12 dementia-free elderly adults, and 12 younger adults. Vestibular function was assessed using a stepping test, caloric nystagmus, and a visual suppression (VS) test. The stepping test was abnormal in 9 of the 12 patients in the AD group. An abnormal stepping test was not associated with self-reported dizziness or tendency to fall. Significant VS abnormalities were present in the AD group. The suppression rate of VS was lower in AD patients with either a tendency to fall or constructional apraxia than in AD patients without either. The velocity of the rapid phase of caloric nystagmus before the VS test was similar in the AD group and the elderly control group. Significant abnormalities of both caloric nystagmus and VS were not present in either the elderly or the younger control groups. AD could involve impairments in the vestibular control of balance. The VS test is useful for assessing the tendency to fall in AD. Impairment of VS in AD might arise from cerebral vestibular cortex impairment rather than comorbid peripheral vestibular disorders.

  17. Clinical evaluation of elderly people with chronic vestibular disorder.

    Science.gov (United States)

    Gazzola, Juliana Maria; Ganança, Fernando Freitas; Aratani, Mayra Cristina; Perracini, Monica Rodrigues; Ganança, Maurício Malavasi

    2006-01-01

    Dizziness is common among the elderly. To characterize social, demographic, clinical, functional and otoneurological data in elderly patients with chronic vestibular disorder. A sequential study of 120 patients with chronic vestibular disorder. Simple descriptive analyses were undertaken. Most of the patients were female (68.3%) with a mean age of 73.40+/-5.77 years. The average number of illnesses associated with the vestibular disorder was 3.83+/-1.84; the patients were taking on average 3.86+/-2.27 different medications. The most prevalent diagnosis on the vestibular exam was unilateral vestibular loss (29.8%) and the most prevalent etiology was metabolic vestibulopathy (40.0%) followed by benign paroxysmal positional vertigo (36.7%). Fifty-two patients (43.3%) had experienced dizziness for 5 years or more. Sixty-four patients (53.3%) had at least one fall in the last year and thirty-five (29.2%) had recurrent falls. Most of the sample included females with associated diseases, and using many different drugs. The most prevalent vestibular diseases were metabolic and vascular labyrinth conditions. Dizziness is a chronic symptom in elderly patients. The association of two vestibular diseases is common. Falls are prevalent in chronic dizzy elderly patients.

  18. MR imaging features and clinical value of vestibular aqueduct and endolymphatic sac in patients with large vestibular aqueduct syndrome

    International Nuclear Information System (INIS)

    Fang Zheming; Lou Xin; Lan Lan; Wang Hui; Wang Qiuju; Wu Nanzhou; Zhang Xiaojing

    2012-01-01

    Objective: To investigate MR imaging features of endolymphatic sac and vestibular aqueduct in patients with large vestibular aqueduct syndrome (LVAS) and its correlation with hearing loss. Methods: MR imaging findings of LVAS were analyzed in 31 cases (62 ears) retrospectively. MR imaging features were grouped into 4 types. In the first type, the signals of endolymphatic and vestibular aqueduct were hypointense without any hyperintense area. In the second type, the signals of endolymphatic sac and vestibular were hyperintense which were confined within vestibular fissure. In the third type, the area from vestibular aqueduct backward out of the edge of the petrous bone was hyperintense, but its lower boundary was above posterior semicircular. In the fourth type the area which was hyperintense was below the posterior semicircular. To avoid errors in visual inspection, the hyperintense and hypointense area of endolymphatic and the signal intensity of vestibular aqueduct and cerebrospinal fluid (CSF) were measured. The differences of signal intensity among the vestibular endolymphatic sac between the high-signal areas and low signal areas were compared with paired t-test. The correlation of the endolymphatic sac MRI classification and degree of hearing loss was analyzed by corrected Chi-square test and Spearman correlation analysis. Result: Ten ears belonged to type Ⅰ (moderate hearing loss in 1 ear,severe in 4 ears,profound in 5 ears), 17 ears belonged to type Ⅱ (moderate hearing loss in 1 ear; severe in 5 ears,profound in 11 ears), 23 ears to type Ⅲ (moderate hearing loss in 3 ear, severe in 5 ears, profound in 15 ears) and 12 ears belonged to Ⅳ (mild hearing loss in 1 ear, moderate in 1 ear, severe 3 ear, profound in 7 ears). The boundary between hyperintense and hypointense area was clear, and the signal intensity ratios was 2.02 ± 0.06. The signal ratios of hyperintense and hypointense area to vestibular and CSF were 0.95 ±0.12, 0.49 ±0.10, 0.99 ± 0

  19. HASHIMOTO THYROIDITIS AND VESTIBULAR DYSFUNCTION.

    Science.gov (United States)

    Chiarella, Giuseppe; Russo, Diego; Monzani, Fabio; Petrolo, Claudio; Fattori, Bruno; Pasqualetti, Giuseppe; Cassandro, Ettore; Costante, Giuseppe

    2017-07-01

    The aim of this review was to analyze the existing literature concerning the relationship between Hashimoto thyroiditis (HT) and vestibular dysfunction. We used electronic databases (PubMed, EMBASE, Cochrane Library) to search and collect all published articles about the association between HT and vestibular disorders. Several observational and retrospective studies have postulated a relationship between thyroid autoimmunity and vestibular disorders. In most cases, an appropriate control group was lacking, and the impact of thyroid functional status could not precisely be established. In recent years, two well-designed prospective studies have provided convincing evidence that the association is not random. One article reported that patients with Ménière disease (MD) had a significantly higher prevalence of positive anti-thyroid autoantibody as compared to healthy controls. Moreover, more than half of MD patients had either positive anti-thyroid or non-organ-specific autoantibody titers, compared to less than 30% of both patients with unilateral vestibular paresis without cochlear involvement and healthy controls. Another study found that patients with benign paroxysmal positional vertigo (BPPV) had significantly higher serum thyroid-stimulating hormone and antithyroid autoantibody levels than healthy controls. Additionally, almost one-fifth of euthyroid patients with HT had signs of BPPV. The published results indicate that patients with MD or BPPV are potential candidates to also develop HT. Thus, in HT patients, the presence of even slight symptoms or signs potentially related to vestibular lesions should be carefully investigated. AITD = autoimmune thyroid disease; BPPV = benign paroxysmal positional vertigo; EH = endolymphatic hydrops; HT = Hashimoto thyroiditis; L-T 4 = L-thyroxine; MD = Ménière disease; PS = Pendred syndrome; Tg = thyroglobulin; TPO = thyroid peroxidase; TSH = thyroid-stimulating hormone.

  20. [Presbyastasis and application of vestibular rehabilitation in geriatrics].

    Science.gov (United States)

    Costa de Araujo, P; Demanez, L; Lechien, J; Bauvir, P; Petermans, J

    2011-03-01

    Balance disorders can have a major functional impact among the elderly. The main risk is falling. Three elements are implicated in the loss of balance: vision, proprioception and the vestibular system. This article will discuss mainly vestibular damage and its implications. The assessment of balance disorders, particularly in geriatric patients, is based on validated scales composed of several items. These provide scores and are based on the results of chronometric measurements. They can be useful for the application of Vestibular Rehabilitation (VR), a technique improving the adaptation and autonomy of these patients. Vestibular rehabilitation is therefore part of an overall support, the goal of therapy being to improve daily life and to reduce the risk of falls.

  1. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    Directory of Open Access Journals (Sweden)

    Mariangela Scarduzio

    Full Text Available Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs and androgens (ARs. We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2 and 5α-dihydrotestosterone (DHT on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN. Long-term depression (LTD and long-term potentiation (LTP caused by different patterns of high frequency stimulation (HFS of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase and E2 (P450-aromatase from testosterone (T. We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  2. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    Science.gov (United States)

    Scarduzio, Mariangela; Panichi, Roberto; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2013-01-01

    Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  3. Prophylactic treatment of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Márcio Cavalcante Salmito

    Full Text Available Abstract Introduction: Vestibular migraine (VM is now accepted as a common cause of episodic vertigo. Treatment of VM involves two situations: the vestibular symptom attacks and the period between attacks. For the latter, some prophylaxis methods can be used. The current recommendation is to use the same prophylactic drugs used for migraines, including β-blockers, antidepressants and anticonvulsants. The recent diagnostic definition of vestibular migraine makes the number of studies on its treatment scarce. Objective: To evaluate the efficacy of prophylactic treatment used in patients from a VM outpatient clinic. Methods: Review of medical records from patients with VM according to the criteria of the Bárány Society/International Headache Society of 2012 criteria. The drugs used in the treatment and treatment response obtained through the visual analog scale (VAS for dizziness and headache were assessed. The pre and post-treatment VAS scores were compared (the improvement was evaluated together and individually, per drug used. Associations with clinical subgroups of patients were also assessed. Results: Of the 88 assessed records, 47 were eligible. We included patients that met the diagnostic criteria for VM and excluded those whose medical records were illegible and those of patients with other disorders causing dizziness and/or headache that did not meet the 2012 criteria for VM. 80.9% of the patients showed improvement with prophylaxis (p < 0.001. Amitriptyline, Flunarizine, Propranolol and Topiramate improved vestibular symptoms (p < 0.001 and headache (p < 0.015. The four drugs were effective in a statistically significant manner. There was a positive statistical association between the time of vestibular symptoms and clinical improvement. There was no additional benefit in hypertensive patients who used antihypertensive drugs as prophylaxis or depressed patients who used antidepressants in relation to other prophylactic drugs. Drug

  4. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  5. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  6. Long-term hearing preservation in vestibular schwannoma

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  7. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    Directory of Open Access Journals (Sweden)

    Daniel J. Brown

    2017-05-01

    Full Text Available Electrocochleography (EcochG, incorporating the Cochlear Microphonic (CM, the Summating Potential (SP, and the cochlear Compound Action Potential (CAP, has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG, incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.

  8. The role of the renal afferent and efferent nerve fibres in heart failure

    Directory of Open Access Journals (Sweden)

    Lindsea C Booth

    2015-10-01

    Full Text Available Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibres. In heart failure (HF there is an increase in renal sympathetic nerve activity, which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibres, afferent renal nerve fibres, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  9. The role of the renal afferent and efferent nerve fibers in heart failure

    Science.gov (United States)

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  10. Balancing awareness: Vestibular signals modulate visual consciousness in the absence of awareness.

    Science.gov (United States)

    Salomon, Roy; Kaliuzhna, Mariia; Herbelin, Bruno; Blanke, Olaf

    2015-11-01

    The processing of visual and vestibular information is crucial for perceiving self-motion. Visual cues, such as optic flow, have been shown to induce and alter vestibular percepts, yet the role of vestibular information in shaping visual awareness remains unclear. Here we investigated if vestibular signals influence the access to awareness of invisible visual signals. Using natural vestibular stimulation (passive yaw rotations) on a vestibular self-motion platform, and optic flow masked through continuous flash suppression (CFS) we tested if congruent visual-vestibular information would break interocular suppression more rapidly than incongruent information. We found that when the unseen optic flow was congruent with the vestibular signals perceptual suppression as quantified with the CFS paradigm was broken more rapidly than when it was incongruent. We argue that vestibular signals impact the formation of visual awareness through enhanced access to awareness for congruent multisensory stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MR features of a case of afferent loop syndrome presenting as obstructive jaundice

    International Nuclear Information System (INIS)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B.; Gueyffier, C.

    2001-01-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  12. Three-dimensional head-mounted gaming task procedure maximizes effects of vestibular rehabilitation in unilateral vestibular hypofunction: a randomized controlled pilot trial.

    Science.gov (United States)

    Micarelli, Alessandro; Viziano, Andrea; Augimeri, Ivan; Micarelli, Domenico; Alessandrini, Marco

    2017-12-01

    Considering the emerging advantages related to virtual reality implementation in clinical rehabilitation, the aim of the present study was to discover possible (i) improvements achievable in unilateral vestibular hypofunction patients using a self-assessed head-mounted device (HMD)-based gaming procedure when combined with a classical vestibular rehabilitation protocol (HMD group) as compared with a group undergoing only vestibular rehabilitation and (ii) HMD procedure-related side effects. Therefore, 24 vestibular rehabilitation and 23-matched HMD unilateral vestibular hypofunction individuals simultaneously underwent a 4-week rehabilitation protocol. Both otoneurological measures (vestibulo-ocular reflex gain and postural arrangement by studying both posturography parameters and spectral values of body oscillation) and performance and self-report measures (Italian Dizziness Handicap Inventory; Activities-specific Balance Confidence scale; Zung Instrument for Anxiety Disorders, Dynamic Gait Index; and Simulator Sickness Questionnaire) were analyzed by means of a between-group/within-subject analysis of variance model. A significant post-treatment between-effect was found, and the HMD group demonstrated an overall improvement in vestibulo-ocular reflex gain on the lesional side, in posturography parameters, in low-frequency spectral domain, as well as in Italian Dizziness Handicap Inventory and Activities-specific Balance Confidence scale scores. Meanwhile, Simulator Sickness Questionnaire scores demonstrated a significant reduction in symptoms related to experimental home-based gaming tasks during the HMD procedure. Our findings revealed the possible advantages of HMD implementation in vestibular rehabilitation, suggesting it as an innovative, self-assessed, low-cost, and compliant tool useful in maximizing vestibular rehabilitation outcomes.

  13. Towards a neuromorphic vestibular system.

    Science.gov (United States)

    Corradi, Federico; Zambrano, Davide; Raglianti, Marco; Passetti, Giovanni; Laschi, Cecilia; Indiveri, Giacomo

    2014-10-01

    The vestibular system plays a crucial role in the sense of balance and spatial orientation in mammals. It is a sensory system that detects both rotational and translational motion of the head, via its semicircular canals and otoliths respectively. In this work, we propose a real-time hardware model of an artificial vestibular system, implemented using a custom neuromorphic Very Large Scale Integration (VLSI) multi-neuron chip interfaced to a commercial Inertial Measurement Unit (IMU). The artificial vestibular system is realized with spiking neurons that reproduce the responses of biological hair cells present in the real semicircular canals and otholitic organs. We demonstrate the real-time performance of the hybrid analog-digital system and characterize its response properties, presenting measurements of a successful encoding of angular velocities as well as linear accelerations. As an application, we realized a novel implementation of a recurrent integrator network capable of keeping track of the current angular position. The experimental results provided validate the hardware implementation via comparisons with a detailed computational neuroscience model. In addition to being an ideal tool for developing bio-inspired robotic technologies, this work provides a basis for developing a complete low-power neuromorphic vestibular system which integrates the hardware model of the neural signal processing pathway described with custom bio-mimetic gyroscopic sensors, exploiting neuromorphic principles in both mechanical and electronic aspects.

  14. Avaliação do efeito da cafeína no teste vestibular Evaluation of the caffeine effect in the vestibular test

    Directory of Open Access Journals (Sweden)

    Lilian Felipe

    2005-12-01

    Full Text Available Há controvérsias sobre a interferência da cafeína no teste vestibular. O café é a fonte mais rica em cafeína. Enquanto em alguns serviços os pacientes são orientados a suspender a ingestão de café 24 a 48 horas antes da realização do teste, outros não consideram necessária a suspensão da ingestão dessa bebida. OBJETIVO: Avaliar o efeito da cafeína no resultado do teste vestibular. FORMA DE ESTUDO: clínico com coorte transversal. MATERIAL E MÉTODO: Estudo comparativo, transversal, pareado. O teste vestibular foi realizado em duplicidade, com intervalo máximo de cinco dias entre um e outro exame. No primeiro teste, os pacientes foram orientados a não ingerir café 24 horas antes do exame; no segundo teste, os pacientes foram orientados a beber café como de costume. Todos os participantes tinham indicação clínica de se submeter ao teste vestibular e tinham o hábito de tomar café. RESULTADOS: Participaram do estudo 19 mulheres com idade média de 49,5 anos. O consumo médio de café foi de três xícaras por dia. As queixas de ansiedade e cefaléia foram associadas ao teste realizado com suspensão do café. Não houve diferença estatisticamente significante nos resultados dos exames realizados com e sem ingestão de café. CONCLUSÃO: A ingestão moderada de café não interferiu no resultado do teste vestibular. Considerando ser recomendável que o paciente esteja tranqüilo ao se submeter ao teste vestibular e que a meia-vida da cafeína é de apenas seis horas, sugerimos que a orientação para a suspensão súbita e completa da ingestão moderada de café antes do teste vestibular para os indivíduos habituados à ingestão diária seja reavaliada.Exist controversy about the interference of the caffeine in the vestibular test. Coffee is the richest source of caffeine. While in some services, the patients were orient to suspend the ingestion of caffeine 24 to 48 hours before the vestibular test, other not consider

  15. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts.

    Science.gov (United States)

    Wei, Xiaomei; Yan, Jin; Tillu, Dipti; Asiedu, Marina; Weinstein, Nicole; Melemedjian, Ohannes; Price, Theodore; Dussor, Gregory

    2015-10-01

    Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine. © International Headache Society 2015.

  17. Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation.

    Science.gov (United States)

    Zhang, Rong; Ashton, John; Horii, Arata; Darlington, Cynthia L; Smith, Paul F

    2005-03-10

    The process of behavioral recovery that occurs following damage to one vestibular labyrinth, vestibular compensation, has been attributed in part to a down-regulation of GABA(B) receptors in the vestibular nucleus complex (VNC) ipsilateral to the lesion, which could potentially reduce commissural inhibition from the contralateral VNC. In this study, we tested the possibility that this occurs through a decrease in the expression of either the GABA(B1) or GABA(B2) subunits of the GABA(B) receptor. We used Western blotting to quantify the expression of these subunits in the VNC at 10 h and 50 h following unilateral vestibular deafferentation (UVD) or sham surgery in rats. We then used immunocytochemistry and stereological counting methods to estimate the number of neurons expressing these subunits in the MVN at 10 h and 2 weeks following UVD or sham surgery. Compared to sham controls, we found no significant changes in either the expression of the two GABA(B) receptor subunits in the VNC or in the number of MVN neurons expressing these GABA(B) receptor subunits post-UVD. These results suggest that GABA(B) receptor expression does not change substantially in the VNC during the process of vestibular compensation.

  18. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  19. Vestibular Function in Adults With Epilepsy of Unknown Etiology.

    Science.gov (United States)

    Hamed, Sherifa A; Tohamy, Amal M; Oseilly, Amira M

    2017-09-01

    This study aimed to evaluate vestibular function in adults with chronic epilepsy of unknown etiology in the inter-ictal period. Epilepsy is a chronic medical disorder. Life-long therapy may be required in one-third of patients. Epilepsy is associated with comorbid somatic conditions which impairs patients' quality of life. This cross-sectional study included 28 with generalized tonic clonic (GTC) convulsions and 14 and 3 with temporal (TLE) and frontal lobe (FLE) epilepsies with secondary generalization (all were on regular carbamazepine therapy) and 40 healthy control subjects. The patients' mean age was 34.97 ± 7.35 years and the duration of illness was 18.75 ± 7.99 years. All underwent videonystagmography (VNG). Compared with controls, patients had frequent vestibular symptoms including dizziness (62.22%) (p = 0.0001) and sense of imbalance (44.44%) (p = 0.0001). Eleven patients (24.44%) had central vestibular dysfunction (p = 0.0001); 9 (20%) had mixed vestibular dysfunction and one (2.22%) had peripheral vestibular dysfunction (p = 0.0001). Abnormalities were observed in saccadic (44.4%) and pursuit (42.2%) eye movements, optokinetic nystagmus (42.2%) and positioning/positional (11.11%) and caloric (13.33%) testing. TLE and FLE were associated with more VNG abnormalities than GTC. No significant differences were observed in the demographic and clinical characteristics between patients with and without VNG abnormalities. Vestibular manifestations are frequent in patients with epilepsy. This may be a result of the permanent damaging effect of chronic epilepsy on the vestibular cortical areas and/or a toxic effect from prolonged carbamazepine therapy on the peripheral and central vestibular systems.

  20. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  1. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma

    DEFF Research Database (Denmark)

    Huang, Xiaowen; Cayé-Thomasen, Per; Stangerup, Sven-Eric

    2013-01-01

    on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed......We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage...... of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles...

  2. Origin of vestibular dysfunction in Usher syndrome type 1B.

    NARCIS (Netherlands)

    Sun, J.; Alphen, A.M. van; Wagenaar, M.; Huygen, P.L.M.; Hoogenraad, C.C.; Hasson, T.; Koekkoek, S.K.; Bohne, B.A.; Zeeuw, C.I. de

    2001-01-01

    It is still debated to what extent the vestibular deficits in Usher patients are due to either central vestibulocerebellar or peripheral vestibular problems. Here, we determined the origin of the vestibular symptoms in Usher 1B patients by subjecting them to compensatory eye movement tests and by

  3. The prevalence of vestibular symptoms in migraine or tension-type headache.

    Science.gov (United States)

    Akdal, Gülden; Ozge, Aynur; Ergör, Gül

    2013-01-01

    We assessed frequency of vestibular symptoms in Headache Clinic patients over 10 years. A descriptive study of 5111 consecutive patients with tension-type headache or migraine, analyzed for dizziness/ vertigo accompanying headache and for a lifetime history of motion-sickness, cyclic vomiting, recurrent abdominal pain or atopy. Migraine patients were re-grouped as those with vestibular symptoms (dizziness/vertigo or motion sickness) and those without and their data then re-analyzed. There were 1880 migraine patients and 3231 tension-type headache patients. Significantly more migraine patients than tension-type headache patients experienced vestibular symptoms (p< 0.0001). The migraine with vestibular symptoms group was significantly younger (p< 0.05) had more aura, more phonophobia with migraine attacks (p< 0.0001). Menstruation and reported sleep problems impacted on headaches. While past history of cyclical vomiting, recurrent abdominal pain or atopy was about twice as common in migraine with aura and it was also more common in migraine with vestibular symptoms than migraine without vestibular symptoms. Vestibular symptoms are common in migraine patients. Migraine with vestibular symptoms might constitute a special group, one more likely to have had cyclic vomiting, recurrent abdominal pain or atopy.

  4. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    Science.gov (United States)

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and in disease are briefly described. PMID:20172253

  5. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients

    Directory of Open Access Journals (Sweden)

    Mercier Pierre

    2009-08-01

    Full Text Available Abstract Background Adolescent idiopathic scoliosis is characterized by a three-dimensional deviation of the vertebral column and its etiopathogenesis is unknown. Various factors cause idiopathic scoliosis, and among these a prominent role has been attributed to the vestibular system. While the deficits in sensorimotor transformations have been documented in idiopathic scoliosis patients, little attention has been devoted to their capacity to integrate vestibular information for cognitive processing for space perception. Seated idiopathic scoliosis patients and control subjects experienced rotations of different directions and amplitudes in the dark and produced saccades that would reproduce their perceived spatial characteristics of the rotations (vestibular condition. We also controlled for possible alteration of the oculomotor and vestibular systems by measuring the subject's accuracy in producing saccades towards memorized peripheral targets in absence of body rotation and the gain of their vestibulo-ocular reflex. Results Compared to healthy controls, the idiopathic scoliosis patients underestimated the amplitude of their rotations. Moreover, the results revealed that idiopathic scoliosis patients produced accurate saccades to memorized peripheral targets in absence of body rotation and that their vestibulo-ocular reflex gain did not differ from that of control participants. Conclusion Overall, results of the present study demonstrate that idiopathic scoliosis patients have an alteration in cognitive integration of vestibular signals. It is possible that severe spine deformity developed partly due to impaired vestibular information travelling from the cerebellum to the vestibular cortical network or alteration in the cortical mechanisms processing the vestibular signals.

