WorldWideScience

Sample records for vestibular nerve stimulation

  1. Patterning of sympathetic nerve activity in response to vestibular stimulation

    Science.gov (United States)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  2. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    Science.gov (United States)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  3. Responses of neurons of lizard's, Lacerta viridis, vestibular nuclei to electrical stimulation of the ipsi- and contralateral VIIIth nerves.

    Science.gov (United States)

    Richter, A; Precht, W; Ozawa, S

    1975-03-22

    Field and intracellular potentials were recorded in the vestibular nuclei of the lizard following stimulation of the ipsi- and contralateral vestibular nerves. The field potentials induced by ipsilateral VIIIth nerve stimulation consisted of an early negative or positive-negative wave (presynaptic component) followed by a slow negativity (transsynaptic component). The spatial distribution of the field potential complex closely paralleled the extension of the vestibular nuclei. Mono- and polysynaptic EPSPs were recorded from vestibular neurons after ipsilateral VIIIth nerve stimulation. In some neurons early depolarizations preceded the EPSPs. These potentials may be elicited by electrical transmission. Often spikelike partial responses were superimposed on the EPSPs. It is assumed that these potentials represent dendritic spikes. Contralateral VIIIth nerve stimulation generated disynaptic and polysynaptic IPSPs in some neurons and EPSPs in others. The possible role of commissural inhibition in phylogeny is discussed. In a group of vestibular neurons stimulation of the ipsilateral VIIIth nerve evoked full action potentials with latencies ranging from 0.25-1.1msec. These potentials are caused by antidromic activation of neurons which send their axons to the labyrinth.

  4. Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve.

    Science.gov (United States)

    Davidovics, Natan S; Fridman, Gene Y; Chiang, Bryce; Della Santina, Charles C

    2011-02-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration, and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0- 325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28- 340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25- 175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation.

  5. Vagus Nerve Stimulation

    Science.gov (United States)

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve ...

  6. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    OpenAIRE

    Hammam, Elie; Vaughan G Macefield

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity...

  7. Vestibular Stimulation for Stress Management in Students.

    Science.gov (United States)

    Kumar, Sai Sailesh; Rajagopalan, Archana; Mukkadan, Joseph Kurien

    2016-02-01

    Although several methods are developed to alleviate stress among college students, logistic limitations in adopting them have limited their utility. Hence, we aimed to test a very practical approach to alleviate stress among college students by achieving vestibular stimulation using swings. In this study 60 male and female participants were randomly assigned into vestibular stimulation or control groups. Depression, anxiety, stress scores, sleep quality, heart rate, blood pressure, Autonomic functions, respiratory, haematological, cognitive function, Quality of life were recorded before and after 1(st), 7(th), 14(th), 21(st), 28(th) days of vestibular stimulation. STAI S and STAI T scores were significantly improved on day 28(th) following vestibular stimulation. Diastolic and mean arterial blood pressure were significantly decreased and remained within normal limits in vestibular group on day 28(th) following vestibular stimulation. Postural fall in blood pressure was significantly improved on day 14 onwards, following vestibular stimulation. Respiratory rate was significantly improved on day 7 onwards, following vestibular stimulation. PSQI sleep disturbance, PSQI sleep latency, PSQI total score and bleeding time was significantly improved following vestibular stimulation. Our study supports the adoption of vestibular stimulation for stress management. Hence, placement of swings in college campuses must be considered, which may be a simple approach to alleviate stress among college students.

  8. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  9. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans.

    Science.gov (United States)

    Hammam, Elie; Macefield, Vaughan G

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; "super entrainment" was observed in some individuals. Low-frequency (vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans.

  10. Vagus Nerve Stimulation

    Science.gov (United States)

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  11. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    Directory of Open Access Journals (Sweden)

    Elie Hammam

    2017-07-01

    Full Text Available We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; “super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz sGVS revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow during vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (<0.2 Hz sinusoidal linear acceleration of seated or supine subjects to, respectively, target the utricular or saccular components of the otoliths. While others had discounted the semicircular canals, we showed that the contributions of the utricle and saccule to the vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans.

  12. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    Science.gov (United States)

    Hammam, Elie; Macefield, Vaughan G.

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; “super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz) sGVS revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow during vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (<0.2 Hz) sinusoidal linear acceleration of seated or supine subjects to, respectively, target the utricular or saccular components of the otoliths. While others had discounted the semicircular canals, we showed that the contributions of the utricle and saccule to the vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans. PMID:28798718

  13. Galvanic vestibular stimulation improves the results of vestibular rehabilitation.

    Science.gov (United States)

    Carmona, Sergio; Ferrero, Antonela; Pianetti, Guillermina; Escolá, Natalia; Arteaga, María Victoria; Frankel, Lilian

    2011-09-01

    Here, we present findings from a three-step investigation of the effect of galvanic vestibular stimulation (GVS) in normal subjects and in subjects undergoing vestibular rehabilitation (VR). In an initial study, we examined the body sway of 10 normal subjects after one minute of 2 mA GVS. The effect of the stimulation lasted for at least 20 minutes in all subjects and up to two hours in 70% of the subjects. We then compared a group of patients who received conventional VR (40 patients) with a group that received a combination of VR and GVS. Results suggest a significant improvement in the second group. Finally, we attempted to establish the optimal number of GVS sessions and to rule out a placebo effect. Fifteen patients received "systematic" GVS: five sessions, once a week. Five patients received "nonsystematic" galvanic stimulation in a sham protocol, which included two stimulations of the clavicle. These data were analyzed with Fisher's exact test and indicated that the best results were obtained after three sessions of GVS and no placebo effect was observed. © 2011 New York Academy of Sciences.

  14. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].

    Science.gov (United States)

    Stolbkov, Iu K; Gerasimenko, Iu P

    2014-06-01

    Locomotion is the most important mode of our movement in space. The role of the vestibular system during human locomotion is not well studied, mainly due to problems associated with its isolation stimulation. It is difficult to stimulate this system in isolation during locomotion because the real movement of the head to activate the vestibular end-organs inevitably leads to the activation of other sensory inputs. Galvanic stimulation is not a natural way to stimulate the vestibular system, but it has the advantage providing an isolated stimulation of the vestibular inputs. This technique is relatively novel in the examination of vestibular contributions during human locomotion. In our review we consider the current data regarding the effect of vestibular signals on human locomotion by using galvanic vestibular stimulation.

  15. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  16. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  17. The Moving History of Vestibular Stimulation as a Therapeutic Intervention

    OpenAIRE

    Grabherr, Luzia; Lenggenhager, Bigna; Macauda, Gianluca

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox’s chair or Hallaran’s swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recogni...

  18. Vestibular stimulation: A simple but effective intervention in diabetes care

    OpenAIRE

    Sailesh, Kumar Sai; Archana, R.; Mukkadan, J. K.

    2015-01-01

    Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential interve...

  19. Vagus Nerve Stimulation.

    Science.gov (United States)

    Ekmekçi, Hakan; Kaptan, Hülagu

    2017-06-15

    The vagus nerve stimulation (VNS) is an approach mainly used in cases of intractable epilepsy despite all the efforts. Also, its benefits have been shown in severe cases of depression resistant to typical treatment. The aim of this study was to present current knowledge of vagus nerve stimulation. A new value has emerged just at this stage: VNS aiming the ideal treatment with new hopes. It is based on the placement of a programmable generator on the chest wall. Electric signals from the generator are transmitted to the left vagus nerve through the connection cable. Control on the cerebral bioelectrical activity can be achieved by way of these signal sent from there in an effort for controlling the epileptic discharges. The rate of satisfactory and permanent treatment in epilepsy with monotherapy is around 50%. This rate will increase by one-quarters (25%) with polytherapy. However, there is a patient group roughly constituting one-thirds of this population, and this group remains unresponsive or refractory to all the therapies and combined regimes. The more the number of drugs used, the more chaos and side effects are observed. The anti-epileptic drugs (AEDs) used will have side effects on both the brain and the systemic organs. Cerebral resection surgery can be required in some patients. The most commonly encountered epilepsy type is the partial one, and the possibility of benefiting from invasive procedures is limited in most patients of this type. Selective amygdala-hippocampus surgery is a rising value in complex partial seizures. Therefore, as epilepsy surgery can be performed in very limited numbers and rather developed centres, success can also be achieved in limited numbers of patients. The common ground for all the surgical procedures is the target of preservation of memory, learning, speaking, temper and executive functions as well as obtaining a good control on seizures. However, the action mechanism of VNS is still not exactly known. On the other hand

  20. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial

  1. Probabilistic Tractography of the Cranial Nerves in Vestibular Schwannoma.

    Science.gov (United States)

    Zolal, Amir; Juratli, Tareq A; Podlesek, Dino; Rieger, Bernhard; Kitzler, Hagen H; Linn, Jennifer; Schackert, Gabriele; Sobottka, Stephan B

    2017-11-01

    Multiple recent studies have reported on diffusion tensor-based fiber tracking of cranial nerves in vestibular schwannoma, with conflicting results as to the accuracy of the method and the occurrence of cochlear nerve depiction. Probabilistic nontensor-based tractography might offer advantages in terms of better extraction of directional information from the underlying data in cranial nerves, which are of subvoxel size. Twenty-one patients with large vestibular schwannomas were recruited. The probabilistic tracking was run preoperatively and the position of the potential depictions of the facial and cochlear nerves was estimated postoperatively by 3 independent observers in a blinded fashion. The true position of the nerve was determined intraoperatively by the surgeon. Thereafter, the imaging-based estimated position was compared with the intraoperatively determined position. Tumor size, cystic appearance, and postoperative House-Brackmann score were analyzed with regard to the accuracy of the depiction of the nerves. The probabilistic tracking showed a connection that correlated to the position of the facial nerve in 81% of the cases and to the position of the cochlear nerve in 33% of the cases. Altogether, the resulting depiction did not correspond to the intraoperative position of any of the nerves in 3 cases. In a majority of cases, the position of the facial nerve, but not of the cochlear nerve, could be estimated by evaluation of the probabilistic tracking results. However, false depictions not corresponding to any nerve do occur and cannot be discerned as such from the image only. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation.

    Science.gov (United States)

    Rossiter, C D; Hayden, N L; Stocker, S D; Yates, B J

    1996-11-01

    1. Activity was recorded from abdominal (expiratory) and phrenic (inspiratory) nerves during natural vestibular stimulation in multiple vertical planes and the horizontal plane in decerebrate cats. Vestibular stimulation was produced by rotating the head in animals whose upper cervical dorsal roots were transected to remove inputs from neck receptors; the upper airway and carotid sinus were denervated, and the vagus nerves were transected to assure that the head rotations did not elicit visceral or pulmonary inputs. 2. The plane of head rotation that produced maximal modulation of respiratory nerve activity (response vector orientation) was measured at one or more frequencies between 0.05 and 0.5 Hz. The dynamics of the response were then studied with sinusoidal (0.05-2 Hz) stimuli aligned with this orientation. In some animals, sinusoidal horizontal rotations of the head at 0.5 and 1 Hz or static head tilts in the pitch and roll planes were also delivered. 3. Typically, maximal modulation of abdominal nerve outflow was elicited by head rotations in a plane near pitch; nose-up rotations produced increased outflow, and nose-down rotations reduced nerve discharges. The gains of the responses (relative to stimulus position) remained relatively constant across stimulus frequencies, and the phases were consistently near stimulus position, like regularly firing otolith afferents. Static nose-up tilt produced elevated abdominal nerve activity throughout the stimulus period, providing further evidence that pitch-sensitive otolith receptors contribute to the response. Horizontal head rotations had little influence on abdominal nerve discharges. 4. The abdominal nerve responses to head rotation were abolished by chemical or aspiration lesions of the medial and inferior vestibular nuclei, which is concordant with the responses resulting from activation of vestibular receptors. Transections of axons arising from bulbospinal neurons in the ventral respiratory group, which are

  3. Treatment of Vestibular Dysfunction Using a Portable Stimulation

    Science.gov (United States)

    2016-04-01

    dysfunction we will optimize stimulation using a portable stochastic noise electrical stimulator and determine the effectiveness of subsensory electrical ...stochastic noise electrical stimulator to improve driving performance and determine what effect subsensory electrical stimulation has on vestibular...the regulatory board prior to approval (Completed) c. Obtaining DoD HRPO approval (Completed) Milestone #2: Regulatory review and approval obtained

  4. Position and Course of Facial Nerve and Postoperative Facial Nerve Results in Vestibular Schwannoma Microsurgery.

    Science.gov (United States)

    Mastronardi, Luciano; Cacciotti, Guglielmo; Roperto, Raffaelino; Di Scipio, Ettore; Tonelli, Maria Pia; Carpineta, Ettore

    2016-10-01

    To investigate the variation in the position and course of the facial nerve (FN) in patients undergoing vestibular schwannoma (VS) microsurgery by the keyhole retrosigmoid approach and the relationship between FN position and postoperative facial results. The series consists of 100 patients who underwent VS microsurgery during a 5-year period in whom the position and course of the FN could be confirmed by direct stimulation. The course of the FN was classified into 4 patterns according to its position: anterior (ventral) surface of the tumor (A), anterior-superior (AS), anterior-inferior (AI), and dorsal (D). The distribution of patterns was as follows: AS in 48 cases, A in 31, AI in 21, and D in zero. For tumors nerve results. Patients with AS and AI patterns had better House-Brackmann FN function compared with patients with the A pattern (P 3.0 cm, the FN tended to adhere strongly to the tumor capsule, and postoperative facial deficits were more frequent (P < 0.05). The AS pattern was most common for smaller VSs. The A position and course and adhesion of the FN to the tumor capsule were the 2 factors most strongly associated with worse postoperative FN result. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Vestibular stimulation: A simple but effective intervention in diabetes care.

    Science.gov (United States)

    Sailesh, Kumar Sai; Archana, R; Mukkadan, J K

    2015-01-01

    Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential intervention to prevent or delay the development of diabetes mellitus in at-risk population, but also to use it as supplementary therapy for diabetic patients management. We urge clinicians to recommend vestibular stimulation by simple means like swing as a goal in maintaining a healthy lifestyle.

  6. Treatment of Vestibular Dysfunction Using a Portable Stimulator

    Science.gov (United States)

    2017-04-01

    AWARD NUMBER: W81XWH-14-2-0012 TITLE: Treatment of Vestibular Dysfunction Using a Portable Stimulator PRINCIPAL INVESTIGATOR: Jorge M...PAGE UU 17 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Treatment of Vestibular...noise over a 2week stimulation paradigm Significant Results of Year 3 1) Research flyers have been posted to aid in recruitment. Fourteen

  7. Vestibular stimulation-induced facilitation of cervical premotoneuronal systems in humans

    Science.gov (United States)

    Irie, Shun; Ariyasu, Ryohei; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    It is unclear how descending inputs from the vestibular system affect the excitability of cervical interneurons in humans. To elucidate this, we investigated the effects of galvanic vestibular stimulation (GVS) on the spatial facilitation of motor-evoked potentials (MEPs) induced by combined pyramidal tract and peripheral nerve stimulation. To assess the spatial facilitation, electromyograms were recorded from the biceps brachii muscles (BB) of healthy subjects. Transcranial magnetic stimulation (TMS) over the contralateral primary motor cortex and electrical stimulation of the ipsilateral ulnar nerve at the wrist were delivered either separately or together, with interstimulus intervals of 10 ms (TMS behind). Anodal/cathodal GVS was randomly delivered with TMS and/or ulnar nerve stimulation. The combination of TMS and ulnar nerve stimulation facilitated BB MEPs significantly more than the algebraic summation of responses induced separately by TMS and ulnar nerve stimulation (i.e., spatial facilitation). MEP facilitation significantly increased when combined stimulation was delivered with GVS (p < 0.01). No significant differences were found between anodal and cathodal GVS. Furthermore, single motor unit recordings showed that the short-latency excitatory peak in peri-stimulus time histograms during combined stimulation increased significantly with GVS. The spatial facilitatory effects of combined stimulation with short interstimulus intervals (i.e., 10 ms) indicate that facilitation occurred at the premotoneuronal level in the cervical cord. The present findings therefore suggest that GVS facilitates the cervical interneuron system that integrates inputs from the pyramidal tract and peripheral nerves and excites motoneurons innervating the arm muscles. PMID:28388686

  8. The Moving History of Vestibular Stimulation as a Therapeutic Intervention.

    Science.gov (United States)

    Grabherr, Luzia; Macauda, Gianluca; Lenggenhager, Bigna

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox's chair or Hallaran's swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recognition of vestibular contributions to various perceptual, motor, cognitive, and emotional processes, vestibular stimulation has been suggested as a powerful and non-invasive treatment for a range of psychiatric, neurological and neurodevelopmental conditions. Yet, the therapeutic interventions were, and still are, often not hypothesis-driven as broader theories remain scarce and underlying neurophysiological mechanisms are often vague. We aim to critically review the literature on vestibular stimulation as a form of therapy in various selected disorders and present its successes, expectations, and drawbacks from a historical perspective.

  9. Responses evoked by a vestibular implant providing chronic stimulation.

    Science.gov (United States)

    Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.

  10. Vagus Nerve Stimulation for Treating Epilepsy

    Science.gov (United States)

    ... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...

  11. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation

    Directory of Open Access Journals (Sweden)

    Jack eDigiovanna

    2016-04-01

    Full Text Available The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of ‘optimal’ stimulation configurations for humans. Here we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time-point, we further examined how it affected subsequent pulse rate and pulse amplitude modulation. Pulse amplitude modulation was more effective than pulse rate modulation for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost pulse amplitude modulation. Co-modulation of pulse rate and amplitude has been experimentally shown to induce both

  12. VAGUS NERVE STIMULATION INHIBITS CORTICAL SPREADING DEPRESSION

    OpenAIRE

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng,Yi; Sadhegian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-01-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura, and a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its anti-migraine effect. Vagus nerve stimulation was delivered either non-invasively through the skin or directly by electrodes placed around the vagus nerve unilaterally. Systemic physiology was monito...

  13. Preoperative Identification of Facial Nerve in Vestibular Schwannomas Surgery Using Diffusion Tensor Tractography

    OpenAIRE

    Choi, Kyung-Sik; Kim, Min-Su; Kwon, Hyeok-Gyu; Jang, Sung-Ho; Kim, Oh-Lyong

    2014-01-01

    Objective Facial nerve palsy is a common complication of treatment for vestibular schwannoma (VS), so preserving facial nerve function is important. The preoperative visualization of the course of facial nerve in relation to VS could help prevent injury to the nerve during the surgery. In this study, we evaluate the accuracy of diffusion tensor tractography (DTT) for preoperative identification of facial nerve. Methods We prospectively collected data from 11 patients with VS, who underwent pr...

  14. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    Science.gov (United States)

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  15. Vagus nerve stimulation in clinical practice.

    Science.gov (United States)

    Farmer, Adam D; Albu-Soda, Ahmed; Aziz, Qasim

    2016-11-02

    The diverse array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation becoming a management option in a number of clinical disorders. This review discusses methods of electrically stimulating the vagus nerve and its current and potential clinical uses.

  16. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  17. Cochlear Nerve Action Potential Monitoring for Preserving Function of an Unseen Cochlear Nerve in Vestibular Schwannoma Surgery.

    Science.gov (United States)

    Ishikawa, Mami; Kojima, Atsuhiro; Terao, Satoshi; Nagai, Mutsumi; Kusaka, Gen; Naritaka, Heiji

    2017-10-01

    Intraoperative monitoring of cochlear nerve action potential (CNAP) has been used in patients with small vestibular schwannoma (<15 mm) to preserve cochlear nerve function. We performed surgery for a larger vestibular schwannoma under CNAP monitoring with the aim of preserving cochlear nerve function, and compared the data with findings from 10 patients with hemifacial spasm who underwent microvascular decompression surgery. We report the case of a patient with a 26-mm vestibular schwannoma and normal hearing function who underwent neurosurgery under electrophysiological monitoring of the facial and cochlear nerves. Amplitudes of evoked facial muscle responses were maintained at approximately 70% during the operation. The latency of wave V on brainstem auditory evoked potential (BAEP) increased by 0.5 ms, and amplitude was maintained at approximately 70% of the value at the beginning of the operation. Latencies of P1, N1, and P2 on CNAP did not change intraoperatively. These latencies were comparable to those of 10 normal patients with hemifacial spasm. CNAP monitoring proved very useful in confirming the location of the cochlear nerve in the operative field and preserving cochlear nerve function. Both facial nerve function and hearing acuity were completely preserved after tumor removal, and wave V latency on BAEP returned to normal and was maintained in the normal range for at least 2 years. CNAP monitoring is extremely useful for preserving the function of the unseen cochlear nerve during vestibular schwannoma surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Peripheral nerve stimulation in regional anesthesia.

    Science.gov (United States)

    Klein, Stephen M; Melton, M Steve; Grill, Warren M; Nielsen, Karen C

    2012-01-01

    Peripheral nerve stimulation has a long history in regional anesthesia. Despite the advent of ultrasound-guided peripheral nerve blockade, nerve stimulation remains a popular technique used alone or, now, in combination with ultrasound-guided techniques. In light of this evolving utility of nerve stimulation, this is an appropriate time to review the basic concepts and knowledge base of this historically important tool. Electrical nerve stimulation facilitates nerve localization, using threshold current as a surrogate for needle-to-nerve distance. Preferential activation of motor nerves is possible because motor nerve fibers are more readily activated with a shorter duration of current compared with sensory nerves. The association between current and needle-to-nerve distance predicts that less current is needed to evoke a motor response as the needle moves closer to the nerve. Thus, an elicited motor response at or below 0.5 mA is considered a common end point for successful neural blockade. However, current magnitude is neither 100% sensitive nor specific. Independent of technical ability, both the biological environment and the equipment used impact the current-distance relationship. Thus, successful electrical nerve stimulation is dependent on an anesthesiologist with a solid foundation in anatomy and a thorough understanding of electrophysiology.

  19. Vagus nerve stimulation inhibits cortical spreading depression.

    Science.gov (United States)

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-04-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  20. Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans

    Science.gov (United States)

    Ray, C. A.

    2000-01-01

    Muscle sympathetic nerve activity (MSNA) is altered by vestibular otolith stimulation. This study examined interactive effects of the vestibular system and baroreflexes on MSNA in humans. In study 1, MSNA was measured during 4 min of lower body negative pressure (LBNP) at either -10 or -30 mmHg with subjects in prone posture. During the 3rd min of LBNP, subjects lowered their head over the end of a table (head-down rotation, HDR) to engage the otolith organs. The head was returned to baseline upright position during the 4th min. LBNP increased MSNA above baseline during both trials with greater increases during the -30-mmHg trial. HDR increased MSNA further during the 3rd min of LBNP at -10 and -30 mmHg (Delta32% and Delta34%, respectively; P < 0.01). MSNA returned to pre-HDR levels during the 4th min of LBNP when the head was returned upright. In study 2, MSNA was measured during HDR, LBNP, and simultaneously performed HDR and LBNP. The sum of MSNA responses during individual HDR and LBNP trials was not significantly different from that observed during HDR and LBNP performed together (Delta131 +/- 28 vs. Delta118 +/- 47 units and Delta340 +/- 77 vs. Delta380 +/- 90 units for the -10 and -30 trials, respectively). These results demonstrate that vestibular otolith stimulation can increase MSNA during unloading of the cardiopulmonary and arterial baroreflexes. Also, the interaction between the vestibulosympathetic reflex and baroreflexes is additive in humans. These studies indicate that the vestibulosympathetic reflex may help defend against orthostatic challenges in humans by increasing sympathetic outflow.

  1. Gap junctional connections between hair cells, supporting cells and nerves in a vestibular organ.

    Science.gov (United States)

    Mulroy, M J; Dempewolf, S A; Curtis, S; Iida, H C

    1993-12-01

    The pattern of gap-junctional connections between cells in the vestibular neuroepithelium of the posterior semicircular duct of the alligator lizard are described based upon the study of freeze fracture replicas and ultrathin sections with a transmission electron microscope. Both type I and type II hair cells are coupled to adjacent supporting cells by a series of small macular gap junctions located in a ring around the hair cell at the level of the apical circumferential belt of actin filaments. Adjacent supporting cells are extensively interconnected by gap junctions. A few cases of gap junctions between afferent dendrites and supporting cells, and between afferent dendrites and calyceal nerve endings were seen. These morphological observations together with data from other studies in the literature suggest a possible role for supporting cells in altering the micromechanical properties of the hair cell receptor organs during stimulation.

  2. Stereotactic radiosurgery for non-vestibular cranial nerve schwanommas.

    Science.gov (United States)

    D'Astous, Myreille; Ho, Allen L; Pendharkar, Arjun; Choi, Clara Y H; Soltys, Scott G; Gibbs, Iris C; Tayag, Armine T; Thompson, Patricia A; Adler, John R; Chang, Steven D

    2017-01-01

    Non-vestibular cranial nerve schwannomas (NVCNS) are rare lesions, representing Stereotactic radiosurgery (SRS) has arisen as a mainstay of treatment for many benign tumors, including schwanommas. We retrospectively reviewed the outcomes of NVCNS treated by SRS to characterize tumor control, symptom relief, toxicity, and the role of hypo-fractionation of SRS dose. Eighty-eight (88) patients, with ninety-five (95) NVCNS were treated with either single or multi-session SRS from 2001 to 2014. Local control was achieved in 94 % of patients treated (median follow-up of 33 months, range 1-155). Complications were seen in 7.4 % of cases treated with SRS. At 1-year, 57 % of patients had improvement or resolution of their symptoms, while 35 % were stable and 8 % had worsening or increased symptoms. While 42 % received only one session, results on local control were similar for one or multiple sessions (p = 0.424). SRS for NVCNS is a treatment modality that provides excellent local control with minimal complication risk compared to traditional neurosurgical techniques. Tumor control obtained with a multi-session treatment was not significantly different from single session treatment. Safety profile was also comparable for uni or multi-session treatments. We concluded that, as seen in VS treated with CK SRS, radiosurgery treatment can be safely delivered in cases of NVCNS.

