WorldWideScience

Sample records for vestibular organ function

  1. Vestibular function testing.

    LENUS (Irish Health Repository)

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  2. Dyscalculia and vestibular function.

    Science.gov (United States)

    Smith, P F

    2012-10-01

    A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Aging of vestibular function evaluated using correlational vestibular autorotation test

    Directory of Open Access Journals (Sweden)

    Hsieh LC

    2014-09-01

    Full Text Available Li-Chun Hsieh,1,2 Hung-Ching Lin,2,3 Guo-She Lee4,5 1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan; 3Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taipei, Taiwan; 4Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5Department of Otolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Background: Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT. In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT system that included a small, light sensor (less than 20 g with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods: We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results: Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05. The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old.Conclusion: Vestibular function evaluated using mean CCC revealed a decline with

  4. Perspectives on aging vestibular function

    Directory of Open Access Journals (Sweden)

    Eric eAnson

    2016-01-01

    Full Text Available Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities like standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multi-sensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multi-sensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  5. Perspectives on Aging Vestibular Function.

    Science.gov (United States)

    Anson, Eric; Jeka, John

    2015-01-01

    Much is known about age-related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities such as standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multisensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper, we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multisensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  6. Evaluation of diagnostic tests of the otolith organs and their application in various vestibular pathologies

    NARCIS (Netherlands)

    Winters, S.M.

    2014-01-01

    Current vestibular testing is limited. The general function of the vestibular system on both sides of the head can be tested, and one part of the peripheral vestibular organ, the horizontal semicircular canal, can be tested unilaterally. However, recently a test for the function of the otolith

  7. Perspectives on Aging Vestibular Function

    National Research Council Canada - National Science Library

    Anson, Eric; Jeka, John

    2016-01-01

    Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing...

  8. Vestibular Function and Activities of Daily Living

    Directory of Open Access Journals (Sweden)

    Aisha Harun MD

    2015-09-01

    Full Text Available Objective: Vestibular dysfunction increases with age and is associated with mobility difficulties and fall risk in older individuals. We evaluated whether vestibular function influences the ability to perform activities of daily living (ADLs. Method: We analyzed the 1999 to 2004 National Health and Nutrition Examination Survey of adults aged older than 40 years ( N = 5,017. Vestibular function was assessed with the Modified Romberg test. We evaluated the association between vestibular function and difficulty level in performing specific basic and instrumental ADLs, and total number of ADL impairments. Results: Vestibular dysfunction was associated with significantly higher odds of difficulty with nine ADLs, most strongly with difficulty managing finances (odds ratio [ OR ] = 2.64, 95% confidence interval [CI] = [1.18, 5.90]. In addition, vestibular dysfunction was associated with a significantly greater number of ADL impairments (β = .21, 95% CI = [0.09, 0.33]. This effect size was comparable with the influence of heavy smoking (β = .21, 95% CI = [0.06, 0.36] and hypertension (β = .10, 95% CI = [0.02, 0.18] on the number of ADL impairments. Conclusion: Vestibular dysfunction significantly influences ADL difficulty, most strongly with a cognitive rather than mobility-based task. These findings underscore the importance of vestibular inputs for both cognitive and physical daily activities.

  9. Recovery of Vestibular Ocular Reflex Function and Balance Control after a Unilateral Peripheral Vestibular Deficit

    OpenAIRE

    John eAllum

    2012-01-01

    This review describes the effect of unilateral peripheral vestibular deficit (UPVD) on balance control for stance and gait tests. Because a UPVD is normally defined based on vestibular ocular reflex (VOR) tests, we compared recovery observed in balance control with patterns of recovery in VOR function. Two general types of UPVD are considered; acute vestibular neuritis (AVN) and vestibular neurectomy. The latter was subdivided into vestibular loss after cerebellar pontine angle tumor surgery ...

  10. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery

    OpenAIRE

    Lacour, Michel; Bernard-Demanze, Laurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to per...

  11. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    OpenAIRE

    LACOUR eMichel; BERNARD DEMANZE eLaurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to p...

  12. Vestibular function assessment using the NIH Toolbox

    Science.gov (United States)

    Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry

    2013-01-01

    Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = −0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540

  13. Vestibular function assessment using the NIH Toolbox.

    Science.gov (United States)

    Rine, Rosemarie M; Schubert, Michael C; Whitney, Susan L; Roberts, Dale; Redfern, Mark S; Musolino, Mark C; Roche, Jennica L; Steed, Daniel P; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F; Beaumont, Jennifer; Carey, John P; Shepard, Neil P; Jacobson, Gary P; Wrisley, Diane M; Hoffman, Howard J; Furman, Gabriel; Slotkin, Jerry

    2013-03-12

    Development of an easy to administer, low-cost test of vestibular function. Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41-0.94) and sensitivity and specificity (50%-73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42-0.48) and dynamic posturography (r = -0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system.

  14. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Amir Abbas Ebrahimi

    2018-01-01

    Full Text Available The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys with the profound sensorineural hearing loss (PTA>90 dB. They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP. For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT was completed pre- and post-intervention with SPS (Synapsys, Marseille, France. Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS, vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05. The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  15. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction.

    Science.gov (United States)

    Ebrahimi, Amir Abbas; Jamshidi, Ali Ashraf; Movallali, Guita; Rahgozar, Mehdi; Haghgoo, Hojjat Allah

    2017-11-01

    The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys) with the profound sensorineural hearing loss (PTA>90 dB). They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP). For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT) was completed pre- and post-intervention with SPS (Synapsys, Marseille, France). Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS), vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05). The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  16. Vestibular function of patients with profound deafness related to GJB2 mutation.

    Science.gov (United States)

    Kasai, Misato; Hayashi, Chieri; Iizuka, Takashi; Inoshita, Ayako; Kamiya, Kazusaku; Okada, Hiroko; Nakajima, Yukinori; Kaga, Kimitaka; Ikeda, Katsuhisa

    2010-09-01

    GJB2 mutations are responsible not only for deafness but also for the occurrence of vestibular dysfunction. However, vestibular dysfunction tends to be unilateral and less severe in comparison with that of bilateral deafness. The correlation between the cochlear and vestibular end-organs suggests that some children with congenital deafness may have vestibular impairments. On the other hand, GJB2 gene mutations are the most common cause of nonsyndromic deafness. The vestibular function of patients with congenital deafness (CD), which is related to GJB2 gene mutation, remains to be elucidated. The purpose of this study was to analyze the relationship between GJB2 gene mutation and vestibular dysfunction in adults with CD. A total of 31 subjects, including 10 healthy volunteers and 21 patients with CD, were enrolled in the study. A hearing test and genetic analysis were performed. The vestibular evoked myogenic potentials (VEMPs) were measured and a caloric test was performed to assess the vestibular function. The percentage of vestibular dysfunction was then statistically analyzed. The hearing level of all CD patients demonstrated a severe to profound impairment. In seven CD patients, their hearing impairment was related to GJB2 mutation. Five of the seven patients with CD related to GJB2 mutation demonstrated abnormalities in one or both of the two tests. The percentage of vestibular dysfunction of the patients with CD related to GJB2 mutation was statistically higher than in patients with CD unrelated to GJB2 mutation and in healthy controls.

  17. Clinical features of otolith organ-specific vestibular dysfunction.

    Science.gov (United States)

    Fujimoto, Chisato; Suzuki, Sayaka; Kinoshita, Makoto; Egami, Naoya; Sugasawa, Keiko; Iwasaki, Shinichi

    2018-01-01

    To elucidate the clinical features and vestibular symptoms of patients with otolith organ dysfunction in the presence of normal function of the semicircular canals. We reviewed the clinical records of 277 consecutive new patients with balance disorders who underwent testing of cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) as well as caloric testing and video head impulse testing (vHIT). We identified 76 patients who showed normal caloric responses and normal vHIT findings in each SCC plane, but abnormal responses in cVEMP and/or oVEMP testing. Benign paroxysmal positional vertigo (BPPV) was the most common diagnosis. 37% of patients could not be categorized into any of the established clinical entities that could cause a balance disorder and did not show sensorineural hearing loss. The most common clinical manifestation in the idiopathic cases was recurrent rotatory vertigo with a duration of 1-12 h. The most common diagnosis of otolith organ-specific vestibular dysfunction was BPPV. The most common clinical manifestation in the idiopathic cases was recurrent rotatory vertigo. Specific dysfunction of the otolith organs occurs in association with some of the undiagnosed patients with recurrent rotatory vertigo. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Physiological principles of vestibular function on earth and in space

    Science.gov (United States)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  19. Receptors of glutamate and neurotrophin in vestibular neuronal functions.

    Science.gov (United States)

    Chan, Y S; Chen, L W; Lai, C H; Shum, D K Y; Yung, K K L; Zhang, F X

    2003-01-01

    The last decade has witnessed advances in understanding the roles of receptors of neurotrophin and glutamate in the vestibular system. In the first section of this review, the biological actions of neurotrophins and their receptors in the peripheral and central vestibular systems are summarized. Emphasis will be placed on the roles of neurotrophins in developmental plasticity and in the maintenance of vestibular function in the adult animal. This is reviewed in relation to the developmental expression pattern of neurotrophins and their receptors within the vestibular nuclei. The second part is focused on the functional role of different glutamate receptors on central vestibular neurons. The developmental expression pattern of glutamate receptor subunits within the vestibular nuclei is reviewed in relation to the potential role of glutamate receptors in regulating the development of vestibular function. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  20. Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit.

    Directory of Open Access Journals (Sweden)

    John eAllum

    2012-05-01

    Full Text Available This review describes the effect of unilateral peripheral vestibular deficit (UPVD on balance control as observed in stance and gait tests. Normally, a UPVD is defined based on vestibular ocular reflex (VOR function. Therefore, we compare recovery observed in balance control over time with similar patterns of recovery or lack thereof in VOR function. Three types of UPVD are considered; acute vestibular neuritis, vestibular loss prior to and after cerebellar pontine angle tumor (CPAT surgery during which a vestibular neurectomy was performed, and vestibular loss following neurectomy to eliminate disabling Ménière’s disease.To measure balance control, body-worn gyroscopes, mounted near the body’s centre of mass, were used for stance and gait tests. Measurement variables were the pitch (anterior-posterior and roll (lateral sway angles and angular velocities of the lower trunk-pelvis. All three groups showed balance deficits during stance tasks on foam, especially with eyes closed when stable control is highly dependent on vestibular inputs. Deficits in balance control during gait were present but were more profound for complex gait tasks such as tandem gait. Differences emerged between the groups concerning the severity of the deficit and its recovery. Generally, the effects of acute neuritis were more severe but recovered rapidly, deficits due to vestibular neurectomy were less severe but longer lasting. These results paralleled deficits in VOR function and raise questions about two modes of neural plasticity occurring in the vestibular system following vestibular loss: one mode being the limited central compensation for the loss, and the second mode being some restoration of peripheral vestibular function. Future work will need to correlate deficits in balance control during stance and gait more exactly with VOR deficits and carefully consider the differences between insufficient central compensation compared to inadequate peripheral

  1. [BEHAVIOURAL AND FUNCTIONAL VESTIBULAR DISTURBANCES AFTER SPACE FLIGHT. 1. MAMMALS].

    Science.gov (United States)

    Lychakov, D V

    2015-01-01

    The review contains data on functional changes in mammals caused by changes in the operation of vestibular system after space flight. These data show that the vestibular system of mammals responds to weightlessness challenge differently at various ontogenetic stages. Orbital space flight conditions have a weak effect on the developing vestibular system during embryonic period. The weightlessness conditions have rather beneficial effect on development of the fetuses. During the early postnatal period, when optimal sensory-motor tactics are created, the prolonged stay under conditions of space flight leads to development of novel, "extraterrestrial" sensory-motor programs that can be fixed in CNS, apparently, for the whole life. In adult individuals after landing essential vestibular changes and disturbances may occur that depend on the spaceflight duration. The adult organism must simultaneously solve two contradicting problems--it should adapt to weightlessness conditions, and should not adapt to them to pass the process of readaptation after returning easier. Thus, individuals must protect themselves against weightlessness influence to keep the intact initial state of health. The protection methods against weightlessness ought to be adjusted according to the duration of space flight. It should be mentioned that not all functional changes registered in adult individuals after landing can be adequately explained. Some of these changes may have chronic or even pathological character. The question of necessity to examine the influence of weightlessness on an aging (senile) organism and on its vestibular system is raised for the first time in this review. In our opinion the development of space gerontology, as a special branch of space biology and medicine, is of undoubted interest, and in the future it may be of practical importance especially taking into account the steadily growing age of cosmonauts (astronauts).

  2. Bionic balance organs: progress in the development of vestibular prostheses.

    Science.gov (United States)

    Smith, Paul F

    2017-09-01

    The vestibular system is a sensory system that is critically important in humans for gaze and image stability as well as postural control. Patients with complete bilateral vestibular loss are severely disabled and experience a poor quality of life. There are very few effective treatment options for patients with no vestibular function. Over the last 10 years, rapid progress has been made in developing artificial 'vestibular implants' or 'prostheses', based on cochlear implant technology. As of 2017, 13 patients worldwide have received vestibular implants and the results are encouraging. Vestibular implants are now becoming part of an increasing effort to develop artificial, bionic sensory systems, and this paper provides a review of the progress in this area.

  3. From ear to uncertainty: Vestibular contributions to cognitive function.

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-11-01

    Full Text Available In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in spatial orientation. In this review we summarise the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation, can modulate cognitive function.

  4. From ear to uncertainty: vestibular contributions to cognitive function.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2013-11-26

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.

  5. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function.

    Science.gov (United States)

    Curthoys, Ian S; MacDougall, Hamish G; Vidal, Pierre-Paul; de Waele, Catherine

    2017-01-01

    Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons, which form calyx synapses on type I striolar receptors, have irregular resting discharge and have low thresholds to high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-frequency sound and vibration likely causes fluid displacement which deflects the weakly tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We term these irregular afferents the transient system signaling dynamic otolithic stimulation. A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular afferents are not activated at intensities used in clinical testing, whereas irregular afferents have low thresholds. We show how this sustained and transient distinction applies at the vestibular nuclei. The two systems have differential responses to vibration and sound, to ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such differential sensitivity allows probing of the two systems. A 500-Hz vibration that selectively activates irregular otolithic afferents results in stimulus-locked eye movements in animals and humans. The preparatory myogenic potentials for these eye movements are measured in the new clinical test of otolith function-ocular vestibular-evoked myogenic potentials. We suggest 500-Hz vibration may identify the contribution of the transient system to vestibular controlled

  6. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  7. The effects of vestibular lesions on hippocampal function in rats.

    Science.gov (United States)

    Smith, Paul F; Horii, Arata; Russell, Noah; Bilkey, David K; Zheng, Yiwen; Liu, Ping; Kerr, D Steve; Darlington, Cynthia L

    2005-04-01

    Interest in interaction between the vestibular system and the hippocampus was stimulated by evidence that peripheral vestibular lesions could impair performance in learning and memory tasks requiring spatial information processing. By the 1990s, electrophysiological data were emerging that the brainstem vestibular nucleus complex (VNC) and the hippocampus were connected polysynaptically and that hippocampal place cells could respond to vestibular stimulation. The aim of this review is to summarise and critically evaluate research published in the last 5 years that has seen major progress in understanding the effects of vestibular damage on the hippocampus. In addition to new behavioural studies demonstrating that animals with vestibular lesions exhibit impairments in spatial memory tasks, electrophysiological studies have confirmed long-latency, polysynaptic pathways between the VNC and the hippocampus. Peripheral vestibular lesions have been shown to cause long-term changes in place cell function, hippocampal EEG activity and even CA1 field potentials in brain slices maintained in vitro. During the same period, neurochemical investigations have shown that some hippocampal subregions exhibit long-term changes in the expression of neuronal nitric oxide synthase, arginase I and II, and the NR1 and NR2A N-methyl-D-aspartate (NMDA) receptor subunits following peripheral vestibular damage. Despite the progress, a number of important issues remain to be resolved, such as the possible contribution of auditory damage associated with vestibular lesions, to the hippocampal effects observed. Furthermore, although these studies demonstrate that damage to the vestibular system does have a long-term impact on the electrophysiological and neurochemical function of the hippocampus, they do not indicate precisely how vestibular information might be used in hippocampal functions such as developing spatial representations of the environment. Understanding this will require detailed

  8. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    Directory of Open Access Journals (Sweden)

    LACOUR eMichel

    2015-01-01

    Full Text Available This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation, which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodelling, the instructive role that VR therapy may play in this functional reorganisation, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive and emotional profile of the patient to propose individual or à la carte VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  9. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery.

    Science.gov (United States)

    Lacour, Michel; Bernard-Demanze, Laurence

    2014-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  10. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial

  11. Functional and anatomic alterations in the gentamicin-damaged vestibular system in the guinea pig

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, HM; Dijk, T; Stokroos, [No Value; van der Want, TJL; Albers, FWJ

    Hypothesis: The purpose of this study was to investigate the expected functional and morphologic effect of gentamicin on the vestibular system simultaneously by measurement of vestibular evoked potentials and electron microscopic evaluation. Background: Vestibular short-latency evoked potentials to

  12. Vestibular Function and Depersonalization/Derealization Symptoms.

    Science.gov (United States)

    Jáuregui Renaud, Kathrine

    2015-01-01

    Patients with an acquired sensory dysfunction may experience symptoms of detachment from self or from the environment, which are related primarily to nonspecific symptoms of common mental disorders and secondarily, to the specific sensory dysfunction. This is consistent with the proposal that sensory dysfunction could provoke distress and a discrepancy between the multi-sensory frame given by experience and the actual perception. Both vestibular stimuli and vestibular dysfunction can underlie unreal experiences. Vestibular afferents provide a frame of reference (linear and angular head acceleration) within which spatial information from other senses is interpreted. This paper reviews evidence that symptoms of depersonalization/derealization associated with vestibular dysfunction are a consequence of a sensory mismatch between disordered vestibular input and other sensory signals of orientation.

  13. Vestibular end organ injury induced by middle ear treatment with ferric chloride in rats.

    Science.gov (United States)

    Lee, J H; Kim, M S; Park, B R

    2017-02-01

    Sensorineural hearing loss, ataxia, pyramidal signs, and vestibular deficits characterize superficial siderosis of the central nervous system. This study investigated changes in vestibular function, free radical formation, and phosphorylated cJun expression in the vestibular end organs after middle ear treatment with a ferric chloride (FeCl3) solution. A single injection of 70% FeCl3 solution into the unilateral middle ear cavity caused static vestibular symptoms, such as spontaneous nystagmus and head tilt. Asymmetric expression of c-Fos protein was observed in the bilateral vestibular nuclei and prepositus hypoglossal nuclei within 6 h after injection. Histopathologic examinations revealed partial hair cell loss, degeneration of the supporting stroma, and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in the neuroepithelial layer of the crista ampullaris in FeCl3-treated animals. 5-(And-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester and diaminofluorescein-2 diacetate fluorescence and immunoreactivity for nitrotyrosine increased markedly in the sensory neuroepithelial layer and nerve bundles of the crista ampullaris after 2 h. Strong immunoreactivity for phospho-cJun and cJun was observed in the type I hair cells of the crista ampullaris 120 h after injection. Thus, a single short-term treatment with a high concentration of FeCl3 in the unilateral middle ear cavity can induce activation of intracellular signals for cJun protein and oxidative stress through the formation of reactive oxygen species and nitric oxide in vestibular sensory receptors, resulting in vestibular dysfunction. These results suggest that activation of intracellular signals for cJun protein and oxidative stress may be a key component of the pathogenesis of vestibular deficits in patients with superficial siderosis.

  14. Afferent diversity and the organization of central vestibular pathways.

    Science.gov (United States)

    Goldberg, J M

    2000-02-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron's discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could

  15. Does otolith organ dysfunction influence outcomes after a customized program of vestibular rehabilitation?

    Science.gov (United States)

    Murray, Katherine J; Hill, Keith; Phillips, Bev; Waterston, John

    2010-06-01

    Vestibular rehabilitation (VR) is a successful approach to the treatment of vestibular dysfunction. The purpose of this study was to investigate the influence of otolith dysfunction on the response to VR in individuals with a peripheral vestibular disorder. Eighteen participants with loss of semicircular canal function only, and 29 participants with combined loss of semicircular canal and otolith organ function were recruited. All participants received a comprehensive clinical assessment before and after an 8-week customized program of VR. Both groups achieved significant improvements on most measures at the end of the 8-week VR program. However, no significant differences were identified between participants with versus without otolith dysfunction with respect to change in symptom severity (P = .81), self-perceived handicap (P = .92), functional limitations (P = .93), or balance performance after VR. Otolith dysfunction does not significantly influence the response to rehabilitation of individuals with a peripheral vestibular disorder. Vestibular rehabilitation is associated improvements in symptom severity, self-perceived handicap, and balance function in individuals with otolith dysfunction.

  16. Vestibular contributions to high-level sensorimotor functions.

    Science.gov (United States)

    Medendorp, W Pieter; Selen, Luc J P

    2017-10-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied, the role of the vestibular system in higher level sensorimotor functions is less clear. This review covers new research on the vestibular influence on perceptual judgments, motor decisions, and the ability to learn multiple motor actions. Guided by concepts such as optimization, inference, estimation and control, we focus on how the brain determines causal relationships between memorized and visual representations in the updating of visual space, and how vestibular, visual and efferent motor information are integrated in the estimation of body motion. We also discuss evidence that these computations involve multiple coordinate representations, some of which can be probed in parietal cortex using neuronal oscillations derived from EEG. In addition, we describe work on decision making during self-motion, showing a clear modulation of bottom-up acceleration signals on decisions in the saccadic system. Finally, we consider the importance of vestibular signals as contextual cues in motor learning and recall. Taken together, these results emphasize the impact of vestibular information on high-level sensorimotor functions, and identify future directions for theoretical, behavioral, and neurophysiological investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Replacing semicircular canal function with a vestibular implant.

    Science.gov (United States)

    Merfeld, Daniel M; Lewis, Richard F

    2012-10-01

    To summarize the recent progress in the development of vestibular implants. The review is timely because of the recent advances in the field and because MED-EL has recently announced that they are developing a vestibular implant for clinical applications. The handicap experienced by patients suffering from bilateral vestibulopathy has a strong negative impact on physical and social functioning that appears to justify a surgical intervention. Two different surgical approaches to insert electrodes to stimulate ampullary neurons have been shown to be viable. The three-dimensional vestibulo-ocular reflex in rhesus monkeys produced with a three-dimensional vestibular implant showed gains that were relatively normal during acute stimulation. Rotation cues provided by an implant interact with otolith cues in a qualitatively normal manner. The brain appears to adapt plastically to the cues provided via artificial electrical stimulation. Research to date includes just a few human studies, but available data from both humans and animals support the technological and physiological feasibility of vestibular implants. Although vestibular implant users should not expect normal vestibular function - any more than cochlear implant users should expect normal hearing - data suggest that significant functional improvements are possible.

  18. Afferent diversity and the organization of central vestibular pathways

    OpenAIRE

    Goldberg, Jay M.

    2000-01-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitiv...

  19. Symptomatic recovery in Miller Fisher Syndrome parallels vestibular-perceptual and not vestibular-ocular reflex function

    Directory of Open Access Journals (Sweden)

    Barry M Seemungal

    2011-02-01

    Full Text Available Unpleasant visual symptoms including oscillopsia and dizziness may occur when there is unexpected motion of the visual world across the subject’s retina (‘retinal-slip’ as in an acute spontaneous nystagmus or on head movement with an acute ophthalmoplegia. In contrast, subjects with chronic ocular dysmotility, e.g. congenital nystagmus or CPEO (chronic progressive external ophthalmoplegia, are typically symptom free. The adaptive processes that render chronic patients asymptomatic are obscure but may include a suppression of oscillopsia perception as well as an increased tolerance to perceived oscillopsia. Such chronic asymptomatic patients display an attenuation of vestibular-mediated angular velocity perception, implying a possible contributory role in the adaptive process. In order to assess causality between symptoms, signs (i.e. eye-movements and vestibular perceptual function, we prospectively assessed symptom ratings and ocular-motor and perceptual vestibular function, in a patient with acute but transient ophthalmoplegia due to Miller Fisher Syndrome (as a model of visuo-vestibular adaptation. The data show that perceptual measures of vestibular function display a significant attenuation as compared to ocularmotor measures during the acute, symptomatic period. Perhaps significantly, both symptomatic recovery and normalisation of vestibular perceptual function were delayed and then occurred in a parallel fashion. This is the first report showing that symptomatic recovery of visuo-vestibular symptoms is better paralleled by vestibular-perceptual testing than VOR (vestibular ocular reflex measures. The findings may have implications for the understanding of patients with chronic vestibular symptoms where VOR testing is often unhelpful.

  20. Effect of vision, proprioception, and the position of the vestibular organ on postural sway.

    OpenAIRE

    Ekvall-Hansson, Eva; Beckman, Anders; Håkansson, Anders

    2010-01-01

    Abstract Conclusion: When measured together, it seems that vision and proprioception as well as position of the vestibular organ affect postural sway, vision the most. Mediolateral (ML) sway does not seem to be influenced by the position of the vestibular organ. Objective: To investigate how postural sway was affected by provocation of vision, by the position of the vestibular organ, and by provocation of proprioception, when measured together. Methods: Postural sway was measured by using a f...

  1. Vestibular contributions to high-level sensorimotor functions

    NARCIS (Netherlands)

    Medendorp, W.P.; Selen, L.P.J.

    2017-01-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied,

  2. Action mechanism of betahistine in the vestibular end organs.

    Science.gov (United States)

    Chávez, H; Vega, R; Valli, P; Mira, E; Benvenuti, C; Guth, P S; Soto, E

    2001-06-01

    Betahistine has been used to treat several vestibular disorders of both central and peripheral origin. The objective of this work was to study the betahistine action mechanism at the vestibular end organs. Experiments were carried out in wild larval axolotl (Ambystoma tigrinum). Multiunit extracellular recordings were obtained from the semicircular canal nerve using a suction electrode. Betahistine (10 microM to 10 mM, n = 32) inhibited the basal spike discharge of the vestibular afferent neurons with an IC50 of 600 microM. To define the site of action of betahistine, its interactions with antagonists of nitric oxide sintethizing enzyme, cholinergic drugs, and excitatory amino acids were studied. Betahistine 1 mM (n = 5) was coadministered with NG-nitro-L-arginine 3 microM. The action of betahistine remained as in control experiments. Betahistine 1 mM reduced the excitatory action of carbachol (200 microM, n = 5) in a 30 +/- 3.4%. Cholinergic antagonists atropine (10 microM, n = 3) and d-tubocurarine (10 microM, n = 3) did not modify betahistine actions. Betahistine 1 mM also reduced kainic acid (10 microM, n = 4) excitatory action in 45.5 +/- 9.8%. These results corroborate that betahistine has a peripheral inhibitory action in the spike discharge of the afferent neurons in the vestibule. This action seems to involve neither NO production nor modifications in the release of acetylcholine from the efferent fibers. The inhibitory action of betahistine seems to be due to a postsynaptic binding site on the afferent neurons.

  3. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  4. BASIC CONCEPTS IN UNDERSTANDING RECOVERY OF FUNCTION IN VESTIBULAR REFLEX NETWORKS DURING VESTIBULAR COMPENSATION

    Directory of Open Access Journals (Sweden)

    Kenna ePeusner

    2012-02-01

    Full Text Available Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural deficits with the symptoms at rest, the static symptoms, partially or completely normalizing shortly after the lesion due to a process known as vestibular compensation. The symptoms are thought to result from changes in the activity of vestibular sensorimotor reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investigations have focused on studying these neurons after lesions. At present, the neuronal plasticity underlying early recovery from the static symptoms is not fully understood. Here we propose that knowledge of the reflex identity and input-output connections of the recorded neurons is essential to link the responses to animal behavior. We further propose that the cellular mechanisms underlying vestibular compensation can be sorted out by characterizing the synaptic responses and time course for change in morphologically-defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses on the perspective gained by performing electrophysiological and immunolabeling studies on a specific subset of morphologically-defined, glutamatergic vestibular reflex projection neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent findings from other studies on vestibular nuclei neurons, but no comprehensive review of the literature is intended since broad reviews already exist. From recording excitatory and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed. This work is important for it defines for the first time the excitatory and inhibitory nature of the changing synaptic inputs and the time course for changes in a morphologically-defined subset of vestibular reflex projection neurons during early stages of vestibular compensation.

  5. The Vestibular Implant Input Interacts with Residual Natural Function

    Directory of Open Access Journals (Sweden)

    Raymond van de Berg

    2017-12-01

    Full Text Available ObjectivePatients with bilateral vestibulopathy (BV can still have residual “natural” function. This might interact with “artificial” vestibular implant input (VI-input. When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how “artificial” VI-input is integrated with residual “natural” input by the central vestibular system. This, to explore (1 whether misalignment in the response of “artificial” VI-input is sufficiently counteracted by well-aligned residual “natural” input and (2 whether “artificial” VI-input is able to influence and counteract the response to residual “natural” input, to show feasibility of a “vestibular pacemaker.”Materials and methodsFive vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual “natural” input and predominantly horizontal and vertical “artificial” VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed.ResultsCombining residual “natural” input and “artificial” VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013. In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of “artificial” VI-input was not sufficiently counteracted by well-aligned residual

  6. The Vestibular Implant Input Interacts with Residual Natural Function.

    Science.gov (United States)

    van de Berg, Raymond; Guinand, Nils; Ranieri, Maurizio; Cavuscens, Samuel; Khoa Nguyen, T A; Guyot, Jean-Philippe; Lucieer, Florence; Starkov, Dmitrii; Kingma, Herman; van Hoof, Marc; Perez-Fornos, Angelica

    2017-01-01

    Patients with bilateral vestibulopathy (BV) can still have residual "natural" function. This might interact with "artificial" vestibular implant input (VI-input). When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how "artificial" VI-input is integrated with residual "natural" input by the central vestibular system. This, to explore (1) whether misalignment in the response of "artificial" VI-input is sufficiently counteracted by well-aligned residual "natural" input and (2) whether "artificial" VI-input is able to influence and counteract the response to residual "natural" input, to show feasibility of a "vestibular pacemaker." Five vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual "natural" input and predominantly horizontal and vertical "artificial" VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed. Combining residual "natural" input and "artificial" VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013). In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of "artificial" VI-input was not sufficiently counteracted by well-aligned residual "natural" input. "Artificial" VI-input was able to significantly influence and counteract the response to

  7. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    Science.gov (United States)

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.

  8. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. From ear to uncertainty: Vestibular contributions to cognitive function.

    OpenAIRE

    Paul eSmith; Yiwen eZheng

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, espe...

  10. Determination of the functional status of vestibular apparatus at children aged 5-6 years old.

    Directory of Open Access Journals (Sweden)

    Moiseenko E.K.

    2012-02-01

    Full Text Available The physiological methods of determination of the functional state of vestibular analyzer are considered. The indexes of systole and diastole pressure, frequencies of heart-throbs, are chosen. Methods were used before and after standard vestibular irritation. Research was conducted on the base of child's preschool establishment. In it took part 120 children in age 5 - 6 years. Insufficient development of vestibular analyzer is set for children. Selected exercise for the improvement of spatial orientation and statodynamic stability.

  11. Vestibular Function in the Temporal and Parietal Cortex: Distinct Velocity and Inertial Processing Pathways

    Directory of Open Access Journals (Sweden)

    Jocelyne eVentre-Dominey

    2014-07-01

    Full Text Available A number of behavioural and neuroimaging studies have reported converging data in favour of a cortical network for vestibular function, distributed between the temporo-parietal cortex and the prefrontal cortex in the primate. In this review, we focus on the role of the cerebral cortex in visuo-vestibular integration including the motion sensitive temporo-occipital areas i.e. the middle superior temporal area (MST and the parietal cortex. Indeed these two neighbouring cortical regions, though they both receive combined vestibular and visual information, have distinct implications in vestibular function. In sum, this review of the literature leads to the idea of two separate cortical vestibular sub-systems forming (1 a velocity pathway including MST and direct descending pathways on vestibular nuclei. As it receives well defined visual and vestibular velocity signals, this pathway is likely involved in heading perception and rapid top-down regulation of eye/head coordination and (2 an inertial processing pathway involving the parietal cortex in connection with the subcortical vestibular nuclei complex responsible for velocity storage integration. This vestibular cortical pathway would be implicated in high order multimodal integration and cognitive functions, including world space and self- referential processing.

  12. Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways

    Science.gov (United States)

    Ventre-Dominey, Jocelyne

    2014-01-01

    A number of behavioral and neuroimaging studies have reported converging data in favor of a cortical network for vestibular function, distributed between the temporo-parietal cortex and the prefrontal cortex in the primate. In this review, we focus on the role of the cerebral cortex in visuo-vestibular integration including the motion sensitive temporo-occipital areas i.e., the middle superior temporal area (MST) and the parietal cortex. Indeed, these two neighboring cortical regions, though they both receive combined vestibular and visual information, have distinct implications in vestibular function. In sum, this review of the literature leads to the idea of two separate cortical vestibular sub-systems forming (1) a velocity pathway including MST and direct descending pathways on vestibular nuclei. As it receives well-defined visual and vestibular velocity signals, this pathway is likely involved in heading perception and rapid top-down regulation of eye/head coordination and (2) an inertial processing pathway involving the parietal cortex in connection with the subcortical vestibular nuclei complex responsible for velocity storage integration. This vestibular cortical pathway would be implicated in high-order multimodal integration and cognitive functions, including world space and self-referential processing. PMID:25071481

  13. The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function.

    Science.gov (United States)

    MacLennan, A John; Benner, Shannon J; Andringa, Anastasia; Chaves, Alicia H; Rosing, Joanna L; Vesey, Rachel; Karpman, Adam M; Cronier, Samantha A; Lee, Nancy; Erway, Larry C; Miller, Marian L

    2006-10-01

    Sphingosine 1-phosphate (S1P) is an endogenous growth factor with potent effects on many different cell types. Most of these effects are produced by activation of one or more of a family of G-protein coupled receptors. The S1P2 receptor can mediate S1P-induced proliferation, differentiation and survival in a wide variety of cells in culture. However, identifying essential in vivo functions for S1P2 has been hampered by its ubiquitous expression and the failure to detect any anatomical abnormalities in initial analyses of S1P2 knockout mice. We report here that all S1P2 knockout mice are profoundly deaf from postnatal day 22 and approximately half display a progressive loss of vestibular function with aging. Anatomically, both the auditory and vestibular systems appear to develop normally but then degrade. Morphological defects associated with hearing are first detected at 3 weeks postnatal as deformations of the organ of Corti/Nuel's space. By one year of age structures within the scala media are dramatically altered. The S1P2 knockout mice also display a loss of otoconia consistent with the vestibular impairment. The present data are the first to indicate that S1P signaling plays critical roles, in vivo, in auditory and vestibular functions. The data further establish that the S1P signaling occurs through the S1P2 receptor and makes an essential contribution to the structural maintenance of these systems, raising the possibility that properly targeted enhancement of this signaling may prove to be clinically beneficial.

  14. A balance of form and function: planar polarity and development of the vestibular maculae.

    Science.gov (United States)

    Deans, Michael R

    2013-05-01

    The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Lipopolysaccharide-induced expression of nitric oxide synthase II in the guinea pig vestibular end organ.

    Science.gov (United States)

    Takumida, M; Anniko, M

    1998-01-01

    The purpose of the investigation was to ascertain whether inoculation of bacterial lipopolysaccharide (LPS) into the vestibular organ of the guinea pig might induce formation of nitric oxide synthase (NOS) II. Forty-eight hours after the animals were injected with 1 mg transtympanic LPS, varying degrees of impaired caloric responses were observed with similar degeneration of vestibular hair cells. These effects could be blocked with N-nitro-L-arginine methylester, a competitive inhibitor of NOS. Findings suggested that NOS II, which was not normally detectable in the guinea pig vestibular organ but was present following inoculation of LPS, produced the nitric oxide as the toxic factor causing cell damage. If true, LPS may represent a reproducible method for studying the vestibular pathogenesis of inner ear disease.

  16. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  17. Input–Output Functions of Vestibular Afferent Responses to Air-Conducted Clicks in Rats

    National Research Council Canada - National Science Library

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Maklad, Adel; Mustain, William; Rabbitt, Richard; Highstein, Steve; Allison, Jerome; Zhou, Wu

    2014-01-01

    ...) have proven useful in clinical assessment of vestibular function. VEMPs are commonly interpreted as a test of saccular function, based on neurophysiological evidence showing activation of saccular afferents by intense acoustic click stimuli...

  18. Electrophysiological Measurements of Peripheral Vestibular Function-A Review of Electrovestibulography.

    Science.gov (United States)

    Brown, Daniel J; Pastras, Christopher J; Curthoys, Ian S

    2017-01-01

    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.

  19. Association Between Visuospatial Ability and Vestibular Function in the Baltimore Longitudinal Study of Aging.

    Science.gov (United States)

    Bigelow, Robin T; Semenov, Yevgeniy R; Trevino, Carolina; Ferrucci, Luigi; Resnick, Susan M; Simonsick, Eleanor M; Xue, Qian-Li; Agrawal, Yuri

    2015-09-01

    To investigate the relationship between vestibular loss associated with aging and age-related decline in visuospatial function. Cross-sectional analysis within a prospective cohort study. Baltimore Longitudinal Study of Aging (BLSA). Community-dwelling BLSA participants with a mean age of 72 (range 26-91) (N = 183). Vestibular function was measured using vestibular-evoked myogenic potentials. Visuospatial cognitive tests included Card Rotations, Purdue Pegboard, Benton Visual Retention Test, and Trail-Making Test Parts A and B. Tests of executive function, memory, and attention were also considered. Participants underwent vestibular and cognitive function testing. In multiple linear regression analyses, poorer vestibular function was associated with poorer performance on Card Rotations (P = .001), Purdue Pegboard (P = .005), Benton Visual Retention Test (P = 0.008), and Trail-Making Test Part B (P = .04). Performance on tests of executive function and verbal memory were not significantly associated with vestibular function. Exploratory factor analyses in a subgroup of participants who underwent all cognitive tests identified three latent cognitive abilities: visuospatial ability, verbal memory, and working memory and attention. Vestibular loss was significantly associated with lower visuospatial and working memory and attention factor scores. Significant consistent associations between vestibular function and tests of visuospatial ability were observed in a sample of community-dwelling adults. Impairment in visuospatial skills is often one of the first signs of dementia and Alzheimer's disease. Further longitudinal studies are needed to evaluate whether the relationship between vestibular function and visuospatial ability is causal. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  20. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    Directory of Open Access Journals (Sweden)

    Miranda A. Mathews

    2017-08-01

    Full Text Available Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN, and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  1. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits.

    Science.gov (United States)

    Mathews, Miranda A; Camp, Aaron J; Murray, Andrew J

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  2. Effect of vision, proprioception, and the position of the vestibular organ on postural sway.

    Science.gov (United States)

    Hansson, Eva Ekvall; Beckman, Anders; Håkansson, Anders

    2010-12-01

    When measured together, it seems that vision and proprioception as well as position of the vestibular organ affect postural sway, vision the most. Mediolateral (ML) sway does not seem to be influenced by the position of the vestibular organ. To investigate how postural sway was affected by provocation of vision, by the position of the vestibular organ, and by provocation of proprioception, when measured together. Postural sway was measured by using a force plate. Tests were performed with eyes open and eyes closed, with head in neutral position and rotated to the right and to the left and with head maximally extended, both standing on firm surface and on foam. Measures of ML speed (mm/s), anteriorposterior (AP) speed (mm/s), and sway area (SA) (mm(2)/s) were analyzed using a multilevel approach. The multilevel analysis revealed how postural sway was significantly affected by closed eyes and standing on foam, and by the position of the vestibular organ. Closed eyes and standing on foam both significantly prolonged the dependent measurement, irrespective of whether it was ML, AP or SA. However, only AP and SA were significantly affected by vestibular position, i.e. maximal head movement to the right and extension of the head.

  3. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  4. Altered auditory and vestibular functioning in individuals with low bone mineral density: a systematic review.

    Science.gov (United States)

    Singh, Niraj Kumar; Jha, Raghav Hira; Gargeshwari, Aditi; Kumar, Prawin

    2018-01-01

    Alteration in the process of bone remodelling is associated with falls and fractures due to increased bone fragility and altered calcium functioning. The auditory system consists of skeletal structures and is, therefore, prone to getting affected by altered bone remodelling. In addition, the vestibule consists of huge volumes of calcium (CaCO3) in the form of otoconia crystals and alteration in functioning calcium levels could, therefore, result in vestibular symptoms. Thus, the present study aimed at compiling information from various studies on assessment of auditory or vestibular systems in individuals with reduced bone mineral density (BMD). A total of 1977 articles were searched using various databases and 19 full-length articles which reported auditory and vestibular outcomes in persons with low BMD were reviewed. An intricate relationship between altered BMD and audio-vestibular function was evident from the studies; nonetheless, how one aspect of hearing or balance affects the other is not clear. Significant effect of reduced bone mineral density could probably be due to the metabolic changes at the level of cochlea, secondary to alterations in BMD. One could also conclude that sympathetic remodelling is associated with vestibular problems in individual; however, whether vestibular problems lead to altered BMD cannot be ascertained with confidence. The studies reviewed in the article provide an evidence of possible involvement of hearing and vestibular system abnormalities in individuals with reduced bone mineral density. Hence, the assessment protocol for these individuals must include hearing and balance evaluation as mandatory for planning appropriate management.