  6. Morphological analysis of the vestibular aqueduct by computerized tomography images

    International Nuclear Information System (INIS)

    Marques, Sergio Ricardo; Smith, Ricardo Luiz; Isotani, Sadao; Alonso, Luis Garcia; Anadao, Carlos Augusto; Prates, Jose Carlos; Lederman, Henrique Manoel

    2007-01-01

    Objective: In the last two decades, advances in the computerized tomography (CT) field revise the internal and medium ear evaluation. Therefore, the aim of this study is to analyze the morphology and morphometric aspects of the vestibular aqueduct on the basis of computerized tomography images (CTI). Material and method: Computerized tomography images of vestibular aqueducts were acquired from patients (n = 110) with an age range of 1-92 years. Thereafter, from the vestibular aqueducts images a morphometric analysis was performed. Through a computerized image processing system, the vestibular aqueduct measurements comprised of its area, external opening, length and the distance from the vestibular aqueduct to the internal acoustic meatus. Results: The morphology of the vestibular aqueduct may be funnel-shaped, filiform or tubular and the respective proportions were found to be at 44%, 33% and 22% in children and 21.7%, 53.3% and 25% in adults. The morphometric data showed to be of 4.86 mm 2 of area, 2.24 mm of the external opening, 4.73 mm of length and 11.88 mm of the distance from the vestibular aqueduct to the internal acoustic meatus, in children, and in adults it was of 4.93 mm 2 , 2.09 mm, 4.44 mm, and 11.35 mm, respectively. Conclusions: Computerized tomography showed that the vestibular aqueduct presents high morphological variability. The morphometric analysis showed that the differences found between groups of children and adults or between groups of both genders were not statistically significant

  7. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  8. Evidence of a sensory processing unit in the mammalian macula

    Science.gov (United States)

    Chimento, T. C.; Ross, M. D.

    1996-01-01

    We cut serial sections through the medial part of the rat vestibular macula for transmission electron microscopic (TEM) examination, computer-assisted 3-D reconstruction, and compartmental modeling. The ultrastructural research showed that many primary vestibular neurons have an unmyelinated segment, often branched, that extends between the heminode (putative site of the spike initiation zone) and the expanded terminal(s) (calyx, calyces). These segments, termed the neuron branches, and the calyces frequently have spine-like processes of various dimensions with bouton endings that morphologically are afferent, efferent, or reciprocal to other macular neural elements. The major questions posed by this study were whether small details of morphology, such as the size and location of neuronal processes or synapses, could influence the output of a vestibular afferent, and whether a knowledge of morphological details could guide the selection of values for simulation parameters. The conclusions from our simulations are (1) values of 5.0 k omega cm2 for membrane resistivity and 1.0 nS for synaptic conductance yield simulations that best match published physiological results; (2) process morphology has little effect on orthodromic spread of depolarization from the head (bouton) to the spike initiation zone (SIZ); (3) process morphology has no effect on antidromic spread of depolarization to the process head; (4) synapses do not sum linearly; (5) synapses are electrically close to the SIZ; and (6) all whole-cell simulations should be run with an active SIZ.

  9. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  12. Isolation and culture of adult mouse vestibular nucleus neurons

    Science.gov (United States)

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  13. A review of the interrelationship between vestibular dysfunction ...

    African Journals Online (AJOL)

    functions, the effect of rehabilitation focused on the functioning of a specific canal, and the effect of different rehabilitation programmes on different vestibular deficiencies are suggested. Keywords: Vestibular dysfunction; Motor development; Learning disabilities; Posture; Rehabilitation and exercises. South African Journal ...

  14. Ocular vestibular evoked myogenic potential elicited from binaural air-conducted stimulations: clinical feasibility in patients with peripheral vestibular dysfunction.

    Science.gov (United States)

    Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya

    2013-07-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.

  15. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials,

    Directory of Open Access Journals (Sweden)

    Erika Celis-Aguilar

    Full Text Available Abstract Introduction: Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. Objective: To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Methods: Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8 mL of gentamicin intratympanic application at a 30 mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Results: Ten patients were included; nine patients with Meniere's disease and one patient with (late onset delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30 dB. Conclusions: Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials.

  17. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells.

    Science.gov (United States)

    Tavazzani, Elisa; Tritto, Simona; Spaiardi, Paolo; Botta, Laura; Manca, Marco; Prigioni, Ivo; Masetto, Sergio; Russo, Giancarlo

    2014-01-01

    The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  18. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso

    2014-12-01

    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  19. Vertigo with sudden hearing loss: audio-vestibular characteristics.

    Science.gov (United States)

    Pogson, Jacob M; Taylor, Rachael L; Young, Allison S; McGarvie, Leigh A; Flanagan, Sean; Halmagyi, G Michael; Welgampola, Miriam S

    2016-10-01

    Acute vertigo with sudden sensorineural hearing loss (SSNHL) is a rare clinical emergency. Here, we report the audio-vestibular test profiles of 27 subjects who presented with these symptoms. The vestibular test battery consisted of a three-dimensional video head impulse test (vHIT) of semicircular canal function and recording ocular and cervical vestibular-evoked myogenic potentials (oVEMP, cVEMP) to test otolith dysfunction. Unlike vestibular neuritis, where the horizontal and anterior canals with utricular function are more frequently impaired, 74 % of subjects with vertigo and SSNHL demonstrated impairment of the posterior canal gain (0.45 ± 0.20). Only 41 % showed impairment of the horizontal canal gains (0.78 ± 0.27) and 30 % of the anterior canal gains (0.79 ± 0.26), while 38 % of oVEMPs [asymmetry ratio (AR) = 41.0 ± 41.3 %] and 33 % of cVEMPs (AR = 47.3 ± 41.2 %) were significantly asymmetrical. Twenty-three subjects were diagnosed with labyrinthitis/labyrinthine infarction in the absence of evidence for an underlying pathology. Four subjects had a definitive diagnosis [Ramsay Hunt Syndrome, vestibular schwannoma, anterior inferior cerebellar artery (AICA) infarction, and traction injury]. Ischemia involving the common-cochlear or vestibulo-cochlear branches of the labyrinthine artery could be the simplest explanation for vertigo with SSNHL. Audio-vestibular tests did not provide easy separation between ischaemic and non-ischaemic causes of vertigo with SSNHL.

  20. Vestibular signals in primate cortex for self-motion perception.

    Science.gov (United States)

    Gu, Yong

    2018-04-21

    The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.

  1. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    OpenAIRE

    Feng, Bin; La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the di...

  2. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Voigt, Michael; Stevenson, Andrew James Thomas

    2017-01-01

    : 8-35 mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic...... compared these two interventions (BCIFES and BCIpassive) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous...... stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCIFES and BCIpassive led to significant increases in the excitability of the cortical projections...

  3. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Vestibular dysfunction in Turner syndrome: a case report.

    Science.gov (United States)

    Baxter, Michael; Agrawal, Yuri

    2014-02-01

    Turner syndrome is a well-known cause of sensorineural hearing loss, and the lack of estrogen has been implicated in cochlear dysfunction. It has never been associated with vestibular dysfunction. We report a case of a patient with Turner syndrome who was found to have bilateral vestibular dysfunction based on video-oculography (VOG) testing. A single patient with a history of Turner syndrome who was found to have significant bilateral vestibular dysfunction. After noticing a deficit in the vestibulo-ocular reflexes on qualitative horizontal head impulse examination, the patient underwent VOG testing. VOG testing quantatively measures angular vestibulo-ocular reflex (AVOR) gain in the horizontal semicircular canal plane. AVOR gain represents the eye movement response to a head movement; in normal individuals the eye movement is fully compensatory and gain values are close to unity. VOG results showed AVOR gains of 0.29 and 0.36 on the right and left sides, respectively. We have presented a case of a woman with Turner syndrome with asymptomatic vestibular dysfunction demonstrated with VOG testing. Although there is a documented relationship between Turner syndrome and sensorineural hearing loss, there are no previous studies or case reports linking Turner syndrome and vestibular dysfunction. Additional research and added vigilance in monitoring Turner syndrome patients may be warranted.

  5. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  6. Vestibular brain changes within 70 days of head down bed rest.

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2018-03-12

    Head-down-tilt bed rest (HDBR) is frequently utilized as a spaceflight analog research environment to study the effects of axial body unloading and fluid shifts that are associated with spaceflight in the absence of gravitational modifications. HDBR has been shown to result in balance changes, presumably due to sensory reweighting and adaptation processes. Here, we examined whether HDBR results in changes in the neural correlates of vestibular processing. Thirteen men participated in a 70-day HDBR intervention; we measured balance, functional mobility, and functional brain activity in response to vestibular stimulation at 7 time points before, during, and after HDBR. Vestibular stimulation was administered by means of skull taps, resulting in activation of the vestibular cortex and deactivation of the cerebellar, motor, and somatosensory cortices. Activation in the bilateral insular cortex, part of the vestibular network, gradually increased across the course of HDBR, suggesting an upregulation of vestibular inputs in response to the reduced somatosensory inputs experienced during bed rest. Furthermore, greater increase of activation in multiple frontal, parietal, and occipital regions in response to vestibular stimulation during HDBR was associated with greater decrements in balance and mobility from before to after HDBR, suggesting reduced neural efficiency. These findings shed light on neuroplastic changes occurring with conditions of altered sensory inputs, and reveal the potential for central vestibular-somatosensory convergence and reweighting with bed rest. © 2018 Wiley Periodicals, Inc.

  7. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    International Nuclear Information System (INIS)

    Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  8. Influence of cochlear implantation on peripheral vestibular receptor function.

    Science.gov (United States)

    Krause, Eike; Louza, Julia P R; Wechtenbruch, Juliane; Gürkov, Robert

    2010-06-01

    The objectives of this study were 1) to assess the influence of a cochlear implantation on peripheral vestibular receptor function in the inner ear in the implant and in the nonimplant side, and 2) to analyze a possible correlation with resulting vertigo symptoms. Prospective clinical study. Cochlear implant center at tertiary referral hospital. A total of 32 patients, aged 15 to 83 years, undergoing cochlear implantation were assessed pre- and postoperatively for caloric horizontal semicircular canal response and vestibular-evoked myogenic potentials of the sacculus, and postoperatively for subjective vertigo symptoms. Patients with vertigo were compared with patients without symptoms with regard to the findings of the vestibular function tests. Cochlear implantation represents a significant risk factor for horizontal semicircular canal impairment (P 0.05). Cochlear implantation is a relevant risk factor for damage of peripheral vestibular receptor function. Therefore, preservation not only of residual hearing function but also of vestibular function should be aimed for, by using minimally invasive surgical techniques. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  9. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  10. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a valuable...

  11. Potencial evocado miogênico vestibular a baixas frequências de estimulação Vestibular evoked myogenic potentials using low frequency stimuli

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2011-12-01

    Full Text Available Os potenciais evocados miogênicos vestibulares são reflexos vestíbulo-cervicais, decorrentes da estimulação do sáculo com sons de forte intensidade. São necessários parâmetros de normalidade para indivíduos jovens normais, utilizando-se estímulos a baixas frequências, as quais configuram a região de maior sensibilidade desse órgão sensorial. OBJETIVO: Realizar normatização do potencial evocado miogênico vestibular para baixas frequências de estimulação. MATERIAL E MÉTODO: Captou-se o potencial evocado miogênico vestibular em 160 orelhas, no músculo esternocleidomastoideo, de forma ipsilateral, por meio da promediação de 200 tone bursts, frequência de 250 Hz, intensidade de 95 dB NAn. FORMA DE ESTUDO: Estudo de coorte contemporânea com corte transversal. RESULTADOS: Aplicando-se o teste T de Student ou o Teste de Mann-Whitney, não foi constatada diferença significativa para parâmetros do potencial evocado miogênico vestibular entre os gêneros, para p Vestibular evoked myogenic potentials are vestibulocervical reflexes resulting from sacculus stimulation with strong intensity sounds. Normality parameters are necessary for young normal individuals, using low frequency stimuli, which configure the most sensitive region of this sensory organ. AIM: To establish vestibular evoked myogenic potential standards for low frequency stimulation. MATERIAL AND METHOD: Vestibular evoked myogenic potential was captured from 160 ears, in the ipsilateral sternocleidomastoid muscle, using 200 averaged tone-burst stimuli, at 250 Hz, with an intensity of 95 dB NAn. CASE STUDY: Clinical observational cross-sectional. RESULTS: Neither the student's t-test nor the Mann-Whitney test showed a significant difference in latency or vestibular evoked myogenic potential amplitudes, for p <; 0.05. Irrespective of gender, we found latencies of p13-n23 and p13-n23 interpeaks of 13.84 ms (± 1.41, 23.81 ms (±1.99 and 10.62 ms (± 6.56, respectively

  12. Morphology and electrophysiology of the vestibular organ in the guinea pig

    NARCIS (Netherlands)

    Oei, Markus Lee Yang Murti

    2003-01-01

    To obtain more information about the anatomy and function of the vestibular organ in normal and pathological conditions, evaluation methods are needed. For experimental purposes, the vestibular organ of the guinea pig is often used as a model for the human vestibular organ. The purpose of the

  13. Pesquisa da função vestibular em crianças com queixa de dificuldades escolares Vestibular function in children underperforming at school

    Directory of Open Access Journals (Sweden)

    Eloisa Sartori Franco

    2008-12-01

    Full Text Available O aprendizado é um processo complexo, dinâmico, estruturado a partir de um ato motor e perceptivo, que, elaborado corticalmente, dá origem à cognição. O equilíbrio é função neurológica importante para a manutenção de posturas adequadas, imprescindíveis no ato de aprender, indicativo de maturidade neurológica. OBJETIVO: Estudar a função vestibular em crianças com dificuldades escolares. ESTUDO DE CASO: Estudo clínico com coorte transversal. MATERIAL E MÉTODO: Foram estudadas 88 crianças entre 7 e 12 anos, que freqüentavam escolas públicas da cidade de Piracicaba durante os anos de 2004 e 2006. Os procedimentos utilizados foram: a anamnese; exame otorrinolaringológico; exame audiológico e avaliação vestibular. RESULTADOS: Das crianças avaliadas, 51,0% não relataram dificuldades escolares e 49,0% referiram ter dificuldades escolares. Encontramos 73,3% de exame vestibular normal nas crianças sem dificuldades escolares e 32,6% de normalidade nas crianças com dificuldades escolares. Encontramos alterações vestibulares de origem periférica irritativa tanto unilateral como bilateral, perfazendo um total de 67,4% para as crianças com dificuldades escolares e um total de 26,7% para crianças sem dificuldades escolares. CONCLUSÃO: Todas as alterações vestibulares encontradas foram de origem periférica irritativa. Os dados revelaram uma relação estatisticamente significante nas crianças com dificuldades escolares.Learning is a complex, dynamic process, structured from motor and perception skills which, when cortically processed, give birth to cognition. Balance is a fundamental neurological function that helps us maintain proper postures, an essential factor in learning and a sign or neurologic maturity. AIM: this paper aims to study vestibular function in children underperforming at school. STUDY DESIGN: this is a cross-sectional study. MATERIALS AND METHOD: eighty-eight children with ages ranging between 7 and 12

  14. Vestibular migraine: clinical and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Ligia Oliveira Gonçalves Morganti

    Full Text Available ABSTRACT INTRODUCTION: Vestibular migraine (VM is one of the most often common diagnoses in neurotology, but only recently has been recognized as a disease. OBJECTIVE: To analyze the clinical and epidemiological profile of patients with VM. METHODS: This was a retrospective, observational, and descriptive study, with analysis of patients' records from an outpatient VM clinic. RESULTS: 94.1% of patients were females and 5.9% were males. The mean age was 46.1 years; 65.6% of patients had had headache for a longer period than dizziness. A correlation was detected between VM symptoms and the menstrual period. 61.53% of patients had auditory symptoms, with tinnitus the most common, although tonal audiometry was normal in 68.51%. Vectoelectronystagmography was normal in 67.34%, 10.20% had hyporeflexia, and 22.44% had vestibular hyperreflexia. Electrophysiological assessment showed no abnormalities in most patients. Fasting plasma glucose and glycemic curve were normal in most patients, while the insulin curve was abnormal in 75%. 82% of individuals with MV showed abnormalities on the metabolism of carbohydrates. CONCLUSION: VM affects predominantly middle-aged women, with migraine headache representing the first symptom, several years before vertigo. Physical, auditory, and vestibular evaluations are usually normal. The most frequent vestibular abnormality was hyperreflexia. Most individuals showed abnormality related to carbohydrate metabolism.

  15. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    Science.gov (United States)

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  17. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  18. Impedance pattern of vaginal and vestibular mucosa in cyclic goats

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The changes of vaginal and vestibular impedance during the oestrous cycle in goats were examined. The onset of oestrus was teased with a buck once a day during the experiment. Impedance was mea­sured by a four-terminal method. The vaginal impedance was recorded under slight pressure of electrodes to the vaginal dorsal wall at the cervix. The vestibular impedance was recorded under slight pressure of electrodes to the vestibular dorsal wall 5 cm from the vulva and at the vulva. The im­pe­dan­ce was measured once a day from 4 days before the expected oestrus to 6 days after onset of oestrus. The vaginal impedance at the cervix decreased during pro-oestrus (P < 0.01 and increased du­ring oestrus (P < 0.01. The vestibular impedance 5 cm from the vulva decreased during pro-oestrus (P < 0.01 and increased after oestrus (P < 0.01. The decrease of vaginal impedance during peri-oestrus was nearly twofold in comparison with the vestibular impedance 5 cm from the vulva. No sig­ni­fi­cant decrease of the vestibular impedance at the vulva was found during the oestrous cycle. The results indicate that the vaginal impedance at the cervix and vestibular impedance 5 cm from the vulva measured by means of a four-terminal method during the oestrous cycle display cyclic changes that are closely related to the oestrous behaviour of goats.

  19. [The roles of otolith organs in the recurrence primary benign paroxysmal positional vertigo].

    Science.gov (United States)

    Zhou, Xiaowei; Yu, Youjun; Wu, Ziming; Liu, Xinjian; Chen, Xianbing

    2015-09-01

    To explore the roles of otolith organs in the occurrence and recurrence of primary benign paroxysmal positional vertigo (BPPV) by vestibular evoked myogenic potential (VEMP) test. We enrolled 17 recurrent primary BPPV patients and 42 non-recurrent primary BPPV patients between September 2014 and November 2014. All patients underwent VEMP tests, including cervical vestibular evoked myogenic potential (cVEMP and ocular vestibular evoked myogenic potential (oVEMP) tests. The abnormal case was defined as non-elicitation or asymmetry rate between bilateral sides is larger than 29%. Significant difference was found in abnormal rate between cVEMP and oVEMP (P 0.05). No significant difference was found in sex and age between recurrent and non-recurrent groups (P > 0.05). The impairment of otolith organs, especially the utricle, is related to primary BPPV. Dysfunction of utricle may play a role in recurrence of BPPV. Recurrence of BPPV is not correlated with sex and age.

  20. Potencial evocado miogênico vestibular ocular: revisão de literatura

    OpenAIRE

    Silva,Tatiana Rocha; Resende,Luciana Macedo de; Santos,Marco Aurélio Rocha

    2016-01-01

    RESUMO Objetivo Identificar e sistematizar os principais estudos sobre o potencial evocado miogênico vestibular ocular e suas aplicações no diagnóstico das diversas doenças vestibulares. Estratégia de pesquisa Foram localizados artigos que descrevem a utilização do potencial evocado miogênico vestibular ocular na avaliação de doenças vestibulares nas bases PubMed, Web of Science, MEDLINE, Scopus, LILACS e SciELO. Critérios de seleção Foram incluídos estudos originais, com resumo disponí...

  1. Afferent loop syndrome - a case report

    International Nuclear Information System (INIS)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig

    2000-01-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  2. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  3. Striola magica. A functional explanation of otolith geometry.

    Science.gov (United States)

    Dimiccoli, Mariella; Girard, Benoît; Berthoz, Alain; Bennequin, Daniel

    2013-10-01

    Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.

  4. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    Science.gov (United States)

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  5. Inner ear malformations in siblings presenting with vestibular ...

    African Journals Online (AJOL)

    Although the association between inner ear abnormalities and progressive sensorineural hearing loss is well known, vestibular signs or loss of vestibular function in these ... We provide a brief overview of the latest classification of these inner ear defects as well as a review of the literature pertaining to children with inner ear ...

  6. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  7. Immunohistochemical characterisation and localisation of cannabinoid CB1 receptor protein in the rat vestibular nucleus complex and the effects of unilateral vestibular deafferentation.

    Science.gov (United States)

    Ashton, John C; Zheng, Yiwen; Liu, Ping; Darlington, Cynthia L; Smith, Paul F

    2004-09-24

    CB1 receptor expression has been reported to be low in the brainstem compared with the forebrain, and low in the vestibular nucleus complex (VNC) compared with other regions in the brainstem. However, a frequent effect of cannabis is dizziness and loss of balance. This may be due to the activation of cannabinoid receptors in the central vestibular pathways. We used immunohistochemistry to study the distribution of CB1 receptor protein in the VNC, and Western blotting to measure CB1 receptor expression in the VNC following unilateral vestibular deafferentation (UVD); the hippocampal CA1, CA2/3 and dentate gyrus (DG) regions were also analysed for comparison. This study confirms a previous electrophysiological demonstration that CB1 receptors exist in significant densities in the VNC and are likely to contribute to the neurochemical control of the vestibular reflexes. Nonetheless, CB1 receptor expression did not change significantly in the VNC during vestibular compensation. In addition, despite some small but significant changes in CB1 receptor expression in the CA2/3 and the DG following UVD, in no case were these differences statistically significant in comparison to both control groups.

  8. Plasticity during vestibular compensation: the role of saccades

    Directory of Open Access Journals (Sweden)

    Hamish Gavin MacDougall

    2012-02-01

    Full Text Available This paper is focussed on one major aspect of compensation: the recent behavioural findings concerning oculomotor responses in human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL. New measurement techniques have provided new insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during natural head movements. The present evidence is that there is little or no recovery of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. It may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss. Some patients do learn new strategies, new behaviours, to conceal their inadequate VOR but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, their vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation.

  9. The Vestibular Effects of Repeated Low-Level Blasts.

    Science.gov (United States)

    Littlefield, Philip D; Pinto, Robin L; Burrows, Holly L; Brungart, Douglas S

    2016-01-01

    The objective of this study was to use a prospective cohort of United States Marine Corps (USMC) instructors to identify any acute or long-term vestibular dysfunction following repeated blast exposures during explosive breaching training. They were assessed in clinic and on location during training at the USMC Methods of Entry School, Quantico, VA. Subjects received comprehensive baseline vestibular assessments and these were repeated in order to identify longitudinal changes. They also received shorter assessments immediately following blast exposure in order to identify acute findings. The main outcome measures were the Neurobehavioral Symptom Inventory, vestibular Visual Analog Scale (VAS) of subjective vestibular function, videonystagmography (VNG), vestibular evoked myogenic potentials (VEMP), rotary chair (including the unilateral centrifugation test), computerized dynamic posturography, and computerized dynamic visual acuity. A total of 11 breachers and 4 engineers were followed for up to 17 months. No acute effects or longitudinal deteriorations were identified, but there were some interesting baseline group differences. Upbeat positional nystagmus was common, and correlated (p<0.005) with a history of mild traumatic brain injury (mTBI). Several instructors had abnormally short low-frequency phase leads on rotary chair testing. This study evaluated breaching instructors over a longer test period than any other study, and the results suggest that this population appears to be safe from a vestibular standpoint at the current exposure levels. Upbeat positional nystagmus correlated with a history of mTBI in this population, and this has not been described elsewhere. The data trends also suggest that this nystagmus could be an acute blast effect. However, the reasons for the abnormally short phase leads seen in rotary chair testing are unclear at this time. Further investigation seems warranted.

  10. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  11. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    Science.gov (United States)

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.

  12. Assessment of auditory and vestibular functions in vitiligo patients

    Directory of Open Access Journals (Sweden)

    Eman Abd Elmohsin Dawoud

    2017-09-01

    Conclusion: The results in this study showed that 50% of vitiligo patients suffered from peripheral vestibular disorders in addition to auditory affection. Vitiligo patients require routine monitoring for auditory and vestibular functions for early identification and monitoring of changes as the disease progress.

  13. Translabyrinthine surgery for disabling vertigo in vestibular schwannoma patients

    NARCIS (Netherlands)

    Godefroy, W. P.; Hastan, D.; van der Mey, A. G. L.