  3. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil.

    Science.gov (United States)

    Newlands, Shawn D; Perachio, Adrian A

    2003-06-15

    The primary purpose of this article is to review the anatomy of central projections of the vestibular nerve in amniotes. We also report primary data regarding the central projections of individual horseradish peroxidase (HRP)-filled afferents innervating the saccular macula, horizontal semicircular canal ampulla, and anterior semicircular canal ampulla of the gerbil. In total, 52 characterized primary vestibular afferent axons were intraaxonally injected with HRP and traced centrally to terminations. Lateral and anterior canal afferents projected most heavily to the medial and superior vestibular nuclei. Saccular afferents projected strongly to the spinal vestibular nucleus, weakly to other vestibular nuclei, to the interstitial nucleus of the eighth nerve, the cochlear nuclei, the external cuneate nucleus, and nucleus y. The current findings reinforce the preponderance of literature. The central distribution of vestibular afferents is not homogeneous. We review the distribution of primary afferent terminations described for a variety of mammalian and avian species. The tremendous overlap of the distributions of terminals from the specific vestibular nerve branches with one another and with other sensory inputs provides a rich environment for sensory integration.

  4. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    OpenAIRE

    Czura, Christopher J; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and aft...

  5. Magnetic Vestibular Stimulation in Subjects with Unilateral Labyrinthine Disorders

    Directory of Open Access Journals (Sweden)

    Bryan Kevin Ward

    2014-03-01

    Full Text Available We recently discovered that static magnetic fields from high-strength MRI machines induce nystagmus in all normal humans, and that a magnetohydrodynamic (MHD Lorentz force, derived from ionic currents in the endolymph and pushing on the cupula, best explains this effect. Individuals with no labyrinthine function have no nystagmus. The influence of magnetic vestibular stimulation (MVS in individuals with unilateral loss of labyrinthine function is unknown and may provide insight into mechanism of MVS. These individuals should experience MVS, but with differences consistent with their residual labyrinthine function. We recorded eye movements in the static magnetic field of a 7T MRI machine in nine individuals with unilateral labyrinthine hypofunction, as determined by head impulse testing and vestibular-evoked myogenic potentials (VEMP. Eye movements were recorded using infrared videooculography. Static head positions were varied in pitch with the body supine, and slow-phase eye velocity (SPV was assessed. All subjects exhibited predominantly horizontal nystagmus after entering the magnet head-first, lying supine. The SPV direction reversed when entering feet-first. Pitching chin-to-chest caused subjects to reach a null point for horizontal SPV. Right unilateral vestibular hypofunction (UVH subjects developed slow-phase-up nystagmus and left UVH subjects, slow-phase-down nystagmus. Vertical and torsional components were consistent with superior semicircular canal excitation or inhibition, respectively, of the intact ear. These findings provide compelling support for the hypothesis that MVS is a result of a Lorentz force and suggest that the function of individual structures within the labyrinth can be assessed with MVS. As a novel method of comfortable and sustained labyrinthine stimulation, MVS can provide new insights into vestibular physiology and pathophysiology.

  6. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side...

  7. [Preoperative determination of nerve of origin in patients with vestibular schwannoma. German version].

    Science.gov (United States)

    Rahne, T; Plößl, S; Plontke, S K; Strauss, C

    2017-09-25

    Vestibular schwannoma (VS) is a benign tumor that develops in the internal auditory canal and the cerebellopontine angle, potentially diminishing hearing or balance. Most VS tumors arise from one of two vestibular branches: the superior or inferior vestibular nerve. Determining the specific nerve of origin could improve patient management in terms of preoperative counseling, treatment selection, and surgical decision-making and planning. The aim of this study was to introduce a novel scoring system that was designed to determine the nerve of origin. The nerve of origin was predicted based on video head impulse assessments of all semicircular channels, together with cervical/ocular vestibular-evoked myogenic potential tests. The acquired data were entered into a scoring system developed to allocate the tumor origin. Finally, the nerve of origin was definitively determined intraoperatively. The novel scoring system was applied to 5 consecutive patients undergoing surgical VS treatment. In one case, no determination was possible. In all other cases, the preoperatively predicted tumor origin was the same as the origin determined during surgery. The scoring system predicts the nerve of origin and will be evaluated in a larger prospective cohort study of VS patients in the near future.

  8. Concurrent idiopathic vestibular syndrome and facial nerve paralysis in a cat.

    Science.gov (United States)

    Fraser, A R; Long, S N; le Chevoir, M A

    2015-07-01

    A 4-year-old male neutered Domestic Medium-hair cat was referred for right head tilt and ataxia of 2 weeks duration. On examination it was determined that the cat had right facial nerve paralysis and peripheral vestibular signs. Haematology and serum biochemical testing were performed in addition to magnetic resonance imaging of the brain and ears, and cerebrospinal fluid analysis. An underlying condition was not identified. A diagnosis of idiopathic vestibular syndrome and concurrent idiopathic right facial nerve paralysis was consequently made. The cat was re-evaluated over the following weeks and was determined to have complete resolution of clinical signs within 7 weeks. Vestibular dysfunction and concurrent facial nerve paralysis have previously been reported in the cat, but not of an idiopathic nature. © 2015 Australian Veterinary Association.

  9. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    Science.gov (United States)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  10. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  11. Case Report: Facial Nerve Bifurcation Noted During Resection of Vestibular Schwannoma.

    Science.gov (United States)

    Sokolowski, Jennifer D; Ruhl, Douglas S; Kesser, Bradley W; Asthagiri, Ashok R

    2018-01-13

    Resection of cerebellopontine angle tumors is challenging because the proximity of the facial nerve puts it at risk of inadvertent injury and subsequent dysfunction. It is critical to consider variations in anatomy and be aware of the potential deviations in the course of the nerve in order to avoid damage. We present a case of a facial nerve bifurcation identified during resection of a vestibular schwannoma. This is the only reported case of proximal facial nerve bifurcation. We review what is known about variations in proximal facial nerve anatomy, the rates of facial nerve injury after schwannoma resection, and the importance of neuromonitoring in identifying the nerve and predicting function postoperatively. Ultimately, understanding possible anatomic variations in the nerve is critical to minimize iatrogenic injury during surgery.

  12. Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection

    Science.gov (United States)

    Edelmann, E.; Anken, R. H.; Rahmann, H.

    2004-01-01

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.

  13. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation.

    Science.gov (United States)

    Kammermeier, Stefan; Singh, Arun; Bötzel, Kai

    2017-01-01

    Human multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation. 14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording. Vestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects ("grand average") bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study. Galvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level. Differential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  14. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  15. Controlled Vestibular Stimulation, Standardization Of A Physiological Method To Release Stress In College Students.

    Science.gov (United States)

    Sailesh, Kumar Sai; Mukkadan, J K

    2015-01-01

    The present study was designed to standardize optimal vestibular stimulation and to investigate its impact on anxiety levels in college students. Vestibular stimulation was achieved by swinging on a swing (Back to front direction) and the participants were advised to adjust frequency, duration and intensity, according to comfort. Frequency, intensity and duration were recorded manually. The anxiety status was assessed by using Spielberger state-trait anxiety inventory (STAI) before and after vestibular stimulation. It has been observed that the anxiety status was significantly decreased after vestibular stimulation. There is a need for future study with larger sample size to substantiate the therapeutic validity of vestibular stimulation as a physiological treatment for stress relief and stress related disorders among college students.

  16. Vestibular stimulation after head injury: effect on reaction times and motor speech parameters

    DEFF Research Database (Denmark)

    Engberg, A

    1989-01-01

    Earlier studies by other authors indicate that vestibular stimulation may improve attention and dysarthria in head injured patients. In the present study of five severely head injured patients and five controls, the effect of vestibular stimulation on reaction times (reflecting attention) and some...... motor speech parameters (reflecting dysarthria) was investigated. After eight weeks with regular stimulation, it was concluded that reaction time changes were individual and consistent for a given subject. Only occasionally were they shortened after stimulation. However, reaction time was lengthened...

  17. Vagus nerve stimulation improves working memory performance.

    Science.gov (United States)

    Sun, Lihua; Peräkylä, Jari; Holm, Katri; Haapasalo, Joonas; Lehtimäki, Kai; Ogawa, Keith H; Peltola, Jukka; Hartikainen, Kaisa M

    2017-12-01

    Vagus nerve stimulation (VNS) is used for treating refractory epilepsy and major depression. While the impact of this treatment on seizures has been established, its impact on human cognition remains equivocal. The goal of this study is to elucidate the immediate effects of vagus nerve stimulation on attention, cognition, and emotional reactivity in patients with epilepsy. Twenty patients (12 male and 8 female; 45 ± 13 years old) treated with VNS due to refractory epilepsy participated in the study. Subjects performed a computer-based test of executive functions embedded with emotional distractors while their brain activity was recorded with electroencephalography. Subjects' cognitive performance, early visual event-related potential N1, and frontal alpha asymmetry were studied when cyclic vagus nerve stimulation was on and when it was off. We found that vagus nerve stimulation improved working memory performance as seen in reduced errors on a subtask that relied on working memory, odds ratio (OR) = 0.63 (95% confidence interval, CI [0.47, 0.85]) and increased N1 amplitude, F(1, 15) = 10.17, p = .006. In addition, vagus nerve stimulation resulted in longer reaction time, F(1, 16) = 8.23, p = .019, and greater frontal alpha asymmetry, F(1, 16) = 11.79, p = .003, in response to threat-related distractors. This is the first study to show immediate improvement in working memory performance in humans with clinically relevant vagus nerve stimulation. Furthermore, vagus nerve stimulation had immediate effects on emotional reactivity evidenced in behavior and brain physiology.

  18. Ocular torsion responses to sinusoidal electrical vestibular stimulation.

    Science.gov (United States)

    Mackenzie, Stuart W; Reynolds, Raymond F

    2017-11-21

    Eye movements evoked by electrical vestibular stimulation (EVS) offer potential for diagnosing vestibular dysfunction. However, ocular recording techniques are often too invasive or impractical for routine clinical use. Furthermore, the kinematic nature of the EVS signal is not fully understood in terms of movement sensations. We apply sinusoidal EVS stimuli varying from 0.05 to 20Hz, and record the eye in darkness using an infrared camera. Eye movement was measured offline using commercially available software to track iris striations. Response gain and phase were calculated separately for eye position, velocity and acceleration across all frequencies, to determine how the brain interprets the EVS signal. Ocular torsion responses were observed at the same frequency as the stimulus, for all frequencies, while lateral/vertical responses were minimal or absent. Response gain and phase resembled previously reported responses to natural rotation, but only when analysing eye velocity, not position or acceleration. Our method offers a simple, affordable, reliable and non-invasive method for tracking the ocular response to EVS. It is more convenient than scleral coil recordings, or marking the sclera to aid video tracking. It also allows us to assess the torsional VOR at frequencies not possible with natural stimuli. Ocular torsion responses to EVS can be readily assessed using sinusoidal stimuli combined with an infrared camera. Gain and phase analysis suggests that the central nervous system interprets the stimulus as head roll velocity. Future work will assess the diagnostic potential for patients with vestibular disorders. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Influence of Caloric Vestibular Stimulation on Body Experience in Healthy Humans

    OpenAIRE

    Andreas eSchönherr; Christian-Albrecht eMay

    2016-01-01

    The vestibular system has more connections with and influence on higher cortical centers than previously thought. These interactions with higher cortical centers and the phenomena that they elicit require a structural intact cerebral cortex. To date, little is known about the role and influence of the vestibular system on one’s body experience. In this study we show that caloric vestibular stimulation (CVS) in healthy participants has an effect on the perceptive component of one’s body experi...

  20. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  1. Swimming Behavior and Calcium Incorporation into inner Ear Otoliths of Fish after vestibular Nerve Transection

    Science.gov (United States)

    Edelmann, E.; Anken, R.; Rahmann, H.

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium-tracer alizarin- complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated: Like neonate swordtails, type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal and the otolithic calcium incorporation in controls of the same batch was symmetrical. In type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetrical. These results stongly suggest that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. Thus, it is assumed that the mechanisms regulating otolith growth and equlibibrium differ in the two types of cichlid fish. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  2. Cavernous angioma of the vestibular nerve: case report and literature review.

    Science.gov (United States)

    Adachi, Kazuhide; Yoshida, Kazunari; Akiyama, Takekazu; Kawase, Takeshi

    2008-07-01

    To date, 50 cases of cavernous angioma in the CPA have been reported, and previous reports did not describe the tumor's site of origin. We describe a case of a small, extraaxial cavernous angioma of the vestibular nerve. We also propose a reclassification system for cavernous angioma of the CPA based on the tumor's site of origin. A 39-year-old female patient had recurrent deteriorating vertigo and a right hearing disturbance. Magnetic resonance imaging revealed a cavernous angioma of the right CPA. Surgery was performed through a right lateral suboccipital approach. In the present case, the mass was attached to and covered the cisternal portion of the vestibular nerve, and it contained microvessels that were fed from the vascular plexus of the vestibular nerve. The tumor was resected en bloc, and the microvessels feeding it were cauterized. On the basis of our review of 50 cases of cavernous angioma of the CPA, we propose that these tumors can be classified according to whether they develop from the venous plexus of the dura matter or of a cranial nerve. We also suggest that the site of origin affects the postoperative symptoms.

  3. Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis

    Science.gov (United States)

    Dai, Chenkai; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan; Melvin, Thuy-Anh; Cullen, Kathleen E.; Della Santina, Charles C.

    2012-01-01

    By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith endorgans can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular-deficient via bilateral gentamicin treatment and unilaterally implanted them with a head mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of one week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2–5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans. PMID:21374081

  4. Heart rate control via vagus nerve stimulation

    NARCIS (Netherlands)

    Buschman, H.P.J.; Storm, Corstiaan J.; Duncker, Dirk J.; Verdouw, Pieter D.; van der Aa, Hans E.; van der Kemp, Peter

    2006-01-01

    Objectives: There is ample and well-established evidence that direct electrical stimulation of the vagus nerve can change heart rate in animals and humans. Since tachyarrhythmias cannot always be controlled through medication, we sought, in this pilot study, to elucidate whether a clinical

  5. Effects of vestibular nerve transection on the calcium incorporation of fish otoliths

    Science.gov (United States)

    Anken, Ralf H.; Edelmann, Elke; Rahmann, Hinrich

    2001-08-01

    Previous investigations revealed that the growth of fish inner ear otoliths (otolith size and calcium-incorporation) depends on the amplitude and the direction of gravity, suggesting the existence of a (negative) feedback mechanism. In search for the regulating unit, the vestibular nerve was transected unilaterally in neonate swordtail fish ( Xiphophorus helleri) which were subsequently incubated in the calcium-tracer alizarin-complexone. Calcium incorporation ceased on the transected head sides, indicating that calcium uptake is neurally regulated.

  6. Optical stimulation of the cavernous nerves in the rat prostate

    Science.gov (United States)

    Fried, Nathaniel M.; Lagoda, Gwen A.; Scott, Nicholas J.; Su, Li-Ming; Burnett, Arthur L.

    2008-02-01

    Laser nerve stimulation has recently been studied as an alternative to electrical stimulation in neuroscience. Advantages include non-contact stimulation, improved spatial selectivity, and elimination of electrical stimulation artifacts. This study explores laser stimulation of the rat cavernous nerves, as a potential alternative to electrical nerve mapping during nerve-sparing radical prostatectomy. The cavernous nerves were surgically exposed in a total of 10 male rats. A Thulium fiber laser stimulated the nerves, with a wavelength of 1870 nm, pulse energy of 7.5 mJ, radiant exposure of 1 J/cm2, pulse duration of 2.5 ms, pulse rate of 10 Hz, and 1-mm laser spot diameter, for a stimulation time of 60 s. A significant increase in the intracavernosal pressure was detected upon laser stimulation, with pressure returning to baseline levels after stimulation. This study demonstrates the feasibility of non-contact laser stimulation of the cavernous nerves using near-infrared laser radiation.

  7. Responses evoked by a vestibular implant providing chronic stimulation

    OpenAIRE

    Thompson L.A.; Haburcakova C.; Gong W; Lee D.J.; Wall Iii C.; Merfeld D.M.; Lewis R.F.

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly in...

  8. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies.

    Science.gov (United States)

    Matsuno, Hitomi; Kudoh, Moeko; Watakabe, Akiya; Yamamori, Tetsuo; Shigemoto, Ryuichi; Nagao, Soichi

    2016-01-01

    Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function of neighboring excitatory synapses of vestibular nerve in the parvocellular MVN/PrH neurons.

  9. The extracisternal approach in vestibular schwannoma surgery and facial nerve preservation

    Directory of Open Access Journals (Sweden)

    Eduardo A. S. Vellutini

    2014-12-01

    Full Text Available The classical surgical technique for the resection of vestibular schwannomas (VS has emphasized the microsurgical anatomy of cranial nerves. We believe that the focus on preservation of the arachnoid membrane may serve as a safe guide for tumor removal. Method The extracisternal approach is described in detail. We reviewed charts from 120 patients treated with this technique between 2006 and 2012. Surgical results were evaluated based on the extension of resection, tumor relapse, and facial nerve function. Results Overall gross total resection was achieved in 81% of the patients. The overall postoperative facial nerve function House-Brackmann grades I-II at one year was 93%. There was no recurrence in 4.2 years mean follow up. Conclusion The extracisternal technique differs from other surgical descriptions on the treatment of VS by not requiring the identification of the facial nerve, as long as we preserve the arachnoid envelope in the total circumference of the tumor.

  10. Cardiovascular autonomic effects of vagus nerve stimulation.

    Science.gov (United States)

    Garamendi-Ruiz, Iñigo; Gómez-Esteban, Juan Carlos

    2017-10-25

    The vagus nerve is responsible for the parasympathetic innervation of the major thoracic and abdominal organs. It also carries sensory afferent fibres from these viscera and reaches different brain structures. These connections have proven useful in the treatment of different diseases. Afferent stimulation of the left vagus nerve is used to treat epilepsy and major depression, and stimulation of the right vagus nerve is being tried for the treatment of heart failure. The device used for the therapy delivers intermittent stimuli. It is indicated worldwide for the treatment of drug-resistant epilepsy in patients who are not appropriate candidates for respective surgery. It has also received approval for the treatment of major depression, obesity and episodic cluster headache by the Food and Drug Administration. Randomised controlled trials and prospective studies have confirmed the efficacy and safety of this therapy in epilepsy. Nevertheless, sporadic cases of ventricular asystole have been reported. To evaluate the effect of vagus nerve stimulation therapy on the autonomic nervous system, different studies that assess heart function and blood pressure changes have been conducted, although the methods employed were not homogeneous. These studies have found subtle or no significant changes in heart rate variability and blood pressure in epileptic patients. Moreover, this therapy may reduce the risk of one of the most lethal conditions in epilepsy-sudden unexpected death.

  11. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    Science.gov (United States)

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  12. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  13. Ocular vestibular evoked myogenic potential elicited from binaural air-conducted stimulations: clinical feasibility in patients with peripheral vestibular dysfunction.

    Science.gov (United States)

    Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya

    2013-07-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.

  14. Facial nerve function after vestibular schwannoma surgery following failed conservative management

    DEFF Research Database (Denmark)

    Kaltoft, Mikkel; Stangerup, Sven-Eric; Cayé-Thomasen, Per

    2012-01-01

    patients had normal facial nerve function at the end of observation. Good facial nerve outcome was found in 87 % of patients operated at diagnosis, and in 84 % of patients operated after established tumor growth. For the subgroup of small extrameatal tumors this difference was significant. Pooling all...... patients allocated primarily to conservative management, good facial function was found in 97%, which was significantly better than the result for primary operation (87%). CONCLUSION:: Overall, conservative management of small to medium-sized vestibular schwannomas is the best option with regard...... to preservation of the facial nerve function. Tumor growth during observation is found in only a minor proportion of the patients, and in these cases surgery or irradiation should be performed immediately....

  15. Probing the human vestibular system with galvanic stimulation

    National Research Council Canada - National Science Library

    Richard C. Fitzpatrick; Brian L. Day

    2004-01-01

    .... This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses...

  16. Effect of vestibular stimulation on auditory and visual reaction time in relation to stress.

    Science.gov (United States)

    Rajagopalan, Archana; Kumar, Sai Sailesh; Mukkadan, Joseph Kurien

    2017-01-01

    The present study was undertaken to provide scientific evidence and for beneficial effects of vestibular stimulation for the management of stress-induced changes in auditory and visual reaction time (RT). A total of 240 healthy college students of the age group of 18-24 of either gender were a part of this research after obtaining written consent from them. RT for right and left response was measured for two auditory stimuli (low and high pitch) and visual stimuli (red and green) were recorded. A significant decrease in the visual RT for green light and red light was observed and stress-induced changes was effectively prevented followed by vestibular stimulation. Auditory RT for high pitch right and left response was significantly decreased and stress-induced changes was effectively prevented followed by vestibular stimulation. Vestibular stimulation is effective in boosting auditory and visual RT and preventing stress-induced changes in RT in males and females. We recommend incorporation of vestibular stimulation by swinging in our lifestyle for improving cognitive functions.

  17. Effect of vestibular stimulation on auditory and visual reaction time in relation to stress

    Directory of Open Access Journals (Sweden)

    Archana Rajagopalan

    2017-01-01

    Full Text Available The present study was undertaken to provide scientific evidence and for beneficial effects of vestibular stimulation for the management of stress-induced changes in auditory and visual reaction time (RT. A total of 240 healthy college students of the age group of 18-24 of either gender were a part of this research after obtaining written consent from them. RT for right and left response was measured for two auditory stimuli (low and high pitch and visual stimuli (red and green were recorded. A significant decrease in the visual RT for green light and red light was observed and stress-induced changes was effectively prevented followed by vestibular stimulation. Auditory RT for high pitch right and left response was significantly decreased and stress-induced changes was effectively prevented followed by vestibular stimulation. Vestibular stimulation is effective in boosting auditory and visual RT and preventing stress-induced changes in RT in males and females. We recommend incorporation of vestibular stimulation by swinging in our lifestyle for improving cognitive functions.

  18. Vagus nerve stimulation for severe depression.

    Science.gov (United States)

    Rado, Jeffrey; Janicak, Philip G

    2007-07-01

    Treatment-resistant depression is a serious problem with significant costs in terms of health care dollars and patients' well-being. Vagus nerve stimulation (VNS) is one novel, device-based therapy that may be effective in this population. In this article, we review the evidence to date on the use of VNS in major depression and describe the process of VNS treatment initiation, device implantation, and dosage adjustment and monitoring. It is important for psychiatric nurses to understand the evidence base for and how VNS is used in treatment so they may enhance care of patients with treatment-resistant depression.

  19. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  20. The Effect of Vestibular Stimulation on Motor Functions of Children With Cerebral Palsy.

    Science.gov (United States)

    Tramontano, Marco; Medici, Alessandra; Iosa, Marco; Chiariotti, Alessia; Fusillo, Giulia; Manzari, Leonardo; Morelli, Daniela

    2017-07-01

    Cerebral palsy (CP) has been defined as a nonprogressive disease of movement and posture development. Physical therapy techniques use different forms of sensory stimulation to improve neuromotor development. The aim of this study was to assess the efficacy of a vestibular stimulation training in improving motor functions in cerebral palsy. Fourteen children with CP were randomly separated into two different groups in a cross-over trial. Over a period of 10 weeks, each group performed 10 sessions of 50 min of neurodevelopmental treatment (NDT) and 10 sessions of vestibular training (VR). Children were evaluated with the Gross Motor Function Measurement-88 scale, the Goal Attainment Scale and the root mean square of head accelerations. A significant improvement in the GAS-score (p = .003) was noted after NDT+VR. Vestibular stimulation integrated with NDT proved to be an effective complementary strategy for facilitating motor functioning.

  1. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural

  2. Sacral Nerve Stimulation for Neurogenic Bladder.

    Science.gov (United States)

    Li, Lai-Fung; Ka-Kit Leung, Gilberto; Lui, Wai-Man

    2016-06-01

    Neurogenic bladder refers to dysfunction of the urinary bladder secondary to diseases of the nervous system that result in problems with urine storage, micturition, or both. The most common causes are multiple sclerosis and spinal cord injury. Patients commonly present with recurrent UTIs, obstructive uropathies, and urinary retention. Without proper treatment, neurogenic bladder may result in nephropathy and renal failure, both of which have a significant negative impact on the health and life expectancy of patients. Restoration of lost neural function using artificial stimulators is a feasible therapeutic strategy. This article reviews the pathophysiology of neurogenic bladder and the 2 most commonly employed sacral nerve stimulation methods-the Brindley procedure and sacral neuromodulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies.

    Directory of Open Access Journals (Sweden)

    Hitomi Matsuno

    Full Text Available Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL Purkinje cells (P-cells and the medial vestibular nucleus (MVN neurons targeted by FL (FL-targeted MVN neurons may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM and electron microscopy (EM, we injected green florescence protein (GFP-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH. In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 μm distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence

  4. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    Directory of Open Access Journals (Sweden)

    Lei Du

    2016-01-01

    Full Text Available Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.

  5. Framing susceptibility in a risky choice game is altered by galvanic vestibular stimulation.

    Science.gov (United States)

    Preuss, Nora; Kalla, Roger; Müri, Rene; Mast, Fred W

    2017-06-07

    Recent research provides evidence that galvanic vestibular stimulation (GVS) has a modulating effect on somatosensory perception and spatial cognition. However, other vestibular stimulation techniques have induced changes in affective control and decision making. The aim of this study was to investigate the effect of GVS on framing susceptibility in a risky-choice game. The participants were to decide between a safe and a risky option. The safe option was framed either positively or negatively. During the task, the participants were exposed to either left anodal/right cathodal GVS, right anodal/left cathodal GVS, or sham stimulation (control condition). While left anodal/right cathodal GVS activated more right-hemispheric vestibular brain areas, right anodal/left cathodal GVS resulted in more bilateral activation. We observed increased framing susceptibility during left anodal/right cathodal GVS, but no change in framing susceptibility during right anodal/left cathodal GVS. We propose that GVS results in increased reliance on the affect heuristic by means of activation of cortical and subcortical vestibular-emotional brain structures and that this effect is modulated by the lateralization of the vestibular cortex.