  5. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.

    Science.gov (United States)

    Maklad, Adel; Kamel, Suzan; Wong, Elaine; Fritzsch, Bernd

    2010-05-01

    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears.

  6. Specific Organ Targeted Vestibular Physiotherapy: The Pivot in the Contemporary Management of Vertigo and Imbalance.

    Science.gov (United States)

    Biswas, Anirban; Barui, Bibhas

    2017-12-01

    Advancements in our understanding of vestibular physiology and how it is changes in different diseases have established that of the three therapeutic approaches to treat disorders of the vestibular system viz. pharmacotherapy, surgery and physical therapy, it is the later i.e., physical therapy which is the most efficacious modality in the management of balance disorders. The futility of vestibular sedatives in the correction of vestibular disorders and in the restoration of balance and the very limited role of surgery has now been recognised. Advancements in vestibulometry now enable us to localise any lesion in the vestibular system with utmost precision and also determine the exact cause of the balance disorder. The site of lesion and the specific organ that is defective can now be very precisely identified. Treatment modalities especially that for physical therapy hence have to be organ specific, and if possible, also disease specific. The study aims at evaluating the efficacy of physiotherapy in the management of balance disorders and also assesses the efficacy of organ targeted physical therapy, a new concept in restoring balance after vestibulometry has identified the offending organ. The study was conducted in the specialised physical therapy unit for balance and gait disorder patients which is a part of Vertigo and Deafness Clinic in Kolkata, India. Special instruments for physical therapy devised by the first author were used for stimulation of specific sense organs in the vestibular labyrinth that were found to be defective in vestibulometry. Specially made Virtual reality programs were used in patients suffering from psychogenic balance disorders. The pre and post therapy status was evaluated by different standard scales to assess balance and dizziness. Very promising results were obtained. Organ targeted physiotherapy where defective sense organs were specifically stimulated showed remarkable improvement in different measures. Virtual reality exercises

  7. Functional testing of the vestibular ocular reflex (VOR

    Directory of Open Access Journals (Sweden)

    Stefano eRamat

    2012-03-01

    Full Text Available The experimental assessment of the vestibulo-ocular-reflex (VOR gain provides an objective and quantitative measure of VOR performance which is nonetheless difficult to correlate with its efficiency in everyday living conditions. We developed the Head Impulse Testing Device (HITD based on an inertial sensing system allowing to investigate the functional performance of the VOR by testing its gaze stabilization ability in response to head impulses at different head angular accelerations. HITD results on a population of 39 vestibular patients were compared to those of 22 controls. Overall the sensitivity of the HITD was 92% against the results of the clinical head impulse test and 83% against the clinical diagnosis, while the specificity was 58% against the clinical head impulse test and 83% against the diagnosis. The HITD appears to be a very promising tool for detecting abnormal VOR performance while providing information on the functional performance of the rotational VOR. As compared to the usual testing devices the HITD tests higher frequencies and accelerations that characterize head movements in everyday life activities and provides a functional assessment that is more likely to be related to the subject’s self-feeling.

  8. Evaluation of vestibular function in patients with chronic suppurative otitis media.

    Science.gov (United States)

    Mostafa, Badr Eldin; Shafik, Amr Gouda; El Makhzangy, Aly M N; Taha, Hesham; Abdel Mageed, Heba Mahmoud

    2013-01-01

    The objective of this study was to assess vestibular functions in patients with chronic suppurative otitis media (CSOM) with and without sensorineural hearing loss. This was a prospective case study performed at a tertiary referral university hospital. Sixty patients with CSOM were included, and patients with a history of head trauma, diabetes, hypertension, previous ear surgery, use of ototoxic drugs, neurological deficits and suspected fistulae were excluded. The patients underwent basic audiological evaluation, and clinical and instrumental vestibular evaluation. The incidence and extent of vestibular dysfunction in patients with CSOM were analyzed. A total of 42 males and 16 females with a mean age of 29.5 years were included in this study. Forty ears had tubotympanic disease and 19 had cholesteatoma. There were 14 ears with sensorineural hearing loss. A positive history of vertigo was reported in 53.5% of the cases. Rotatory chair abnormalities were found in 70% of the cases, caloric hypofunction was found in 61.6%, and vestibular myogenic evoked potentials were abnormal in 25%. The only positive correlation with vestibular dysfunction was the duration of disease. The vestibular system is significantly affected in cases with CSOM. Both semicircular canals and the saccule are affected. All patients with long-standing CSOM should be evaluated for vestibular dysfunction irrespective of their hearing levels. © 2014 S. Karger AG, Basel.

  9. Electrophysiological Measurements of Peripheral Vestibular Function?A Review of Electrovestibulography

    OpenAIRE

    Brown, Daniel J.; Christopher J. Pastras; Curthoys, Ian S.

    2017-01-01

    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups hav...

  10. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    OpenAIRE

    Mathews, Miranda A.; Camp, Aaron J.; Murray, Andrew J.

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate...

  11. Role of the vestibular end organs in experimental motion sickness - A primate model

    Science.gov (United States)

    Igarashi, Makoto

    1990-01-01

    Experimental studies of the role of vestibular end organs in motion sickness experienced by squirrel monkeys are reviewed. The first experiments in motion-sickness-susceptible squirrel monkeys were performed under a free-moving condition with horizontal rotation and vertical oscillation. In the following experiments, the vestibular-visual conflict in the pitch plane was given to the chair-restrained (upright position) squirrel monkeys. Results of this study showed that the existence of otolith afferents, which continually signal the directional change of gravity and linear acceleration vectors, was necessary for the elicitation of emesis by the sensory conflict in pitch.

  12. An electronic prosthesis mimicking the dynamic vestibular function

    Science.gov (United States)

    Shkel, Andrei M.

    2006-03-01

    This paper reports our progress toward development of a unilateral vestibular prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope. Similarly to the natural semicircular canal, the microscopic gyroscope senses angular motion of the head and generates voltages proportional to the corresponding angular accelerations. Then, voltages are sent to the pulse generating unit where angular motion is translated into voltage pulses. The voltage pulses are converted into current pulses and are delivered through specially designed electrodes, conditioned to stimulate the corresponding vestibular nerve branch. Our preliminary experimental evaluations of the prosthesis on a rate table indicate that the device's output matches the average firing rate of vestibular neurons to those in animal models reported in the literature. The proposed design is scalable; the sensing unit, pulse generator, and the current source can be potentially implemented on a single chip using integrated MEMS technology.

  13. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  14. Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography.

    Science.gov (United States)

    Becker-Bense, Sandra; Buchholz, Hans-Georg; Baier, Bernhard; Schreckenberger, Mathias; Bartenstein, Peter; Zwergal, Andreas; Brandt, Thomas; Dieterich, Marianne

    2016-01-01

    The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic

  15. Prosthetic implantation of the human vestibular system.

    Science.gov (United States)

    Golub, Justin S; Ling, Leo; Nie, Kaibao; Nowack, Amy; Shepherd, Sarah J; Bierer, Steven M; Jameyson, Elyse; Kaneko, Chris R S; Phillips, James O; Rubinstein, Jay T

    2014-01-01

    A functional vestibular prosthesis can be implanted in human such that electrical stimulation of each semicircular canal produces canal-specific eye movements while preserving vestibular and auditory function. A number of vestibular disorders could be treated with prosthetic stimulation of the vestibular end organs. We have previously demonstrated in rhesus monkeys that a vestibular neurostimulator, based on the Nucleus Freedom cochlear implant, can produce canal-specific electrically evoked eye movements while preserving auditory and vestibular function. An investigational device exemption has been obtained from the FDA to study the feasibility of treating uncontrolled Ménière's disease with the device. The UW/Nucleus vestibular implant was implanted in the perilymphatic space adjacent to the three semicircular canal ampullae of a human subject with uncontrolled Ménière's disease. Preoperative and postoperative vestibular and auditory function was assessed. Electrically evoked eye movements were measured at 2 time points postoperatively. Implantation of all semicircular canals was technically feasible. Horizontal canal and auditory function were largely, but not totally, lost. Electrode stimulation in 2 of 3 canals resulted in canal-appropriate eye movements. Over time, stimulation thresholds increased. Prosthetic implantation of the semicircular canals in humans is technically feasible. Electrical stimulation resulted in canal-specific eye movements, although thresholds increased over time. Preservation of native auditory and vestibular function, previously observed in animals, was not demonstrated in a single subject with advanced Ménière's disease.

  16. Effects of nitric oxide on the vestibular functional recovery after unilateral labyrinthectomy.

    Science.gov (United States)

    Park, J S; Jeong, H S

    2000-12-01

    The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy were studied. Male Sprague-Dawley rats treated with N-omega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, were subjected to destruction of the unilateral vestibular apparatus and spontaneous nystagmus was observed. To explore the role of nitric oxide on the potassium current, the whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus that appeared in L-NAME-treated rats was higher and maintained longer than in control animals. Potassium currents in the isolated medial vestibular nucleus were inhibited by nitric oxide liberating agents, sodium nitroprusside and S-nitroso-N-acetylpenicillamine. After blockade of calcium dependent potassium currents by high EGTA (11 mM)-containing pipette solution, sodium nitroprusside did not inhibit the outward potassium currents. 8-Bromoguanosine 3,5-cyclic monophosphate, a membrane-permeable cGMP analogue, produced similar effects to inhibit the outward potassium currents as sodium nitroprusside. These results suggest that nitric oxide production after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cyclic GMP, thereby increasing excitability in ipsilateral vestibular nuclear neurons.

  17. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    Science.gov (United States)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  18. The Effect of Vestibular Stimulation on Motor Functions of Children With Cerebral Palsy.

    Science.gov (United States)

    Tramontano, Marco; Medici, Alessandra; Iosa, Marco; Chiariotti, Alessia; Fusillo, Giulia; Manzari, Leonardo; Morelli, Daniela

    2017-07-01

    Cerebral palsy (CP) has been defined as a nonprogressive disease of movement and posture development. Physical therapy techniques use different forms of sensory stimulation to improve neuromotor development. The aim of this study was to assess the efficacy of a vestibular stimulation training in improving motor functions in cerebral palsy. Fourteen children with CP were randomly separated into two different groups in a cross-over trial. Over a period of 10 weeks, each group performed 10 sessions of 50 min of neurodevelopmental treatment (NDT) and 10 sessions of vestibular training (VR). Children were evaluated with the Gross Motor Function Measurement-88 scale, the Goal Attainment Scale and the root mean square of head accelerations. A significant improvement in the GAS-score (p = .003) was noted after NDT+VR. Vestibular stimulation integrated with NDT proved to be an effective complementary strategy for facilitating motor functioning.

  19. [BEHAVIORAL AND FUNCTIONAL VESTIBULAR DISTURBANCES AFTER SPACE FLIGHT. 2. FISHES, AMPHIBIANS AND BIRDS].

    Science.gov (United States)

    Lychakov, D V

    2016-01-01

    The review contains data on functional shifts in fishes, amphibians and birds caused by changes in the otolith system operation after stay under weightlessness conditions. These data are of theoretical and practical significance and are important to resolve some fundamental problems of vestibulogy. The analysis of the results of space experiments has shown that weightlessness conditions do not exert a substantial impact on formation and functional state of the otolith system in embryonic fishes, amphibians and birds developed during space flight. Weightlessness conditions do pot inhibit embryonic development of lower vertebrates but even have rather beneficial effect on it. This is consistent with conclusions concerning development of mammalian fetuses. The experimental results show that weightlessness can cause similar functional and behavioral vestibular shifts both in lower vertebrates and in mammals. For example, immediately after an orbital flight the vestibuloocular reflex in fish larvae and tadpoles (without lordosis) was stronger than in control individuals. A similar shift of the otolith reflex was observed in the majority of cosmonauts after short-term orbital flights. Immediately after landing adult terrestrial vertebrates, as well as human beings, exhibit lower activity levels, worse equilibrium and coordination of movements. Another interesting finding observed after landing of the cosmic apparatus was an unusual looping character of tadpole swimming. It is supposed that the unusual motor activity of animals as well as appearance of illusions in cosmonauts and astronauts after switching from 1 to 0 g have the same nature and are related to the change in character of otolith organs stimulation. Considering this similarity of vestibular reactions, using animals seems rather perspective. Besides it allows applying in experiments various invasive techniques.

  20. Effects of conventional versus multimodal vestibular rehabilitation on functional capacity and balance control in older people with chronic dizziness from vestibular disorders: design of a randomized clinical trial.

    Science.gov (United States)

    Aquaroni Ricci, Natalia; Aratani, Mayra Cristina; Caovilla, Heloisa Helena; Freitas Ganança, Fernando

    2012-12-31

    There are several protocols designed to treat vestibular disorders that focus on habituation, substitution, adaptation, and compensation exercises. However, protocols that contemplate not only vestibular stimulation but also other components that are essential to the body balance control in older people are rare. This study aims to compare the effectiveness of two vestibular rehabilitation protocols (conventional versus multimodal) on the functional capacity and body balance control of older people with chronic dizziness due to vestibular disorders. A randomized, single-blind, controlled clinical trial with a 3 months follow-up period will be performed. The sample will be composed of older individuals with a clinical diagnosis of chronic dizziness resulting from vestibular disorders. The subjects will be evaluated at baseline, post-treatment and follow-up. Primary outcomes will be determined in accordance with the Dizziness Handicap Inventory (functional capacity) and the Dynamic Gait Index (body balance). Secondary outcomes include dizziness features, functional records, body balance control tests, and psychological information. The older individuals (minimum sample n = 68) will be randomized to either the conventional or multimodal Cawthorne&Cooksey protocols. The protocols will be performed during individual 50-minute sessions, twice a week, for 2 months (a total of 16 sessions). The outcomes of both protocols will be compared according to the intention-to-treat analysis. Vestibular rehabilitation through the Cawthorne&Cooksey protocol has already proved to be effective. However, the addition of other components related to body balance control has been proposed to improve the rehabilitation of older people with chronic dizziness from vestibular disorders. ACTRN12610000018011.

  1. Effects of conventional versus multimodal vestibular rehabilitation on functional capacity and balance control in older people with chronic dizziness from vestibular disorders: design of a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ricci Natalia

    2012-12-01

    Full Text Available Abstract Background There are several protocols designed to treat vestibular disorders that focus on habituation, substitution, adaptation, and compensation exercises. However, protocols that contemplate not only vestibular stimulation but also other components that are essential to the body balance control in older people are rare. This study aims to compare the effectiveness of two vestibular rehabilitation protocols (conventional versus multimodal on the functional capacity and body balance control of older people with chronic dizziness due to vestibular disorders. Methods/design A randomized, single-blind, controlled clinical trial with a 3 months follow-up period will be performed. The sample will be composed of older individuals with a clinical diagnosis of chronic dizziness resulting from vestibular disorders. The subjects will be evaluated at baseline, post-treatment and follow-up. Primary outcomes will be determined in accordance with the Dizziness Handicap Inventory (functional capacity and the Dynamic Gait Index (body balance. Secondary outcomes include dizziness features, functional records, body balance control tests, and psychological information. The older individuals (minimum sample n = 68 will be randomized to either the conventional or multimodal Cawthorne&Cooksey protocols. The protocols will be performed during individual 50-minute sessions, twice a week, for 2 months (a total of 16 sessions. The outcomes of both protocols will be compared according to the intention-to-treat analysis. Discussion Vestibular rehabilitation through the Cawthorne&Cooksey protocol has already proved to be effective. However, the addition of other components related to body balance control has been proposed to improve the rehabilitation of older people with chronic dizziness from vestibular disorders. Trial registration ACTRN12610000018011

  2. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    Directory of Open Access Journals (Sweden)

    Cécile eTravo

    2012-06-01

    Full Text Available In a previous study (Brugeaud et al., 2007, we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fundamental trait of altered vestibular endorgans and to decipher the cellular mechanisms that support such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa’s ganglion from young and adult rodents. We demonstrate that under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. This reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.

  3. Stereotactic radiotherapy of vestibular schwannoma. Hearing preservation, vestibular function, and local control following primary and salvage radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Florian; Mueller, Jan; Wimmer, Caterina; Goerig, Nicole; Knippen, Stefan; Semrau, Sabine; Fietkau, Rainer; Lettmaier, Sebastian [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany); Iro, Heinrich; Grundtner, Philipp [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Otorhinolaryngology - Head and Neck Surgery, Erlangen (Germany); Eyuepoglu, Ilker; Roessler, Karl [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2017-03-15

    The aim of this publication is to present long-term data on functional outcomes and tumor control in a cohort of 107 patients treated with stereotactic radiotherapy (RT) for vestibular schwannoma. Included were 107 patients with vestibular schwannoma (primary or recurrent following resection) treated with stereotactic RT (either fractioned or single-dose radiosurgery) between October 2002 and December 2013. Local control and functional outcomes were determined. Analysis of hearing preservation was limited to a subgroup of patients with complete audiometric data collected before treatment and during follow-up. Vestibular function test (FVT) results could be analyzed in a subset of patients and were compared to patient-reported dizziness. After a mean follow-up of 46.3 months, actuarial local control for the whole cohort was 100% after 2, 97.6% after 5, and 94.1% after 10 years. In patients with primary RT, serviceable hearing was preserved in 72%. Predictors for preservation of serviceable hearing in multivariate analysis were time of follow-up (odds ratio, OR = 0.93 per month; p = 0.021) and pre-RT tumor size (Koos stage I-IIa vs. IIb-IV; OR = 0.15; p = 0.031). Worsening of FVT results was recorded in 17.6% (N = 3). Profound discrepancy of patient-reported dizziness and FVT results was observed after RT. In patients with primary RT, worsening of facial nerve function occurred in 1.7% (N = 1). Stereotactic RT of vestibular schwannoma provides good functional outcomes and high control rates. Dependence of hearing preservation on time of follow-up and initial tumor stage has to be considered. (orig.) [German] Praesentation von Langzeitdaten zu funktionellen Ergebnissen und Tumorkontrolle nach stereotaktischer Radiotherapie (RT) in einer Kohorte von 107 Patienten mit Akustikusneurinom. Zwischen Oktober 2002 und Dezember 2013 wurden 107 Patienten mit Akustikusneurinom (primaer oder rezidiviert nach vorangegangener Resektion) mittels stereotaktischer RT behandelt

  4. Vestibular mechanisms.

    Science.gov (United States)

    Precht, W

    1979-01-01

    It is apparent from this and other reviews of the subject that our knowledge of vestibular function is most complete for the primary canal and otolithic afferents. Relatively little progress has been made in the understanding of receptor mechanisms and the functional importance of the efferent vestibular system. Since most of it has been summarized previously the latter were not considered here. Considerably more knowledge has accumulated in the field of central vestibular mechanisms, particularly those related to eye movements. Recent advances in functional synaptology of direct and indirect vestibuloocular pathways are described. It appears that the indirect pathways are essential for the central integration of the peripheral head velocity into a central eye position signal. Candidates for the neural integrator are presented and discussed and their connectivity described both for the horizontal and the relatively poorly studied vertical eye movement system. This field will certainly be studied extensively during the next years. Another interesting field is the role of the cerebellum in the control the vestibuloocular reflex. Recent data and hypotheses, including the problem of cerebellar plasticity, are summarized and evaluated. That the vestibular nuclei are by no means a simple relay system for specific vestibular signals destined for other sensory or motor centers is evidenced in this review by the description of multiple canal-canal, canalotolith, and visual-vestibular convergence at the nuclear level. Canal-otolith and polysensory convergence in vestibular neurons enables them to correct for the inherent inadequacies of the peripheral canal system in the low frequency range. The mechanisms of polysensory interaction in the central vestibular system will undoubtedly be an important and interesting field for future research.

  5. Impaired Vestibular Function After Cochlear Implantation in Children: Role of Static Posturography.

    Science.gov (United States)

    Nair, Satish; Gupta, Atul; Nilakantan, Ajith; Mittal, Ruchika; Dahiya, Ruchi; Saini, Sachin; Prasad, Rachana; Vajpayee, Deepika

    2017-06-01

    To identify vestibular dysfunction in children after cochlear implant surgery and to study the utility of static posturography in evaluating vestibular function in children. A prospective study was carried out on 25 children between 2 and 7 years of age with sensorineural hearing loss with no overt vestibular dysfunction. All children underwent static posturography using Synapsis Posturographic System (SPS) software (Version 3.0, REV C) using a static platform with foam. The centre of pressure (COP) shift was recorded as statokinesiogram on the software and the mean vestibular, visual and somesthetic scores were obtained. Cochlear implantation (CI) surgery was done with insertion of Med-El Pulsar standard cochlear implant with 12 twin electrodes. Children were evaluated again after 4 weeks of CI surgery (2 weeks after switch on) with static posturography on the same SPS software. The scores obtained were compared with pre op value and data analyzed statistically by paired t tests on SPSS 18 software. The mean age was 4.6 years with range 2-7 years. All the children in the study were able to complete the test with no difficulty and the mean time required for each child was 10.2 min. The mean pre op somesthetic score was 95.16 (SD 1.52) and post op score was 94.06 (SD 1.79). The mean pre op visual score was 86.64 (SD 2.24) and post op score was 82.55 (2.89). The mean pre op vestibular score was 84.11 (SD 2.20) and post op score was 73.66 (SD 4.25). Correlation and statistical analysis of the pre and post values of each score revealed statistically significant reduction in vestibular scores post CI. The vestibular system is at high risk of injury leading to vestibular dysfunction in children during CI. Our study found the static posturography as a simple, fast and efficient tool to screen children for vestibular dysfunction post CI. Identifying the dysfunction early can help in initiating early rehabilitation measures.

  6. The endocannabinoid system: A new player in the neurochemical control of vestibular function?

    Science.gov (United States)

    Smith, Paul F; Ashton, John C; Darlington, Cynthia L

    2006-01-01

    The results of recent clinical trials of medicinal cannabinoid drugs show that dizziness and vertigo are commonly reported adverse side-effects. Cannabinoid CB1 receptors were initially thought to be expressed in very low densities in the vestibular nucleus complex (VNC). Recent immunohistochemical studies have challenged this idea and suggested that CB1 receptors may exist in numbers similar to the granule cell layer of the cerebellum. This, together with evidence that brainstem CB1 receptors have a higher efficacy than those in many other parts of the brain and that application of cannabinoids can elicit potent electrophysiological effects in VNC neurons, suggests that CB1 receptors and their endogenous ligands may be important in central vestibular function. In this review, we consider the potential clinical significance of the endocannabinoid system for the development of vestibular disorders, the effects of recreational cannabis use and the therapeutic use of medicinal cannabinoids. Copyright 2006 S. Karger AG, Basel.

  7. A função vestibular em indivíduos usuários de implante coclear Vestibular function in cochlear implant users

    Directory of Open Access Journals (Sweden)

    Ariane Solci Bonucci

    2008-04-01

    Full Text Available A ocorrência de alteração no equilíbrio no período pós-cirúrgico ao implante coclear varia de 31 a 75%. OBJETIVO: Analisar a função vestibular no período pré e pós-operatório da cirurgia de implante coclear. MATERIAL E MÉTODO: Avaliou-se a função vestibular, por meio da vectoeletronistagmografia, de 38 pacientes, no pré e pós-cirúrgico de implante coclear. RESULTADOS: A principal queixa de desequilíbrio apresentada pelos pacientes foi a tontura, seguida pela vertigem postural e pela vertigem não-postural. Dos 38 pacientes avaliados, 13% deixaram de apresentar desequilíbrio após a cirurgia de implante coclear e apenas 5% referiram piora. Houve uma melhora na sintomatologia vestibular em 13% dos pacientes, sendo que esta possibilidade pode estar relacionada ao fenômeno de compensação vestibular e pela estimulação elétrica. Entretanto, foi observada na prova calórica uma piora na funcionalidade do sistema vestibular, tanto na orelha implantada como na orelha não-implantada. Assim, não há tendência de maior comprometimento na orelha implantada. CONCLUSÃO: O estudo demonstrou que o implante coclear pode comprometer o sistema vestibular em ambas as orelhas. Entretanto, a sintomatologia vestibular ocorre em menor proporção, podendo haver melhora no desequilíbrio após a cirurgia do implante coclear.Balance alterations in the postoperative of cochlear implant surgeries varies from 31 to 75%. AIM: to analyze vestibular function in the pre and postoperative periods of cochlear implanted individuals. MATERIALS AND METHODS: the vestibular function was assessed, through electronystagmography, in 38 patients, in the pre and postoperative of cochlear implant procedures. RESULTS: The main complaint of unbalance reported by patients was dizziness, followed by postural vertigo and non-postural vertigo. Results: 13% of the patients did not show any balance disorder following cochlear implant surgery and just 5% showed symptoms

  8. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    that this may be caused by both cochlear and retrocochlear mechanisms. Multiple mechanisms may also be at play in the case of dizziness, which may broaden perspectives of therapeutic approach. This study presents a systematic and detailed assessment of vestibular histopathology in temporal bones from patients...... with VS. METHODS: Retrospective analysis of vestibular system histopathology in temporal bones from 17 patients with unilateral VS. The material was obtained from The Copenhagen Temporal Bone Collection. RESULTS: Vestibular schwannomas were associated with atrophy of the vestibular ganglion, loss of fiber...... density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...

  9. Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome With Vertigo.

    Science.gov (United States)

    Martin-Sanz, Eduardo; Rueda, Almudena; Esteban-Sanchez, Jonathan; Yanes, Joaquin; Rey-Martinez, Jorge; Sanz-Fernandez, Ricardo

    2017-08-01

    To evaluate vestibular restoration and the evolution of the compensatory saccades in acute severe inflammatory vestibular nerve paralysis, including vestibular neuritis and Ramsay Hunt syndrome with vertigo. Prospective. Tertiary referral center. Vestibular neuritis (n = 18) and Ramsay Hunt syndrome patients with vertigo (n = 13) were enrolled. After treatment with oral corticosteroids, patients were followed up for 6 months. Functional recovery of the facial nerve was scored according to the House-Brackman grading system. Caloric and video head impulse tests were performed in every patient at the time of enrolment. Subsequently, successive video head impulse test (vHIT) exploration was performed at the 1, 3, and 6-month follow-up. Eighteen patients with vestibular neuritis and 13 with Ramsay Hunt syndrome and associated vertigo were included. Vestibular function was significantly worse in patients with Ramsay Hunt syndrome than in those with vestibular neuritis. Similar compensatory saccades velocity and latency values were observed in both groups, in both the caloric and initial vHIT tests. Successive vHIT results showed a significantly higher vestibulo-ocular reflex gain recovery in vestibular neuritis patients than in Ramsay Hunt syndrome patients. A significantly faster reduction in the latency, velocity, and organization of the compensatory saccades was observed in neuritis than in Ramsay Hunt syndrome patients. In addition to the recovery of the vestibulo-ocular reflex, the reduction of latency, velocity and the organization of compensatory saccades play a role in vestibular compensation.

  10. What can posturography tell us about vestibular function?

    Science.gov (United States)

    Black, F. O.

    2001-01-01

    Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed.

  11. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function

    OpenAIRE

    Curthoys, Ian S.; MacDougall, Hamish G; Vidal, Pierre-Paul; de Waele, Catherine

    2017-01-01

    Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons,...

  12. Relationship among balance impairments, functional performance, and disability in people with peripheral vestibular hypofunction.

    Science.gov (United States)

    Gill-Body, K M; Beninato, M; Krebs, D E

    2000-08-01

    Physical therapy interventions are often based on assumed relationships among impairments, functional performance, and disability. The purposes of this study were (1) to describe balance impairments, functional performance, and disability in subjects with unilateral peripheral vestibular hypofunction (UVH) and bilateral peripheral vestibular hypofunction (BVH), (2) to examine the relationship among these factors, and (3) to determine whether disability can be explained by commonly used tests of balance and functional performance. Participants were 85 subjects (mean age=62.5 years, SD=16.5) with UVH (n=41) or BVH (n=44) diagnosed by vestibular function tests and clinical examination. Each subject completed the Dizziness Handicap Inventory (DHI) to obtain a measure of disability. Functional performance was measured with a modified Timed Up & Go Test (TUG). Balance impairments were measured with computerized posturography and balance tests. Descriptive statistics, correlational analyses, and stepwise regressions were performed. Subjects with BVH had poorer balance but similar TUG scores and perceived levels of disability, as compared with subjects with UVH. Weak to moderate correlations existed among balance measurements, TUG scores, and DHI scores. Balance impairments and TUG scores together explained 78% of the variance in DHI scores of the subjects with BVH, whereas balance impairments alone explained 13% of the variance in DHI scores of the subjects with UVH. Balance impairments and functional performance appear to be more closely related to disability in individuals with BVH as compared with those with UVH. Clinical tests of balance impairments and functional performance appear to be useful in explaining disability.

  13. Optimal Stimulus Amplitude for Vestibular Stochastic Stimulation to Improve Sensorimotor Function

    Science.gov (United States)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J. J.; hide

    2014-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface. This technique to improve detection of vestibular signals uses a stimulus delivery system that is wearable or portable and provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for SR training applications customized to each crewmember. Customizing stimulus intensity can maximize treatment effects. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. First we determined the percent time during stimulation periods for which perception of motion (activity above a pre-defined threshold) was reported using the joystick, and body sway (two

  14. Vergence and Standing Balance in Subjects with Idiopathic Bilateral Loss of Vestibular Function.

    Science.gov (United States)

    Kapoula, Zoï; Gaertner, Chrystal; Yang, Qing; Denise, Pierre; Toupet, Michel

    2013-01-01

    There is a natural symbiosis between vergence and vestibular responses. Deficits in vergence can lead to vertigo, disequilibrium, and postural instability. This study examines both vergence eye movements in patients with idiopathic bilateral vestibular loss, and their standing balance in relation to vergence. Eleven patients participated in the study and 16 controls. Bilateral loss of vestibular function was objectified with many tests; only patients without significant response to caloric tests, to video head impulse tests and without vestibular evoked myogenic potentials were included in the study. A LED display with targets at 20, 40, and 100 cm along the median plane was used to elicit vergence eye movements, recorded with the IRIS device. Four conditions were run, each lasting 1 min: fixation of a LED at 40 cm (convergence of 9°), at 150 cm (convergence of 2.3°); this last condition was repeated with eyes closed. Comparison of the eyes closed-eyes open conditions at 150 cm allowed evaluation of the Romberg Quotient. In the forth condition, two LEDS, at 20 and at 100 cm, were light on, one after the other for 1 sec, causing the eyes to converge then diverge. Standing balance was recorded with an accelerometer placed at the back near the center of mass (McRoberts, Dynaport). Relative to controls, convergence eye movements in patients showed significantly lower accuracy, lower mean velocity, and saccade intrusions of significantly higher amplitude. The normalized 90% area of body sway was significantly higher for patients than for controls for all conditions. Yet, similarly to controls, postural stability was better while fixating at near (sustained convergence) than at far, or while making active vergence movements. We argue that vestibular loss deteriorates convergence, but even deficient, convergence can be helpful for postural control.

  15. Vergence and Standing Balance in Subjects with Idiopathic Bilateral Loss of Vestibular Function.

    Directory of Open Access Journals (Sweden)

    Zoï Kapoula

    Full Text Available There is a natural symbiosis between vergence and vestibular responses. Deficits in vergence can lead to vertigo, disequilibrium, and postural instability. This study examines both vergence eye movements in patients with idiopathic bilateral vestibular loss, and their standing balance in relation to vergence. Eleven patients participated in the study and 16 controls. Bilateral loss of vestibular function was objectified with many tests; only patients without significant response to caloric tests, to video head impulse tests and without vestibular evoked myogenic potentials were included in the study.A LED display with targets at 20, 40, and 100 cm along the median plane was used to elicit vergence eye movements, recorded with the IRIS device.Four conditions were run, each lasting 1 min: fixation of a LED at 40 cm (convergence of 9°, at 150 cm (convergence of 2.3°; this last condition was repeated with eyes closed. Comparison of the eyes closed-eyes open conditions at 150 cm allowed evaluation of the Romberg Quotient. In the forth condition, two LEDS, at 20 and at 100 cm, were light on, one after the other for 1 sec, causing the eyes to converge then diverge. Standing balance was recorded with an accelerometer placed at the back near the center of mass (McRoberts, Dynaport.Relative to controls, convergence eye movements in patients showed significantly lower accuracy, lower mean velocity, and saccade intrusions of significantly higher amplitude.The normalized 90% area of body sway was significantly higher for patients than for controls for all conditions. Yet, similarly to controls, postural stability was better while fixating at near (sustained convergence than at far, or while making active vergence movements. We argue that vestibular loss deteriorates convergence, but even deficient, convergence can be helpful for postural control.

  16. Anatomy of the vestibular system: a review.

    Science.gov (United States)

    Khan, Sarah; Chang, Richard

    2013-01-01

    A sense of proper sensory processing of head motion and the coordination of visual and postural movements to maintain equilibrium is critical to everyday function. The vestibular system is an intricate organization that involves multiple levels of sensory processing to achieve this goal. This chapter provides an overview of the anatomical structures and pathways of the vestibular system. The five major vestibular structures are located in the inner ear and include: the utricle, the saccule, and the lateral, superior, and posterior semicircular canals. Hair cells on the neuroepithelium of the peripheral vestibular organs carry sensory impulses to primary processing centers in the brainstem and the cerebellum. These areas send input via ascending and descending projections to coordinate vital reflexes, such as the vestibuloocular reflex and the vestibulospinal reflex, which allow for the proper orientation of the eyes and body in response to head motion. Specific connections regarding higher level cortical vestibular structures are poorly understood. Vestibular centers in the brainstem, cerebellum, and cerebral cortex function to integrate sensory information from the peripheral vestibular organs, visual system, and proprioceptive system to allow for proper balance and orientation of the body in its environment.

  17. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  18. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness.

    Science.gov (United States)

    Nishio, Shin-Ya; Hattori, Mitsuru; Moteki, Hideaki; Tsukada, Keita; Miyagawa, Maiko; Naito, Takehiko; Yoshimura, Hidekane; Iwasa, Yoh-Ichiro; Mori, Kentaro; Shima, Yutaka; Sakuma, Naoko; Usami, Shin-Ichi

    2015-05-01

    We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function. © The Author(s) 2015.

  19. [Vestibular rehabilitation in elderly patients with dizziness].

    Science.gov (United States)

    Zanardini, Francisco Halilla; Zeigelboim, Bianca Simone; Jurkiewicz, Ari Leon; Marques, Jair Mendes; Martins-Bassetto, Jackeline

    2007-01-01

    The aging of the population is a natural process and is manifested by a decline in the functions of several organs. Vestibular rehabilitation (VR) is a therapeutic process that seeks to promote a significant reduction in the symptoms of the labyrinth. To verify the benefits of VR exercises through the application of the Dizziness Handicap Inventory (DHI) questionnaire--Brazilian version--pre and post rehabilitation. Participants of this study were eight elderly patients with dizziness, ages between 63 and 82 years, three male and five female. The following procedures were carried out: medical history, otologic inspection, vestibular evaluation with vectoelectronystagmography (VENG), application of the DHI questionnaire and of the Cawthorne (1944) and Cooksey (1946) VR exercises. Regarding the auditory and vestibular complaints which were referred to in the medical history, the following was observed: presence of tinnitus, hearing loss, postural vertigo and of unbalance. In the evaluation of the vestibular function alterations were observed for all of the participants, mainly in the caloric test, with a prevalence of unilateral and bilateral hypofunction. In the vestibular exam the following was observed: three cases of unilateral peripheral vestibular deficit syndrome, three cases of bilateral peripheral vestibular deficit syndrome, one case of bilateral central vestibular deficit syndrome and one case of irritating bilateral central vestibular syndrome. There was a statistically significant improvement of the following aspects after VR: physical (p=0.00413), functional (p=0.00006) and emotional (p=0.03268). The VR protocol favored the improvement of life quality of the participants and was of assistance in the process of vestibular compensation.

  20. Mouse Models for Pendrin-Associated Loss of Cochlear and Vestibular Function

    Directory of Open Access Journals (Sweden)

    Philine Wangemann

    2013-12-01

    Full Text Available The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.

  1. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in

  2. A new method to improve the imbalance in chronic unilateral vestibular loss: the organization of refixation saccades.

    Science.gov (United States)

    Matiñó-Soler, Eusebi; Rey-Martinez, Jorge; Trinidad-Ruiz, Gabriel; Batuecas-Caletrio, Angel; Pérez Fernández, Nicolás

    2016-09-01

    VOR adaptation and organization of refixation saccades in a gathered pattern is a process that can be artificially induced in patients with unilateral vestibular loss who have not developed it naturally, improving imbalance and vestibular disability. To test that temporary grouping of refixation saccades should be linked to better clinical status without gain recovery. A training to induce the refixation saccades into gathered fashion is performed. The outcome measures are handicap level measured by the dizziness handicap index (DHI) and refixation saccades organization pattern measured by a numeric score called 'PR' given by a software developed by the authors. Analysis is done before the training and 1 and 3 months after ending, Non-parametric tests were used for statistical analysis. This study has included 10 healthy subjects (four males, six females), and 16 patients with chronic unsteadiness due to unilateral vestibular loss (nine vestibular neuritis, four post-surgical vestibular schwannoma, and three cases after intra-tympanic gentamycin in patients with Ménière's disease). The reduction in the DHI score was significant at 1 (p = 0.028) and 3 months (p = 0.042) post-treatment. Also, statistically significant differences were found between the PR score before and PR score 1 (p = 0.005) and 3 months after the treatment (p = 0.003).

  3. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Science.gov (United States)

    Georgi, Justin A; Sipla, Justin S; Forster, Catherine A

    2013-01-01

    Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  4. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Directory of Open Access Journals (Sweden)

    Justin A Georgi

    Full Text Available Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  5. Can electromagnetic fields emitted by mobile phones stimulate the vestibular organ?

    Science.gov (United States)

    Pau, Hans Wilhelm; Sievert, Uwe; Eggert, Siegfried; Wild, Walter

    2005-01-01

    Pulsating electromagnetic (EM) radiation emitted by mobile phones is often incriminated for causing tissue alterations by caloric effects. In particular, the eye and the ear were regarded as possible "hot spots," with heating up to 1 degree C, in which EM radiation might have negative effects. If so, these temperature increments should be large enough to cause vestibular excitation. In this study, we attempted to verify this theory by clinical testing and in vitro experiments. In our laboratory, a simulated GSM signal (889.6 MHz/2.2 W) was applied to 1 ear at a time, while video nystagmography was performed. The experimental setup was similar to that used for caloric (hot and cold water) testing of the peripheral vestibular organ. Data were evaluated by a computer system. There were 13 volunteers (26 ears) included in our study. In an additional experiment, temperatures of human temporal bones were measured by thermography, while a continuous or pulsating EM field was applied. In no volunteer could EM radiation-induced nystagmus be recorded. This corresponds well to our findings that in the human temporal bone very weak caloric effects could only be found in the tissue layers next to the radiation source (antenna of the mobile phone), whereas deeper regions (horizontal semicircular canal) seemed unaffected (at least less than 0.1 degree C). These results do not support the theory that mobile phone-induced EM radiation may cause caloric negative effects in the human ear.

  6. Localization of nitric oxide synthase isoforms (NOS I, II and III) in the vestibular end organs of the guinea pig.

    Science.gov (United States)

    Takumida, M; Anniko, M

    1998-01-01

    The localization of nitric oxide (NO) synthase (NOS) isoforms was investigated in the vestibular organ of the pigmented guinea pig by indirect immunohistochemistry. The cytoplasm of both type I and type II vestibular sensory cells as well as vestibular ganglion cells showed both NOS I and III immunoreactivity, whereas there was no reactivity in their nuclei and sensory hairs. The afferent nerve chalices were usually not stained. NOS III staining was also observed in the nerve fibers contacting type II cells and in the subepithelial tissue. The endothelial lining of the blood vessels displayed reactivity for NOS III. The cytoplasm of fluid transporting cells showed weak staining for NOS I and moderate staining for NOS III. Immunostaining for NOS II did not display any reactivity in general. These findings may suggest that NO is a mediator of neurotransmission in the vestibular system in sensory cells and ganglia. NO in the fluid transporting cells may play an important role for maintaining the endolymph and ion homeostasis, and NOS III in vascular endothelial cells implies regulatory effects of NO on vascular wall tonus and vestibular blood supply.

  7. Gene expression, signal transduction pathways and functional networks associated with growth of sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Sass, Hjalte C.R.; Borup, Rehannah; Alanin, Mikkel

    2017-01-01

    The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined...... and analyzed by dChip software. Differential gene expression was defined as a 1.5-fold difference between fast and slow growing tumors (>... of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell...

  8. Gap junctional connections between hair cells, supporting cells and nerves in a vestibular organ.

    Science.gov (United States)

    Mulroy, M J; Dempewolf, S A; Curtis, S; Iida, H C

    1993-12-01

    The pattern of gap-junctional connections between cells in the vestibular neuroepithelium of the posterior semicircular duct of the alligator lizard are described based upon the study of freeze fracture replicas and ultrathin sections with a transmission electron microscope. Both type I and type II hair cells are coupled to adjacent supporting cells by a series of small macular gap junctions located in a ring around the hair cell at the level of the apical circumferential belt of actin filaments. Adjacent supporting cells are extensively interconnected by gap junctions. A few cases of gap junctions between afferent dendrites and supporting cells, and between afferent dendrites and calyceal nerve endings were seen. These morphological observations together with data from other studies in the literature suggest a possible role for supporting cells in altering the micromechanical properties of the hair cell receptor organs during stimulation.