    2007-01-01

    To determine the impact of translabyrinthine surgery on the quality of life in vestibular schwannoma patients with rotatory vertigo. Prospective study in 18 vestibular schwannoma patients. The study was conducted in a multispecialty tertiary care clinic. All 18 patients had a unilateral

  14. The Relationship between Vestibular Function and Topographical Memory in Older Adults

    Directory of Open Access Journals (Sweden)

    Fred Henry Previc

    2014-06-01

    Full Text Available Research during the past two decades has demonstrated an important role of the vestibular system in topographical orientation and memory and the network of neural structures associated with them. Almost all of the supporting data have come from animal or human clinical studies, however. The purpose of the present study was to investigate the link between vestibular function and topographical memory in normal elderly humans. Twenty-five participants aged 70 to 85 years who scored from mildly impaired to normal on the Montreal Cognitive Assessment received three topographical memory tests: the Camden Topographical Recognition Memory Test (CTMRT, a computerized topographical mental rotation test (TMRT, and a virtual pond maze (VPM. They also received six vestibular or oculomotor tests: optokinetic nystagmus (OKN, visual pursuit (VP, actively generated vestibulo-ocular reflex (VOR, the sensory orientation test (SOT for posture, and two measures of rotational memory (error in degrees, or RMº, and correct directional recognition, or RM→. The only significant bivariate correlations were among the three vestibular measures primarily assessing horizontal canal function (VOR, RMº, and RM→. A multiple regression analysis showed significant relationships between vestibular and demographic predictors and both the TMRT (R=.78 and VPM (R=.66 measures. The significant relationship between the vestibular and topographical memory measures supports the theory that vestibular loss may contribute to topographical memory impairment in the elderly.

  15. Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury.

    Science.gov (United States)

    Scherer, Matthew R; Burrows, Holly; Pinto, Robin; Littlefield, Philip; French, Louis M; Tarbett, Aaron K; Schubert, Michael C

    2011-06-01

    To prospectively assay the vestibular and oculomotor systems of blast-exposed service members with traumatic brain injury (TBI). Prospective, nonblinded, nonrandomized descriptive study. Tertiary care facility (Department of Defense Medical Center). Twenty-four service members recovering from blast-related TBI sustained in Iraq or Afghanistan. Focused history and physical, videonystagmography (VNG), rotational chair, cervical vestibular-evoked myogenic potentials, computerized dynamic posturography, and self-report measures. Vestibular testing confirms a greater incidence of vestibular and oculomotor dysfunction in symptomatic (vestibular-like dizziness) personnel with blast-related TBI relative to asymptomatic group members. VNG in the symptomatic group revealed abnormal nystagmus or oculomotor findings in 6 of 12 subjects tested. Similarly, rotational chair testing in this group revealed evidence of both peripheral (4/12) and central (2/12) vestibular pathology. By contrast, the asymptomatic group revealed less vestibular impairment with 1 of 10 rotational chair abnormalities. The asymptomatic group was further characterized by fewer aberrant nystagmus findings (4/12 abnormal VNGs). Computerized dynamic posturography testing revealed no significant differences between groups. Self-report measures demonstrated differences between groups. Vestibular function testing confirms a greater incidence of peripheral vestibular hypofunction in dizzy service members with blast-related TBI relative to those who are asymptomatic. Additionally, oculomotor abnormalities and/or nystagmus consistent with central involvement were present in 10 of the 24 study participants tested. The precise cause of these findings remains unknown.

  16. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve.

    Science.gov (United States)

    Tai, Changfeng; Shen, Bing; Mally, Abhijith D; Zhang, Fan; Zhao, Shouguo; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2012-10-01

    This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.

  17. Exhibition of Stochastic Resonance in Vestibular Perception

    Science.gov (United States)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  18. Epidemiology of vestibular vertigo: a neurotologic survey of the general population.

    Science.gov (United States)

    Neuhauser, H K; von Brevern, M; Radtke, A; Lezius, F; Feldmann, M; Ziese, T; Lempert, T

    2005-09-27

    The purpose of this study was to determine the prevalence and incidence of vestibular vertigo in the general population and to describe its clinical characteristics and associated factors. The neurotologic survey had a two-stage general population sampling design: nationwide modified random digit dialing sampling for participation in the German National Telephone Health Interview Survey 2003 (response rate 52%) with screening of a random sample of 4,869 participants for moderate or severe dizziness or vertigo, followed by detailed neurotologic interviews developed through piloting and validation (n = 1,003, response rate 87%). Diagnostic criteria for vestibular vertigo were rotational vertigo, positional vertigo, or recurrent dizziness with nausea and oscillopsia or imbalance. Vestibular vertigo was detected by our interview with a specificity of 94% and a sensitivity of 84[corrected]% in a concurrent validation study using neurotology clinic diagnoses as an accepted standard (n = 61). The lifetime prevalence of vestibular vertigo was 7.4[corrected]%, the 1-year prevalence was 4.9[corrected]%, and the incidence was 1.4[corrected]%. In 80% of affected individuals, vertigo resulted in a medical consultation, interruption of daily activities, or sick leave. Female sex, age, lower educational level, and various comorbid conditions, including tinnitus, depression, and several cardiovascular diseases and risk factors, were associated with vestibular vertigo in the past year in univariate analysis. In multivariable analysis, only female sex, self-reported depression, tinnitus, hypertension, and dyslipidemia had an independent effect on vestibular vertigo. Vestibular vertigo is common in the general population, affecting [corrected] 5% of adults in 1 year. The frequency and health care impact of vestibular symptoms at the population level have been underestimated.

  19. Outcomes after vestibular rehabilitation and Wii® therapy in patients with chronic unilateral vestibular hypofunction.

    Science.gov (United States)

    Verdecchia, Daniel H; Mendoza, Marcela; Sanguineti, Florencia; Binetti, Ana C

    2014-01-01

    Vestibular rehabilitation therapy is an exercise-based programme designed to promote central nervous system compensation for inner ear deficit. The objective of the present study was to analyse the differences in the perception of handicap, the risk of falls, and gaze stability in patients diagnosed with chronic unilateral vestibular hypofunction before and after vestibular rehabilitation treatment with complementary Wii® therapy. A review was performed on the clinical histories of patients in the vestibular rehabilitation area of a university hospital between April 2009 and May 2011. The variables studied were the Dizziness Handicap Inventory, the Dynamic Gait Index and dynamic visual acuity. All subjects received complementary Wii® therapy. There were 69 cases (41 woman and 28 men), with a median age of 64 years. The initial median Dizziness Handicap Inventory score was 40 points (range 0-84, percentile 25-75=20-59) and the final, 24 points (range 0-76, percentile 25-75=10.40), P<.0001. The initial median for the Dynamic Gait Index score was 21 points (range 8-24, percentile 25-75=17.5-2.3) and the final, 23 (range 12-24, percentile 25-75=21-23), P<.0001. The initial median for dynamic visual acuity was 2 (range 0-6, percentile 25-75=1-4) and the final, 1 (range 0-3, percentile 25-75=0-2), P<.0001. A reduction was observed in the Dizziness Handicap Inventory Values. Values for the Dynamic Gait Index increased and dynamic visual acuity improved. All these variations were statistically significant. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  20. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  1. Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis.

    Directory of Open Access Journals (Sweden)

    Matteo eCandidi

    2013-11-01

    Full Text Available Vestibular processing is fundamental to our sense of orientation in space which is a core aspect of the representation of the self. Vestibular information is processed in a large subcortical-cortical neural network. Tasks requiring mental rotations of human bodies in space are known to activate neural regions within this network suggesting that vestibular processing is involved in the control of mental rotation. We studied whether mental rotation is impaired in patients suffering from two different forms of unilateral vestibular disorders (Vestibular Neuritis – VN- and Benign Paroxysmal positional Vertigo – BPPV with respect to healthy matched controls (C. We used two mental rotation tasks in which participants were required to: i mentally rotate their own body in space (egocentric rotation thus using vestibular processing to a large extent and ii mentally rotate human figures (allocentric rotation thus using own body representations to a smaller degree. Reaction times and accuracy of responses showed that VN and BPPV patients were impaired in both tasks with respect to C. Significantly, the pattern of results was similar in the three groups suggesting that patients were actually performing the mental rotation without using a different strategy from the control individuals. These results show that dysfunctional vestibular inflow impairs mental rotation of both own body and human figures suggesting that unilateral acute disorders of the peripheral vestibular input massively affect the cerebral processes underlying mental rotations.

  2. Spatio-temporal pattern of vestibular information processing after brief caloric stimulation

    International Nuclear Information System (INIS)

    Marcelli, Vincenzo; Esposito, Fabrizio; Aragri, Adriana; Furia, Teresa; Riccardi, Pasquale; Tosetti, Michela; Biagi, Laura; Marciano, Elio; Di Salle, Francesco

    2009-01-01

    Processing of vestibular information at the cortical and subcortical level is essential for head and body orientation in space and self-motion perception, but little is known about the neural dynamics of the brain regions of the vestibular system involved in this task. Neuroimaging studies using both galvanic and caloric stimulation have shown that several distinct cortical and subcortical structures can be activated during vestibular information processing. The insular cortex has been often targeted and presented as the central hub of the vestibular cortical system. Since very short pulses of cold water ear irrigation can generate a strong and prolonged vestibular response and a nystagmus, we explored the effects of this type of caloric stimulation for assessing the blood-oxygen-level-dependent (BOLD) dynamics of neural vestibular processing in a whole-brain event-related functional magnetic resonance imaging (fMRI) experiment. We evaluated the spatial layout and the temporal dynamics of the activated cortical and subcortical regions in time-locking with the instant of injection and were able to extract a robust pattern of neural activity involving the contra-lateral insular cortex, the thalamus, the brainstem and the cerebellum. No significant correlation with the temporal envelope of the nystagmus was found. The temporal analysis of the activation profiles highlighted a significantly longer duration of the evoked BOLD activity in the brainstem compared to the insular cortex suggesting a functional de-coupling between cortical and subcortical activity during the vestibular response.

  3. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    Science.gov (United States)

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  4. Effect of Carbon Dioxide Laser on Increasing Vestibular Depth in Cleft Lip and Palate Patients.

    Science.gov (United States)

    Yassaei, Sogra; Aghili, Hossein; Azam, Alireza Navab; Moghadam, Mahjobeh Gholdani; Safari, Isa

    2017-09-01

    Shallow upper buccal sulcus deformity in cleft lip and palate patients is one of the common secondary deformities after primary cleft lip and palate repair; this deformity may prevent or complicate orthodontic and prosthodontic procedures causing aesthetic and functional problems. A number of methods are described to increase the anterior maxillary sulcus in these patients. This study assessed the use of a carbon dioxide laser (CO 2 ) to increase the sulcus depth. Fifteen patients with cleft lip and palate (eight unilateral and seven bilateral) were studied. The surgical procedure was performed using CO 2 laser. The vestibular depth and lip length were measured at three time points namely before surgery (T0), 1 week following surgery (T1), and 4 months following surgery (T2). After data collection, statistical analyses were done using PASW ® version 18 SPSS. The mean values of vestibular depth were 9.46 ± 1.92, 13.83 ± 1.88, and 13.23 ± 1.76 mm for T0, T1, and T2, respectively. The vestibular depth significantly increased after 4 months of follow-up (p = 0.001). The mean amount of vestibular depth gain was not significantly different in unilateral and bilateral cleft groups (p = 0.908). The mean value of upper lip length increased by a mean of 1.23 mm and was statistically significant (p = 0.001). Upper buccal sulcus reconstruction with CO 2 laser provides successful and stable results. CO 2 laser application is suggested as an alternative to conventional vestibuloplasty.

  5. Current concepts and future approaches to vestibular rehabilitation.

    Science.gov (United States)

    Tjernström, Fredrik; Zur, Oz; Jahn, Klaus

    2016-04-01

    Over the last decades methods of vestibular rehabilitation to enhance adaptation to vestibular loss, habituation to changing sensory conditions, and sensory reweighting in the compensation process have been developed. However, the use of these techniques still depends to a large part on the educational background of the therapist. Individualized assessment of deficits and specific therapeutic programs for different disorders are sparse. Currently, vestibular rehabilitation is often used in an unspecific way in dizzy patients irrespective of the clinical findings. When predicting the future of vestibular rehabilitation, it is tempting to foretell advances in technology for assessment and treatment only, but the current intense exchange between clinicians and basic scientists also predicts advances in truly understanding the complex interactions between the peripheral senses and central adaptation mechanisms. More research is needed to develop reliable techniques to measure sensory dependence and to learn how this knowledge can be best used--by playing off the patient's sensory strength or working on the weakness. To be able using the emerging concepts, the neuro-otological community must strive to educate physicians, physiotherapists and nurses to perform the correct examinations for assessment of individual deficits and to look for factors that might impede rehabilitation.

  6. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  7. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  8. Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats.

    Science.gov (United States)

    Mori, R L; Cotter, L A; Arendt, H E; Olsheski, C J; Yates, B J

    2005-02-01

    The vestibular system participates in cardiovascular regulation during postural changes. In prior studies (Holmes MJ, Cotter LA, Arendt HE, Cas SP, and Yates BJ. Brain Res 938: 62-72, 2002, and Jian BJ, Cotter LA, Emanuel BA, Cass SP, and Yates BJ. J Appl Physiol 86: 1552-1560, 1999), transection of the vestibular nerves resulted in instability in blood pressure during nose-up body tilts, particularly when no visual information reflecting body position in space was available. However, recovery of orthostatic tolerance occurred within 1 wk, presumably because the vestibular nuclei integrate a variety of sensory inputs reflecting body location. The present study tested the hypothesis that lesions of the vestibular nuclei result in persistent cardiovascular deficits during orthostatic challenges. Blood pressure and heart rate were monitored in five conscious cats during nose-up tilts of varying amplitude, both before and after chemical lesions of the vestibular nuclei. Before lesions, blood pressure remained relatively stable during tilts. In all animals, the blood pressure responses to nose-up tilts were altered by damage to the medial and inferior vestibular nuclei; these effects were noted both when animals were tested in the presence and absence of visual feedback. In four of the five animals, the lesions also resulted in augmented heart rate increases from baseline values during 60 degrees nose-up tilts. These effects persisted for longer than 1 wk, but they gradually resolved over time, except in the animal with the worst deficits. These observations suggest that recovery of compensatory cardiovascular responses after loss of vestibular inputs is accomplished at least in part through plastic changes in the vestibular nuclei and the enhancement of the ability of vestibular nucleus neurons to discriminate body position in space by employing nonlabyrinthine signals.

  9. Prediction of Balance Compensation After Vestibular Schwannoma Surgery.

    Science.gov (United States)

    Parietti-Winkler, Cécile; Lion, Alexis; Frère, Julien; Perrin, Philippe P; Beurton, Renaud; Gauchard, Gérome C

    2016-06-01

    Background Balance compensation after vestibular schwannoma (VS) surgery is under the influence of specific preoperative patient and tumor characteristics. Objective To prospectively identify potential prognostic factors for balance recovery, we compared the respective influence of these preoperative characteristics on balance compensation after VS surgery. Methods In 50 patients scheduled for VS surgical ablation, we measured postural control before surgery (BS), 8 (AS8) days after, and 90 (AS90) days after surgery. Based on factors found previously in the literature, we evaluated age, body mass index and preoperative physical activity (PA), tumor grade, vestibular status, and preference for visual cues to control balance as potential prognostic factors using stepwise multiple regression models. Results An asymmetric vestibular function was the sole significant explanatory factor for impaired balance performance BS, whereas the preoperative PA alone significantly contributed to higher performance at AS8. An evaluation of patients' balance recovery over time showed that PA and vestibular status were the 2 significant predictive factors for short-term postural compensation (BS to AS8), whereas none of these preoperative factors was significantly predictive for medium-term postoperative postural recovery (AS8 to AS90). Conclusions We identified specific preoperative patient and vestibular function characteristics that may predict postoperative balance recovery after VS surgery. Better preoperative characterization of these factors in each patient could inform more personalized presurgical and postsurgical management, leading to a better, more rapid balance recovery, earlier return to normal daily activities and work, improved quality of life, and reduced medical and societal costs. © The Author(s) 2015.

  10. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    Science.gov (United States)

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-10-01

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  11. LA FUNCIÓN VESTIBULAR Y SU CONCORDANCIA FRENOLÓGICA: CONECTANDO LA HISTORIA DE LA FUNCIÓN CEREBRAL VESTIBULAR

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2012-09-01

    Full Text Available En el presente trabajo se inter-relacionan eventos históricos y contemporáneos, que han permitido desde la intuición de los primeros frenólogos y posteriormente con aspectos clínicos y experimentales, determinar un acercamiento a la localización funcional cerebral del procesamiento de información vestibular, asociada con los movimientos de la cabeza. El objetivo es aclarar si se puede establecer un vínculo entre la información frenológica del siglo XVIII con el procesamiento funcional cortical vestibular, con base en investigaciones contemporáneas. Metodológicamente se compara la información vestibular que surgió de la frenología, con los datos contemporáneos de funcionales cerebrales. Se encontró que el sentido de la orientación espacial se postuló en la región craneal parietal de forma intuitiva por los pioneros de la Frenología, en coincidencia con el sabido procesamiento cerebral parietal para la aceleración angular y linear del movimiento de la cabeza. Se concluye que la asignación de la región frenológica 12 en la zona parietal craneal, es concordante, si se extrapola al lobo parietal, para el sentido del lugar y el sentido espacial, pues varios trabajos indican la asignación como zona cortical vestibular principal, a la que se encuentra en dicha región cerebral.

  12. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  14. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  15. The effects of aging on clinical vestibular evaluations

    Directory of Open Access Journals (Sweden)

    Maxime eMaheu

    2015-09-01

    Full Text Available Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cVEMP and oVEMP, then the caloric and vHIT methods for semi-circular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semi-circular canals function.

  16. Vestibular asymmetry predicts falls among elderly patients with multi- sensory dizziness

    OpenAIRE

    Ekvall Hansson, Eva; Magnusson, M?ns

    2013-01-01

    Background: Dizziness is the most common symptom in elderly patients and has been identified as a risk factor for falls. While BPPV is the most common cause of dizziness among elderly, multisensory deficits is the second, with visual, vestibular and proprioceptive reduced function. Asymmetric vestibular function is overrepresented in elderly persons with hip fractures and wrist fractures and can be accessed for screening. The objective was to study if vestibular asymmetry, vibration sense, ba...

  17. Age-related decline in functional connectivity of the vestibular cortical network.

    Science.gov (United States)

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability--we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD--signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs.

  18. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    Science.gov (United States)

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  19. Impact of Diabetic Complications on Balance and Falls: Contribution of the Vestibular System.

    Science.gov (United States)

    D'Silva, Linda J; Lin, James; Staecker, Hinrich; Whitney, Susan L; Kluding, Patricia M

    2016-03-01

    Diabetes causes many complications, including retinopathy and peripheral neuropathy, which are well understood as contributing to gait instability and falls. A less understood complication of diabetes is the effect on the vestibular system. The vestibular system contributes significantly to balance in static and dynamic conditions by providing spatially orienting information. It is noteworthy that diabetes has been reported to affect vestibular function in both animal and clinical studies. Pathophysiological changes in peripheral and central vestibular structures due to diabetes have been noted. Vestibular dysfunction is associated with impaired balance and a higher risk of falls. As the prevalence of diabetes increases, so does the potential for falls due to diabetic complications. The purpose of this perspective article is to present evidence on the pathophysiology of diabetes-related complications and their influence on balance and falls, with specific attention to emerging evidence of vestibular dysfunction due to diabetes. Understanding this relationship may be useful for screening (by physical therapists) for possible vestibular dysfunction in people with diabetes and for further developing and testing the efficacy of interventions to reduce falls in this population. © 2016 American Physical Therapy Association.

  20. Integration of Visual and Vestibular Information Used to Discriminate Rotational Self-Motion

    Directory of Open Access Journals (Sweden)

    Florian Soyka

    2011-10-01

    Full Text Available Do humans integrate visual and vestibular information in a statistically optimal fashion when discriminating rotational self-motion stimuli? Recent studies are inconclusive as to whether such integration occurs when discriminating heading direction. In the present study eight participants were consecutively rotated twice (2s sinusoidal acceleration on a chair about an earth-vertical axis in vestibular-only, visual-only and visual-vestibular trials. The visual stimulus was a video of a moving stripe pattern, synchronized with the inertial motion. Peak acceleration of the reference stimulus was varied and participants reported which rotation was perceived as faster. Just-noticeable differences (JND were estimated by fitting psychometric functions. The visual-vestibular JND measurements are too high compared to the predictions based on the unimodal JND estimates and there is no JND reduction between visual-vestibular and visual-alone estimates. These findings may be explained by visual capture. Alternatively, the visual precision may not be equal between visual-vestibular and visual-alone conditions, since it has been shown that visual motion sensitivity is reduced during inertial self-motion. Therefore, measuring visual-alone JNDs with an underlying uncorrelated inertial motion might yield higher visual-alone JNDs compared to the stationary measurement. Theoretical calculations show that higher visual-alone JNDs would result in predictions consistent with the JND measurements for the visual-vestibular condition.

  1. Baseline vestibular and auditory findings in a trial of post-concussive syndrome

    Science.gov (United States)

    Meehan, Anna; Searing, Elizabeth; Weaver, Lindell; Lewandowski, Andrew

    2016-01-01

    Previous studies have reported high rates of auditory and vestibular-balance deficits immediately following head injury. This study uses a comprehensive battery of assessments to characterize auditory and vestibular function in 71 U.S. military service members with chronic symptoms following mild traumatic brain injury that did not resolve with traditional interventions. The majority of the study population reported hearing loss (70%) and recent vestibular symptoms (83%). Central auditory deficits were most prevalent, with 58% of participants failing the SCAN3:A screening test and 45% showing abnormal responses on auditory steady-state response testing presented at a suprathreshold intensity. Only 17% of the participants had abnormal hearing (⟩25 dB hearing loss) based on the pure-tone average. Objective vestibular testing supported significant deficits in this population, regardless of whether the participant self-reported active symptoms. Composite score on the Sensory Organization Test was lower than expected from normative data (mean 69.6 ±vestibular tests, vestibulo-ocular reflex, central auditory dysfunction, mild traumatic brain injury, post-concussive symptoms, hearing15.6). High abnormality rates were found in funduscopy torsion (58%), oculomotor assessments (49%), ocular and cervical vestibular evoked myogenic potentials (46% and 33%, respectively), and monothermal calorics (40%). It is recommended that a full peripheral and central auditory, oculomotor, and vestibular-balance evaluation be completed on military service members who have sustained head trauma.