  6. Sciatic nerve block performed with nerve stimulation technique in an amputee a case study

    DEFF Research Database (Denmark)

    Heiring, C.; Kristensen, Billy

    2008-01-01

    We present a case of a sciatic nerve block performed with the nerve stimulation technique. This technique is normally not used in amputees because detection of a motor response to an electrical stimulation is impossible. In our patient the stimulation provoked a phantom sensation of movement...

  7. Vagus nerve stimulation after lead revision.

    Science.gov (United States)

    Dlouhy, Brian J; Viljoen, Steven V; Kung, David K; Vogel, Timothy W; Granner, Mark A; Howard, Matthew A; Kawasaki, Hiroto

    2012-03-01

    Vagus nerve stimulation (VNS) has demonstrated benefit in patients with medically intractable partial epilepsy. As in other therapies with mechanical devices, hardware failure occurs, most notably within the VNS lead, requiring replacement. However, the spiral-designed lead electrodes wrapped around the vagus nerve are often encased in dense scar tissue hampering dissection and removal. The objective in this study was to characterize VNS lead failure and lead revision surgery and to examine VNS efficacy after placement of a new electrode on the previously used segment of vagus nerve. The authors reviewed all VNS lead revisions performed between October 2001 and August 2011 at the University of Iowa Hospitals and Clinics. Twenty-four patients underwent 25 lead revisions. In all cases, the helical electrodes were removed, and a new lead was placed on the previously used segment of vagus nerve. All inpatient and outpatient records of the 25 lead revisions were retrospectively reviewed. Four cases were second lead revisions, and 21 cases were first lead revisions. The average time to any revision was 5 years (range 1.8-11.1 years), with essentially no difference between a first and second lead revision. The most common reason for a revision was intrinsic lead failure resulting in high impedance (64%), and the most common symptom was increased seizure frequency (72%). The average duration of surgery for the initial implantation in the 15 patients whose VNS system was initially implanted at the authors' institution was much shorter (94 minutes) than the average duration of lead revision surgery (173 minutes). However, there was a significant trend toward shorter surgical times as more revision surgeries were performed. Sixteen of the 25 cases of lead revision were followed up for more than 3 months. In 15 of these 16 cases, the revision was as effective as the previous VNS lead. In most of these cases, both the severity and frequency of seizures were decreased to levels

  8. Optimal Stimulus Amplitude for Vestibular Stochastic Stimulation to Improve Sensorimotor Function

    Science.gov (United States)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J. J.; hide

    2014-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface. This technique to improve detection of vestibular signals uses a stimulus delivery system that is wearable or portable and provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for SR training applications customized to each crewmember. Customizing stimulus intensity can maximize treatment effects. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. First we determined the percent time during stimulation periods for which perception of motion (activity above a pre-defined threshold) was reported using the joystick, and body sway (two

  9. Ipsilateral cochlear implantation after cochlear nerve preserving vestibular schwannoma surgery in patients with neurofibromatosis type 2.

    Science.gov (United States)

    Lloyd, Simon Kingsley Wickham; Glynn, Fergal John; Rutherford, Scott Alexander; King, Andrew Thomas; Mawman, Deborah Jane; O'Driscoll, Martin Paul; Evans, Dafydd Gareth Richard; Ramsden, Richard Thomas; Freeman, Simon Richard Mackenzie

    2014-01-01

    To investigate the outcomes from ipsilateral simultaneous or sequential cochlear implantation in patients with neurofibromatosis type 2 (NF2) after vestibular schwannoma removal with cochlear nerve preservation. Retrospective case series. Single tertiary referral NF2 center. Six patients with NF2. Removal of vestibular schwannoma (VS) with preservation of the cochlear nerve and cochlear implantation. Four patients had their surgery via a translabyrinthine approach. Two patients had a retrosigmoid approach. A cochlear implant was inserted at the same time as tumor removal in 4 cases and sequentially in 2 cases. Surgical and audiometric outcomes using Bamford-Kowal-Bench (BKB) and City of New York University (CUNY) sentence scores. The average age at implantation was 24 years (range, 15-36 yr). Follow-up ranged from 5 to 93 months, with an average of 38 months. All patients had useful hearing in the contralateral ear before surgery. One patient gained no benefit from cochlear implantation and proceeded to have an auditory brainstem implant. Of those that had functional cochlear nerves, the average BKB score in quiet was 64%, BKB score in noise was 42%, and CUNY score with lipreading was 97%. Results varied within the group, but all patients gained significant benefit and continue to use their CI at least intermittantly. The present series demonstrates that in selected cases, cochlear implantation can be successful after a translabyrinthine approach for VS removal and for restoring hearing after failed retrosigmoid hearing preservation surgery. All patients found the cochlear implant offered useful hearing even in the presence of contralateral hearing.

  10. Bacterial contamination of test stimulation leads during percutaneous nerve stimulation.

    Science.gov (United States)

    Pannek, Jürgen; Grigoleit, Ute; Hinkel, Andreas

    2005-06-01

    To analyze the bacterial contamination of conventional percutaneous nerve stimulation (PNE) leads. Sacral neuromodulation has become an important tool for the treatment of urgency and chronic retention. Patients likely to benefit from this type of therapy are identified by PNE testing before implantation of the definitive system. Recently, a new system was introduced, using a self-blocking electrode that remains in place for both PNE testing and final implantation. PNE testing warrants an extracorporeal stimulator. Thus, using the same electrode for both external stimulation and definitive implantation may carry a significant risk of infection. Bilateral PNE testing was performed in 11 consecutive patients (8 women and 3 men, mean age 41.6 years) for either urgency (n = 7) or chronic retention (n = 4). Electrodes were placed under aseptic conditions and stimulated for 3 days. At the end of each test, the electrodes were removed and evaluated microbiologically. In 5 of the 11 patients (9 of 22 leads), significant bacterial growth was detected: Staphylococcus epidermidis in 5, Escherichia coli in 3, and Enterococcus faecalis in 1. However, no patient showed signs of inflammation at the electrode insertion sites. Bacterial growth was found in 45.5% of the patients after conventional PNE testing under aseptic conditions. Therefore, the new electrodes may well carry an elevated risk of infection. Infection of the implant can lead to major surgical revision or even explantation. Thus, additional studies of the infection risk of this new electrode are warranted before its general use can be recommended.

  11. The effects of vestibular stimulation on a child with hypotonic cerebral palsy.

    Science.gov (United States)

    An, Sun-Joung Leigh

    2015-04-01

    [Purpose] The purpose of this case report is to present the effects of vestibular stimulation on a child with hypotonic cerebral palsy through the use of swings. [Case Description] The subject was a 19-month-old boy with a diagnosis of hypotonic cerebral palsy (CP) and oscillating nystagmus. The subject had received both physical therapy and occupational therapy two times per week since he was 5 months old but showed little to no improvement. [Methods] Pre and post-intervention tests were completed by the researcher using the Bayley Scales of Infant and Toddler Development II. The subject was provided with vestibular stimulation 3 times per week for 10 weeks in 1 hour sessions conducted by his mother as instructed by the researcher. During this research all other therapies were stopped to determine the effects of the vestibular stimulation and to exclude the effects of other therapies. [Results] The subject demonstrated improvement of 4 months in motor skills and of 3 months in mental skills as shown by the Bayley Scales of Infant and Toddler Development II. [Conclusion] Vestibular stimulation was effective in improving postural control, movement, emotional well-being, and social participation of a child with hypotonic cerebral palsy.

  12. Retention test in sacral nerve stimulation for fecal incontinence

    DEFF Research Database (Denmark)

    Michelsen, Hanne B; Maeda, Yasuko; Lundby, Lilli

    2009-01-01

    INTRODUCTION: Sacral nerve stimulation has become an established treatment for patients with fecal incontinence. However, the mechanism of its action remains obscure. We aim to assess whether sacral nerve stimulation improves patients' ability to retain rectal content. METHODS: Patients who had b...

  13. Overview of the Clinical Applications of Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Beekwilder, J.P.; Beems, T.

    Vagus nerve stimulation (VNS) has become an established therapy for difficult-to-treat epilepsy during the past 20 years. The vagus nerve provides a unique entrance to the brain. Electrical stimulation of this structure in the cervical region allows direct modulative access to subcortical brain

  14. Vestibular Evoked Myogenic Potential (VEMP Triggered by Galvanic Vestibular Stimulation (GVS: A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    Directory of Open Access Journals (Sweden)

    Júlia Fonseca de Morais Caporali

    2016-04-01

    Full Text Available Schistosomal myeloradiculopathy (SMR, the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP triggered by galvanic vestibular stimulation (GVS is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR.A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL and the medium-latency (ML components of the biphasic EMG wave.VEMP showed the components SL (p = 0.001 and ML (p<0.001 delayed in SMR compared to controls. The delay of SL (p = 0.010 and of ML (p = 0.020 was associated with gait dysfunction.VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  15. Role of the insula and vestibular system in patients with chronic subjective dizziness: An fMRI study using sound-evoked vestibular stimulation

    Directory of Open Access Journals (Sweden)

    Iole eIndovina

    2015-12-01

    Full Text Available Chronic subjective dizziness (CSD is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence, long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD.We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC.We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients

  16. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    Science.gov (United States)

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  17. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    Science.gov (United States)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  18. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Directory of Open Access Journals (Sweden)

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  19. Vestibular implants studied in animal models: clinical and scientific implications.

    Science.gov (United States)

    Lewis, Richard F

    2016-12-01

    Damage to the peripheral vestibular system can result in debilitating postural, perceptual, and visual symptoms. A potential new treatment for this clinical problem is to replace some aspects of peripheral vestibular function with an implant that senses head motion and provides this information to the brain by stimulating branches of the vestibular nerve. In this review I consider animal studies performed at our institution over the past 15 years, which have helped elucidate how the brain processes information provided by a vestibular (semicircular canal) implant and how this information could be used to improve the problems experienced by patients with peripheral vestibular damage. Copyright © 2016 the American Physiological Society.

  20. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  1. Effect of transcranial direct current stimulation on vestibular-ocular and vestibulo-perceptual thresholds.

    Science.gov (United States)

    Kyriakareli, Artemis; Cousins, Sian; Pettorossi, Vito E; Bronstein, Adolfo M

    2013-10-02

    Transcranial direct current stimulation (tDCS) was used in 17 normal individuals to modulate vestibulo-ocular reflex (VOR) and self-motion perception rotational thresholds. The electrodes were applied over the temporoparietal junction bilaterally. Both vestibular nystagmic and perceptual thresholds were increased during as well as after tDCS stimulation. Body rotation was labeled as ipsilateral or contralateral to the anode side, but no difference was observed depending on the direction of rotation or hemisphere polarity. Threshold increase during tDCS was greater for VOR than for motion perception. 'Sham' stimulation had no effect on thresholds. We conclude that tDCS produces an immediate and sustained depression of cortical regions controlling VOR and movement perception. Temporoparietal areas appear to be involved in vestibular threshold modulation but the differential effects observed between VOR and perception suggest a partial dissociation between cortical processing of reflexive and perceptual responses.

  2. Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture.

    Science.gov (United States)

    Inukai, Yasuto; Otsuru, Naofumi; Masaki, Mitsuhiro; Saito, Kei; Miyaguchi, Shota; Kojima, Sho; Onishi, Hideaki

    2017-10-17

    The vestibular system is involved in the control of standing balance. Galvanic vestibular stimulation (GVS) is a noninvasive technique that can stimulate the vestibular system. In recent years, noisy GVS (nGVS) using noise current stimulation has been attempted, but it has not been clarified whether it affects postural sway in open-eye standing. The purpose of this study was to clarify the influence of nGVS on the center of pressure (COP) sway measurement in open-eye standing postural control and identify the responders of nGVS. nGVS (0.1-640 Hz) was delivered at 0.4 and 1.0 mA over the bipolar mastoid. COP sway root mean square area, sway path length, medio-lateral (ML) mean velocity, and antero-posterior (AP) mean velocity before and during nGVS in an open-eye standing posture was measured. nGVS at 0.4 and 1.0 mA significantly reduced sway path length, mean velocity. The stimulation effect of nGVS was also large in subjects with a long sway path. For subjects with high COP sway of Baseline, nGVS was effective even with stimulation for a short duration (5 s). These findings suggest that nGVS improves postural sway in an open-eye standing posture among young subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Laryngeal elevation by selective stimulation of the hypoglossal nerve

    Science.gov (United States)

    Hadley, Aaron J.; Kolb, Ilya; Tyler, Dustin J.

    2013-08-01

    Objective. Laryngeal elevation protects the airway and assists opening of the esophagus during swallowing. The GH, thyrohyoid, and MH muscles provide a majority of this elevatory motion. This study applied functional electrical stimulation to the XII/C1 nerve complex using a nerve cuff electrode to determine the capabilities of neural stimulation to induce laryngeal elevation. Approach. Multi-contact FINE electrodes were implanted onto the XII/C1 nerve complex at locations proximal and distal to the thyrohyoid branching point in five anesthetized canines. Motion of the thyroid cartilage and the hyoid bone was recorded during stimulation of nerve cuffs and intramuscular electrodes. Main Results. Nerve stimulation induced 260% more laryngeal elevation than intramuscular stimulation (18.8 mm versus 5.2 mm, p ≪ 0.01), and 228% higher velocity (143.8 versus 43.9 mm s-1, p ≪ 0.01). While stimulation at all cuff and electrode locations elevated the larynx, only the proximal XII/C1 nerve cuff significantly elicited both thyroid-hyoid approximation and hyoid elevation. In all proximal XII/C1 nerve cuffs (n = 7), stimulation was able to obtain selectivity of greater than 75% of at least one elevatory muscle. Significance. These results support the hypothesis that an implanted neural interface system can produce increased laryngeal elevation, a significant protective mechanism of deglutition.

  4. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2017-11-08

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  5. Differential Inhibitory Control of Semicircular Canal Nerve Afferent-Evoked Inputs in Second-Order Vestibular Neurons by Glycinergic and GABAergic Circuits

    National Research Council Canada - National Science Library

    Stefan Biesdorf; David Malinvaud; Ingrid Reichenberger; Sandra Pfanzelt; Hans Straka

    2008-01-01

    ... (2°VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus...

  6. Magnetic Vestibular Stimulation (MVS) As a Technique for Understanding the Normal and Diseased Labyrinth.

    Science.gov (United States)

    Ward, Bryan K; Otero-Millan, Jorge; Jareonsettasin, Prem; Schubert, Michael C; Roberts, Dale C; Zee, David S

    2017-01-01

    Humans often experience dizziness and vertigo around strong static magnetic fields such as those present in an MRI scanner. Recent evidence supports the idea that this effect is the result of inner ear vestibular stimulation and that the mechanism is a magnetohydrodynamic force (Lorentz force) that is generated by the interactions between normal ionic currents in the inner ear endolymph and the strong static magnetic field of MRI machines. While in the MRI, the Lorentz force displaces the cupula of the lateral and anterior semicircular canals, as if the head was rotating with a constant acceleration. If a human subject's eye movements are recorded when they are in darkness in an MRI machine (i.e., without fixation), there is a persistent nystagmus that diminishes but does not completely disappear over time. When the person exits the magnetic field, there is a transient aftereffect (nystagmus beating in the opposite direction) that reflects adaptation that occurred in the MRI. This magnetic vestibular stimulation (MVS) is a useful technique for exploring set-point adaptation, the process by which the brain adapts to a change in its environment, which in this case is vestibular imbalance. Here, we review the mechanism of MVS, how MVS produces a unique stimulus to the labyrinth that allows us to explore set-point adaptation, and how this technique might apply to the understanding and treatment of vestibular and other neurological disorders.

  7. Autonomic dysreflexia in response to pudendal nerve stimulation.

    Science.gov (United States)

    Reitz, A; Schmid, D M; Curt, A; Knapp, P A; Schurch, B

    2003-10-01

    Pudendal nerve stimulation in complete spinal cord injury (SCI). To evaluate the influence of pudendal nerve stimulation on the cardiovascular system in SCI patients in order to assess the underlying neuronal mechanism and the potential risk during stimulation. Swiss Paraplegic Center, and University Hospital, Zurich. A total of 22 male patients with a complete SCI were divided into two groups according to the level of lesion: group A (C6-T6, n=15) and group B (T7-L2, n=7). A total of 66 stimulations using biphasic rectangular impulses (0.2 ms, 10 Hz) with intensities up to 100 mA were applied to the dorsal penile nerve. Of these, 15 stimulations in five patients were repeated after intravenous application of 7 mg of phentolamine. Heart rate (HR) and blood pressure (BP) were recorded by a Finapres cuff applied to the right index finger. Significant increased diastolic and systolic BP accompanied by significant decreased HR suggested the occurrence of autonomic dysreflexia (AD) during pudendal nerve stimulation. These cardiovascular changes corresponded with the subjective sensation of AD symptoms in patients of group A. Intravenous phentolamine lowered the resting BP and prevented severe hypertension during stimulation. Patients in group B presented with mild HR and BP changes in response to pudendal nerve stimulation and reported no AD symptoms. Our results show a considerable effect of electrical pudendal nerve stimulation on HR and BP in patients with high SCI. This may indicate that sacral somatic afferent fibers of the pudendal nerve are involved in the neuronal mechanism of AD in SCI patients with high neurological level. Intravenous phentolamine enables pudendal nerve stimulation without the risk of severe hypertension.

  8. Caloric Vestibular Stimulation Reduces Pain and Somatoparaphrenia in a Severe Chronic Central Post-Stroke Pain Patient: A Case Study

    National Research Council Canada - National Science Library

    Spitoni, Grazia Fernanda; Pireddu, Giorgio; Galati, Gaspare; Sulpizio, Valentina; Paolucci, Stefano; Pizzamiglio, Luigi

    2016-01-01

    .... To date, there is limited evidence for the effective treatments of this disease. Here we used caloric vestibular stimulation to reduce pain and somatoparaphrenia in a 57-year-old woman suffering from central post-stroke pain...

  9. Whisking recovery after automated mechanical stimulation during facial nerve regeneration.

    NARCIS (Netherlands)

    Kleiss, I.J.; Knox, C.J.; Malo, J.S.; Marres, H.A.M.; Hadlock, T.A.; Heaton, J.T.

    2014-01-01

    IMPORTANCE Recovery from facial nerve transection is typically poor, but daily mechanical stimulation of the face in rats has been reported to remarkably enhance functional recovery after facial nerve transection and suture repair. This phenomenon needs additional investigation because of its

  10. Autistic spectrum disorder, epilepsy, and vagus nerve stimulation.

    Science.gov (United States)

    Hull, Mariam Mettry; Madhavan, Deepak; Zaroff, Charles M

    2015-08-01

    In individuals with a comorbid autistic spectrum disorder and medically refractory epilepsy, vagus nerve stimulation may offer the potential of seizure control and a positive behavioral side effect profile. We aimed to examine the behavioral side effect profile using longitudinal and quantitative data and review the potential mechanisms behind behavioral changes. We present a case report of a 10-year-old boy with autistic spectrum disorder and epilepsy, who underwent vagus nerve stimulation subsequent to unsuccessful treatment with antiepileptic medication. Following vagus nerve stimulation implantation, initial, if temporary, improvement was observed in seizure control. Modest improvements were also observed in behavior and development, improvements which were observed independent of seizure control. Vagus nerve stimulation in autistic spectrum disorder is associated with modest behavioral improvement, with unidentified etiology, although several candidates for this improvement are evident.

  11. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory.

    Science.gov (United States)

    Zheng, Yiwen; Geddes, Lisa; Sato, Go; Stiles, Lucy; Darlington, Cynthia L; Smith, Paul F

    2014-05-01

    Galvanic vestibular stimulation (GVS) is a method of activating the peripheral vestibular system using direct current that is widely employed in clinical neurological testing. Since movement is recognized to stimulate hippocampal neurogenesis and movement is impossible without activation of the vestibular system, we speculated that activating the vestibular system in rats while minimizing movement, by delivering GVS under anesthesia, would affect hippocampal cell proliferation and neurogenesis, and spatial memory. Compared with the sham control group, the number of cells incorporating the DNA replication marker, bromodeoxyuridine (BrdU), was significantly reduced in the bilateral hippocampi in both the cathode left-anode right and cathode right-anode left stimulation groups (P ≤ 0.0001). The majority of the BrdU(+ve) cells co-expressed Ki-67, a marker for the S phase of the cell cycle, suggesting that these BrdU(+ve) cells were still in the cell cycle; however, there was no significant difference in the degree of co-labeling between the two stimulation groups. Single labeling for doublecortin (DCX), a marker of immature neurons, showed that while there was no significant difference between the different groups in the number of DCX(+ve) cells in the right dentate gryus, in the left dentate gyrus there was a significant decrease in the cathode left-anode right group compared with the sham controls (P ≤ 0.03). Nonetheless, when animals were tested in place recognition, object exploration and Morris water maze tasks, there were no significant differences between the GVS groups and the sham controls. These results suggest that GVS can have striking effects on cell proliferation and possibly neurogenesis in the hippocampus, without affecting spatial memory. Copyright © 2014 Wiley Periodicals, Inc.

  12. Estimation of Optimum Stimulus Amplitude for Balance Training using Electrical Stimulation of the Vestibular System

    Science.gov (United States)

    Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable

  13. Stimulation of the human auditory nerve with optical radiation

    Science.gov (United States)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  14. Remission of anosognosia for right hemiplegia and neglect after caloric vestibular stimulation.

    Science.gov (United States)

    Ronchi, Roberta; Rode, Gilles; Cotton, François; Farnè, Alessandro; Rossetti, Yves; Jacquin-Courtois, Sophie

    2013-01-01

    Neglect and related phenomena, as anosognosia for hemiplegia and somatoparaphrenia, are often associated to right-hemisphere lesions. These deficits can be alleviated by caloric vestibular stimulation, but little is known about the efficacy of this physiological intervention on neglect following left-hemisphere lesions. Here we report the case of an ambidextrous left brain-damaged patient with severe right personal and extrapersonal neglect, anosognosia for right hemiplegia and somatoparaphrenia. These symptoms co-occurred with more typical manifestations of left-brain damage, such as aphasia and apraxia. Neurological examination revealed right hemiplegia, hemianesthesia and hemianopia. Visuo-spatial tests for personal and extrapersonal neglect, as well as an anosognosia questionnaire, were submitted before and after caloric vestibular stimulation. Results showed a dramatic improvement of anosognosia for hemiplegia and neglect; no change was observed for the remaining deficits. The results confirm the notion of the selectivity of vestibular stimulation for neglect and related disorders and extend this notion by showing that similar effects can be obtained after lesion of the left hemisphere, suggesting that similar mechanisms are responsible for left- and right-sided neglect. Such a peculiar association of language and visuo-spatial disorders jointly present after a left-sided lesion opens the question of the link between handedness and lateralization of cognitive functions.

  15. The sense of self-motion, orientation and balance explored by vestibular stimulation.

    Science.gov (United States)

    St George, Rebecca J; Fitzpatrick, Richard C

    2011-02-15

    The sense of orientation during locomotion is derived from our spatial relationship with the external environment, sensed predominantly by sight and sound, and from internal signals of motion, generated by the vestibular sense and the pattern of efferent and afferent signals to the muscles and joints. The sensory channels operate in different reference frames and have different time-dependent adaptive properties and yet the inputs are combined by the central nervous system to create an internal representation of self-motion. In normal circumstances vestibular, visual and proprioceptive cues provide congruent information on locomotor trajectory; however, in cases of sensory discord there must be a recalibration of sensory signals to provide a unitary representation. We develop a means of studying these fusion processes by perturbing each channel in isolation about a consistent behavioural axis. This review focuses on creating the vestibular perturbation of the orientation sense by transmastoidal galvanic stimulation, a technique generally used to evoke balance reflexes. Vector summation across the population of semicircular canal afferents creates a net signal that is interpreted by the brain as a vector of angular acceleration in a craniocentric reference frame. The signal feeds perceptual processes of orientation after transformation that resolves the 3-D signal onto the terrestrial or behavioural plane. Changing head posture changes the interpretation of the galvanic vestibular signal for balance and orientation responses. With appropriate head alignments during locomotion, the galvanic stimulus can be used to either steer trajectory over the terrestrial plane or perturb balance.

  16. Optical stimulation of the facial nerve: a surgical tool?

    Science.gov (United States)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  17. Galvanic vestibular stimulation improves arm position sense in spatial neglect: a sham-stimulation-controlled study.

    Science.gov (United States)

    Schmidt, Lena; Keller, Ingo; Utz, Kathrin S; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2013-01-01

    Disturbed arm position sense (APS) is a frequent and debilitating condition in patients with hemiparesis after stroke. Patients with neglect, in particular, show a significantly impaired contralesional APS. Currently, there is no treatment available for this disorder. Galvanic vestibular stimulation (GVS) may ameliorate neglect and extinction by activating the thalamocortical network. The present study aimed to investigate the immediate effects and aftereffects (AEs; 20 minutes) of subsensory, bipolar GVS (M = 0.6 mA current intensity) on APS in stroke patients with versus without spatial neglect and matched healthy controls. A novel optoelectronic arm position device was developed, enabling the precise measurement of the horizontal APS of both arms. In all, 10 healthy controls, 7 patients with left-sided hemiparesis and left-spatial neglect, and 15 patients with left hemiparesis but without neglect were tested. Horizontal APS was measured separately for both forearms under 4 experimental conditions (baseline without GVS, left-cathodal/right-anodal GVS, right-cathodal/left-anodal GVS, sham GVS). The immediate effects during GVS and the AEs 20 minutes after termination of GVS were examined. Patients with neglect showed an impaired contralateral APS in contrast to patients without neglect and healthy controls. Left-cathodal/right-anodal GVS improved left APS significantly, which further improved into the normal range 20 minutes poststimulation. GVS had no effect in patients without neglect but right-cathodal/left-anodal GVS worsened left APS in healthy participants significantly. GVS can significantly improve the impaired APS in neglect. Multisession GVS can be tested to induce enduring therapeutic effects.