  9. Central vestibular system: vestibular nuclei and posterior cerebellum.

    Science.gov (United States)

    Barmack, Neal H

    2003-06-15

    The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a

  10. [Effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in the guinea pig].

    Science.gov (United States)

    Feng, B; Jiang, S; Yang, W; Han, D; Zhang, S

    2001-02-01

    To define the effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in guinea pigs. The animals involved in the study were exposed to 8 Hz infrasound at 135dB SPL for 90 minutes in a reverberant chamber. The sinusoidal pendular test (SPT), auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were respectively detected pre-exposure and at 0(within 2 hrs), 2 and 5 day after exposure. The ultrastructures of the inner ear were observed by scanning electron microscopy. The slow-phase velocity and the frequency of the vestibular nystagmus elicited by sinusoidal pendular test (SPT) declined slightly following infrasound exposure, but the changes were not significant (P > 0.05). No differences in the ABR thresholds, the latencies and the interval peak latencies of I, III, V waves were found between the normal and the experimental groups, and among experimental groups. The amplitudes of DPOAE at any frequency declined remarkably in all experimental groups. The ultrastructures of the inner ear were damaged to different extent. Infrasound could transiently depress the excitability of the vestibular end-organs, decrease the function of OHC in the organ of Corti and cause damage to the inner ear of guinea pigs.

  11. Balance Screening of Vestibular Function in Subjects Aged 4 Years and Older: A Living Laboratory Experience

    Directory of Open Access Journals (Sweden)

    María Carolina Bermúdez Rey

    2017-11-01

    Full Text Available To better understand the various individual factors that contribute to balance and the relation to fall risk, we performed the modified Romberg Test of Standing Balance on Firm and Compliant Support, with 1,174 participants between 4 and 83 years of age. This research was conducted in the Living Laboratory® at the Museum of Science, Boston. We specifically focus on balance test condition 4, in which individuals stand on memory foam with eyes closed, and must rely on their vestibular system; therefore, performance in this balance test condition provides a proxy for vestibular function. We looked for balance variations associated with sex, race/ethnicity, health factors, and age. We found that balance test performance was stable between 10 and 39 years of age, with a slight increase in the failure rate for participants 4–9 years of age, suggesting a period of balance development in younger children. For participants 40 years and older, the balance test failure rate increased progressively with age. Diabetes and obesity are the two main health factors we found associated with poor balance, with test condition 4 failure rates of 57 and 19%, respectively. An increase in the odds of having fallen in the last year was associated with a decrease in the time to failure; once individuals dropped below a time to failure of 10 s, there was a significant 5.5-fold increase in the odds of having fallen in the last 12 months. These data alert us to screen for poor vestibular function in individuals 40 years and older or suffering from diabetes, in order to undertake the necessary diagnostic and rehabilitation measures, with a focus on reducing the morbidity and mortality of falls.

  12. [Clinical value of dynamic posturography in the evaluation and rehabilitation of vestibular function of patients with benign paroxysmal positional vertigo].

    Science.gov (United States)

    Zhang, Dao-gong; Fan, Zhao-min; Han, Yue-chen; Yu, Gang; Wang, Hai-bo

    2010-09-01

    To explore the clinical value of dynamic posturography in the evaluation and rehabilitation of vestibular function of patients with benign paroxysmal positional vertigo (BPPV). A total of 48 patients with BPPV of posterior semicircular canal in vertigo clinic of our hospital from May 2007 to December 2008 were retrospectively analyzed in this study. All patients underwent the inspection of caloric test, static posturography, and dynamic posturography. The vestibular tests were performed at two different time points: at onset when patients had typical nystagmus provoked by the Dix-Hallpike maneuver before treatment with the Epley maneuver (canalith repositioning maneuver, CRM), and at one week after treatment with CRM as their nystagmus disappeared. And results at theses two time points were compared. Eight patients whose dynamic balances were still abnormal after CRM accepted vestibular rehabilitation exercise using dynamic posturography, and re-examined 3 weeks later with dynamic posturography. Among 48 cases of BPPV, the abnormal rates of caloric test, static posturography, and dynamic posturography before CRM were 25.0%, 33.3% and 70.8%, respectively. The abnormal rate of dynamic posturography was much higher than that of caloric test or static posturography, and the differences were statistically significant (χ² = 4.84, 7.88; P 0.05). Eight patients whose dynamic balances were still abnormal after CRM, accepted vestibular rehabilitation exercise lasting 3 weeks using dynamic posturography. The dynamic balances were all improved to normal after vestibular rehabilitation. Dynamic posturography can quantitatively analyze postural balance, and is helpful in comprehensive evaluation of the vestibular function of BPPV patients. Impaired balance often presents in patients with BPPV. Treatment of BPPV using the canalith repositioning maneuver results in improved postural stability in static and dynamic posturography. However, not all patients have normal dynamic

  13. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and

  14. Vestibular migraine

    DEFF Research Database (Denmark)

    Lempert, Thomas; Olesen, Jes; Furman, Joseph

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  15. Neurotransmitters in the vestibular system.

    Science.gov (United States)

    Balaban, C D

    2016-01-01

    Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders. © 2016 Elsevier B.V. All rights reserved.

  16. The development of vestibular system and related function in mammals: Impact of gravity

    Directory of Open Access Journals (Sweden)

    Marc eJamon

    2014-02-01

    Full Text Available This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The Surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this

  17. The development of vestibular system and related functions in mammals: impact of gravity.

    Science.gov (United States)

    Jamon, Marc

    2014-01-01

    This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this dichotomy are discussed.

  18. Função vestibular no acidente vascular cerebral do território carot��deo Vestibular function in carotid territory stroke patients

    Directory of Open Access Journals (Sweden)

    Anna Paula Batista de Ávila Pires

    2013-02-01

    Full Text Available Pacientes após Acidente Vascular Cerebral (AVC podem apresentar sintomas otoneurológicos. OBJETIVO: Avaliar a função vestibular de pacientes com antecedente pessoal de AVC no território carotídeo. Desenho científico: estudo de coorte histórica com corte transversal. MÉTODO: Quarenta pacientes foram submetidos à anamnese, exame otorrinolaringológico, Dizziness Handicap Inventory e vectoeletronistagmografia. RESULTADOS: Anormalidades discretas dos movimentos sacádicos foram encontradas em 20 pacientes (50,0%; nove referiram desequilíbrio e um tontura. O ganho do rastreio pendular foi anormal em 17 casos (42,5%; seis referiram desequilíbrio e um tontura. Preponderância direcional anormal do nistagmoperrotatório ocorreu em dois casos (5,0%, que referiram desequilíbrio. A prova calórica identificou três casos (7,5% com predomínio labiríntico anormal e dois (5,0% com preponderância direcional anormal do nistagmo; os cinco casos relataram desequilíbrio. Dos 11 pacientes que não referiram manifestações de alteração do equilíbrio corporal, 10 apresentaram alterações nos movimentos sacádicos e no rastreio pendular e um apresentou exame vestibular normal. CONCLUSÃO: Pacientes com antecedente pessoal de AVC no território carotídeo podem apresentar tontura ou desequilíbrio corporal e sinais de comprometimento da motilidade ocular e da função vestibular.Stroke patients may present otoneurological symptoms. OBJECTIVE: To assess the vestibular function of subjects with a history of carotid territory stroke. METHOD: This historical cohort cross sectional study enrolled 40 patients; subjects answered the Dizziness Handicap Inventory, were interviewed and submitted to ENT examination and vectorelectronystagmography. RESULTS: Mild saccadic movement anomalies were seen in 20 patients (50.0%; nine complained of imbalance and dizziness. Abnormal smooth pursuit gain was seen in 17 cases (42.5%; six subjects reported imbalance and

  19. Facial nerve function after vestibular schwannoma surgery following failed conservative management

    DEFF Research Database (Denmark)

    Kaltoft, Mikkel; Stangerup, Sven-Eric; Cayé-Thomasen, Per

    2012-01-01

    patients had normal facial nerve function at the end of observation. Good facial nerve outcome was found in 87 % of patients operated at diagnosis, and in 84 % of patients operated after established tumor growth. For the subgroup of small extrameatal tumors this difference was significant. Pooling all...... patients allocated primarily to conservative management, good facial function was found in 97%, which was significantly better than the result for primary operation (87%). CONCLUSION:: Overall, conservative management of small to medium-sized vestibular schwannomas is the best option with regard...... to preservation of the facial nerve function. Tumor growth during observation is found in only a minor proportion of the patients, and in these cases surgery or irradiation should be performed immediately....

  20. Cochlear Nerve Action Potential Monitoring for Preserving Function of an Unseen Cochlear Nerve in Vestibular Schwannoma Surgery.

    Science.gov (United States)

    Ishikawa, Mami; Kojima, Atsuhiro; Terao, Satoshi; Nagai, Mutsumi; Kusaka, Gen; Naritaka, Heiji

    2017-10-01

    Intraoperative monitoring of cochlear nerve action potential (CNAP) has been used in patients with small vestibular schwannoma (<15 mm) to preserve cochlear nerve function. We performed surgery for a larger vestibular schwannoma under CNAP monitoring with the aim of preserving cochlear nerve function, and compared the data with findings from 10 patients with hemifacial spasm who underwent microvascular decompression surgery. We report the case of a patient with a 26-mm vestibular schwannoma and normal hearing function who underwent neurosurgery under electrophysiological monitoring of the facial and cochlear nerves. Amplitudes of evoked facial muscle responses were maintained at approximately 70% during the operation. The latency of wave V on brainstem auditory evoked potential (BAEP) increased by 0.5 ms, and amplitude was maintained at approximately 70% of the value at the beginning of the operation. Latencies of P1, N1, and P2 on CNAP did not change intraoperatively. These latencies were comparable to those of 10 normal patients with hemifacial spasm. CNAP monitoring proved very useful in confirming the location of the cochlear nerve in the operative field and preserving cochlear nerve function. Both facial nerve function and hearing acuity were completely preserved after tumor removal, and wave V latency on BAEP returned to normal and was maintained in the normal range for at least 2 years. CNAP monitoring is extremely useful for preserving the function of the unseen cochlear nerve during vestibular schwannoma surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A meta-analysis of surgical treatment for vestibular schwannoma: is hospital volume related to preservation of facial function?

    Science.gov (United States)

    Hastan, Deniz; Vandenbroucke, Jan P; van der Mey, Andel G L

    2009-10-01

    To investigate the relation between hospital volume and preservation ratios of facial function in surgery for vestibular schwannoma. A meta-analysis was conducted on current literature concerning preservation ratios of facial function after surgical resection of vestibular schwannoma. Studies reported by the House-Brackmann grading system for facial function were searched; all studies were published in English in peer-reviewed journals between 1992 and 2007. Articles had to report 1) patients who had surgery for vestibular schwannoma, 2) House-Brackmann grades for facial function, and 3) calendar time and number of procedures. Standard methods for meta-analysis were adapted. Data were pooled by weighing studies according to their accuracy. Results were sorted for low-, moderate-, and high-volume hospitals. Linear relations were quantified by metaregression analysis (n = 5,560). Findings of this meta-analysis suggest that there is a linear relation between hospital volume and preservation ratio of facial function. The concentration of surgical treatment might be a consideration to optimize clinical outcome. Prospective and nationwide registration of surgical results might contribute to more definitive conclusions regarding outcome of vestibular schwannoma surgery.

  2. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  3. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. VESTIBULAR FUNCTION IN A GROUP OF ADULTS WITH HIV/AIDS ON HAART.

    Science.gov (United States)

    Khoza-Shangase, Katijah

    2018-01-01

    The high prevalence of HIV/AIDS and the established otological manifestations of the disease have important implications for research into vestibular function in this population. The main aim of the current study was to investigate and monitor the vestibular status in a group of adult patients with AIDS receiving Highly Active Antiretroviral Therapy (HAART) and other therapies in a hospital outpatient clinic in Gauteng, South Africa. The study was exploratory and observational in nature, with repeated measures in the form of pre- and post-treatment survey; and a control group. The measures were taken before commencement of antiretroviral therapy (ARVs), three months after initiation of treatment and six months into therapy. A comparison of results of the control group and treatment group was done for all objectives. A total of 150 (104 in the treatment group and 46 in the control group) participants who were recruited through a nonprobability convenience sampling technique were included in the study. All participants were at stage three of HIV/AIDS according to their CD4+ T-cell counts at baseline. Data were analysed through descriptive statistics. Findings from the current study revealed occurrence of acute vertigo which spontaneously resolved in adults with AIDS on HAART over a monitoring period of six months; with this occurrence being higher in participants on HAART than in the control group. The symptoms occurred after diagnosis with HIV and mostly after HAART initiation; and participants who experienced vertigo did not report this to their attending doctor. Furthermore, there was a lack of a relationship between the increasing occurrences of hearing loss in the group to the presentation of vertigo over the six months of monitoring. Findings from the present study which revealed occurrence of possible acute vertigo that spontaneously resolves in adults with AIDS on HAART, over a monitoring period of six months, add to the existing literature on vestibular

  5. Prevalence of abnormalities in vestibular function and balance among HIV-seropositive and HIV-seronegative women and men.

    Directory of Open Access Journals (Sweden)

    Helen S Cohen

    Full Text Available BACKGROUND: Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART. Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. METHODS: Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. RESULTS: No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. CONCLUSION: These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions.

  6. The challenge of vestibular migraine.

    Science.gov (United States)

    Sargent, Eric W

    2013-10-01

    Migraine is a common illness and migraine-related dizziness occurs in up to 3% of the population. Because the diagnosis is controversial and may be difficult, many patients go undiagnosed and untreated. This review summarizes current understanding of the taxonomy and diagnosis of vestibular migraine, the relation of vestibular migraine to labyrinthine disease, and the treatment of the condition in adults and children. The categories of migraine accepted by the International Headache Society do not reflect the complex presentations of patients suspected of having vestibular migraine. In clinical practice and research, criteria are increasingly accepted that divide patients suspected of vestibular migraine into 'definite vestibular migraine' and 'probable vestibular migraine.' Because vertigo itself may trigger migraine, patients with vestibular migraine should be suspected of having vestibular end-organ disease until proven otherwise. Treatment remains controversial because of a notable lack of randomized controlled studies of vestibular migraine treatment. For now, the best strategy for the treatment of suspected vestibular migraine patients is dietary/lifestyle modification, antinausea/antiemetics for acute vertigo, and preventive medication for patients who have continued disruptive symptoms. Patients with vestibular migraine should be monitored regularly for the development of latent audiovestibular end-organ disease.

  7. Intrinsic membrane properties of central vestibular neurons in rodents.

    Science.gov (United States)

    Eugène, Daniel; Idoux, Erwin; Beraneck, Mathieu; Moore, L E; Vidal, Pierre-Paul

    2011-05-01

    Numerous studies in rodents have shown that the functional efficacy of several neurotransmitter receptors and the intrinsic membrane excitability of central vestibular neurons, as well as the organization of synaptic connections within and between vestibular nuclei can be modified during postnatal development, after a lesion of peripheral vestibular organs or in vestibular-deficient mutant animals. This review mainly focuses on the intrinsic membrane properties of neurons of the medial vestibular nuclei of rodents, their postnatal maturation, and changes following experimental or congenital alterations in vestibular inputs. It also presents the concomitant modifications in the distribution of these neurons into different neuron types, which has been based on their membrane properties in relation to their anatomical, biochemical, or functional properties. The main points discussed in this review are that (1) the intrinsic membrane properties can be used to distinguish between two dominant types of neurons, (2) the system remains plastic throughout the whole life of the animal, and finally, (3) the intracellular calcium concentration has a major effect on the intrinsic membrane properties of central vestibular neurons.

  8. Vestibular Evoked Myogenic Potential (VEMP Triggered by Galvanic Vestibular Stimulation (GVS: A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    Directory of Open Access Journals (Sweden)

    Júlia Fonseca de Morais Caporali

    2016-04-01

    Full Text Available Schistosomal myeloradiculopathy (SMR, the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP triggered by galvanic vestibular stimulation (GVS is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR.A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL and the medium-latency (ML components of the biphasic EMG wave.VEMP showed the components SL (p = 0.001 and ML (p<0.001 delayed in SMR compared to controls. The delay of SL (p = 0.010 and of ML (p = 0.020 was associated with gait dysfunction.VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  9. Vestibular perception following acute unilateral vestibular lesions.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Little is known about the vestibulo-perceptual (VP system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO and VP function in 25 patients with vestibular neuritis (VN acutely (2 days after onset and after compensation (recovery phase, 10 weeks. Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2 and velocity steps of 90°/s (acceleration 180°/s(2. We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of

  10. Longitudinal performance of an implantable vestibular prosthesis.

    Science.gov (United States)

    Phillips, Christopher; Ling, Leo; Oxford, Trey; Nowack, Amy; Nie, Kaibao; Rubinstein, Jay T; Phillips, James O

    2015-04-01

    Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  12. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis

    Directory of Open Access Journals (Sweden)

    Vincenzo De Cicco

    2018-01-01

    Full Text Available It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS which includes the noradrenergic locus coeruleus (LC neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1 affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2 are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.

  13. [The effects of support-proprioceptive deprivation on visual-manual tracking and vestibular function].

    Science.gov (United States)

    Kornilova, L N; Naumov, I A; Glukhikh, D O; Khabarova, E V; Kozlovskaia, I B

    2013-01-01

    To determine the effects of support and proprioceptive afferentation on characteristics of the visual-manual tracking (VMT) we used a model of weightlessness - horizontal "dry" immersion. Altogether 30 subjects who stayed in immersion bath from 5 to 7 days were examined to evaluate the accuracy of VMT in tasks to pursue the jerky (saccadically) and smooth (linear, pendular and circular) movement of a point visual stimulus. Examinations were performed before, during and after immersion using electrooculography (to record eye movements) and a joystick (to record hand movements) with a biological visual feedback - one of the two visible stimuli on the screen matched the current angle of the joystick handle. Computerized visual stimulation programs were presented to subject using a virtual reality glasses. We analyzed time, amplitude and velocity characteristics of the visual and manual tracking (VT and MT), including efficiency ratio (eVT and eMT) and gain (gVT and gMT) as ratios of respectively amplitudes and velocities of eyes/hand movements to the stimulus movement. eVT was significantly decreased in comparison with baseline all the time while subject lied in the immersion bath and until R+4 day after immersion, eMT was significantly decreased only on I-1 and I-3 days in immersion. gVT significantly differed from baseline only on I-3 and I-6 days in immersion and R + 1 day after immersion. We found no significant changes in gMT. Evaluations of the vestibular function (VF) were performed before and after immersion using videooculography approach. We analyzed statical torsional otolith-cervical-ocular reflex (OCOR), dynamical vestibular-cervical-ocular reactions (VCOR), spontaneous eye movements (SpEM), the accuracy of perception of subjective visual vertical (SVV). After immersion 47% of subjects had significant decrease of OCOR with a simultaneous significant increase of VCOR on 37% of subjects as well as significant changes in accuracy of perception of SVV which

  14. Common Vestibular Disorders

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Balatsouras

    2017-01-01

    Full Text Available The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV, Meniere's disease (MD and vestibular neuritis (VN, are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the development of appropriate therapeutic maneuvers resulted in its effective treatment. However, involvement of the horizontal or the anterior canal has been found in a significant rate and the recognition and treatment of these variants completed the clinical picture of the disease. MD is a chronic condition characterized by episodic attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure and a progressive loss of audiovestibular functions. Presence of endolymphatic hydrops on postmortem examination is its pathologic correlate. MD continues to be a diagnostic and therapeutic challenge. Patients with the disease range from minimally symptomatic, highly functional individuals to severely affected, disabled patients. Current management strategies are designed to control the acute and recurrent vestibulopathy but offer minimal remedy for the progressive cochlear dysfunction. VN is the most common cause of acute spontaneous vertigo, attributed to acute unilateral loss of vestibular function. Key signs and symptoms are an acute onset of spinning vertigo, postural imbalance and nausea as well as a horizontal rotatory nystagmus beating towards the non-affected side, a pathological headimpulse test and no evidence for central vestibular or ocular motor dysfunction. Vestibular neuritis preferentially involves the superior vestibular labyrinth and its afferents. Symptomatic medication is indicated only during the acute phase to relieve the vertigo and nausea

  15. Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance.

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2017-01-01

    The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research.

  16. Neuropharmacology of Vestibular System Disorders

    OpenAIRE

    Soto, Enrique; Vega, Rosario

    2010-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in...

  17. Using Low Levels of Stochastic Vestibular Stimulation to Improve Balance Function.

    Directory of Open Access Journals (Sweden)

    Rahul Goel

    Full Text Available Low-level stochastic vestibular stimulation (SVS has been associated with improved postural responses in the medio-lateral (ML direction, but its effect in improving balance function in both the ML and anterior-posterior (AP directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0-30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45 subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100-500 μA for all the three directions, exhibiting stochastic resonance (SR phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson's disease or in astronauts returning from long-duration space flight.

  18. Is Vestibular Neuritis an Immune Related Vestibular Neuropathy Inducing Vertigo?

    Directory of Open Access Journals (Sweden)

    A. Greco

    2014-01-01

    Full Text Available Objectives. To review the current knowledge of the aetiology of vestibular neuritis including viral infections, vascular occlusion, and immunomediated mechanisms and to discuss the pathogenesis with relevance to pharmacotherapy. Systematic Review Methodology. Relevant publications on the aetiology and treatment of vestibular neuritis from 1909 to 2013 were analysed. Results and Conclusions. Vestibular neuritis is the second most common cause of peripheral vestibular vertigo and is due to a sudden unilateral loss of vestibular function. Vestibular neuronitis is a disorder thought to represent the vestibular-nerve equivalent of sudden sensorineural hearing loss. Histopathological studies of patients who died from unrelated clinical problems have demonstrated degeneration of the superior vestibular nerve. The characteristic signs and symptoms include sudden and prolonged vertigo, the absence of auditory symptoms, and the absence of other neurological symptoms. The aetiology and pathogenesis of the condition remain unknown. Proposed theories of causation include viral infections, vascular occlusion, and immunomediated mechanisms. The management of vestibular neuritis involves symptomatic treatment with antivertiginous drugs, causal treatment with corticosteroids, and physical therapy. Antiviral agents did not improve the outcomes.

  19. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  20. Correlação entre equilíbrio corporal e capacidade funcional de idosos com disfunções vestibulares crônicas Correlation between the body balance and functional capacity from elderly with chronic vestibular disorders

    Directory of Open Access Journals (Sweden)

    Raquel Ferreira de Sousa

    2011-12-01

    Full Text Available As doenças vestibulares são frequentes na população idosa, resultando, principalmente, em tontura e desequilíbrio corporal, sintomas que podem prejudicar as atividades de vida diária. OBJETIVO: Estudar a correlação entre equilíbrio corporal e a capacidade funcional e a comparação entre risco de queda, ocorrência de queda e a capacidade funcional de idosos com disfunções vestibulares crônicas. MATERIAL E MÉTODO: Forma de estudo transversal, clínico e experimental com 50 idosos, de 60 a 86 anos, com vestibulopatias periféricas crônicas. Estes idosos foram submetidos à avaliação do equilíbrio por meio do Dynamic Gait Index (DGI e à avaliação da capacidade funcional, por meio da Medida de Independência Funcional (MIF. Os dados obtidos foram submetidos ao teste de correlação de Spearman e aos de comparação de Mann-Whitney e Kruskal-Wallis, sendo considerado α=5% (0,05. RESULTADOS: Verificou-se correlação positiva entre o escore total do DGI e todas as pontuações da MIF, especialmente a MIF total (r=0,447; pVestibular disorders are common among the elderly, mainly resulting in dizziness and imbalance - symptoms which can impact daily routine activities. AIM: To study the correlation between body balance and functional capacity and a comparison of risk of falls, actual falls and the functional capacity of the elderly with chronic vestibular dysfunctions. MATERIALS AND METHODS: A cross-sectional, clinical and experimental study with 50 senior citizens - 60 to 86 years, with chronic peripheral vestibular dysfunction. These participants underwent body balance assessment by the Dynamic Gait Index (DGI and functional capacity assessment by the Functional Independence Measure (FIM. The data was tested using the Spearman correlation and comparison tests, Mann-Whitney and Kruskal- Wallis, being α=5% (0.05. RESULTS: There was a significant correlation between the total DGI score and all FIM scores, especially the total score

  1. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction.

    Science.gov (United States)

    Hillier, Susan L; McDonnell, Michelle

    2011-02-16

    This is an update of a Cochrane Review first published in The Cochrane Library in Issue 4, 2007.Unilateral peripheral vestibular dysfunction (UPVD) can occur as a result of disease, trauma or postoperatively. The dysfunction is characterised by complaints of dizziness, visual or gaze disturbances and balance impairment. Current management includes medication, physical manoeuvres and exercise regimes, the latter known collectively as vestibular rehabilitation (VR). To assess the effectiveness of vestibular rehabilitation in the adult, community-dwelling population of people with symptomatic unilateral peripheral vestibular dysfunction. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; ISRCTN and additional sources for published and unpublished trials. The most recent search was 1 July 2010, following a previous search in March 2007. Randomised trials of adults living in the community, diagnosed with symptomatic unilateral peripheral vestibular dysfunction. We sought comparisons of VR versus control (placebo etc.), other treatment (non-VR, e.g. pharmacological) or another form of VR. We considered the outcome measures of frequency and severity of dizziness or visual disturbance; changes in balance impairment, function or quality of life; and measure/s of physiological status with known functional correlation. Both authors independently extracted data and assessed trials for risk of bias. We included 27 trials, involving 1668 participants, in the review. Trials addressed the effectiveness of VR against control/sham interventions, medical interventions or other forms of VR. Individual and pooled data showed a statistically significant effect in favour of VR over control or no intervention. The exception to this was when movement-based VR was compared to physical manoeuvres for benign

  2. Children with attention deficit hyperactivity disorder have impaired balance function: involvement of somatosensory, visual, and vestibular systems.

    Science.gov (United States)

    Shum, Selina B M; Pang, Marco Y C

    2009-08-01

    To compare standing balance performance and sensory organization of balance control in children with attention deficit hyperactivity disorder (combined type) (ADHD-C) and typically developing children. School-aged children (n = 43) with ADHD-C and 50 age- and sex-matched typically developing children participated in the study. Sensory organization of standing balance was evaluated using the Sensory Organization Test (SOT). In addition to the composite equilibrium score, somatosensory, vestibular, and visual ratios, which were indicators of the ability of the child to use information from the respective sensory systems to maintain balance, were computed. Multivariate analysis of covariance (MANCOVA) was used to compare the outcome variables between the 2 groups while controlling for physical activity level. MANCOVA revealed that children with ADHD-C had significantly lower composite equilibrium scores (P visual ratios (P = .001) than control children, by 10.3%, 2.1%, 15.6%, and 16.0%, respectively. Children with ADHD-C had significant deficits in standing balance performance in all conditions that included a disruption of sensory signals. The visual system tends to be more involved in contributing to the balance deficits in children with ADHD-C than the somatosensory and vestibular systems.

  3. The Use of Computer-Assisted Home Exercises to Preserve Physical Function after a Vestibular Rehabilitation Program: A Randomized Controlled Study

    DEFF Research Database (Denmark)

    Brandt, Michael Smærup; Læssøe, Uffe; Grönvall, Erik

    2016-01-01

    Objective. The purpose of this study was to evaluate whether elderly patients with vestibular dysfunction are able to preserve physical functional level, reduction in dizziness, and the patient's quality of life when assistive computer technology is used in comparison with printed instructions...... their high functional level indicating that the elderly should not necessarily exercise for the first three months after termination of the training in the outpatient clinic. Conclusion. Elderly vestibular dysfunction patients exercising at home seem to maintain their functional level, level of dizziness...

  4. Complex vestibular macular anatomical relationships need a synthetic approach

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Mammalian vestibular maculae are anatomically organized for complex parallel processing of linear acceleration information. Anatomical findings in rat maculae are provided in order to underscore this complexity, which is little understood functionally. This report emphasizes that a synthetic approach is critical to understanding how maculae function and the kind of information they conduct to the brain.

  5. A low-cost video-oculography system for vestibular function testing.

    Science.gov (United States)

    Jihwan Park; Youngsun Kong; Yunyoung Nam

    2017-07-01

    In order to remain in focus during head movements, vestibular-ocular reflex causes eyes to move in the opposite direction to head movement. Disorders of vestibular system decrease vision, causing abnormal nystagmus and dizziness. To diagnose abnormal nystagmus, various studies have been reported including the use of rotating chair tests and videonystagmography. However, these tests are unsuitable for home use due to their high costs. Thus, a low-cost video-oculography system is necessary to obtain clinical features at home. In this paper, we present a low-cost video-oculography system using an infrared camera and Raspberry Pi board for tracking the pupils and evaluating a vestibular system. Horizontal eye movement is derived from video data obtained from an infrared camera and infrared light-emitting diodes, and the velocity of head rotation is obtained from a gyroscope sensor. Each pupil was extracted using a morphology operation and a contour detection method. Rotatory chair tests were conducted with our developed device. To evaluate our system, gain, asymmetry, and phase were measured and compared with System 2000. The average IQR errors of gain, phase and asymmetry were 0.81, 2.74 and 17.35, respectively. We showed that our system is able to measure clinical features.

  6. The Effect of Otic Melanocyte Destruction on Auditory and Vestibular Function: a Study on Vitiligo Patients

    Directory of Open Access Journals (Sweden)

    Parvane Mahdi

    2016-03-01

    Full Text Available The hallmark of vitiligo is the disappearance of melanocytes from the skin. As a result, of melanocytes presence in the auditory and vestibular apparatus, the involvement of these systems in vitiligo which targets the melanocytes of the whole body is possible; suggesting that vitiligo is a systemic disease rather than a purely cutaneous problem. A total of 21 patients with vitiligo were enrolled in this study. A group of 20 healthy subjects served as a control group. Pure tone audiometry (PTA, auditory brainstem responses (ABR and vestibular evoked myogenic potentials (VEMP were carried out in all participants. High frequency sensory neural hearing loss was seen in 8 (38.09% patients. ABR analysis revealed 10 (47.61% had an abnormal increase in latency of wave III, and 6 (28.57% had an abnormal prolongation of IPL I-III, however, regarding our VEMP findings, there were no recorded responses on left ear of 1 (4.76% patient and latency of p13 was prolonged in 5(23.80% patients. There was no correlation between ages, duration of disease, and any of the recorded parameters (P>0.05. In the present survey, we highlighted the auditory and vestibular involvement in vitiligo patients.

  7. Fatores associados ao equilíbrio funcional em idosos com disfunção vestibular crônica Functional balance associated factors in the elderly with chronic vestibular disorder

    Directory of Open Access Journals (Sweden)

    Juliana Maria Gazzola

    2006-10-01

    Full Text Available Tarefas do dia-a-dia podem ser muito desafiadoras para o equilíbrio do idoso. OBJETIVO: Verificar a associação entre equilíbrio funcional, avaliado pela Berg Balance Scale (BBS e os dados sociodemográficos, clínicos e de mobilidade (Timed up and go test - TUGT, Dynamic Gait Index - DGI em idosos vestibulopatas crônicos. MATERIAL E MÉTODO: Estudo de casos com 120 idosos com diagnóstico de disfunção vestibular crônica. Foram utilizados os testes de Mann-Whitney, Kruskal-Wallis seguido do teste de Dunn e Coeficiente de Correlação de Spearman. RESULTADOS: Ocorreram associações =-0,354; e correlações significantes entre a pontuação total da BBS e idade (pDaily activities can be challenging for the elderly. AIM: To study the association between functional balance, evaluated by the Berg Balance Scale (BBS, sociodemographics, clinical and mobilility (Timed up and go test - TUGT, Dynamic Gait Index - DGI variables in the elderly with chronic vestibular disorder. MATERIALS AND METHODS: A series study with one hundred and twenty elderly with chronic vestibular disorder. We performed the Mann-Whitney test, the Kruskal-Wallis test followed by Dunn test and the Spearman Coefficient (. RESULTS: Statistically significant associations and correlations were observed between total BBS score and age (=-0.354; p<0.001, age group (p<0.001, number off illnesses (p=0.030, number of illnesses (=-0.287; p=0.001, number of medications (p=0.014, number of medications (=-0.274; p=0.002, recurrent falls (p=0.010, tendency to fall (p=0.002, topographic diagnosis of central vestibular disorder (p<0.001 and periodicity of dizziness (p=0.039, TUGT (=-0.709; p<0.001 and DGI (=-0.748; p<0.001. CONCLUSIONS: Functional balance in the elderly with chronic vestibular disorders evaluated by the BBS is worse when associated with aging, with a more advanced age group (80 years or more, increasing number of illnesses, presence of five or more

  8. Vestibular compensation following vestibular neurotomy.

    Science.gov (United States)

    Devèze, A; Montava, M; Lopez, C; Lacour, M; Magnan, J; Borel, L

    2015-09-01

    Four studies assessing vestibular compensation in Menière's disease patients undergoing unilateral vestibular neurotomy, using different analysis methods, are reviewed, with a focus on the different strategies used by patients according to their preoperative sensory preference. Four prospective studies performed in a university tertiary referral center were reviewed, measuring the pattern of vestibular compensation in Menière's disease patients before and after unilateral vestibular neurotomy on various assessment protocols: postural syndrome assessed on static posturography and gait analysis; perceptual syndrome assessed on subjective visual vertical perception; and oculomotor syndrome assessed on ocular cyclotorsion. Vestibular compensation occurred at variable intervals depending on the parameter investigated. Open-eye postural control and gait/walking returned to normal one month after neurotomy. Fine balance analysis found that visual perception of the vertical and ocular cyclotorsion impairment persisted at long-term follow-up. Clinical postural disturbance persisted only when visual afferents were cut off (eyes closed). These impairments were the expression of a postoperative change in postural strategy related to the new use of visual and non-visual references. Understanding pre-operative interindividual variation in balance strategy is critical to screening for postural instability and tailoring vestibular rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Vestibular pathways involved in cognition

    Directory of Open Access Journals (Sweden)

    Martin eHitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the vestibular cortical projections areas, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  10. Latent nystagmus: vestibular nystagmus with a twist.

    Science.gov (United States)

    Brodsky, Michael C; Tusa, Ronald J

    2004-02-01

    Latent nystagmus is a horizontal binocular oscillation that is evoked by unequal visual input to the 2 eyes. It develops primarily in humans with congenital esotropia. To investigate the interrelationship between latent and peripheral vestibular nystagmus and their corollary neuroanatomical pathways. Examination of subcortical neuroanatomical pathways producing latent nystagmus and review of the neurophysiological mechanisms by which they become activated in congenital esotropia. The vestibular nucleus presides over motion input from the eyes and labyrinths. Latent nystagmus corresponds to the optokinetic component of ocular rotation that is driven monocularly by nasal optic flow during a turning movement of the body in lateral-eyed animals. Congenital esotropia alters visual pathway development from the visual cortex to subcortical centers that project to the vestibular nucleus, allowing this primitive subcortical motion detection system to generate latent nystagmus under conditions of monocular fixation. Latent nystagmus is the ocular counterpart of peripheral vestibular nystagmus. Its clinical expression in humans proclaims the evolutionary function of the eyes as sensory balance organs.

  11. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    Science.gov (United States)

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  12. Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    Karim, H T; Fuhrman, S I; Furman, J M; Huppert, T J

    2013-08-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive and portable neuroimaging technique. The method uses non-ionizing laser light in the range of red to near-infrared to detect changes in cerebral blood oxygenation. In this study, we used fNIRS to investigate cortical hemodynamic changes in the temporo-parietal and frontal regions during caloric vestibular stimulation. Caloric stimulation has previously been investigated using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which serves as a validation of the fNIRS imaging modality toward the measurement of vestibular related brain regions. To date, only a single study has used fNIRS during caloric irrigations, which observed blood volume changes in the temporal-parietal area in healthy younger subjects. In this current study, fNIRS was used to measure cortical vestibular activation in 10 right-handed younger subjects (5 male and 5 female, age 25+/-6 years) and 10 right-handed older subjects (6 male and 4 female, age 74+/-5 years). We investigated both warm (44 °C) and cool (30 °C) unilateral caloric vestibular stimulation. Consistent with previous reports, we found that warm (44 °C) caloric irrigation caused a bilateral activation. In addition, we found that cool (30 °C) caloric irrigation caused contralateral activation of the temporo-parietal area. This study is the first to investigate age effects of the caloric stimulation on brain activity. We found that the older subjects had stronger bilateral effects than the younger subjects. Our results confirm previous fMRI and PET studies that showed cortical activation during caloric vestibular irrigation is dependent on side of irrigation, and temperature of irrigation. Furthermore, our results demonstrate that fNIRS is a viable technique in measuring cortical effects during vestibular tasks. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The cognitive neurology of the vestibular system.

    Science.gov (United States)

    Seemungal, Barry M

    2014-02-01

    The aim is to reappraise the current state about what we know of vestibular cognition. The review focuses on cognition and perception, and hence the stress on human studies. In addition, the cerebral cortex is the main but not exclusive brain region of interest. There is a brief mention of vestibular ocular function if only to demonstrate the differential processing between reflex and perception. The effect of vestibular activation on some aspects of cognition, for example neglect, is not reviewed, as there have been no recent landmark findings in this area. The vestibular cerebellum is pivotal in the differential gating of vestibular perceptual and ocular signals to the cerebral cortex. The neuroanatomical correlates mediating vestibular sensations of self-motion ('am I moving?') and spatial orientation ('where am I now?') are distinct. Vestibular-motion perception is supported by a widespread white matter network. Vestibular activation specifically reduces visual motion cortical excitability, whereas other visual cortical regions show an increase in excitability. As the vestibular ocular reflex (VOR) and self-motion perception can be uncoupled both behaviourally and in neural correlate, deficits underlying vestibular patients' symptoms may not be revealed by simple VOR assessment. Given the pivotal cerebellar role in gating vestibular signals to perceptual regions, modulating mechanisms of cerebellar plasticity, for example by combining training with medication or brain stimulation, may prove fruitful in treating the symptoms of chronic dizzy patients.

  14. Vestibular rehabilitation outcomes in the elderly with chronic vestibular dysfunction.

    Science.gov (United States)

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-11-01

    Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction.

  15. [Effectiveness of Self-efficacy Promoting Vestibular Rehabilitation Program for Patients with Vestibular Hypofunction].

    Science.gov (United States)

    Lee, Hyun Jung; Choi-Kwon, Smi

    2016-10-01

    In this study an examination was done of the effect of self-efficacy promoting vestibular rehabilitation (S-VR) on dizziness, exercise selfefficacy, adherence to vestibular rehabilitation (VR), subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness in patients with vestibular hypofunction. This was a randomized controlled study. Data were collected 3 times at baseline, 4 and 8 weeks after beginning the intervention. Outcome measures were level of dizziness, exercise self-efficacy, and level of adherence to VR. Subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness were also obtained. Data were analyzed using Windows SPSS 21.0 program. After 4 weeks of S-VR, there was no difference between the groups for dizziness, subjective and objective vestibular functions. However, exercise self-efficacy and adherence to VR were higher in the experimental group than in the control group. After 8 weeks of S-VR, dizziness (p=.018) exercise self-efficacy (pVR (pVR is effective in reducing dizziness, and improving exercise self-efficacy, subjective vestibular function and adherence to VR. Objective vestibular function and vestibular compensation were also improved in the experimental group at the end of 8 weeks of S-VR.

  16. Click-evoked responses in vestibular afferents in rats

    National Research Council Canada - National Science Library

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Mustain, William; Xu, Youguo; Zhou, Wu

    2011-01-01

    Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles...

  17. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains.

    Science.gov (United States)

    Jones, Sherri M; Jones, Timothy A

    2014-03-01

    A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease. American Academy of Audiology.

  18. Neural response in vestibular organ of Helix aspersa to centrifugation and re-adaptation to normal gravity.

    Science.gov (United States)

    Popova, Yekaterina; Boyle, Richard

    2015-07-01

    Gravity plays a key role in shaping the vestibular sensitivity (VS) of terrestrial organisms. We studied VS changes in the statocyst of the gastropod Helix aspersa immediately after 4-, 16-, and 32-day exposures to a 1.4G hypergravic field or following a 7-day recovery period. In the same animals we measured latencies of behavioral "negative gravitaxis" responses to a head-down pitch before and after centrifugation and found significant delays after 16- and 32-day runs. In an isolated neural preparation we recorded the electrophysiological responses of the statocyst nerve to static tilt (±19°) and sinusoids (±12°; 0.1 Hz). Spike sorting software was used to separate individual sensory cells' patterns out of a common trace. In correspondence with behavior we observed a VS decrease in animals after 16- (p < 0.05) and 32-day (p < 0.01) centrifugations. These findings reveal the capability of statoreceptors to adjust their sensitivity in response to a prolonged change in the force of gravity. Interestingly, background discharge rate increased after 16 and 32 days in hypergravity and continued to rise through the recovery period. This result indicates that adaptive mechanisms to novel gravity levels were long lasting, and re-adaptation from hypergravity is a more complex process than just "return to normal".