  2. Potenciais miogênicos evocados vestibulares: metodologias de registro em homens e cobaias Vestibular evoked myogenic potential: recording methods in humans and guinea pigs

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2008-10-01

    Full Text Available O potencial miogênico evocado vestibular (VEMP é um teste clínico que avalia a função vestibular através de um reflexo vestíbulo-cervical inibitório captado nos músculos do corpo em resposta à estimulação acústica de alta intensidade. OBJETIVO: Verificar e analisar os diversos métodos de registro dos potenciais miogênicos evocados vestibulares no homem e em cobaias. MATERIAL E MÉTODO: Realizou-se busca eletrônica nas bases de dados MEDLINE, LILACS, SCIELO e COCHRANE. RESULTADOS: Foram verificadas divergências quanto às formas de registro dos potenciais miogênicos evocados vestibulares, relacionadas com os seguintes fatores: posição do paciente no momento do registro, tipo de estímulo sonoro utilizado (clicks ou tone bursts, parâmetros para a promediação dos estímulos (intensidade, freqüência, tempo de apresentação, filtros, ganho de amplificação das respostas e janelas para captação dos estímulos, tipo de fone utilizado e forma de apresentação dos estímulos (monoaural ou binaural, ipsi ou contralateral. CONCLUSÃO: Não existe consenso na literatura quanto ao melhor método de registro dos potenciais evocados miogênicos vestibulares, havendo necessidade de pesquisas mais específicas para comparação entre estes registros e a definição de um modelo padrão para a utilização na prática clínica.The vestibular evoked myogenic potential (VEMP is a clinical test that assess the vestibular function by means of an inhibitory vestibulo-neck reflex, recorded in body muscles in response to high intensity acoustic stimuli. AIM: To check and analyze the different methods used to record VEMPs in humans and in guinea pigs. MATERIALS AND METHODS: We researched the following databases: MEDLINE, LILACS, SCIELO and COCHRANE. RESULTS: we noticed discrepancies in relation to the ways used to record the vestibular evoked myogenic potentials in relation to the following factors: patient position at the time of recording

  3. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    Directory of Open Access Journals (Sweden)

    Zhao J

    2017-12-01

    Full Text Available Jingbo Zhao,1 Jian Yang,1 Donghua Liao,1 Hans Gregersen2 1Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong Background: Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective: We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design: Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR, and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results: Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05. The stress relaxed less in the diabetic intestinal segment (P<0.05. Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion: Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. Keywords: afferents, spike rate, stress–strain, creep

  4. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  5. Different metabotropic glutamate receptors play opposite roles in synaptic plasticity of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2002-09-15

    In the medial vestibular nuclei (MVN) of rat brainstem slices, the role of group II and III metabotropic glutamate receptors (mGluRs) and of the subtypes of group I mGluRs: mGluR1, mGluR5, was investigated in basal synaptic transmission and in the induction and maintenance of long-term potentiation (LTP). We used selective antagonists and agonists for mGluRs and we analysed the field potentials evoked by vestibular afferent stimulation before and after high-frequency stimulation (HFS) to induce LTP. The group II and III mGluR antagonist, (R,S)-alpha-2-methyl-4sulphonophenylglycine (MSPG), induced LTP per se and caused a reduction of the paired-pulse facilitation (PPF) ratio indicating an enhancement of glutamate release. This suggests that group II and III mGluRs are activated under basal conditions to limit glutamate release. Both the group II and III mGluR selective antagonists, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoate (LY341495) and (R,S)-alpha-methylserine-O-phosphate (MSOP), induced LTP, and the selective agonists, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depressed the field potentials and prevented HFS-LTP, with a prevailing contribution of group II mGluRs over that of group III mGluRs. The mGluR1 antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented the full development and maintenance of HFS-LTP. By contrast, the mGluR5 antagonist, 2-methyl-6-phenylethynylpyridine (MPEP) induced LTP per se, which was impeded by CPCCOEt, and it had no effect on LTP once induced by HFS. The PPF analysis showed an enhancement of glutamate release during MPEP potentiation. The group I mGluR agonist, (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced LTP per se, which was blocked by CPCCOEt. By contrast the mGluR5 agonist, (R,S)-2-chloro-5-hydroxypheylglycine (CHPG) prevented LTP elicited by HFS and DHPG as well. In conclusion vestibular LTP is

  6. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  7. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  8. Functional balance associated factors in the elderly with chronic vestibular disorder.

    Science.gov (United States)

    Gazzola, Juliana Maria; Perracini, Monica Rodrigues; Ganança, Maurício Malavasi; Ganança, Fernando Freitas

    2006-01-01

    Daily activities can be challenging for the elderly. To study the association between functional balance, evaluated by the Berg Balance Scale (BBS), sociodemographics, clinical and mobilility (Timed up and go test-TUGT, Dynamic Gait Index-DGI) variables in the elderly with chronic vestibular disorder. A series study with one hundred and twenty elderly with chronic vestibular disorder. We performed the Mann-Whitney test, the Kruskal-Wallis test followed by Dunn test and the Spearman Coefficient ([FORMULA: SEE TEXT]). Statistically significant associations and correlations were observed between total BBS score and age ([FORMULA: SEE TEXT]=-0.354; pfalls (p=0.010), tendency to fall (p=0.002), topographic diagnosis of central vestibular disorder (pFunctional balance in the elderly with chronic vestibular disorders evaluated by the BBS is worse when associated with aging, with a more advanced age group (80 years or more), increasing number of illnesses, presence of five or more illnesses, use of multiple medications, recurrent falls, tendency to fall, central vestibular syndromes, daily dizziness, mobility and gait impairments.

  9. Pre-adaptation to noisy Galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments

    Directory of Open Access Journals (Sweden)

    Steven T Moore

    2015-06-01

    Full Text Available Performance on a visuomotor task in the presence of novel vestibular stimulation was assessed in nine healthy subjects. Four subjects had previously been adapted to 120 minutes exposure to noisy Galvanic vestibular stimulation (GVS over 12 weekly sessions of 10 minutes; the remaining five subjects had never experienced GVS. Subjects were seated in a flight simulator and asked to null the roll motion of a visual bar presented on a screen using a joystick. Both the visual bar and the simulator cabin were moving in roll with a pseudorandom (sum of sines waveform that were uncorrelated. The cross correlation coefficient, which ranges from 1 (identical waveforms to 0 (unrelated waveforms, was calculated for the ideal (perfect nulling of bar motion and actual joystick input waveform for each subject. The cross correlation coefficient for the GVS-adapted group (0.90 [SD 0.04] was significantly higher (t[8]=3.162; p=0.013 than the control group (0.82 [SD 0.04], suggesting that prior adaptation to GVS was associated with an enhanced ability to perform the visuomotor task in the presence of novel vestibular noise.

  10. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  11. Migraine patients consistently show abnormal vestibular bedside tests.

    Science.gov (United States)

    Maranhão, Eliana Teixeira; Maranhão-Filho, Péricles; Luiz, Ronir Raggio; Vincent, Maurice Borges

    2016-01-01

    Migraine and vertigo are common disorders, with lifetime prevalences of 16% and 7% respectively, and co-morbidity around 3.2%. Vestibular syndromes and dizziness occur more frequently in migraine patients. We investigated bedside clinical signs indicative of vestibular dysfunction in migraineurs. To test the hypothesis that vestibulo-ocular reflex, vestibulo-spinal reflex and fall risk (FR) responses as measured by 14 bedside tests are abnormal in migraineurs without vertigo, as compared with controls. Cross-sectional study including sixty individuals - thirty migraineurs, 25 women, 19-60 y-o; and 30 gender/age healthy paired controls. Migraineurs showed a tendency to perform worse in almost all tests, albeit only the Romberg tandem test was statistically different from controls. A combination of four abnormal tests better discriminated the two groups (93.3% specificity). Migraine patients consistently showed abnormal vestibular bedside tests when compared with controls.

  12. Impaired math achievement in patients with acute vestibular neuritis.

    Science.gov (United States)

    Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2017-12-01

    Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Vision and Vestibular System Dysfunction Predicts Prolonged Concussion Recovery in Children.

    Science.gov (United States)

    Master, Christina L; Master, Stephen R; Wiebe, Douglas J; Storey, Eileen P; Lockyer, Julia E; Podolak, Olivia E; Grady, Matthew F

    2018-03-01

    Up to one-third of children with concussion have prolonged symptoms lasting beyond 4 weeks. Vision and vestibular dysfunction is common after concussion. It is unknown whether such dysfunction predicts prolonged recovery. We sought to determine which vision or vestibular problems predict prolonged recovery in children. A retrospective cohort of pediatric patients with concussion. A subspecialty pediatric concussion program. Four hundred thirty-two patient records were abstracted. Presence of vision or vestibular dysfunction upon presentation to the subspecialty concussion program. The main outcome of interest was time to clinical recovery, defined by discharge from clinical follow-up, including resolution of acute symptoms, resumption of normal physical and cognitive activity, and normalization of physical examination findings to functional levels. Study subjects were 5 to 18 years (median = 14). A total of 378 of 432 subjects (88%) presented with vision or vestibular problems. A history of motion sickness was associated with vestibular dysfunction. Younger age, public insurance, and presence of headache were associated with later presentation for subspecialty concussion care. Vision and vestibular problems were associated within distinct clusters. Provocable symptoms with vestibulo-ocular reflex (VOR) and smooth pursuits and abnormal balance and accommodative amplitude (AA) predicted prolonged recovery time. Vision and vestibular problems predict prolonged concussion recovery in children. A history of motion sickness may be an important premorbid factor. Public insurance status may represent problems with disparities in access to concussion care. Vision assessments in concussion must include smooth pursuits, saccades, near point of convergence (NPC), and accommodative amplitude (AA). A comprehensive, multidomain assessment is essential to predict prolonged recovery time and enable active intervention with specific school accommodations and targeted rehabilitation.

  14. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  15. Diabetes, vestibular dysfunction, and falls: analyses from the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Agrawal, Yuri; Carey, John P; Della Santina, Charles C; Schubert, Michael C; Minor, Lloyd B

    2010-12-01

    Patients with diabetes are at increased risk both for falls and for vestibular dysfunction, a known risk factor for falls. Our aims were 1) to further characterize the vestibular dysfunction present in patients with diabetes and 2) to evaluate for an independent effect of vestibular dysfunction on fall risk among patients with diabetes. National cross-sectional survey. Ambulatory examination centers. Adults from the United States aged 40 years and older who participated in the 2001-2004 National Health and Nutrition Examination Survey (n = 5,86). Diagnosis of diabetes, peripheral neuropathy, and retinopathy. Vestibular function measured by the modified Romberg Test of Standing Balance on Firm and Compliant Support Surfaces and history of falling in the previous 12 months. We observed a higher prevalence of vestibular dysfunction in patients with diabetes with longer duration of disease, greater serum hemoglobin A1c levels and other diabetes-related complications, suggestive of a dose-response relationship between diabetes mellitus severity and vestibular dysfunction. We also noted that vestibular dysfunction independently increased the odds of falling more than 2-fold among patients with diabetes (odds ratio, 2.3; 95% confidence interval, 1.1-5.1), even after adjusting for peripheral neuropathy and retinopathy. Moreover, we found that including vestibular dysfunction, peripheral neuropathy, and retinopathy in multivariate models eliminated the significant association between diabetes and fall risk. Vestibular dysfunction may represent a newly recognized diabetes-related complication, which acts as a mediator of the effect of diabetes mellitus on fall risk.

  16. The visceromotor and somatic afferent nerves of the penis.

    Science.gov (United States)

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  17. Molecular composition of extracellular matrix in the vestibular nuclei of the rat.

    Science.gov (United States)

    Rácz, Eva; Gaál, Botond; Kecskes, Szilvia; Matesz, Clara

    2014-07-01

    Previous studies have demonstrated that the molecular and structural composition of the extracellular matrix (ECM) shows regional differences in the central nervous system. By using histochemical and immunohistochemical methods, we provide here a detailed map of the distribution of ECM molecules in the vestibular nuclear complex (VNC) of the rat. We have observed common characteristics of the ECM staining pattern in the VNC and a number of differences among the individual vestibular nuclei and their subdivisions. The perineuronal net (PNN), which is the pericellular condensation of ECM, showed the most intense staining for hyaluronan, aggrecan, brevican and tenascin-R in the superior, lateral and medial vestibular nuclei, whereas the HAPLN1 link protein and the neurocan exhibited moderate staining intensity. The rostral part of the descending vestibular nucleus (DVN) presented a similar staining pattern in the PNN, with the exception of brevican, which was negative. The caudal part of the DVN had the weakest staining for all ECM molecules in the PNN. Throughout the VNC, versican staining in the PNN, when present, was distinctive due to its punctuate appearance. The neuropil also exhibited heterogeneity among the individual vestibular nuclei in ECM staining pattern and intensity. We find that the heterogeneous distribution of ECM molecules is associated in many cases with the variable cytoarchitecture and hodological organization of the vestibular nuclei, and propose that differences in the ECM composition may be related to specific neuronal functions associated with gaze and posture control and vestibular compensation.

  18. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Science.gov (United States)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  19. Primary and Secondary Vestibular Connections in the Brain Stem and Cerebellum: An Axoplasmic Transport Study in the Monkey and Cat

    Science.gov (United States)

    1983-08-25

    Edinger-Westphal nucleus in the cat, Brain Research, 141 (1978) 153-159. Lorente de No, R., Etudes sur le cerveau posterieur. Ill, Sur 1 es connexions...extra-cerebelleuses des fascicules afferents au cerveau , et sur la fontion de cet organe, Trav. Lab. Rech. Biol. Univ. Madrid, 22 (1924) 51-65

  20. Migraine patients consistently show abnormal vestibular bedside tests

    Directory of Open Access Journals (Sweden)

    Eliana Teixeira Maranhão

    2015-01-01

    Full Text Available Migraine and vertigo are common disorders, with lifetime prevalences of 16% and 7% respectively, and co-morbidity around 3.2%. Vestibular syndromes and dizziness occur more frequently in migraine patients. We investigated bedside clinical signs indicative of vestibular dysfunction in migraineurs.Objective To test the hypothesis that vestibulo-ocular reflex, vestibulo-spinal reflex and fall risk (FR responses as measured by 14 bedside tests are abnormal in migraineurs without vertigo, as compared with controls.Method Cross-sectional study including sixty individuals – thirty migraineurs, 25 women, 19-60 y-o; and 30 gender/age healthy paired controls.Results Migraineurs showed a tendency to perform worse in almost all tests, albeit only the Romberg tandem test was statistically different from controls. A combination of four abnormal tests better discriminated the two groups (93.3% specificity.Conclusion Migraine patients consistently showed abnormal vestibular bedside tests when compared with controls.

  1. Distinct roles of Eps8 in the maturation of cochlear and vestibular hair cells.

    Science.gov (United States)

    Tavazzani, Elisa; Spaiardi, Paolo; Zampini, Valeria; Contini, Donatella; Manca, Marco; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Masetto, Sergio

    2016-07-22

    Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  3. Bilateral Vestibular Deficiency: Quality of Life and Economic Implications.

    Science.gov (United States)

    Sun, Daniel Q; Ward, Bryan K; Semenov, Yevgeniy R; Carey, John P; Della Santina, Charles C

    2014-06-01

    Bilateral vestibular deficiency (BVD) causes chronic imbalance and unsteady vision and greatly increases the risk of falls; however, its effects on quality of life and economic impact are not well defined. To quantify disease-specific and health-related quality of life, health care utilization, and economic impact on individuals with BVD in comparison with those with unilateral vestibular deficiency (UVD). Cross-sectional survey study of patients with BVD or UVD and healthy controls at an academic medical center. Vestibular dysfunction was diagnosed by means of caloric nystagmography. Survey questionnaire. Health status was measured using the Dizziness Handicap Index (DHI) and Health Utility Index Mark 3 (HUI3). Economic burden was estimated using participant responses to questions on disease-specific health care utilization and lost productivity. Fifteen patients with BVD, 22 with UVD, and 23 healthy controls participated. In comparison with patients with UVD and controls, patients with BVD had significantly worse DHI (P work days (P life and imposes substantial economic burdens on individuals and society. These results underscore the limits of adaptation and compensation in BVD. Furthermore, they quantify the potential benefits of prosthetic restoration of vestibular function both to these individuals and to society.

  4. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural

  5. Audiovestibular Function Deficits in Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Constantin von Kirschbaum

    2016-01-01

    Full Text Available Introduction. Vestibular schwannomas (VS are benign tumours of the vestibular nerve and can lead to hearing loss, tinnitus, vertigo, facial palsy, and brainstem compression. Audiovestibular diagnostic tests are essential for detection and treatment planning. Methods. Medline was used to perform a systematic literature review with regard to how audiovestibular test parameters correlate with symptoms, tumour size, and tumour location. Results. The auditory brainstem response can be used to diagnose retrocochlear lesions caused by VS. Since hearing loss correlates poorly with tumour size, a retrocochlear lesion is probably not the only cause for hearing loss. Also cochlear mechanisms seem to play a role. This can be revealed by abnormal otoacoustic emissions, despite normal ABR and new MRI techniques which have demonstrated endolymphatic hydrops of the inner ear. Caloric and head impulse tests show frequency specific dynamics and vestibular evoked myogenic potentials may help to identify the location of the tumour regarding the involved nerve parts. Conclusion. In order to preserve audiovestibular function in VS, it is important to stop the growth of the tumour and to avoid degenerative changes in the inner ear. A detailed neurotological workup helps to diagnose VS of all sizes and can also provide useful prognostic information.

  6. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  7. The effectiveness of exercise-based vestibular rehabilitation in adult patients with chronic dizziness: A systematic review [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Burak Kundakci

    2018-03-01

    Full Text Available Background: Dizziness is a non-specific term used by patients to describe several symptoms ranging from true vertigo, light headedness, disorientation or sense of imbalance. Vestibular rehabilitation (VR is a specific form of exercise-based therapy programme aimed at alleviating the primary and secondary problems of a vestibular pathology. The aim of this study was to investigate the effectiveness of exercise-based vestibular rehabilitation in adult patients with chronic dizziness. Methods: The following five databases were searched: the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library, MEDLINE, PubMed, the Physiotherapy Evidence Database (PEDro and Scopus (Elsevier. Two investigators independently reviewed all articles and a systematic review of literature was performed using the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The articles were included if they met the following inclusion criteria: (1 randomised controlled trial, (2 people with chronic dizziness, (3 adults aged 18 or over, (4 exercise-based VR, (5 VR exercises compared with sham or usual care, non-treatment or placebo and (6 only studies published full text in English. Results: The initial search identified 304 articles, four of which met the criteria for analysis. All studies involved some form of vestibular rehabilitation, including vestibular compensation, vestibular adaptation and substitution exercises. These exercises were compared with usual medical care (three studies or placebo eye exercise (one study. The Vertigo Symptom Scale was the most commonly used outcome measure to assess subjective perception of symptoms of dizziness (three studies. According to the PEDro scale, three studies were considered to be of high quality, and one was rated as fair.  Conclusions: This review suggests that exercise-based vestibular rehabilitation shows benefits for adult patients with chronic

  8. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  9. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in The VOR

    Directory of Open Access Journals (Sweden)

    Mina eRanjbaran

    2016-03-01

    Full Text Available The vestibulo-ocular reflex (VOR is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which can be distorted in case of peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain.In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e. different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies.

  10. Purchase decision-making is modulated by vestibular stimulation.

    Science.gov (United States)

    Preuss, Nora; Mast, Fred W; Hasler, Gregor

    2014-01-01

    Purchases are driven by consumers' product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making.

  11. Rapid adaptation of multisensory integration in vestibular pathways

    Directory of Open Access Journals (Sweden)

    Jerome eCarriot

    2015-04-01

    Full Text Available Sensing gravity is vital for our perception of spatial orientation, the control of upright posture, and generation of our every day activities. When an astronaut transitions to microgravity or returns to earth, the vestibular input arising from self-motion will not match the brain’s expectation. Our recent neurophysiological studies have provided insight into how the nervous system rapidly reorganizes when vestibular input becomes unreliable by both 1 updating its internal model of the sensory consequences of motion and 2 up-weighting more reliable extra-vestibular information. These neural strategies, in turn, are linked to improvements in sensorimotor performance (e.g., gaze and postural stability, locomotion, orienting and perception characterized by similar time courses. We suggest that furthering our understanding of the neural mechanisms that underlie sensorimotor adaptation will have important implications for optimizing training programs for astronauts before and after space exploration missions and for the design of goal-oriented rehabilitation for patients.

  12. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3

    NARCIS (Netherlands)

    Ringstedt, T; Copray, S; Walro, J; Kucera, J

    1998-01-01

    Fusimotor neurons, group Ia afferents and muscle spindles are absent in mutant mice lacking the gene for neurotrophin-3 (NT3). To partition the effect of Ia afferent or spindle absence from that of NT3 deprivation on fusimotor neuron development, we examined the fusimotor system in a mutant mouse

  13. Motor performance is impaired following vestibular stimulation in ageing mice.

    Directory of Open Access Journals (Sweden)

    Victoria W.K. Tung

    2016-02-01

    Full Text Available Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod and newly-developed behavioural tests (including balance beam and walking trajectory tests with a vestibular stimulus. In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip from the beam. Furthermore, aged mice (27-28 months that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13, and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13, and 27-28 months. Conclusion: This study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioural changes in task performance were observed.

  14. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.

    Science.gov (United States)

    Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.

  15. Gamma Knife radiosurgery for vestibular schwannoma: case report and review of the literature.

    Science.gov (United States)

    Arthurs, Benjamin J; Lamoreaux, Wayne T; Giddings, Neil A; Fairbanks, Robert K; Mackay, Alexander R; Demakas, John J; Cooke, Barton S; Lee, Christopher M

    2009-12-18

    Vestibular schwannomas, also called acoustic neuromas, are benign tumors of the vestibulocochlear nerve. Patients with these tumours almost always present with signs of hearing loss, and many also experience tinnitus, vertigo, and equilibrium problems. Following diagnosis with contrast enhanced MRI, patients may choose to observe the tumour with subsequent scans or seek active treatment in the form of microsurgery, radiosurgery, or radiotherapy. Unfortunately, definitive guidelines for treating vestibular schwannomas are lacking, because of insufficient evidence comparing the outcomes of therapeutic modalities.We present a contemporary case report, describing the finding of a vestibular schwannoma in a patient who presented with dizziness and a "clicking" sensation in the ear, but no hearing deficit. Audible clicking is a symptom that, to our knowledge, has not been associated with vestibular schwannoma in the literature. We discuss the diagnosis and patient's decision-making process, which led to treatment with Gamma Knife radiosurgery. Treatment resulted in an excellent radiographic response and complete hearing preservation. This case highlights an atypical presentation of vestibular schwannoma, associated with audible "clicks" and normal hearing. We also provide a concise review of the available literature on modern vestibular schwannoma treatment, which may be useful in guiding treatment decisions.

  16. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  17. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    Science.gov (United States)

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. Copyright © 2014 the American Physiological Society.

  18. Timing of neuron development in the rodent vestibular system

    Science.gov (United States)

    Keefe, J. R.

    1982-01-01

    The timing of cell generation (onset and duration) in the developing rat vestibular and proprioceptive systems is investigated. The results clearly indicate a defined time-span for generation of all neurons in the central nervous system nuclei studied. This cytogenetic period in both vestibular and proprioceptive sensory nuclei is determined to occur during and immediately after placentation, a potentially critical period for spaceflight exposure due to alterations in maternal physiology.

  19. [Clinical research of vestibular autorotation test for patients with vertebrobasilar insufficiency].

    Science.gov (United States)

    Chen, Tai-sheng; Wang, Wen-hong; Song, Wei; Lu, Hong-hua; Zuo, Xian-hua; Zhang, Jin-mei

    2006-10-01

    To explore the diagnostic values of vestibular autorotation test (VAT) for patients with vertebrobasilar insufficiency (VBI). VAT and videonystagmography ( VNG) were performed on 73 patients with VBI and 48 patients with peripheral vestibular lesions (contrast group). Parameters analyzed included Gain, phase and asymmetry of VAT, as well as the canal paresis (CP) of caloric test and results of optokinetic-pursuit tests in VNG. Positive result of the test could be defined if anyone of the parameters was abnormal. For VAT test, Gain was enhanced in VBI group and was reduced in contrast group. In VBI group and contrast group, Gain enhanced showed in 47 (64.4%) cases and 5 (10.4%) cases, respectively (chi2 = 31.19, P VNG test, results with optokinetic-pursuit tests were more abnormal in VBI group than that in contrast group, which showed central lesions characteristics. Forty-four cases (60.3%) in VBI group and 10 cases (20.8%) in control group showed central lesions results with optokinetic-pursuit tests and visual fixation test (chi2 = 15.89, P < 0.01). Unilateral or bilateral CP showed in 33 cases (68.6%) in control group and 51 cases (69.9%) in VBI group with caloric test. Gain of VAT is mostly enhanced in VBI group, and Gain as a main characteristic is reduced in patients with peripheral vestibular lesions. The Gain parameter is availability for assessing characteristics of vestibular lesions. Phase and asymmetry can be used to assess the vestibular function but can not indicate the characteristics of vestibular lesions.

  20. Preoperative vestibular assessment protocol of cochlear implant surgery: an analytical descriptive study.

    Science.gov (United States)

    Bittar, Roseli Saraiva Moreira; Sato, Eduardo Setsuo; Ribeiro, Douglas Jósimo Silva; Tsuji, Robinson Koji

    Cochlear implants are undeniably an effective method for the recovery of hearing function in patients with hearing loss. To describe the preoperative vestibular assessment protocol in subjects who will be submitted to cochlear implants. Our institutional protocol provides the vestibular diagnosis through six simple tests: Romberg and Fukuda tests, assessment for spontaneous nystagmus, Head Impulse Test, evaluation for Head Shaking Nystagmus and caloric test. 21 patients were evaluated with a mean age of 42.75±14.38 years. Only 28% of the sample had all normal test results. The presence of asymmetric vestibular information was documented through the caloric test in 32% of the sample and spontaneous nystagmus was an important clue for the diagnosis. Bilateral vestibular areflexia was present in four subjects, unilateral arreflexia in three and bilateral hyporeflexia in two. The Head Impulse Test was a significant indicator for the diagnosis of areflexia in the tested ear (p=0.0001). The sensitized Romberg test using a foam pad was able to diagnose severe vestibular function impairment (p=0.003). The six clinical tests were able to identify the presence or absence of vestibular function and function asymmetry between the ears of the same individual. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Regenerative therapy for vestibular disorders using human induced pluripotent stem cells (iPSCs): neural differentiation of human iPSC-derived neural stem cells after in vitro transplantation into mouse vestibular epithelia.