  18. Neonatal vestibular stimulation and mating in cerebellar mutants.

    Science.gov (United States)

    Guastavino, J M; Larsson, K; Allain, C; Jaisson, P

    1993-05-01

    Two cerebellar mutants, staggerer and reeler, and their congenic nonmutants were used in this experiment. Experimental animals were subjected to intense rotational stimulation on a tilted plane during the first 3 weeks of life, while controls were left nonstimulated. The capacity for mating, as evidenced by vaginal plugs or the occurrence of pregnancy, was assayed during two periods: between 36 and 89 days of age (Experiment A) and between 90 and 120 days of age (Experiment B). During Experiment A the mutants as well as the normals were caged inter se with partners of the opposite sex. During Experiment B the animals were caged with intact, sexually experienced partners. The animals were examined daily for evidence of mating. During Experiment A, only 3 of the 89 couples participating in this study showed evidence of mating. During Experiment B, the number of males of both strains which had mated increased significantly. The staggerer females showed a relatively high level of mating activity, whether stimulated or not. The reeler females, in contrast, rarely mated, although early stimulation significantly increased the level of sexual efficiency. The majority of the normal males and females mated, whether stimulated or not. It was concluded that massive motor-sensory stimulation in infancy, improving gait and body balance in staggerer and reeler mice, may also improve mating efficiency.

  19. Neuroanatomic and clinical correspondences: acupuncture and vagus nerve stimulation.

    Science.gov (United States)

    da Silva, Marco Antonio Helio; Dorsher, Peter T

    2014-04-01

    The use of surgically implanted electronic devices for vagus nerve stimulation (VNS) is expanding in contemporary allopathic medical practice as a treatment option for selected clinical conditions, such as epilepsy, depression, tremor, and pain conditions, that are unresponsive to standard pharmacologic interventions. Although VNS device surgeries are considered minimally invasive, they are costly and have surgical and device-related risks; they can also cause serious adverse effects from excessive vagus nerve stimulation. For millennia, acupuncturists have treated those same clinical conditions by piquering acupoints that are located proximate to the sternocleidomastoid muscle site where the VNS device is implanted on the vagus nerve. The hypothesis of this study is that these acupuncture points produce clinical benefits through stimulation of the vagus nerve and/or its branches in the head and neck region. By using reference anatomic and acupuncture texts, classical and extraordinary acupoints in the head and neck region were identified that are anatomically proximate to vagus nerve pathways there, where the VNS electrode is surgically implanted. The clinical indications of these acupuncture points, as described in the acupuncture reference texts, were examined for similarities to those of VNS. This analysis demonstrated marked correspondences of the indications for those lateral head and neck acupoints to the clinical effects (beneficial and adverse) documented for the VNS device in the medical literature. This clinical correspondence, in conjunction with the anatomic proximity of the acupoints to the vagus nerve in the lateral neck, strongly suggests that vagus nerve (and hence the autonomic nervous system) stimulation is fundamental in producing the clinical effects of the acupoints. By having anatomic access to the vagus nerve and parasympathetic chain that permits electrical stimulation of those nerves in clinical practice, acupuncture may offer a less

  20. Transcutaneous electrical nerve stimulation in dysphonic women.

    Science.gov (United States)

    Guirro, Rinaldo Roberto de Jesus; Bigaton, Delaine Rodrigues; Silvério, Kelly Cristina Alves; Berni, Kelly Cristina dos Santos; Distéfano, Giovanna; Santos, Fernanda Lopes dos; Forti, Fabiana

    2008-01-01

    studies indicate correlation between dysphonia and muscle tension. to evaluate bilaterally the electrical activity of the suprahyoid muscles (SH), sternocleidomastoid (SCM), and trapezius (T), the presence of pain and the voice, after applying transcutaneous electrical nerve stimulation (TENS). ten (10) women with nodules or bilateral mucus thickening, and phonation fissure. Volunteers were submitted to 10 TENS sessions (200 micros and 10 Hz) for 30 minutes. Pain was evaluated using an analogical visual scale; the voice was evaluated through laryngoscopy and through a perceptive-auditory and acoustic analysis; and the myoelectric signal was converted using the Root Media Square (RMS). Voice and EMG data gathering was performed during the production of the E/vowel and during spontaneous speech (SS). Shapiro-Wilk Test followed by the Wilcoxon Test, or t Student, or Friedman Test (p readings, pre and pos treatment, for the Right T (RT) (2.80 +/- 1.36 to 1.77 +/- 0.93), the Left T (LT) (3.62 +/- 2.10 to 2.10 +/- 1.06), the Left SCM (LSCM) (2.64 +/- 0.69 to 1.94 +/- 0.95), and the SH (11.59 +/- 7.72 to 7.82 +/- 5.95) during the production of the E/vowel; and for the RT (3.56 +/- 2.77 to 1.93 +/- 1.13), the LT (4.68 +/- 2.56 to 3.09 +/- 2.31), the Right SCM (RSCM) (3.94 +/- 2.04 to 2.51 +/- 1.87), and the LSCM (3.54 +/- 1.04 to 3.12 +/- 3.00) during SS. A relieve in pain was also observed. Regarding the voice analysis, there was a decrease in level of laryngeal injuries; no difference was observed during the production of the E/vowel in the perceptive-auditory analysis; there was a decrease in the level of dysphonia and hoarseness during SS. TENS is effective in improving the clinical and functional signs of dysphonic women.

  1. Effects of the vestibular system on human development, part 2: Effects of vestibular stimulation on mentally retarded, emotionally disturbed, and learning-disabled individuals.

    Science.gov (United States)

    Weeks, Z R

    1979-07-01

    In Part 1 of this two-part series, studies concerned with the effects of vestibular stimulation on human development and function were reviewed and some implications for therapy were suggested. In Part 2, three categories of dysfunction with possible links to the vestibular system are discussed. Studies in the category of mental retardation evaluate motor development and sensory preference. Possible vestibular associations with emotional disturbance are examined by review of studies concerned with etiology, motor activity, speech, and clinical observations. A brief review of studies concerned with early identification and speech and language factors of learning-disabled children constitutes the third category. Interpretations are drawn and some implications for therapy are made.

  2. Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits.

    Science.gov (United States)

    Barmack, N H; Errico, P; Ferraresi, A; Fushiki, H; Pettorossi, V E; Yakhnitsa, V

    2002-02-01

    Natural vestibular and optokinetic stimulation were used to investigate the possible role of the cerebellar nodulus in the regulation and modification of reflexive eye movements in rabbits. The nodulus and folium 9d of the uvula were destroyed by surgical aspiration. Before and after nodulectomy the vertical and horizontal vestibuloocular reflexes (VVOR, HVOR) were measured during sinusoidal vestibular stimulation about the longitudinal (roll) and vertical (yaw) axes. Although the gain of the HVOR (G(HVOR) = peak eye movement velocity/peak head velocity) was not affected by the nodulectomy, the gain of the VVOR (G(VVOR)) was reduced. The gains of the vertical and horizontal optokinetic reflexes (G(VOKR), G(HOKR)) were measured during monocular, sinusoidal optokinetic stimulation (OKS) about the longitudinal and vertical axes. Following nodulectomy, there was no reduction in G(VOKR) or G(HOKR). Long-term binocular OKS was used to generate optokinetic afternystagmus, OKAN II, that lasts for hours. After OKAN II was induced, rabbits were subjected to static pitch and roll, to determine how the plane and velocity of OKAN II is influenced by a changing vestibular environment. During static pitch, OKAN II slow phase remained aligned with earth-horizontal. This was true for normal and nodulectomized rabbits. During static roll, OKAN II remained aligned with earth-horizontal in normal rabbits. During static roll in nodulectomized rabbits, OKAN II slow phase developed a centripetal vertical drift. We examined the suppression and recovery of G(VVOR) following exposure to conflicting vertical OKS for 10-30 min. This vestibular-optokinetic conflict reduced G(VVOR) in both normal and nodulectomized rabbits. The time course of recovery of G(VVOR) after conflicting OKS was the same before and after nodulectomy. In normal rabbits, the head pitch angle, at which peak OKAN II velocity occurred, corresponded to the head pitch angle maintained during long-term OKS. If the head was

  3. Sound-evoked vestibular stimulation affects the anticipation of gravity effects during visual self-motion.

    Science.gov (United States)

    Indovina, Iole; Mazzarella, Elisabetta; Maffei, Vincenzo; Cesqui, Benedetta; Passamonti, Luca; Lacquaniti, Francesco

    2015-08-01

    Humans anticipate the effects of gravity during visually simulated self-motion in the vertical direction. Here we report that an artificial vestibular stimulation consisting of short-tone bursts (STB) suppresses this anticipation. Participants pressed a button upon entering a tunnel during virtual-reality roller coaster rides in downward or forward directions. In different trials, we delivered STB, pulsed white noise (WN), or no sound (NO). In the control conditions (WN, NO), participants responded earlier during downward than forward motion irrespective of true kinematics, consistent with the a priori expectation that downward but not forward motion is accelerated by gravity. STB canceled the difference in response timing between the two directions, without affecting overall task performance. Thus, we argue that vestibular signals play a role in the anticipation of visible gravity effects during self-motion.

  4. Bilateral compared with unilateral sacral nerve stimulation for faecal incontinence

    DEFF Research Database (Denmark)

    Duelund-Jakobsen, J; Buntzen, S; Lundby, L

    2015-01-01

    AIM: This randomized single-blinded cross over study aimed to investigate whether bilateral Sacral Nerve Stimulation (SNS) is more efficient than unilateral stimulation for faecal incontinence (FI). METHOD: FI-patients who responded during a unilateral test-stimulation, with a minimum of 50...... decreased from 17 (3-54) at baseline to 2 (0-20) during stimulation on the right side, 2 (0-42) during stimulation on the left side and to 1 (0-25) during bilateral stimulation. The Wexner incontinence score improved significantly from a median of 16 (10-20) at baseline to 9 (0-14) with right side...... stimulation, 10 (0-15) with left side stimulation and 9 (0-14) with bilateral stimulation. The differences between unilateral right or unilateral left and bilateral stimulation were non-significant, for FI-episodes (P=0.3) or for Wexner incontinence score (P=0.9). CONCLUSION: Bilateral SNS-therapy for faecal...

  5. Experimental studies of gastric dysfunction in motion sickness: The effect of gastric and vestibular stimulation on the vagal and splanchnic gastric efferents

    Science.gov (United States)

    Niijima, A.; Jiang, Z. Y.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The experiments were conducted in anaesthetized rats. In the first part of the experiments, the effect of CuSO4 on the afferent activity in the gastric branch of the vagus nerve was investigated. Gastric perfusion of CuSO4 solution (0.04 percent and 0.08 percent) provoked an increase in afferent activity. In the second part of the experiments, the reflex effects of gastric perfusion of CuSO4 solution, repetitive stimulation of the gastric vagus nerve, and caloric stimulation of the right vestibular apparatus (5-18 C water) on gastric autonomic outflow were investigated. The results of these experiments showed that these three different types of stimulation caused an inhibition in efferent activity of the gastric vagus nerve and a slight activation of the splanchnic gastric efferents. The summation of the effect of each stimulation was also observed. These results, therefore, provide evidence for a possible integrative inhibitory function of the vagal gastric center as well as an excitatory function of gastric sympathetic motoneurons in relation to motion sickness.

  6. Investigating the Effects of Vestibular Stimulation on Balance Performance in Children with Cerebral Palsy: A Randomized Clinical Trial Study

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2015-06-01

    Full Text Available Background: Centre of pressure displacement is an indicator of postural control. Children with cerebral palsy have poor postural control. One common intervention to enhance their balance is vestibular stimulation. The aim of this research was to investigate the effect of vestibular stimulation on COP parameters in children with cerebral palsy (3-10 years old. Methods: This study was a randomized double-blind controlled clinical trial. Twenty children with cerebral palsy received vestibular stimulation, two sessions per week with a course of twelve sessions, based on vestibular stimulation protocol including anteroposterior, lateral, ascending–descending movements and spinning. One cerebral palsy group experienced current and conventional occupational therapy while the other received a period of vestibular stimulation during treatment. Force plate outcome measures were center of pressure displacement parameters as well as velocity, area, displacement in X and Y axes. Results: According to Mann-Whitney U test, means in post-tests in two groups with both conditions of eyes open and closed were significant in velocity parameter (eyes open P=0.036; eyes closed P=0.021 while Area parameter, COP displacement in X axis (Rang fore after, COP displacement in Y axis (Rang side way were not significant (P>0.05. Wilcoxon Test showed significant difference in the velocity parameter; eyes open (P=0.012 and eyes closed (P=0.018. Conclusion: Children who received vestibular stimulation are able to change and control COP displacement faster (according to changes in velocity parameters. So we suggest rehabilitation team members especially occupational therapist to apply vestibular stimulation during their treatment.

  7. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula

    Science.gov (United States)

    Fernandez, C.; Goldberg, J. M.; Baird, R. A.

    1990-01-01

    1. Nerve fibers supplying the utricular macula of the chinchilla were labeled by extracellular injection of horseradish peroxidase into the vestibular nerve. The peripheral terminations of individual fibers were reconstructed and related to the regions of the end organ they innervated and to the sizes of their parent axons. 2. The macula is divided into medial and lateral parts by the striola, a narrow zone that runs for almost the entire length of the sensory epithelium. The striola can be distinguished from the extrastriolar regions to either side of it by the wider spacing of its hair cells. Calyx endings in the striola have especially thick walls, and, unlike similar endings in the extrastriola, many of them innervate more than one hair cell. The striola occupies 10% of the sensory epithelium; the lateral extrastriola, 50%; and the medial extrastriola, 40%. 3. The utricular nerve penetrates the bony labyrinth anterior to the end organ. Axons reaching the anterior part of the sensory epithelium run directly through the connective tissue stroma. Those supplying more posterior regions first enter a fiber layer located at the bottom of the stroma. Approximately one-third of the axons bifurcate below the epithelium, usually within 5-20 microns of the basement membrane. Bifurcations are more common in fibers destined for the extrastriola than for the striola. 4. Both calyx and bouton endings were labeled. Calyces can be simple or complex. Simple calyces innervate individual hair cells, whereas complex calyces supply 2-4 adjacent hair cells. Complex endings are more heavily concentrated in the striola than in the extrastriola. Simple calyces and boutons are found in all parts of the epithelium. Calyces emerge from the parent axon or one of its thick branches. Boutons, whether en passant or terminal, are located on thin collaterals. 5. Fibers can be classified into calyx, bouton, or dimorphic categories. The first type only has calyx endings; the second, only bouton

  8. Comparison of Postural Responses to Galvanic Vestibular Stimulation between Pilots and the General Populace

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available Galvanic vestibular stimulation (GVS can be used to study the body’s response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure’s trajectory (COP’s trajectory were measured. Position variability of COP during spontaneous body sway and peak displacement of COP during GVS-induced body sway were calculated in the medial-lateral direction. Spontaneous body sway was slight for all subjects, and there was no significant difference in the value of COP position variability between the pilots and controls. Both the GVS threshold and magnitude of GVS-induced body deviation were similar for different GVS polarities. GVS thresholds were similar between the two groups, but the magnitude of GVS-induced body deviation in the controls was significantly larger than that in the pilots. The pilots showed less GVS-induced body deviation, meaning that pilots may have a stronger ability to suppress vestibular illusions.

  9. Carbon nanomaterials for nerve tissue stimulation and regeneration.

    Science.gov (United States)

    Fraczek-Szczypta, Aneta

    2014-01-01

    Nanotechnology offers new perspectives in the field of innovative medicine, especially for reparation and regeneration of irreversibly damaged or diseased nerve tissues due to lack of effective self-repair mechanisms in the peripheral and central nervous systems (PNS and CNS, respectively) of the human body. Carbon nanomaterials, due to their unique physical, chemical and biological properties, are currently considered as promising candidates for applications in regenerative medicine. This chapter discusses the potential applications of various carbon nanomaterials including carbon nanotubes, nanofibers and graphene for regeneration and stimulation of nerve tissue, as well as in drug delivery systems for nerve disease therapy. © 2013.

  10. Stimulating parameters and de-synchronization in vagus nerve stimulation therapy for epilepsy

    Science.gov (United States)

    Li, Y.-L.; Chen, Z.-Y.; Ma, J.; Feng, W.-J.

    2008-02-01

    The influence of the stimulation parameters on the de-synchronization of small world Hindmarsh-Rose (H-R) neural network is numerically investigated in the vagus nerve stimulation therapy for epilepsy. The simulation shows that synchronization evolves into de-synchronization when a part of neurons (about 10 percent) is stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exist an optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  11. Stimulating parameters and de-synchronization in vagus nerve stimulation therapy for epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y-L; Ma, J; Feng, W-J [Institute of Theoretical Physics, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050 (China); Chen, Z-Y [Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720 (United States)], E-mail: hyperchaos@163.com, E-mail: liyl20031@126.com, E-mail: chen_zhao_yang@yahoo.com

    2008-02-15

    The influence of the stimulation parameters on the de-synchronization of small world Hindmarsh-Rose (H-R) neural network is numerically investigated in the vagus nerve stimulation therapy for epilepsy. The simulation shows that synchronization evolves into de-synchronization when a part of neurons (about 10 percent) is stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exist an optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  12. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.

    Science.gov (United States)

    Rozand, Vianney; Grosprêtre, Sidney; Stapley, Paul J; Lepers, Romuald

    2015-09-13

    Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.

  13. Influence of vestibular and visual stimulation on split-belt walking.

    Science.gov (United States)

    Marques, B; Colombo, G; Müller, R; Dürsteler, M R; Dietz, V; Straumann, D

    2007-12-01

    We investigated the influence of vestibular (caloric ear irrigation) and visual (optokinetic) stimulation on slow and fast split-belt walking. The velocity of one belt was fixed (1.5 or 5.0-6.0 km/h) and subjects (N = 8 for vestibular and N = 6 for visual experiments) were asked to adjust the velocity of the other belt to a level at which they perceived the velocity of both the belts as equal. Throughout all experiments, subjects bimanually held on to the space-fixed handles along the treadmill, which provided haptic information on body orientation. While the optokinetic stimulus (displayed on face-mounted virtual reality goggles) had no effect on belt velocity adjustments compared to control trials, cold-water ear irrigation during slow (but not fast) walking effectively influenced belt velocity adjustments in seven of eight subjects. Only two of these subjects decreased the velocity of the ipsilateral belt, consistent with the ipsilateral turning toward the irrigated ear in the Fukuda stepping test. The other five subjects, however, increased the velocity of the ipsilateral belt. A straight-ahead sense mechanism can explain both decreased and increased velocity adjustments. Subjects decrease or increase ipsilateral belt velocity depending on whether the vestibular stimulus is interpreted as an indicator of the straight-ahead direction (decreased velocity) or as an error signal relative to the straight-ahead direction provided by the haptic input from the space-fixed handles along the treadmill (increased velocity). The missing effect during fast walking corroborates the findings by others that the influence of vestibular tone asymmetry on locomotion decreases at higher gait velocities.

  14. [Distal sciatic nerve blocks: randomized comparison of nerve stimulation and ultrasound guided intraepineural block].

    Science.gov (United States)

    Seidel, R; Natge, U; Schulz, J

    2013-03-01

    The design of this study is related to an important current issue: should local anesthetics be intentionally injected into peripheral nerves? Answering this question is not possible without better knowledge regarding classical methods of nerve localization (e.g. cause of paresthesias and nerve stimulation technique). Have intraneural injections ever been avoided? This prospective, randomized comparison of distal sciatic nerve block with ultrasound guidance tested the hypothesis that intraneural injection of local anesthetics using the nerve stimulation technique is common and associated with a higher success rate. In this study 250 adult patients were randomly allocated either to the nerve stimulation group (group NS, n = 125) or to the ultrasound guidance group (group US, n = 125). The sciatic nerve was anesthetized with 20 ml prilocaine 1% and 10 ml ropivacaine 0.75%. In the US group the goal was an intraepineural needle position. In the NS group progress of the block was observed by a second physician using ultrasound imaging but blinded for the investigator performing the nerve stimulation. The main outcome variables were time until readiness for surgery (performance time and onset time), success rate and frequency of paresthesias. In the NS group needle positions and corresponding stimulation thresholds were recorded. In both groups seven patients were excluded from further analysis because of protocol violation. In the NS group (n = 118) the following needle positions were estimated: intraepineural (NS 1, n = 51), extraparaneural (NS 2, n = 33), needle tip dislocation from intraepineural to extraparaneural while injecting local anesthetic (NS 3, n = 19) and other or not determined needle positions (n = 15). Paresthesias indicated an intraneural needle position with an odds ratio of 27.4 (specificity 98.8%, sensitivity 45.9%). The success rate without supplementation was significantly higher in the US group (94.9% vs. 61.9%, p

  15. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  16. Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience.

    Science.gov (United States)

    Colzato, Lorenza S; Wolters, Gina; Peifer, Corinna

    2017-11-11

    Flow has been defined as a pleasant psychological state that people experience when completely absorbed in an activity. Previous correlative evidence showed that the vagal tone (as indexed by heart rate variability) is a reliable marker of flow. So far, it has not yet been demonstrated that the vagus nerve plays a causal role in flow. To explore this we used transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that increases activation of the locus coeruleus (LC) and norepinephrine release. A sham/placebo-controlled, randomized cross-over within-subject design was employed to infer a causal relation between the stimulated vagus nerve and flow as measured using the Flow Short-Scale in 32 healthy young volunteers. In both sessions, while being stimulated, participants had to rate their flow experience after having performed a task for 30 min. Active tVNS, compared to sham stimulation, decreased flow (as indexed by absorption scores). The results can be explained by the network reset theory, which assumes that high-phasic LC activity promotes a global reset of attention over exploitation of the current focus of attention, allowing rapid behavioral adaptation and resulting in decreased absorption scores. Furthermore, our findings corroborate the hypothesis that the vagus nerve and noradrenergic system are causally involved in flow.

  17. Nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis.

    Science.gov (United States)

    d'Ovidio, Dario; Noviello, Emilio; Adami, Chiara

    2015-07-01

    To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. Prospective clinical trial. Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  18. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    , fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate...... to neutralize the charge induced during the cathodic phase. Single-neuron recordings in cat auditory nerve using monophasic electrical stimulation show, however, that both phases in isolation can generate an AP. The site of AP generation differs for both phases, being more central for the anodic phase and more...... perception of CI listeners, a model needs to incorporate the correct responsiveness of the AN to anodic and cathodic polarity. Previous models of electrical stimulation have been developed based on AN responses to symmetric biphasic stimulation or to monophasic cathodic stimulation. These models, however...

  19. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study

    Science.gov (United States)

    Mercadal, Borja; Arena, Christopher B.; Davalos, Rafael V.; Ivorra, Antoni

    2017-10-01

    Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.

  20. Effect of gaze on postural responses to neck proprioceptive and vestibular stimulation in humans

    Science.gov (United States)

    Ivanenko, Yuri P; Grasso, Renato; Lacquaniti, Francesco

    1999-01-01

    We studied the effect of gaze orientation on postural responses evoked by vibration of neck dorsal muscles or by galvanic stimulation of the vestibular system during quiet standing in healthy humans. Various gaze orientations were obtained by different combinations of horizontal head-on-feet (−90, −45, 0, 45, 90 deg) and eye-in-orbit (−30, 0, 30 deg) positions. The instantaneous centre of foot pressure was recorded with a force platform. With a symmetrical position of the vibrator relative to the spine, neck muscle vibration elicited a body sway in the direction of the head naso-occipital axis when the eyes were aligned with it. The same result was obtained both during head rotations and when the head and trunk were rotated together. For lateral eye deviations, the direction of the body sway was aligned with gaze orientation. The effect of gaze was present both with eyes open and eyes closed. After long-lasting (1 min) lateral fixation of the target the effect of gaze decreased significantly. Postural responses to galvanic vestibular stimulation tended to occur orthogonal to the head naso-occipital axis (towards the anodal ear) but in eight of the 11 subjects the responses were also biased by the direction of gaze. The prominent effect of gaze in reorienting automatic postural reactions indicates that both neck proprioceptive and vestibular stimuli are processed in the context of visual control of posture. The results point out the importance of a viewer-centred frame of reference for processing multisensory information. PMID:10432359

  1. Infrared neural stimulation of human spinal nerve roots in vivo.

    Science.gov (United States)

    Cayce, Jonathan M; Wells, Jonathon D; Malphrus, Jonathan D; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B; Konrad, Peter E; Jansen, E Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients ([Formula: see text]) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and [Formula: see text]. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at [Formula: see text] and a [Formula: see text] safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans.

  2. [Stimulation of cholinogenesis in the human fetal nerve cells culture].

    Science.gov (United States)

    Tsymbaliuk, V I; Vasyl'ieva, I H; Oleksenko, N P; Chopyk, N H; Tsiubko, O I; Halanta, O S

    2013-01-01

    The aim of the research was to establish cultured population of nerve cells reached by cholinergic neurons and their determinative precursors. The most effective combination of neuroinductors which stimulated cholinergic cells differentiation from the nerve stem cells was retinoic acid and acetylcholine. During the period of culturing the amount of ChAT+ cells reliably increased from 5.3 +/- 2.9% to 21.1 +/- 6.2%. At the same time in the control samples their concentration was 9.1 +/- 4.8% of total cell count. Enrichment of cell population by cholinergic neurons and their determinative precursors correlated with increasing of AChE-activity level. So, addition of retinoic acid and acetylcholine stimulate both neurogenesis and cholinogenesis in the culture of human fetal nerve cells.