  19. Pharmacology of the vestibular system.

    Science.gov (United States)

    Smith, P F

    2000-02-01

    In the past year significant advances have been made in our understanding of the neurochemistry and neuropharmacology of the peripheral and central vestibular systems. The recognition of the central importance of excitatory amino acids and their receptors at the level of the hair cells, vestibular nerve and vestibular nucleus has progressed further, and the role of nitric oxide in relation to activation of the N-methyl-D-aspartate receptor subtype is becoming increasingly clear. Increasing evidence suggests that excessive N-methyl-D-aspartate receptor activation and nitric oxide production after exposure to aminoglycoside antibiotics is a critical part of hair cell death, and new pharmacological strategies for preventing aminoglycoside ototoxicity are emerging as a result. Conversely, the use of aminoglycosides to lesion the peripheral vestibular system in the treatment of Meniere's disease has been studied intensively. In the vestibular nucleus, new studies suggest the importance of opioid, nociceptin and glucocorticoid receptors in the control of vestibular reflex function. Finally, the mechanisms of action and optimal use of antihistamines in the treatment of vestibular disorders has also received a great deal of attention.

  20. Análise funcional da laringe pós-cordectomia, reconstruída com retalho de prega vestibular Functional analysis of post-cordectomy larynx reconstructed with vestibular fold flap

    Directory of Open Access Journals (Sweden)

    Hilton Ricz

    2004-12-01

    édio de 1,11% e shimmer de 7,04%. Pela escala GRBAS, um paciente apresentou voz normal e 4 tiveram disfonia discreta. CONCLUSÕES: A reconstrução laríngea pós-cordectomia realizada com o retalho da prega vestibular tornou possível emissão de voz normal (freqüência fundamental 205 Hz, jitter 0,13%, shimmer 1,16%, proporcionando coaptação completa em 30% dos casos, fonte sonora vibrátil na região glótica em 70% e participação do retalho como estrutura vibrátil em 90%, além de preservar as funções laríngeas de respiração e proteção das vias aéreas durante a deglutição.Several reports of techniques for larynx reconstruction after partial vertical laryngectomy are available in the literature, some of them using structures of the larynx itself such as the vestibular fold, but few have emphasized analysis of laryngeal function after reconstruction. Thus, the objective of the present study was to assess laryngeal function in patients submitted to total or complete cordectomy (type IV followed by reconstruction with vestibular fold flap. STUDY DESIGN: Cohort transversal. MATERIAL AND METHODS: Ten patients, nine males and one female aged 45 to 75 years (mean age: 64.5 years, with glottis carcinomas treated by total or complete cordectomy (type IV and reconstructed with vestibular fold flap were submitted to videolaryngostroboscopy for assessment of laryngeal permeability, flap positioning, laryngeal closure, arytenoid movement, characteristics of speech sound source (vibrating or frictional and, when the source was vibrating, location and structures of the sound source. Voice quality was evaluated by perceptual acoustic assessment and by objective computer analysis. The function of lower airway protection during swallowing was analyzed by endoscopic evaluation of swallowing. RESULTS: There was no need to maintain tracheostomy during the late postoperative period since the reconstructed laryngeal lumen remained pervious. The function of airway protection

  1. Vestibular Stimulation for Stress Management in Students.

    Science.gov (United States)

    Kumar, Sai Sailesh; Rajagopalan, Archana; Mukkadan, Joseph Kurien

    2016-02-01

    Although several methods are developed to alleviate stress among college students, logistic limitations in adopting them have limited their utility. Hence, we aimed to test a very practical approach to alleviate stress among college students by achieving vestibular stimulation using swings. In this study 60 male and female participants were randomly assigned into vestibular stimulation or control groups. Depression, anxiety, stress scores, sleep quality, heart rate, blood pressure, Autonomic functions, respiratory, haematological, cognitive function, Quality of life were recorded before and after 1(st), 7(th), 14(th), 21(st), 28(th) days of vestibular stimulation. STAI S and STAI T scores were significantly improved on day 28(th) following vestibular stimulation. Diastolic and mean arterial blood pressure were significantly decreased and remained within normal limits in vestibular group on day 28(th) following vestibular stimulation. Postural fall in blood pressure was significantly improved on day 14 onwards, following vestibular stimulation. Respiratory rate was significantly improved on day 7 onwards, following vestibular stimulation. PSQI sleep disturbance, PSQI sleep latency, PSQI total score and bleeding time was significantly improved following vestibular stimulation. Our study supports the adoption of vestibular stimulation for stress management. Hence, placement of swings in college campuses must be considered, which may be a simple approach to alleviate stress among college students.

  2. Extending the Functional Cerebral Systems Theory of Emotion to the Vestibular Modality: A Systematic and Integrative Approach

    Science.gov (United States)

    Carmona, Joseph E.; Holland, Alissa K.; Harrison, David W.

    2009-01-01

    Throughout history, vestibular and emotional dysregulation have often manifested together in clinical settings, with little consideration that they may have a common basis. Regarding vestibular mechanisms, the role of brainstem and cerebellar structures has been emphasized in the neurological literature, whereas emotion processing in the cerebral…

  3. Vestibular Contributions to Human Memory

    OpenAIRE

    Smith, Laura; N/A,

    2017-01-01

    The vestibular system is an ancient structure which supports the detection and control of self-motion. The pervasiveness of this sensory system is evidenced by the diversity of its anatomical projections and the profound impact it has on a range of higher level functions, particularly spatial memory. The aim of this thesis was to better characterise the association between the vestibular system and human memory; while many studies have explored this association from a biological perspective f...

  4. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].

    Science.gov (United States)

    Stolbkov, Iu K; Gerasimenko, Iu P

    2014-06-01

    Locomotion is the most important mode of our movement in space. The role of the vestibular system during human locomotion is not well studied, mainly due to problems associated with its isolation stimulation. It is difficult to stimulate this system in isolation during locomotion because the real movement of the head to activate the vestibular end-organs inevitably leads to the activation of other sensory inputs. Galvanic stimulation is not a natural way to stimulate the vestibular system, but it has the advantage providing an isolated stimulation of the vestibular inputs. This technique is relatively novel in the examination of vestibular contributions during human locomotion. In our review we consider the current data regarding the effect of vestibular signals on human locomotion by using galvanic vestibular stimulation.

  5. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Directory of Open Access Journals (Sweden)

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  6. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study.

    Science.gov (United States)

    Brugnera, Cibele; Bittar, Roseli Saraiva Moreira; Greters, Mário Edvin; Basta, Dietmar

    2015-01-01

    Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR). To evaluate the effectiveness of Vertiguard™ biofeedback equipment as a sensory substitution (SS) of the vestibular system in patients who did not obtain sufficient improvement from VR. This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG), which received the vibrotactile stimulus from Vertiguard™ for ten days, and a control group (CG), which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT) protocol of the Computerized Dynamic Posturography (CDP) and two scales of balance self-perception, Activities-specific Balance Confidence (ABC) and Dizziness Handicap Inventory (DHI), were used. After treatment, only the SG showed statistically significant improvement in C5 (p=0.007) and C6 (p=0.01). On the ABC scale, there was a significant difference in the SG (p=0.04). The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p=0.04). The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard™ system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. The intravestibular source of the vestibular aqueduct. II: its structure and function clarified by a developmental study of the intra-skeletal channels of the otic capsule.

    Science.gov (United States)

    Michaels, Leslie; Soucek, Sava; Linthicum, Fred

    2010-04-01

    A developmental histologic study of the otic capsule indicates that it grows a system of lamellar bone with abundant interconnecting intraosseous channels. These include the 'cartilage canals' in the cartilage model, the chondro-osseous and Haversian-like (Volkmann's) canals in the ossified otic capsule, the fissula ante fenestram, which seems to function as a lifelong manufacturer of the latter two channels, and the inner layer (vestibular arch) of the vestibular aqueduct, which is a complex series of Volkmann's canals and microcanals. Chemical changes, possibly produced by breakdown of cells within the channels, may provide a homeostatic environment for the functions of hearing and balance that take place in the endolymphatic fluid. We studied the development of the otic capsule to clarify the cellular appearances that we had previously described in the normal vestibular arch and the changes in that structure in Ménière's disease. Step sections from 84 temporal bones, including those from fetuses, children and adults from a variety of ages were examined histologically. Cartilage canals, bringing blood vessels and mesenchymal cells from perichondrium to the depths of the cartilage model to mediate ossification, are found early in fetal life and disappear when ossification is complete at about 24 weeks. The otic capsule is formed of chondro-osseous canals, which are composed of trabeculae of mineralized cartilage lacunae containing mesenchymal cells that undergo ossification (globuli ossei); also Volkmann's canals (like Haversian canals in long bones but multidirectional), which are produced from osteoblasts. The lumina of the latter frequently link up with chondro-osseous canals. Lamellar bone forms the background of the otic capsule. The fissula ante fenestram is present from early in the cartilage model and then throughout life. It appears to mediate bone production and the new formation of chondro-osseous channels and Volkmann's canals. The internal layer of

  8. Neuropharmacology of vestibular system disorders.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario

    2010-03-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and drug mechanisms of action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulator receptors and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. A critical review of the pharmacology and highlights of the major advances are discussed in each case.

  9. Plasticity during vestibular compensation: the role of saccades

    Directory of Open Access Journals (Sweden)

    Hamish Gavin MacDougall

    2012-02-01

    Full Text Available This paper is focussed on one major aspect of compensation: the recent behavioural findings concerning oculomotor responses in human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL. New measurement techniques have provided new insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during natural head movements. The present evidence is that there is little or no recovery of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. It may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss. Some patients do learn new strategies, new behaviours, to conceal their inadequate VOR but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, their vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation.

  10. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c.

    Science.gov (United States)

    Pan, Bifeng; Askew, Charles; Galvin, Alice; Heman-Ackah, Selena; Asai, Yukako; Indzhykulian, Artur A; Jodelka, Francine M; Hastings, Michelle L; Lentz, Jennifer J; Vandenberghe, Luk H; Holt, Jeffrey R; Géléoc, Gwenaëlle S

    2017-03-01

    Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.

  11. Vestibular insights into cognition and psychiatry.

    Science.gov (United States)

    Gurvich, Caroline; Maller, Jerome J; Lithgow, Brian; Haghgooie, Saman; Kulkarni, Jayashri

    2013-11-06

    The vestibular system has traditionally been thought of as a balance apparatus; however, accumulating research suggests an association between vestibular function and psychiatric and cognitive symptoms, even when balance is measurably unaffected. There are several brain regions that are implicated in both vestibular pathways and psychiatric disorders. The present review examines the anatomical associations between the vestibular system and various psychiatric disorders. Despite the lack of direct evidence for vestibular pathology in the key psychiatric disorders selected for this review, there is a substantial body of literature implicating the vestibular system in each of the selected psychiatric disorders. The second part of this review provides complimentary evidence showing the link between vestibular dysfunction and vestibular stimulation upon cognitive and psychiatric symptoms. In summary, emerging research suggests the vestibular system can be considered a potential window for exploring brain function beyond that of maintenance of balance, and into areas of cognitive, affective and psychiatric symptomology. Given the paucity of biological and diagnostic markers in psychiatry, novel avenues to explore brain function in psychiatric disorders are of particular interest and warrant further exploration. © 2013 Elsevier B.V. All rights reserved.

  12. Eye movements in vestibular disorders.

    Science.gov (United States)

    Kheradmand, A; Colpak, A I; Zee, D S

    2016-01-01

    The differential diagnosis of patients with vestibular symptoms usually begins with the question: is the lesion central or is it peripheral? The answer commonly emerges from a careful examination of eye movements, especially when the lesion is located in otherwise clinically silent areas of the brain such as the vestibular portions of the cerebellum (flocculus, paraflocculus which is called the tonsils in humans, nodulus, and uvula) and the vestibular nuclei as well as immediately adjacent areas (the perihypoglossal nuclei and the paramedian nuclei and tracts). The neural circuitry that controls vestibular eye movements is intertwined with a larger network within the brainstem and cerebellum that also controls other types of conjugate eye movements. These include saccades and pursuit as well as the mechanisms that enable steady fixation, both straight ahead and in eccentric gaze positions. Navigating through this complex network requires a thorough knowledge about all classes of eye movements to help localize lesions causing a vestibular disorder. Here we review the different classes of eye movements and how to examine them, and then describe common ocular motor findings associated with central vestibular lesions from both a topographic and functional perspective. © 2016 Elsevier B.V. All rights reserved.

  13. Exhibition of Stochastic Resonance in Vestibular Perception

    Science.gov (United States)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  14. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    Science.gov (United States)

    Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430

  15. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly.

    Science.gov (United States)

    Wiesmeier, Isabella K; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.

  16. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    Directory of Open Access Journals (Sweden)

    Isabella K. Wiesmeier

    2017-08-01

    Full Text Available Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques.Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model.Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training.Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.

  17. International Clinical Protocol on Vestibular Disorders (Dizziness).

    Science.gov (United States)

    Trinus, Kostiantyn; Claussen, Claus-Frenz

    2017-12-01

    26-28 May at 43 Congress of Neurootological and Equilibriometric Society (Budapest, Hungary) International Clinical Protocol on Vestibular Disorders (Dizziness) being discussed and accepted as Consensus Document. Cochrane reports estimates that dizziness has prevalence of 22.9% in the last 12 months and an incidence of 3.1%. Only 1.8% of adults consulted a physician in the last 12 months. Cochrane reviews suggest that the evidence base for dizziness evaluation is weak, thus necessitates the creation of evidence-based document. Protocol is based at the new concept of vestibular system, which involves the vestibular peripheral sensors, space orientation tetrad, vestibular presentations in the brain cortex and vestibular effectory projections in the brain. Labyrinth consists of sensors, for which six modalities are adequate: 1. acceleration, 2. gravitation, 3. low frequency whole-body vibration, 4. Infrasound, 5. magnetic impulse, 6. metabolic changes. Vestibular system from rhomboid fosse gets the inputs from visual, acoustic, somatosensory organs, integrating them and forming space perception and orientation. Interaction with space is realized through sensory, motor, vegetative and limbic projections. So, vestibular disturbances may manifest as paropsia, tinnitus, numbness. Vestibular evoked potentials (not VEMP) and craniocorpography have highest sensitivity (90% and more). As vestibular dysfunction has recurrent character patients need monitoring.

  18. MS-27THE IMPACT OF HYPOFRACTIONATED LINAC-BASED STEREOTACTIC RADIOSURGERY UPON EARLY AUDITORY FUNCTIONS IN THE TREATMENT OF VESTIBULAR SCHWANNOMAS

    OpenAIRE

    Wang, Fen; Roy, Amit; Badkul, Rajeev; John, Park; Kumar, Parvesh; Staecker, Hinrich

    2014-01-01

    PURPOSE: To determine the impact of hypofractionated stereotactic radiotherapy (fSRT) scheme upon early auditory functions in the treatment of vestibular schwannomas (VSs). MATERIALS AND METHODS: 21 VS patients treated with a Linac-based frameless fSRT to 25 Gy in 5 daily fractions were retrospectively reviewed. Serial audiometry tests including auditory thresholds and speech discrimination (SD) were conducted prior to fSRT and then at regular intervals post-fSRT to determine the impact of ou...

  19. A review of the interrelationship between vestibular dysfunction ...

    African Journals Online (AJOL)

    problems and dyslexia were also associated with dysfunction of the vestibular system. Different tests evaluating vestibular loss were identified of which some can be used successfully by practitionars. Various programmes and activities were identified to successfully rehabilitate vestibular function. For better understanding ...

  20. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    Science.gov (United States)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  1. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G.

    Science.gov (United States)

    Emptoz, Alice; Michel, Vincent; Lelli, Andrea; Akil, Omar; Boutet de Monvel, Jacques; Lahlou, Ghizlene; Meyer, Anaïs; Dupont, Typhaine; Nouaille, Sylvie; Ey, Elody; Franca de Barros, Filipa; Beraneck, Mathieu; Dulon, Didier; Hardelin, Jean-Pierre; Lustig, Lawrence; Avan, Paul; Petit, Christine; Safieddine, Saaid

    2017-09-05

    Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.

  2. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G

    Science.gov (United States)

    Emptoz, Alice; Michel, Vincent; Lelli, Andrea; Akil, Omar; Boutet de Monvel, Jacques; Lahlou, Ghizlene; Meyer, Anaïs; Dupont, Typhaine; Nouaille, Sylvie; Ey, Elody; Franca de Barros, Filipa; Beraneck, Mathieu; Dulon, Didier; Hardelin, Jean-Pierre; Lustig, Lawrence; Avan, Paul; Petit, Christine; Safieddine, Saaid

    2017-01-01

    Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected. PMID:28835534

  3. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions.

    Science.gov (United States)

    Zhou, Guangwei; Brodsky, Jacob R

    2015-06-01

    To conduct objective assessment of children with balance and vestibular complaints following sports-related concussions and identify the underlying deficits by analyzing laboratory test outcomes. Case series with chart review. Pediatric tertiary care facility. Medical records were reviewed of 42 pediatric patients with balance and/or vestibular complaints following sports-related concussions who underwent comprehensive laboratory testing on their balance and vestibular function. Patients' characteristics were summarized and results analyzed. More than 90% of the children with protracted dizziness or imbalance following sports-related concussion had at least 1 abnormal finding from the comprehensive balance and vestibular evaluation. The most frequent deficit was found in dynamic visual acuity test, followed by Sensory Organization Test and rotational test. Patient's balance problem associated with concussion seemed to be primarily instigated by vestibular dysfunction. Furthermore, semicircular canal dysfunction was involved more often than dysfunction of otolith organs. Yet, children experienced a hearing loss following sports-related concussion. Vestibular impairment is common among children with protracted dizziness or imbalance following sports-related concussion. Our study demonstrated that proper and thorough evaluation is imperative to identify these underlying deficits and laboratory tests were helpful in the diagnosis and recommendation of following rehabilitations. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  4. The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice.

    Science.gov (United States)

    Bojados, Mickael; Jamon, Marc

    2014-05-01

    Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Brain-derived neurotrophic factor and nitric oxide synthase inhibitor protect the vestibular organ against gentamicin ototoxicity.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2002-01-01

    In order to find a way to develop a new treatment for inner ear disorders, the effects of a nitric oxide synthase (NOS) inhibitor [N-nitro-L-arginine methylester (L-NAME)] and a neurotrophin [brain-derived neurotrophic factor (BDNF)] were investigated. The effect of L-NAME and BDNF on gentamicin-induced vestibular hair cell damage was investigated by using the in vitro LIVE/DEAD system. Both L-NAME and BDNF individually reduced the vestibular hair cell damage caused by gentamicin but the combination of L-NAME and BDNF was more successful in preventing damage. It is therefore suggested that treatment with a combination of an NOS inhibitor and a neurotrophin will help us to treat inner ear disorders.

  6. Relationship of Vertigo and Postural Instability in Patients With Vestibular Schwannoma.

    Science.gov (United States)

    Nam, Gi-Sung; Jung, Chan Min; Kim, Ji Hyung; Son, Eun Jin

    2018-01-09

    Growth of vestibular schwannomas (VS) causes progressive vestibular symptoms and postural instability. Since the tumor grows slowly, compensation of decaying vestibular input may decrease subjective symptoms of dizziness. This study aims to estimate the relationship of subjective vestibular symptoms and objective postural instability in patients with VS. A retrospective review of 18 patients newly diagnosed with VS and with subjective vertigo symptoms was performed. The Results of vestibular function tests including the sensory organization test (SOT) using computerized dynamic posturography, caloric test, and self-report measures of subjective dizziness handicap (Dizziness Handicap Inventory) and visual analogue scale were compared according to the onset of vertigo symptoms. In VS patients, SOT showed decreased equilibrium score for all vestibular function related conditions, condition (C) 5 and 6, and composite (COMP) score. COMP scores were not correlated with visual analogue scale or Dizziness Handicap Inventory scores. Acute onset group included six patients and insidious onset group, 12 patients. Equilibrium scores for C5 and C6, and COMP scores were lower for insidious onset group, but the difference was not statistically significant. Our findings confirmed postural instability is prevalent in VS patients. SOT parameters did not differ significantly between acute onset and insidious onset groups, but increased tumor size and canal weakness were noted in the insidious onset group. Clinicians should consider that postural instability is likely present even in patients who do not complain of acute vertigo, and appropriate counseling should be discussed with the patients.

  7. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    Science.gov (United States)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  8. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  9. An adaptive vestibular rehabilitation technique.

    Science.gov (United States)

    Crane, Benjamin T; Schubert, Michael C

    2017-05-23

    There is a large variation in vestibular rehabilitation (VR) results depending on type of therapy, adherence, and the appropriateness for the patient's level of function. A novel adaptive vestibular rehabilitation (AVR) program was developed and evaluated. Technology and procedure development, and prospective multicenter trial. Those with complete unilateral vestibular hypofunction and symptomatic at least 3 months with a Dizziness Handicap Inventory (DHI) >30 were eligible. Patients were given a device to use with their own computer. They were instructed to use the program daily, with each session lasting about 10 minutes. The task consisted of reporting orientation of the letter C, which appeared when their angular head velocity exceeded a threshold. The letter size and head velocity required were adjusted based on prior performance. Performance on the task was remotely collected by the investigator as well as a weekly DHI score. Four patients aged 31 to 74 years (mean = 51 years) were enrolled in this feasibility study to demonstrate efficacy. Two had treated vestibular schwannomas and two had vestibular neuritis. Starting DHI was 32 to 56 (mean = 42), which was reduced to 0 to 16 (mean = 11.5) after a month of therapy, a clinically and statistically significant (P VR in terms of cost and customization for patient ability and obtained a major improvement in symptoms. This study demonstrated a clinically and statistically significant decrease in symptoms after 4 weeks of therapy. 2b Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem.

    Science.gov (United States)

    Baizer, Joan S; Broussard, Dianne M

    2010-03-15

    Information about the position and movement of the head in space is coded by vestibular receptors and relayed to four nuclei that comprise the vestibular nuclear complex (VNC). Many additional brainstem nuclei are involved in the processing of vestibular information, receiving signals either directly from the eighth nerve or indirectly via projections from the VNC. In cats, squirrel monkeys, and macaque monkeys, we found neurochemically defined subdivisions within the medial vestibular nucleus (MVe) and within the functionally related nucleus prepositus hypoglossi (PrH). In humans, different studies disagree about the borders, sizes, and possible subdivisions of the vestibular brainstem. In an attempt to clarify this organization, we have begun an analysis of the neurochemical characteristics of the human using brains from the Witelson Normal Brain Collection and standard techniques for antigen retrieval and immunohistochemistry. Using antibodies to calbindin, calretinin, parvalbumin, and nitric oxide synthase, we find neurochemically defined subdivisions within the MVe similar to the subdivisions described in cats and monkeys. The neurochemical organization of PrH is different. We also find unique neurochemical profiles for several structures that suggest reclassification of nuclei. These data suggest both quantitative and qualitative differences among cats, monkeys, and humans in the organization of the vestibular brainstem. These results have important implications for the analysis of changes in that organization subsequent to aging, disease, or loss of input.

  11. A review of synaptic mechanisms of vestibular efferent signaling in turtles: extrapolation to efferent actions in mammals.

    Science.gov (United States)

    Jordan, Paivi M; Parks, Xiaorong Xu; Contini, Donatella; Holt, J Chris

    2013-01-01

    The vestibular labyrinth of nearly every vertebrate class receives a prominent efferent innervation that originates in the brainstem and ends as bouton terminals on vestibular hair cells and afferents in each end organ. Although the functional significance of this centrifugal pathway is not well understood, it is clear that efferent neurons, when electrically stimulated under experimental conditions, profoundly impact vestibular afferent discharge. Effects range from chiefly excitation in fish and mammalian vestibular afferents to a more heterogeneous mixture of inhibition and/or excitation in amphibians, reptiles, and birds. What accounts for these diverse response properties? Recent cellular and pharmacological characterization of efferent synaptic mechanisms in turtle offers some insight. In the turtle posterior crista, vestibular efferent neurons are predominantly cholinergic and the effects of efferent stimulation on vestibular afferent discharge can be ascribed to three distinct signaling pathways: (1) Hyperpolarization of type II hair cells mediated by α9/α10-nAChRs and SK-potassium channels; (2) Depolarization of bouton and calyx afferents via α4β2*-containing nAChRs; and (3) A slow excitation of calyx afferents attributed to muscarinic AChRs. In this review, we discuss the evidence for these pathways in turtle and speculate on their role in mammalian vestibular efferent actions where synaptic mechanisms are largely unknown.

  12. Vestibular, balance, microvascular and white matter neuroimaging characteristics of blast injuries and mild traumatic brain injury: Four case reports.

    Science.gov (United States)

    Gattu, Ramtilak; Akin, Faith W; Cacace, Anthony T; Hall, Courtney D; Murnane, Owen D; Haacke, E Mark

    2016-01-01

    Case reports are presented on four Veterans, aged 29-46 years, who complained of chronic dizziness and/or postural instability following blast exposures. Two of the four individuals were diagnosed with mild traumatic brain injury and three of the four were exposed to multiple blasts. Comprehensive vestibular, balance, gait, audiometry and neuroimaging procedures were used to characterize their injuries. Vestibular assessment included videonystagmography, rotary chair and cervical and ocular vestibular evoked myogenic potentials. Balance and gait testing included the sensory organization test, preferred gait speed and the dynamic gait index. Audiometric studies included pure tone audiometry and middle-ear measurements. Neuroimaging procedures included high resolution structural magnetic resonance imaging, susceptibility-weighted imaging and diffusion-tensor imaging. Based on the neuroimaging and vestibular and balance test results, it was found that all individuals had diffuse axonal injuries and all had one or more micro-hemorrhages or vascular anomalies. Three of the four individuals had abnormal vestibular function, all had abnormally slow walking speeds and two had abnormal gait and balance dysfunction. The use of contemporary neuroimaging studies in conjunction with comprehensive vestibular and balance assessment provided a better understanding of the pathophysiology and pathoanatomy of dizziness following blast exposures than standard vestibular and balance testing alone.

  13. Vestibular implants studied in animal models: clinical and scientific implications.

    Science.gov (United States)

    Lewis, Richard F

    2016-12-01

    Damage to the peripheral vestibular system can result in debilitating postural, perceptual, and visual symptoms. A potential new treatment for this clinical problem is to replace some aspects of peripheral vestibular function with an implant that senses head motion and provides this information to the brain by stimulating branches of the vestibular nerve. In this review I consider animal studies performed at our institution over the past 15 years, which have helped elucidate how the brain processes information provided by a vestibular (semicircular canal) implant and how this information could be used to improve the problems experienced by patients with peripheral vestibular damage. Copyright © 2016 the American Physiological Society.

  14. Convergence of Vestibular and Neck Proprioceptive Sensory Signals in the Cerebellar Interpositus

    Science.gov (United States)

    Luan, Hongge; Gdowski, Martha Johnson; Newlands, Shawn D.; Gdowski, Greg T.

    2013-01-01

    The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body’s movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1–C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6 –T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head’s movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements. PMID:23325256

  15. Treatment of peripheral vestibular dysfunction using photobiomodulation

    Science.gov (United States)

    Lee, Min Young; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun; Rhee, Chung Ku

    2017-08-01

    Gentamicin, which is still used in modern medicine, is a known vestibular toxic agent, and various degrees of balance problems have been observed after exposure to this pharmacologic agent. Photobiomodulation is a candidate therapy for vertigo due to its ability to reach deep inner ear organs such as the cochlea. Previous reports have suggested that photobiomodulation can improve hearing and cochlea function. However, few studies have examined the effect of photobiomodulation on balance dysfunction. We used a rat model to mimic human vestibulopathy resulting from gentamicin treatment and evaluated the effect of photobiomodulation on vestibular toxicity. Slow harmonic acceleration (SHA) rotating platform testing was used for functional evaluation and both qualitative and quantitative epifluorescence analyses of cupula histopathology were performed. Animals were divided into gentamicin only and gentamicin plus laser treatment groups. Laser treatment was applied to one ear, and function and histopathology were evaluated in both ears. Decreased function was observed in both ears after gentamicin treatment, demonstrated by low gain and no SHA asymmetry. Laser treatment minimized the damage resulting from gentamicin treatment as shown by SHA asymmetry and recovered gain in the treated ear. Histology results reflected the functional results, showing increased hair cell density and epifluorescence intensity in laser-treated cupulae.

  16. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Science.gov (United States)

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  17. Hearing preservation in the resection of vestibular schwannomas: patterns of hearing preservation and patient-assessed hearing function.

    Science.gov (United States)

    Wind, Joshua J; Leonetti, John P; Raffin, Michael J M; Pisansky, Marc T; Herr, Brian; Triemstra, Justin D; Anderson, Douglas E

    2011-05-01

    No extant literature documents the analysis of patient perceptions of hearing as a corollary to objective audiometric measures in patients with vestibular schwannoma (VS), or acoustic neuroma. Therefore, using objective audiometric data and patient perceptions of hearing function as outlined on a questionnaire, the authors evaluated the hearing of patients who underwent VS resection. This investigation involved a retrospective review of 176 patients who had undergone VS resections in which hearing preservation was a goal. Both pre- and postoperative audiometry, expressed as a speech discrimination score (SDS) and pure tone threshold average (PTA), were performed, and the results were analyzed. Intraoperative auditory brainstem responses were also recorded. Eighty-seven of the patients (49.4%) completed a postoperative questionnaire designed to assess hearing function in a variety of social and auditory situations. Multiple linear regression analyses were completed to compare available audiometric results with questionnaire responses for each patient. One hundred forty-two patients (80.7%) had PTA and SDS audiometric data pertaining to the surgically treated ear; 94 of these patients (66.2%) had measurable postoperative hearing, as defined by a PTA 0%. Eighty-seven patients (49.4%) completed the retrospective questionnaire, and 74 of them had complete audiometric data and thus were included in a comparative analysis. Questionnaire data showed major postoperative subjective hearing decrements, even among patients with the same pre- and postoperative objective audiometric hearing status. Moreover, the subscore reflecting hearing while exposed to background noise, or the "cocktail party effect," characterized the most significant patient-perceived hearing deficit following VS resection. The authors' analysis of a patient-perceived hearing questionnaire showed that hearing during exposure to background noise, or the cocktail party effect, represents a significant

  18. Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure

    Directory of Open Access Journals (Sweden)

    Økstad Siri

    2006-12-01

    Full Text Available Abstract Background Vestibular neuritis (VN is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. Case presentations We describe three patients with symptoms suggestive of VN, but normal calorics. All 3 had unilateral loss of vestibular evoked myogenic potential. A slight, asymptomatic position dependent nystagmus, with the pathological ear down, was observed. Conclusion We believe that these patients suffer from pure inferior nerve vestibular neuritis.

  19. The Vestibular System: A Newly Identified Regulator of Bone Homeostasis Acting Through the Sympathetic Nervous System.

    Science.gov (United States)

    Vignaux, G; Besnard, S; Denise, P; Elefteriou, F

    2015-08-01

    The vestibular system is a small bilateral structure located in the inner ear, known as the organ of balance and spatial orientation. It senses head orientation and motion, as well as body motion in the three dimensions of our environment. It is also involved in non-motor functions such as postural control of blood pressure. These regulations are mediated via anatomical projections from vestibular nuclei to brainstem autonomic centers and are involved in the maintenance of cardiovascular function via sympathetic nerves. Age-associated dysfunction of the vestibular organ contributes to an increased incidence of falls, whereas muscle atrophy, reduced physical activity, cellular aging, and gonadal deficiency contribute to bone loss. Recent studies in rodents suggest that vestibular dysfunction might also alter bone remodeling and mass more directly, by affecting the outflow of sympathetic nervous signals to the skeleton and other tissues. This review will summarize the findings supporting the influence of vestibular signals on bone homeostasis, and the potential clinical relevance of these findings.

  20. Interactions between Stress and Vestibular Compensation - A Review.

    Science.gov (United States)

    Saman, Yougan; Bamiou, D E; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  1. Interactions between stress and vestibular compensation – a review

    Directory of Open Access Journals (Sweden)

    Yougan eSaman

    2012-07-01

    Full Text Available Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function, and plasticity have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  2. Interactions between Stress and Vestibular Compensation – A Review

    Science.gov (United States)

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B.

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders. PMID:22866048

  3. Neuropharmacological basis of vestibular system disorder treatment.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario; Seseña, Emmanuel

    2013-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Clinicians are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and of drug action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulators dynamics and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. The critical analysis of the literature reveals that there is a significant lack of information defining the real utility of diverse drugs used in clinical practice. The development of basic studies addressing drug actions at the molecular, cellular and systems level, combined with reliable and well controlled clinical trials, would provide the scientific basis for new strategies for the treatment of vestibular disorders.

  4. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria.

    Science.gov (United States)

    Roesch, Sebastian; Bernardinelli, Emanuele; Nofziger, Charity; Tóth, Miklós; Patsch, Wolfgang; Rasp, Gerd; Paulmichl, Markus; Dossena, Silvia

    2018-01-10

    The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype.

  5. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  6. Internal models and neural computation in the vestibular system

    OpenAIRE

    Green, Andrea M.; Dora E. Angelaki

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem–...

  7. Vestibular evaluation in children with otitis media with effusion.

    Science.gov (United States)

    Kolkaila, E A; Emara, A A; Gabr, T A

    2015-04-01

    Fifty per cent of children with serous otitis media may have some balance disturbances. To evaluate vestibular function in children with otitis media with effusion. The control group comprised 25 children with bilateral normal hearing and middle-ear function. The study group consisted of 30 children with bilateral otitis media with effusion; these were divided into 2 subgroups according to air-bone gap size. Measures included the Arabic Dizziness Handicap Inventory, an imbalance evaluation sheet for children, vestibular bedside tests for children, and air- and bone-conducted vestibular-evoked myogenic potential testing. Arabic Dizziness Handicap Inventory scores and some vestibular bedside test results were significantly abnormal, with normal video-nystagmography results, in children with otitis media with effusion. Air-conducted vestibular-evoked myogenic potentials were recorded in 73 per cent of children with otitis media with effusion, with significantly delayed latencies. Bone-conducted vestibular-evoked myogenic potentials were successfully detected in 100 per cent of children with otitis media with effusion with similar results to the control group. The Arabic Dizziness Handicap Inventory and vestibular bedside tests are valuable tools for detecting vestibular impairment in children. Bone-conducted vestibular-evoked myogenic potentials are useful for vestibular system evaluation.

  8. Common Vestibular Disorders

    OpenAIRE

    Balatsouras, Dimitrios G

    2017-01-01

    The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV), Meniere's disease (MD) and vestibular neuritis (VN), are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the ...

  9. The chronic infusion of nicotine into the developing chick embryo does not alter the density of (-)-[3H]nicotine-binding sites or vestibular function

    Science.gov (United States)

    Roll, R. L.; Jones, T. A.; Benowitz, N. L.; Morley, B. J.

    1993-01-01

    (-)-Nicotine (1.2 mg/day) or saline was infused into chick embryos (Gallus domesticus) for 10 days beginning 12 h beyond the eight day of incubation (E8 + 12 h). Twelve h beyond the eighteenth day of incubation (E18 + 12 h), the eggs were opened to access the embryos and subcutaneous skull electrodes placed. Short latency vestibular response thresholds and input/output functions were determined to assess neurophysiological consequences of chronic nicotine administration. Samples of serum and extraembryonic (amniotic and albumen) fluid were analyzed by gas chromatography-mass spectrometry to determine the levels of nicotine and its major metabolite, cotinine. The brains were removed and divided into diencephalon and mesencephalon and the density of (-)-[3H]nicotine binding sites in each brain area was measured. Nicotine and cotinine were found in the serum and extraembryonic fluid, but nicotinic receptors were not up-regulated in the brains of animals infused with nicotine in comparison to controls. Vestibular response thresholds also did not differ between nicotine-treated and control animals.

  10. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  11. Clinical vestibular testing assessed with machine-learning algorithms.

    Science.gov (United States)

    Priesol, Adrian J; Cao, Mengfei; Brodley, Carla E; Lewis, Richard F

    2015-04-01

    Dizziness and imbalance are common clinical problems, and accurate diagnosis depends on determining whether damage is localized to the peripheral vestibular system. Vestibular testing guides this determination, but the accuracy of the different tests is not known. To determine how well each element of the vestibular test battery segregates patients with normal peripheral vestibular function from those with unilateral reductions in vestibular function. Retrospective analysis of vestibular test batteries in 8080 patients. Clinical medical records were reviewed for a subset of individuals with the reviewers blinded to the vestibular test data. A group of machine-learning classifiers were trained using vestibular test data from persons who were "manually" labeled as having normal vestibular function or unilateral vestibular damage based on a review of their medical records. The optimal trained classifier was then used to categorize patients whose diagnoses were unknown, allowing us to determine the information content of each element of the vestibular test battery. The information provided by each element of the vestibular test battery to segregate individuals with normal vestibular function from those with unilateral vestibular damage. The time constant calculated from the rotational test ranked first in information content, and measures that were related physiologically to the rotational time constant were 10 of the top 12 highest-ranked variables. The caloric canal paresis ranked eighth, and the other elements of the test battery provided minimal additional information. The sensitivity of the rotational time constant was 77.2%, and the sensitivity of the caloric canal paresis was 59.6%; the specificity of the rotational time constant was 89.0%, and the specificity of the caloric canal paresis was 64.9%. The diagnostic accuracy of the vestibular test battery increased from 72.4% to 93.4% when the data were analyzed with the optimal machine-learning classifier

  12. The vestibular system: multimodal integration and encoding of self-motion for motor control.

    Science.gov (United States)

    Cullen, Kathleen E

    2012-03-01

    Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions. What neural code is used to represent sensory information in vestibular pathways? How do the interactions between the organism and the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Interactions between Stress and Vestibular Compensation – A Review

    OpenAIRE

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting...

  14. The Moving History of Vestibular Stimulation as a Therapeutic Intervention

    OpenAIRE

    Grabherr, Luzia; Lenggenhager, Bigna; Macauda, Gianluca

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox’s chair or Hallaran’s swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recogni...

  15. Correlation between vestibular and autonomous function after 6 months of spaceflight: Data of the SPIN and GAZE-SPIN experiments.

    Science.gov (United States)

    Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre

    In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the

  16. Nitric oxide in the rat vestibular system.

    Science.gov (United States)

    Harper, A; Blythe, W R; Zdanski, C J; Prazma, J; Pillsbury, H C

    1994-10-01

    Nitric oxide is known to function as a neurotransmitter in the central nervous system. It is also known to be involved in the central nervous system excitatory amino acid neurotransmission cascade. Activation of excitatory amino acid receptors causes an influx of calcium, which activates nitric oxide synthase. The resulting increase in intracellular nitric oxide activates soluble guanylate cyclase, leading to a rise in cyclic guanosine monophosphate. The excitatory amino acids glutamate and aspartate are found in the vestibular system and have been postulated to function as vestibular system neurotransmitters. Although nitric oxide has been investigated as a neurotransmitter in other tissues, no published studies have examined the role of nitric oxide in the vestibular system. Neuronal NADPH-diaphorase has been characterized as a nitric oxide synthase. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing nitric oxide during the reaction. We used a histochemical stain characterized by Hope et al. (Proc Natl Acad Sci 1991;88:2811) as specific for neuronal nitric oxide synthase to localize the enzyme in the rat vestibular system. An immunocytochemical stain was used to examine rat inner ear tissue for the presence of the enzyme's end product, L-citrulline, thereby demonstrating nitric oxide synthase activity. Staining of vestibular ganglion sections showed nitric oxide synthase presence and activity in ganglion cells and nerve fibers. These results indicate the presence of active nitric oxide synthase in these tissues and suggest modulation of vestibular neurotransmission by nitric oxide.

  17. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Directory of Open Access Journals (Sweden)

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  18. Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: a review.

    Science.gov (United States)

    Franke, Laura M; Walker, William C; Cifu, David X; Ochs, Alfred L; Lew, Henry L

    2012-01-01

    Vestibular symptoms are persistent and problematic sequelae of blast exposure. Several lines of evidence suggest that these symptoms often stem from injury to the central nervous system. Current methods of assessing the vestibular system have described vestibular deficits that follow traumatic brain injury and differentiate blunt and blast trauma but have not examined the full range of vestibular functions that depend on the cerebral structures above the midbrain. Damage to the central vestibular circuits can lead to deficits in vital processes of spatial perception and navigation, in addition to dizziness and disequilibrium, and may also affect emotional functioning, particularly noradrenergically modulated states of anxiety. Perceptual functions can be assessed to determine the extent of central nervous system involvement in vestibular symptoms and to provide greater confidence when vestibular dysfunction is to be excluded. The ability to detect central vestibular dysfunction will significantly enhance our response to the dizziness and balance symptoms that are a common source of distress for Veterans.

  19. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  20. Unilateral Vestibular Loss Impairs External Space Representation

    Science.gov (United States)

    Borel, Liliane; Redon-Zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Devèze, Arnaud; Magnan, Jacques; Péruch, Patrick

    2014-01-01

    The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation), and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss. PMID:24523916

  1. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  2. Vestibular schwannoma: negative growth and audiovestibular features.

    Science.gov (United States)

    Stipkovits, E M; Graamans, K; Van Dijk, J E

    2001-11-01

    At the University Medical Center Utrecht, non-operative management was used for 44 patients with a unilateral vestibular schwannoma between 1990 and 1997. During that period, consecutive tumor sizes were determined by magnetic resonance imaging. Three of the 44 patients showed an average decrease in tumor size of 16.7% according to American Academy of Otolaryngology-Head and Neck Surgery standards. This study describes the initial vestibular status and audiometric changes measured over up to 10 years in these three patients. Vestibular function was determined once, by means of the bithermal caloric test, the torsion test, the saccade test, the smooth pursuit test, and the registration of spontaneous nystagmus. The three patients had severe vestibular paresis on the affected side. Pure-tone and speech audiometry were performed at regular intervals. Although the size of their tumors decreased, their hearing gradually deteriorated, just as it does in the majority of patients with a growing or stable vestibular schwannoma. The observations presented here suggest that the development of symptoms in a vestibular schwannoma does not differentiate between patients with a stable, growing or shrinking tumor. The development of symptoms may be the result of the same pathogenetic mechanism.