    Science.gov (United States)

    Taura, Akiko; Nakashima, Noriyuki; Ohnishi, Hiroe; Nakagawa, Takayuki; Funabiki, Kazuo; Ito, Juichi; Omori, Koichi

    2016-10-01

    Vestibular ganglion cells, which convey sense of motion from vestibular hair cells to the brainstem, are known to degenerate with aging and after vestibular neuritis. Thus, regeneration of vestibular ganglion cells is important to aid in the recovery of balance for associated disorders. The present study derived hNSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mouse utricle tissues. After a 7-day co-culture period, histological and electrophysiological examinations of transplanted hNSCs were performed. Injected hNSC-derived cells produced elongated axon-like structures within the utricle tissue that made contact with vestibular hair cells. A proportion of hNSC-derived cells showed spontaneous firing activities, similar to those observed in cultured mouse vestibular ganglion cells. However, hNSC-derived cells around the mouse utricle persisted as immature neurons or occasionally differentiated into putative astrocytes. Moreover, electrophysiological examination showed hNSC-derived cells around utricles did not exhibit any obvious spontaneous firing activities. Injected human neural stem cells (hNSCs) showed signs of morphological maturation including reconnection to denervated hair cells and partial physiological maturation, suggesting hNSC-derived cells possibly differentiated into neurons.

  2. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  3. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  4. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  5. Vestibular asymmetry predicts falls among elderly patients with multi-sensory dizziness.

    Science.gov (United States)

    Ekvall Hansson, Eva; Magnusson, Måns

    2013-07-22

    Dizziness is the most common symptom in elderly patients and has been identified as a risk factor for falls. While BPPV is the most common cause of dizziness among elderly, multisensory deficits is the second, with visual, vestibular and proprioceptive reduced function. Asymmetric vestibular function is overrepresented in elderly persons with hip fractures and wrist fractures and can be accessed for screening. In this prospective study with one year observation period, 55 patients (41 women, 14 men), 65 to 90 years old (median 80, interquartile range 11) with multisensory dizziness were included. Headshake test were pathologic in 24 patients, which substantially increased the risk of falls (OR 3.4). Thirteen of the 21 patients who had fallen (p = 0.03), and all 6 patients who sustained three falls or more (p = 0.04), had vestibular asymmetry. No other measure could predict the risk of falls (OR 0.55-1.71). Signs of vestibular asymmetry among elderly with multisensory dizziness could predict falls. Hence, it seems important to address fall-prevention programs to such a group of patients. Simple bedside tests of vestibular asymmetry might be a possibility to screen for one risk factor for falls among elderly.

  6. Vestibular regeneration--experimental models and clinical implications.

    Science.gov (United States)

    Albu, Silviu; Muresanu, Dafin F

    2012-09-01

    Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Rotatory and collic vestibular evoked myogenic potential testing in normal-hearing and hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-01-01

    Vertigo and imbalance are often underestimated in the pediatric population, due to limited communication abilities, atypical symptoms, and relatively quick adaptation and compensation in children. Moreover, examination and interpretation of vestibular tests are very challenging, because of difficulties with cooperation and maintenance of alertness, and because of the sometimes nauseatic reactions. Therefore, it is of great importance for each vestibular laboratory to implement a child-friendly test protocol with age-appropriate normative data. Because of the often masked appearance of vestibular problems in young children, the vestibular organ should be routinely examined in high-risk pediatric groups, such as children with a hearing impairment. Purposes of the present study were (1) to determine age-appropriate normative data for two child-friendly vestibular laboratory techniques (rotatory and collic vestibular evoked myogenic potential [cVEMP] test) in a group of children without auditory or vestibular complaints, and (2) to examine vestibular function in a group of children presenting with bilateral hearing impairment. Forty-eight typically developing children (mean age 8 years 0 months; range: 4 years 1 month to 12 years 11 months) without any auditory or vestibular complaints as well as 39 children (mean age 7 years 8 months; range: 3 years 8 months to 12 years 10 months) with a bilateral sensorineural hearing loss were included in this study. All children underwent three sinusoidal rotations (0.01, 0.05, and 0.1 Hz at 50 degrees/s) and bilateral cVEMP testing. No significant age differences were found for the rotatory test, whereas a significant increase of N1 latency and a significant threshold decrease was noticeable for the cVEMP, resulting in age-appropriate normative data. Hearing-impaired children demonstrated significantly lower gain values at the 0.01 Hz rotation and a larger percentage of absent cVEMP responses compared with normal-hearing children

  8. Vestibular vertigo and comorbid cognitive and psychiatric impairment: the 2008 National Health Interview Survey.

    Science.gov (United States)

    Bigelow, Robin T; Semenov, Yevgeniy R; du Lac, Sascha; Hoffman, Howard J; Agrawal, Yuri

    2016-04-01

    Patients with vestibular disease have been observed to have concomitant cognitive and psychiatric dysfunction. We evaluated the association between vestibular vertigo, cognitive impairment and psychiatric conditions in a nationally representative sample of US adults. We performed a cross-sectional analysis using the 2008 National Health Interview Survey (NHIS), which included a Balance and Dizziness Supplement, and questions about cognitive function and psychiatric comorbidity. We evaluated the association between vestibular vertigo, cognitive impairment (memory loss, difficulty concentrating, confusion) and psychiatric diagnoses (depression, anxiety and panic disorder). We observed an 8.4% 1-year prevalence of vestibular vertigo among US adults. In adjusted analyses, individuals with vestibular vertigo had an eightfold increased odds of 'serious difficulty concentrating or remembering' (OR 8.3, 95% CI 4.8 to 14.6) and a fourfold increased odds of activity limitation due to difficulty remembering or confusion (OR 3.9, 95% CI 3.1 to 5.0) relative to the rest of the US adults. Individuals with vestibular vertigo also had a threefold increased odds of depression (OR 3.4, 95% CI 2.9 to 3.9), anxiety (OR 3.2, 95% CI 2.8 to 3.6) and panic disorder (OR 3.4, 95% CI 2.9 to 4.0). Our findings indicate that vestibular impairment is associated with increased risk of cognitive and psychiatric comorbidity. The vestibular system is anatomically connected with widespread regions of the cerebral cortex, hippocampus and amygdala. Loss of vestibular inputs may lead to impairment of these cognitive and affective circuits. Further longitudinal research is required to determine if these associations are causal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: characterization and role in shaping postsynaptic events.

    Science.gov (United States)

    Meredith, Frances L; Benke, Tim A; Rennie, Katherine J

    2012-12-01

    Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size

  10. Perspectival Structure and Vestibular Processing

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2016-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...

  11. Impact of Diabetic Complications on Balance and Falls: Contribution of the Vestibular System

    OpenAIRE

    D'Silva, Linda J.; Lin, James; Staecker, Hinrich; Whitney, Susan L.; Kluding, Patricia M.

    2015-01-01

    Diabetes causes many complications, including retinopathy and peripheral neuropathy, which are well understood as contributing to gait instability and falls. A less understood complication of diabetes is the effect on the vestibular system. The vestibular system contributes significantly to balance in static and dynamic conditions by providing spatially orienting information. It is noteworthy that diabetes has been reported to affect vestibular function in both animal and clinical studies. Pa...

  12. Manual therapy with and without vestibular rehabilitation for cervicogenic dizziness: a systematic review

    Directory of Open Access Journals (Sweden)

    Lystad Reidar P

    2011-09-01

    Full Text Available Abstract Background Manual therapy is an intervention commonly advocated in the management of dizziness of a suspected cervical origin. Vestibular rehabilitation exercises have been shown to be effective in the treatment of unilateral peripheral vestibular disorders, and have also been suggested in the literature as an adjunct in the treatment of cervicogenic dizziness. The purpose of this systematic review is to evaluate the evidence for manual therapy, in conjunction with or without vestibular rehabilitation, in the management of cervicogenic dizziness. Methods A comprehensive search was conducted in the databases Scopus, Mantis, CINHAL and the Cochrane Library for terms related to manual therapy, vestibular rehabilitation and cervicogenic dizziness. Included studies were assessed using the Maastricht-Amsterdam criteria. Results A total of fifteen articles reporting findings from thirteen unique investigations, including five randomised controlled trials and eight prospective, non-controlled cohort studies were included in this review. The methodological quality of the included studies was generally poor to moderate. All but one study reported improvement in dizziness following either unimodal or multimodal manual therapy interventions. Some studies reported improvements in postural stability, joint positioning, range of motion, muscle tenderness, neck pain and vertebrobasilar artery blood flow velocity. Discussion Although it has been argued that manual therapy combined with vestibular rehabilitation may be superior in the treatment of cervicogenic dizziness, there are currently no observational and experimental studies demonstrating such effects. A rationale for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is presented. Conclusion There is moderate evidence to support the use of manual therapy, in particular spinal mobilisation and manipulation, for cervicogenic dizziness. The evidence

  13. Vestibular Assessment and Rehabilitation: Ten-Year Survey Trends of Audiologists' Opinions and Practice.

    Science.gov (United States)

    Nelson, M Dawn; Akin, Faith W; Riska, Kristal M; Andresen, Kimberly; Mondelli, Stephanie Stamps

    2016-02-01

    The past decade has yielded changes in the education and training of audiologists and technological advancements that have become widely available for clinical balance function testing. It is unclear if recent advancements in vestibular instrumentation or the transition to an AuD degree have affected audiologists' vestibular clinical practice or opinions. The purpose of this study was to examine predominant opinions and practices for vestibular assessment (VA) and vestibular rehabilitation (VR) over the past decade and between master's- and AuD-level audiologists. A 31-question survey was administered to audiologists via U.S. mail in 2003 (N = 7,500) and electronically in 2014 (N = 9,984) with a response rate of 12% and 10%, respectively. There was an increase in the number of audiologists providing vestibular services in the past decade. Most respondents agreed that audiologists were the most qualified professionals to conduct VA. Less than half of the surveyed audiologists felt that graduate training was adequate for VA. AuD-level audiologists were more satisfied with graduate training and felt more comfortable performing VA compared to master's-level audiologists. Few respondents agreed that audiologists were the most qualified professionals to conduct VR or that graduate training prepared them to conduct VR. The basic vestibular test battery was unchanged across surveys and included: calorics, smooth pursuit, saccades, search for spontaneous, positional, gaze and optokinetic nystagmus, Dix-Hallpike, case history, and hearing evaluation. There was a trend toward greater use of air (versus water) calorics, videonystagmography (versus electronystagmography), and additional tests of vestibular and balance function. VA is a growing specialty area in the field of audiology. Better training opportunities are needed to increase audiologists' knowledge and skills for providing vestibular services. The basic tests performed during VA have remained relatively unchanged

  14. Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology.

    Directory of Open Access Journals (Sweden)

    Jacob Brown

    Full Text Available We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets.

  15. Hearing loss in enlarged vestibular aqueduct and incomplete partition type II.

    Science.gov (United States)

    Ahadizadeh, Emily; Ascha, Mustafa; Manzoor, Nauman; Gupta, Amit; Semaan, Maroun; Megerian, Cliff; Otteson, Todd

    The purpose of this work is to identify the role of incomplete partition type II on hearing loss among patients with enlarged vestibular aqueduct (EVA). EVA is a common congenital inner ear malformation among children with hearing loss, where vestibular aqueduct morphology in this population has been shown to correlate to hearing loss. However, the impact of incomplete partition between cochlear turns on hearing loss has not been, despite meaningful implications for EVA pathophysiology. A retrospective review of radiology reports for patients who had computed tomography (CT) scans with diagnoses of hearing loss at a tertiary medical center between January 2000 and June 2016 were screened for EVA. CT scans of the internal auditory canal (IAC) for those patients with EVA were examined for evidence of incomplete partition type II (IP-II), measurements of midpoint width and operculum width a second time, and patients meeting Cincinnati criteria for EVA selected for analysis. Statistical analysis including chi-square, Wilcoxon rank-sum, and t-tests were used to identify differences in outcomes and clinical predictors, as appropriate for the distribution of the data. Linear mixed models of hearing test results for all available tests were constructed, both univariable and adjusting for vestibular aqueduct morphometric features, with ear-specific intercepts and slopes over time. There were no statistically significant differences in any hearing test results or vestibular aqueduct midpoint and operculum widths. Linear mixed models, both univariable and those adjusting for midpoint and operculum widths, did not indicate a statistically significant effect of incomplete partition type II on hearing test results. Hearing loss due to enlarged vestibular aqueduct does not appear to be affected by the presence of incomplete partition type II. Our results suggest that the pathophysiological processes underlying hearing loss in enlarged vestibular aqueduct may not be a result of

  16. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Directory of Open Access Journals (Sweden)

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  17. Gamma Knife radiosurgery for vestibular schwannoma: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Fairbanks Robert K

    2009-12-01

    Full Text Available Abstract Vestibular schwannomas, also called acoustic neuromas, are benign tumors of the vestibulocochlear nerve. Patients with these tumours almost always present with signs of hearing loss, and many also experience tinnitus, vertigo, and equilibrium problems. Following diagnosis with contrast enhanced MRI, patients may choose to observe the tumour with subsequent scans or seek active treatment in the form of microsurgery, radiosurgery, or radiotherapy. Unfortunately, definitive guidelines for treating vestibular schwannomas are lacking, because of insufficient evidence comparing the outcomes of therapeutic modalities. We present a contemporary case report, describing the finding of a vestibular schwannoma in a patient who presented with dizziness and a "clicking" sensation in the ear, but no hearing deficit. Audible clicking is a symptom that, to our knowledge, has not been associated with vestibular schwannoma in the literature. We discuss the diagnosis and patient's decision-making process, which led to treatment with Gamma Knife radiosurgery. Treatment resulted in an excellent radiographic response and complete hearing preservation. This case highlights an atypical presentation of vestibular schwannoma, associated with audible "clicks" and normal hearing. We also provide a concise review of the available literature on modern vestibular schwannoma treatment, which may be useful in guiding treatment decisions.

  18. Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy.

    Science.gov (United States)

    Pettorossi, V E; Grassi, S; Errico, P; Barmack, N H

    2001-01-01

    We investigated the orientation of quick phases (QPs) of vestibularly-induced eye movements in rabbits in response to "off-vertical" sinusoidal vestibular stimulation. We also examined the possible role of the cerebellar nodulus and ventral uvula in controlling QP spatial orientation and modification. During "off-vertical" vestibular stimulation QPs remained aligned with the earth's horizontal plane, while the slow phases (SPs) were aligned with the plane of vestibular stimulation. This suggests that QPs are coded in gravito-inertial coordinates and SPs in head coordinates. When rabbits were oscillated in the light (20 degrees peak-to-peak; 0.2 Hz) about an "off-vertical" axis for 2 h, the QPs changed their trajectory, abandoning the earth's horizontal plane to approach the plane of the stimulus. By contrast, in the absence of conjunctive optokinetic stimulation, QPs remained fixed in the earth's horizontal plane even after 2 h of "off-vertical" stimulation. The conjunctive combination of optokinetic and vestibular stimulation caused QPs to change their plane of rotation. After lesion of the nodulus-uvula the ability of rabbits to reorient QPs during conjoint vestibular-optokinetic stimulation was maintained. We conclude that the space orientation and adaptation of QPs do not require cerebellar control.

  19. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    Directory of Open Access Journals (Sweden)

    Terry D. Fife

    2018-05-01

    Full Text Available We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8 fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  20. Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography

    Science.gov (United States)

    Becker-Bense, Sandra; Buchholz, Hans-Georg; Baier, Bernhard; Schreckenberger, Mathias; Bartenstein, Peter; Zwergal, Andreas; Brandt, Thomas; Dieterich, Marianne

    2016-01-01

    The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic

  1. Evaluation of diagnostic tests of the otolith organs and their application in various vestibular pathologies

    NARCIS (Netherlands)

    Winters, S.M.

    2014-01-01

    Current vestibular testing is limited. The general function of the vestibular system on both sides of the head can be tested, and one part of the peripheral vestibular organ, the horizontal semicircular canal, can be tested unilaterally. However, recently a test for the function of the otolith

  2. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    OpenAIRE

    Feng, Bin; Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding charac...

  3. Quality of life in patients after vestibular Schwannoma surgery

    OpenAIRE

    Hajná, Barbora

    2011-01-01

    TVestibular schwannoma is a benign tumor that arises from the Schwann cells of the vestibular nerve. Unilateral hearing loss, tinnitus, facial and trigeminal dysfunction and vertigo are the most common symptoms. Surgical removal of the tumor is one of the treatment modalities of this disease. Surgical excision usually involves the complete vestibular nerve resection and there is also a risk of cochlear and facial nerve lesion. This thesis deals with changes in quality of life in patients afte...

  4. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  5. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  6. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  7. Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study.

    Science.gov (United States)

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren; Stangerup, Sven-Eric; Cayé-Thomasen, Per; Poulsen, Aslak Harbo; Olsen, Jørgen H; Johansen, Christoffer

    2011-08-15

    Vestibular schwannomas grow in the region within the brain where most of the energy by radiofrequency electromagnetic fields from using mobile phones is absorbed. The authors used 2 Danish nationwide cohort studies, one a study of all adult Danes subscribing for a mobile phone in 1995 or earlier and one on sociodemographic factors and cancer risk, and followed subjects included in both cohorts for occurrence of vestibular schwannoma up to 2006 inclusively. In this study including 2.9 million subjects, a long-term mobile phone subscription of ≥11 years was not related to an increased vestibular schwannoma risk in men (relative risk estimate = 0.87, 95% confidence interval: 0.52, 1.46), and no vestibular schwannoma cases among long-term subscribers occurred in women versus 1.6 expected. Vestibular schwannomas did not occur more often on the right side of the head, although the majority of Danes reported holding their mobile phone to the right ear. Vestibular schwannomas in long-term male subscribers were not of larger size than expected. Overall, no evidence was found that mobile phone use is related to the risk of vestibular schwannoma. Because of the usually slow growth of vestibular schwannoma and possible diagnostic delay, further surveillance is indicated.

  8. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  9. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Directory of Open Access Journals (Sweden)

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  10. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    Science.gov (United States)

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  11. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    Science.gov (United States)

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  12. Visuo-Vestibular Interactions

    Science.gov (United States)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  13. Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns

    Science.gov (United States)

    Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.

    2016-01-01

    In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997

  14. Framing susceptibility in a risky choice game is altered by galvanic vestibular stimulation.

    Science.gov (United States)

    Preuss, Nora; Kalla, Roger; Müri, Rene; Mast, Fred W

    2017-06-07

    Recent research provides evidence that galvanic vestibular stimulation (GVS) has a modulating effect on somatosensory perception and spatial cognition. However, other vestibular stimulation techniques have induced changes in affective control and decision making. The aim of this study was to investigate the effect of GVS on framing susceptibility in a risky-choice game. The participants were to decide between a safe and a risky option. The safe option was framed either positively or negatively. During the task, the participants were exposed to either left anodal/right cathodal GVS, right anodal/left cathodal GVS, or sham stimulation (control condition). While left anodal/right cathodal GVS activated more right-hemispheric vestibular brain areas, right anodal/left cathodal GVS resulted in more bilateral activation. We observed increased framing susceptibility during left anodal/right cathodal GVS, but no change in framing susceptibility during right anodal/left cathodal GVS. We propose that GVS results in increased reliance on the affect heuristic by means of activation of cortical and subcortical vestibular-emotional brain structures and that this effect is modulated by the lateralization of the vestibular cortex.

  15. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  16. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  17. Vestibular syndrome in giant anteater (Myrmecophaga tridactyla / Síndrome vestibular em tamanduá-bandeira (Myrmecophaga tridactyla

    Directory of Open Access Journals (Sweden)

    Leandro Luís Martins

    2009-10-01

    Full Text Available The vestibular syndrome is a well-defined disease in domestic animals but little known in wild ones. Here this affection of central origin is described in a caquetic adult female giant anteater (Myrmecophaga tridactyla, which presented circling behavior, extensor hypermetry in thoracic limbs, head tilt and spontaneous horizontal and positional vertical nystagmus. The animal received tube feeding twice daily and dexamethasone was given subcutaneous once daily at the dosis of 6mg/kg, with a progressive improvement of health after the second day of treatment. Dose was reduced to a half from fourth to sixth day, and to a quarter on seventh day, when the animal died. On the fifth day, however, circle deambulation had ceased and hypermetry, head tilt and nystagmus were reduced. Treating vestibular syndrome is a challenge in wild animal practice. Treatment is affected by hyporexia and anorexia, making difficult the animals´ health improvement, which generally present muscle atrophy.A síndrome vestibular é uma afecção bem descrita em animais domésticos e pouco relatada em selvagens. Este relato descreveu essa afecção de origem central em uma fêmea adulta de tamanduá-bandeira (Myrmecophaga tridactyla, caquética, apresentando deambulação em círculos, hipermetria extensora nos membros torácicos, desvio da cabeça e nistagmo espontâneo horizontal e posicional vertical. O animal foi alimentado por sonda oral, 2x/dia e instituiu-se tratamento com dexametasona subcutânea na dose 6mg/kg, 1x/dia, com melhora progressiva a partir da segunda administração. A dose foi diminuída pela metade do quarto ao sexto dia, e reduzida novamente à metade no sétimo dia, quando ocorreu óbito. Entretanto, no quinto dia de tratamento, a deambulação em círculos foi interrompida, e a hipermetria, desvio da cabeça e nistagmo diminuídos. O tratamento de animais selvagens com síndrome vestibular é um desafio e é prejudicado pela hiporexia ou anorexia

  18. Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.

    Science.gov (United States)

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L

    2017-05-01

    Previous psychophysical research has examined how younger adults and non-human primates integrate visual and vestibular cues to perceive self-motion. However, there is much to be learned about how multisensory self-motion perception changes with age, and how these changes affect performance on everyday tasks involving self-motion. Evidence suggests that older adults display heightened multisensory integration compared with younger adults; however, few previous studies have examined this for visual-vestibular integration. To explore age differences in the way that visual and vestibular cues contribute to self-motion perception, we had younger and older participants complete a basic driving task containing visual and vestibular cues. We compared their performance against a previously established control group that experienced visual cues alone. Performance measures included speed, speed variability, and lateral position. Vestibular inputs resulted in more precise speed control among older adults, but not younger adults, when traversing curves. Older adults demonstrated more variability in lateral position when vestibular inputs were available versus when they were absent. These observations align with previous evidence of age-related differences in multisensory integration and demonstrate that they may extend to visual-vestibular integration. These findings may have implications for vehicle and simulator design when considering older users.

  19. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat.

    Science.gov (United States)

    Deng, Jiao; Zhang, Fu-Xing; Pang, You-Wang; Li, Jin-Lian; Li, Yun-Qing

    2006-07-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1-3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidin-biotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  20. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat

    Institute of Scientific and Technical Information of China (English)

    Jiao DENG; Fu-Xing ZHANG; You-Wang PANG; Jin-Lian LI; Yun-Qing LI

    2006-01-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1~3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidinbiotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  1. Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study

    DEFF Research Database (Denmark)

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren

    2011-01-01

    Vestibular schwannomas grow in the region within the brain where most of the energy by radiofrequency electromagnetic fields from using mobile phones is absorbed. The authors used 2 Danish nationwide cohort studies, one a study of all adult Danes subscribing for a mobile phone in 1995 or earlier...... and one on sociodemographic factors and cancer risk, and followed subjects included in both cohorts for occurrence of vestibular schwannoma up to 2006 inclusively. In this study including 2.9 million subjects, a long-term mobile phone subscription of =11 years was not related to an increased vestibular...... reported holding their mobile phone to the right ear. Vestibular schwannomas in long-term male subscribers were not of larger size than expected. Overall, no evidence was found that mobile phone use is related to the risk of vestibular schwannoma. Because of the usually slow growth of vestibular schwannoma...