  3. Peripheral nerves are pathologically small in Cerebellar Ataxia Neuropathy Vestibular Areflexia Syndrome (CANVAS): A controlled ultrasound study.

    Science.gov (United States)

    Pelosi, Luciana; Mulroy, Eoin; Leadbetter, Ruth; Kilfoyle, Dean; Chancellor, Andrew M; Mossman, Stuart; Wing, Laurie; Wu, Teddy Y; Roxburgh, Richard H

    2018-01-05

    Sensory neuronopathy is a cardinal feature of Cerebellar Ataxia Neuropathy Vestibular Areflexia Syndrome (CANVAS). Having observed that two patients with CANVAS had small median and ulnar nerves on ultrasound, we set out to examine this finding systematically in a cohort of patients with CANVAS, and compare them with both healthy controls and a cohort of patients with axonal neuropathy. We have previously reported preliminary findings in seven of these CANVAS patients and seven healthy controls. We compared the ultrasound cross-sectional area of median, ulnar, sural and tibial nerves of 14 CANVAS patients with 14 healthy controls and 14 age-and-gender matched patients with acquired primarily axonal neuropathy. We also compared the individual nerve cross-sectional areas of CANVAS and neuropathy patients with the reference values of our laboratory control population. The nerve cross-sectional area of CANVAS patients was smaller than that of both the healthy controls and the neuropathy controls, with highly significant differences at most sites (p<0.001). Conversely, the nerve cross-sectional areas in the upper limb were larger amongst neuropathy controls than healthy controls (p<0.05). On individual analysis, the ultrasound abnormality was sufficiently characteristic to be detected in all but one CANVAS patient. Small nerves in CANVAS probably reflect nerve thinning from loss of axons due to ganglion cell loss. This is distinct from the ultrasound findings in axonal neuropathy, in which nerve size was either normal or enlarged. Our findings indicate a diagnostic role for ultrasound in CANVAS sensory neuronopathy and in differentiating neuronopathy from neuropathy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Caloric vestibular stimulation as a treatment for conversion disorder: A case report and medical hypothesis

    Directory of Open Access Journals (Sweden)

    Michael eNoll-Hussong

    2014-06-01

    Full Text Available Conversion disorder is a medical condition in which a person has paralysis, blindness, or other neurological symptoms that cannot be clearly explained physiologically. To date, there is neither specific nor conclusive treatment. In this paper, we draw together a number of disparate pieces of knowledge to propose a novel intervention to provide transient alleviation for this condition. As caloric vestibular stimulation (CVS has been demonstrated to modulate transiently a variety of cognitive functions associated with brain activations, especially in the temporal-parietal cortex, anterior cingulate cortex, and insular cortex, there is evidence to assume an effect in specific mental disorders. Therefore, we go on to hypothesize that lateralized cold vestibular caloric stimulation will be effective in treating conversion disorder and we present provisional evidence from one patient that supports this conclusion. If our hypothesis is correct, this will be the first time in psychiatry and neurology that a clinically well-known mental disorder, long considered difficult to understand and to treat, is relieved by a simple or common, non-invasive medical procedure.

  5. The effect of vagus nerve stimulation on response inhibition

    NARCIS (Netherlands)

    Schevernels, H.; Bochove, M.E. van; Taeye, L. de; Bombeke, K.; Vonck, K.; Roost, D. van; Herdt, V. de; Santens, P.; Raedt, R.; Boehler, C.N.

    2016-01-01

    In the current study, we explored whether vagus nerve stimulation (VNS) in patients with epilepsy, which is believed to increase norepinephrine (NE) levels via activation of the locus coeruleus, would positively affect response inhibition. Moreover, we tried to identify the dynamics of the

  6. Sacral Nerve Stimulation for Constipation: Suboptimal Outcome and Adverse Events

    DEFF Research Database (Denmark)

    Maeda, Yasuko; Lundby, Lilli; Buntzen, Steen

    2010-01-01

    Sacral nerve stimulation is an emerging treatment for patients with severe constipation. There has been no substantial report to date on suboptimal outcomes and complications. We report our experience of more than 6 years by focusing on incidents and the management of reportable events....

  7. TRANSCUTANEOUS ELECTRICAL NERVE-STIMULATION (TENS) IN RAYNAUDS-PHENOMENON

    NARCIS (Netherlands)

    MULDER, P; DOMPELING, EC; VANSLOCHTERENVANDERBOOR, JC; KUIPERS, WD; SMIT, AJ

    Transcutaneous nerve stimulation (TENS) has been described as resulting in vasodilatation. The effect of 2 Hz TENS of the right hand during forty-five minutes on skin temperature and plethysmography of the third digit of both hands and feet and on transcutaneous oxygen tension (TcpO2) of the right

  8. Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking.

    Science.gov (United States)

    Colzato, Lorenza S; Ritter, Simone M; Steenbergen, Laura

    2018-01-08

    Creativity is one of the most important cognitive skills in our complex and fast-changing world. Previous correlative evidence showed that gamma-aminobutyric acid (GABA) is involved in divergent but not convergent thinking. In the current study, a placebo/sham-controlled, randomized between-group design was used to test a causal relation between vagus nerve and creativity. We employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique to stimulate afferent fibers of the vagus nerve and speculated to increase GABA levels, in 80 healthy young volunteers. Creative performance was assessed in terms of divergent thinking (Alternate Uses Task) and convergent thinking tasks (Remote Associates Test, Creative Problem Solving Task, Idea Selection Task). Results demonstrate active tVNS, compared to sham stimulation, enhanced divergent thinking. Bayesian analysis reported the data to be inconclusive regarding a possible effect of tVNS on convergent thinking. Therefore, our findings corroborate the idea that the vagus nerve is causally involved in creative performance. Even thought we did not directly measure GABA levels, our results suggest that GABA (likely to be increased in active tVNS condition) supports the ability to select among competing options in high selection demand (divergent thinking) but not in low selection demand (convergent thinking). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  10. Application of a computational model of vagus nerve stimulation.

    Science.gov (United States)

    Helmers, S L; Begnaud, J; Cowley, A; Corwin, H M; Edwards, J C; Holder, D L; Kostov, H; Larsson, P G; Levisohn, P M; De Menezes, M S; Stefan, H; Labiner, D M

    2012-11-01

    The most widely used and studied neurostimulation procedure for medically refractory epilepsy is vagus nerve stimulation (VNS) Therapy. The goal of this study was to develop a computational model for improved understanding of the anatomy and neurophysiology of the vagus nerve as it pertains to the principles of electrical stimulation, aiming to provide clinicians with a systematic and rational understanding of VNS Therapy. Computational modeling allows the study of electrical stimulation of peripheral nerves. We used finite element electric field models of the vagus nerve with VNS Therapy electrodes to calculate the voltage field for several output currents and studied the effects of two programmable parameters (output current and pulse width) on optimal fiber activation. The mathematical models correlated well with strength-duration curves constructed from actual patient data. In addition, digital constructs of chronic versus acute implant models demonstrated that at a given pulse width and current combination, presence of a 110-μm fibrotic tissue can decrease fiber activation by 50%. Based on our findings, a range of output current settings between 0.75 and 1.75 mA with pulse width settings of 250 or 500 μs may result in optimal stimulation. The modeling illustrates how to achieve full or nearly full activation of the myelinated fibers of the vagus nerve through output current and pulse width settings. This knowledge will enable clinicians to apply these principles for optimal vagus nerve activation and proceed to adjust duty cycle and frequency to achieve effectiveness. © 2012 John Wiley & Sons A/S.

  11. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    Science.gov (United States)

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Permanency of gait improvement induced by vestibular stimulation in the mutant mouse staggerer.

    Science.gov (United States)

    Guastavino, J M; Goodall, G

    1985-09-01

    Among the several methods that have been used to investigate the impact of environmental enrichment, on the behavior of an animal, the use of behaviorally deficient mutant mice has been especially useful. The use of this model allows one to investigate functional recovery compared to a known baseline (the normal animal) without the trauma and imprecision associated with surgical intervention. The present study extends a previous investigation that demonstrated a significant improvement in certain measures of the gait of the cerebellar mutant mouse staggerer, as a result of daily vestibular, muscular and visual stimulation. The results of the present study concerned the durability of that observed improvement. No clear-cut conclusion as to the permanency of the stimulation's effects could be drawn, because results differed according to the measures used. When tested two months after the end of the stimulation period the mutants ran more slowly, with as many "errors" as unstimulated mutants, leading one to infer a deleterious effect of the stimulation. On the other hand, if one considers only the number of "errors" during the test, one may conclude that early stimulation has a permanent advantageous effect of increasing the staggerer's receptivity to further stimulation. Other measures lead to more ambiguous conclusions. Finally, it is argued that even though true improvement in the staggerer's gait can be inferred from these results, and that at least some aspects of that improvement seem to be long-lasting, the generality of the findings cannot validly be extended beyond the precise experimental conditions.

  13. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, Seeram

    2009-11-01

    Fabrication of scaffolds with suitable chemical, mechanical, and electrical properties is critical for the success of nerve tissue engineering. Electrical stimulation was directly applied to electrospun conductive nanofibrous scaffolds to enhance the nerve regeneration process. In the present study, electrospun conductive nanofibers were prepared by mixing 10 and 15 wt% doped polyaniline (PANI) with poly (epsilon-caprolactone)/gelatin (PG) (70:30) solution (PANI/PG) by electrospinning. The fiber diameter, pore size, hydrophilicity, tensile properties, conductivity, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy spectra of nanofibers were determined, and the in vitro biodegradability of the different nanofibrous scaffolds was also evaluated. Nanofibrous scaffolds containing 15% PANI was found to exhibit the most balanced properties to meet all the required specifications for electrical stimulation for its enhanced conductivity and is used for in vitro culture and electrical stimulation of nerve stem cells. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and scanning electron microscopy results showed that conductive nanofibrous scaffolds are suitable substrates for the attachment and proliferation of nerve stem cells. Electrical stimulation through conductive nanofibrous PANI/PG scaffolds showed enhanced cell proliferation and neurite outgrowth compared to the PANI/PG scaffolds that were not subjected to electrical stimulation.

  14. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    that this may be caused by both cochlear and retrocochlear mechanisms. Multiple mechanisms may also be at play in the case of dizziness, which may broaden perspectives of therapeutic approach. This study presents a systematic and detailed assessment of vestibular histopathology in temporal bones from patients...... with VS. METHODS: Retrospective analysis of vestibular system histopathology in temporal bones from 17 patients with unilateral VS. The material was obtained from The Copenhagen Temporal Bone Collection. RESULTS: Vestibular schwannomas were associated with atrophy of the vestibular ganglion, loss of fiber...... density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...

  15. Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity.

    Science.gov (United States)

    Huang, Jie; Qian, Jin; Yao, Wei; Wang, Neng; Zhang, Zhenjian; Cao, Chuanbin; Song, Bo; Zhang, Zhuo

    2015-03-01

    What is the central question of this study? Previous studies have shown that hypersympathetic nerve activity results in ventricular electrophysiological changes and facilitates the occurrence of ventricular arrhythmias. Vagus nerve stimulation has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. However, the actions of vagus nerve stimulation on hypersympathetic nerve activity-induced ventricular electrophysiological changes are still unknown. What is the main finding and its importance? We show that vagus nerve stimulation is able to reverse hypersympathetic nerve activity-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation. These findings further suggest that vagus nerve stimulation may be an effective treatment option for ventricular arrhythmias, especially in patients with myocardial infarction or heart failure. Vagus nerve stimulation (VNS) has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. This study aimed to investigate the effects of VNS on ventricular electrophysiological changes induced by hypersympathetic nerve activity. Seventeen open-chest dogs were subjected to left stellate ganglion stimulation (LSGS) for 4 h to simulate hypersympathetic tone. All animals were randomly assigned to the VNS group (n = 9) or the control group (n = 8). In the VNS group, VNS was performed at the voltage causing a 10% decrease in heart rate for hours 3-4 during 4 h of LSGS. During the first 2 h of LSGS, the ventricular effective refractory period (ERP) and action potential duration (APD) were both progressively and significantly decreased; the spatial dispersion of ERP, maximal slope of the restitution curve and pacing cycle length of APD alternans were all increased. With LSGS + VNS during the next 2 h, there was a significant return of all the altered electrophysiological parameters towards baseline levels. In the eight control

  16. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  17. Caloric Vestibular Stimulation Reduces Pain and Somatoparaphrenia in a Severe Chronic Central Post-Stroke Pain Patient: A Case Study.

    Directory of Open Access Journals (Sweden)

    Grazia Fernanda Spitoni

    Full Text Available Central post-stroke pain is a neuropathic syndrome characterized by intolerable contralesional pain and, in rare cases, somatic delusions. To date, there is limited evidence for the effective treatments of this disease. Here we used caloric vestibular stimulation to reduce pain and somatoparaphrenia in a 57-year-old woman suffering from central post-stroke pain. Resting-state functional magnetic resonance imaging was used to assess the neurological effects of this treatment. Following vestibular stimulation we observed impressive improvements in motor skills, pain, and somatic delusions. In the functional connectivity study before the vestibular stimulation, we observed differences in the patient's left thalamus functional connectivity, with respect to the thalamus connectivity of a control group (N = 20, in the bilateral cingulate cortex and left insula. After the caloric stimulation, the left thalamus functional connectivity with these regions, which are known to be involved in the cortical response to pain, disappeared as in the control group. The beneficial use of vestibular stimulation in the reduction of pain and somatic delusion in a CPSP patient is now documented by behavioral and imaging data. This evidence can be applied to theoretical models of pain and body delusions.

  18. Generator for electrotherapy and stimulation of human nerve centers

    Directory of Open Access Journals (Sweden)

    Babelyuk V. E.

    2017-04-01

    Full Text Available A generator for electrotherapy and stimulation of human VEB-1 nerve centers has been developed. The device's robots are based on stimulation of the patient by current pulses. Frequency beat method is used. The accuracy of maintaining the stimulation frequency is not more than 0.001 Hz. The carrier frequency of the working current pulses corresponds to the 32th harmonic of the frequency of the frequency pulse of the operating pulses. The clinical tests of the VEB-1 generator were carried out, showing the ego efficiency in twenty characteristic health indicators.

  19. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Science.gov (United States)

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  20. Eye movements during combined pursuit, optokinetic and vestibular stimulation in macaque monkey.

    Science.gov (United States)

    Schweigart, G; Mergner, T; Barnes, G

    1999-07-01

    During natural behaviour in a visual environment, smooth pursuit eye movements (SP) usually override the vestibular-ocular reflex (VOR) and the optokinetic reflex (OKR), which stem from head-in-space and scene-relative-to-eye motion, respectively. We investigated the interaction of SP, VOR, and OKR, which is not fully understood to date. Eye movements were recorded in two macaque monkeys while applying various combinations of smooth eye pursuit, vestibular and optokinetic stimuli (sinusoidal horizontal rotations of visual target, chair and optokinetic pattern, respectively, at 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 Hz, corresponding to peak stimulus velocities of 1.25-40 degrees/s for a standard stimulus of -/+8 degrees). Slow eye responses were analysed in terms of gain and phase. During SP at mid-frequencies, the eyes were almost perfectly on target (gain 0.98 at 0.1 Hz), independently of a concurrent vestibular or optokinetic stimulus. Pursuit gain at lower frequencies, although being almost ideal (0.98 at 0.025 Hz with pursuit-only stimulation), became modified by the optokinetic input (gain increase above unity when optokinetic stimulus had the same direction as target, decrease with opposite direction). At higher stimulus frequencies, pursuit gain decreased (down to 0.69 at 0.8 Hz), and the pursuit response became modified by vestibular input (gain increase during functionally synergistic combinations, decrease in antagonistic combinations).Thus, the pursuit system in monkey dominates during SP-OKR-VOR interaction, but it does so effectively only in the mid-frequency range. The results can be described in the form of a simple dynamic model in which it is assumed that the three systems interact by linear summation. In the model SP and OKR dominate VOR in the low- to mid-frequency/velocity range, because they represent closed loop systems with high internal gain values (>1) at these frequencies/velocities, whereas the VOR represents an open loop system with about

  1. The transcutaneous electrical nerve stimulation of variable frequency intensity has a longer-lasting analgesic action than the burst transcutaneous electrical nerve stimulation in cancer pain

    OpenAIRE

    Schleder, Juliana Carvalho; Verner, Fernanda Aparecida; Mauda, Loriane; Mazzo, Débora Melo; Fernandes, Luiz Cláudio

    2017-01-01

    ABSTRACT BACKGROUND AND OBJECTIVES: Pain is one of the most frequent symptoms in cancer, and physical therapy offers non-invasive methods such as the transcutaneous electrical nerve stimulation for the relief of symptoms. The objective of this study was to compare the effect of the burst transcutaneous electrical nerve stimulation with the transcutaneous electrical nerve stimulation with variable intensity frequency in cancer pain. METHODS: This study was conducted with 53 patients of the H...

  2. Behavioural improvement in a minimally conscious state after caloric vestibular stimulation: evidence from two single case studies.

    Science.gov (United States)

    Vanzan, Serena; Wilkinson, David; Ferguson, Heather; Pullicino, Patrick; Sakel, Mohamed

    2017-04-01

    To investigate whether caloric vestibular stimulation, a non-invasive form of neuro-modulation, alters the level of awareness in people residing in a minimally conscious state. Single-case ( n = 2), prospective, controlled (ABAB) efficacy study. Tertiary, neuro-rehabilitation inpatient ward within a university hospital. Two individuals in a minimally conscious state. Left ear caloric vestibular stimulation was performed in two four/five-week blocks interleaved with two four/five-week blocks of sham stimulation. Session duration and frequency gradually increased within each block from once per day for 10 minutes (Week 1) to once per day for 20 minutes (Week 2) to 20 minutes twice per day in the remaining weeks. Wessex Head Injury Matrix, JFK Coma Recovery Scale - Revised. Both participants' Wessex Head Injury Matrix scores indicated a transition from involuntary (i.e. mechanical vocalization) to voluntary (i.e. gesture making, selective responses to family members) behaviour that was time-locked to the onset of active stimulation. In one participant, this improvement persisted for at least four weeks after active stimulation, while in the other it diminished two weeks after stimulation. Allied, although less dramatic, changes were seen on the arousal and auditory subscales of the JFK Coma Recovery Scale - Revised. The data provide the first evidence that vestibular stimulation may help improve outcome in a low awareness state, although further studies are needed to replicate effect and determine longer-term benefit.

  3. An autopsy case of vagus nerve stimulation following acupuncture.

    Science.gov (United States)

    Watanabe, Mayumi; Unuma, Kana; Fujii, Yusuke; Noritake, Kanako; Uemura, Koichi

    2015-03-01

    Acupuncture is one of the most popular oriental medical techniques in China, Korea and Japan. This technique is also popular as alternative therapy in the Western World. Serious adverse events are rare following acupuncture, and fatal cases have been rarely reported. A male in his late forties died right after acupuncture treatment. A medico-legal autopsy disclosed severe haemorrhaging around the right vagus nerve in the neck. Other organs and laboratory data showed no significant findings. Thus, it was determined that the man could have died from severe vagal bradycardia and/or arrhythmia resulting from vagus nerve stimulation following acupuncture. To the best of our knowledge, this is the first report of a death due to vagus nerve injury after acupuncture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI.

    Science.gov (United States)

    Yakunina, Natalia; Kim, Sam Soo; Nam, Eui-Cheol

    2017-04-01

    Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy, depression, and a number of other disorders. Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) has been considered as a non-invasive alternative. Several functional magnetic resonance imaging (fMRI) studies on the effects of tVNS used different stimulation parameters and locations in the ear, which makes it difficult to determine the optimal tVNS methodology. The present study used fMRI to determine the most effective location for tVNS. Four stimulation locations in the ear were compared: the inner tragus, inferoposterior wall of the ear canal, cymba conchae, and earlobe (sham). Thirty-seven healthy subjects underwent two 6-min tVNS stimulation runs per electrode location (monophasic rectangular 500 μs pulses, 25 Hz). General linear model was performed using SPM; region-of-interest analyses were performed for the brainstem areas. Stimulation at the ear canal resulted in the weakest activation of the nucleus of solitary tract (NTS), the recipient of most afferent vagal projections, and of the locus coeruleus (LC), a brainstem nucleus that receives direct input from the NTS. Stimulation of the inner tragus and cymba conchae activated these two nuclei as compared to sham. However, ROI analysis showed that only stimulation of the cymba conchae produced a significantly stronger activation in both the NTS and LC than did the sham stimulation. These findings suggest that tVNS at the cymba conchae properly activates the vagal pathway and results in its strongest activation, and thus may be the optimal location for tVNS therapies applied to the auricle. © 2016 International Neuromodulation Society.

  5. Motor nerve conduction and repetitive nerve stimulation in captive ring-tailed coati (Nasua nasua).

    Science.gov (United States)

    Mortari, Ana Carolina; Rahal, Sheila Canevese; Resende, Luiz Antonio de Lima; Teixeira, Carlos Roberto; Teixeira, Rodrigo Hidalgo Friciello; Mendes, Guilherme Maia

    2012-09-01

    There are few electrophysiologic studies in wild animals. The aim of this study was to determine normal data for motor nerve conduction studies and repetitive stimulation in sciatic-tibial and ulnar nerves in clinically normal captive coati. Eight adult ring-tailed coatis (Nasua nasua), two females and six males weighing 6-8 kg, were used. Average nerve conduction velocity was 70.81 m/sec (standard deviation [SD] = 3.98) and 56.93 m/ sec (SD = 4.31) for the sciatic-tibial and ulnar nerves, respectively. Repetitive stimulation responses demonstrated minimal variations of the area of the compound muscle action potentials at low (3 Hz) and high (20 Hz) frequencies. The maximal obtained decremental area response was 8%. These normal data of conduction studies may be used in assessing abnormalities for clinical diagnosis. In addition, the obtained normal repetitive stimulation data were similar to dogs and humans and may be used for post- and presynaptic disturbances of the neuromuscular transmission in coatis.

  6. Rectal motility after sacral nerve stimulation for faecal incontinence

    DEFF Research Database (Denmark)

    Michelsen, H B; Worsøe, J; Krogh, K

    2010-01-01

    Sacral nerve stimulation (SNS) is effective against faecal incontinence, but the mode of action is obscure. The aim of this study was to describe the effects of SNS on fasting and postprandial rectal motility. Sixteen patients, 14 women age 33-73 (mean 58), with faecal incontinence of various...... CSA was 2999 mm(2) (range: 1481-3822) during fast and 2697 mm(2) (range: 1227-3310) postprandially (P incontinence does not affect phasic rectal motility...

  7. Vagus Nerve Stimulation Affects Pain Perception in Depressed Adults

    OpenAIRE

    Borckardt, Jeffrey J.; F Andrew Kozel; Berry Anderson; Angela Walker; George, Mark S.

    2005-01-01

    BACKGROUND: Previous research suggests that vagus nerve stimulation (VNS) affects pain perception in epilepsy patients, with acute VNS decreasing pain thresholds and chronic VNS treatment increasing pain thresholds. However, no studies have investigated the effects of VNS on pain perception in chronically depressed adults, nor have controlled, systematic investigations been published on the differential effects of certain VNS device parameters on pain perception.OBJECTIVES: The present study ...

  8. An event-related potentials study on selective attention modulated by vestibular stimulation.

    Science.gov (United States)

    Wang, Lin-Jie; Wei, Jin-he; Zhang, Dan; Dong, Wei-jun; Guo, Jian-ping; Hu, Mao-qi

    2004-04-01

    To explore the dynamic change of the late attentional selection process under linearly varied vestibular stimuli using event-related potentials (ERPs) technique. Thirty-three subjects participated in the experiment. They were exposed to vestibular stimulation of constant angular velocity rotation (10 degrees/s) and four levels of constant angular acceleration rotation, the acceleration was 0.6 degrees/s2, 0.8 degrees/s2, 1.0 degrees/s2, 1.2 degrees/s2 respectively. The same auditory go/no-go cognitive task was done during the stimulation. The task involved verbally given Chinese digit number from two to nine with 1000 ms random interval. Subjects were asked to push the button for the odd numbers (target) and withhold to the even numbers (non-target). Compared with control and different level of constant angular acceleration rotation, the N2 amplitude of non-target ERPs (NT-ERPs) decreased significantly over anterior-central scalp during 10 degrees/s constant rotation, but the N2 amplitude of target ERPs (T-ERPs) reduced significantly only at F4, F(Z) and T4 sites. The P3 latency of T-ERPs decreased significantly in 10 degrees/s constant rotation in contrast with control. Under four different acceleration level, the P3 latency of T-ERPs was relatively longer in 0.8 degrees/s2 and 1.0 degrees/s2, but shorter in 0.6 degrees/s2 and 1.2 degrees/s2. Constant angular velocity rotation had an activating effect on late attentional selection process. In contrast to the activation effect of constant angular velocity rotation, constant angular acceleration had an inhibition effect on the cognitive processes and this inhibition effect may have several levels.

  9. EMG responses of the vertical eye muscles to dynamic and static natural vestibular stimulation about different axes in alert rabbits.

    Science.gov (United States)

    Favilla, M; Ghelarducci, B; La Noce, A; Starita, A

    1983-12-05

    The EMG responses of the vertical eye muscles have been recorded in alert intact rabbits submitted to both dynamic and static natural vestibular stimulations about different axes. Following dynamic vestibular stimulation, the phase lead of the EMG response with respect to head position as well as its sensitivity increased with stimulus frequency in all the stimulation modalities. This indicates a progressive recruitment by the stimulus of the second-order vestibular neurons related to semicircular canals. The sensitivity of the response was consistently higher in the effective intermediate roll-pitch modality for all the 4 muscles. Following static stimulation, the EMG response showed an asymmetric modulation. The excitatory response was always higher than the inhibitory one and linearly related with the stimulus. Also for the static stimulation the amplitude of the response was significantly higher when the animal was tilted about the effective intermediate roll-pitch axis for all the 4 muscles. The presence of a maximal EMG response in the same modality for both static and dynamic stimulation indicates a similar spatial organization of those subgroups of ampullar and macular receptors projecting to the same eye muscle.