  3. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  4. Task, muscle and frequency dependent vestibular control of posture

    Directory of Open Access Journals (Sweden)

    Patrick A Forbes

    2015-01-01

    Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  5. Task, muscle and frequency dependent vestibular control of posture.

    Science.gov (United States)

    Forbes, Patrick A; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system's contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  6. Functional organic field-effect transistors.

    Science.gov (United States)

    Guo, Yunlong; Yu, Gui; Liu, Yunqi

    2010-10-25

    Functional organic field-effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed.

  7. Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: A review

    OpenAIRE

    Laura M. Franke, PhD; William C. Walker, MD; David X. Cifu, MD; Alfred L. Ochs, PhD; Henry L. Lew, MD, PhD

    2012-01-01

    Vestibular symptoms are persistent and problematic sequelae of blast exposure. Several lines of evidence suggest that these symptoms often stem from injury to the central nervous system. Current methods of assessing the vestibular system have described vestibular deficits that follow traumatic brain injury and differentiate blunt and blast trauma but have not examined the full range of vestibular functions that depend on the cerebral structures above the midbrain. Damage to the central vestib...

  8. [Anatomy and physiology of the vestibular system: review of the literature].

    Science.gov (United States)

    Sakka, L; Vitte, E

    2004-10-01

    The vestibular system is a complex system involving not only posterior labyrinth but also central structures such as cerebellum, striatum, thalamus, frontal and prefrontal cortex to assure balance, movements and walking. Information reaching the vestibular complex are not purely vestibular but also from visual, somatosensory and cerebellar origins. The equilibrium is also a complex physiological function needing concordance of vestibular, visual and somatosensory information or either central compensation after an injury but also an integrity of the central nervous system.

  9. Differential central projections of vestibular afferents in pigeons

    Science.gov (United States)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  10. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli.

    Science.gov (United States)

    Curthoys, Ian S

    2010-02-01

    In addition to activating cochlear receptors, air conducted sound (ACS) and bone conducted vibration (BCV) activate vestibular otolithic receptors, as shown by neurophysiological evidence from animal studies--evidence which is the foundation for using ACS and BCV for clinical vestibular testing by means of vestibular-evoked myogenic potentials (VEMPs). Recent research is elaborating the specificity of ACS and BCV on vestibular receptors. The evidence that saccular afferents can be activated by ACS has been mistakenly interpreted as showing that ACS only activates saccular afferents. That is not correct - ACS activates both saccular and utricular afferents, just as BCV activates both saccular and utricular afferents, although the patterns of activation for ACS and BCV do not appear to be identical. The otolithic input to sternocleidomastoid muscle appears to originate predominantly from the saccular macula. The otolithic input to the inferior oblique appears to originate predominantly from the utricular macula. Galvanic stimulation by surface electrodes on the mastoids very generally activates afferents from all vestibular sense organs. This review summarizes the physiological results, the potential artifacts and errors of logic in this area, reconciles apparent disagreements in this field. The neurophysiological results on BCV have led to a new clinical test of utricular function - the n10 of the oVEMP. The cVEMP tests saccular function while the oVEMP tests utricular function. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. The Modulation of Hippocampal Theta Rhythm by the Vestibular System.

    Science.gov (United States)

    Aitken, Phillip; Zheng, Yiwen; Smith, Paul F

    2017-11-22

    The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3-12 Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, either using natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus and the septum, to the hippocampus, is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia. Copyright © 2017, Journal of Neurophysiology.

  12. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  13. Enlarged Vestibular Aqueducts and Childhood Hearing Loss

    Science.gov (United States)

    ... Infections, and Deafness Enlarged Vestibular Aqueducts and Childhood Hearing Loss On this page: What are vestibular aqueducts? How ... How are enlarged vestibular aqueducts related to childhood hearing loss? Research suggests that most children with enlarged vestibular ...

  14. Evaluation and treatment of vestibular dysfunction in children.

    Science.gov (United States)

    Rine, Rose Marie; Wiener-Vacher, Sylvette

    2013-01-01

    The effect of vestibular dysfunction since birth is more debilitating than that attained later in life, and unlike adults, children with vestibular dysfunction since or shortly after birth do not recover function without intervention. The purpose of this report is to provide an overview of the etiology of vestibular dysfunction in children as well as the related impairments, and to describe testing methods and evidence based interventions to ameliorate the vestibular related impairments in children. In recent years, investigations have revealed that vestibular dysfunction is more common in children than previously thought, with consequent impairments in motor development, balance and reading abilities. The dysfunction may be due to central or peripheral lesions, each with distinct presentation of symptoms and test results. Common etiologies and clinical presentation of vestibular dysfunction in children are reviewed; appropriate screening and diagnostic techniques and efficacious medical and rehabilitation interventions are presented. Despite advances in clinical and diagnostic testing of vestibular function in children and infants, testing of vestibular function is not typically done. Comprehensive testing of signs and symptoms is critical for diagnosis and implementation of appropriate interventions.

  15. [Therapy of vestibular vertigo].

    Science.gov (United States)

    Hamann, K F

    1993-05-01

    The non-surgical treatment of vestibular disorders must be based on current knowledge of vestibular pathophysiology. It is generally accepted that after vestibular lesions a self-repair mechanism exists that allows a more or less complete recovery. In cases of persisting vestibular complaints the physician's duty consists in stimulation of these pre-existing mechanisms. This can be done by physical exercises, as has been recommended since the work of Cawthorne and Cooksey in 1946. This concept is meanwhile supported by modern neurophysiological research. This article describes a short training program consisting of exercises for fixation during rotations, smooth pursuit, optokinetic nystagmus and motor learning mechanisms. Physical exercises can be reinforced by nootropic drugs.

  16. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  17. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  18. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.

  19. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation.

    Science.gov (United States)

    Cronin, Thomas; Arshad, Qadeer; Seemungal, Barry M

    2017-01-01

    The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections-from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals-typically in combination with other sensory and motor systems-may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  20. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation

    Directory of Open Access Journals (Sweden)

    Thomas Cronin

    2017-10-01

    Full Text Available The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections—from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals—typically in combination with other sensory and motor systems—may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  1. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    OpenAIRE

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental...

  2. Analysis of Hearing Preservation and Facial Nerve Function for Patients Undergoing Vestibular Schwannoma Surgery: The Middle Cranial Fossa Approach versus the Retrosigmoid Approach - Personal Experience and Literature Review

    National Research Council Canada - National Science Library

    Rabelo de Freitas, Marcos; Russo, Alessandra; Sequino, Giuliano; Piccirillo, Enrico; Sanna, Mario

    2012-01-01

    ...) or the retrosigmoid approach (RSA). Materials and Methods: A review of the medical records of patients diagnosed with vestibular schwannoma who underwent surgical tumor removal in a single reference center via the MCFA or the RSA between January 1988...

  3. Probing the human vestibular system with galvanic stimulation

    National Research Council Canada - National Science Library

    Richard C. Fitzpatrick; Brian L. Day

    2004-01-01

    .... This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses...

  4. Complications of Microsurgery of Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Jan Betka

    2014-01-01

    Full Text Available Background. The aim of this study was to analyze complications of vestibular schwannoma (VS microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225 removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI was observed in 124 cases (45% immediately after surgery and in 104 cases (33% on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%, headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery.

  5. State Anxiety Subjective Imbalance and Handicap in Vestibular Schwannoma.

    Science.gov (United States)

    Saman, Yougan; Mclellan, Lucie; Mckenna, Laurence; Dutia, Mayank B; Obholzer, Rupert; Libby, Gerald; Gleeson, Michael; Bamiou, Doris-Eva

    2016-01-01

    Evidence is emerging for a significant clinical and neuroanatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety, and there is a relationship between increased state anxiety and worsening balance function. (1) To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit. (2) To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. Two separate cohorts of vestibular schwannoma (VS) patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials, and caloric responses) and questionnaire assessments [vertigo handicap questionnaire (VHQ), vertigo symptom scale (VSS), and state-trait anxiety inventory (STAIY)]. Fifteen post-resection VS patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1). Forty-five patients with VS in situ formed the cohort for Experiment 2 (Aim 2). Experiment 1: VS subjects (N = 15) with a complete post-resection unilateral vestibular deafferentation completed a state anxiety questionnaire before caloric assessment and again afterward with the point of maximal vertigo as the reference (Aim 1). Experiment 2: state anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of patients with VS in situ presenting with balance symptoms (Group 1, N = 26) and without balance symptoms (Group 2, N = 11) (Aim 2). The presence of balance symptoms was defined as having a positive score on the VSS-VER. In Experiment 1, a significant difference (p handicap (p < 0.001). Anxiety

  6. Recent Evidence About the Effectiveness of Vestibular Rehabilitation.

    Science.gov (United States)

    Whitney, Susan L; Alghadir, Ahmad H; Anwer, Shahnawaz

    2016-03-01

    Vestibular rehabilitation of persons with peripheral and central vestibular disorders requires a thorough evaluation and a customized plan of care. Collaboration of the various members of the treatment team optimizes outcomes. Early intervention appears to be better than referring patients who have developed chronic symptoms of balance loss, dizziness, anxiety, and depression. There is a body of emerging evidence that supports that the central nervous system has the capability to reweigh sensory inputs in order to improve function. There continues to be a dearth of knowledge related to how to treat persons with otolithic dysfunction as compared to those with semicircular canal damage. With the use of vestibular rehabilitation, patients are less likely to fall, are less dizzy, balance and gait improve, and quality of life is enhanced. Recent Cochrane reviews and a clinical practice guideline support the use of vestibular rehabilitation for persons with vestibular dysfunction. Typical symptoms and their management including dysregulated gait, falling, fear of falling, increased sway in standing, visual blurring, symptoms with complex visual scenes in the periphery, and weakness are all discussed with ideas for intervention. Any patient with a vestibular disorder may benefit from a trial of vestibular rehabilitation. A discussion of recent evidence and innovations related to vestibular rehabilitation is also included.

  7. Eye Movements as Indicators of Vestibular Dysfunction.

    Science.gov (United States)

    Menshikova, Galina Ya; Kovalev, Artem I; Klimova, Oxana A; Chernorizov, Alexander M

    2015-01-01

    Virtual reality technologies are in wide use in sport psychology. An advantage of this kind of technology is the possibility to assess sportspeople's readiness to perform complex movements. This study is aimed at developing a method for the evaluation of vestibular function disturbances in young skaters. Such disturbances may occur while skaters are performing rotation movements. To achieve this goal, we induced a vection illusion, accompanied by virtual environment rotation in a CAVE virtual reality system. Vestibular disturbances were tested for two groups-professional skaters and people who had very little or no skating experience. The quantitative evaluation of vestibular dysfunction was based on eye movement characteristics, which were recorded in subjects experiencing a vection illusion. © The Author(s) 2015.

  8. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in The VOR

    Directory of Open Access Journals (Sweden)

    Mina eRanjbaran

    2016-03-01

    Full Text Available The vestibulo-ocular reflex (VOR is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which can be distorted in case of peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain.In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e. different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies.

  9. Project organization, roles and functions.

    Science.gov (United States)

    1986-06-01

    This discussion of the roles and functions in the integrated project which provides services in maternal and child health, family planning; nutrition, environmental sanitation, and income-generating projects in the Philippines covers the functions of the National Coordinating Committee, the Provincial Coordinating Committee, the Municipal Coordinating Committee, implementing units, the teams of development workers (TDWs), and coordinating/monitoring units. The National Coordinating Committee provides general directions and guidelines for the implementation of the project through the POPCOM/JICA central staff based at the POPCOM central office in Metro Manila. Functions of the Provincial Coordinating Committee include: resolve problems arising from issues of coordination involving members of the TDWs; ensure participation of provincial units of the various participating ministries; provide guidelines on the delivery of integrated services by TDWs; monitor the activities of TDWs, the municipal coordinating committee, and its various units; and review and endorse the city/provincial integrated project work plan to the regional office. The Municipal Coordinating Committee recommends policies to the national coordinating committee through the provincial coordinating committee to strenthen project implementation in the municipalities. Its functions include: resolve problems arising from issues involving the members of the TDWs; regularly monitor the activities of the TDWs; and provide assistance to the TDWs in the implementation of guidelines. Actual implementation of the project is carried out by the local government, represented by the barangay captain. He is assisted by the TDWs which come from various participating ministries of the government. The TDWs are in effect the task force of the municipal mayor who assist the barangay captain in the delivery of services and the conduct of information, education, and communication campaigns. 3 units assist the various

  10. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.

  11. Vestibular tributaries to the vein of the vestibular aqueduct

    DEFF Research Database (Denmark)

    Hansen, Jesper Marsner; Qvortrup, Klaus; Friis, Morten

    2010-01-01

    CONCLUSION: The vein of the vestibular aqueduct drains blood from areas extensively lined by vestibular dark cells (VDCs). A possible involvement in the pathogenesis of an impaired endolymphatic homeostasis can be envisioned at the level of the dark cells area. OBJECTIVES: The aim of this study...... was to investigate the vascular relationship between the vein of the vestibular aqueduct and the vestibular apparatus, with focus on the VDCs. METHODS: Sixteen male Wistar rats were divided into groups of 6 and 10. In the first group, 2 µm thick sections including the vein of the vestibular aqueduct, utricle...... relation to the VDCs in the utricle and the crista ampullaris of the lateral semicircular canal in the vestibular apparatus. One major vein emanated from these networks, which emptied into the vein of the vestibular aqueduct. Veins draining the saccule and the common crus of the superior and posterior...

  12. Systematic review of vestibular disorders related to human immunodeficiency virus and acquired immunodeficiency syndrome.

    Science.gov (United States)

    Heinze, B; Swanepoel, D W; Hofmeyr, L M

    2011-09-01

    Disorders of the auditory and vestibular system are often associated with human immunodeficiency virus infection and acquired immunodeficiency syndrome. However, the extent and nature of these vestibular manifestations are unclear. To systematically review the current peer-reviewed literature on vestibular manifestations and pathology related to human immunodeficiency virus and acquired immunodeficiency syndrome. Systematic review of peer-reviewed articles related to vestibular findings in individuals with human immunodeficiency virus infection and acquired immunodeficiency syndrome. Several electronic databases were searched. We identified 442 records, reduced to 210 after excluding duplicates and reviews. These were reviewed for relevance to the scope of the study. We identified only 13 reports investigating vestibular functioning and pathology in individuals affected by human immunodeficiency virus and acquired immunodeficiency syndrome. This condition can affect both the peripheral and central vestibular system, irrespective of age and viral disease stage. Peripheral vestibular involvement may affect up to 50 per cent of patients, and central vestibular involvement may be even more prevalent. Post-mortem studies suggest direct involvement of the entire vestibular system, while opportunistic infections such as oto- and neurosyphilis and encephalitis cause secondary vestibular dysfunction resulting in vertigo, dizziness and imbalance. Patients with human immunodeficiency virus and acquired immunodeficiency syndrome should routinely be monitored for vestibular involvement, to minimise functional limitations of quality of life.

  13. STATE ANXIETY, SUBJECTIVE IMBALANCE AND HANDICAP IN VESTIBULAR SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Yougan Saman

    2016-07-01

    Full Text Available ABSTRACTEvidence is emerging of a significant clinical and neuro-anatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety and there is a relationship between increased state anxiety and worsening balance function. Aims1.To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit.2.To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. MethodsTwo separate cohorts Vestibular Schwannoma (VS patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials and caloric responses and questionnaire assessment (Vertigo handicap Questionnaire, Vertigo Symptom Scale, State Trait Anxiety InventoryFifteen post resection Vestibular schwannoma patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1. Forty-five patients with VS in-situ and with preserved vestibular function formed the cohort for Experiment 2 (Aim 2. Experiment 1: VS subjects (N=15 with a complete post-resection unilateral vestibular deafferentation completed a State anxiety questionnaire before caloric assessment and again afterwards with the point of maximal vertigo as the reference (Aim 1. Experiment 2: State anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of presenting with balance symptoms (Group 1 N=26 and without balance symptoms (Group 2 N=11 (Aim 2. The presence of balance symptoms was defined as having a positive score on the VSS-VER.ResultsIn experiment 1, a significant difference (p<0.01 was found when comparing

  14. Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China.

    Directory of Open Access Journals (Sweden)

    Yongyi Yuan

    Full Text Available Mutations in SLC26A4, which encodes pendrin, are a common cause of deafness. SLC26A4 mutations are responsible for Pendred syndrome and non-syndromic enlarged vestibular aqueduct (EVA. The mutation spectrum of SLC26A4 varies widely among ethnic groups. To investigate the incidence of EVA in Chinese population and to provide appropriate genetic testing and counseling to patients with SLC26A4 variants, we conducted a large-scale molecular epidemiological survey of SLC26A4.A total of 2352 unrelated non-syndromic hearing loss patients from 27 different regions of China were included. Hot spot regions of SLC26A4, exons 8, 10 and 19 were sequenced. For patients with one allelic variant in the hot spot regions, the other exons were sequenced one by one until two mutant alleles had been identified. Patients with SLC26A4 variants were then examined by temporal bone computed tomography scan for radiological diagnosis of EVA. Ten SLC26A4 variants were cloned for functional study. Confocal microscopy and radioisotope techniques were used to examine the membrane expression of pendrin and transporter function.Of the 86 types of variants found, 47 have never been reported. The ratio of EVA in the Chinese deaf population was at least 11%, and that in patients of Han ethnicity reached at least 13%. The mutational spectrum and mutation detection rate of SLC26A4 are distinct among both ethnicities and regions of Mainland China. Most of the variants caused retention of pendrin in the intracellular region. All the mutant pendrins showed significantly reduced transport capability.An overall description of the molecular epidemiological findings of SLC26A4 in China is provided. The functional assessment procedure can be applied to identification of pathogenicity of variants. These findings are valuable for genetic diagnosis, genetic counseling, prenatal testing and pre-implantation diagnosis in EVA families.

  15. Vestibular animal models: contributions to understanding physiology and disease.

    Science.gov (United States)

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  16. Vestibular animal models: contributions to understanding physiology and disease

    OpenAIRE

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E.

    2016-01-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research inclu...

  17. Scaffold Characteristics for Functional Hollow Organ Regeneration

    Directory of Open Access Journals (Sweden)

    Daniel Eberli

    2010-01-01

    Full Text Available Many medical conditions require surgical reconstruction of hollow organs. Tissue engineering of organs and tissues is a promising new technique without harvest site morbidity. An ideal biomaterial should be biocompatible, support tissue formation and provide adequate structural support. It should degrade gradually and provide an environment allowing for cell-cell interaction, adhesion, proliferation, migration, and differentiation. Although tissue formation is feasible, functionality has never been demonstrated. Mainly the lack of proper innervation and vascularisation are hindering contractility and normal function. In this chapter we critically review the current state of engineering hollow organs with a special focus on innervation and vascularisation.

  18. Vestibular dysfunction in a child with embryonic exposure to accutane.

    Science.gov (United States)

    Westerman, S T; Gilbert, L M; Schondel, L

    1994-05-01

    Children with a history of embryonic exposure to Accutane (isotretinoin) are at great risk for major physical malformations, brain malformations, and decreased intelligence. A case is presented of a 4-year 7-month-old black male with a history of embryonic exposure to Accutane who was born with embryopathy that includes bilateral major ear deformities. The child has a significant bilateral conductive hearing loss, and, in addition, a left sided sensorineural loss. Vestibular function testing revealed evidence of peripheral and central vestibular dysfunction. A course of diphenhydramine hydrochloride and Donnatal (phenobarbital, hyoscyamine sulfate, atropine sulfate, and scopolamine hydrobromide) significantly alleviated the symptoms of vestibular dysfunction. Otologic management of these children should include clinical documentation of the external deformities, evaluation of cochlear function, and early auditory habilitation. Vestibular function should also be evaluated in all children with a history of embryonic exposure to isotretinoin.

  19. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  20. Direct evidence of nitric oxide production in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-01-01

    Production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. The utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with L-arginine, and significantly increased after inoculation with LPS. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role for the vestibular physiology and also be involved in disease of the inner ear.

  1. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis.

    Science.gov (United States)

    Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe

    2014-01-01

    The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  2. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis

    Directory of Open Access Journals (Sweden)

    Angelica ePerez Fornos

    2014-04-01

    Full Text Available The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the Vestibulo-Ocular Reflex (VOR, the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  3. New Insights into Pathophysiology of Vestibular Migraine

    Science.gov (United States)

    Espinosa-Sanchez, Juan M.; Lopez-Escamez, Jose A.

    2015-01-01

    Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory–inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM

  4. New insights into pathophysiology of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Juan Manuel Espinosa-Sanchez

    2015-02-01

    Full Text Available Vestibular migraine (VM is a common disorder in which genetic, epigenetic and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal grey, locus coeruleus and nucleus raphe magnus are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs and pain. The interactions among several functional and structural neural networks could explain the pathogenic

  5. The vestibular body: Vestibular contributions to bodily representations.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Haggard, Patrick

    2016-01-01

    Vestibular signals are integrated with signals from other sensory modalities. This convergence could reflect an important mechanism for maintaining the perception of the body. Here we review the current literature in order to develop a framework for understanding how the vestibular system contributes to body representation. According to recent models, we distinguish between three processes for body representation, and we look at whether vestibular signals might influence each process. These are (i) somatosensation, the primary sensory processing of somatic stimuli, (ii) somatoperception, the processes of constructing percepts and experiences of somatic objects and events and (iii) somatorepresentation, the knowledge about the body as a physical object in the world. Vestibular signals appear to contribute to all three levels in this model of body processing. Thus, the traditional view of the vestibular system as a low-level, dedicated orienting module tends to underestimate the pervasive role of vestibular input in bodily self-awareness.

  6. Betahistine treatment in managing vertigo and improving vestibular compensation: clarification.

    Science.gov (United States)

    Lacour, Michel

    2013-01-01

    Betahistine dihydrochloride (betahistine) is currently used in the management of vertigo and vestibular pathologies with different aetiologies. The main goal of this review is to clarify the mechanisms of action of this drug, responsible for the symptomatic relief of vertigo and the improvement of vestibular compensation. The review starts with a brief summary recalling the role of histamine as a neuromodulator/neurotransmitter in the control of the vestibular functions, and the role of the histaminergic system in vestibular compensation. Then are presented data recorded in animal models demonstrating that betahistine efficacy can be explained by mechanisms targeting the histamine receptors (HRs) at three different levels: the vascular tree, with an increase of cochlear and vestibular blood flow involving the H1R; the central nervous system, with an increase of histamine turnover implicating the H3R, and the peripheral labyrinth, with a decrease of vestibular input implying the H3R/H4R. Clinical data from vestibular loss patients show the impact of betahistine treatment for the long-term control of vertigo, improvement of balance and quality of life that can be explained by these mechanisms of action. However, two conditions, at least, are required for reaching the betahistine therapeutic effect: the dose and the duration of treatment. Experimental and clinical data supporting these requirements are exposed in the last part of this review.

  7. Recovery of dynamic visual acuity in bilateral vestibular hypofunction.

    Science.gov (United States)

    Herdman, Susan J; Hall, Courtney D; Schubert, Michael C; Das, Vallabh E; Tusa, Ronald J

    2007-04-01

    To determine the effect of vestibular exercises on the recovery of visual acuity during head movement in patients with bilateral vestibular hypofunction (BVH). Prospective, randomized, double-blinded study. Outpatient clinic, academic setting. Thirteen patients with BVH, aged 47 to 73 years. One group (8 patients) performed vestibular exercises designed to enhance remaining vestibular function, and the other (5 patients) performed placebo exercises. Measurements of dynamic visual acuity (DVA) during predictable head movements using a computerized test; measurement of intensity of oscillopsia using a visual analog scale. As a group, patients who performed vestibular exercises showed a significant improvement in DVA (P = .001), whereas those performing placebo exercises did not (P = .07). Only type of exercise (ie, vestibular vs placebo) was significantly correlated with change in DVA. Other factors examined, including age, time from onset, initial DVA, and complaints of oscillopsia and disequilibrium, were not significantly correlated with change in DVA. Change in oscillopsia did not correlate with change in DVA. Use of vestibular exercises is the main factor involved in recovery of DVA in patients with BVH. We theorize that exercises may foster the use of centrally programmed eye movements that could substitute for the vestibulo-ocular reflex. clinicaltrials.gov Identifier: NCT00411216.

  8. Treating vertigo with vestibular rehabilitation: results in 155 patients.

    Science.gov (United States)

    Bittar, R S M; Pedalini, M E B; Lorenzi, M C; Formigoni, L G

    2002-01-01

    Balance is fundamental to our daily activities and the vestibular system, together with vision and proprioceptive functions, are the main structures involved in this process. Dizziness is the main clinical manifestation of malfunction of these systems. The mechanisms of vestibular compensation are one of the most studied aspects since they play an important role in the patient's everyday activities. In this retrospective description of a series of cases the authors present their results in 155 patients that underwent a program of vestibular rehabilitation (VR). The program, first described by Cawthorne and Coosey, is based on mechanisms of potentiation of the cervico-ocular reflex and substitution of the lost vestibular cues for visual and somatosensory cues. The results were satisfactory (remission or partial cure) in 75.5% of the patients, with an average treatment time of up to 2 months and 5 or fewer sessions performed in most of the cases. The results were somewhat inferior in those cases in which a central vestibular lesion or more than one etiologic factor was present. The results of a subgroup of elderly patients (age > 65 years) were similar to those of the total number of studied subjects. Vestibular rehabilitation, associated to the specific etiological treatment, appears to be a very useful tool in the management of patients suffering from dizziness of all ages, although different clinical responses to the therapy may vary according to the presence of a central or a peripheral vestibular lesion or multiple etiological factors.

  9. Three Dimensional Vestibular Ocular Reflex Testing Using a Six Degrees of Freedom Motion Platform

    NARCIS (Netherlands)

    Dits, J.; Houben, M.M.J.; Steen, J. van der

    2013-01-01

    The vestibular organ is a sensor that measures angular and linear accelerations with six degrees of freedom (6DF). Complete or partial defects in the vestibular organ results in mild to severe equilibrium problems, such as vertigo, dizziness, oscillopsia, gait unsteadiness nausea and/or vomiting. A

  10. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    Science.gov (United States)

    ... vestibular schwannoma is key to preventing its serious consequences. There are three options for managing a vestibular ... Disorders Balance Problems and Disorders - National Institute on Aging Enlarged Vestibular Aqueducts and Childhood Hearing Loss Genetics ...

  11. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  12. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    Science.gov (United States)

    Bayat, Arash; Saki, Nader

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. The dizziness handicap inventory (DHI) was performed immediately before, and 2 and 8 weeks after treatment. Results: All patients showed a reduction in DHI scores during the study. The average decrease in DHI score was 25.98 points after 2 weeks’ intervention (P0.05). There were no relationships between the scores and gender. Conclusion: Our study demonstrates that VRT is an effective method for the management of elderly patients with UVH, and shows maximal effect on functional aspects. PMID:28819615

  13. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Vestibular syndrome: a change in internal spatial representation.

    Science.gov (United States)

    Borel, L; Lopez, C; Péruch, P; Lacour, M

    2008-12-01

    The vestibular system contributes to a wide range of functions from reflexes to spatial representation. This paper reviews behavioral, perceptive, and cognitive data that highlight the role of changes in internal spatial representation on the vestibular syndrome. Firstly, we review how visual vertical perception and postural orientation depend on multiple reference frames and multisensory integration and how reference frames are selected according to the status of the peripheral vestibular system (i.e., unilateral or bilateral hyporeflexia), the environmental constraints (i.e., sensory cues), and the postural constraints (i.e., balance control). We show how changes in reference frames are able to modify vestibular lesion-induced postural and locomotor deficits and propose that fast changes in reference frame may be considered as fast-adaptive processes after vestibular loss. Secondly, we review data dealing with the influence of vestibular loss on higher levels of internal representation sustaining spatial orientation and navigation. Particular emphasis is placed on spatial performance according to task complexity (i.e., the required level of spatial knowledge) and to the sensory cues available to define the position and orientation within the environment (i.e., real navigation in darkness or visual virtual navigation without any actual self-motion). We suggest that vestibular signals are necessary for other sensory cues to be properly integrated and that vestibular cues are involved in extrapersonal space representation. In this respect, vestibular-induced changes would be based on a dynamic mental representation of space that is continuously updated and that supports fast-adaptive processes.

  15. Vestibulary rehabilitation--election treatment method for compensating vestibular impairment.

    Science.gov (United States)

    Georgescu, Mădălina; Stoian, Sorina; Mogoantă, Carmen Aurelia; Ciubotaru, Gh V

    2012-01-01

    This paper aims to reveal the actual benefit of vestibular rehabilitation (VR) in patients with unilateral vestibular loss. Case report of a young female patient with acute unilateral vestibular loss due to facial nerve schwannoma developed above the internal auditory canal (IAC) from where it seems to have entered the IAC. Betahistine associated to VR treatment was recommended due to persisting imbalance after tumor removal. The benefit of the combined therapy was evaluated objectively (sensory organization test) and subjectively (questionnaires regarding self-perception of the deficit in quality of life). Both evaluations revealed great improvement in stability (SOT scores) as well as in health-related quality of life (HRQoL)--improvement of self-perception scores of disequilibrium in all questionnaires used. Combined recommended treatment (betahistine and VR) improves HRQoL after acute unilateral vestibular loss. It reduces self-perceived disability and intensity of symptoms during usual activities.

  16. Vertigo Perception and Quality of Life in Patients after Surgical Treatment of Vestibular Schwannoma with Pretreatment Prehabituation by Chemical Vestibular Ablation

    Directory of Open Access Journals (Sweden)

    Zdeněk Čada

    2016-01-01

    Full Text Available Surgical removal of vestibular schwannoma causes acute vestibular symptoms, including postoperative vertigo and oscillopsia due to nystagmus. In general, the dominant symptom postoperatively is vertigo. Preoperative chemical vestibular ablation can reduce vestibular symptoms postoperatively. We used 1.0 mL of 40 mg/mL nonbuffered gentamicin in three intratympanic installations over 2 days, 2 months preoperatively in 10 patients. Reduction of vestibular function was measured by the head impulse test and the caloric test. Reduction of vestibular function was found in all gentamicin patient groups. After gentamicin vestibular ablation, patients underwent home vestibular exercising for two months. The control group consisted of 10 patients who underwent only home vestibular training two months preoperatively. Postoperative rates of recovery and vertigo in both groups were evaluated with the Glasgow Benefit Inventory (GBI, the Glasgow Health Status Inventory (GHSI, and the Dizziness Handicap Inventory questionnaires, as well as survey of visual symptoms by specific questionnaire developed by us. There were no statistically significant differences between both groups with regard to the results of questionnaires. Patients who received preoperative gentamicin were more resilient to optokinetic and optic flow stimulation (p<0.05. This trial is registered with clinical study registration number NCT02963896.

  17. Organization and function of gut microflora

    Directory of Open Access Journals (Sweden)

    Martina Babič

    2013-10-01

    Full Text Available The human intestinal microbiota is composed of 10 to 100 trillion microbes whose metabolic activity equals to a virtual organ within an organ. Gut microflora have a crucial role in the maintenance of intestinal homeostasis. The composition of gut microflora is changing along the gastrointestinal tract. Factors that affect colonization of newborn’s gut microbiota are delivery mode, type of feeding, illness and prematurity. Our diet has a dominant role in shaping the microbial composition of the gut over other inviromental factors. The aim of this article is to introduce up-to-date knowledge of the organization and function of gut microflora.

  18. Treatment of Vestibular Dysfunction Using a Portable Simulator

    Science.gov (United States)

    2015-04-01

    Project Major Goal 1 - Develop a portable stimulator which can be worn continuously and used to improve vestibular function (April 2014 to June 2016...AD______________ AWARD NUMBER: W81XWH-14-2-0012 TITLE: TREATMENT OF VESTIBULAR DYSFUNCTION USING A PORTABLE STIMULATOR PRINCIPAL...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  19. Prophylactic treatment of vestibular migraine

    OpenAIRE

    Salmito, Márcio Cavalcante; Duarte, Juliana Antoniolli; Morganti, Lígia Oliveira Golçalves; Brandão, Priscila Valéria Caus; Nakao, Bruno Higa; Villa, Thais Rodrigues; Ganança,Fernando Freitas

    2017-01-01

    Abstract Introduction: Vestibular migraine (VM) is now accepted as a common cause of episodic vertigo. Treatment of VM involves two situations: the vestibular symptom attacks and the period between attacks. For the latter, some prophylaxis methods can be used. The current recommendation is to use the same prophylactic drugs used for migraines, including β-blockers, antidepressants and anticonvulsants. The recent diagnostic definition of vestibular migraine makes the number of studies on its ...

  20. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  1. The evolution of concepts of vestibular peripheral information processing: toward the dynamic, adaptive, parallel processing macular model

    Science.gov (United States)

    Ross, Muriel D.

    2003-01-01

    In a letter to Robert Hooke, written on 5 February, 1675, Isaac Newton wrote "If I have seen further than certain other men it is by standing upon the shoulders of giants." In his context, Newton was referring to the work of Galileo and Kepler, who preceded him. However, every field has its own giants, those men and women who went before us and, often with few tools at their disposal, uncovered the facts that enabled later researchers to advance knowledge in a particular area. This review traces the history of the evolution of views from early giants in the field of vestibular research to modern concepts of vestibular organ organization and function. Emphasis will be placed on the mammalian maculae as peripheral processors of linear accelerations acting on the head. This review shows that early, correct findings were sometimes unfortunately disregarded, impeding later investigations into the structure and function of the vestibular organs. The central themes are that the macular organs are highly complex, dynamic, adaptive, distributed parallel processors of information, and that historical references can help us to understand our own place in advancing knowledge about their complicated structure and functions.

  2. [Neuronal plasticity of otolith-related vestibular system].

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Zhang, Fu-Xing; Ma, Chun-Wai; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    This review focuses on our effort in addressing the development and lesion-induced plasticity of the gravity sensing system. After severance of sensory input from one inner ear, there is a bilateral imbalance in response dynamics and spatial coding behavior between neuronal subpopulations on the two sides. These data provide the basis for deranged spatial coding and motor deficits accompanying unilateral labyrinthectomy. Recent studies have also confirmed that both glutamate receptors and neurotrophin receptors within the bilateral vestibular nuclei are implicated in the plasticity during vestibular compensation and development. Changes in plasticity not only provide insight into the formation of a spatial map and recovery of vestibular function but also on the design of drugs for therapeutic strategies applicable to infants or vestibular disorders such as vertigo and dizziness.

  3. [Presbyastasis and application of vestibular rehabilitation in geriatrics].

    Science.gov (United States)

    Costa de Araujo, P; Demanez, L; Lechien, J; Bauvir, P; Petermans, J

    2011-03-01

    Balance disorders can have a major functional impact among the elderly. The main risk is falling. Three elements are implicated in the loss of balance: vision, proprioception and the vestibular system. This article will discuss mainly vestibular damage and its implications. The assessment of balance disorders, particularly in geriatric patients, is based on validated scales composed of several items. These provide scores and are based on the results of chronometric measurements. They can be useful for the application of Vestibular Rehabilitation (VR), a technique improving the adaptation and autonomy of these patients. Vestibular rehabilitation is therefore part of an overall support, the goal of therapy being to improve daily life and to reduce the risk of falls.

  4. Vestibular rehabilitation: clinical benefits to patients with Parkinson's disease.

    Science.gov (United States)

    Zeigelboim, Bianca Simone; Klagenberg, Karlin Fabianne; Teive, Hélio A Ghizoni; Munhoz, Renato Puppi; Martins-Bassetto, Jackeline

    2009-06-01

    To evaluate the effectiveness of the vestibular rehabilitation (VR) exercises by means of an assessment before and after the application of the Brazilian version of the Dizziness Handicap Inventory (DHI) questionnaire. Twelve patients were studied, the following procedures were carried out: anamnesis, otorhinolaryngological and vestibular evaluation, and the application of the DHI before and after the VR. Clinically resting tremors and subjective postural instability were the motor complaints most frequently associated with complaints of vertigo in 12 cases (100%); in the vestibular exam, all the patients presented abnormalities, frequently from the uni and bilateral peripheral vestibular deficiency syndromes in 10 cases (83.3%); there was significant improvement in the physical, functional and emotional aspects of the DHI after the completion of the VR. The VR following the Cawthorne and Cooksey protocol were shown to be useful in managing subjective complaints of several aspects evaluated in this protocol.

  5. Effect of Enzogenol® Supplementation on Cognitive, Executive, and Vestibular/Balance Functioning in Chronic Phase of Concussion.

    Science.gov (United States)

    Walter, A; Finelli, K; Bai, X; Arnett, P; Bream, T; Seidenberg, P; Lynch, S; Johnson, B; Slobounov, S

    2017-01-01

    This study examined the feasibility of Enzogenol® as a potential treatment modality for concussed individuals with residual symptoms in the chronic phase. Forty-two student-athletes with history of sport-related concussion were enrolled, comparing Enzogenol® versus placebo. Testing was conducted using virtual reality (VR) and electroencephalography (EEG), with neuropsychological (NP) tasks primarily used to induce cognitive challenges. After six weeks, the Enzogenol® group showed enhanced frontal-midline theta, and decreased parietal theta power, indicating reduced mental fatigue. Subjects enrolled in the Enzogenol® group also self-reported reduced mental fatigue and sleep problems. This suggests that Enzogenol® has the potential to improve brain functioning in the chronic phase of concussion.

  6. Gentamicin perfusion vestibular response and hearing loss.

    Science.gov (United States)

    Light, Joshua P; Silverstein, Herbert; Jackson, Lance E

    2003-03-01

    To compare hearing results as a function of vestibular ablation in the treatment of Ménière's Disease, using gentamicin perfusion. A retrospective review of patients with Ménière's Disease treated by gentamicin perfusion of the inner ear via the MicroWick device. A tertiary otologic referral center. The charts of patients treated with gentamicin perfusion via the MicroWick between the years 1998 and 2000 were reviewed. The results for patients with functional hearing in the affected ear were analyzed and were compared with the results in patients without functional hearing. Audiologic and vestibular test results as well as subjective symptoms. There were 45 patients who met the inclusion criteria. The averages for speech discrimination score and pure tone average before treatment were 92% and 38 dB, and after treatment were 82% and 47 dB. Patients were divided into two groups: Group 1 (20 patients), less than 75% ice air caloric reduced vestibular response (RVR); Group 2 (25 patients), those who reached greater than 75% ice air caloric RVR. There were 8 patients (17.6%) with persistent vertigo; 7 were from Group 1, and 1 was from Group 2, which was statistically significant (p = 0.007)wwww. The pure tone average dropped an average of 3 dB for Group 1 and 15 dB for Group 2. The difference in hearing loss between the two groups was statistically significant (p = 0.01). This study suggests that there is a correlation between the degree of vestibular ablation, the control of vertigo, and the risk of hearing loss. Patients with functional hearing seem to have a similar success rate for vertigo control, compared with patients who already had lost functional hearing before treatment. Future investigation may determine if less than 100% RVR, but greater than 75% RVR, is an alternative end point with adequate vertigo control and reduced risk of hearing loss.

  7. Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways.

    Science.gov (United States)

    Lee, Choongheon; Jones, Timothy A

    2017-09-01

    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransmitter and neuromodulator receptors in the vestibular sensory pathways. Identifying these receptor targets provides a strategic basis to use specific pharmacological tools to modify receptor function in the treatment and management of debilitating balance disorders. A review of the literature reveals that most investigations of the neuropharmacology of peripheral vestibular function have been performed using in vitro or ex vivo animal preparations rather than studying drug action on the normal intact vestibular system in situ. Such noninvasive approaches could aid the development of more accurate and effective intervention strategies for the treatment of dizziness and vertigo. The current review explores the major neuropharmacological targets for drug action in the vestibular system.

  8. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  9. True incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  10. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    Directory of Open Access Journals (Sweden)

    Christophe eLopez

    2013-12-01

    Full Text Available The consequences of vestibular disorders on balance, oculomotor control and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience, altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization. In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness.

  11. Diaphragm muscle: structural and functional organization.

    Science.gov (United States)

    Sieck, G C

    1988-06-01

    The structural and functional organization of the diaphragm muscle is described in terms of the essential units for neuromotor control. These motor units in the diaphragm vary markedly in their metabolic, contractile, and fatigue properties. Thus, the forces generated by the diaphragm during different ventilatory and nonventilatory behaviors will depend on the number and type of motor units recruited. It is therefore important to understand the basic properties of diaphragm motor units and the mechanisms underlying their recruitment.

  12. Hypervascular vestibular Schwannoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja Young; Yu, In Kyu [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2014-11-15

    Most vestibular schwannoma is hypovascular with well known poor tumor staining in cerebral angiography. However, hypervascular vestibular schwannoma might be observed as a rare subtype with increased risk of bleeding during surgery. Multimodal imaging features which represent hypervascularity of the tumor can be observed in hypervascular vestibular schwannoma. Here we report a case of hypervascular vestibular schwannoma with brief literature review.

  13. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  14. The Moving History of Vestibular Stimulation as a Therapeutic Intervention.