  2. Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study

    DEFF Research Database (Denmark)

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren

    2011-01-01

    Vestibular schwannomas grow in the region within the brain where most of the energy by radiofrequency electromagnetic fields from using mobile phones is absorbed. The authors used 2 Danish nationwide cohort studies, one a study of all adult Danes subscribing for a mobile phone in 1995 or earlier...... and one on sociodemographic factors and cancer risk, and followed subjects included in both cohorts for occurrence of vestibular schwannoma up to 2006 inclusively. In this study including 2.9 million subjects, a long-term mobile phone subscription of ≥11 years was not related to an increased vestibular...... reported holding their mobile phone to the right ear. Vestibular schwannomas in long-term male subscribers were not of larger size than expected. Overall, no evidence was found that mobile phone use is related to the risk of vestibular schwannoma. Because of the usually slow growth of vestibular schwannoma...

  3. Evidence of the Primary Afferent Tracts Undergoing Neurodegeneration in Horses With Equine Degenerative Myeloencephalopathy Based on Calretinin Immunohistochemical Localization.

    Science.gov (United States)

    Finno, C J; Valberg, S J; Shivers, J; D'Almeida, E; Armién, A G

    2016-01-01

    Equine degenerative myeloencephalopathy (EDM) is characterized by a symmetric general proprioceptive ataxia in young horses, and is likely underdiagnosed for 2 reasons: first, clinical signs overlap those of cervical vertebral compressive myelopathy; second, histologic lesions--including axonal spheroids in specific tracts of the somatosensory and motor systems--may be subtle. The purpose of this study was (1) to utilize immunohistochemical (IHC) markers to trace axons in the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts in healthy horses and (2) to determine the IHC staining characteristics of the neurons and degenerated axons along the somatosensory tracts in EDM-affected horses. Examination of brain, spinal cord, and nerves was performed on 2 age-matched control horses, 3 EDM-affected horses, and 2 age-matched disease-control horses via IHC for calbindin, vesicular glutamate transporter 2, parvalbumin, calretinin, glutamic acid decarboxylase, and glial fibrillary acidic protein. Primary afferent axons of the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts were successfully traced with calretinin. Calretinin-positive cell bodies were identified in a subset of neurons in the dorsal root ganglia, suggesting that calretinin IHC could be used to trace axonal projections from these cell bodies. Calretinin-immunoreactive spheroids were present in EDM-affected horses within the nuclei cuneatus medialis, cuneatus lateralis, and thoracicus. Neurons within those nuclei were calretinin negative. Cell bodies of degenerated axons in EDM-affected horses are likely located in the dorsal root ganglia. These findings support the role of sensory axonal degeneration in the pathogenesis of EDM and provide a method to highlight tracts with axonal spheroids to aid in the diagnosis of this neurodegenerative disease. © The Author(s) 2015.

  4. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  5. Afferent Loop Syndrome after Roux-en-Y Total Gastrectomy Caused by Volvulus of the Roux-Limb

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2016-01-01

    Full Text Available Afferent loop syndrome is a rare complication of gastric surgery. An obstruction of the afferent limb can present in various ways. A 73-year-old man presented with one day of persistent abdominal pain, gradually radiating to the back. He had a history of total gastrectomy with a Roux-en-Y reconstruction. Abdominal computed tomography scan revealed dilation of the duodenum and small intestine in the left upper quadrant. Exploratory laparotomy showed volvulus of the biliopancreatic limb that caused afferent loop syndrome. In this patient, the 50 cm long limb was the cause of volvulus. It is important to fashion a Roux-limb of appropriate length to prevent this complication.

  6. The modulation of visceral functions by somatic afferent activity.

    Science.gov (United States)

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  7. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  8. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions.

    Science.gov (United States)

    Zhou, Guangwei; Brodsky, Jacob R

    2015-06-01

    To conduct objective assessment of children with balance and vestibular complaints following sports-related concussions and identify the underlying deficits by analyzing laboratory test outcomes. Case series with chart review. Pediatric tertiary care facility. Medical records were reviewed of 42 pediatric patients with balance and/or vestibular complaints following sports-related concussions who underwent comprehensive laboratory testing on their balance and vestibular function. Patients' characteristics were summarized and results analyzed. More than 90% of the children with protracted dizziness or imbalance following sports-related concussion had at least 1 abnormal finding from the comprehensive balance and vestibular evaluation. The most frequent deficit was found in dynamic visual acuity test, followed by Sensory Organization Test and rotational test. Patient's balance problem associated with concussion seemed to be primarily instigated by vestibular dysfunction. Furthermore, semicircular canal dysfunction was involved more often than dysfunction of otolith organs. Yet, sports-related concussion. Vestibular impairment is common among children with protracted dizziness or imbalance following sports-related concussion. Our study demonstrated that proper and thorough evaluation is imperative to identify these underlying deficits and laboratory tests were helpful in the diagnosis and recommendation of following rehabilitations. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  9. Avaliação vestibular por videonistagmografia de portadores de deficiência crônica de zinco por síndrome do intestino curto Vestibular evaluation using videonystagmography of chronic zinc deficient patients due to short bowell syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo Duarte Paiva Ferreira

    2009-04-01

    Full Text Available A presença do elemento químico zinco na via auditiva e a sua provável participação na gênese de alguns tipos de disacusia estão bem documentadas, porém não há estudos funcionais que mostrem os impacto da deficiência sistêmica de zinco no sistema vestibular, nem estudos anatômicos descritivos comprovando a existência do íon nas estruturas da via vestibular. OBJETIVO: Este estudo foi realizado com o objetivo de relacionar a alteração na homeostase do zinco com anormalidades do funcionamento da via vestibular. MATERIAL E MÉTODOS: Este é um estudo de casos, retrospectivo, clínico, onde nove indivíduos portadores de deficiência crônica de zinco, entre outros distúrbios nutricionais, consequentes à síndrome de má absorção, foram submetidos à avaliação vestibular. Os resultados deste grupo foram comparados com os resultados de um grupo considerado normal do ponto de vista nutricional (grupo controle. RESULTADOS: Todos os parâmetros da análise vestibular do grupo experimental mostraram-se alterados em comparação com o grupo controle. CONCLUSÃO: A comparação entre os grupos mostrou diferenças significativas em diversos parâmetros da análise vestibular e chamou a atenção para uma possível participação das alterações disabsortivas na origem das desordens vestibulares.The presence of zinc in the auditory pathways and its probable participation in tinnitus and hearing loss are known facts, although there are no clinical trials and experimental studies showing the impact of hypozincemia in the vestibular system and zinc existence in the vestibular pathway, respectively. AIM: This study is an attempt to correlate hypozincemia and abnormal vestibular function. METHODS: This is a clinical retrospective case study where nine patients suffering of chronic zinc deficiency had their serum zinc determined and were submitted to videonystagmography. Results were compared to a normal (control group. RESULTS: All

  10. Current practices in vestibular schwannoma management: a survey of American and Canadian neurosurgeons.

    Science.gov (United States)

    Fusco, Matthew R; Fisher, Winfield S; McGrew, Benjamin M; Walters, Beverly C

    2014-12-01

    Comprehensive therapy for vestibular schwannomas has changed dramatically over the past fifty years. Previously, neurosurgeons were most likely to treat these tumors via an independent surgical approach. Currently, many neurosurgeons treat vestibular schwannomas employing an interdisciplinary team approach with neuro-otologists and radiation oncologists. This survey aims to determine the current treatment paradigm for vestibular schwannomas among American and Canadian neurosurgeons, with particular attention to the utilization of a team approach to the surgical resection of these lesions. A seventeen part survey questionnaire was sent by electronic mail to residency trained members of the American Association of Neurological Surgeons currently practicing in Canada or the United States. Questions were divided into groups regarding physician background, overall practice history, recent practice history, opinions on treatment paradigms, and experience with an interdisciplinary team approach. Seven hundred and six responses were received. The vast majority of neurosurgeons surgically resect vestibular schwannomas as part of an interdisciplinary team (85.7%). Regional variations were observed in the use of an interdisciplinary team: 52.3% of responding neurosurgeons who surgically treat vestibular schwannomas without neuro-otologists currently practice in the South (no other region represented more than 15.4% of this group, p=0.02). Surgeons who have treated >50 vestibular schwannomas show a trend towards more frequent utilization of an interdisciplinary approach than less experienced surgeons, but this did not reach statistical significance. The majority of neurosurgeons in the United States and Canada surgically resect vestibular schwannomas via an interdisciplinary approach with the participation of a neuro-otologist. Neurosurgeons in the South appear more likely to surgically treat these tumors alone than neurosurgeons in other regions of the U.S. and Canada

  11. Presbyequilibrium in the oldest old, a combination of vestibular, oculomotor and postural deficits.

    Science.gov (United States)

    Tuunainen, Eeva; Poe, Dennis; Jäntti, Pirkko; Varpa, Kirsi; Rasku, Jyrki; Toppila, Esko; Pyykkö, Ilmari

    2011-01-01

    Dizziness, impaired balance and fear of falling are common complaints in the elderly. We evaluated the association of vestibular symptoms with vestibular findings in the elderly by posturography and video-oculography (VOG). We studied 38 oldest old subjects (≥ 85 yrs, mean age 89) living in a residential home. Vestibular symptoms were taken with a structured questionnaire, the Mini Mental State Examination (MMSE) was scored and any falls were recorded over a period of 12 months. Posturography was measured with a force platform and eye movements were measured by video-oculography. In the majority of the elderly, vestibular abnormalities were found, such as reduced vestibulo-ocular reflex gain 6/38, spontaneous nystagmus 5/38, gaze deviation nystagmus 5/38, head shaking nystagmus 9/38, pathologic head thrust test 10/38, and positional nystagmus 17/38. Posturography demonstrated two major findings: the body support area was limited and the use of vision for postural control was reduced. In principal component analysis of the vertigo, four major factors described elements of failure in the vestibular and other systems important to maintenance of balance: episodic vertigo, postural instability, multisystem failure (frail) and presyncopal imbalance. These four factors were associated in different degrees to vestibular abnormalities and falls. During the follow-up period, in 19 elderly (19/38), one or more falls were recorded. Progressive loss of balance in the aged, or "presbyequilibrium," is a complex and incompletely understood process involving vestibular, oculomotor, visual acuity, proprioception, motor, organ system and metabolic weaknesses and disorders. These factors provide a potential basis for streamlining diagnostic evaluations and aiding in planning for effective therapy. In oldest old, these problems are magnified, increasing the need for additional expertise in their care, which may be met by training specialized healthcare staff.

  12. Predictors of vertigo in patients with untreated vestibular schwannoma.

    Science.gov (United States)

    Andersen, Jan Fredrik; Nilsen, Kathrin Skorpa; Vassbotn, Flemming Slinning; Møller, Per; Myrseth, Erling; Lund-Johansen, Morten; Goplen, Frederik Kragerud

    2015-04-01

    Previous studies have shown that vertigo is the most powerful negative predictor of quality of life in patients with vestibular schwannomas, but the variability in vertigo symptom severity is still poorly understood. We wanted to find out whether vertigo could be related to objective parameters such as tumor size, location, vestibular nerve function, hearing, and postural stability in patients with untreated vestibular schwannomas. Baseline data from prospective cohort study. Tertiary referral center. Four hundred thirty-four consecutive patients with unilateral VS diagnosed on MRI. Mean age 56 years (range 16-84 yr). Fifty-three percent women. Diagnostic, with a medical history, otolaryngological examination, pure-tone and speech audiometry, MRI, posturography, and videonystagmography with bithermal caloric tests. Dizziness measured on a 100-mm visual analog scale (VAS). Secondary outcome measures were canal paresis and postural imbalance (static and dynamic posturography). Three hundred three patients (70%) completed the VAS. Severe dizziness, defined as VAS 75 or greater, was reported by 9% of the patients. Larger tumors were associated with higher risk of postural instability and canal paresis. Moderate to severe dizziness was associated with postural imbalance and canal paresis, and possibly with small to medium-sized tumors. Postural instability was related to tumor size and canal paresis when measured by dynamic, but not with static, posturography. A minority of VS patients experience severe vestibular symptoms related to canal paresis and postural instability. A curvilinear relationship is hypothesized between tumor size and dizziness.

  13. Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko.

    Science.gov (United States)

    Song, Jing; Wang, Wenbo; Carr, Catherine E; Dai, Zhendong; Tang, Yezhong

    2013-02-01

    Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Directory of Open Access Journals (Sweden)

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  15. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Science.gov (United States)

    Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T

    2014-01-01

    Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.

  16. Variation in the Use of Vestibular Diagnostic Testing for Patients Presenting to Otolaryngology Clinics with Dizziness

    Science.gov (United States)

    Piker, Erin G.; Schulz, Kris; Parham, Kourosh; Vambutas, Andrea; Witsell, David; Tucci, Debara; Shin, Jennifer J.; Pynnonen, Melissa A.; Nguyen-Huynh, Anh; Crowson, Matthew; Ryan, Sheila E.; Langman, Alan; Roberts, Rhonda; Wolfley, Anne; Lee, Walter T.

    2016-01-01

    Objective We used a national otolaryngology practice–based research network database to characterize the utilization of vestibular function testing in patients diagnosed with dizziness and/or a vestibular disorder. Study Design Database review. Setting The Creating Healthcare Excellence through Education and Research (CHEER) practice-based research network of academic and community providers Subjects and Methods Dizzy patients in the CHEER retrospective database were identified through ICD-9 codes; vestibular testing procedures were identified with CPT codes. Demographics and procedures per patient were tabulated. Analysis included number and type of vestibular tests ordered, stratified by individual clinic and by practice type (community vs academic). Chi-square tests were performed to assess if the percentage of patients receiving testing was statistically significant across clinics. A logistic regression model was used to examine the association between receipt of testing and being tested on initial visit. Results A total of 12,468 patients diagnosed with dizziness and/or a vestibular disorder were identified from 7 community and 5 academic CHEER network clinics across the country. One-fifth of these patients had at least 1 vestibular function test. The percentage of patients tested varied widely by site, from 3% to 72%; academic clinics were twice as likely to test. Initial visit vestibular testing also varied, from 0% to 96% of dizzy patients, and was 15 times more likely in academic clinics. Conclusion There is significant variation in use and timing of vestibular diagnostic testing across otolaryngology clinics. The CHEER network research database does not contain outcome data. These results illustrate the critical need for research that examines outcomes as related to vestibular testing. PMID:27371625

  17. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Symmetries of a generic utricular projection: neural connectivity and the distribution of utricular information.

    Science.gov (United States)

    Chartrand, Thomas; McCollum, Gin; Hanes, Douglas A; Boyle, Richard D

    2016-02-01

    Sensory contribution to perception and action depends on both sensory receptors and the organization of pathways (or projections) reaching the central nervous system. Unlike the semicircular canals that are divided into three discrete sensitivity directions, the utricle has a relatively complicated anatomical structure, including sensitivity directions over essentially 360° of a curved, two-dimensional disk. The utricle is not flat, and we do not assume it to be. Directional sensitivity of individual utricular afferents decreases in a cosine-like fashion from peak excitation for movement in one direction to a null or near null response for a movement in an orthogonal direction. Directional sensitivity varies slowly between neighboring cells except within the striolar region that separates the medial from the lateral zone, where the directional selectivity abruptly reverses along the reversal line. Utricular primary afferent pathways reach the vestibular nuclei and cerebellum and, in many cases, converge on target cells with semicircular canal primary afferents and afference from other sources. Mathematically, some canal pathways are known to be characterized by symmetry groups related to physical space. These groups structure rotational information and movement. They divide the target neural center into distinct populations according to the innervation patterns they receive. Like canal pathways, utricular pathways combine symmetries from the utricle with those from target neural centers. This study presents a generic set of transformations drawn from the known structure of the utricle and therefore likely to be found in utricular pathways, but not exhaustive of utricular pathway symmetries. This generic set of transformations forms a 32-element group that is a semi-direct product of two simple abelian groups. Subgroups of the group include order-four elements corresponding to discrete rotations. Evaluation of subgroups allows us to functionally identify the

  19. Vestibular-ocular accommodation reflex in man

    Science.gov (United States)

    Clark, B.; Randle, R. J.; Stewart, J. D.

    1975-01-01

    Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.

  20. Vestibular (dys)function in children with sensorineural hearing loss: a systematic review.

    Science.gov (United States)

    Verbecque, Evi; Marijnissen, Tessa; De Belder, Niels; Van Rompaey, Vincent; Boudewyns, An; Van de Heyning, Paul; Vereeck, Luc; Hallemans, Ann

    2017-06-01

    The objective of this study is to provide an overview of the prevalence of vestibular dysfunction in children with SNHL classified according to the applied test and its corresponding sensitivity and specificity. Data were gathered using a systematic search query including reference screening. Pubmed, Web of Science and Embase were searched. Strategy and reporting of this review was based on the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Methodological quality was assessed with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. All studies, regardless the applied vestibular test, showed that vestibular function differs significantly between children with hearing loss and normal hearing (p 30).

  1. Effects of chronic infusion of a GABAA receptor agonist or antagonist into the vestibular nuclear complex on vestibular compensation in the guinea pig.

    Science.gov (United States)

    Gliddon, Catherine M; Darlington, Cynthia L; Smith, Paul F

    2005-06-01

    The aim of this study was to determine the effects of chronic infusion of a GABA(A) receptor agonist/antagonist into the ipsilateral or contralateral vestibular nuclear complex (VNC) on vestibular compensation, the process of behavioral recovery that occurs after unilateral vestibular deafferentation (UVD). This was achieved by a mini-osmotic pump that infused, over 30 h, muscimol or gabazine into the ipsilateral or contralateral VNC. Spontaneous nystagmus (SN), yaw head tilt (YHT), and roll head tilt (RHT) were measured. Infusion of muscimol or gabazine into either the ipsilateral or the contralateral VNC had little effect on SN compensation. In contrast, infusion of muscimol (250, 500, and 750 ng) into the contralateral VNC and gabazine (31.25, 62.5, and 125 ng) into the ipsilateral VNC significantly affected YHT and RHT (p 0.05). Interestingly, the effects of muscimol and gabazine on YHT and RHT were consistent throughout the first 30 h post-UVD. Infusion of muscimol (62.5, 125, and 250 ng) into the ipsilateral VNC and gabazine (125, 375, and 750 ng) into the contralateral VNC had little effect on YHT and RHT or their rate of compensation. These results suggest that the ipsilateral gabazine and contralateral muscimol infusions are modifying the expression of the symptoms without altering the mechanism of compensation. Furthermore, the neurochemical mechanism responsible for vestibular compensation can cope with the both the GABA(A) receptor-mediated and the UVD-induced decrease in resting activity.

  2. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  3. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  4. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  5. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Directory of Open Access Journals (Sweden)

    Andreas Sprenger

    2017-09-01

    Full Text Available Patients with bilateral vestibular failure (BVF suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC, visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs. Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly

  6. Measurement of the relative afferent pupillary defect in retinal detachment.

    Science.gov (United States)

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  7. Natural history of vestibular schwannomas and hearing loss in NF2 patients.

    Science.gov (United States)

    Peyre, M; Bernardeschi, D; Sterkers, O; Kalamarides, M

    2015-07-13

    Bilateral vestibular schwannomas are the hallmark of neurofibromatosis 2 (NF2), occurring in 95% of patients. These tumors are associated with significant morbidity due to hearing loss, tinnitus, imbalance and facial weakness. As radiosurgery and chemotherapy have been recently introduced in the treatment armamentarium in addition to surgery, a thorough evaluation of vestibular schwannoma natural history is mandatory to determine the role and timing of each treatment modality. An exhaustive review of the literature was performed using the PubMed database concerning the natural history of tumor growth and hearing loss in NF2 patients with vestibular schwannomas. Although some aspects of vestibular schwannoma natural history remain uncertain (pattern of tumor growth, mean tumor growth rate), factors influencing growth such as age at presentation and paracrine factors are well established. Studies focusing on the natural history of hearing have highlighted different patterns of hearing loss and the possible role of intralabyrinthine tumors. The polyclonality of vestibular schwannomas in NF2 was recently unveiled, giving a new perspective to their growth mechanisms. An uniform evaluation of tumor growth using volumetric evaluation and hearing with standard classifications will ensure the use of common endpoints and should improve the quality of clinical trials as well as foster comparison among studies while ensuring more consistency in decision-making. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Postural Effects of Vestibular Manipulation Depend on the Physical Activity Status.

    Directory of Open Access Journals (Sweden)

    Julien Maitre

    Full Text Available The purpose of this study was to compare the effects of galvanic vestibular stimulation (GVS on postural control for participants of different physical activity status (i.e. active and non-active. Two groups of participants were recruited: one group of participants who regularly practised sports activities (active group, n = 17, and one group of participants who did not practise physical and/or sports activities (non-active group, n = 17. They were compared in a reference condition (i.e bipedal stance with eyes open and four vestibular manipulation condition (i.e. GVS at 0.5 mA and 3 mA, in accordance with two designs lasting 20 seconds. The centre of foot pressure displacement velocities were compared between the two groups. The main results indicate that the regular practice of sports activities counteracts postural control disruption caused by GVS. The active group demonstrated better postural control than the non-active group when subjected to higher vestibular manipulation. The active group may have developed their ability to reduce the influence of inaccurate vestibular signals. The active participants could identify the relevant sensory input, thought a better central integration, which enables them to switch faster between sensory inputs.

  9. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    Science.gov (United States)

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  10. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  11. Potencial evocado miogênico vestibular: novas perspectivas diagnósticas em esclerose múltipla Vestibular evoked myogenic potential: new perspectives in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Renata Chade Aidar

    2005-02-01

    Full Text Available OBJETIVO: Avaliar o potencial evocado miogênico vestibular em pacientes com esclerose múltipla, como método de auxílio diagnóstico. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: Estudamos um grupo-controle (n=15 de indivíduos normais e um grupo experimental (n=15 que foi composto por pacientes com diagnóstico de esclerose múltipla. Ambos os grupos foram submetidos ao exame de potencial evocado miogênico vestibular. Em cada orelha foram aplicados 200 estímulos na forma de cliques e repetidos por 2 ciclos consecutivos com objetivo de avaliar a reprodutibilidade. Os eletrodos ativos de superfície foram colocados no S‡superior do músculo esternocleidomastoideo e de referência na borda anterior da clavícula ipsilateral. Os indivíduos foram instruídos à rotação lateral da cabeça em direção contralateral à orelha estimulada. RESULTADOS: Obtivemos no potencial evocado miogênico vestibular respostas rápidas, reprodutíveis e bifásicas. A latência das ondas P1 e N2 e amplitude P1-N2 apresentaram um maior valor no grupo experimental quando comparada com o grupo-controle. Não observamos diferença significativa nas respostas das ondas P1 e N2 e amplitude P1-N2 quando comparamos as orelhas. Verificamos que os indivíduos com esclerose múltipla apresentaram ausência de respostas em 30% dos casos. Ao avaliarmos os indivíduos do grupo experimental com sintomas otoneurológicos e compararmos com os pacientes sem sintomas, observamos que a latência da onda P1, N2 e amplitude P1-N2 estiveram maiores nos casos sintomáticos. CONCLUSÃO: O potencial evocado miogênico vestibular foi considerado um bom método de auxílio diagnóstico da via vestíbulo-espinal nos casos de esclerose múltipla.AIM: To evaluate vestibular evoked myogenic potentials in patients with multiple sclerosis as method of diagnostic support. STUDY DESIGN: Case-control. MATERIAL AND METHOD: We studied a group of normal individuals (n=15 and a Studied group

  12. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  13. The Skull Vibration-Induced Nystagmus Test of Vestibular Function—A Review

    Science.gov (United States)

    Dumas, Georges; Curthoys, Ian S.; Lion, Alexis; Perrin, Philippe; Schmerber, Sébastien

    2017-01-01

    A 100-Hz bone-conducted vibration applied to either mastoid induces instantaneously a predominantly horizontal nystagmus, with quick phases beating away from the affected side in patients with a unilateral vestibular loss (UVL). The same stimulus in healthy asymptomatic subjects has little or no effect. This is skull vibration-induced nystagmus (SVIN), and it is a useful, simple, non-invasive, robust indicator of asymmetry of vestibular function and the side of the vestibular loss. The nystagmus is precisely stimulus-locked: it starts with stimulation onset and stops at stimulation offset, with no post-stimulation reversal. It is sustained during long stimulus durations; it is reproducible; it beats in the same direction irrespective of which mastoid is stimulated; it shows little or no habituation; and it is permanent—even well-compensated UVL patients show SVIN. A SVIN is observed under Frenzel goggles or videonystagmoscopy and recorded under videonystagmography in absence of visual-fixation and strong sedative drugs. Stimulus frequency, location, and intensity modify the results, and a large variability in skull morphology between people can modify the stimulus. SVIN to 100 Hz mastoid stimulation is a robust response. We describe the optimum method of stimulation on the basis of the literature data and testing more than 18,500 patients. Recent neural evidence clarifies which vestibular receptors are stimulated, how they cause the nystagmus, and why the same vibration in patients with semicircular canal dehiscence (SCD) causes a nystagmus beating toward the affected ear. This review focuses not only on the optimal parameters of the stimulus and response of UVL and SCD patients but also shows how other vestibular dysfunctions affect SVIN. We conclude that the presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears, but in order to identify which is the affected ear, other information and careful clinical judgment are

  14. The influence of caffeine on calorics and cervical vestibular evoked myogenic potentials (cVEMPs).

    Science.gov (United States)

    McNerney, Kathleen; Coad, Mary Lou; Burkard, Robert

    2014-03-01

    Prior to undergoing vestibular function testing, it is not uncommon for clinicians to request that patients abstain from caffeine 24 hr prior to the administration of the tests. However, there is little evidence that caffeine affects vestibular function. To evaluate whether the results from two tests commonly used in a clinical setting to assess vestibular function (i.e., calorics and the cervical vestibular evoked myogenic potential [cVEMP]) are affected by caffeine. Subjects were tested with and without consuming a moderate amount of caffeine prior to undergoing calorics and cVEMPs. Thirty young healthy controls (mean = 23.28 yr; females = 21). Subjects were excluded if they reported any history of vestibular/balance impairment. The Variotherm Plus Caloric Irrigator was used to administer the water, while the I-Portal VNG software was used to collect and analyze subjects' eye movements. The TECA Evoked Potential System was used for the cVEMP stimulus presentation as well as for the data collection. During cVEMP collection, subjects were asked to monitor their sternocleidomastoid muscle contraction with a Delsys EMG monitor. IBM SPSS Statistics 20 was used to statistically analyze the results via paired t-tests. Analysis of the data revealed that ingestion of caffeine did not significantly influence the results of either test of vestibular function. The results revealed that a moderate amount of caffeine does not have a clinically significant effect on the results from caloric and cVEMP tests in young healthy adults. Future research is necessary to determine whether similar results would be obtained from individuals with a vestibular impairment, as well as older adults. American Academy of Audiology.