  10. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals.

    Science.gov (United States)

    Jacobs, Heidi I L; Riphagen, Joost M; Razat, Chantalle M; Wiese, Svenja; Sack, Alexander T

    2015-05-01

    Direct vagus nerve stimulation (dVNS) is known to improve mood, epilepsy, and memory. Memory improvements have been observed in Alzheimer's disease patients after long-term stimulation. The potential of transcutaneous vagus nerve stimulation (tVNS), a noninvasive alternative to dVNS, to alter memory performance remains unknown. We aimed to investigate the effect of a single-session tVNS on associative memory performance in healthy older individuals. To investigate this, we performed a single-blind sham-controlled randomized crossover pilot study in healthy older individuals (n = 30, 50% female). During the stimulation or sham condition, participants performed an associative face-name memory task. tVNS enhanced the number of hits of the memory task, compared with the sham condition. This effect was specific to the experimental task. Participants reported few side effects. We conclude that tVNS is a promising neuromodulatory technique to improve associative memory performance in older individuals, even after a single session. More research is necessary to investigate its underlying neural mechanisms, the impact of varying stimulation parameters, and its applicability in patients with cognitive decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  12. In vivo Photonic Stimulation of Sciatic Nerve with a 1470 nm Laser

    Directory of Open Access Journals (Sweden)

    Marie Dautrebande

    2016-07-01

    Full Text Available Photonic stimulation is a new modality of nerve stimulation, which could overcome some of the electrical stimulation limitations. In this paper, we present the results of photonic stimulation of rodent sciatic nerve with a 1470 nm laser. Muscle activation was observed with radiant exposure of 0.084 J/cm2.

  13. The effect of vagus nerve stimulation on response inhibition.

    Science.gov (United States)

    Schevernels, Hanne; van Bochove, Marlies E; De Taeye, Leen; Bombeke, Klaas; Vonck, Kristl; Van Roost, Dirk; De Herdt, Veerle; Santens, Patrick; Raedt, Robrecht; Boehler, C Nico

    2016-11-01

    In the current study, we explored whether vagus nerve stimulation (VNS) in patients with epilepsy, which is believed to increase norepinephrine (NE) levels via activation of the locus coeruleus, would positively affect response inhibition. Moreover, we tried to identify the dynamics of the underlying neural processes by investigating event-related potentials (ERPs) and pupil size. Patients performed a stop-signal task once when stimulation was switched on and once when it was switched off. We found a correlational pattern suggesting that patients who clinically benefit more from VNS treatment also show a larger behavioral advantage, in terms of faster response inhibition, when the vagus nerve is being stimulated. Event-related potential (ERP) results suggested more pronounced reactive inhibition when stimulation was switched on, independent of the individual amount of seizure reduction. Transient go-locked pupil size was increased from go trials to successful stop trials to unsuccessful stop trials but without displaying a clear VNS effect, which however, might relate to limited sensitivity. We conclude that VNS likely has a positive effect on response inhibition, at least in patients with epilepsy that benefit clinically from the treatment, presumably relating to enhancements of response-inhibition mechanisms and, therefore, identify enhanced response inhibition as a possible cognitive benefit of VNS. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    Science.gov (United States)

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  15. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  16. Ethical, anatomical and physiological issues in developing vestibular implants for human use.

    Science.gov (United States)

    Guyot, Jean-Philippe; Gay, Annietta; Kos, Maria Izabel; Pelizzone, Marco

    2012-01-01

    Effort towards the development of a vestibular implant for human use are being made. This paper will summarize the first important steps conducted in Geneva towards this ambitious goal. Basically, we have faced three major issues. First, an ethical issue. While it was clear that such development would require the collaboration of human volunteers, it was also clear that stimulation of the vestibular system may produce periods of significant incomfort. We know today how to minimize (and potentially eliminate) this type of incomfort. The second issue was anatomical. The anatomical topology of the vestibular system is complex, and of potentially dangerous access (i.e. facial nerve damage). We choose not to place the electrodes inside the ampullae but close the vestibular nerve branches, to avoid any opening of the inner ear and limit the risk of hearing loss. Work on cadaver heads, confirmed by acute stimulations trials on patients undergoing ear surgery under local anesthesia, demonstrated that it is possible to stimulate selectively both the posterior and lateral ampullary nerves, and elicit the expected vertical and horizontal nystagmic responses. The third issue was physiological. One of the goal of a vestibular implant will be to produce smooth eye movements to stabilize gaze direction when the head is moving. Indeed, after restoring a baseline or "rest" activity in the vestibular pathways with steady-state electrical stimulation, we demonstrated that modulation of this stimulation is producing smooth eye movements. In conclusion, humans can adapt to electrical stimulation of the vestibular system without too much discomfort. Surgical access to the posterior and lateral ampullary nerves have been developed and, electrical stimulation of the vestibular system can be used to artificially elicit smooth eye movements of different speeds and directions, once the system is in adapted state. Therefore, the major prerequisites to develop a prototype vestibular implant

  17. Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.

    Science.gov (United States)

    Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.

    1971-01-01

    The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.

  18. Differential activation of nerve fibers with magnetic stimulation in humans

    Directory of Open Access Journals (Sweden)

    Olree Kenneth S

    2006-07-01

    Full Text Available Abstract Background Earlier observations in our lab had indicated that large, time-varying magnetic fields could elicit action potentials that travel in only one direction in at least some of the myelinated axons in peripheral nerves. The objective of this study was to collect quantitative evidence for magnetically induced unidirectional action potentials in peripheral nerves of human subjects. A magnetic coil was maneuvered to a location on the upper arm where physical effects consistent with the creation of unidirectional action potentials were observed. Electromyographic (EMG and somatosensory evoked potential (SEP recordings were then made from a total of 20 subjects during stimulation with the magnetic coil. Results The relative amplitudes of the EMG and SEP signals changed oppositely when the current direction in the magnetic coil was reversed. This effect was consistent with current direction in the coil relative to the arm for all subjects. Conclusion A differential evocation of motor and sensory fibers was demonstrated and indicates that it may be possible to induce unidirectional action potentials in myelinated peripheral nerve fibers with magnetic stimulation.

  19. Vagus nerve stimulation therapy in partial epilepsy: a review.

    Science.gov (United States)

    Panebianco, Mariangela; Zavanone, Chiara; Dupont, Sophie; Restivo, Domenico A; Pavone, Antonino

    2016-09-01

    Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked epileptic seizures. The majority of people given a diagnosis of epilepsy have a good prognosis, but 20-30 % will develop drug-resistant epilepsy. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. It consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator (Neuro-Cybernetic Prosthesis). In 1997, the Food and Drug Administration approved VNS as adjunctive treatment for medically refractory partial-onset seizures in adults and adolescents. This article reviews the literature from 1988 to nowadays. We discuss thoroughly the anatomy and physiology of vagus nerve and the potential mechanisms of actions and clinical applications involved in VNS therapy, as well as the management, safety, tolerability and effectiveness of VNS therapy. VNS for partial seizures appears to be an effective and well tolerated treatment in adult and pediatric patients. People noted improvements in feelings of well-being, alertness, memory and thinking skills, as well as mood. The adverse effect profile is substantially different from the adverse effect profile associated with antiepileptic drugs, making VNS a potential alternative for patients with difficulty tolerating antiepileptic drug adverse effects. Despite the passing years and the advent of promising neuromodulation technologies, VNS remains an efficacy treatment for people with medically refractory epilepsy. Past and ongoing investigations in other indications have provided signals of the therapeutic potential in a wide variety of conditions.

  20. Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Bryan K Ward

    Full Text Available Zebrafish (Danio rerio offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for 'high-throughput' investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish.

  1. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence.......We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  2. Cardiac responses of vagus nerve stimulation: Intraoperative bradycardia and subsequent chronic stimulation

    NARCIS (Netherlands)

    Ardesch, J.J.; Buschman, H.P.J.; van der Burgh, P.H.; Wagener-Schimmel, L.J.; van der Aa, H.E.; Hageman, G.

    OBJECTIVES: Few adverse events on heart rate have been reported with vagus nerve stimulation (VNS) for refractory epilepsy. We describe three cases with intraoperative bradycardia during device testing. PATIENTS AND METHODS: At our hospital 111 patients have received a VNS system. Intraoperative

  3. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation.

    Science.gov (United States)

    Lewis, Richard F; Haburcakova, Csilla; Merfeld, Daniel M

    2008-07-01

    How does the brain calculate the spatial orientation of the head relative to gravity? Psychophysical measurements are critical to investigate this question, but such measurements have been limited to humans. In non-human primates, behavioral measures have focused on vestibular-mediated eye movements, which do not reflect percepts of head orientation. We have therefore developed a method to measure tilt perception in monkeys, derived from the subjective visual vertical (SVV) task. Two rhesus monkeys were trained to align a light bar parallel to gravity and performed this task during roll tilts, centrifugation, and roll optokinetic stimulation. The monkeys accurately aligned the light bar with gravity during static roll tilts but also demonstrated small orientation-dependent misperceptions of the tilt angle analogous to those measured in humans. When the gravito-inertial force (GIF) rotated dynamically in the roll plane, SVV responses remained closely aligned with the GIF during roll tilt of the head (coplanar canal rotational cues present), lagged slightly behind the GIF during variable-radius centrifugation (no canal cues present), and shifted gradually during fixed-radius centrifugation (orthogonal yaw canal cues present). SVV responses also deviated away from the earth-vertical during roll optokinetic stimulation. These results demonstrate that rotational cues derived from the semicircular canals and visual system have prominent effects on psychophysical measurements of roll tilt in rhesus monkeys and therefore suggest that a central synthesis of graviceptive and rotational cues contributes to percepts of head orientation relative to gravity in non-human primates.

  4. Caloric Vestibular Stimulation Reduces Pain and Somatoparaphrenia in a Severe Chronic Central Post-Stroke Pain Patient: A Case Study: e0151213

    National Research Council Canada - National Science Library

    Grazia Fernanda Spitoni; Giorgio Pireddu; Gaspare Galati; Valentina Sulpizio; Stefano Paolucci; Luigi Pizzamiglio

    2016-01-01

    .... To date, there is limited evidence for the effective treatments of this disease. Here we used caloric vestibular stimulation to reduce pain and somatoparaphrenia in a 57-year-old woman suffering from central post-stroke pain...

  5. Effects of vagus nerve stimulation on pupillary function.

    Science.gov (United States)

    Desbeaumes Jodoin, Véronique; Lespérance, Paul; Nguyen, Dang K; Fournier-Gosselin, Marie-Pierre; Richer, Francois

    2015-12-01

    Chronic vagus nerve stimulation (VNS) is a recognized treatment for refractory epilepsy and depression. The vagus nerve projects to several brainstem autonomic structures. As pupillary measures are an easy and non-invasive method to evaluate autonomic functioning, we used resting diameter and light reflex measures to investigate the influence of VNS on the human central autonomic nervous system. We studied 21 patients (7 with major depression, 14 with epilepsy) treated with chronic VNS (30s ON, 5 min OFF stimulation trains). Resting pupil size and light reflex measures were compared in consecutive intervals with (ON) and without stimulation (OFF). Compared to the OFF condition, the ON condition was associated with a significant increase in resting pupil diameter, but did not affect light reflex measures. There was no group difference between the two populations of patients (depression and epilepsy) on any of the pupil measures. VNS at clinically significant levels increases resting pupil diameter. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Right Median Nerve Electrical Stimulation for Acute Traumatic Coma Patients.

    Science.gov (United States)

    Lei, Jin; Wang, Lei; Gao, Guoyi; Cooper, Edwin; Jiang, Jiyao

    2015-10-15

    The right median nerve as a peripheral portal to the central nervous system can be electrically stimulated to help coma arousal after traumatic brain injury (TBI). The present study set out to examine the efficacy and safety of right median nerve electrical stimulation (RMNS) in a cohort of 437 comatose patients after severe TBI from August 2005 to December 2011. The patients were enrolled 2 weeks after their injury and assigned to the RMNS group (n=221) receiving electrical stimulation for 2 weeks or the control group (n = 216) treated by standard management according to the date of birth in the month. The baseline data were similar. After the 2-week treatment, the RMNS-treated patients demonstrated a more rapid increase of the mean Glasgow Coma Score, although statistical significance was not reached (8.43 ± 4.98 vs. 7.47 ± 5.37, p = 0.0532). The follow-up data at 6-month post-injury showed a significantly higher proportion of patients who regained consciousness (59.8% vs. 46.2%, p = 0.0073). There was a lower proportion of vegetative persons in the RMNS group than in the control group (17.6% vs. 22.0%, p = 0.0012). For persons regaining consciousness, the functional independence measurement (FIM) score was higher among the RMNS group patients (91.45 ± 8.65 vs. 76.23 ± 11.02, p coma in the early phase.

  7. Tibial nerve stimulation with a miniature, wireless stimulator in chronic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Sokal P

    2017-03-01

    Full Text Available Paweł Sokal,1 Marek Harat,2 Piotr Zieliński,3 Sara Kierońska1 1Department of Neurosurgery, Military Research Hospital, Bydgoszcz, 2Department of Public Health, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, 3Department of Sports Medicine, University of Physical Education and Sport, Gdansk, Poland Abstract: Peripheral neuropathic pain (PNP and complex regional pain syndrome (CRPS can be effectively treated with peripheral nerve stimulation. In this clinical trial report, effectiveness of novel, miniature, wirelessly controlled microstimulator of tibial nerve in PNP and CRPS was evaluated. In this pilot study the average preoperative visual analog scale (VAS score in six patients was 7.5, with 1, 3 and 6 months: 2.6 (p=0.03, 1.6 (p=0.03, and 1.3 (p=0.02, respectively. The mean average score in the six patients a week preceding the baseline visit was 7.96, preceding the 1, 3 and 6 month visits: 3.32 (p=0.043, 3.65 (p=0.045, and 2.49 (p=0.002, respectively. The average short-form McGill pain score before surgery was 23.8, and after 1, 3 and 6 months it was 11.0 (p=0.45, 6.3 (p=0.043, and 4.5 (p=0.01, respectively. Applied therapy caused a reduction of pain immediately after its application and clinical improvement was sustained on a similar level in all patients for six months. No complications of the treatment were observed. Intermittent tibial nerve stimulation by using a novel, miniature, wirelessly controlled device can be effective and feasible in PNP and CRPS. It is a safe, minimally invasive, and convenient neuromodulative method. Keywords: tibial nerve stimulation, peripheral nerve stimulation, miniature stimulator, peripheral neuropathic pain, complex regional pain syndrome 

  8. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.

    Directory of Open Access Journals (Sweden)

    Diana E Mitchell

    Full Text Available The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR play an essential role in stabilizing the visual axis (gaze, while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1 quantify vestibularly-driven head movements in primates, and 2 assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.

  9. Review of Recent Advances in Peripheral Nerve Stimulation (PNS).

    Science.gov (United States)

    Chakravarthy, Krishnan; Nava, Andrew; Christo, Paul J; Williams, Kayode

    2016-11-01

    Peripheral nerve stimulation (PNS) for the treatment of chronic pain has become an increasingly important field in the arena of neuromodulation, given the ongoing advances in electrical neuromodulation technology since 1999 permitting minimally invasive approaches using an percutaneous approach as opposed to implantable systems. Our review aims to provide clinicians with the recent advances and studies in the field, with specific emphasis on clinical data and indications that have been accumulated over the last several years. In addition, we aim to address key basic science studies to further emphasize the importance of translational research outcomes driving clinical management.

  10. Acute Vagal Nerve Stimulation Lowers α2 Adrenoceptor Availability

    DEFF Research Database (Denmark)

    Landau, Anne M.; Dyve, Suzan; Jakobsen, Steen

    2015-01-01

    Background Vagal nerve stimulation (VNS) emerged as an anti-epileptic therapy, and more recently as a potential antidepressant intervention. Objective/hypothesis We hypothesized that salutary effects of VNS are mediated, at least in part, by augmentation of the inhibitory effects of cortical...... binding potentials for selected brain regions of each animal. Results VNS treatment markedly reduced the binding potential of yohimbine in limbic, thalamic and cortical brain regions, in inverse correlation with the baseline binding potential. Conclusion The result is consistent with release...... of noradrenaline by antidepressant therapy, implying a possible explanation for the antidepressant effect of VNS....

  11. Age-related changes in ocular vestibular-evoked myogenic potentials via galvanic vestibular stimulation and bone-conducted vibration modes.

    Science.gov (United States)

    Chang, Chih-Ming; Young, Yi-Ho; Cheng, Po-Wen

    2012-12-01

    The age-related changes in ocular vestibular-evoked myogenic potentials (oVEMPs) elicited by galvanic vestibular stimulation (GVS) and bone-conducted vibration (BCV) might be attributed to the morphological degeneration of the vestibular system. This study employed GVS and BCV modes for eliciting oVEMPs in healthy subjects to explore the effect of aging on the vestibulo-ocular reflex (VOR) pathway. Sixty-nine healthy subjects (aged 22-69 years) were divided into 5 groups of 12-19 subjects by decades of age. All subjects underwent oVEMPs using GVS and BCV modes. The prevalence and parameters of oVEMPs, including nI latency, pI latency, nI-pI interval, and nI-pI amplitude were measured and compared. The prevalences of GVS-oVEMPs had nonsignificant differences among all age groups, whereas that of BCV-oVEMPs in the over-60 group was significantly lower than those in the under-60 groups. In GVS-oVEMPs, the group over 60 years had significantly longer nI, pI latencies, and smaller amplitudes when compared with those under 60 years. In BCV-oVEMPs, the nI and pI latencies in the over-60 group were significantly longer than those of the under-60 groups, while the nI-pI amplitudes of groups over 50 years were significantly smaller than those of groups under 50 years. All oVEMP parameters exhibited significant differences between GVS- and BCV-oVEMPs in each age group.

  12. Multifaceted Effects of Noisy Galvanic Vestibular Stimulation on Manual Tracking Behavior in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Soojin eLee

    2015-02-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative movement disorder that is characterized clinically by slowness of movement, rigidity, tremor, postural instability, and often cognitive impairments. Recent studies have demonstrated altered cortico-basal ganglia rhythms in PD, which raises the possibility of a role for non-invasive stimulation therapies such as noisy galvanic vestibular stimulation (GVS. We applied noisy GVS to 12 mild-moderately affected PD subjects (Hoehn & Yahr 1.5-2.5 off medication while they performed a sinusoidal visuomotor joystick tracking task, which alternated between 2 task conditions depending on whether the displayed cursor position underestimated the actual error by 30% (‘Better’ or overestimated by 200% (‘Worse’. Either sham or subthreshold, noisy GVS (0.1-10 Hz, 1/f-type power spectrum was applied in pseudorandom order. We used exploratory (Linear Discriminant Analysis with bootstrapping and confirmatory (robust multivariate linear regression methods to determine if the presence of GVS significantly affected our ability to predict cursor position based on target variables. Variables related to displayed error were robustly seen to discriminate GVS in all subjects particularly in the Worse condition. If we considered higher frequency components of the cursor trajectory as noise, the signal-to-noise ratio of cursor trajectory was significantly increased during the GVS stimulation. The results suggest that noisy GVS influenced motor performance of the PD subjects, and we speculate that they were elicited through a combination of mechanisms: enhanced cingulate activity resulting in modulation of frontal midline theta rhythms, improved signal processing in neuromotor system via stochastic facilitation and/or enhanced vigor known to be deficient in PD subjects. Further work is required to determine if GVS has a selective effect on corrective submovements that could not be detected by the current analyses.

  13. Compensation following bilateral vestibular damage

    Directory of Open Access Journals (Sweden)

    Bill J Yates

    2011-12-01

    Full Text Available Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that nonlabyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  14. Compensation following bilateral vestibular damage.

    Science.gov (United States)

    McCall, Andrew A; Yates, Bill J

    2011-01-01

    Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  15. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    Directory of Open Access Journals (Sweden)

    David Beckwée

    2014-06-01

    Full Text Available Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2 that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  16. Anti‐inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation

    Science.gov (United States)

    Sinniger, Valérie; Pellissier, Sonia

    2016-01-01

    Abstract Brain and viscera interplay within the autonomic nervous system where the vagus nerve (VN), containing approximately 80% afferent and 20% efferent fibres, plays multiple key roles in the homeostatic regulations of visceral functions. Recent data have suggested the anti‐inflammatory role of the VN. This vagal function is mediated through several pathways, some of them still debated. The first one is the anti‐inflammatory hypothalamic–pituitary–adrenal axis which is stimulated by vagal afferent fibres and leads to the release of cortisol by the adrenal glands. The second one, called the cholinergic anti‐inflammatory pathway, is mediated through vagal efferent fibres that synapse onto enteric neurons which release acetylcholine (ACh) at the synaptic junction with macrophages. ACh binds to α‐7‐nicotinic ACh receptors of those macrophages to inhibit the release of tumour necrosis (TNF)α, a pro‐inflammatory cytokine. The last pathway is the splenic sympathetic anti‐inflammatory pathway, where the VN stimulates the splenic sympathetic nerve. Norepinephrine (noradrenaline) released at the distal end of the splenic nerve links to the β2 adrenergic receptor of splenic lymphocytes that release ACh. Finally, ACh inhibits the release of TNFα by spleen macrophages through α‐7‐nicotinic ACh receptors. Understanding of these pathways is interesting from a therapeutic point of view, since they could be targeted in various ways to stimulate anti‐inflammatory regulation in TNFα‐related diseases such as inflammatory bowel disease and rheumatoid arthritis. Among others, VN stimulation, either as an invasive or non‐invasive procedure, is becoming increasingly frequent and several clinical trials are ongoing to evaluate the potential effectiveness of this therapy to alleviate chronic inflammation. PMID:27059884

  17. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation.

    Science.gov (United States)

    Bonaz, Bruno; Sinniger, Valérie; Pellissier, Sonia

    2016-10-15

    Brain and viscera interplay within the autonomic nervous system where the vagus nerve (VN), containing approximately 80% afferent and 20% efferent fibres, plays multiple key roles in the homeostatic regulations of visceral functions. Recent data have suggested the anti-inflammatory role of the VN. This vagal function is mediated through several pathways, some of them still debated. The first one is the anti-inflammatory hypothalamic-pituitary-adrenal axis which is stimulated by vagal afferent fibres and leads to the release of cortisol by the adrenal glands. The second one, called the cholinergic anti-inflammatory pathway, is mediated through vagal efferent fibres that synapse onto enteric neurons which release acetylcholine (ACh) at the synaptic junction with macrophages. ACh binds to α-7-nicotinic ACh receptors of those macrophages to inhibit the release of tumour necrosis (TNF)α, a pro-inflammatory cytokine. The last pathway is the splenic sympathetic anti-inflammatory pathway, where the VN stimulates the splenic sympathetic nerve. Norepinephrine (noradrenaline) released at the distal end of the splenic nerve links to the β2 adrenergic receptor of splenic lymphocytes that release ACh. Finally, ACh inhibits the release of TNFα by spleen macrophages through α-7-nicotinic ACh receptors. Understanding of these pathways is interesting from a therapeutic point of view, since they could be targeted in various ways to stimulate anti-inflammatory regulation in TNFα-related diseases such as inflammatory bowel disease and rheumatoid arthritis. Among others, VN stimulation, either as an invasive or non-invasive procedure, is becoming increasingly frequent and several clinical trials are ongoing to evaluate the potential effectiveness of this therapy to alleviate chronic inflammation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II.

    Science.gov (United States)

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-02-01

    The development of vagus nerve stimulation (VNS) began in the 19th century. Although it did not work well initially, it introduced the idea that led to many VNS-related animal studies for seizure control. In the 1990s, with the success of several early clinical trials, VNS was approved for the treatment of refractory epilepsy, and later for the refractory depression. To date, several novel electrical stimulating devices are being developed. New invasive devices are designed to automate the seizure control and for use in heart failure. Non-invasive transcutaneous devices, which stimulate auricular VN or carotid VN, are also undergoing clinical trials for treatment of epilepsy, pain, headache, and others. Noninvasive VNS (nVNS) exhibits greater safety profiles and seems similarly effective to their invasive counterpart. In this review, we discuss the history and development of VNS, as well as recent progress in invasive and nVNS. © 2015 American Headache Society.

  19. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral... the stimulating pulses across the patient's skin to the implanted receiver. (b) Classification. Class...

  20. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator... Implanted diaphragmatic/phrenic nerve stimulator. (a) Identification. An implanted diaphragmatic/phrenic... spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...

  1. Selectivity for Specific Cardiovascular Effects of Vagal Nerve Stimulation With a Multi-Contact Electrode Cuff

    NARCIS (Netherlands)

    Ordelman, Simone Cornelia Maria Anna; Kornet, L.; Cornelussen, R.; Buschman, H.P.J.; Veltink, Petrus H.

    2012-01-01

    The cardiovascular system can be influenced by electrically stimulating the vagal nerve. Selectivity for specific cardiac fibers may be limited when stimulating at the cervical level. Our objective was to increase effectiveness and selectivity for cardiovascular effects of vagal nerve stimulation by

  2. Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users: Intraoperative Recordings.