    Science.gov (United States)

    Grabherr, Luzia; Macauda, Gianluca; Lenggenhager, Bigna

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox's chair or Hallaran's swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recognition of vestibular contributions to various perceptual, motor, cognitive, and emotional processes, vestibular stimulation has been suggested as a powerful and non-invasive treatment for a range of psychiatric, neurological and neurodevelopmental conditions. Yet, the therapeutic interventions were, and still are, often not hypothesis-driven as broader theories remain scarce and underlying neurophysiological mechanisms are often vague. We aim to critically review the literature on vestibular stimulation as a form of therapy in various selected disorders and present its successes, expectations, and drawbacks from a historical perspective.

  15. Transformation of Vestibular Signals for the Control of Standing in Humans.

    Science.gov (United States)

    Forbes, Patrick A; Luu, Billy L; Van der Loos, H F Machiel; Croft, Elizabeth A; Inglis, J Timothy; Blouin, Jean-Sébastien

    2016-11-09

    During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms

  16. RELATIONSHIPS AMONG COMMON VISION AND VESTIBULAR TESTS IN HEALTHY RECREATIONAL ATHLETES

    Science.gov (United States)

    Heick, John D.; Bay, Curt; Dompier, Thomas P.; Valovich McLeod, Tamara C.

    2017-01-01

    Background Disruption of the visual and vestibular systems is commonly observed following concussion. Researchers have explored the utility of screening tools to identify deficits in these systems in concussed patients, but it is unclear if these tests are measuring similar or distinct phenomena. Purpose To determine the relationships between common vestibular tests including the King-Devick (K-D) test, Sensory Organization Test (SOT), Head Shake-Sensory Organization Test (HS-SOT), and Dynamic Visual Acuity (DVA) test, when administered contiguously, to healthy recreational athletes aged 14 to 24 years. Study Design This study used a prospective design to evaluate relationships between the K-D, SOT, HS-SOT, and DVA tests in 60 healthy individuals. Methods Sixty participants (30 males, 30 females; mean age, 19.9 ± 3.74 years) completed the four tests in a single testing session. Results Results did not support a relationship between any pair of the K-D, SOT, HS-SOT, and DVA tests. Pearson correlations between tests were poor, ranging from 0.14 to 0.20. As expected the relationship between condition 2 of the SOT and HS-SOT fixed was strong (ICC=0.81) as well as condition 5 of the SOT with HS-SOT sway (ICC=0.78). The test-retest reliability of all 4 tests was evaluated to ensure the relationships of the 4 tests were consistent between test trials and reliability was excellent with intraclass correlations ranging from 0.79 to 0.97. Conclusions The lack of relationships in these tests is clinically important because it suggests that the tests evaluate different aspects of visual and vestibular function. Further, these results suggest that a comprehensive assessment of visual and vestibular deficits following concussion may require a multifaceted approach. Level of Evidence 2b: Individual Cohort Study. PMID:28900564

  17. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    OpenAIRE

    Esther Bernal Valls; Víctor Faus Cuñat; Raquel Bernal Valls

    2006-01-01

    El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a represent...

  18. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    Science.gov (United States)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24

  19. Reabilitação vestibular no tratamento da tontura e do zumbido Vestibular rehabilitation in the treatment of dizziness and tinnitus

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2008-01-01

    Brazilian population. METHODS: Six patients (two male and four female, with ages ranging from 43 to 70 years, were evaluated. The patients were submitted to the following procedures: anamnesis, otoscopy, vestibular evaluation through vectoelectronystagmography, and administration of the questionnaires, before and after vestibular rehabilitation, using the Cawthorne and Cooksey protocol. RESULTS: a regarding the most related complaints, imbalance when walking (83,3%, headache (66,6% and depression (66,6%, were observed; b in the vestibular exam all the patients showed alterations in the caloric test, and the most frequent syndrome was the irritative peripheral vestibular (83,3%; c two cases of irritative peripheral vestibular syndrome, two cases of irritative peripheral unilateral vestibular syndrome, one case of irritative peripheral bilateral vestibular syndrome and one case of peripheral deficient unilateral vestibular syndrome were verified in the vestibular exam; d in the administration of the DHI, an improvement in the functional and emotional aspects were observed, with the physical aspect remaining unchanged; e in the administration of the THI, an improvement was observed in all the aspects evaluated. CONCLUSION: The protocol of vestibular rehabilitation used in the study, promoted a decrease in tinnitus and dizziness, hence improving the quality of life of the patients.

  20. Laboratory testing of the vestibular system.

    Science.gov (United States)

    Clarke, Andrew H

    2010-10-01

    Recent reports on vestibular testing, relevant to clinical diagnosis, are reviewed.Besides the case history and bedside examination, objective measurement of the vestibuloocular reflex in all of its facets remains the cornerstone in the diagnostic process. In recent years, this has been enhanced considerably by reliable unilateral tests for the otolith organs, most notably by vestibular-evoked myogenic potential recording and estimation of subjective visual vertical. In addition, progress has been made in the investigation of multisensory interaction, involving visual acuity and posturography.Technological developments include improved eye movement measurement techniques, electrotactile and vibrotactile sensory enhancement or substitution, the use of virtual reality devices and motion stimulators such as hexapods and the rediscovery of galvanic vestibular stimulation as a research and diagnostic tool. The recent introduction of new tests, together with the development of novel technologies, is gradually increasing the scope of the physical and bedside examination of the dizzy patient (see chapter 'Medical management of peripheral disorders' in this issue). The use of more complex equipment, such as rotating chairs, linear sleds, hexapods and posturography platforms, is likely to become limited to specialized laboratories and rehabilitation centers in future years. Further, high resolution magnetic resonance tomography (MRT) and computed tomography have allowed insight into the morphology and determination of malformations of the human labyrinth.

  1. The vestibular system and cognition.

    Science.gov (United States)

    Smith, Paul F

    2017-02-01

    The last year has seen a great deal of new information published relating vestibular dysfunction to cognitive impairment in humans, especially in the elderly. The objective of this review is to summarize and critically evaluate this new evidence in the context of the previous literature. This review will address the recent epidemiological/survey studies that link vestibular dysfunction with cognitive impairment in the elderly; recent clinical investigations into cognitive impairment in the context of vestibular dysfunction, both in the elderly and in the cases of otic capsule dehiscence and partial bilateral vestibulopathy; recent evidence that vestibular impairment is associated with hippocampal atrophy; and finally recent evidence relating to the hypothesis that vestibular dysfunction could be a risk factor for dementia. The main implication of these recent studies is that vestibular dysfunction, possibly of any type, may result in cognitive impairment, and this could be especially so for the elderly. Such symptoms will need to be considered in the treatment of patients with vestibular disorders.

  2. Frequency response of human vestibular reflexes characterized by stochastic stimuli.

    Science.gov (United States)

    Dakin, Christopher J; Son, Gregory M Lee; Inglis, J Timothy; Blouin, Jean-Sébastien

    2007-09-15

    Stochastic vestibular stimulation (SVS) can be used to study the postural responses to unpredictable vestibular perturbations. The present study seeks to determine if stochastic vestibular stimulation elicits lower limb muscular responses and to estimate the frequency characteristics of these vestibulo-motor responses in humans. Fourteen healthy subjects were exposed to unpredictable galvanic currents applied on their mastoid processes while quietly standing (+/-3 mA, 0-50 Hz). The current amplitude and stimulation configuration as well as the subject's head position relative to their feet were manipulated in order to determine that: (1) the muscle responses evoked by stochastic currents are dependent on the amplitude of the current, (2) the muscle responses evoked by stochastic currents are specific to the percutaneous stimulation of vestibular afferents and (3) the lower limb muscle responses exhibit polarity changes with different head positions as previously described for square-wave galvanic vestibular stimulation (GVS) pulses. Our results revealed significant coherence (between 0 and 20 Hz) and cumulant density functions (peak responses at 65 and 103 ms) between SVS and the lower limbs' postural muscle activity. The polarity of the cumulant density functions corresponded to that of the reflexes elicited by square-wave GVS pulses. The SVS-muscle activity coherence and time cumulant functions were modulated by current amplitude, electrode position and head orientation with respect to the subject's feet. These findings strongly support the vestibular origin of the lower limb muscles evoked by SVS. In addition, specific frequency bandwidths in the stochastic vestibular signal contributed to the early (12-20 Hz) and late components (2-10 Hz) of the SVS-evoked muscular responses. These frequency-dependent SVS-evoked muscle responses support the view that the biphasic muscle response is conveyed by two distinct physiological processes.

  3. Cognitive deficits in patients with a chronic vestibular failure.

    Science.gov (United States)

    Popp, Pauline; Wulff, Melanie; Finke, Kathrin; Rühl, Maxine; Brandt, Thomas; Dieterich, Marianne

    2017-03-01

    Behavioral studies in rodents and humans have demonstrated deficits of spatial memory and orientation in bilateral vestibular failure (BVF). Our aim was to explore the functional consequences of chronic vestibular failure on different cognitive domains including spatial as well as non-spatial cognitive abilities. Sixteen patients with a unilateral vestibular failure (UVF), 18 patients with a BVF, and 17 healthy controls (HC) participated in the study. To assess the cognitive domains of short-term memory, executive function, processing speed and visuospatial abilities the following tests were used: Theory of Visual Attention (TVA), TAP Alertness and Visual Scanning, the Stroop Color-Word, and the Corsi Block Tapping Test. The cognitive scores were correlated with the degree of vestibular dysfunction and the duration of the disease, respectively. Groups did not differ significantly in age, sex, or handedness. BVF patients were significantly impaired in all of the examined cognitive domains but not in all tests of the particular domain, whereas UVF patients exhibited significant impairments in their visuospatial abilities and in one of the two processing speed tasks when compared independently with HC. The degree of vestibular dysfunction significantly correlated with some of the cognitive scores. Neither the side of the lesion nor the duration of disease influenced cognitive performance. The results demonstrate that vestibular failure can lead to cognitive impairments beyond the spatial navigation deficits described earlier. These cognitive impairments are more significant in BVF patients, suggesting that the input from one labyrinth which is distributed into bilateral vestibular circuits is sufficient to maintain most of the cognitive functions. These results raise the question whether BVF patients may profit from specific cognitive training in addition to physiotherapy.

  4. Is the Headache in Patients with Vestibular Migraine Attenuated by Vestibular Rehabilitation?

    OpenAIRE

    Sugaya, Nagisa; ARAI, Miki; Goto, Fumiyuki

    2017-01-01

    Background Vestibular rehabilitation is the most effective treatment for dizziness due to vestibular dysfunction. Given the biological relationship between vestibular symptoms and headache, headache in patients with vestibular migraine (VM) could be improved by vestibular rehabilitation that leads to the improvement of dizziness. This study aimed to compare the effects of vestibular rehabilitation on headache and other outcomes relating to dizziness, and the psychological factors in patien...

  5. Spatial cognition, body representation and affective processes: the role of vestibular information beyond ocular reflexes and control of posture.

    Science.gov (United States)

    Mast, Fred W; Preuss, Nora; Hartmann, Matthias; Grabherr, Luzia

    2014-01-01

    A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are-at least in part-associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

  6. Spatial Cognition, Body Representation and Affective Processes: The Role of Vestibular Information beyond Ocular Reflexes and Control of Posture

    Directory of Open Access Journals (Sweden)

    Fred W Mast

    2014-05-01

    Full Text Available A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: 1 Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths, body rotation (changing the input from the semicircular canals, in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. 2 Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. 3 Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are – at least in part – associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

  7. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation

    Directory of Open Access Journals (Sweden)

    Jack eDigiovanna

    2016-04-01

    Full Text Available The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of ‘optimal’ stimulation configurations for humans. Here we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time-point, we further examined how it affected subsequent pulse rate and pulse amplitude modulation. Pulse amplitude modulation was more effective than pulse rate modulation for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost pulse amplitude modulation. Co-modulation of pulse rate and amplitude has been experimentally shown to induce both

  8. Local effects of nitric oxide on vestibular blood flow in the Mongolian gerbil.

    Science.gov (United States)

    Arenberg, J G; Komjathy, D A; Seidman, M D; Quirk, W S

    1997-01-01

    There is a paucity of studies regarding the regulation of vestibular blood flow (VBF), despite the possibility that vascular alterations may contribute to specific vestibulopathies. The current experiments used the Mongolian gerbil as an animal model since it provides easy surgical access to the vestibular end-organs and has been previously used for physiologic studies involving inner ear function. VBF changes were measured in the posterior semicircular canal using laser Doppler flowmetry following round window membrane (RWM) application of the nitric oxide donor 1, 3-propanediamine-N-[4-1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazi no] butyl (spermine NONOate; SPNO) as a vasodilator. The specificity of the responses induced was tested via pretreatment with an NO scavenger, 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazonline-1-oxyl-3-oxide (carboxy-PTIO; cPTIO). cPTIO, SPNO, vehicle (control) or cPTIO/SPNO were applied to the RWM, during which blood pressure and VBF were monitored for baseline, treatment, and recovery conditions. Results showed concentration-dependent increases in flow, probably resulting from NO's vasodilatory action on local vasculature. cPTIO pretreatment was found to attenuate SPNO-induced VBF increases. These findings support a role of NO in maintaining the vestibular microcirculation.

  9. Degenerative hairlets on the vestibular sensory cells in mutant bustling (BUS/Idr) mice.

    Science.gov (United States)

    Moriyama, K; Hashimoto, R; Hanai, A; Yoshizaki, N; Yonezawa, S; Otani, H

    1997-01-01

    The bustling mouse (BUS/Idr: bus) is a mutant mouse strain which exhibits deafness, bustling/hyperkinetic behaviour and functional disorders seemingly related to the vestibular system. This phenotype develops in homozygous (bus/bus) mice and has been shown from cross experiments to be genetically induced by a single autosomal recessive gene. We previously detected, with light and electron microscopy, post-natal degeneration of the inner ear sensory cells in homozygotes. In the present study, we examined, by electron microscopy, the development of pathological changes in the sensory epithelia of the macula acustica and crista ampullaris of homozygous mice of various ages, paying special attention to the detailed morphology of the sensory hairlets. The homozygous mice exhibited specific pathological changes: a decrease in the number of hairs; disarrangement of the kinocilium-stereocilia pattern; and, fused and/or very large stereocilia. Homozygotes also frequently exhibited apical cytoplasmic herniation, or bleb of hair cells, as well as a degenerated kinocilium in the sensory epithelium. Heterozygotes showed similar changes, but to a lesser degree and frequency. As for the vestibular organs, similar pathological changes had developed at day, 17 of gestation. These pathological findings and onset suggest that the BUS mouse may be a mutant mouse strain distinct from other reported strains which display similar behaviour, and may be a useful animal model for the study of human degenerative vestibular disorders.

  10. Effect of different modes of therapy on vestibular and balance dysfunction in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Wafaa Abdel-Hay El-Kholy

    2015-07-01

    Conclusions: Since patients with PD receiving physiotherapy in conjunction with medical treatment showed better control of their vestibular and balance functions, efforts should be directed to start physiotherapy including vestibular rehabilitation as early as possible in order to improve balance, thus increasing independence in daily life activities.

  11. The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig

    NARCIS (Netherlands)

    Kingma, C. M.; Wit, H. P.

    2010-01-01

    To investigate the effect on the functioning of the vestibular system of a rupture of Reissner's membrane, artificial endolymph was injected in scala media of ten guinea pigs and vestibular evoked potentials (VsEPs), evoked by vertical acceleration pulses, were measured. Directly after injection of

  12. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Directory of Open Access Journals (Sweden)

    Esther Bernal Valls

    2006-12-01

    Full Text Available El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a representative way, what evidences this is a profitable process for this kind of patients. The good results suggest that vestibular exercises permit a postural stability and a decrease in the perception of disequilibrium.

  13. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  14. Polymer physics of nuclear organization and function

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, A. [Department of Chemical Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Holcman, D., E-mail: david.holcman@ens.fr [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Churchill College, CB30DS, Cambridge (United Kingdom); Ecole Normale Superieure, Paris (France)

    2017-03-23

    We review here recent progress to link the nuclear organization to its function, based on elementary physical processes such as diffusion, polymer dynamics of DNA, chromatin and the search mechanism for a small target by double-stranded DNA (dsDNA) break. These physical models and their analysis make it possible to compute critical rates involved in cell reorganization timing, which depend on many parameters. In the framework of polymer models, various empirical observations are interpreted as anomalous diffusion of chromatin at various time scales. The reviewed theoretical approaches offer a framework for extracting features, biophysical parameters, predictions, and so on, based on a large variety of experimental data, such as chromosomal capture data, single particle trajectories, and more. Combining theoretical approaches with live cell microscopy data should unveil some of the still unexplained behavior of the nucleus in carrying out some of its key function involved in survival, DNA repair or gene activation.

  15. 20 CFR 422.1 - Organization and functions.

    Science.gov (United States)

    2010-04-01

    ....1 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES Organization and Functions of the Social Security Administration § 422.1 Organization and functions. (a) General. A complete description of the organization and functions of the Social Security Administration (pursuant to 5 U.S.C. 552...

  16. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Science.gov (United States)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  17. Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation.

    Science.gov (United States)

    Shao, Mei; Popratiloff, Anastas; Hirsch, June C; Peusner, Kenna D

    2009-01-01

    Vestibular compensation refers to the recovery of function occurring after unilateral vestibular deafferentation, but some patients remain uncompensated. Similarly, more than half of the operated chickens compensate three days after unilateral vestibular ganglionectomy (UVG), but the rest remain uncompensated. This review focuses on the studies performed on the principal cells of the chick tangential nucleus after UVG. The tangential nucleus is a major avian vestibular nucleus whose principal cells are all second-order, vestibular reflex projection neurons participating in the vestibuloocular and vestibulocollic reflexes controlling posture, balance, and eye movements. Using whole-cell patch-clamp approach in brain slice preparations, spontaneous spike firing, ionic conductances, and spontaneous excitatory postsynaptic currents (sEPSCs) are recorded in principal cells from controls and operated chickens three days after UVG. In compensated chickens, the proportion of spontaneous spike firing principal cells and their spike discharge rate are symmetric on the lesion and intact sides, with the rates increased over controls. However, in the uncompensated chickens, the spike discharge rate increases on the lesion side, but not on the intact side, where only silent principal cells are recorded. In all the experimental groups, including controls, silent principal cells are distinguished from spontaneous spiking cells by smaller persistent sodium conductances and higher activation thresholds for the fast sodium channel. In addition, silent principal cells on the intact side of uncompensated chickens have larger dendrotoxin-sensitive potassium conductances, with a higher ratio of immunolabeling for surface/cytoplasmic expression of a dendrotoxin-sensitive, potassium channel subunit, Kv1.1. Finally, in compensated chickens, sEPSC frequency is symmetric bilaterally, but in uncompensated chickens sEPSC frequency increased only on the lesion side, where the expression of Kv1

  18. The effects of aging on clinical vestibular evaluations

    Directory of Open Access Journals (Sweden)

    Maxime eMaheu

    2015-09-01

    Full Text Available Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cVEMP and oVEMP, then the caloric and vHIT methods for semi-circular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semi-circular canals function.

  19. Molecular studies of vestibular schwannomas: a review.

    Science.gov (United States)

    Welling, D Bradley; Packer, Mark D; Chang, Long-Sheng

    2007-10-01

    To summarize advances in understanding the molecular biology of vestibular schwannomas over the past year. The role of the neurofibromatosis type 2 protein, denoted as merlin or schwannomin, in embryonic development, cellular adherence, and in cell proliferation has become better elucidated in the past year. Likewise, the role of merlin in Schwann cell-axon interaction has been studied. Additionally, two comprehensive analyses of the spectrum of human neurofibromatosis type 2 mutations have been compiled which make up a valuable resource in understanding critical regions of the neurofibromatosis type 2 gene. Neurofibromatosis type 2 screening guidelines for young patients with solitary vestibular schwannomas have been published. The role of electromagnetic radiation via cellular and portable telephones as a predisposing factor to vestibular schwannoma formation has also been the topic of several studies. Based on increased knowledge of the pathways in which merlin functions and the available transgenic and xenograft mouse models, preliminary data regarding directed pharmacotherapy are also summarized. With increased knowledge of the pathologic mechanisms and interacting proteins associated with merlin, the research community is poised to begin trials of targeted interventions in vitro and in the current mouse models.

  20. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular

  1. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders.

    Science.gov (United States)

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    Visual stimuli can induce vestibular adaptation and recovery of body balance. To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental group) or Cawthorne-Cooksey exercises (control group). The Dizziness Handicap Inventory (DHI), dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. Before and after the intervention, there was no difference between the experimental and control groups (p>0.005) regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p<0.05) in the DHI and the dizziness analog scale, and higher values (p<0.05) in the static balance tests in some of the assessed conditions. The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    Directory of Open Access Journals (Sweden)

    Andréa Manso

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD (experimental group or Cawthorne-Cooksey exercises (control group. The Dizziness Handicap Inventory (DHI, dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. RESULTS: Before and after the intervention, there was no difference between the experimental and control groups (p > 0.005 regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p < 0.05 in the DHI and the dizziness analog scale, and higher values (p < 0.05 in the static balance tests in some of the assessed conditions. CONCLUSION: The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders.

  3. Visual analyzer as anticipatory system (functional organization)

    Science.gov (United States)

    Kirvelis, Dobilas

    2000-05-01

    Hypothetical functional organization of the visual analyzer is presented. The interpretation of visual perception, anatomic and morphological structure of visual systems of animals, neuro-physiological, psychological and psycho-physiological data in the light of a number of the theoretical solutions of image recognition and visual processes simulation enable active information processing. The activities in special areas of cortex are as follows: focused attention, prediction with analysis of visual scenes and synthesis, predictive mental images. In the projection zone of visual cortex Area Streata or V1 a "sensory" screen (SS) and "reconstruction" screen (RS) are supposed to exist. The functional structure of visual analyzer consist of: analysis of visual scenes projected onto SS; "tracing" of images; preliminary recognition; reversive image reconstruction onto RS; comparison of images projected onto SS with images reconstructed onto RS; and "correction" of preliminary recognition. Special attention is paid to the quasiholographical principles of the neuronal organization within the brain, of the image "tracing," and of reverse image reconstruction. Tachistoscopic experiments revealed that the duration of one such hypothesis-testing cycle of the human visual analyzers is about 8-10 milliseconds.

  4. Neuronal nitric oxide synthase immunopositive neurons in cat vestibular complex: a light and electron microscopic study.

    Science.gov (United States)

    Papantchev, V; Paloff, A; Hinova-Palova, D; Hristov, S; Todorova, D; Ovtscharoff, W

    2006-11-01

    Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless, there are little data about the neuronal nitric oxide synthase immunoreactivity (nNOS-ir) in the vestibular complex of a cat. In this respect, the aims of this study were to: (1) demonstrate nNOS-ir in the neurons and fibers, from all major and accessory vestibular nuclei; (2) describe their light microscopic morphology and distribution; (3) investigate and analyze the ultrastructure of the NOS I-immunopositive neurons, fibers, and synaptic boutons. For demonstration of the nNOS-ir, the peroxidase-antiperoxidase-diaminobenzidin method was applied. Immunopositive for nNOS neurons and fibers were present in all major and accessory vestibular nuclei. On the light microscope level, the immunopositive neurons were different in shape and size. According to the latter, they were divided into four groups--small (with diameter less than 15 microm), medium-sized (with diameter from 15 to 30 microm), large type I (with diameter from 30 to 40 microm), and large type II (with diameter greater than 40 microm). On the electron microscope level, the immunoproduct was observed in neurons, dendrites, and terminal boutons. According to the ultrastructural features, the neurons were divided into three groups--small (with diameter less than 15 microm), medium-sized (with diameter from 15 to 30 microm), and large (with diameter greater than 30 microm). At least two types of nNOS-ir synaptic boutons were easily distinguished. As a conclusion, we hope that this study will contribute to a better understanding of the functioning of the vestibular complex in cat and that some of the data presented could be extrapolated to other mammals, including human.

  5. Acoustic neuroma: predominance of Antoni type B cells in tumors of patients with vestibular paresis.

    Science.gov (United States)

    Stipkovits, E M; Graamans, K; Jansen, G H; Velthof, M A

    2001-03-01

    This study aimed to investigate whether in patients with acoustic neuroma (AN), the presence or absence of vestibular symptoms is related to the histologic characteristics of the tumor. The study design was a retrospective clinical study. The study was conducted at a tertiary referral center. A group of eight patients with unilateral AN and normal vestibular function was compared with a group of AN patients, matched for tumor size, with vestibular paresis. The methods were vestibular examination of the patients and morphometric analysis of the histologic specimens of their tumors. The outcomes were measured by vestibular function and by the relative quantity of Antoni type A or type B cell tissue. The tumors of patients with vestibular paresis appeared to contain significantly more Antoni B cells and fewer Antoni A cells than did the tumors of patients with normal vestibular function. Besides morphologic differences, type B cells may display a distinct behavior compared with type A cells. Presumably, in AN patients the development of a vestibular paresis appears to be related to the biologic activity of type B cells in the tumor.

  6. Age-Related Vestibular Loss: Current Understanding and Future Research Directions.

    Science.gov (United States)

    Arshad, Qadeer; Seemungal, Barry M

    2016-01-01

    The vestibular system sub-serves a number of reflex and perceptual functions, comprising the peripheral apparatus, the vestibular nerve, the brainstem and cerebellar processing circuits, the thalamic relays, and the vestibular cerebral cortical network. This system provides signals of self-motion, important for gaze and postural control, and signals of traveled distance, for spatial orientation, especially in the dark. Current evidence suggests that certain aspects of this multi-faceted system may deteriorate with age and sometimes with severe consequences, such as falls. Often the deterioration in vestibular functioning relates to how the signal is processed by brain circuits rather than an impairment in the sensory transduction process. We review current data concerning age-related changes in the vestibular system, and how this may be important for clinicians dealing with balance disorders.

  7. Age-Related Vestibular Loss: Current Understanding and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Dominic Allen

    2016-12-01

    Full Text Available The vestibular system sub-serves a number of reflex and perceptual functions, comprising the peripheral apparatus, the vestibular nerve, the brainstem and cerebellar processing circuits, the thalamic relays, and the vestibular cerebral cortical network. This system provides signals of self-motion, important for gaze and postural control, and signals of traveled distance, for spatial orientation, especially in the dark. Current evidence suggests that certain aspects of this multi-faceted system may deteriorate with age and sometimes with severe consequences, such as falls. Often the deterioration in vestibular functioning relates to how the signal is processed by brain circuits rather than an impairment in the sensory transduction process. We review current data concerning age-related changes in the vestibular system, and how this may be important for clinicians dealing with balance disorders.

  8. The role of the thalamus in the human subcortical vestibular system.

    Science.gov (United States)

    Conrad, Julian; Baier, Bernhard; Dieterich, Marianne

    2014-01-01

    Most of our knowledge concerning central vestibular pathways is derived from animal studies while evidence of the functional importance and localization of these pathways in humans is less well defined. The termination of these pathways at the thalamic level in humans is even less known. In this review we summarize the findings concerning the central subcortical vestibular pathways in humans and the role of these structures in the central vestibular system with regard to anatomical localization and function. Also, we review the role of the thalamus in the pathogenesis of higher order sensory deficits such as spatial neglect, pusher syndrome or thalamic astasia and the correlation of these phenomena with findings of a vestibular tone imbalance at the thalamic level. By highlighting thalamic structures involved in vestibular signal processing and relating the different nomenclatures we hope to provide a base for future studies on thalamic sensory signal processing.

  9. Features of vestibular resistance in aggressive and nonaggressive students of humanitarian university

    Directory of Open Access Journals (Sweden)

    Romanenko Valerij Aleksandrovich

    2011-11-01

    Full Text Available Present the results of determining the stability of the organism levels of students with polar aggressiveness on the vestibular tests with angular accelerations. It is shown that the stability of aggressive students is reduced by 29.3%. This is due to insufficient cost-effective functioning of the circulatory system in basal conditions. It is established that a certain strain the cardiovascular system is an integral part of their genetic aggressiveness and reflects the willingness to act. It is shown that aggressiveness (as a character trait should be considered as a determinant of reduced stability of the individual to angular accelerations.

  10. Vestibular findings in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2011-07-01

    Full Text Available Introduction: Fibromyalgia (FM is a non-inflammatory musculoskeletal chronic syndrome, whose etiology is unknown, characterized by a diffuse pain, increase in palpation sensitivity and such symptoms as tiredness, insomnia, anxiety, depression, cold intolerance and otologic complaints. Objective: Evaluate the vestibular behavior in fibromyalgia patients. Method: A retrospective transversal study was performed. 25 patients aged between 26 and 65 (average age - 52.2 and standard deviation - 10.3 were evaluated and submitted to the following procedures: anamnesis, otorhinolaryngologic and vestibular evaluation by way of vector electronystamography. Results: a The most evident otoneurologic symptoms were: difficulty or pain when moving the neck and pain was spread to an arm or shoulder (92.0% in each, dizziness (84.0% and headache (76.0%. The different clinical symptoms mostly reported were: depression (80.0%, anxiety (76.0% and insomnia (72.0%; b vestibular examination showed an alteration in 12 patients (48.0% in the caloric test; c an alteration in the peripheral vestibular system prevailed, and d deficient peripheral vestibular disorders were prevalent. Conclusion: This study enabled the importance of the labyrinthic test to be verified, thus emphasizing that this kind of people must be studied better, since a range of rheumatologic diseases can cause severe vestibular changes as a result of their manifestations and impairment areas.

  11. Vestibular rehabilitation ameliorates chronic dizziness through the SIRT1 axis

    Directory of Open Access Journals (Sweden)

    Chung-Lan eKao

    2014-03-01

    Full Text Available Dizziness is a common clinical symptom frequently referred to general neurologists and practitioners. Exercise intervention, in the form of vestibular rehabilitation, is known as an effective clinical management for dizziness. This intervention is reported to have a functional role in correcting dizziness, improving gaze stability, retraining balance and gait and enhancing physical fitness. Dizziness is known to be highly related to inflammation and oxidative stress. SIRT1 is a major molecule for regulation of inflammation and mitigation of oxidative stress in chronic diseases such as atherosclerosis and chronic obstructive pulmonary disease. However, the bio-molecular roles of SIRT1 involved in the pathogenesis of dizziness are still largely unclear. In this study, a total of 30 subjects were recruited (15 patients with chronic dizziness, and 15 age/gender matched non-dizzy control subjects. The dizzy subjects group received 18 sessions of 30-minutes vestibular training. We found that the mRNA and protein expression levels of SIRT1 in the blood samples of chronic dizzy patients were repressed compared with those of healthy controls. After vestibular training, the dizzy patients had significant symptomatic improvements. The SIRT1 expression and its downstream genes (PPAR-γ and PGC-1α were upregulated after vestibular exercises in dizzy subjects. Notably, the catalytic activity of SIRT1, NADPH and antioxidant enzyme activities were also activated in dizzy patients after vestibular training. Furthermore, vestibular exercise training reduced oxidative events and p53 expression in patients with dizziness. This study demonstrated that vestibular exercise training improved dizziness symptoms, and mechanisms for alleviation of chronic dizziness may partly involve the activation of the SIRT1 axis and the repression of redox status.

  12. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  13. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: FROM THE AMERICAN PHYSICAL THERAPY ASSOCIATION NEUROLOGY SECTION.

    Science.gov (United States)

    Hall, Courtney D; Herdman, Susan J; Whitney, Susan L; Cass, Stephen P; Clendaniel, Richard A; Fife, Terry D; Furman, Joseph M; Getchius, Thomas S D; Goebel, Joel A; Shepard, Neil T; Woodhouse, Sheelah N

    2016-04-01

    Uncompensated vestibular hypofunction results in postural instability, visual blurring with head movement, and subjective complaints of dizziness and/or imbalance. We sought to answer the question, "Is vestibular exercise effective at enhancing recovery of function in people with peripheral (unilateral or bilateral) vestibular hypofunction?" A systematic review of the literature was performed in 5 databases published after 1985 and 5 additional sources for relevant publications were searched. Article types included meta-analyses, systematic reviews, randomized controlled trials, cohort studies, case control series, and case series for human subjects, published in English. One hundred thirty-five articles were identified as relevant to this clinical practice guideline. Based on strong evidence and a preponderance of benefit over harm, clinicians should offer vestibular rehabilitation to persons with unilateral and bilateral vestibular hypofunction with impairments and functional limitations related to the vestibular deficit. Based on strong evidence and a preponderance of harm over benefit, clinicians should not include voluntary saccadic or smooth-pursuit eye movements in isolation (ie, without head movement) as specific exercises for gaze stability. Based on moderate evidence, clinicians may offer specific exercise techniques to target identified impairments or functional limitations. Based on moderate evidence and in consideration of patient preference, clinicians may provide supervised vestibular rehabilitation. Based on expert opinion extrapolated from the evidence, clinicians may prescribe a minimum of 3 times per day for the performance of gaze stability exercises as 1 component of a home exercise program. Based on expert opinion extrapolated from the evidence (range of supervised visits: 2-38 weeks, mean = 10 weeks), clinicians may consider providing adequate supervised vestibular rehabilitation sessions for the patient to understand the goals of the program

  14. Role of the insula and vestibular system in patients with chronic subjective dizziness: An fMRI study using sound-evoked vestibular stimulation

    Directory of Open Access Journals (Sweden)

    Iole eIndovina

    2015-12-01

    Full Text Available Chronic subjective dizziness (CSD is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence, long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD.We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC.We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients

  15. Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project

    Science.gov (United States)

    Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan

    2012-01-01

    Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve

  16. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    Science.gov (United States)

    Brown, Daniel J.; Pastras, Christopher J.; Curthoys, Ian S.

    2017-01-01

    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system. PMID:28620284

  17. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    Directory of Open Access Journals (Sweden)

    Daniel J. Brown

    2017-05-01

    Full Text Available Electrocochleography (EcochG, incorporating the Cochlear Microphonic (CM, the Summating Potential (SP, and the cochlear Compound Action Potential (CAP, has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG, incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.

  18. Vestibular Loss Predicts Poorer Spatial Cognition in Patients with Alzheimer's Disease.

    Science.gov (United States)

    Wei, Eric X; Oh, Esther S; Harun, Aisha; Ehrenburg, Matthew; Agrawal, Yuri

    2018-01-01

    The vestibular system is an important contributor to balance control, spatial orientation, and falls risk. Recent evidence has shown that Alzheimer's disease (AD) patients have a higher prevalence of vestibular impairment relative to healthy controls. We sought to evaluate whether vestibular loss is specifically associated with poor spatial cognitive skills among patients with mild cognitive impairment (MCI) and AD. We enrolled 50 patients (22 MCI and 28 AD) from an interdisciplinary Memory Clinic and measured vestibular physiologic function in all patients. Spatial cognitive function was assessed using the Money Road Map Test (MRMT) and the Trail Making Test Part B (TMT-B). General cognitive function was assessed with the Mini-Mental Status Examination (MMSE). In multivariable linear regression analyses adjusted for age, gender, education level, and MMSE, MCI and AD patients with vestibular loss made significantly more errors on the MRMT relative to patients with normal vestibular function (β= 7.3, 95% CI 2.4, 12.1 for unilateral vestibular loss and β= 6.4, 95% CI 1.9, 10.9 for bilateral vestibular loss). We further stratified AD patients into "spatially normal" and "spatially impaired" groups based on MRMT performance, and found that the prevalence of vestibular loss was significantly higher in the spatially impaired AD group relative to the spatially normal AD group. These findings support the hypothesis that vestibular loss contributes specifically to a decline in spatial cognitive ability in MCI and AD patients, independently of general cognitive decline, and may predict a "spatially impaired" subtype of AD.

  19. Vestibular information is necessary for maintaining metric properties of representational space: evidence from mental imagery.

    Science.gov (United States)

    Péruch, Patrick; Lopez, Christophe; Redon-Zouiteni, Christine; Escoffier, Guy; Zeitoun, Alain; Sanjuan, Mélanie; Devèze, Arnaud; Magnan, Jacques; Borel, Liliane

    2011-09-01

    The vestibular system contributes to a wide range of functions, from postural and oculomotor reflexes to spatial representation and cognition. Vestibular signals are important to maintain an internal, updated representation of the body position and movement in space. However, it is not clear to what extent they are also necessary to mentally simulate movement in situations that do not involve displacements of the body, as in mental imagery. The present study assessed how vestibular loss can affect object-based mental transformations (OMTs), i.e., imagined rotations or translations of objects relative to the environment. Participants performed one task of mental rotation of 3D-objects and two mental scanning tasks dealing with the ability to build and manipulate mental images that have metric properties. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (1 week and 1 month). They were compared to healthy participants tested at similar time intervals and to bilateral vestibular-defective patients tested after the recovery period. Vestibular loss impaired all mental imagery tasks. Performance varied according to the extent of vestibular loss (bilateral patients were frequently the most impaired) and according to the time elapsed after unilateral vestibular neurotomy (deficits were stronger at the early stage after neurotomy and then gradually compensated). These findings indicate that vestibular signals are necessary to perform OMTs and provide the first demonstration of the critical role of vestibular signals in processing metric properties of mental representations. They suggest that vestibular loss disorganizes brain structures commonly involved in mental imagery, and more generally in mental representation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  1. Glutamate-induced production of nitric oxide in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-06-01

    Glutamate-induced production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. Utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with glutamate, NMDA and AMPA. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role in the glutamate-induced ototoxicity and also be involved in disease of the inner ear.

  2. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting)

    Science.gov (United States)

    Balaban, C. D.

    1999-01-01

    Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.

  3. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review.

    Science.gov (United States)

    Porciuncula, Franchino; Johnson, Connie C; Glickman, Leslie B

    2012-01-01

    Adults with bilateral vestibular hypofunction (BVH) experience significant disability. A systematic review assessed evidence for vestibular rehabilitation (VR). NUMBER OF STUDIES: 14 studies. Search identification of studies based on inclusion criteria: (a) population: adults with BVH of peripheral origin; (b) interventions: vestibular exercises, balance training, education, or sensory prosthetics; (c) comparison: single interventions or compared to another psychophysical intervention, placebo, or healthy population; (d) outcomes: based on International Classification of Functioning, Disability and Health (ICF) Body Functions and Structure, Activity, and Participation; (e) study designs: prospective and interventional, Levels of Evidence I to III per Centre of Evidence-based Medicine grading. Coding and appraisal based on ICF framework and strength of evidence synthesis. Five Level II studies and nine Level III studies: All had outcomes on gaze and postural stability, five with outcomes on gait speed and perceptions of oscillopsia and disequilibrium. (a) Moderate evidence strength on improved gaze and postural stability (ICF-Body Functions) following exercise-based VR; (b) Inadequate number of studies supporting benefit of VR on ICF-Participation outcomes; (c) Sensory prosthetics in early phase of development. Moderate evidence strength in support of VR from an impairment level; clinical practice and research needed to explore interventions extending to ICF-Activity and Participation.

  4. Impaired math achievement in patients with acute vestibular neuritis.

    Science.gov (United States)

    Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2017-12-01

    Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Effect of nitric oxide in vestibular compensation].

    Science.gov (United States)

    Jiang, Zi-dong; Zhang, Lian-shan

    2003-10-01

    To study the effect of nitric oxide (NO) in vestibular compensation after unilateral vestibular deafferentation. Eighteen animals were divided into two groups, 6 of group a as control, 12 of group b received gentamicin intratympanic injection in the left ear. Half of the animals were killed respectively after 5 days and 10 days. Vestibular endorgan and brainstem tissue sections were subjected to NADPH-d reactive test of NOS for histochemical examination. In group a, NOS-like reactivity in both sides of vestibular endorgan and nucli. In group b during 5 days, NOS-like reactivity in right side of vestibular endorgan and nucli, those of the left side were negative. During 10 days, NOS-like reactivity only in the right side of vestibular endorgan. Changes of NOS expression in the contralateral vestibular nucli might have played a role in vestibular compensation.

  6. The phosphorylation status of merlin in sporadic vestibular Schwannomas.

    Science.gov (United States)

    Wang, Zhaoyan; Lu, Yanjun; Tang, Juanjuan; Wang, Haojie; Wu, Hao

    2009-04-01

    The events leading to Schwannomas development are still largely unknown. Some studies have demonstrated that merlin acts as a tumor suppressor by blocking Ras-mediated signaling. In this study, we analyze the clinical and biological behaviors of seven randomly selected sporadic vestibular Schwannomas removed from the patients. We find that merlin was commonly lost in these Schwannomas, due to loss of merlin expression or phosphorylation status of merlin expression. Heightened CDKs/cyclins signal transduction concomitant with loss of p27 was well correlated with loss of functional merlin in Schwannomas. More, we show that phosphorylated merlin Schwannomas exhibited increased Ras/Rac/PAK signal transduction. That was in agreement with the severe clinical behaviors, i.e., phosphorylation status of merlin increased tumor size in sporadic vestibular Schwannomas. These results led us to suggest that phosphorylated merlin, a kind of type of mutation merlin, is involved in tumorigenesis of sporadic vestibular Schwannomas.

  7. Effects of vestibular rehabilitation in the elderly complaining of dizziness

    Directory of Open Access Journals (Sweden)

    Andréa Paz-Oliveira

    2014-08-01

    Full Text Available Changes of body balance are among the most common complaints of the elderly. Vestibular rehabilitation is one of the most effective methods in the recovery of the body balance. The objective to investigate the effects of vestibular rehabilitation in body balance of a group of elderly people with dizziness complain through dizziness handicap inventory. The sample was comprised of 10 seniors (6 women and 4 men with mean age of 68.9 years. The elderly complaining of dizziness showed high score in the DHI in the physical, functional and emotional aspects in the condition pre-VR and these values decreased after vestibular rehabilitation program. Complaints of dizziness also decreased after the implementation of the programmee.  