  15. Posterior insular cortex - a site of vestibular-somatosensory interaction?

    Science.gov (United States)

    Baier, Bernhard; Zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-09-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact.

  16. Afferent projections to the pontine micturition center in the cat

    NARCIS (Netherlands)

    Kuipers, R; Mouton, LJ; Holstege, G; Kuiper, Rutger

    2006-01-01

    The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with

  17. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions and memory-based smooth-pursuit

    Directory of Open Access Journals (Sweden)

    Kikuro eFukushima

    2011-12-01

    Full Text Available Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF and the supplementary eye fields (SEF. Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in cancelling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory

  18. Relationships Between Vestibular Measures as Potential Predictors for Spaceflight Sensorimotor Adaptation

    Science.gov (United States)

    Clark, T. K.; Peters, B.; Gadd, N. E.; De Dios, Y. E.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Introduction: During space exploration missions astronauts are exposed to a series of novel sensorimotor environments, requiring sensorimotor adaptation. Until adaptation is complete, sensorimotor decrements occur, affecting critical tasks such as piloted landing or docking. Of particularly interest are locomotion tasks such as emergency vehicle egress or extra-vehicular activity. While nearly all astronauts eventually adapt sufficiently, it appears there are substantial individual differences in how quickly and effectively this adaptation occurs. These individual differences in capacity for sensorimotor adaptation are poorly understood. Broadly, we aim to identify measures that may serve as pre-flight predictors of and individual's adaptation capacity to spaceflight-induced sensorimotor changes. As a first step, since spaceflight is thought to involve a reinterpretation of graviceptor cues (e.g. otolith cues from the vestibular system) we investigate the relationships between various measures of vestibular function in humans. Methods: In a set of 15 ground-based control subjects, we quantified individual differences in vestibular function using three measures: 1) ocular vestibular evoked myogenic potential (oVEMP), 2) computerized dynamic posturography and 3) vestibular perceptual thresholds. oVEMP responses are elicited using a mechanical stimuli approach. Computerized dynamic posturography was used to quantify Sensory Organization Tests (SOTs), including SOT5M which involved performing pitching head movements while balancing on a sway-reference support surface with eyes closed. We implemented a vestibular perceptual threshold task using the tilt capabilities of the Tilt-Translation Sled (TTS) at JSC. On each trial, the subject was passively roll-tilted left ear down or right ear down in the dark and verbally provided a forced-choice response regarding which direction they felt tilted. The motion profile was a single-cycle sinusoid of angular acceleration with a

  19. Vestibular rehabilitation using video gaming in adults with dizziness: a pilot study.

    Science.gov (United States)

    Phillips, J S; Fitzgerald, J; Phillis, D; Underwood, A; Nunney, I; Bath, A

    2018-03-01

    To determine the effectiveness of vestibular rehabilitation using the Wii Fit balance platform, in adults with dizziness. A single-site prospective clinical trial was conducted in a university hospital in the UK. Forty patients with dizziness, who would normally be candidates for vestibular rehabilitation, were identified and considered as potential participants. Participants were randomised into either the treatment group (the Wii Fit group) or the control group (standard customised vestibular rehabilitation protocol). Participants were assessed over a 16-week period using several balance and quality of life questionnaires. Both exercise regimes resulted in a reduction of dizziness and an improvement in quality of life scores over time, but no statistically significant difference between the two interventions was identified. This pilot study demonstrated that use of the Wii Fit balance platform resulted in a statistically significant improvement in balance function and quality of life. Furthermore, outcomes were comparable to a similar group of individuals following a standard customised vestibular rehabilitation protocol. The study provides useful information to inform the design and execution of a larger clinical trial.

  20. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    Science.gov (United States)

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  1. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    NARCIS (Netherlands)

    Forbes, Patrick A.; Vlutters, Mark; Dakin, Christopher J.; van der Kooij, Herman; Blouin, Jean Sébastien; Schouten, Alfred C.

    2017-01-01

    Key points: -The vestibular influence on human walking is phase-dependent and modulated across both limbs with changes in locomotor velocity and cadence. -Using a split-belt treadmill, we show that vestibular influence on locomotor activity is modulated independently in each limb. -The independent

  2. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  3. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C; De Palma, F; De Vito, L; Stefanelli, A [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell` Uomo

    1998-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  4. Augmented asymmetrical visual field dependence in asymptomatic diabetics: evidence of subclinical asymmetrical bilateral vestibular dysfunction.

    Science.gov (United States)

    Razzak, Rima Abdul; Bagust, Jeffery; Docherty, Sharon; Hussein, Wiam; Al-Otaibi, Abdullah

    2015-01-01

    Diabetes negatively affects the vestibular system in many ways, with vestibular dysfunction (VD), a co-morbidity with a high prevalence in diabetics. The ability to perceive subjective visual vertical (SVV), as a sign of vestibular dysfunction, and visual field dependence was measured using a computerized rod and frame test (CRAF). Alignment errors recorded from 47 asymptomatic Type II diabetics (no vertigo or falls, without peripheral neuropathy or retinopathy) were compared to 29 healthy age matched (46-69years) controls. Visual field dependence was significantly larger and more asymmetrical in the diabetics than controls. In the absence of any visual references, or when a vertical reference frame was provided, SVV perception was accurate in both groups, with no significant difference between the controls and diabetics. During tilted frame presentations, the proportion of subjects with either SVV deviations, or an asymmetry index, larger than an upper limit derived from the control data was significantly greater in diabetics than controls. These results suggest that the decreased ability to resolve visuo-vestibular conflict in asymptomatic diabetic patients (free of retinopathy and peripheral neuropathy) compared to controls may be related to diabetic complications affecting vestibular structures and thus causing a decompensation of subclinical vestibular asymmetries. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Stimulator ASIC Featuring Versatile Management for Vestibular Prostheses.

    Science.gov (United States)

    Dai Jiang; Demosthenous, Andreas; Perkins, Timothy; Xiao Liu; Donaldson, Nick

    2011-04-01

    This paper presents a multichannel stimulator ASIC for an implantable vestibular prosthesis. The system features versatile stimulation management which allows fine setting of the parameters for biphasic stimulation pulses. To address the problem of charge imbalance due to rounding errors, the digital processor can calculate and provide accurate charge correction. A technique to reduce the data rate to the stimulator is described. The stimulator ASIC was implemented in 0.6-μ m high-voltage CMOS technology occupying an area of 2.27 mm(2). The measured performance of the ASIC has been verified using vestibular electrodes in saline.

  6. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  7. [Results of videonystagmographic (VNG) analysis in vestibular post-traumatic pathology].

    Science.gov (United States)

    Armato, E; Ferri, E; García Purrinos, F

    2001-10-01

    From February 1998 to July 1999, 569 patients affected by vestibular disorders--following a whiplash injury and/or a cranial trauma--were studied. The neuro-otological examination included a tonal audiometry, brain stem auditory evoked potentials, clinical and instrumental vestibular tests (caloric test, rotatory test, assessment of visually guided eye movements). The study of eye movements was conducted with the support of the Ulmer video-oculographical system. The aim of the research was to analyse, both from a qualitative and a quantitative perspective, the vestibular and clinical findings. Particular emphasis was laid on the incidence of the "up-beating" nystagmus in different categories of patients, all supported by a statistical study. As a result, an etiopathogenetical hypothesis of the nystagmus was advanced, based on altered otolithic and cervical inputs. At the same time, the importance of the video-nystagmographical system was stressed, to the extent that it leads to a standardised and objective analysis, fundamental for clinical and forensic aspects.

  8. Diagnostics and therapy of vestibular schwannomas – an interdisciplinary challenge

    Science.gov (United States)

    Rosahl, Steffen; Bohr, Christopher; Lell, Michael; Hamm, Klaus; Iro, Heinrich

    2017-01-01

    Vestibular schwannomas (VS) expand slowly in the internal auditory canal, in the cerebellopontine angle, inside the cochlear and the labyrinth. Larger tumors can displace and compress the brainstem. With an annual incidence of 1:100,000 vestibular schwannoma represent 6–7% of all intracranial tumors. In the cerebellopontine angle they are by far the most neoplasm with 90% of all lesions located in this region. Magnetic resonance imaging (MRI), audiometry, and vestibular diagnostics are the mainstays of the clinical workup for patients harboring tumors. The first part of this paper delivers an overview of tumor stages, the most common grading scales for facial nerve function and hearing as well as a short introduction to the examination of vestibular function. Upholding or improving quality of life is the central concern in counseling and treating a patient with vestibular schwannoma. Preservation of neuronal function is essential and the management options – watchful waiting, microsurgery and stereotactic radiation – should be custom-tailored to the individual situation of the patient. Continuing interdisciplinary exchange is important to monitor treatment quality and to improve treatment results. Recently, several articles and reviews have been published on the topic of vestibular schwannoma. On the occasion of the 88th annual meeting of the German Society of Oto-Rhino-Laryngology, Head and Neck surgery a special volume of the journal “HNO” will be printed. Hence this presentation has been designed to deviate from the traditional standard which commonly consists of a pure literature review. The current paper was conceptually woven around a series of interdisciplinary cases that outline examples for every stage of the disease that show characteristic results for management options to date. Systematic clinical decision pathways have been deduced from our experience and from results reported in the literature. These pathways are graphically outlined after

  9. Mobile phones: influence on auditory and vestibular systems.

    Science.gov (United States)

    Balbani, Aracy Pereira Silveira; Montovani, Jair Cortez

    2008-01-01

    Telecommunications systems emit radiofrequency, which is an invisible electromagnetic radiation. Mobile phones operate with microwaves (450900 MHz in the analog service, and 1,82,2 GHz in the digital service) very close to the users ear. The skin, inner ear, cochlear nerve and the temporal lobe surface absorb the radiofrequency energy. literature review on the influence of cellular phones on hearing and balance. systematic review. We reviewed papers on the influence of mobile phones on auditory and vestibular systems from Lilacs and Medline databases, published from 2000 to 2005, and also materials available in the Internet. Studies concerning mobile phone radiation and risk of developing an acoustic neuroma have controversial results. Some authors did not see evidences of a higher risk of tumor development in mobile phone users, while others report that usage of analog cellular phones for ten or more years increase the risk of developing the tumor. Acute exposure to mobile phone microwaves do not influence the cochlear outer hair cells function in vivo and in vitro, the cochlear nerve electrical properties nor the vestibular system physiology in humans. Analog hearing aids are more susceptible to the electromagnetic interference caused by digital mobile phones. there is no evidence of cochleo-vestibular lesion caused by cellular phones.

  10. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate...... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  11. Vestibulo-cortical Hemispheric Dominance: the link between Anxiety and the Vestibular System?

    Science.gov (United States)

    Bednarczuk, Nadja F; Casanovas Ortega, Marta; Fluri, Anne-Sophie; Arshad, Qadeer

    2018-05-16

    Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. The effects of hypergravity and substrate vibration on vestibular function in developing chickens.

    Science.gov (United States)

    Jones, S M; Warren, L E; Shukla, R; Browning, A; Fuller, C A; Jones, T A

    2000-12-01

    We used linear vestibular evoked potentials (VsEPs) to characterize peripheral and central vestibular function in birds following embryogenesis at 2G centrifugation or at elevated levels of vibration (+20dB re: background levels). Additionally, we characterized peripheral and central vestibular adaptation to 2G centrifugation in early post-hatch birds. Linear VsEP response peak latencies, amplitudes, thresholds and input/output functions were quantified and compared between experimental and control animals. Birds vibrated throughout embryogenesis and up to one-week post-hatch revealed no changes in linear VsEP response components compared to control siblings. Birds centrifuged at 2G throughout embryogenesis also evidenced no changes in the linear VsEP measured at hatch (P0). Significant changes were seen, however, for linear VsEPs of post-hatch birds placed at 2G for 7 days beginning on post-hatch day 5. Linear VsEPs for these animals displayed significant reductions in response amplitudes associated with peaks P2, N2 and P3, response peaks generated by central neural relays of gravity receptors. The earliest response components, generated by the peripheral vestibular nerve (i.e., P1, N1), were not significantly altered with the 7-day exposure to 2G. Thus, there was no evidence of generalized changes in peripheral gravity receptor excitability or in the rate of maturation in developing animals under increased levels of gravity or vibration. If gravity level plays a critical role in shaping peripheral vestibular ontogeny at magnitudes between 1 and 2G, then it may serve to stabilize function under changing G-fields or it may operate on physiological features that can not be resolved by the VsEP. In contrast, exposure to elevated gravity during post-hatch periods does alter central vestibular function thus providing direct evidence for central vestibular adaptation to the gravitational environment. The fact that central functional change was observed in hatchlings

  14. Endolympathic hydrops in patients with vestibular schwannoma: visualization by non-contrast-enhanced 3D FLAIR

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Kawai, Hisashi [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan); Sone, Michihiko; Nakashima, Tsutomu [Nagoya University Graduate School of Medicine, Department of Otorhinolaryngology, Nagoya (Japan); Ikeda, Mitsuru [Nagoya University School of Health Sciences, Department of Radiological Technology, Nagoya (Japan)

    2011-12-15

    Signal intensity of ipsilateral labyrinthine lymph fluid has been reported to increase in most cases with vestibular schwannoma (VS) on 3D fluid attenuated inversion recovery (FLAIR). The purpose of this study was twofold, (1) to evaluate if endolymphatic space can be recognized in the patients with VS on non-contrast-enhanced 3D-FLAIR images and (2) to know if the vertigo in the patients with VS correlates to vestibular endolymphatic hydrops. From the introduction of 32-channel head coil at 3 T in May 2008 to June 2010, 15 cases with unilateral VS were identified in the radiology report database. The two cases without a significant signal increase on 3D FLAIR were excluded. Resting 13 cases were retrospectively analyzed in regard to the recognition of endolymphatic hydrops in the cochlea and vestibule and to the correlation between the patients' symptoms and endolymphatic hydrops. In all cases, vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. Cochlear endolymphatic space can be identified only in one case with significant hydrops. Vestibular hydrops was identified in four cases. Among these four cases, three had vertigo, and one had no vertigo. In those nine cases without hydrops, two had vertigo, and seven did not have vertigo. No significant correlation between vertigo and vestibular hydrops was found. Vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. In some patients with VS, vestibular hydrops is seen; however, endolymphatic hydrops in the vestibule might not be the only responsible cause of vertigo in the patients with VS. (orig.)

  15. Endolympathic hydrops in patients with vestibular schwannoma: visualization by non-contrast-enhanced 3D FLAIR

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Kawai, Hisashi; Sone, Michihiko; Nakashima, Tsutomu; Ikeda, Mitsuru

    2011-01-01

    Signal intensity of ipsilateral labyrinthine lymph fluid has been reported to increase in most cases with vestibular schwannoma (VS) on 3D fluid attenuated inversion recovery (FLAIR). The purpose of this study was twofold, (1) to evaluate if endolymphatic space can be recognized in the patients with VS on non-contrast-enhanced 3D-FLAIR images and (2) to know if the vertigo in the patients with VS correlates to vestibular endolymphatic hydrops. From the introduction of 32-channel head coil at 3 T in May 2008 to June 2010, 15 cases with unilateral VS were identified in the radiology report database. The two cases without a significant signal increase on 3D FLAIR were excluded. Resting 13 cases were retrospectively analyzed in regard to the recognition of endolymphatic hydrops in the cochlea and vestibule and to the correlation between the patients' symptoms and endolymphatic hydrops. In all cases, vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. Cochlear endolymphatic space can be identified only in one case with significant hydrops. Vestibular hydrops was identified in four cases. Among these four cases, three had vertigo, and one had no vertigo. In those nine cases without hydrops, two had vertigo, and seven did not have vertigo. No significant correlation between vertigo and vestibular hydrops was found. Vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. In some patients with VS, vestibular hydrops is seen; however, endolymphatic hydrops in the vestibule might not be the only responsible cause of vertigo in the patients with VS. (orig.)

  16. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  17. The vestibular implant: Frequency-dependency of the electrically evoked Vestibulo-Ocular Reflex in humans

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2015-01-01

    Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.

  18. Função vestibular no acidente vascular cerebral do território carot��deo Vestibular function in carotid territory stroke patients

    Directory of Open Access Journals (Sweden)

    Anna Paula Batista de Ávila Pires

    2013-02-01

    Full Text Available Pacientes após Acidente Vascular Cerebral (AVC podem apresentar sintomas otoneurológicos. OBJETIVO: Avaliar a função vestibular de pacientes com antecedente pessoal de AVC no território carotídeo. Desenho científico: estudo de coorte histórica com corte transversal. MÉTODO: Quarenta pacientes foram submetidos à anamnese, exame otorrinolaringológico, Dizziness Handicap Inventory e vectoeletronistagmografia. RESULTADOS: Anormalidades discretas dos movimentos sacádicos foram encontradas em 20 pacientes (50,0%; nove referiram desequilíbrio e um tontura. O ganho do rastreio pendular foi anormal em 17 casos (42,5%; seis referiram desequilíbrio e um tontura. Preponderância direcional anormal do nistagmoperrotatório ocorreu em dois casos (5,0%, que referiram desequilíbrio. A prova calórica identificou três casos (7,5% com predomínio labiríntico anormal e dois (5,0% com preponderância direcional anormal do nistagmo; os cinco casos relataram desequilíbrio. Dos 11 pacientes que não referiram manifestações de alteração do equilíbrio corporal, 10 apresentaram alterações nos movimentos sacádicos e no rastreio pendular e um apresentou exame vestibular normal. CONCLUSÃO: Pacientes com antecedente pessoal de AVC no território carotídeo podem apresentar tontura ou desequilíbrio corporal e sinais de comprometimento da motilidade ocular e da função vestibular.Stroke patients may present otoneurological symptoms. OBJECTIVE: To assess the vestibular function of subjects with a history of carotid territory stroke. METHOD: This historical cohort cross sectional study enrolled 40 patients; subjects answered the Dizziness Handicap Inventory, were interviewed and submitted to ENT examination and vectorelectronystagmography. RESULTS: Mild saccadic movement anomalies were seen in 20 patients (50.0%; nine complained of imbalance and dizziness. Abnormal smooth pursuit gain was seen in 17 cases (42.5%; six subjects reported imbalance and

  19. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Radiotherapy for Vestibular Schwannomas: A Critical Review

    International Nuclear Information System (INIS)

    Murphy, Erin S.; Suh, John H.

    2011-01-01

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  1. Vestibular Schwannoma or acoustic neuroma

    Directory of Open Access Journals (Sweden)

    Hekmatara M

    1997-04-01

    Full Text Available Vestibular schwannoma is the most common tumor of the posterior fossa of the skull. Patients referred with the primary otologic symptoms such as hearing loss, tinnitus, vertigo, imbalance, and the cranial nerve palsy. Thirty-three patients were operated and treated by a team of otolaryngologist and neurosurgeon, anudiometrist, and internist. Patients'chiefcomplaint was due to 94% hearing loss and 27% tinnitus. They scarcely complain of vertigo. If a patient refers with the palsy or paralysis of facial nerve preoperation, we must think of the facial nerve schwannoma or hemangioma or congential cholestoma or malignant metastases rather than acoustic neuroma. The best way for preoperative diagnosis is audiometry, ABR (Auditory Brain Response, and SDS (speech discrimination score with 90% success, but computer Tomography (CT scan and MRI (Magnetic Resonance Image are the valuable anatomic diagnostic radiographic devices. The best method of operation is translabirynthine approach (TLA, since it has the advantages such as an easy access to nerve paths and being the nearest path to CPA (Cerebellopontine Angle. Physicians ought to talk to patients about the importance of the microscopic surgery, surgical methods, and their probable diverse effects such as hearing loss, facial nerve palsy, and intracranial problems.

  2. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation

    Science.gov (United States)

    Zacharias, G. L.; Young, L. R.

    1981-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  3. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance

  4. Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients with Conductive and Sensorineural Hearing Loss and a Group with Vestibular Schawannoma.

    Science.gov (United States)

    Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali

    2013-06-01

    Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.

  5. Estimation of an Optimal Stimulus Amplitude for Using Vestibular Stochastic Stimulation to Improve Balance Function

    Science.gov (United States)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Peters, B.; Cohen, H.; hide

    2015-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). The goal of this project was to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.

  6. Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma

    Directory of Open Access Journals (Sweden)

    Parvane Mahdi

    2013-06-01

    Full Text Available Introduction: Vestibular evoked myogenic potential (VEMP has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients.   Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants.   Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05. However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025. In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87% of the 32 ears using the AC method, whereas all (100% displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS, 2 (50.00% had neither AC-VEMP nor BC-VEMP. Conclusion:  Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.

  7. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Directory of Open Access Journals (Sweden)

    Katafuchi Toshihiko

    2005-03-01

    Full Text Available Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250, whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000 was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three

  8. Normalization reduces intersubject variability in cervical vestibular evoked myogenic potentials.

    Science.gov (United States)

    van Tilburg, Mark J; Herrmann, Barbara S; Guinan, John J; Rauch, Steven D

    2014-09-01

    Cervical vestibular evoked myogenic potentials are used to assess saccular and inferior vestibular nerve function. Normalization of the VEMP waveform has been proposed to reduce the variability in vestibular evoked myogenic potentials by correcting for muscle activation. In this study, we test the hypothesis that normalization of the raw cervical VEMP waveform causes a significant decrease in the intersubject variability. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty healthy subjects were used in this study. All subjects underwent cervical vestibular evoked myogenic potential testing using short tone bursts at 250, 500, 750, and 1,000 Hz. Both intersubject and intrasubject variability was assessed. Variability between raw and normalized peak-to-peak amplitudes was compared using the coefficient of variation. Intrasubject variability was assessed using the intraclass correlation coefficient and interaural asymmetry ratio. cVEMPs were present in most ears. Highest peak-to-peak amplitudes were recorded at 750 Hz. Normalization did not alter cVEMP tuning characteristics. Normalization of the cVEMP response caused a significant reduction in intersubject variability of the peak-to-peak amplitude. No significant change was seen in the intrasubject variability. Normalization significantly reduces cVEMP intersubject variability in healthy subjects without altering cVEMP characteristics. By reducing cVEMP amplitude variation due to nonsaccular, muscle-related factors, cVEMP normalization is expected to improve the ability to distinguish between healthy and pathologic responses in the clinical application of cVEMP testing.