    Science.gov (United States)

    Bahmer, Andreas; Adel, Youssef; Baumann, Uwe

    2017-12-01

    Triphasic pulse stimulation of the auditory nerve can prevent unintended facial nerve stimulation (FNS) due to a different electromyographic (EMG) input-output function compared with biphasic pulses. FNS is sometimes observed in cochlear implant (CI) users as an unpleasant side effect of electrical stimulation using biphasic pulse patterns (BPP). Clinical remedies to alleviate FNS are 1) to extend stimulus phase duration or 2) to completely deactivate the electrode. In some cases, these options do not provide sufficient FNS reduction or are detrimental to subject performance. Stimulation using triphasic pulse patterns (TPP) has been shown to prevent FNS more effectively, yet the underlying mechanism remains unclear. EMG potentials of muscles innervated by the facial nerve (orbicularis oculi and oris muscles) were recorded to quantitatively compare the effect of BPP and TPP stimulation on FNS. Recordings were conducted in five subjects during CI surgery. In two exemplary cases, different leading phase polarities in alternating and non-alternating order were tested. Compared with our previous study in awake patients using surface electrodes (Bahmer and Baumann, 2016), intraoperative recordings using subdermal electrodes showed lower noise content and allowed higher sampling resolution. While inter-subject variation remained high, intra-subject results for different electrode positions were comparable: FNS was strongly reduced for cathodic-first TPP stimulation. In contrast, exemplary cases showed little reduction for anodic-first TPP as well as for alternating stimulation. FNS in CI users can be reduced using TPP stimulation, but the ameliorative effect appears to be dependent on the leading stimulus polarity.

  3. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    Science.gov (United States)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  4. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I.

    Science.gov (United States)

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-01-01

    The vagus nerve (VN), the "great wondering protector" of the body, comprises an intricate neuro-endocrine-immune network that maintains homeostasis. With reciprocal neural connections to multiple brain regions, the VN serves as a control center that integrates interoceptive information and responds with appropriate adaptive modulatory feedbacks. While most VN fibers are unmyelinated C-fibers from the visceral organs, myelinated A- and B-fiber play an important role in somatic sensory, motor, and parasympathetic innervation. VN fibers are primarily cholinergic but other noncholinergic nonadrenergic neurotransmitters are also involved. VN has four vagal nuclei that provide critical controls to the cardiovascular, respiratory, and alimentary systems. Latest studies revealed that VN is also involved in inflammation, mood, and pain regulation, all of which can be potentially modulated by vagus nerve stimulation (VNS). With a broad vagal neural network, VNS may exert a neuromodulatory effect to activate certain innate "protective" pathways for restoring health. © 2015 American Headache Society.

  5. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis.

    Science.gov (United States)

    Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe

    2014-01-01

    The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  6. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis

    Directory of Open Access Journals (Sweden)

    Angelica ePerez Fornos

    2014-04-01

    Full Text Available The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the Vestibulo-Ocular Reflex (VOR, the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  7. Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-C-0066 TITLE: Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI...Sept 2015 – 22 Sept 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-C-0066 Development of an Implantable Pudendal Nerve Stimulator To...develop an implantable pudendal nerve stimulator to obtain the FDA approval for a future clinical trial to restore bladder function in human after

  8. Prophylactic nimodipine treatment for cochlear and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter Phase III trial.

    Science.gov (United States)

    Scheller, Christian; Wienke, Andreas; Tatagiba, Marcos; Gharabaghi, Alireza; Ramina, Kristofer F; Ganslandt, Oliver; Bischoff, Barbara; Zenk, Johannes; Engelhorn, Tobias; Matthies, Cordula; Westermaier, Thomas; Antoniadis, Gregor; Pedro, Maria Teresa; Rohde, Veit; von Eckardstein, Kajetan; Kretschmer, Thomas; Kornhuber, Malte; Steighardt, Jörg; Richter, Michael; Barker, Fred G; Strauss, Christian

    2016-03-01

    A pilot study of prophylactic nimodipine and hydroxyethyl starch treatment showed a beneficial effect on facial and cochlear nerve preservation following vestibular schwannoma (VS) surgery. A prospective Phase III trial was undertaken to confirm these results. An open-label, 2-arm, randomized parallel group and multicenter Phase III trial with blinded expert review was performed and included 112 patients who underwent VS surgery between January 2010 and February 2013 at 7 departments of neurosurgery to investigate the efficacy and safety of the prophylaxis. The surgery was performed after the patients were randomly assigned to one of 2 groups using online randomization. The treatment group (n = 56) received parenteral nimodipine (1-2 mg/hr) and hydroxyethyl starch (hematocrit 30%-35%) from the day before surgery until the 7th postoperative day. The control group (n = 56) was not treated prophylactically. Intent-to-treat analysis showed no statistically significant effects of the treatment on either preservation of facial nerve function (35 [67.3%] of 52 [treatment group] compared with 34 [72.3%] of 47 [control group]) (p = 0.745) or hearing preservation (11 [23.4%] of 47 [treatment group] compared with 15 [31.2%] of 48 [control group]) (p = 0.530) 12 months after surgery. Since tumor sizes were significantly larger in the treatment group than in the control group, logistic regression analysis was required. The risk for deterioration of facial nerve function was adjusted nearly the same in both groups (OR 1.07 [95% CI 0.34-3.43], p = 0.91). In contrast, the risk for postoperative hearing loss was adjusted 2 times lower in the treatment group compared with the control group (OR 0.49 [95% CI 0.18-1.30], p = 0.15). Apart from dose-dependent hypotension (p nimodipine can be recommended in VS surgery.

  9. Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts.

    Science.gov (United States)

    Ren, Jian; Chew, Daniel J; Biers, Suzanne; Thiruchelvam, Nikesh

    2016-03-01

    In this review, we focus on the current attempts of electrical nerve stimulation for micturition in spinal cord injury (SCI) patients. A literature search was performed through PubMed using "spinal cord injury," "electrical nerve stimulation AND bladder," "sacral anterior root stimulation/stimulator" and "Brindley stimulator" from January 1975 to January 2014. Twenty studies were selected for this review. Electrical nerve stimulation is a clinical option for promoting micturition in SCI patients. Well-designed, randomized and controlled studies are essential for further investigation. © 2015 Wiley Periodicals, Inc.

  10. Vagus nerve stimulation for the treatment of refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Gorgan M.R.

    2015-06-01

    Full Text Available Vagus nerve stimulation (VNS represents one of the main surgical options for the treatment of the refractory epilepsy in pediatric and adult patients. There are several mechanism involved in vagal nerve stimulation which could influence the pathophysiology of seizures like neuromodulation of the thalamic and subthalamic nuclei involved in seizure initiation and the modulation of the neurotransmitters pattern norepinefrin, GABA, and serotonin. The VNS system is composed of the implanted components (the generator, the lead with the electrodes attached and the programming system components (programming wand and handheld computer. The authors present their experience with 81 patients diagnosed with refractory epilepsy, investigated, selected and implanted with vagal neurostimulators between December 2012 and January 2015 in Neurosurgery Clinic, "Bagdasar-Arseni" Emergency Hospital. The surgical technique and the potential pitfalls are described in detail. There were 20 children (24,7% and 61 (75,3% adults in this series. There was no death in this series and no intraoperative incidence. One patient presented dysphagia postoperatively which completely remitted after two months of follow-up. The outcome in term of seizure frequency and severity was better for patients under 30 years compared with patients older than 30 years. VNS represents now a safe, quick and efficient surgical procedure with a minimum period of hospitalization and a short recovery period. The good results on long term improve the quality of life of the patients and facilitate the social and professional reinsertion

  11. Wavelet-based artifact identification and separation technique for EEG signals during galvanic vestibular stimulation.

    Science.gov (United States)

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of -1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters.

  12. Electrophysiological Measurements of Peripheral Vestibular Function-A Review of Electrovestibulography.

    Science.gov (United States)

    Brown, Daniel J; Pastras, Christopher J; Curthoys, Ian S

    2017-01-01

    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.

  13. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    Science.gov (United States)

    Brown, Daniel J.; Pastras, Christopher J.; Curthoys, Ian S.

    2017-01-01

    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system. PMID:28620284

  14. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    Directory of Open Access Journals (Sweden)

    Daniel J. Brown

    2017-05-01

    Full Text Available Electrocochleography (EcochG, incorporating the Cochlear Microphonic (CM, the Summating Potential (SP, and the cochlear Compound Action Potential (CAP, has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG, incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.

  15. Ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty: a multicenter randomized controlled study

    OpenAIRE

    Wang, Fen; Liu, Li-Wei; Hu, Zhen; Peng, Yong; Zhang, Xiao-Qing; Li, Quan

    2015-01-01

    BACKGROUND AND OBJECTIVES: Postoperative analgesia is crucial for early functional excise after total knee arthroplasty. To investigate the clinical efficacy of ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty. METHODS: 46 patients with ASA grade I-III who underwent total knee arthroplasty received ...

  16. Electrical nerve stimulation as an aid to the placement of a brachial plexus block : clinical communication

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2002-07-01

    Full Text Available Most local anaesthetic blocks are placed blindly, based on a sound knowledge of anatomy. Very often the relationship between the site of deposition of local anaesthetic and the nerve to be blocked is unknown. Large motor neurons may be stimulated with the aid of an electrical current. By observing for muscle twitches, through electrical stimulation of the nerve, a needle can be positioned extremely close to the nerve. The accuracy of local anaesthetic blocks can be improved by this technique. By using the lowest possible current a needle could be positioned within 2-5mm of a nerve. The correct duration of stimulation ensures that stimulation of sensory nerves does not occur. The use of electrical nerve stimulation in veterinary medicine is a novel technique that requires further evaluation.

  17. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2012-02-01

    Full Text Available The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidal galvanic vestibular stimulation (sGVS in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial and superior vestibular nuclei (SpVN, MVN and SVN, respectively and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. C-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. C-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately 3-fold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  18. Endoscopic laryngeal patterns in vagus nerve stimulation therapy for drug-resistant epilepsy.

    Science.gov (United States)

    Felisati, Giovanni; Gardella, Elena; Schiavo, Paolo; Saibene, Alberto Maria; Pipolo, Carlotta; Bertazzoli, Manuela; Chiesa, Valentina; Maccari, Alberto; Franzini, Angelo; Canevini, Maria Paola

    2014-01-01

    In 30% of patients with epilepsy seizure control cannot be achieved with medications. When medical therapy is not effective, and epilepsy surgery cannot be performed, vagus nerve stimulator (VNS) implantation is a therapeutic option. Laryngeal patterns in vagus nerve stimulation have not been extensively studied yet. The objective was to evaluate laryngeal patterns in a cohort of patients affected by drug-resistant epilepsy after implantation and activation of a vagus nerve stimulation therapy device. 14 consecutive patients underwent a systematic otolaryngologic examination between 6 months and 5 years after implantation and activation of a vagus nerve stimulation therapy device. All patients underwent fiberoptic endoscopic evaluation, which was recorded on a portable device allowing a convenient slow-motion analysis of laryngeal patterns. All recordings were blindly evaluated by two of the authors. We observed three different laryngeal patterns. Four patients showed left vocal cord palsy at the baseline and during vagus nerve stimulation; seven showed left vocal cord palsy at the baseline and left vocal cord adduction during vagus nerve stimulation; and three patients showed a symmetric pattern at the baseline and constant left vocal cord adduction during vagus nerve stimulation. These laryngeal findings are here described for the first time in the literature and can be only partially explained by existing knowledge of laryngeal muscles and vagus nerve physiology. This might represent a new starting point for studies concerning laryngeal physiology and phonation, while the vagus nerve stimulation therapy could act as a new and ethical experimental model for human laryngeal physiology.

  19. Phrenic nerve stimulation for the treatment of central sleep apnea.

    Science.gov (United States)

    Abraham, William T; Jagielski, Dariusz; Oldenburg, Olaf; Augostini, Ralph; Krueger, Steven; Kolodziej, Adam; Gutleben, Klaus-Jürgen; Khayat, Rami; Merliss, Andrew; Harsch, Manya R; Holcomb, Richard G; Javaheri, Shahrokh; Ponikowski, Piotr

    2015-05-01

    The aim of this study was to evaluate chronic, transvenous, unilateral phrenic nerve stimulation to treat central sleep apnea (CSA) in a prospective, multicenter, nonrandomized study. CSA occurs predominantly in patients with heart failure and increases the risk for morbidity and mortality. Established therapies for CSA are lacking, and those available are limited by poor patient adherence. Fifty-seven patients with CSA underwent baseline polysomnography followed by transvenous phrenic nerve stimulation system implantation and follow-up. Feasibility was assessed by implantation success rate and therapy delivery. Safety was evaluated by monitoring of device- and procedure-related adverse events. Efficacy was evaluated by changes in the apnea-hypopnea index at 3 months. Quality of life at 6 months was evaluated using a sleepiness questionnaire, patient global assessment, and, in patients with heart failure at baseline, the Minnesota Living With Heart Failure Questionnaire. The study met its primary end point, demonstrating a 55% reduction in apnea-hypopnea index from baseline to 3 months (49.5 ± 14.6 episodes/h vs. 22.4 ± 13.6 episodes/h of sleep; p < 0.0001; 95% confidence interval for change: -32.3 to -21.9). Central apnea index, oxygenation, and arousals significantly improved. Favorable effects on quality of life and sleepiness were noted. In patients with heart failure, the Minnesota Living With Heart Failure Questionnaire score significantly improved. Device- or procedure-related serious adverse events occurred in 26% of patients through 6 months post therapy initiation, predominantly due to lead repositioning early in the study. Therapy was well tolerated. Efficacy was maintained at 6 months. Transvenous, unilateral phrenic nerve stimulation appears safe and effective for treating CSA. These findings should be confirmed in a prospective, randomized, controlled trial. (Chronic Evaluation of Respicardia Therapy; NCT01124370). Copyright © 2015 American

  20. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    Science.gov (United States)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  1. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  2. Sensing and stimulation of the vagus nerve for artificial cardiac control

    NARCIS (Netherlands)

    Ordelman, Simone Cornelia Maria Anna

    2012-01-01

    This thesis focuses on sensing cardiovascular signals from the vagus nerve and electrically stimulating the vagus nerve for cardiovascular effects. Sensing cardiovascular signals was attempted on both spontaneous and evoked neural activity. A cardiac-modulated vagus nerve activity pattern was found

  3. A prospective randomised controlled trial of ultrasound guided versus nerve stimulation guided distal sciatic nerve block at the popliteal fossa.

    Science.gov (United States)

    van Geffen, G J; van den Broek, E; Braak, G J J; Giele, J L P; Gielen, M J; Scheffer, G J

    2009-01-01

    The direct visualisation of nerves and adjacent anatomical structures may make ultrasonography the preferred method for nerve localisation. In this prospective randomised study, we investigated whether, for distal sciatic nerve block in the popliteal fossa, an ultrasound guided technique would result in the use of less local anaesthetic without changing block characteristics and quality. Using electrical nerve stimulation or ultrasound guidance, the nerve was identified in two groups of 20 patients scheduled for lower limb surgery. Hereafter lignocaine 1.5% with adrenaline 5 microg/ml was injected. The attending anaesthesiologist assessed the injected volume. Significantly less local anaesthetic was injected in the ultrasound group compared to the nerve stimulation group (17 vs. 37 ml, P success rate was increased (100% vs. 75%; P = 0.017). We conclude that the use of ultrasound localisation for distal sciatic nerve block in the popliteal fossa reduces the required dose of local anaesthetic significantly, and is associated with a higher success rate compared to nerve stimulation without changing block characteristics.

  4. Transcutaneous electrical nerve stimulation for spasticity: A systematic review.

    Science.gov (United States)

    Fernández-Tenorio, E; Serrano-Muñoz, D; Avendaño-Coy, J; Gómez-Soriano, J

    2016-07-26

    Although transcutaneous electrical nerve stimulation (TENS) has traditionally been used to treat pain, some studies have observed decreased spasticity after use of this technique. However, its use in clinical practice is still limited. Our purpose was twofold: to determine whether TENS is effective for treating spasticity or associated symptoms in patients with neurological involvement, and to determine which stimulation parameters exert the greatest effect on variables associated with spasticity. Two independent reviewers used PubMed, PEDro, and Cochrane databases to search for randomised clinical trials addressing TENS and spasticity published before 12 May 2015, and selected the articles that met the inclusion criteria. Of the initial 96 articles, 86 were excluded. The remaining 10 articles present results from 207 patients with a cerebrovascular accident, 84 with multiple sclerosis, and 39 with spinal cord lesions. In light of our results, we recommend TENS as a treatment for spasticity due to its low cost, ease of use, and absence of adverse reactions. However, the great variability in the types of stimulation used in the studies, and the differences in parameters and variables, make it difficult to assess and compare any results that might objectively determine the effectiveness of this technique and show how to optimise parameters. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve

    Science.gov (United States)

    Fisher, L. E.; Tyler, D. J.; Anderson, J. S.; Triolo, R. J.

    2009-08-01

    This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.

  6. Vagus nerve stimulation in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Merrill, Charley A; Jonsson, Michael A G; Minthon, Lennart

    2006-01-01

    Examination (MMSE) were measured as improvement or absence of decline from baseline. Global change, depressive symptoms, and quality of life were also assessed. Cerebrospinal fluid (CSF) levels for total tau, tau phosphorylated at Thr181 (phosphotau), and Abeta42 were measured by standardized enzyme......BACKGROUND: Cognitive-enhancing effects of vagus nerve stimulation (VNS) have been reported during 6 months of treatment in a pilot study of patients with Alzheimer's disease (AD). Data through 1 year of VNS (collected from June 2000 to September 2003) are now reported. METHOD: All patients (N = 17......) met the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for probable AD. Responder rates for the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and Mini-Mental State...

  7. Deqi Sensations of Transcutaneous Electrical Nerve Stimulation on Auricular Points

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2013-01-01

    Full Text Available Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha.

  8. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.

    Science.gov (United States)

    Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-12-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.

  9. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Mulvey, Matthew R; Fawkner, Helen J; Radford, Helen E; Johnson, Mark I

    2012-01-01

      In able-bodied participants, it is possible to induce a sense of perceptual embodiment in an artificial hand using a visual-tactile illusion. In amputee patients, electrical stimulation of sensory afferents using transcutaneous electrical nerve stimulation (TENS) has been shown to generate somatic sensations in an amputee's phantom limb(s). However, the effects of TENS on the perceptual embodiment of an artificial limb are not known. Our objective was to investigate the effects of TENS on the perceptual embodiment of an artificial limb in fully intact able-bodied participants.   We used a modified version of the rubber hand illusion presented to 30 able-bodied participants (16 women, 14 men) to convey TENS paresthesia to an artificial hand. TENS electrodes were located over superficial radial nerve on the lateral aspect of the right forearm (1 cm proximal to the wrist), which was hidden from view. TENS intensity was increased to a strong non-painful TENS sensation (electrical paresthesia) was felt beneath the electrodes and projecting into the fingers of the hand. The electrical characteristics of TENS were asymmetric biphasic electrical pulsed waves, continuous pulse pattern, 120 Hz pulse frequency (rate), and 80 µs pulse duration (width).   Participants reported significantly higher intensities of the rubber hand illusion during the two TENS conditions (mean = 5.8, standard deviation = 1.9) compared with the two non-TENS conditions (mean = 4.9, standard deviation = 1.7), p limb, and this can enhance the sense of perceptual embodiment of an artificial hand. Further exploratory studies involving an amputee population are warranted. © 2011 International Neuromodulation Society.

  10. Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury.

    Science.gov (United States)

    Squair, Jordan W; Bjerkefors, Anna; Inglis, J Timothy; Lam, Tania; Carpenter, Mark G

    2016-07-18

    To use a combination of electrophysiological techniques to determine the extent of preserved muscle activity below the clinically-defined level of motor-complete spinal cord injury. Transcranial magnetic stimulation and vestibular-evoked myogenic potentials were used to investigate whether there was any preserved muscle activity in trunk, hip and leg muscles of 16 individuals with motor-complete spinal cord injury (C4-T12) and 16 able-bodied matched controls. Most individuals (14/16) with motor-complete spinal cord injury were found to have transcranial magnetic stimulation evoked, and/or voluntary evoked muscle activity in muscles innervated below the clinically classified lesion level. In most cases voluntary muscle activation was accompanied by a present transcranial magnetic stimulation response. Furthermore, motor-evoked potentials to transcranial magnetic stimulation could be observed in muscles that could not be voluntarily activated. Vestibular-evoked myogenic potentials responses were also observed in a small number of subjects, indicating the potential preservation of other descending pathways. These results highlight the importance of using multiple electrophysiological techniques to assist in determining the potential preservation of muscle activity below the clinically-defined level of injury in individuals with a motor-complete spinal cord injury. These techniques may provide clinicians with more accurate information about the state of various motor pathways, and could offer a method to more accurately target rehabilitation.

  11. Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network.

    Science.gov (United States)

    Hsu, L-J; Zelenin, P V; Orlovsky, G N; Deliagina, T G

    2012-07-01

    Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were performed on decerebrate rabbits. The vertebral column was rigidly fixed, whereas hindlimbs were positioned on a platform. Periodic lateral tilts of the platform caused postural limb reflexes (PLRs): activation of extensors in the loaded and flexing limb and a decrease in extensor activity in the opposite (unloaded and extending) limb. Putative spinal interneurons were recorded in segments L4-L5 during PLRs, with and without GVS. We have found that GVS enhanced PLRs on the cathode side and reduced them on the anode side. This asymmetry in PLRs can account for changes in the stabilized body orientation observed in normal rabbits subjected to continuous GVS. Responses to platform tilts (frequency modulation) were observed in 106 spinal neurons, suggesting that they can contribute to PLR generation. Two neuron groups were active in opposite phases of the tilt cycle of the ipsi-limb: F-neurons in the flexion phase, and E-neurons in the extension phase. Neurons were driven mainly by afferent input from the ipsi-limb. If one supposes that F- and E-neurons contribute, respectively, to excitation and inhibition of extensor motoneurons, one can expect that the pattern of response to GVS in F-neurons will be similar to that in extensor muscles, whereas E-neurons will have an opposite pattern. We have found that ~40% of all modulated neurons meet this condition, suggesting that they contribute to the generation of PLRs and to the GVS-caused changes in PLRs.

  12. Using Low Levels of Stochastic Vestibular Stimulation to Improve Balance Function.

    Directory of Open Access Journals (Sweden)

    Rahul Goel

    Full Text Available Low-level stochastic vestibular stimulation (SVS has been associated with improved postural responses in the medio-lateral (ML direction, but its effect in improving balance function in both the ML and anterior-posterior (AP directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0-30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45 subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100-500 μA for all the three directions, exhibiting stochastic resonance (SR phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson's disease or in astronauts returning from long-duration space flight.

  13. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation

    DEFF Research Database (Denmark)

    Lundby, Lilli; Møller, Arne; Buntzen, Steen

    2011-01-01

    This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence.......This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence....

  14. A steering electrode array for selective stimulation of sacral nerve roots

    NARCIS (Netherlands)

    Rodrigues, F.J.O.; Mendes, P.; Bartek, M.; Mimoun, B.A.Z.

    2011-01-01

    In this work a cylindrical electrode array to be used for electrical stimulation of sacral nerve roots is studied in respect to its ability to achieve selective stimulation of various spatial regions of the nerve bundle. Simulation results achieved on a simplified model consisting of 6 electrodes

  15. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Science.gov (United States)

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  16. Vagus nerve stimulation for induced spinal cord seizures: insights into seizure cessation.

    Science.gov (United States)

    Tubbs, R Shane; Killingsworth, Cheryl R; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2005-03-01

    Vagus nerve stimulation is known to decrease the frequency, duration, and intensity of some types of intracranial seizures in both humans and animals. Although many theories abound concerning the mechanism for this action, the true cause remains speculative. To potentially elucidate a pathway in which vagus nerve stimulation aborts seizure activity, seizures were initiated not in the cerebral cortex but in the spinal cord and then vagus nerve stimulation was performed. Ten pigs were anesthetized and placed in the lateral position, and a small laminectomy was performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was applied to the dorsal surface of the exposed cord. With the exception of two animals that were used as controls, once seizure activity was discernible via motor convulsion or increased electrical activity the left vagus nerve, which had been previously isolated in the neck, was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation was performed. Vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all (87.5%) but one experimented animal. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation to cause cessation of seizure activity in all study animals. The effects of vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. The authors believe that this experiment is the first to demonstrate that spinal cord neuronal hyperactivity can be suppressed by stimulation of a cranial nerve. These data may aid in the development of alternative mechanisms for electrical stimulation in patients with medically intractable seizures. Further studies are now necessary to isolate which specific tracts, nuclei, and neurotransmitters are involved in

  17. Do the psychological effects of vagus nerve stimulation partially mediate vagal pain modulation?

    Science.gov (United States)

    Frangos, Eleni; Richards, Emily A; Bushnell, M Catherine

    2017-01-01

    There is preclinical and clinical evidence that vagus nerve stimulation modulates both pain and mood state. Mechanistic studies show brainstem circuitry involved in pain modulation by vagus nerve stimulation, but little is known about possible indirect descending effects of altered mood state on pain perception. This possibility is important, since previous studies have shown that mood state affects pain, particularly the affective dimension (pain unpleasantness). To date, human studies investigating the effects of vagus nerve stimulation on pain perception have not reliably measured psychological factors to determine their role in altered pain perception elicited by vagus nerve stimulation. Thus, it remains unclear how much of a role psychological factors play in vagal pain modulation. Here, we present a rationale for including psychological measures in future vagus nerve stimulation studies on pain.

  18. New strategies of pelvic nerves stimulation for recovery of pelvic visceral functions and locomotion in paraplegics.

    Science.gov (United States)

    Possover, Marc; Schurch, Brigitte; Henle, Klaus-Peter

    2010-11-01

    To present new strategies of pelvic nerves stimulation to enhance micturition, to control spasticity, and to recover locomotion in paraplegics. Three consecutive patients-Th5, Th7, and Th10 spinal cord injured-underwent laparoscopic transperitoneal implantation of octipolar electrodes to the sciatic and the pudendal nerves and one double extradural Brindley-Finetech electrode bilaterally to the sacral nerve roots S3 and S4. The two octipolar electrodes were connected to an implanted rechargeable generator, while the double Brindley electrode was connected to an implanted Brindley-Finetech receiver block. Continuous stimulation of the sciatic and pudendal nerves at a frequency of 20 Hz in all three patients permits complete control of the spasticity of the lower extremities and of reflex incontinence. Bladder emptying is obtained by sacral nerve roots stimulation alone in the first patient, by simple interruption of pudendal stimulation in the second ("pudendal-deblockade") and by simultaneous sacral nerve roots stimulation with high-frequency pudendal nerve blockade in the third patient. Functional electrical stimulation of the femoral nerves enables the Th4 paraplegics lower-limb cycling and the two further patients standing and alternative locomotion. This short series indicated that laparoscopic implantation of neuroprothesis to the pelvic nerves offers absolutely new strategies based on new combinations of various reported methods to enhance bladder functions and to recover some locomotion in paraplegics. © 2010 Wiley-Liss, Inc.