  8. Compensation following bilateral vestibular damage

    Directory of Open Access Journals (Sweden)

    Bill J Yates

    2011-12-01

    Full Text Available Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that nonlabyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  9. Compensation following bilateral vestibular damage.

    Science.gov (United States)

    McCall, Andrew A; Yates, Bill J

    2011-01-01

    Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  10. Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment.

    Science.gov (United States)

    Lotfi, Younes; Rezazadeh, Nima; Moossavi, Abdollah; Haghgoo, Hojjat Allah; Rostami, Reza; Bakhshi, Enayatollah; Badfar, Faride; Moghadam, Sedigheh Farokhi; Sadeghi-Firoozabadi, Vahid; Khodabandelou, Yousef

    2017-12-01

    Balance function has been reported to be worse in ADHD children than in their normal peers. The present study hypothesized that an improvement in balance could result in better cognitive performance in children with ADHD and concurrent vestibular impairment. This study was designed to evaluate the effects of comprehensive vestibular rehabilitation therapy on the cognitive performance of children with combined ADHD and concurrent vestibular impairment. Subject were 54 children with combined ADHD. Those with severe vestibular impairment (n=33) were randomly assigned to two groups that were matched for age. A rehabilitation program comprising overall balance and gate, postural stability, and eye movement exercises was assigned to the intervention group. Subjects in the control group received no intervention for the same time period. Intervention was administered twice weekly for 12 weeks. Choice reaction time (CRT) and spatial working memory (SWM) subtypes of the Cambridge Neuropsychological Test Automated Battery (CANTAB) were completed pre- and post-intervention to determine the effects of vestibular rehabilitation on the cognitive performance of the subjects with ADHD and concurrent vestibular impairment. ANCOVA was used to compare the test results of the intervention and control group post-test. The percentage of correct trial scores for the CRT achieved by the intervention group post-test increased significantly compared to those of the control group (p=0.029). The CRT mean latency scores were significantly prolonged in the intervention group following intervention (p=0.007) compared to the control group. No significant change was found in spatial functioning of the subjects with ADHD following 12 weeks of intervention (p>0.05). The study highlights the effect of vestibular rehabilitation on the cognitive performance of children with combined ADHD and concurrent vestibular disorder. The findings indicate that attention can be affected by early vestibular

  11. Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss.

    Science.gov (United States)

    Barros, Camila Giacomo Carneiro; Bittar, Roseli Saraiva Moreira; Danilov, Yuri

    2010-06-07

    The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort((R))) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the surface of the tongue was created by a dynamic pattern of electrical pulses and the patient was able to adjust the intensity of stimulation and spatially centralize the stimulus on the electrode array. Patients were directed to continuously adjust head orientation and to maintain the stimulus pattern at the center of the array. Postural tasks that present progressive difficulties were given during the use of the device. Pre- and post-treatment distribution of the sensory organization test (SOT) composite score showed an average value of 38.3+/-8.7 and 59.9+/-11.3, respectively, indicating a statistically significant improvement (p=0.01). Electrotactile tongue biofeedback significantly improved the postural control of the study group, even if they had not improved with conventional VR. The electrotactile tongue biofeedback system was able to supply additional information about head position with respect to gravitational vertical orientation in the absence of vestibular input, improving postural control. Patients with BVL can integrate electrotactile information in their postural control in order to improve stability after conventional VR. These results were obtained and verified not only by the subjective questionnaire but also by the SOT composite score. The limitations of the study are the small sample size and short duration of the follow-up. The current findings show that the sensory substitution mediated by electrotactile tongue biofeedback may contribute to the improved balance experienced by these patients compared to VR. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Anatomy, physiology, and physics of the peripheral vestibular system.

    Science.gov (United States)

    Kingma, H; van de Berg, R

    2016-01-01

    Many medical doctors consider vertigo and dizziness as the major, almost obligatory complaints in patients with vestibular disorders. In this chapter, we will explain that vestibular disorders result in much more diverse and complex complaints. Many of these other complaints are unfortunately often misinterpreted and incorrectly classified as psychogenic. When we really understand the function of the vestibular system, it becomes quite obvious why patients with vestibular disorders complain about a loss of visual acuity, imbalance, fear of falling, cognitive and attentional problems, fatigue that persists even when the vertigo attacks and dizziness decreases or even disappears. Another interesting new aspect in this chapter is that we explain why the function of the otolith system is so important, and that it is a mistake to focus on the function of the semicircular canals only, especially when we want to understand why some patients seem to suffer more than others from the loss of canal function as objectified by reduced caloric responses. © 2016 Elsevier B.V. All rights reserved.

  13. Stereotactic radiotherapy for vestibular schwannoma

    DEFF Research Database (Denmark)

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL......; Web of Science; CAB Abstracts; ISRCTN and additional sources for published and unpublished trials. The date of the search was 24 July 2014. SELECTION CRITERIA: Randomised controlled trials (RCTs) exploring the efficacy of stereotactic radiotherapy compared with observation alone, microsurgical...

  14. Vestibular Dysfunction and Difficulty with Driving: Data from the 2001–2004 National Health and Nutrition Examination Surveys

    Directory of Open Access Journals (Sweden)

    Eric X. Wei

    2017-10-01

    Full Text Available Background and objectiveThere is growing understanding of the role of vestibular function in spatial navigation and orientation. Individuals with vestibular dysfunction demonstrate impaired performance on static and dynamic tests of spatial cognition, but there is sparse literature characterizing how these impairments might affect individuals in the real-world. Given the important role of visuospatial ability in driving a motor vehicle, we sought to evaluate whether individuals with vestibular dysfunction might have increased driving difficulty.Materials and methodsWe used data from the 2001–2004 National Health and Nutrition Examination Surveys to evaluate the influence of vestibular dysfunction in driving difficulty in a nationally representative sample of U.S. adults aged ≥50 years (n = 3,071. Vestibular function was measured with the modified Romberg test. Furthermore, since vestibular dysfunction is a known contributor to falls risk, we assessed whether individuals with vestibular dysfunction and concomitant driving difficulty were at an increased risk of falls.ResultsIn multivariate analyses, vestibular dysfunction was associated with a twofold increased odd of driving difficulty (odds ratio 2.16, 95% CI 1.57, 2.98. Among participants with vestibular dysfunction, concomitant driving difficulty predicted an increased risk of falls that was significantly higher than in participants with vestibular dysfunction only (odds ratio 13.01 vs. 2.91, p < 0.0001.ConclusionThis study suggests that difficulty driving may be a real-world manifestation of impaired spatial cognition associated with vestibular loss. Moreover, driving difficulty may be a marker of more severe vestibular dysfunction.

  15. Lack of biocytin transfer at gap junctions in the chicken vestibular nuclei.

    Science.gov (United States)

    Arabshahi, A; Giaume, C; Peusner, K D

    1997-06-01

    In vivo experiments were designed to test for functional gap junctions at 'mixed' synapses that were morphologically characterized between the large-diameter, primary vestibular fibers and second-order vestibular neurons in the chicken, Gallus gallus. In previous intracellular recordings and dye injections into these neurons from brain slice preparations of chick embryos (E15/16) and also newborn hatchlings (HI-2), no evidence was obtained for functional gap junctions. Therefore, biocytin, a low molecular weight tracer that permeates gap junction channels, was extracellularly applied to either the ampullary nerves or to the vestibular ganglion of 3-6 day old hatchlings and adult chickens (9 months). This procedure resulted in the uptake of the dye and heavy staining of both the thick and thin fibers composing the vestibular nerve and in loading of vestibular efferent neurons. However, no dye transfer was observed between the large-diameter, primary vestibular fibers and second-order vestibular neurons. This observation, which was performed using a relatively non-invasive approach on intact animals, suggests that the gap junctions at these mixed synapses are probably not functional under the conditions of these experiments.

  16. Preferences towards organic and functional yoghurt in Republic of Srpska

    Directory of Open Access Journals (Sweden)

    Grubor Aleksandar

    2015-01-01

    Full Text Available This article presents the results of the research of preferences towards organic and functional yoghurt, conducted in Republic of Srpska, from January to May, 2014 (n=200. Generally, respondents do not consider whether yoghurt being or not being organic or functional as very important. They partially prefer functional yoghurts, but prefer yoghurts made from conventionally produced milk. For both, organic and functional food, consumers were divided into two segments - the first which considered yoghurt being organic (or functional among three the most important attributes of a product and the second segments comprising of all other respondents. Hereby, 8% of respondents belonged to the first segment for organic and 20% for functional yoghurt. Compared to second segments, consumers belonging to the first segment for organic yoghurt statistically significantly differ from others by valuating food importance for health more, while for functional yoghurt by assessing own physical health worse.

  17. Vibration-induced nystagmus in patients with vestibular schwannoma: Characteristics and clinical implications.

    Science.gov (United States)

    Lee, Jeon Mi; Kim, Mi Joo; Kim, Jin Won; Shim, Dae Bo; Kim, Jinna; Kim, Sung Huhn

    2017-07-01

    To investigate the clinical significance of vibration-induced nystagmus (VIN) in unilateral vestibular asymmetry and vestibular schwannoma. Thirteen patients with vestibular schwannoma underwent the VIN test, in which stimulation was applied to the mastoid processes and sternocleidomastoid (SCM) muscles on the ipsilateral and contralateral sides of lesions. Preoperative VIN was measured, and changes in VIN were followed up for 6months after tumor removal. Significance of VIN was determined by evaluation of its sensitivity, correlation with vestibular function tests and tumor volume, and postoperative changes. The overall pre and postoperative sensitivities of VIN were 92.3% and 100%, respectively, considering stimulation at all four sites. Maximum slow-phase velocity (MSPV) of VIN was linearly correlated with caloric weakness and tumor volume, especially when stimulation was applied to the SCM muscle. Postoperative MSPV of VIN exhibited stronger linear correlation with postoperative changes in canal paresis value and inverse correlation with tumor size upon stimulation of the ipsilateral SCM muscle than upon stimulation of other sites. During the 6-month follow-up period, persistence of VIN without changes in MSPV was observed even after vestibular compensation. Evoking VIN by stimulation of the mastoid processes and SCM muscles is effective for detecting vestibular asymmetry. It could also help determine the degree of vestibular asymmetry and volume of vestibular schwannoma if stimulation is applied to the SCM muscle. The results of this study could provide clues for the basic application of VIN in patients with vestibular loss and vestibular schwannoma. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  19. Linear accelerator-based stereotactic radiosurgery for bilateral vestibular schwannomas in patients with neurofibromatosis type 2

    NARCIS (Netherlands)

    Meijer, Otto W. M.; Vandertop, W. Peter; Lagerwaard, Frank J.; Slotman, Ben J.

    2008-01-01

    OBJECTIVE: Patients with neurofibromatosis Type 2 (NF2) patients typically have bilateral vestibular schwannomas (VS) and are at risk for developing bilateral deafness, bilateral trigeminal, and bilateral facial nerve function loss. Previous reports suggested that treatment outcomes in these

  20. Functional organic materials for electronics industries

    Science.gov (United States)

    Shibayama, K.; Ono, H.

    1982-01-01

    Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.

  1. Negative emotional stimuli enhance vestibular processing.

    Science.gov (United States)

    Preuss, Nora; Ellis, Andrew W; Mast, Fred W

    2015-08-01

    Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information. (c) 2015 APA, all rights reserved).

  2. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability.

    Science.gov (United States)

    Schniepp, Roman; Möhwald, Ken; Wuehr, Max

    2017-10-01

    During human locomotion, vestibular feedback control is fundamental for maintaining dynamic stability and adapting the gait pattern to external circumstances. Within the supraspinal locomotor network, the cerebellum represents the key site for the integration of vestibular feedback information. The cerebellum is further important for the fine-tuning and coordination of limb movements during walking. The aim of this review article is to highlight the shared structural and functional sensorimotor principles in vestibular and cerebellar locomotion control. Vestibular feedback for the maintenance of dynamic stability is integrated into the locomotor pattern via midline, caudal cerebellar structures (vermis, flocculonodular lobe). Hemispheric regions of the cerebellum facilitate feed-forward control of multi-joint coordination and higher locomotor functions. Characteristic features of the gait disorder in patients with vestibular deficits or cerebellar ataxia are increased levels of spatiotemporal gait variability in the fore-aft and the medio-lateral gait dimension. In the fore-aft dimension, pathologic increases of gait fluctuations critically depend on the locomotion speed and predominantly manifest during slow walking velocities. This feature is associated with an increased risk of falls in both patients with vestibular hypofunction as well as patients with cerebellar ataxia. Pharmacological approaches for the treatment of vestibular or cerebellar gait ataxia are currently not available. However, new promising options are currently tested in randomized, controlled trials (fampridine/FACEG; acetyl-DL-leucine/ALCAT).

  3. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2009-06-01

    Full Text Available The vestibular evoked myogenic potential (VEMP test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the history, methods, current VEMP status, and discuss its specific application in the diagnosis of the Ménière's Syndrome.O teste do potencial evocado miogênico vestibular (PEMV é um instrumento diagnóstico relativamente novo e ainda em processo de validação em estudos com pacientes portadores de desordens vestibulares específicas. De forma resumida, o PEMV é uma resposta bifásica em resposta a estímulos sonoros gravados a partir de contrações do músculo esternocleidomastóideo e é o único recurso existente para avaliar a função do sáculo e da divisão inferior do nervo vestibular. OBJETIVO: Nesta revisão iremos destacar a história, método de realização, situação atual da pesquisa envolvendo o PEMV, além de discutir as suas aplicações específicas no diagnóstico da síndrome de Ménière.

  4. Hyperventilation-induced nystagmus in a large series of vestibular patients.

    Science.gov (United States)

    Califano, L; Melillo, M G; Vassallo, A; Mazzone, S

    2011-02-01

    The Hyperventilation Test is widely used in the "bed-side examination" of vestibular patients. It can either activate a latent nystagmus in central or peripheral vestibular diseases or it can interact with a spontaneous nystagmus, by reducing it or increasing it. Aims of this study were to determine the incidence, patterns and temporal characteristics of Hyperventilation-induced nystagmus in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and neuroma of the 8(th) cranial nerve, and its behaviour in some central vestibular diseases. The present study includes 1202 patients featuring, at vestibular examination, at least one sign of vestibular system disorders or patients diagnosed with a "Migraine-related vertigo" or "Chronic subjective dizziness". The overall incidence of Hyperventilation-induced nystagmus was 21.9%. It was detected more frequently in retrocochlear vestibular diseases rather than in end-organ vestibular diseases: 5.3% in Paroxysmal Positional Vertigo, 37.1% in Menière's disease, 37.6% in compensated vestibular neuritis, 77.2% in acute vestibular neuritis and 91.7% in neuroma of the 8(th) cranial nerve. In acute vestibular neuritis, three HVIN patterns were observed: Paretic pattern: temporary enhancement of the spontaneous nystagmus; Excitatory pattern: temporary inhibition of the spontaneous nystagmus; Strong excitatory pattern: temporary inversion of the spontaneous nystagmus. Excitatory patterns proved to be time-dependent in that they disappeared and were replaced by the paretic pattern over a period of maximum 18 days since the beginning of the disorder. In acoustic neuroma, Hyperventilation-induced nystagmus was frequently observed (91.7%), either in the form of an excitatory pattern (fast phases towards the affected site) or in the form of a paretic pattern (fast phases towards the healthy side). The direction of the nystagmus is only partially related to

  5. Form, function, and evolution of living organisms.

    Science.gov (United States)

    Banavar, Jayanth R; Cooke, Todd J; Rinaldo, Andrea; Maritan, Amos

    2014-03-04

    Despite the vast diversity of sizes and shapes of living organisms, life's organization across scales exhibits remarkable commonalities, most notably through the approximate validity of Kleiber's law, the power law scaling of metabolic rates with the mass of an organism. Here, we present a derivation of Kleiber's law that is independent of the specificity of the myriads of organism species. Specifically, we account for the distinct geometries of trees and mammals as well as deviations from the pure power law behavior of Kleiber's law, and predict the possibility of life forms with geometries intermediate between trees and mammals. We also make several predictions in excellent accord with empirical data. Our theory relates the separate evolutionary histories of plants and animals through the fundamental physics underlying their distinct overall forms and physiologies.

  6. Perspectival Structure and Vestibular Processing

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2016-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...

  7. Medial vestibular connections with the hypocretin (orexin) system

    Science.gov (United States)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  8. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  9. Improving Early Adaptation Following Long Duration Spaceflight by Enhancing Vestibular Information

    Science.gov (United States)

    Mulavara, Ajitkumar; Kofman, Igor; DeDios, Yiri E.; Galvan, Raquel; Miller, Chris; Peters, Brian; Cohen, Helen; Jeevarajan, Jerome; Reschke, Millard; Wood, Scott; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after g-transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" -immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance (SR) to enhance information transfer by improving the brain's ability to detect vestibular signals especially when combined with balance training exercises for rapid improvement in functional skill, for standing and mobility. The countermeasure to improve post-flight balance and locomotor disturbances is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS). The techniques for improving signal detection using SVS may thus provide additional information to improve such strategic abilities and thus help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight. We have conducted a series of studies to document the efficacy of SVS stimulation on balance/locomotion tasks on unstable surfaces and motion tracking tasks during intra-vestibular system conflicts. In an initial study, we showed that SVS improved overall balance

  10. From Fayol's Mechanistic to Today's Organic Functions of Management

    Science.gov (United States)

    McNamara, Daniel E.

    2009-01-01

    This paper reviews Fayol's original five managerial functions, demonstrates that they are still being taught in today's management courses, and offers a new set of organic management functions more applicable to today's turbulent business environment.

  11. Achados vestibulares em usuários de aparelho de amplificação sonora individual Vestibular findings in hearing aid users

    Directory of Open Access Journals (Sweden)

    Fabiane Paulin

    2009-01-01

    patients, 18 (90% showed tinnitus complaint, 15 (75% dizziness complaint and eight (40% headache complaint; b There was a prevalence of alterations in the caloric test and in the peripheral vestibular system; c the results of the vestibular exam showed alterations in 14 patients (70% being, eight cases (40% of peripheral vestibular irritative syndromes and six cases (30% of peripheral vestibular deficiency syndromes; d we verified significant difference between the vestibular exam results and how long the patient had use the hearing aid; e from the five patients that did not related vestibular symptoms four (80% showed alterations in the vestibular exam. CONCLUSION: the importance and sensibility of the functional study regarding the balance system in this type of population must be emphasized because same disorders may occur in the vestibular exam in spite of symptom presence.

  12. Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons

    Science.gov (United States)

    Horwitz, Geoffrey C.; Risner-Janiczek, Jessica R.

    2014-01-01

    The hyperpolarization-activated, cyclic nucleotide–sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1–4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell–afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery. PMID:24638995

  13. Vestibular Findings in Military Band Musicians

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2014-04-01

    Full Text Available Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years. They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%, hearing difficulties (47.3%, dizziness (36.8%, headache (26.3%, intolerance to intense sounds (21.0%, and earache (15.7%. Seven musicians (37.0% showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%. There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  14. Vestibular findings in military band musicians.

    Science.gov (United States)

    Zeigelboim, Bianca Simone; Gueber, Crislaine; Silva, Thanara Pruner da; Liberalesso, Paulo Breno Noronha; Gonçalves, Claudia Giglio de Oliveira; Faryniuk, João Henrique; Marques, Jair Mendes; Jurkiewicz, Ari Leon

    2014-04-01

    Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years). They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%), hearing difficulties (47.3%), dizziness (36.8%), headache (26.3%), intolerance to intense sounds (21.0%), and earache (15.7%). Seven musicians (37.0%) showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%). There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  15. Mechanisms of vestibular compensation: recent advances.

    Science.gov (United States)

    Dutia, Mayank B

    2010-10-01

    This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.

  16. Organs-on-chips for vascular function

    NARCIS (Netherlands)

    van der Meer, A.

    2017-01-01

    Organs-on-chips are plastic microdevices the size of a USB-stick with microchannels and small chambers that are filled with liquid. The devices contain multiple human cell types which are cultured in a technologically controlled microenvironment that artificially mimics aspects of the human body

  17. The dizzy patient: don't forget disorders of the central vestibular system.

    Science.gov (United States)

    Brandt, Thomas; Dieterich, Marianne

    2017-06-01

    Vertigo and dizziness are among the most common complaints in neurology clinics, and they account for about 13% of the patients entering emergency units. In this Review, we focus on central vestibular disorders, which are mostly attributable to acute unilateral lesions of the bilateral vestibular circuitry in the brain. In a tertiary interdisciplinary outpatient dizziness unit, central vestibular disorders, including vestibular migraine, comprise about 25% of the established diagnoses. The signs and symptoms of these disorders can mimic those of peripheral vestibular disorders with sustained rotational vertigo. Bedside examinations, such as the head impulse test and ocular motor testing to determine spontaneous and gaze-evoked nystagmus or skew deviation, reliably differentiate central from peripheral syndromes. We also consider disorders of 'higher vestibular functions', which involve more than one sensory modality as well as cognitive domains (for example, orientation, spatial memory and navigation). These disorders include hemispatial neglect, the room tilt illusion, pusher syndrome, and impairment of spatial memory and navigation associated with hippocampal atrophy in cases of peripheral bilateral vestibular loss.

  18. Vestibular nucleus neurons respond to hindlimb movement in the decerebrate cat.

    Science.gov (United States)

    Arshian, Milad S; Hobson, Candace E; Catanzaro, Michael F; Miller, Daniel J; Puterbaugh, Sonya R; Cotter, Lucy A; Yates, Bill J; McCall, Andrew A

    2014-06-15

    The vestibular nuclei integrate information from vestibular and proprioceptive afferents, which presumably facilitates the maintenance of stable balance and posture. However, little is currently known about the processing of sensory signals from the limbs by vestibular nucleus neurons. This study tested the hypothesis that limb movement is encoded by vestibular nucleus neurons and described the changes in activity of these neurons elicited by limb extension and flexion. In decerebrate cats, we recorded the activity of 70 vestibular nucleus neurons whose activity was modulated by limb movements. Most of these neurons (57/70, 81.4%) encoded information about the direction of hindlimb movement, while the remaining neurons (13/70, 18.6%) encoded the presence of hindlimb movement without signaling the direction of movement. The activity of many vestibular nucleus neurons that responded to limb movement was also modulated by rotating the animal's body in vertical planes, suggesting that the neurons integrated hindlimb and labyrinthine inputs. Neurons whose firing rate increased during ipsilateral ear-down roll rotations tended to be excited by hindlimb flexion, whereas neurons whose firing rate increased during contralateral ear-down tilts were excited by hindlimb extension. These observations suggest that there is a purposeful mapping of hindlimb inputs onto vestibular nucleus neurons, such that integration of hindlimb and labyrinthine inputs to the neurons is functionally relevant. Copyright © 2014 the American Physiological Society.

  19. Vestibular Involvement in Patients With Otitis Media With Antineutrophil Cytoplasmic Antibody-associated Vasculitis.

    Science.gov (United States)

    Morita, Yuka; Takahashi, Kuniyuki; Izumi, Shuji; Kubota, Yamato; Ohshima, Shinsuke; Horii, Arata

    2017-01-01

    Otitis media (OM) with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (OMAAV) is a novel concept of ear disease that is characterized by progressive mixed or sensorineural hearing loss with occasional systemic involvement. Considering the accumulating knowledge about the characteristics of and treatment for auditory dysfunction in OMAAV, the objective of this study was to investigate the vestibular function and symptoms of patients with OMAAV. Retrospective chart review. University hospital. Thirty-one OMAAV patients met criteria proposed by the OMAAV study group in Japan. Clinical characteristics and vestibular tests. Eleven of 31 OMAAV patients had vestibular symptoms; 3 patients had acute vertigo attack with sudden hearing loss and 8 patients had chronic dizziness. Episodic vertigo was not seen in any of the patients. Three patients who received a less intensive therapy without immunosuppressive agents developed intractable persistent dizziness. All symptomatic patients and six of the nine OMAAV patients without vestibular symptoms showed unilateral or bilateral caloric weakness; therefore, vestibular involvement was present in 84% of OMAAV patients. Gain of vestibulo-ocular reflex was reduced in symptomatic patients. The eye-tracking test and optokinetic nystagmus revealed no evidence of central dysfunction. Vestibular dysfunction was seen in 84% of OMAAV patients. One-third of OMAAV patients showed vestibular symptoms such as acute vertigo attack or chronic dizziness, which are of peripheral origin. One-third of the symptomatic patients developed intractable dizziness. Initial intensive treatment by combination therapy with steroid and immunosuppressive agents may be essential for preventing the development of intractable dizziness.

  20. Evaluation of Cervical Vestibular Evoked Myogenic Potential in Subjects with Chronic Noise Exposure.

    Science.gov (United States)

    Abd El Salam, Nehal Mamdouh; Ismail, Elshahat Ibrahem; El Saeed El Sharabasy, Ayman

    2017-12-14

    Noise has been recognized as a major cause of cochlear damage resulting in both tinnitus and hearing loss. On the other hand, damage to the vestibular system, especially the saccule, can be considered as a potential problem. The cervical vestibular-evoked myogenic potentials (cVEMPs) have been established as a clinical test of measuring both sac-cular and inferior vestibular nerve function. Therefore, it is thought to be sensitive to the noise-induced damage to the vestibular system. Accordingly, this study was designed to assess the vestibular system in subjects exposed to noise during work by using cVEMPs. This study was performed in over 60 adult males who were divided into a study group (consisting of 40 adult males) with history of chronic occupational noise exposure and with variable degree of hearing levels and a control group consisting of 20 healthy adults with normal peripheral hearing, with no history of noise exposure and no vestibular complaints. cVEMP recordings were elicited using 95dB nHL click stimuli. There was statistically significant prolonged cVEMP latency of the P13 and N23 waves of the study versus the control groups. As regard to the sense of imbalance, there were significant prolonged cVEMPs latencies in present versus absent sense of imbalance. However, there were statistically insignificant reduced cVEMP amplitudes in present versus absent sense of imbalance. Chronic noise exposure damages the vestibular system especially the saccule in addition to cochlear damage.

  1. Laboratory examinations for the vestibular system.

    Science.gov (United States)

    van de Berg, Raymond; Rosengren, Sally; Kingma, Herman

    2018-02-01

    In the last decades, researchers suggested that clinical assessment of labyrinthine function in detail became easy thanks to video head impulse tests (VHITs), vestibular evoked myogenic potential test (VEMP) and video-oculography (VOG). It has been argued that they can replace electronystagmography, the caloric and rotatory chair tests. This review addresses the latest evaluations of these tests and the opportunities they offer, but also the limitations in clinical practice. The VHIT and suppression head impulse test (SHIMP) are under ideal circumstances able to accurately identify deficits of the VOR in 3D. However, in a relevant part of the patient population, pupil tracking is inaccurate, video-goggles slip and VOR quantification is problematic. The dissociation between the VHIT and caloric test suggests that these tests are complementary. A new 3D-VOG technique claims to quantify eye torsion better than before, opening multiple diagnostic possibilities. VEMPs remain difficult to standardize. Variability in normal cervical vestibular-evoked myogenic potential amplitude is large. VEMPs become smaller or absent with age, raising questions of whether there is a lower normal limit at all. Recent research shows that the labyrinth is directly stimulated in the MRI offering new opportunities for diagnostics and research. In clinical practice, the VHIT, SHIMP, VEMP and new 3D-VOG techniques improve diagnostic power. Unfortunately, technical issues or variability prevent reliable quantitative evaluation in a part of the regular patient population. The traditional caloric and rotatory chair test can still be considered as valuable complementary tests.

  2. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  3. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control

    Directory of Open Access Journals (Sweden)

    Francois M Lambert

    2012-04-01

    Full Text Available Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the CNS to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the central nervous system include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims towards a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of

  4. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  5. Tolerance and lymphoid organ structure and function

    Directory of Open Access Journals (Sweden)

    Bryna Elizabeth Burrell

    2011-12-01

    Full Text Available This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from 96-well plate immunology, but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their 3-dimensional setting; instead techniques have tended to be dominated by 2-dimensional renderings, although advanced confocal and 2-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and

  6. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  7. Quantification of Head Acceleration during Vestibular Rehabilitation Exercises.

    Science.gov (United States)

    Hogan, Anne E; Spindel, Jonathan H; Gray, Lincoln C

    2018-01-01

    Vestibular rehabilitation exercises have been proven to reduce symptoms and diminish the risk of falls in those with dizziness and balance impairments. The first purpose of this study is to investigate a new method of measuring head movements during habituation vestibular rehabilitation exercises. The second is to explore the relationship between head acceleration measurements during select traditional vestibular rehabilitation exercises and the variables of age, dizziness, and poor balance confidence. A descriptive, cross-sectional study, in a university setting. Fifty-two participants, ranging in age from 20 to 96 yr. All were volunteers, with the majority (34) reporting no history of dizziness or balance confidence. Head accelerations were calculated from linear and angular displacements as measured by magnetometry. Head accelerations decreased with increasing age, dizziness, and low balance confidence during four habituation exercises. Head acceleration varies as a function of age, dizziness, and low balance confidence during head movement-based vestibular and balance rehabilitation therapy (habituation) exercises. The magnetometry measurement method used could be applied across the course of treatment to establish predictive measures based on change in acceleration over time. More diverse participant sampling is needed to create normative data.

  8. Cochlear and Vestibular Effects of Combined Intratympanic Gentamicin and Dexamethasone.

    Science.gov (United States)

    Güneri, Enis Alpin; Olgun, Yüksel; Aslıer, Mustafa; Nuti, Daniele; Kırkım, Günay; Mungan, Serpil; Kolatan, Efsun; Aktaş, Safiye; Trabalzini, Franco; Ellidokuz, Hülya; Yılmaz, Osman; Mandala, Marco

    2017-04-01

    The aim of this study is to evaluate the effects of an intratympanic gentamicin-dexamethasone combination on the inner ear. Twenty-six Wistar albino rats were divided into four groups: Group I (Control), group II (Intratympanic dexamethasone; ITD), group III (Intratympanic gentamicin; ITG), and group IV (Intratympanic gentamicin and dexamethasone; ITGD). On the first day after basal auditory brainstem response (ABR) measurements, the ITG group received 0.03 mL of intratympanic gentamicin (26.7 mg/mL). Intratympanic injection of 0.06 mL of a solution containing 13.35 mg/mL gentamicin and 2 mg/mL dexamethasone was performed in the ITGD group. 0.03 mL of physiological intratympanic serum and dexamethasone (4 mg/mL) was applied in control and ITD groups, respectively. On the 7th day, ABR measurements were repeated and vestibular functions were evaluated. On the 21th day, ABR and vestibular tests were repeated, and the animals were sacrificed for histopathological investigation. The ITG group's hearing thresholds deteriorated in all frequencies. The ITGD group's hearing thresholds were significantly better than the ITG group, except at 8 kHz on the 7th day and in all frequencies at the 21th day measurements. The vestibular function scores of the ITG and ITGD groups were higher than the controls. Apoptotic changes were seen in cochlea, spiral ganglion, and vestibule of the ITG group. Cochlear and vestibular structures were well preserved in the ITGD group, similar to the controls. The ITGD combination led to a significant hearing preservation. Although in subjective vestibular tests, it seemed that vestibulotoxicity was present in both ITG and ITGD groups the histopathological investigations revealed no signs of vestibulotoxicity in the ITGD group in contrast to the ITG group. Further studies using a combination of different concentrations of gentamicin and dexamethasone are needed.

  9. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space.

    Science.gov (United States)

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L

    2015-12-16

    It is a challenge for the human body to maintain stable blood pressure while standing. The body's failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change--supposedly mediated by reflexes to the cardiovascular system. We show--for the first time--a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth.

  10. Efficacy of vestibular rehabilitation on chronic unilateral vestibular dysfunction.

    Science.gov (United States)

    Topuz, Oya; Topuz, Bülent; Ardiç, F Necdet; Sarhuş, Merih; Ogmen, Gülsen; Ardiç, Füsun

    2004-02-01

    To assess the efficacy of vestibular rehabilitation exercises on patients with chronic unilateral vestibular dysfunction. Prospective study. Physical Medicine and Rehabilitation Clinic and Otolaryngology Clinic of a tertiary referral hospital. One-hundred and twenty-five patients with unilateral chronic vestibular dysfunction were included in the study. Eight-week, two-staged (clinic and home) vestibular rehabilitation programme with components of Cawthorne-Cooksey and Norre exercises was applied. Dizziness Handicap Inventory (DHI) and visual analogue scale (VAS) were completed three times (at the beginning, end of the second week and end of the treatment). Data for 112 patients in the first stage and 93 patients in the second stage were evaluated because of insufficient compliance of the other patients. The mean DHI score was decreased from 50.42 +/- 24.12 points to 21.21 +/- 15.97 points (p < 0.001) at the end of first two weeks, and to 19.93 +/- 19.33 points at the end of the whole treatment. The mean VAS score was decreased from 5.87 +/- 2.27 to 2.02 +/- 1.75 (p < 0.001) at the end of second week, and to 1.51 +/- 1.29 at the end of eighth week. In respect to both VAS and DHI scores, improvement was noted in 67 patients (77.4%). Age, gender and disability level had no predictive value about therapy outcome. There was a fast recovery in the supervised exercise session, whereas there was no significant difference in the home exercise session. These findings suggest that either supervised exercise is better than home exercise or that 10 supervised sessions are sufficient to get the end result.

  11. Preoperative vestibular assessment protocol of cochlear implant surgery: an analytical descriptive study.

    Science.gov (United States)

    Bittar, Roseli Saraiva Moreira; Sato, Eduardo Setsuo; Ribeiro, Douglas Jósimo Silva; Tsuji, Robinson Koji

    Cochlear implants are undeniably an effective method for the recovery of hearing function in patients with hearing loss. To describe the preoperative vestibular assessment protocol in subjects who will be submitted to cochlear implants. Our institutional protocol provides the vestibular diagnosis through six simple tests: Romberg and Fukuda tests, assessment for spontaneous nystagmus, Head Impulse Test, evaluation for Head Shaking Nystagmus and caloric test. 21 patients were evaluated with a mean age of 42.75±14.38 years. Only 28% of the sample had all normal test results. The presence of asymmetric vestibular information was documented through the caloric test in 32% of the sample and spontaneous nystagmus was an important clue for the diagnosis. Bilateral vestibular areflexia was present in four subjects, unilateral arreflexia in three and bilateral hyporeflexia in two. The Head Impulse Test was a significant indicator for the diagnosis of areflexia in the tested ear (p=0.0001). The sensitized Romberg test using a foam pad was able to diagnose severe vestibular function impairment (p=0.003). The six clinical tests were able to identify the presence or absence of vestibular function and function asymmetry between the ears of the same individual. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Preoperative vestibular assessment protocol of cochlear implant surgery: an analytical descriptive study

    Directory of Open Access Journals (Sweden)

    Roseli Saraiva Moreira Bittar

    Full Text Available Abstract Introduction: Cochlear implants are undeniably an effective method for the recovery of hearing function in patients with hearing loss. Objective: To describe the preoperative vestibular assessment protocol in subjects who will be submitted to cochlear implants. Methods: Our institutional protocol provides the vestibular diagnosis through six simple tests: Romberg and Fukuda tests, assessment for spontaneous nystagmus, Head Impulse Test, evaluation for Head Shaking Nystagmus and caloric test. Results: 21 patients were evaluated with a mean age of 42.75 ± 14.38 years. Only 28% of the sample had all normal test results. The presence of asymmetric vestibular information was documented through the caloric test in 32% of the sample and spontaneous nystagmus was an important clue for the diagnosis. Bilateral vestibular areflexia was present in four subjects, unilateral arreflexia in three and bilateral hyporeflexia in two. The Head Impulse Test was a significant indicator for the diagnosis of areflexia in the tested ear (p = 0.0001. The sensitized Romberg test using a foam pad was able to diagnose severe vestibular function impairment (p = 0.003. Conclusion: The six clinical tests were able to identify the presence or absence of vestibular function and function asymmetry between the ears of the same individual.

  13. Isolated vestibular nuclear infarction: report of two cases and review of the literature.

    Science.gov (United States)

    Kim, Hyo-Jung; Lee, Seung-Han; Park, Jae Han; Choi, Jung-Yoon; Kim, Ji-Soo

    2014-01-01

    Cerebral infarction presenting with isolated vertigo remains a diagnostic challenge. To define the clinical characteristics of unilateral infarctions restricted to the vestibular nuclei, two patients with isolated unilateral vestibular nuclear infarction had bedside and laboratory evaluation of the ocular motor and vestibular function, including video-oculography, bithermal caloric irrigation, the head impulse test (HIT) using magnetic scleral coils, and cervical and ocular vestibular-evoked myogenic potentials (VEMPs). We also reviewed the literature on isolated vertigo from lesions restricted to the vestibular nuclei, and analyzed the clinical features of seven additional patients. Both patients showed spontaneous torsional-horizontal nystagmus that beat away from the lesion side, and direction-changing gaze-evoked nystagmus. Recording of HIT using a magnetic search coil system documented decreased gains of the vestibular-ocular reflex for the horizontal and posterior semicircular canals on both sides, but more for the ipsilesional canals. Bithermal caloric tests showed ipsilesional canal paresis in both patients. Cervical and ocular VEMPs showed decreased or absent responses during stimulation of the ipsilesional ear. Initial MRIs including diffusion-weighted images were normal or equivocal, but follow-up imaging disclosed a circumscribed acute infarction in the area of the vestibular nuclei. Infarctions restricted to the vestibular nuclei may present with isolated vertigo with features of both peripheral and central vestibulopathies. Central signs should be sought even in patients with spontaneous horizontal-torsional nystagmus and positive HIT. In patients with combined peripheral and central vestibulopathy, a vestibular nuclear lesion should be considered especially when hearing is preserved.

  14. Physical therapy for persons with vestibular disorders.

    Science.gov (United States)

    Whitney, Susan L; Alghwiri, Alia; Alghadir, Ahmad

    2015-02-01

    Persons with vestibular disorders experience symptoms of dizziness and balance dysfunction, resulting in falls, as well as impairments of daily life. Various interventions provided by physical therapists have been shown to decrease dizziness and improve postural control. In the present review, we will focus on the role of physical therapy in the management of vestibular symptoms in patients with peripheral and central vestibular disorders. Persons with both acute and chronic central and peripheral vestibular disorders improve with vestibular rehabilitation. New interventions during the past 5 years have been designed to enhance recovery from problems with balance and dizziness. Examples include the use of virtual reality, vibrotactile feedback, optokinetic flow, YouTube videos, and innovative methods to change the gain of the vestibulo-ocular reflex (VOR). Patients with central and peripheral vestibular disorders benefit from physical therapy interventions. Advances in physical therapy interventions include new methods to stimulate adaptation of the VOR and the vestibulospinal systems.

  15. Contributions in organic functional group transformations and ...

    Indian Academy of Sciences (India)

    Keywords. Electron transfer processes; functional group transformations; phototransformations; transient intermediates; fullerene clusters; photophysical studies. Abstract. A brief overview of our scientific contributions over the past few years and the results of some of our recent studies on fullerene clusters are presented.

  16. Current concepts of the vestibular system reviewed: 1. The role of the vestibulospinal system in postural control.

    Science.gov (United States)

    Keshner, E A; Cohen, H

    1989-05-01

    This paper reviews the research findings that support the presence of vestibulospinal reflexes in corrections for head and body instability. Studies of the importance of labyrinthine inputs to the central nervous system organization of eye, head, and body movements demonstrate that the vestibular nuclei are more than a simple relay station for labyrinthine activity. At all levels of the vestibular system beyond the primary vestibular afferents, parallel processing of labyrinthine signals occurs with input from other sensory systems. Thus, output of the vestibular nuclear complex (VNC) is not equivalent to the labyrinthine input. It is the VNC output that influences motor behavior. Various sensory inputs are available to the nervous system to detect and correct postural instability. Most notably, vestibular, visual, and proprioceptive signals contribute significantly to the stabilizing responses in humans. The intent of this paper is to review experimental results rather than to discuss treatment interventions. Wherever possible, conclusions are drawn as to the clinical implications of current research findings.

  17. Reabilitação vestibular: utilidade clínica em pacientes com esclerose múltipla Vestibular rehabilitation: clinical benefits to patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2010-01-01

    , diagnosed for six years, who referred frequent dizziness of moderate intensity for three years, headaches, falls, deviation of gait to the right and fainting sensations (sic. In the vestibular exam, she presented bilateral peripheral vestibular deficiency syndrome. The second case was a 49-year-old female, diagnosed for two years, who referred deviation of gait to the right, difficulty and/or pain with neck movement, paraesthesia of the extremities and vocal alteration. In the vestibular exam, she presented peripheral vestibular deficiency syndrome to the right. Both cases had significant improvements regarding physical, functional and emotional aspects of the Dizziness Handicap Inventory after vestibular rehabilitation. The protocol used benefitted the subjects' quality of life and favored the process of vestibular compensation.

  18. Personality changes in patients with vestibular dysfunction

    OpenAIRE

    Paul eSmith; Cynthia eDarlington

    2013-01-01

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflex...

  19. Motor development after vestibular deprivation in rats.

    Science.gov (United States)

    Geisler, H C; Gramsbergen, A

    1998-07-01

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control, which is characterized by a retarded EMG development in postural muscles. Our results indicate that the developing nervous system cannot compensate for a vestibular deficit during the early phase of ontogeny.