  9. Magnetic Vestibular Stimulation in Subjects with Unilateral Labyrinthine Disorders

    Directory of Open Access Journals (Sweden)

    Bryan Kevin Ward

    2014-03-01

    Full Text Available We recently discovered that static magnetic fields from high-strength MRI machines induce nystagmus in all normal humans, and that a magnetohydrodynamic (MHD Lorentz force, derived from ionic currents in the endolymph and pushing on the cupula, best explains this effect. Individuals with no labyrinthine function have no nystagmus. The influence of magnetic vestibular stimulation (MVS in individuals with unilateral loss of labyrinthine function is unknown and may provide insight into mechanism of MVS. These individuals should experience MVS, but with differences consistent with their residual labyrinthine function. We recorded eye movements in the static magnetic field of a 7T MRI machine in nine individuals with unilateral labyrinthine hypofunction, as determined by head impulse testing and vestibular-evoked myogenic potentials (VEMP. Eye movements were recorded using infrared videooculography. Static head positions were varied in pitch with the body supine, and slow-phase eye velocity (SPV was assessed. All subjects exhibited predominantly horizontal nystagmus after entering the magnet head-first, lying supine. The SPV direction reversed when entering feet-first. Pitching chin-to-chest caused subjects to reach a null point for horizontal SPV. Right unilateral vestibular hypofunction (UVH subjects developed slow-phase-up nystagmus and left UVH subjects, slow-phase-down nystagmus. Vertical and torsional components were consistent with superior semicircular canal excitation or inhibition, respectively, of the intact ear. These findings provide compelling support for the hypothesis that MVS is a result of a Lorentz force and suggest that the function of individual structures within the labyrinth can be assessed with MVS. As a novel method of comfortable and sustained labyrinthine stimulation, MVS can provide new insights into vestibular physiology and pathophysiology.

  10. Vestibular Symptoms in Factory Workers Subjected to Noise for a Long Period

    Directory of Open Access Journals (Sweden)

    G Raghunath

    2012-06-01

    Full Text Available Background: Noise can cause permanent or temporary hearing loss. High levels of noise may stimulate the vestibular system and thereby cause disturbances in the balancing mechanism. Objective: To determine the effect of long-term exposure to occupational noise on the vestibular system. Methods: A dizziness questionnaire was administered to 20 factory workers who were exposed to occupational noise for more than 10 years. The results were compared with 2 control groups. The control group 1 consisted of 20 people who had similar physical activity during work but were not exposed to high level of noise. Control group 2 consisted of 20 students never exposed to hazardous noise. Results: There was significant difference between the experimental group and the 2 control groups in terms of frequency of vestibular symptoms. However, most of the symptoms were subtle in nature. Tinnitus was significantly (p<0.05 more frequent in the experimental group than the 2 control groups. Conclusions: Long-term exposure to noise may cause vestibular symptoms before clinically detectable hearing loss. The symptoms are subtle for which they are mostly neglected; the symptoms do not affect the functional ability of workers.

  11. [The changes in vestibular function in patients with diabetes mellitus and its clinical significance].

    Science.gov (United States)

    Li, Juan; Zhang, Tianyu; Shen, Jianzhong; Gong, Jingrong; Wang, Hongli; Zhang, Jimin; Pang, Yufeng

    2008-01-01

    To study the changes of vestibular function in patients with diabetes mellitus and its clinical significance. Electronystagmography (ENG) was used to examine 76 patients with diabetes mellitus and 60 healthy adults subjects. After clinical detection of vestibular function including spontaneous nystagmus, positional test, head shaking nystagmus, neck torsion test, caloric test, and sensory organization tests which consist of gaze, saccade and smooth pursuit test, the results of these two groups were recorded for qualitative and quantitative statistical analysis. The rate of vestibular dysfunction in patients with diabetes mellitus were 68.4%. and that of the controls were 8.3%. There was significant difference between these two groups (chi2 = 15.472, P Vertigo or dizziness occurred in patients with diabetes mellitus might be related to vestibular dysfunction. ENG test could be used as one of the objective clinical examinations in patients with diabetes mellitus.

  12. Beyond the Vestibulo-Ocular Reflex: Vestibular Input is Processed Centrally to Achieve Visual Stability

    Directory of Open Access Journals (Sweden)

    Edwin S. Dalmaijer

    2018-03-01

    Full Text Available The current study presents a re-analysis of data from Zink et al. (1998, Electroencephalography and Clinical Neurophysiology, 107, who administered galvanic vestibular stimulation through unipolar direct current. They placed electrodes on each mastoid and applied either right or left anodal stimulation. Ocular torsion and visual tilt were measured under different stimulation intensities. New modelling introduced here demonstrates that directly proportional linear models fit reasonably well with the relationship between vestibular input and visual tilt, but not to that between vestibular input and ocular torsion. Instead, an exponential model characterised by a decreasing slope and an asymptote fitted best. These results demonstrate that in the results presented by Zink et al. (1998, ocular torsion could not completely account for visual tilt. This suggests that vestibular input is processed centrally to stabilise vision when ocular torsion is insufficient. Potential mechanisms and seemingly conflicting literature are discussed.

  13. Vestibular migraine: the most frequent entity of episodic vertigo.

    Science.gov (United States)

    Dieterich, Marianne; Obermann, Mark; Celebisoy, Nese

    2016-04-01

    Vestibular migraine (VM) is the most common cause of episodic vertigo in adults as well as in children. The diagnostic criteria of the consensus document of the International Bárány Society for Neuro-Otology and the International Headache Society (2012) combine the typical signs and symptoms of migraine with the vestibular symptoms lasting 5 min to 72 h and exclusion criteria. Although VM accounts for 7% of patients seen in dizziness clinics and 9% of patients seen in headache clinics it is still underdiagnosed. This review provides an actual overview on the pathophysiology, the clinical characteristics to establish the diagnosis, the differential diagnosis, and the treatment of VM.

  14. Quality of Life in 807 Patients with Vestibular Schwannoma: Comparing Treatment Modalities.

    Science.gov (United States)

    Soulier, Géke; van Leeuwen, Bibian M; Putter, Hein; Jansen, Jeroen C; Malessy, Martijn J A; van Benthem, Peter Paul G; van der Mey, Andel G L; Stiggelbout, Anne M

    2017-07-01

    Objective In vestibular schwannoma treatment, the choice among treatment modalities is controversial. The first aim of this study was to examine the quality of life of patients with vestibular schwannoma having undergone observation, radiation therapy, or microsurgical resection. The second aim was to examine the relationship between perceived symptoms and quality of life. Last, the association between quality of life and time since treatment was studied. Study Design Cross-sectional study. Setting Tertiary referral center. Subjects and Methods A total of 1208 patients treated for sporadic vestibular schwannoma between 2004 and 2014 were mailed the disease-specific Penn Acoustic Neuroma Quality of Life (PANQOL) questionnaire and additional questions on symptoms associated with vestibular schwannoma. Total and domain scores were calculated and compared among treatment groups. Propensity scores were used, and results were stratified according to tumor size to control for potential confounders. Correlations were calculated to examine the relationship between self-reported symptoms and quality of life, as well as between quality of life and time since treatment. Results Patients with small tumors (≤10 mm) under observation showed a higher PANQOL score when compared with the radiation therapy and microsurgical resection groups. A strong negative correlation was found between self-reported symptoms and quality of life, with balance problems and vertigo having the largest impact. No correlation was found between PANQOL score and time since treatment. Conclusion This study suggests that patients with small vestibular schwannomas experience better quality of life when managed with observation than do patients who have undergone active treatment.

  15. Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction.

    Science.gov (United States)

    Chen, Po-Yin; Hsieh, Wan-Ling; Wei, Shun-Hwa; Kao, Chung-Lan

    2012-10-09

    Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects' head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients' balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners.

  16. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  17. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    International Nuclear Information System (INIS)

    Yao, N.-S.; Wu, C.-W.; Tiu, Chui-Mei; Liu, Jacqueline M.; Whang-Peng, Jacqueline; Chen, L.-T.

    1998-01-01

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible

  18. Afferent Endocrine Control of Eating

    DEFF Research Database (Denmark)

    Langhans, Wolfgang; Holst, Jens Juul

    2016-01-01

    The afferent endocrine factors that control eating can be separated into different categories. One obvious categorization is by the time course of their effects, with long-term factors that signal adiposity and short-term factors that operate within the time frame of single meals. The second...... obvious categorization is by the origin of the endocrine signalling molecules. The level of knowledge concerning the physiological mechanisms and relevance of the hormones that are implicated in the control of eating is clearly different. With the accumulating knowledge about the hormones' actions......, various criteria have been developed for when the effect of a hormone can be considered 'physiologic'. This chapter treats the hormones separately and categorizes them by origin. It discusses ALL hormones that are implicated in eating control such as Gastrointestinal (GI) hormone and glucagon-like peptide...

  19. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    Science.gov (United States)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  20. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  1. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  2. Ulex europaeus agglutinin-I binding to dental primary afferent projections in the spinal trigeminal complex combined with double immunolabeling of substance P and GABA elements using peroxidase and colloidal gold.

    Science.gov (United States)

    Matthews, M A; Hoffmann, K D; Hernandez, T V

    1989-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin with an affinity for L-fucosyl residues in the chains of lactoseries oligosaccharides associated with medium- and smaller-diameter dorsal root ganglion neurons and their axonal processes. These enter Lissauer's tract and terminate within the superficial laminae of the spinal cord overlapping projections known to have a nociceptive function. This implies that the surface coatings of neuronal membranes may have a relationship with functional modalities. The present investigation further examined this concept by studying a neuronal projection with a nociceptive function to determine whether fucosyl-lactoseries residues were incorporated in its primary afferent terminals. Transganglionic transport of horseradish peroxidase (HRP) following injection into tooth pulp chambers was employed to demonstrate dental pulp terminals in the trigeminal spinal complex, while peroxidase and fluorescent tags were used concomitantly to stain for UEA-I. Double immunolabeling for substance P (SP) and gamma-aminobutyric acid (GABA) using peroxidase and colloidal gold allowed a comparison of the distribution of a known excitatory nociceptive transmitter with that of UEA-I binding in specific subnuclei. Synaptic interrelationships between UEA-I positive dental pulp primary afferent inputs and specific inhibitory terminals were also examined. SP immunoreactivity occurred in laminae I and outer lamina II (IIo) of subnucleus caudalis (Vc) and in the ventrolateral and lateral marginal region of the caudal half of subnucleus interpolaris (Vi), including the periobex area in which Vi is slightly overlapped on its lateral aspect by cellular elements of Vc. The adjacent interstitial nucleus (IN) also showed an intense immunoreactivity for this peptide antibody. UEA-I binding displayed a similar distribution pattern in both Vc and Vi, but extended into lamina IIi and the superficial part of Lamina III in Vc. Dental pulp terminals were found to

  3. Saccadic entropy of head impulses in acute unilateral vestibular loss.

    Science.gov (United States)

    Hsieh, Li-Chun; Lin, Hung-Ching; Lee, Guo-She

    2017-10-01

    To evaluate the complexity of vestibular-ocular reflex (VOR) in patients with acute unilateral vestibular loss (AUVL) via entropy analysis of head impulses. Horizontal head impulse test (HIT) with high-velocity alternating directions was used to evaluate 12 participants with AUVL and 16 healthy volunteers. Wireless electro-oculography and electronic gyrometry were used to acquire eye positional signals and head velocity signals. The eye velocity signals were then obtained through differentiation, band-pass filtering. The approximate entropy of eye velocity to head velocity (R ApEn ) was used to evaluate chaos property. VOR gain, gain asymmetry ratio, and R ApEn asymmetry ratio were also used to compare the groups. For the lesion-side HIT of the patient group, the mean VOR gain was significantly lower and the mean R ApEn was significantly greater compared with both nonlesion-side HIT and healthy controls (p Entropy and gain analysis of HIT using wireless electro-oculography system could be used to detect the VOR dysfunctions of AUVL and may become effective methods for evaluating vestibular disorders. Copyright © 2017. Published by Elsevier B.V.

  4. Interaction of visual and vestibular stimulation on spatial coordinates for eye movements in rabbits.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Ferraresi, A; Minciotti, M; Barmack, N H

    1998-07-01

    Researchers investigated how vestibular and optokinetic signals alter the spatial transformation of the coordinate system that governs the spatial orientation of reflexive eye movements. Also examined were the effects of sensory stimulation when vestibular and optokinetic signals act synergistically and when the two signals are in conflict.

  5. Telefones celulares: influência nos sistemas auditivo e vestibular Mobile phones: influence on auditory and vestibular systems

    Directory of Open Access Journals (Sweden)

    Aracy Pereira Silveira Balbani

    2008-02-01

    Full Text Available Os sistemas de telecomunicações emitem radiofreqüência, uma radiação eletromagnética invisível. Telefones celulares transmitem microondas (450900 MHz no sistema analógico e 1,82,2 GHz no sistema digital, muito próximo à orelha do usuário. Esta energia é absorvida pela pele, orelha interna, nervo vestibulococlear e superfície do lobo temporal. OBJETIVO: Revisar a literatura sobre influência dos telefones celulares na audição e equilíbrio. FORMA DE ESTUDO: Revisão sistemática. METODOLOGIA: Foram pesquisados artigos nas bases Lilacs e Medline sobre a influência dos telefones celulares nos sistemas auditivo e vestibular, publicados de 2000 a 2005, e também materiais veiculados na Internet. RESULTADOS: Os estudos sobre radiação do telefone celular e risco de neurinoma do acústico apresentam resultados contraditórios. Alguns autores não encontram maior probabilidade de aparecimento do tumor nos usuários de celulares, enquanto outros relatam que a utilização de telefones analógicos por 10 anos ou mais aumenta o risco para o tumor. A exposição aguda às microondas emitidas pelo celular não influencia a atividade das células ciliadas externas da cóclea, in vivo e in vitro, a condução elétrica no nervo coclear, nem a fisiologia do sistema vestibular em humanos. As próteses auditivas analógicas são mais suscetíveis à interferência eletromagnética dos telefones celulares digitais. CONCLUSÃO: Não há comprovação de lesão cocleovestibular pelos telefones celulares.Telecommunications systems emit radiofrequency, which is an invisible electromagnetic radiation. Mobile phones operate with microwaves (450900 MHz in the analog service, and 1,82,2 GHz in the digital service very close to the user’s ear. The skin, inner ear, cochlear nerve and the temporal lobe surface absorb the radiofrequency energy. AIM: literature review on the influence of cellular phones on hearing and balance. STUDY DESIGN: systematic

  6. Indications of Gamma knife radiosurgery for vestibular schwannomas

    International Nuclear Information System (INIS)

    Fukuoka, Seiji; Takanashi, Masami; Hojyo, Atsufumi; Tanaka, Chiharu; Konishi, Masanori; Nakamura, Hirohiko

    2007-01-01

    The purpose of this study was to investigate the indication of gamma knife radiosurgery for vestibular schwannomas by analyzing tumor control and possible complications using low marginal doses and conformal multiple shots to fit irregular tumor shapes. The authors evaluated 223 patients with followed-up periods ranging from 5 years to 15 years (mean 7.7 years, median 7.4 years). Marginal doses were 9 to 15 Gy (mean 12.5 Gy, median 12 Gy) with corresponding treatment volumes being between 0.1 and 18.7 cm 3 (mean 2.6 cm 3 , median 1.8 cm 3 ). The number of isocenters varied from 2 to 24 shots (mean 9, median 9.2). The actuarial tumor control rates were 95% at 5 years and 94% at 7 years, respectively. Larger tumors (p=0.0068) and those in younger patients (p=0.093) tended to recur significantly. The preservation rates of useful hearing were 84%, 71%, and 64% at 2, 4, and 7 years, respectively. The most deterioration seemed to occur in cases with elderly patients (p=0.0048). Facial and trigeminal functions were preserved at 100%, and 97.8%, respectively. Amongst all patients, 20.6% developed transient dizziness, with persistent dizziness remaining in 1.5% of the total. Fifty-six other patients not in the long-term evaluation consecutively underwent caloric testing and static stabilometry as well as neurological examinations to evaluate vestibular function in detail, both before and after gamma knife radiosurgery (GKRS). The results showed that 90% of the patients had already developed vestibular dysfunction before the treatment despite reported symptoms of dizziness. GKRS did not significantly affect vestibular function. Hydrocephalus was recognized in 5.5% of all patients, and seemed to occur primarily in cases with larger tumors (p=0.0189). GKRS provides a safe and effective therapy for small to medium sized tumors up to 8 cm 3 . Long-term hearing preservation rate may be affected by presbycusis in elderly patients. (author)

  7. Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers.

    Science.gov (United States)

    Schmidt, Lena; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2013-04-01

    The human brain is organized asymmetrically in two hemispheres with different functional specializations. Left- and right-handers differ in many functional capacities and their anatomical representations. Right-handers often show a stronger functional lateralization than left-handers, the latter showing a more bilateral, symmetrical brain organization. Recent functional imaging evidence shows a different lateralization of the cortical vestibular system towards the side of the preferred hand in left- vs. right-handers as well. Since the vestibular system is involved in somatosensory processing and the coding of body position, vestibular stimulation should affect such capacities differentially in left- vs. right-handers. In the present, sham-stimulation-controlled study we explored this hypothesis by studying the effects of galvanic vestibular stimulation (GVS) on proprioception in both forearms in left- and right-handers. Horizontal arm position sense (APS) was measured with an opto-electronic device. Second, the polarity-specific online- and after-effects of subsensory, bipolar GVS on APS were investigated in different sessions separately for both forearms. At baseline, both groups did not differ in their unsigned errors for both arms. However, right-handers showed significant directional errors in APS of both arms towards their own body. Right-cathodal/left-anodal GVS, resulting in right vestibular cortex activation, significantly deteriorated left APS in right-handers, but had no detectable effect on APS in left-handers in either arm. These findings are compatible with a right-hemisphere dominance for vestibular functions in right-handers and a differential vestibular organization in left-handers that compensates for the disturbing effects of GVS on APS. Moreover, our results show superior arm proprioception in left-handers in both forearms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Task-dependent vestibular feedback responses in reaching

    NARCIS (Netherlands)

    Keyser, J.; Medendorp, W.P.; Selen, L.P.J.

    2017-01-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is

  9. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    OpenAIRE

    Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and prot...

  10. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    OpenAIRE

    Martin Göttlich; Nico M. Jandl; Jann F. Wojak; Andreas Sprenger; Janina von der Gablentz; Thomas F. Münte; Ulrike M. Krämer; Christoph Helmchen

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual–vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how chang...

  11. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  12. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    Science.gov (United States)

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the

  13. Mouse Models for Pendrin-Associated Loss of Cochlear and Vestibular Function

    Directory of Open Access Journals (Sweden)

    Philine Wangemann

    2013-12-01

    Full Text Available The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.

  14. [Static posturography versus clinical tests in elderly people with vestibular pathology].

    Science.gov (United States)

    Ortuño-Cortés, Miguel A; Martín-Sanz, Eduardo; Barona-de Guzmán, Rafael

    2008-01-01

    Balance can be quantified by clinical tests and through instrumental studies. The objective of this paper is to determine the correlation between static posturography and 4 clinical tests of balance in elderly people with vestibular disorders and to identify its capability to discriminate the groups studied. 60 patients with vestibular disorders and 60 healthy subjects performed 4 clinical tests (one leg standing with opened eyes, Timed Up and Go, Tinetti and Berg tests) and a static posturography analysis (NedSVE/IBV system) under 4 conditions: Romberg Test, Eyes Open (REO), Romberg Test, Eyes Closed (REC), Romberg Test on Foam with Eyes Open (RFEO), and Romberg Test on Foam with Eyes Closed (RFEC). RFEO correlated best with the clinical tests and RFEC was the worst. RFEO distinguished between healthy individuals and decompensated patients. RFEO gave the best information about postural balance in the elderly. RFEC was not useful. Static posturography can be useful to distinguish vestibular compensation status.

  15. The vestibular component in out-of-body experiences: a computational approach

    Directory of Open Access Journals (Sweden)

    Lars Schwabe

    2008-12-01

    Full Text Available Neurological evidence suggests that disturbed vestibular processing may play a key role in triggering out-of-body experiences (OBEs. Little is known about the brain mechanisms during such pathological conditions, despite recent experimental evidence that the scientific study of such experiences may facilitate the development of neurobiological models of a crucial aspect of self-consciousness: embodied self-location. Here we apply Bayesian modeling to vestibular processing and show that OBEs and the reported illusory changes of self-location and translation can be explained as the result of a mislead Bayesian inference, in the sense that ambiguous bottom-up signals from the vestibular otholiths in the supine body position are integrated with a top-down prior for the upright body position, which we measure during natural head movements. Our findings have relevance for self-location and translation under normal conditions and suggest novel ways to induce and study experimentally both aspects of bodily self-consciousness in healthy subjects.

  16. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  17. Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Chen Po-Yin

    2012-10-01

    Full Text Available Abstract Background Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Methods Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. Results After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Conclusion Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners.

  18. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  19. Contribution of intracranial vertebral artery asymmetry to vestibular neuropathy.

    Science.gov (United States)

    Chuang, Y M; Chern, C M; Liao, W H; Hsu, L C; Lien, C F; Lirng, J F; Shiao, A S; Ko, J S C

    2011-07-01

    To test the hypothesis that vertebral artery hypoplasia (VAH) may affect the lateralisation of vestibular neuropathy (VN), probably through haemodynamic effect on the vestibular labyrinth. 69 patients with unilateral VN were examined with a magnetic resonance angiographic (MRA) and caloric test. 50 healthy subjects served as controls. The diagnosis of intracranial VAH was based on MRA if 40%. The authors then correlated the canal paretic side with the VAH side. MRA study revealed 29 VAH (right/left: 23/6) in VN subjects and six VAH in controls (right/left: 5/1). The RR of VAH in VN subjects compared with controls was elevated (RR=2.2; 95% CI 1.8 to 2.8). There was a high accordance rate between the side of VAH and VN. Among 29 patients with unilateral VAH, 65.5% (N=19) had an ipsilateral VN, in which left VAH showed a higher accordance rate (83.3%) than the right side (60.9%). VN subjects with vascular risk factors also had a higher VAH accordance rate (81%) than those without (25%). VAH may serve as a regional haemodynamic negative contributor and impede blood supply to the ipsilateral vestibular labyrinth, contributing to the development of VN, which could be enhanced by atherosclerotic risk factors and the left-sided location.

  20. Effects of vestibular rehabilitation combined with transcranial cerebellar direct current stimulation in patients with chronic dizziness: An exploratory study.

    Science.gov (United States)

    Koganemaru, Satoko; Goto, Fumiyuki; Arai, Miki; Toshikuni, Keitaro; Hosoya, Makoto; Wakabayashi, Takeshi; Yamamoto, Nobuko; Minami, Shujiro; Ikeda, Satoshi; Ikoma, Katsunori; Mima, Tatsuya

    Vestibular rehabilitation is useful to alleviate chronic dizziness in patients with vestibular dysfunction. It aims to induce neuronal plasticity in the central nervous system (especially in the cerebellum) to promote vestibular compensation. Transcranial cerebellar direct current stimulation (tcDCS) reportedly enhances cerebellar function. We investigated whether vestibular rehabilitation partially combined with tcDCS is superior to the use of rehabilitation alone for the alleviation of dizziness. Patients with chronic dizziness due to vestibular dysfunction received rehabilitation concurrently with either 20-min tcDCS or sham stimulation for 5 days. Pre- and post-intervention (at 1 month) dizziness handicap inventory (DHI) scores and psychometric and motor parameters were compared. Sixteen patients completed the study. DHI scores in the tcDCS group showed significant improvement over those in the sham group (Mann-Whitney U test, p = 0.033). Vestibular rehabilitation partially combined with tcDCS appears to be a promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.