  20. Changing perspective: The role of vestibular signals

    OpenAIRE

    Deroualle, Diane; Borel, Liliane; Deveze, Arnaud; Lopez, Christophe

    2015-01-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking....

  1. Effect of gravity on vestibular neural development

    Science.gov (United States)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  2. Effect of gravity on vestibular neural development.

    Science.gov (United States)

    Ross, M D; Tomko, D L

    1998-11-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  3. Vestibular perception is slow: a review.

    Science.gov (United States)

    Barnett-Cowan, Michael

    2013-01-01

    Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.

  4. Personality changes in patients with vestibular dysfunction.

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L

    2013-10-29

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalization and derealization symptoms such as feeling "spaced out", "body feeling strange" and "not feeling in control of self". We propose in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction (TPJ).

  5. Vestibular activation, smooth pursuit tracking, and psychosis.

    Science.gov (United States)

    Jones, A M; Pivik, R T

    1985-04-01

    Pursuit tracking and vestibular activation procedures were combined in an investigation to determine if smooth pursuit tracking deficits could be related to abnormalities of visual-vestibular interaction in psychiatric patients. In actively psychotic patients, but not in comparison groups of schizophrenic outpatients with remitted symptomatology or normal controls, a significant failure of visual fixation to suppress caloric nystagmus was related to a higher incidence of disordered tracking during both baseline and postirrigation conditions. Other vestibular irregularities including dysrhythmia and reduced fast phase velocity were observed in these same patients. The results are supportive of a central deficit in visual-vestibular interaction that may contribute to pursuit tracking deficits in psychosis.

  6. The role of the vestibular assessment.

    Science.gov (United States)

    Phillips, J S; FitzGerald, J E; Bath, A P

    2009-11-01

    To evaluate the role of vestibular assessment in the management of the dizzy patient. A retrospective review of case notes and vestibular assessment reports of 100 consecutive patients referred for vestibular assessment. Sixty of the 100 patients had an abnormal vestibular assessment. Eleven patients had benign paroxysmal positional vertigo as the sole diagnosis, of whom nine had not had a Dix-Hallpike manoeuvre performed before referral. Of patients referred for vestibular rehabilitation, 76 per cent had an abnormal electrophysiological assessment. After vestibular assessment, 35 patients were discharged with no further follow-up appointments in the ENT department. All patients should have a Dix-Hallpike manoeuvre performed prior to referral for vestibular assessment. The majority of our patients undergoing vestibular rehabilitation had abnormal test results, although a significant number did not. Prior to referral, it is worth considering the implication of a 'normal' and 'abnormal' result for the management of the patient. Careful consideration should be given to the development of dedicated dizziness clinics run by practitioners with a specialist interest in balance disorders, in order to ensure appropriate requests for vestibular assessment.

  7. Epidemiology and natural history of vestibular schwannomas

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Caye-Thomasen, Per

    2012-01-01

    This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma. A treatm......This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma....... A treatment strategy based on the natural history of tumor growth and hearing also is discussed....

  8. Personality Changes in Patients with Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-10-01

    Full Text Available The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalisation and derealisation symptoms such as feeling ‘spaced out’, ‘body feeling strange’ and ‘not feeling in control of self’. We suggest in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through the information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction.

  9. Anatomical and Physiological Considerations in Vestibular Dysfunction and Compensation

    OpenAIRE

    Jones, Sherri M.; Jones, Timothy A.; Mills, Kristal N.; Gaines, G Christopher

    2009-01-01

    Sensory information from the vestibular, visual, and somatosensory/proprioceptive systems are integrated in the brain in complex ways to produce a final motor output to muscle groups for maintaining gaze, head and body posture, and controlling static and dynamic balance. The balance system is complex, which can make differential diagnosis of dizziness quite challenging. On the other hand, this complex system is organized anatomically in a variety of pathways and some of these pathways have be...

  10. Vestibular control of entorhinal cortex activity in spatial navigation

    Directory of Open Access Journals (Sweden)

    Pierre-Yves eJacob

    2014-06-01

    Full Text Available Navigation in rodents depends on both self-motion (idiothetic and external (allothetic information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that TTX administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.

  11. Vestibular control of entorhinal cortex activity in spatial navigation.

    Science.gov (United States)

    Jacob, Pierre-Yves; Poucet, Bruno; Liberge, Martine; Save, Etienne; Sargolini, Francesca

    2014-01-01

    Navigation in rodents depends on both self-motion (idiothetic) and external (allothetic) information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC) may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that tetrodotoxin (TTX) administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.

  12. [Pharmacotherapy of Vestibular Disorders, Nystagmus and Cerebellar Disorders].

    Science.gov (United States)

    Feil, K; Böttcher, N; Kremmyda, O; Muth, C; Teufel, J; Zwergal, A; Brandt, T; Strupp, M

    2018-01-01

    There are currently different groups of drugs for the pharmacotherapy of vertigo, nystagmus and cerebellar disorders: antiemetics; anti-inflammatories, antimenieres, and antimigraineous medications and antidepressants, anticonvulsants, aminopyridines as well as acetyl-DL-leucine. In acute unilateral vestibulopathy, corticosteroids improve the recovery of peripheral vestibular function, but currently there is not sufficient evidence for a general recommendation. There is insufficient evidence to support the view that 16 mg t. i. d. or 48 mg t. i. d. betahistine has an effect in Menière's disease. Therefore, higher dosages are recommended. In animal studies, it was shown that betahistine increases cochlear blood flow. In vestibular paroxysmia, oxcarbazepine was effective (one randomized controlled trial (RCT)). Aminopyridines are recommended for the treatment of downbeat nystagmus (two RCTs) and episodic ataxia type 2 (EA2, one RCT). There has been no RCT on the efficacy of beta-blockers or topiramate but one RCT on flunarizine in vestibular migraine. Based on clinical experience, a treatment analogous to that for migraine without aura can be recommended. Acetyl-DL-leucine improved cerebellar ataxia (two observational studies); it also accelerated central compensation in an animal model of acute unilateral lesion, but RCTs were negative. There are ongoing RCTs on treatment of vestibular paroxysmia with carbamazepine (VESPA), acute unilateral vestibulopathy with betahistine (BETAVEST), vestibular migraine with metoprolol (PROVEMIG), benign paroxysmal positional vertigo with vitamin D (VitD@BPPV), EA2 with 4-aminopyridine versus acetazolamide (EAT-2-TREAT), and cerebellar ataxias with acetyl-DL-leucine (ALCAT). Georg Thieme Verlag KG Stuttgart · New York.

  13. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  14. The Structural and Functional Organization of Cognition

    Science.gov (United States)

    Snow, Peter J.

    2016-01-01

    This article proposes that what have been historically and contemporarily defined as different domains of human cognition are served by one of four functionally- and structurally-distinct areas of the prefrontal cortex (PFC). Their contributions to human intelligence are as follows: (a) BA9, enables our emotional intelligence, engaging the psychosocial domain; (b) BA47, enables our practical intelligence, engaging the material domain; (c) BA46 (or BA46-9/46), enables our abstract intelligence, engaging the hypothetical domain; and (d) BA10, enables our temporal intelligence, engaging in planning within any of the other three domains. Given their unique contribution to human cognition, it is proposed that these areas be called the, social (BA9), material (BA47), abstract (BA46-9/46) and temporal (BA10) mind. The evidence that BA47 participates strongly in verbal and gestural communication suggests that language evolved primarily as a consequence of the extreme selective pressure for practicality; an observation supported by the functional connectivity between BA47 and orbital areas that negatively reinforce lying. It is further proposed that the abstract mind (BA46-9/46) is the primary seat of metacognition charged with creating adaptive behavioral strategies by generating higher-order concepts (hypotheses) from lower-order concepts originating from the other three domains of cognition. PMID:27799901

  15. Ontogenetic development of vestibular reflexes in amphibians

    Directory of Open Access Journals (Sweden)

    Hans Straka

    2016-11-01

    Full Text Available Vestibulo-ocular reflexes ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt vestibulo-ocular reflexes (VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1-8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets.

  16. Maternal susceptibility to nausea and vomiting of pregnancy: is the vestibular system involved?

    Science.gov (United States)

    Black, F. Owen

    2002-01-01

    Nausea and vomiting of pregnancy shares many characteristics with motion sickness, a vestibular dependent phenomenon. A number of physiologic changes that occur in normal pregnancy are also known to accompany nausea and vomiting in patients with motion sickness and certain vestibular disorders. This chapter summarizes some shared features of both phenomena. The unmasking of subclinical vestibular disorders may account for some cases of hyperemesis gravidarum. Hormonal effects on neurotransmitter function may also play a role in nausea and vomiting of pregnancy and in some vestibular disorders; however, the specific neural mechanisms of nausea and vomiting have not been identified. Until the neurochemical processes underlying these phenomena are understood, prevention and management will remain in the domain of astute, but so far limited, clinical observation.

  17. Physical therapy management of peripheral vestibular dysfunction: two clinical case reports.

    Science.gov (United States)

    Gill-Body, K M; Krebs, D E; Parker, S W; Riley, P O

    1994-02-01

    We describe the treatment of two patients with peripheral vestibular dysfunction using a novel, staged exercise program. Response to treatment was documented. The first patient, a 62-year-old woman with unilateral vestibular dysfunction (UVD) and a 6-month history of disequilibrium following herpes zoster oticus resulting in damage to the right inner ear, was treated with an 8-week course of vestibular physical therapy. During the 8 weeks, the patient attended weekly physical therapy sessions and was trained to perform vestibular adaptation exercises on a daily basis at home. The second patient, a 53-year-old woman with progressive disequilibrium secondary to profound bilateral vestibular hypofunction (BVH), was treated with a 16-week course of vestibular physical therapy. During the first 8 weeks, the patient attended weekly physical therapy sessions and was trained to perform vestibular adaptation and substitution exercises on a daily basis at home. During the second 8 weeks, the patient continued performing vestibular physical therapy exercises at home independently. Vestibular function (sinusoidal vertical axis rotation testing), postural control (clinical tests and posturography), stability during the performance of selected activities of daily living (ADLs), and self-perception of symptoms and handicap were measured prior to and at the conclusion of treatment for both patients and at the midpoint of treatment for the patient with BVH. After 8 weeks of treatment, both patients reported improvements in self-perception of symptoms and handicap and demonstrated objective improvements in clinical balance tests, posturography, and several kinematic indicators of stability during the performance of selected ADLs. Further improvements were noted in the patient with BVH after 16 weeks of treatment. Improvements in postural control were noted after 8 weeks of treatment for the patient with UVD and after 16 weeks for the patient with BVH. Vestibular function improved

  18. Changing perspective: The role of vestibular signals.

    Science.gov (United States)

    Deroualle, Diane; Borel, Liliane; Devèze, Arnaud; Lopez, Christophe

    2015-12-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking. Yet, no study merged natural full-body vestibular stimulations and explicit visuo-spatial perspective taking tasks in virtual environments. In Experiment 1, we combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the viewpoint of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the viewpoint of a distant avatar. Our results showed that vestibular signals influence perspective taking in a direction-specific way: participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. In Experiment 2, participants realized 3D object mental rotations, which did not involve perspective taking, during the same whole-body vestibular stimulation. Our results demonstrated that vestibular stimulation did not affect 3D object mental rotations. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking (self-centered mental imagery), but not a general effect on mental imagery. Findings from this study suggest that vestibular signals contribute to one of the most crucial mechanisms of social cognition: understanding others' actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vestibular ataxia and its measurement in man

    Science.gov (United States)

    Fregly, A. R.

    1974-01-01

    Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.

  20. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  1. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  2. Vestibular Assessment and Rehabilitation: Ten-Year Survey Trends of Audiologists' Opinions and Practice.

    Science.gov (United States)

    Nelson, M Dawn; Akin, Faith W; Riska, Kristal M; Andresen, Kimberly; Mondelli, Stephanie Stamps

    2016-02-01

    The past decade has yielded changes in the education and training of audiologists and technological advancements that have become widely available for clinical balance function testing. It is unclear if recent advancements in vestibular instrumentation or the transition to an AuD degree have affected audiologists' vestibular clinical practice or opinions. The purpose of this study was to examine predominant opinions and practices for vestibular assessment (VA) and vestibular rehabilitation (VR) over the past decade and between master's- and AuD-level audiologists. A 31-question survey was administered to audiologists via U.S. mail in 2003 (N = 7,500) and electronically in 2014 (N = 9,984) with a response rate of 12% and 10%, respectively. There was an increase in the number of audiologists providing vestibular services in the past decade. Most respondents agreed that audiologists were the most qualified professionals to conduct VA. Less than half of the surveyed audiologists felt that graduate training was adequate for VA. AuD-level audiologists were more satisfied with graduate training and felt more comfortable performing VA compared to master's-level audiologists. Few respondents agreed that audiologists were the most qualified professionals to conduct VR or that graduate training prepared them to conduct VR. The basic vestibular test battery was unchanged across surveys and included: calorics, smooth pursuit, saccades, search for spontaneous, positional, gaze and optokinetic nystagmus, Dix-Hallpike, case history, and hearing evaluation. There was a trend toward greater use of air (versus water) calorics, videonystagmography (versus electronystagmography), and additional tests of vestibular and balance function. VA is a growing specialty area in the field of audiology. Better training opportunities are needed to increase audiologists' knowledge and skills for providing vestibular services. The basic tests performed during VA have remained relatively unchanged

  3. Organic Mass Fragments and Organic Functional Groups in Aged Biomass Burning and Fossil Fuel Combustion Aerosol

    Science.gov (United States)

    Day, D. A.; Hawkins, L. N.; Russell, L. M.

    2009-12-01

    Organic functional group concentrations in submicron aerosol particles collected from 27 June to 17 September at the Scripps Pier in La Jolla, California as part of AeroSCOPE 2008 were quantified using Fourier Transform Infrared (FTIR) spectroscopy. Organic and inorganic non-refractory components in the same air masses were quantified using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). Previous measurements at the Scripps pier indicate that a large fraction of submicron particle mass originates in Los Angeles and the port of Long Beach. Additional particle sources to the region include local urban emissions and periodic biomass burning during large wildfires. Three distinct types of organic aerosol components were identified from organic composition and elemental tracers, including biomass burning, fossil fuel combustion, and polluted marine components. Fossil fuel combustion organic aerosol was dominated by unsaturated alkane and was correlated with sulfur, vanadium, and nickel supporting ship and large trucks in and around the Los Angeles/Long Beach region as the dominant source. Biomass burning organic aerosol comprised a smaller unsaturated alkane fraction and larger fractions of non-acid carbonyl, amine, and carboxylic acid and was correlated with potassium and bromine. Polluted marine organic aerosol was dominated by organic hydroxyl and unsaturated alkane and was not correlated with any elemental tracers. Mass spectra of the organic aerosol support the aerosol sources determined by organic functional groups and elemental tracers and contain fragments commonly attributed to oxygenated organic aerosol (OOA), hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). Comparisons of the PMF-derived Q-AMS source spectra with FTIR source spectra and functional group composition provide additional information on the relationship between commonly reported organic aerosol factors and organic functional groups in specific organic aerosol

  4. Porous Organic Materials: Strategic Design and Structure-Function Correlation.

    Science.gov (United States)

    Das, Saikat; Heasman, Patrick; Ben, Teng; Qiu, Shilun

    2017-02-08

    Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.

  5. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    Science.gov (United States)

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  6. Sanotyping in estimation of functional abilities of the athlete's organism

    OpenAIRE

    Romanchuk, A.P.

    2015-01-01

    With the use of express polyfunctional methods of organism research - cardiorythmography, spirometery, laser cross-correlation spectroscopy and computing of motions - the sanotyping model of sportsmen organism functioning is got. The features of sanotypes sportsmen are marked specialized in playing kinds, heavy athletics, at run, boxing, kikboxing, swimming.

  7. FUNCTIONAL MANAGER SUBSYSTEM OF THE ORGANIZATION END MANAGEMENT BY BJECTIVES OF THE ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Munteanu Stolojanu Victoria-Ileana

    2011-06-01

    Full Text Available Continuous process of asset management and communication between higher and subordinate employee evaluation method that allows determining, measuring, monitoring and performance objectives and eliminating deviaţionismului functional organizations, management by objectives continue to encourage researchers. The innovative character of the paper is that it shows how the functional manager solved using management by objective and organizational subsystem of the organization, problems arising from the dynamic nature of the functions (research and development, production, trade, finance and accounting staff, activities and powers of organizations and individual tasks to the workers to realize programs of action. Scientific challenge we have been made by an actual problem functions, activities and functions of organizations: the statutory concentration behavior of the functional compartments of their targets. The consequences are serious: neglect of the general interests of the organization, functioning deviaţionism appearance, failure to achieve the management contracts. The involvement of functional managers in implementing their strategies involves functional common goals. The efficiency with which social work is spent is given by the organizing resources of the organizations At the same time researchers recognize it as an element that prevents the proper organization, lack of methodological elements in practice, absolutely mandatory to any use management methods and techniques, a situation that nourishes and enhances the dilettantism in performing the management processes. Management by objectives solves these deficiencies. Management by objectives has components (detailed items necessary to achieve the organizations objectives: categorical system of objectives, action programs (true functional strategies, calendars, timelines, directories of methods, guidelines, tool kit, which makes profesional the manager job,not letting him with his bare

  8. Motor development after vestibular deprivation in rats

    NARCIS (Netherlands)

    Geisler, HC; Gramsbergen, A

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control,

  9. Social Media’s Function in Organizations: A Functional Analysis Approach

    Directory of Open Access Journals (Sweden)

    Amy Reitz

    2012-12-01

    Full Text Available System theorists believe that organizations that function as an open system have a greater chance of survival than organizations that function as a closed system due to the exchange of inputs and outputs between the organization and its publics. Public relations researchers have proposed adopting a dialogic approach to public relations where interaction between the organization and its publics are mutual, which is the underpinning to an open systems approach. This paper posits that organizations can function within an open systems approach to public relations by employing social media. Adoption of a functional approach is a fruitful way to look at the social functions various social media serve in the system of organizations and their publics. Research has considered the gratifications publics receive from social media; however, limited research has considered what social media do for the organization-public relationship system. It has been argued that organizations also have psychological and social motivations; therefore, applying a functional analysis approach might be a good of way determining what functions social media serve in the organization-public relationship system. Four functions are proposed in which social media may serve the system: maintenance of organizational identity, opportunity to build relationships with publics, ability to control issues management, and the chance to promote social corporate responsibility. Understanding social media’s role in the system can help practitioners identify the functions that may contribute to an open systems approach to public relations and ultimately an organization’s survival.

  10. Input/output properties of the lateral vestibular nucleus

    Science.gov (United States)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  11. Extraterrestrial vestibular research, a new partial field of medical research into the human vestibular apparatus.

    Science.gov (United States)

    Pichler, H J

    1967-01-01

    The first otologic professorial chair in the world was established by Politzer in Vienna as long ago as 1861. In 1914 an assistant of the 1st Vienna Ear Clinic with Politzer as its head, Barany, was awarded the Nobel Prize for Medicine for his fundamental investigations into the organ of equilibration and for his discovery of the caloric sensitivity of the semicircular canals. Since that time Barany is regarded as the founder of the physiology of the vestibular apparatus. During the period 1959 to 1963 a new conception of fundamental research into the vestibule was demanded and elaborated in Vienna with the postulate that, in all theoretical deliberations and practical experience, one should take into consideration that our experiments into the vestibule do not take place on a static platform but rather on a diversely moving one, namely the surface of the earth. This led to new findings in the field of research into the otolith apparatus. In 1962 it was discovered that the gravitation of the sun at the distance of earth-sun represents a supraliminal stimulus, namely both in the aphelion as well as in the perihelion position of the earth. In 1965 it was suggested in Vienna that a new branch of research into the vestibule should be established on an international level, the so-called extraterrestrial vestibular research. The importance of this new branch of research is discussed for all problems of orientation of human beings in space.

  12. Influence of Functional Groups on the Viscosity of Organic Aerosol.

    Science.gov (United States)

    Rothfuss, Nicholas E; Petters, Markus D

    2017-01-03

    Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO2) > carbonyl (CO) ≈ ester (COO) > methylene (CH2). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.

  13. Magnetic Vestibular Stimulation in Subjects with Unilateral Labyrinthine Disorders

    Directory of Open Access Journals (Sweden)

    Bryan Kevin Ward

    2014-03-01

    Full Text Available We recently discovered that static magnetic fields from high-strength MRI machines induce nystagmus in all normal humans, and that a magnetohydrodynamic (MHD Lorentz force, derived from ionic currents in the endolymph and pushing on the cupula, best explains this effect. Individuals with no labyrinthine function have no nystagmus. The influence of magnetic vestibular stimulation (MVS in individuals with unilateral loss of labyrinthine function is unknown and may provide insight into mechanism of MVS. These individuals should experience MVS, but with differences consistent with their residual labyrinthine function. We recorded eye movements in the static magnetic field of a 7T MRI machine in nine individuals with unilateral labyrinthine hypofunction, as determined by head impulse testing and vestibular-evoked myogenic potentials (VEMP. Eye movements were recorded using infrared videooculography. Static head positions were varied in pitch with the body supine, and slow-phase eye velocity (SPV was assessed. All subjects exhibited predominantly horizontal nystagmus after entering the magnet head-first, lying supine. The SPV direction reversed when entering feet-first. Pitching chin-to-chest caused subjects to reach a null point for horizontal SPV. Right unilateral vestibular hypofunction (UVH subjects developed slow-phase-up nystagmus and left UVH subjects, slow-phase-down nystagmus. Vertical and torsional components were consistent with superior semicircular canal excitation or inhibition, respectively, of the intact ear. These findings provide compelling support for the hypothesis that MVS is a result of a Lorentz force and suggest that the function of individual structures within the labyrinth can be assessed with MVS. As a novel method of comfortable and sustained labyrinthine stimulation, MVS can provide new insights into vestibular physiology and pathophysiology.

  14. Approaches to organizing public relations functions in healthcare.

    Science.gov (United States)

    Guy, Bonnie; Williams, David R; Aldridge, Alicia; Roggenkamp, Susan D

    2007-01-01

    This article provides health care audiences with a framework for understanding different perspectives of the role and functions of public relations in healthcare organizations and the resultant alternatives for organizing and enacting public relations functions. Using an example of a current issue receiving much attention in US healthcare (improving rates of organ donation), the article provides examples of how these different perspectives influence public relations goals and objectives, definitions of 'public', activities undertaken, who undertakes them and where they fit into the organizational hierarchy.

  15. Metal-Organic Frameworks as Platforms for Functional Materials.

    Science.gov (United States)

    Cui, Yuanjing; Li, Bin; He, Huajun; Zhou, Wei; Chen, Banglin; Qian, Guodong

    2016-03-15

    Discoveries of novel functional materials have played very important roles to the development of science and technologies and thus to benefit our daily life. Among the diverse materials, metal-organic framework (MOF) materials are rapidly emerging as a unique type of porous and organic/inorganic hybrid materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers, and can be straightforwardly characterized by various analytical methods. In terms of porosity, they are superior to other well-known porous materials such as zeolites and carbon materials; exhibiting extremely high porosity with surface area up to 7000 m(2)/g, tunable pore sizes, and metrics through the interplay of both organic and inorganic components with the pore sizes ranging from 3 to 100 Å, and lowest framework density down to 0.13 g/cm(3). Such unique features have enabled metal-organic frameworks to exhibit great potentials for a broad range of applications in gas storage, gas separations, enantioselective separations, heterogeneous catalysis, chemical sensing and drug delivery. On the other hand, metal-organic frameworks can be also considered as organic/inorganic self-assembled hybrid materials, we can take advantages of the physical and chemical properties of both organic and inorganic components to develop their functional optical, photonic, and magnetic materials. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of different species of diverse functions, so a variety of functional MOF/composite materials can be readily synthesized. In this Account, we describe our recent research progress on pore and function engineering to develop functional MOF materials. We have been able to tune and optimize pore spaces, immobilize specific functional groups, and introduce chiral pore environments to target MOF materials for methane storage, light hydrocarbon separations, enantioselective recognitions

  16. Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia.

    Science.gov (United States)

    Schweizer, Felix E; Savin, David; Luu, Cindy; Sultemeier, David R; Hoffman, Larry F

    2009-11-10

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.

  17. Glia Are Essential for Sensory Organ Function in C. elegans

    Science.gov (United States)

    Bacaj, Taulant; Tevlin, Maya; Lu, Yun; Shaham, Shai

    2009-01-01

    Sensory organs are composed of neurons, which convert environmental stimuli to electrical signals, and glia-like cells, whose functions are not well-understood. To decipher glial roles in sensory organs, we ablated the sheath glial cell of the major sensory organ of Caenorhabditis elegans. We found that glia-ablated animals exhibit profound sensory deficits and that glia provide activities that affect neuronal morphology, behavior generation, and neuronal uptake of lipophilic dyes. To understand the molecular bases of these activities, we identified 298 genes whose mRNAs are glia-enriched. One gene, fig-1, encodes a labile protein with conserved thrombospondin TSP1 domains. FIG-1 protein functions extracellularly, is essential for neuronal dye uptake, and also affects behavior. Our results suggest that glia are required for multiple aspects of sensory organ function. PMID:18974354

  18. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control.

    Science.gov (United States)

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-09-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10 min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber. The sensory contribution values of the visual, somatosensory, and vestibular systems were calculated using center of pressure of the total trajectory length value in these measuring conditions. [Results] The center of pressure of the total trajectory length on foam rubber in post and post10 were significantly lower than that in the pre. The sensory contribution values of vestibular in post10 stages were significantly higher than that in pre-stage. [Conclusion] Gaze stabilization exercise can improve the static body balance in a condition that particularly requires vestibular function. The possible mechanism involves increasing sensory contribution of the vestibular system for postural control by the gaze stabilization exercise, which may be useful to derive sensory reweighting of the vestibular system for rehabilitation.

  19. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control

    Science.gov (United States)

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-01-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10 min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber. The sensory contribution values of the visual, somatosensory, and vestibular systems were calculated using center of pressure of the total trajectory length value in these measuring conditions. [Results] The center of pressure of the total trajectory length on foam rubber in post and post10 were significantly lower than that in the pre. The sensory contribution values of vestibular in post10 stages were significantly higher than that in pre-stage. [Conclusion] Gaze stabilization exercise can improve the static body balance in a condition that particularly requires vestibular function. The possible mechanism involves increasing sensory contribution of the vestibular system for postural control by the gaze stabilization exercise, which may be useful to derive sensory reweighting of the vestibular system for rehabilitation. PMID:28931974

  20. Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration.

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Tse, Yiu-Chung; Yung, Ken K L; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N-methyl-d-aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted approximately 90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information.

  1. Galvanic vestibular stimulation improves the results of vestibular rehabilitation.

    Science.gov (United States)

    Carmona, Sergio; Ferrero, Antonela; Pianetti, Guillermina; Escolá, Natalia; Arteaga, María Victoria; Frankel, Lilian

    2011-09-01

    Here, we present findings from a three-step investigation of the effect of galvanic vestibular stimulation (GVS) in normal subjects and in subjects undergoing vestibular rehabilitation (VR). In an initial study, we examined the body sway of 10 normal subjects after one minute of 2 mA GVS. The effect of the stimulation lasted for at least 20 minutes in all subjects and up to two hours in 70% of the subjects. We then compared a group of patients who received conventional VR (40 patients) with a group that received a combination of VR and GVS. Results suggest a significant improvement in the second group. Finally, we attempted to establish the optimal number of GVS sessions and to rule out a placebo effect. Fifteen patients received "systematic" GVS: five sessions, once a week. Five patients received "nonsystematic" galvanic stimulation in a sham protocol, which included two stimulations of the clavicle. These data were analyzed with Fisher's exact test and indicated that the best results were obtained after three sessions of GVS and no placebo effect was observed. © 2011 New York Academy of Sciences.

  2. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural

  3. Vestibular rehabilitation strategies and factors that affect the outcome.

    Science.gov (United States)

    Eleftheriadou, Anna; Skalidi, Nikoleta; Velegrakis, Georgios A

    2012-11-01

    Ever since the introduction of Cawthorne-Cooksey exercises, vestibular rehabilitation (VR) has been gaining popularity in the treatment of the dizzy patient. Numerous studies support the effectiveness of VR in improving balance/walking skills, eye-head coordination and the quality of life of the patient. Different rehabilitation protocols have been used to treat patients with peripheral and central vestibular disorders. Assessment of the patients' progress is based on the patients' selfperception of dizziness and their functional skills. Factors such as age, medication, time of onset of vertigo and home based VR have been evaluated on their effect on the rehabilitation's outcome. The aim of this review is to evaluate rehabilitation strategies and discuss the factors that affect the outcome.

  4. Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents.

    Science.gov (United States)

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-03-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential.

  5. Genetic disorders of the vestibular system.

    Science.gov (United States)

    Eppsteiner, Robert W; Smith, Richard J H

    2011-10-01

    This review highlights the current body of literature related to the genetics of inherited vestibular disorders and provides a framework for the characterization of these disorders. We emphasize peripheral causes of vestibular dysfunction and highlight recent advances in the field, point out gaps in understanding, and focus on key areas for future investigation. The discovery of a modifier gene that leads to a more severe Usher syndrome phenotype calls into question the assumption that Usher syndrome is universally a monogenic disorder. Despite the use of several investigational approaches, the genetic basis of Menière's disease remains poorly understood. Evidence for a vestibular phenotype associated with DFNB1 suggests that mutations in other genes causally related to nonsyndromic hearing loss also may have an unrecognized vestibular phenotype. Our understanding of the genetic basis for vestibular disorders is superficial. Significant challenges include defining the genetics of inherited isolated vestibular dysfunction and understanding the pathological basis of Menière's disease. However, improved characterization of inherited vestibular dysfunction, coupled with advanced genetic techniques such as targeted genome capture and massively parallel sequencing, provides an opportunity to investigate these diseases at the genetic level.

  6. Embryological development and large vestibular aqueduct syndrome.

    Science.gov (United States)

    Pyle, G M

    2000-11-01

    Large vestibular aqueduct syndrome (LVAS) is a significant cause of hearing loss in early childhood. Many theories on the origins and causes of LVAS have been proposed, including arrest or maldevelopment of the vestibular labyrinth in embryonic life. Prior studies have described postnatal and adult vestibular aqueduct anatomy, but none has analyzed aqueduct growth throughout embryonic life. This study was undertaken to characterize the growth of the developing vestibular aqueduct to gain a better understanding of the possible origins of LVAS. Basic science, temporal bone histopathological study. Serial sections from 48 temporal bones from human embryos ranging in age from 5 weeks' gestation to full term were studied with computer image analysis. Measurements of vestibular aqueduct internal and external aperture, midportion diameter, and length were analyzed to obtain a growth model of development. The vestibular aqueduct grows in a nonlinear fashion throughout embryonic life. All parameters fit a similar growth curve and never reached a maximum or began narrowing during development. Growth in one parameter correlated well with growth of another. There was good side-to-side correlation with all but the external aperture. Most of the membranous labyrinth reaches adult size by 20 weeks' gestation, but the vestibular aqueduct grows throughout embryonic life. The measurements and growth model obtained in this study are not consistent with the theory that LVAS results from an arrest in development early in fetal life. The data suggest that LVAS may result from postnatal and early childhood maldevelopment.

  7. Long-term course and relapses of vestibular and balance disorders.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Tdoreen; Hüfner, Katharina; Zingler, Vera C; Dieterich, Marianne; Strupp, Michael

    2010-01-01

    The long-term course and the frequency of relapses for various peripheral vestibular disorders and somatoform phobic postural vertigo are discussed with respect to the clinically most important questions for thus afflicted patients. This review is mainly based on our own long-term follow-up studies and takes into consideration the most relevant literature. The following syndromes are discussed in detail. Vestibular neuritis: the recovery rate of peripheral vestibular function lies between 40-63% depending on early-onset treatment with corticosteroids; the recurrence rate within 10 years is 2%. Menière's disease} loss of auditory and vestibular function occurs mainly in the first 5 to 10 years; frequency of vertigo attacks may decline after 5 to 10 years; bilateral involvement increases with increasing duration of the condition in up to 30-50%; vestibular drop attacks may occur early or late within the course, mostly with spontaneous remission; high-dose and long-term treatment with betahistine significantly reduces attack frequency in Menière's disease, Benign paroxysmal positioning vertigo: the recurrence rate is 50% within 10 years (in females 58%, in males 39%), most recurrences (80%) being observed within the first year after initial relief; recurrence rate in the seventh decade is half of that in the sixth decade. Vestibular paroxysmia: medical treatment with carbamazepine or oxcarbazepine leads to a continuous significant reduction in attack frequency, intensity, and duration of 10-15% of baseline. Bilateral vestibulopathy: recovery of vestibular function is limited to single cases depending on their etiology. Phobic postural vertigo: within 5 to 16 years 27% of the patients are symptom-free, 48% improve, 22% remain unchanged, and 3% worsen; a detailed explanation of the mechanisms that cause and the factors that provoke attacks is imperative, as well as instructions for self-controlled desensitization within the context of behavioral therapy.

  8. Convergence of Linear Acceleration and Yaw Rotation Signals on non-Eye Movement Neurons in the Vestibular Nucleus of Macaques.

    Science.gov (United States)

    Newlands, Shawn D; Abbatematteo, Ben; Wei, Min; Carney, Laurel H; Luan, Hongge

    2017-10-04

    Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident, these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a non-linear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. Copyright © 2017, Journal of Neurophysiology.

  9. Synthesis and postmodification of functionally relevant organically modified silica particles

    Science.gov (United States)

    Brozek, Eric

    This thesis describes the synthesis and properties of organically modified silica (ORMOSIL) particles with possible applications in the field of drug delivery. Nanoparticle drug delivery methods take advantage of the unique physical properties of nanoscale architecture to deliver a large payload of drug to a targeted site. They are highly porous, contain many organic functionalities for covalent attachment, and their surfaces can be functionalized. A particle-based approach allows for the delivery of a large and localized payload in a single package. Initial study focused on the generation of submicron organically modified silica particles containing boron. This involved the synthesis of vinyl-enriched silica particles and the postmodification of the vinyl functionalities throughout the particle body. Hydroboration and bromination of the vinyl functionalities showed for the first time that the organic functionalities of ORMOSIL particles could be significantly modified. Next, new organically modified silica particle types were developed. These new particle types incorporated unique organic functionalities that may undergo additional functionalization. Organic functionalities included alkenyl-, cyano-, mercapto-, and isocyanto- throughout the particle body. The different organic functionalities were then modified to demonstrate their reactivity. Finally, a particle containing nuclei suitable for neutron capture therapy, a fluorescent tag, and targeting ligand was synthesized. Boron was the active nuclei, fluorescein was the fluorescent label, useful for in vitro studies, and folic acid is a broad field targeting ligand, useful in targeting a variety of cancer types. The particle containing the three unique motifs underwent early stages of in vitro studies against the OVCAR-3 cell line. This thesis has considerably advanced the field of ORMOSIL chemistry through the development and modification of new ORMOSIL products. While initial efforts were geared toward the

  10. Modification of tenascin-R expression following unilateral labyrinthectomy in rats indicates its possible role in neural plasticity of the vestibular neural circuit.

    Science.gov (United States)

    Gaal, Botond; Jóhannesson, Einar Örn; Dattani, Amit; Magyar, Agnes; Wéber, Ildikó; Matesz, Clara

    2015-09-01

    We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.

  11. THE IMPORTANCE OF COMMUNICATION IN THE FUNCTIONING OF AN ORGANIZATION

    OpenAIRE

    Zvonimir Jurković

    2012-01-01

    Organizations cannot exist without communication. Every human action is a kind of communication, and thus “not communicating” is also a form of communication. Efficient communication is the foundation for the internal organization development, but also a key factor of existence in an uncertain environment. Therefore, communication is an important aspect of manager behaviour as well as of the functioning of the entire organizational system. Business communication takes place both w...

  12. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    OpenAIRE

    Arash Bayat; Nader Saki

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. T...

  13. Vestibular consequences of mild traumatic brain injury and blast exposure: a review.

    Science.gov (United States)

    Akin, Faith W; Murnane, Owen D; Hall, Courtney D; Riska, Kristal M

    2017-01-01

    The purpose of this article is to review relevant literature on the effect of mild traumatic brain injury (mTBI) and blast injury on the vestibular system. Dizziness and imbalance are common sequelae associated with mTBI, and in some individuals, these symptoms may last for six months or longer. In war-related injuries, mTBI is often associated with blast exposure. The causes of dizziness or imbalance following mTBI and blast injuries have been linked to white matter abnormalities, diffuse axonal injury in the brain, and central and peripheral vestibular system damage. There is some evidence that the otolith organs may be more vulnerable to damage from blast exposure or mTBI than the horizontal semicircular canals. In addition, benign paroxysmal positional vertigo (BPPV) is a common vestibular disorder following head injury that is treated effectively with canalith repositioning therapy. Treatment for (non-BPPV) mTBI-related vestibular dysfunction has focused on the use of vestibular rehabilitation (VR) augmented with additional rehabilitation methods and medication. New treatment approaches may be necessary for effective otolith organ pathway recovery in addition to traditional VR for horizontal semicircular canal (vestibulo-ocular reflex) recovery.

  14. THE IMPORTANCE OF COMMUNICATION IN THE FUNCTIONING OF AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Zvonimir Jurković

    2012-12-01

    Full Text Available Organizations cannot exist without communication. Every human action is a kind of communication, and thus “not communicating” is also a form of communication. Efficient communication is the foundation for the internal organization development, but also a key factor of existence in an uncertain environment. Therefore, communication is an important aspect of manager behaviour as well as of the functioning of the entire organizational system. Business communication takes place both within and outside of organizations. A communication event within an organization can have two routes: a formal and an informal one. To make the organizational communication more successful, it is necessary for all participants and organization employees to have adequate language skills, to conduct interactive exercises and to possess intercultural awareness.

  15. Potencial evocado miogênico vestibular

    OpenAIRE

    Felipe,Lilian; Kingma, Herman; Gonçalves, Denise Utsch

    2012-01-01

    INTRODUÇÃO: O Potencial Evocado Miogênico Vestibular (VEMP) é um teste promissor para a avaliação do sistema vestíbulo-cólico descendente. Este reflexo depende da integridade da mácula sacular, do nervo vestibular inferior, dos núcleos vestibulares, das vias vestíbulo-espinhais e do músculo efetor. OBJETIVO: Realizar revisão sistemática de literatura pertinente por meio de bases de dados (COCHRANE, MEDLINE, LILACS, CAPES). CONCLUSÃO: A aplicação clínica do VEMP expandiu-se nos últimos anos, c...

  16. Vestibular rehabilitation in a university hospital

    OpenAIRE

    Flávia da Silva Tavares; Maria Francisca Colella dos Santos; Keila Alessandra Baraldi Knobel

    2008-01-01

    A Reabilitação Vestibular visa melhorar o equilíbrio global, a qualidade de vida e orientação espacial dos pacientes com tontura. OBJETIVOS: Traçar o perfil dos pacientes atendidos no Ambulatório de Reabilitação Vestibular do Setor de Otoneurologia de um hospital universitário e verificar os resultados obtidos no período de novembro/2000 a dezembro/2004. MATERIAL E MÉTODO: Levantamento de dados contidos nas fichas dos 93 pacientes submetidos à Reabilitação Vestibular no período. FORMA DE ESTU...

  17. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function.

    Science.gov (United States)

    Dey, Chandan; Kundu, Tanay; Biswal, Bishnu P; Mallick, Arijit; Banerjee, Rahul

    2014-02-01

    Metal-organic frameworks (MOFs) are a class of hybrid network supramolecular solid materials comprised of organized organic linkers and metal cations. They can display enormously high surface areas with tunable pore size and functionality, and can be used as hosts for a range of guest molecules. Since their discovery, MOFs have experienced widespread exploration for their applications in gas storage, drug delivery and sensing. This article covers general and modern synthetic strategies to prepare MOFs, and discusses their structural diversity and properties with respect to application perspectives.

  18. Effects of the vestibular system on human development, part 2: Effects of vestibular stimulation on mentally retarded, emotionally disturbed, and learning-disabled individuals.

    Science.gov (United States)

    Weeks, Z R

    1979-07-01

    In Part 1 of this two-part series, studies concerned with the effects of vestibular stimulation on human development and function were reviewed and some implications for therapy were suggested. In Part 2, three categories of dysfunction with possible links to the vestibular system are discussed. Studies in the category of mental retardation evaluate motor development and sensory preference. Possible vestibular associations with emotional disturbance are examined by review of studies concerned with etiology, motor activity, speech, and clinical observations. A brief review of studies concerned with early identification and speech and language factors of learning-disabled children constitutes the third category. Interpretations are drawn and some implications for therapy are made.

  19. Impaired tunnel-maze behavior in rats with sensory lesions: vestibular and auditory systems.

    Science.gov (United States)

    Schaeppi, U; Krinke, G; FitzGerald, R E; Classen, W

    1991-01-01

    Maze behavior of rodents provides insight into processes of learning and memory and also serves to assess cognitive functions in neurotoxicity tests. Neurotoxic agents may impair maze behavior by acting upon different parts of the nervous system. To assess the dependence of maze learning upon vestibular and/or auditory input, the two systems were lesioned. Daily treatment of rat pups with streptomycin (400 mg/kg sc) on postnatal day 11 to 22 caused irreversible impairment of vestibular and auditory functions</