  19. The effects of general anaesthesia on nerve-motor response characteristics (rheobase and chronaxie) to peripheral nerve stimulation.

    Science.gov (United States)

    Tsui, B C

    2014-04-01

    Using a simple surface nerve stimulation system, I examined the effects of general anaesthesia on rheobase (the minimum current required to stimulate nerve activity) and chronaxie (the minimum time for a stimulus twice the rheobase to elicit nerve activity). Nerve stimulation was used to elicit a motor response from the ulnar nerve at varying pulse widths before and after induction of general anaesthesia. Mean (SD) rheobase before and after general anaesthesia was 0.91 (0.37) mA (95% CI 0.77-1.04 mA) and 1.11 (0.53) mA (95% CI 0.92-1.30 mA), respectively. Mean (SD) chronaxie measured before and after general anaesthesia was 0.32 (0.17) ms (95% CI 0.26-0.38 ms) and 0.29 (0.13) ms (95% CI 0.24-0.33 ms), respectively. Under anaesthesia, rheobase values increased by an average of 20% (p = 0.05), but chronaxie values did not change significantly (p = 0.39). These results suggest that threshold currents used for motor response from nerve stimulation under general anaesthesia might be higher than those used in awake patients. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  20. Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study

    DEFF Research Database (Denmark)

    Jønsson, Iben; Hagstrøm, Søren; Siggaard, Charlotte

    Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study......Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study...

  1. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III.

    Science.gov (United States)

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-03-01

    Vagus nerve stimulation (VNS) is currently undergoing multiple trials to explore its potential for various clinical disorders. To date, VNS has been approved for the treatment of refractory epilepsy and depression. It exerts antiepileptic or antiepileptogenic effect possibly through neuromodulation of certain monoamine pathways. Beyond epilepsy, VNS is also under investigation for the treatment of inflammation, asthma, and pain. VNS influences the production of inflammatory cytokines to dampen the inflammatory response. It triggers the systemic release of catecholamines that alleviates the asthma attack. VNS induces antinociception by modulating multiple pain-associated structures in the brain and spinal cord affecting peripheral/central nociception, opioid response, inflammation process, autonomic activity, and pain-related behavior. Progression in VNS clinical efficacy over time suggests an underlying disease-modifying neuromodulation, which is an emerging field in neurology. With multiple potential clinical applications, further development of VNS is encouraging. © 2015 American Headache Society.

  2. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    Science.gov (United States)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  3. A novel implantable vagus nerve stimulation system (ADNS-300) for combined stimulation and recording of the vagus nerve: Pilot trial at Ghent University Hospital

    NARCIS (Netherlands)

    El Tahry, R.; Raedt, R.; Mollet, L.; de Herdt, V.; Wyckuys, T.; Van Dycke, A.; Meurs, A.; Dewaele, F.; van Roost, D.; Doguet, P.; Delbeke, J.; Wadman, W.; Vonck, K.; Boon, P.

    2010-01-01

    Purpose: Vagus nerve stimulation (VNS) is an established treatment for refractory epilepsy. The ADNS-300 is a new system for VNS that includes a rechargeable stimulus generator and an electrode for combined stimulation and recording. In this feasibility study, three patients were implanted with

  4. Optimizing nerve cuff stimulation of targeted regions through use of genetic algorithms.

    Science.gov (United States)

    Brill, Natalie; Tyler, Dustin

    2011-01-01

    A nerve cuff electrode is a viable technology for use in a neuroprostheses system to restore loss of function due to neurological injury. The Flat Interface Nerve Electrode (FINE) is a nerve cuff that gently reshapes the nerve to bring the axons closer to the stimulating contacts. The overall goal of this work is to optimize nerve cuff stimulation in upper extremity nerves. Recently, highly efficient and accurate linear models of neuronal activation have been developed in our lab. Using the fast calculations from the newly developed linear activation method, nerve stimulation parameters such as current pulse width and pulse amplitude at many electrode contacts can be explored by employing optimization algorithms. Finite element nerve models with high density electrodes were constructed based on upper extremity cadaveric nerve cross sections. An objective function was developed to target specific groups of nerve fascicles and minimize overlap amongst these groups. By changing the objective function and using a genetic search algorithm, stimulation parameters can be optimized for many contacts.

  5. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  6. Ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty: a multicenter randomized controlled study

    Directory of Open Access Journals (Sweden)

    Fen Wang

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Postoperative analgesia is crucial for early functional excise after total knee arthroplasty. To investigate the clinical efficacy of ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty. METHODS: 46 patients with ASA grade I-III who underwent total knee arthroplasty received postoperative analgesia from October 2012 to January 2013. In 22 patients, ultrasound and nerve stimulator guided continuous femoral nerve block were performed for analgesia (CFNB group; in 24 patients, epidural analgesia was done (PCEA group. The analgesic effects, side effects, articular recovery and complications were compared between two groups. RESULTS: At 6 h and 12 h after surgery, the knee pain score (VAS score during functional tests after active exercise and after passive excise in CFNB were significantly reduced when compared with PCEA group. The amount of parecoxib used in CFNB patients was significantly reduced when compared with PCEA group. At 48 h after surgery, the muscle strength grade in CFNB group was significantly higher, and the time to ambulatory activity was shorter than those in PCEA group. The incidence of nausea and vomiting in CFNB patients was significantly reduced when compared with PCEA group. CONCLUSION: Ultrasound and nerve stimulator guided continuous femoral nerve block provide better analgesia at 6 h and 12 h, demonstrated by RVAS and PVAS. The amount of parecoxib also reduces, the incidence of nausea and vomiting decreased, the influence on muscle strength is compromised and patients can perform ambulatory activity under this condition.

  7. Transcutaneous sacral nerve stimulation for intraoperative verification of internal anal sphincter innervation.

    Science.gov (United States)

    Kauff, D W; Moszkowski, T; Wegner, C; Heimann, A; Hoffmann, K-P; Krüger, T B; Lang, H; Kneist, W

    2017-07-06

    The current standard for pelvic intraoperative neuromonitoring (pIONM) is based on intermittent direct nerve stimulation. This study investigated the potential use of transcutaneous sacral nerve stimulation for non-invasive verification of pelvic autonomic nerves. A consecutive series of six pigs underwent low anterior rectal resection. For transcutaneous sacral nerve stimulation, an array of ten electrodes (cathodes) was placed over the sacral foramina (S2 to S4). Anodes were applied on the back, right and left thigh, lower abdomen, and intra-anally. Stimulation using the novel method and current standard were performed at different phases of the experiments under electromyography of the autonomic innervated internal anal sphincter (IAS). Transcutaneous stimulation induced increase of IAS activity could be observed in each animal under specific cathode-anode configurations. Out of 300 tested configurations, 18 exhibited a change in the IAS activity correlated with intentional autonomic nerve damage. The damage resulted in a significant decrease of the relative area under the curve of the IAS frequency spectrum (P<.001). Comparison of the IAS spectra under transcutaneous and direct stimulation revealed no significant difference (after rectal resection: median 5.99 μV•Hz vs 7.78 μV•Hz, P=.12; after intentional nerve damage: median -0.27 μV•Hz vs 3.35 μV•Hz, P=.29). Non-invasive selective transcutaneous sacral nerve stimulation could be used for verification of IAS innervation. © 2017 John Wiley & Sons Ltd.

  8. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis

    Directory of Open Access Journals (Sweden)

    Na Han

    2015-01-01

    Full Text Available Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.

  9. Microcurrent electrical nerve stimulation facilitates regrowth of mouse soleus muscle.

    Science.gov (United States)

    Ohno, Yoshitaka; Fujiya, Hiroto; Goto, Ayumi; Nakamura, Ayane; Nishiura, Yuka; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Goto, Katsumasa

    2013-01-01

    Microcurrent electrical nerve stimulation (MENS) has been used to facilitate recovery from skeletal muscle injury. However, the effects of MENS on unloading-associated atrophied skeletal muscle remain unclear. Effects of MENS on the regrowing process of unloading-associated atrophied skeletal muscle were investigated. Male C57BL/6J mice (10-week old) were randomly assigned to untreated normal recovery (C) and MENS-treated (M) groups. Mice of both groups are subjected to continuous hindlimb suspension (HS) for 2 weeks followed by 7 days of ambulation recovery. Mice in M group were treated with MENS for 60 min 1, 3, and 5 days following HS, respectively, under anesthesia. The intensity, the frequency, and the pulse width of MENS were set at 10 μA, 0.3 Hz, and 250 msec, respectively. Soleus muscles were dissected before and immediately after, 1, 3 and 7 days after HS. Soleus muscle wet weight and protein content were decreased by HS. The regrowth of atrophied soleus muscle in M group was faster than that in C group. Decrease in the reloading-induced necrosis of atrophied soleus was facilitated by MENS. Significant increases in phosphorylated levels of p70 S6 kinase and protein kinase B (Akt) in M group were observed, compared with C group. These observations are consistent with that MENS facilitated regrowth of atrophied soleus muscle. MENS may be a potential extracellular stimulus to activate the intracellular signals involved in protein synthesis.

  10. Transcutaneous electrical nerve stimulation therapy in reduction of orofacial pain

    Directory of Open Access Journals (Sweden)

    Đorđević Igor

    2014-01-01

    Full Text Available Introduction. Patients with craniomandibular disorders suffer from hypertonic, fatigued and painful masticatory muscles. This condition can lead to limitation of mandibular jaw movements. All of these symptoms and signs are included in myofascial pain dysfunction syndrome. Transcutaneous electrical nerve stimulation (TENS has been used for treatment of these patients. Objective. The aim of this study was to assess the effect of TENS therapy on chronic pain reduction in patients with the muscular dysfunction symptom. Methods. In order to evaluate the effect of TENS therapy before and after the treatment, Craniomandibular Index (Helkimo was used. Pain intensity was measured by VAS. Patients had TENS treatment over two-week period. BURST TENS modality was used. Current intensity was individually adjusted. Results. Two patients did not respond to TENS therapy. Complete pain reduction was recorded in 8 patients, while pain reduction was not significantly different after TENS therapy in 10 patients. Conclusion. TENS therapy was confirmed as therapeutic procedure in orofacial muscle relaxation and pain reduction.

  11. Utility of repetitive nerve stimulation test for ALS diagnosis.

    Science.gov (United States)

    Hatanaka, Yuki; Higashihara, Mana; Chiba, Takashi; Miyaji, Yosuke; Kawamura, Yasuomi; Sonoo, Masahiro

    2017-05-01

    Decremental responses in the repetitive nerve stimulation (RNS) test in amyotrophic lateral sclerosis (ALS) patients have been reported, although their possible diagnostic role has received little investigation. We investigated their diagnostic role in differentiation between ALS and cervical spondylotic amyotrophy (CSA), an important ALS mimic especially in Japan. Patients were prospectively enrolled and the diagnosis was confirmed by follow-up. RNS was performed on the abductor pollicis brevis (APB), upper trapezius (trapezius) and deltoid muscles. Enrolled subjects consisted of 53 ALS and 37 CSA patients. Abnormal decremental responses (>5%) were observed in 32%, 51% and 75% of ALS patients and 3%, 0% and 20% of CSA patients for the APB, trapezius and deltoid muscles, respectively. The sensitivity for 23 ALS patients with upper-limb onset was 78% for the trapezius and 100% for the deltoid muscles. An abnormal decremental response in the trapezius muscle was 100% specific to ALS in comparison with CSA: abnormal decrement in this muscle would strongly suggest ALS. No decrement in the deltoid muscle might exclude ALS in patients having symptoms with upper-limb onset. RNS is useful in differentiation between ALS and CSA. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Targeting plasticity with vagus nerve stimulation to treat neurological disease.

    Science.gov (United States)

    Hays, Seth A; Rennaker, Robert L; Kilgard, Michael P

    2013-01-01

    Pathological neural activity in a variety of neurological disorders could be treated by directing plasticity to specifically renormalize aberrant neural circuits, thereby restoring normal function. Brief bursts of acetylcholine and norepinephrine can enhance the neural plasticity associated with coincident events. Vagus nerve stimulation (VNS) represents a safe and effective means to trigger the release of these neuromodulators with a high degree of temporal control. VNS-event pairing can generate highly specific and long-lasting plasticity in sensory and motor cortex. Based on the capacity to drive specific changes in neural circuitry, VNS paired with experience has been successful in effectively ameliorating animal models of chronic tinnitus, stroke, and posttraumatic stress disorder. Targeted plasticity therapy utilizing VNS is currently being translated to humans to treat chronic tinnitus and improve motor recovery after stroke. This chapter will discuss the current progress of VNS paired with experience to drive specific plasticity to treat these neurological disorders and will evaluate additional future applications of targeted plasticity therapy. © 2013 Elsevier B.V. All rights reserved.

  13. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves.

    Science.gov (United States)

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-07-25

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.

  14. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  15. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults.

    Science.gov (United States)

    Gibson, William; Wand, Benedict M; O'Connell, Neil E

    2017-09-14

    Neuropathic pain, which is due to nerve disease or damage, represents a significant burden on people and society. It can be particularly unpleasant and achieving adequate symptom control can be difficult. Non-pharmacological methods of treatment are often employed by people with neuropathic pain and may include transcutaneous electrical nerve stimulation (TENS). This review supersedes one Cochrane Review 'Transcutaneous electrical nerve stimulation (TENS) for chronic pain' (Nnoaham 2014) and one withdrawn protocol 'Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults' (Claydon 2014). This review replaces the original protocol for neuropathic pain that was withdrawn. To determine the analgesic effectiveness of TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. We searched CENTRAL, MEDLINE, Embase, PsycINFO, AMED, CINAHL, Web of Science, PEDro, LILACS (up to September 2016) and various clinical trials registries. We also searched bibliographies of included studies for further relevant studies. We included randomised controlled trials where TENS was evaluated in the treatment of central or peripheral neuropathic pain. We included studies if they investigated the following: TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. Two review authors independently screened all database search results and identified papers requiring full-text assessment. Subsequently, two review authors independently applied inclusion/exclusion criteria to these studies. The same review authors then independently extracted data, assessed for risk of bias using the Cochrane standard tool and rated the quality of evidence using GRADE. We included 15 studies with 724 participants. We found a

  16. Adverse outcomes associated with nerve stimulator-guided and ultrasound-guided peripheral nerve blocks by supervised trainees: update of a single-site database.

    Science.gov (United States)

    Orebaugh, Steven L; Kentor, Michael L; Williams, Brian A

    2012-01-01

    We previously published a retrospective review of complications related to peripheral nerve blocks performed by supervised trainees, from our quality assurance and billing data, guided by either ultrasound, with nerve stimulator confirmation, or landmark-based nerve stimulator techniques. This report updates our results, for the period from May 2008 through December 2011, representing ongoing transition to near-complete combined ultrasound/nerve stimulator guidance in a block-oriented, outpatient orthopedic anesthesia practice. We queried our deidentified departmental quality improvement electronic database for adverse outcomes associated with peripheral nerve blocks. Billing records were also deidentified and used to provide the denominator of total number of blocks using each technique of neurolocation. The types of blocks considered in this analysis were interscalene, axillary, femoral, sciatic, and popliteal-sciatic blocks. Nerve block complications based on each type of guidance were then compared for the entire recent 30-month time period, as well as for the 6-year period of this report. There were 9062 blocks performed by ultrasound/nerve stimulator, and 5436 by nerve stimulator alone over the entire 72-month period. Nerve injuries lasting longer than 1 year were rare, but similar in frequency with both nerve guidance techniques. The incidence of local anesthetic systemic toxicity was found to be higher with landmark-nerve stimulator technique than with use of ultrasound-guided nerve blocks (6/5436 vs 0/9069, P = 0.0061). We report a large series of combined ultrasound/nerve stimulator nerve blocks by supervised trainees without major local anesthetic systemic toxicity. While lacking the compelling evidence of randomized controlled trials, this observational database nonetheless allows increased confidence in the safety of using combined ultrasound/nerve stimulator in the setting of anesthesiologists-in-training.

  17. Standing after Spinal Cord Injury with Four-contact Nerve-Cuff Electrodes for Quadriceps Stimulation

    OpenAIRE

    Fisher, Lee E.; Miller, Michael E.; Bailey, Stephanie N.; Davis, John A; Anderson, James S.; Murray, Lori R.; Tyler, Dustin J.; Triolo, Ronald J.

    2008-01-01

    This report describes the performance of a 16-channel implanted neuroprosthesis for standing and transfers after spinal cord injury including four-contact nerve-cuff electrodes stimulating the femoral nerve for knee extension. Responses of the nerve-cuffs were stable and standing times increased by 600% over time-matched values with a similar 8-channel neuroprosthesis utilizing muscle-based electrodes on vastus lateralis for knee extension.

  18. Neurotransmitters in the vestibular system.

    Science.gov (United States)

    Balaban, C D

    2016-01-01

    Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders. © 2016 Elsevier B.V. All rights reserved.

  19. Comparison of electrical nerve stimulation, electrical muscle stimulation and magnetic nerve stimulation to assess the neuromuscular function of the plantar flexor muscles.

    Science.gov (United States)

    Neyroud, Daria; Temesi, John; Millet, Guillaume Y; Verges, Samuel; Maffiuletti, Nicola A; Kayser, Bengt; Place, Nicolas

    2015-07-01

    As it might lead to less discomfort, magnetic nerve stimulation (MNS) is increasingly used as an alternative to electrical stimulation methods. Yet, MNS and electrical nerve stimulation (ENS) and electrical muscle stimulation (EMS) have not been formally compared for the evaluation of plantar flexor neuromuscular function. We quantified plantar flexor neuromuscular function with ENS, EMS and MNS in 10 volunteers in fresh and fatigued muscles. Central alterations were assessed through changes in voluntary activation level (VAL) and peripheral function through changes in M-wave, twitch and doublet (PS100) amplitudes. Discomfort associated with 100-Hz paired stimuli delivered with each method was evaluated on a 10-cm visual analog scale. VAL, agonist and antagonist M-wave amplitudes and PS100 were similar between the different methods in both fresh and fatigued states. Potentiated peak twitch was lower in EMS compared to ENS, whereas no difference was found between ENS and MNS for any parameter. Discomfort associated with MNS (1.5 ± 1.4 cm) was significantly less compared to ENS (5.5 ± 1.9 cm) and EMS (4.2 ± 2.6 cm) (p evaluate neuromuscular properties, MNS, EMS and ENS can be used interchangeably for plantar flexor neuromuscular function assessment as they provide similar evaluation of central and peripheral factors in unfatigued and fatigued states. Importantly, electrical current spread to antagonist muscles was similar between the three methods while discomfort from MNS was much less compared to ENS and EMS. MNS may be potentially employed to assess neuromuscular function of plantar flexor muscles in fragile populations.

  20. Stimulating catheter as a tool to evaluate peripheral nerve function during hip rotationplasty

    NARCIS (Netherlands)

    Werdehausen, Robert; Braun, Sebastian; Hermanns, Henning; Krauspe, Rüdiger; Lipfert, Peter; Stevens, Markus F.

    2007-01-01

    Objective: Stimulating catheters have been introduced into clinical practice to confirm perineural localization of the catheters. The muscular twitch induced over the catheter may be used to evaluate nerve function intraoperatively. Therefore, the function of the sciatic nerve was evaluated during

  1. Percutaneous tibial nerve stimulation as neuromodulative treatment of chronic pelvic pain.

    NARCIS (Netherlands)

    Balken, M.R. van; Vandoninck, V.; Messelink, B.J.; Vergunst, H.; Heesakkers, J.P.F.A.; Debruyne, F.M.J.; Bemelmans, B.L.H.

    2003-01-01

    PURPOSE: Neuromodulative therapies have been used with moderate success in patients with chronic pelvic pain. Intermittent Percutaneous Tibial Nerve Stimulation (PTNS) is a new, minimally invasive treatment option, which has shown to significantly decrease accompanying pain complaints in patients

  2. Nociception specific supraorbital nerve stimulation may prevent cluster headache attacks: serendipity in a blink reflex study.

    Science.gov (United States)

    Haane, Danielle Y P; Koehler, Peter J

    2014-10-01

    In cluster headache, neuromodulation is offered when patients are refractory to pharmacological prophylaxis. Non-invasive peripheral neuromodulatory approaches are of interest. We will focus on these and particularly on nociception specific, transcutaneous supraorbital nerve stimulation. In a study using the nociception specific blink reflex, we made a serendipitous discovery, notably the potential prophylactic effect of bilateral, time contingent, nociception specific, transcutaneous stimulation of the supraorbital nerve. We report on a case series of seven cluster headache patients, in whom attacks seemed to disappear during repeated stimulation of the supraorbital nerves. Three patients stopped experiencing attacks since study participation. Bilateral, time contingent, nociception specific, transcutaneous supraorbital nerve stimulation may have a prophylactic effect in episodic and chronic cluster headache. Given its limited side effects and its non-invasive nature, further studies to investigate this potential peripheral neuromodulatory approach for both episodic and chronic cluster headache are warranted. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Dorsal penile nerve stimulation elicits left-hemisphere dominant activation in the second somatosensory cortex.

    Science.gov (United States)

    Mäkelä, J P; Illman, M; Jousmäki, V; Numminen, J; Lehecka, M; Salenius, S; Forss, N; Hari, R

    2003-02-01

    Activation of peripheral mixed and cutaneous nerves activates a distributed cortical network including the second somatosensory cortex (SII) in the parietal operculum. SII activation has not been previously reported in the stimulation of the dorsal penile nerve (DPN). We recorded somatosensory evoked fields (SEFs) to DPN stimulation from 7 healthy adults with a 122-channel whole-scalp neuromagnetometer. Electrical pulses were applied once every 0.5 or 1.5 sec to the left and right DPN. For comparison, left and right median and tibial nerves were stimulated alternatingly at 1.5-sec intervals. DPN stimuli elicited weak, early responses in the vicinity of responses to tibial nerve stimulation in the primary somatosensory cortex. Strong later responses, peaking at 107-126 msec were evoked in the SII cortices of both hemispheres, with left-hemisphere dominance. In addition to tactile processing, SII could also contribute to mediating emotional effects of DPN stimuli. Copyright 2002 Wiley-Liss, Inc.

  4. Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    Karim, H T; Fuhrman, S I; Furman, J M; Huppert, T J

    2013-08-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive and portable neuroimaging technique. The method uses non-ionizing laser light in the range of red to near-infrared to detect changes in cerebral blood oxygenation. In this study, we used fNIRS to investigate cortical hemodynamic changes in the temporo-parietal and frontal regions during caloric vestibular stimulation. Caloric stimulation has previously been investigated using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which serves as a validation of the fNIRS imaging modality toward the measurement of vestibular related brain regions. To date, only a single study has used fNIRS during caloric irrigations, which observed blood volume changes in the temporal-parietal area in healthy younger subjects. In this current study, fNIRS was used to measure cortical vestibular activation in 10 right-handed younger subjects (5 male and 5 female, age 25+/-6 years) and 10 right-handed older subjects (6 male and 4 female, age 74+/-5 years). We investigated both warm (44 °C) and cool (30 °C) unilateral caloric vestibular stimulation. Consistent with previous reports, we found that warm (44 °C) caloric irrigation caused a bilateral activation. In addition, we found that cool (30 °C) caloric irrigation caused contralateral activation of the temporo-parietal area. This study is the first to investigate age effects of the caloric stimulation on brain activity. We found that the older subjects had stronger bilateral effects than the younger subjects. Our results confirm previous fMRI and PET studies that showed cortical activation during caloric vestibular irrigation is dependent on side of irrigation, and temperature of irrigation. Furthermore, our results demonstrate that fNIRS is a viable technique in measuring cortical effects during vestibular tasks. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Left phrenic nerve anatomy relative to the coronary venous system: Implications for phrenic nerve stimulation during cardiac resynchronization therapy.

    Science.gov (United States)

    Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A

    2015-07-01

    The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. © 2015 Wiley Periodicals, Inc.

  6. Successful removal and reimplant of vagal nerve stimulator device after 10 years

    Directory of Open Access Journals (Sweden)

    Marco Giulioni

    2012-01-01

    Full Text Available The number of implanted vagal nerve stimulators is growing and the need for removal or revision of the devices will become even more frequent. A significant concern about Vagus Nerve Stimulation (VNS therapy is the presence of the spiral stimulating electrodes, wrapped around the nerve, once treatment is considered ineffective or is no longer desired. Our purpose is to demonstrate the feasibility of complete removal and replacement of the vagal nerve stimulator electrodes using microsurgical technique even after a long period, without damaging the nerve. We attempted removal and replacement of spiral stimulating electrodes from a patient who received a 10-year long VNS therapy for drug-resistant epilepsy. Our results indicate that the spiral electrodes may be safely removed from the vagus nerve, even after several years. The reversibility of lead implantation may enhance the attractiveness of VNS therapy. Furthermore, with a correct microsurgical technique, it is possible to respect the normal anatomy and functionality of vagal nerve and to reimplant a new VNS system with all its components, maintaining the same therapeutic efficacy after many years.

  7. [Study of the facial nerve motor pathway with the transcranial cerebral magnetic stimulation technique].

    Science.gov (United States)

    Barona, R; Escudero, J; López-Trigo, J; Escudero, M; Armengot, M

    1992-01-01

    Transcranial magnetic stimulation method permits the study of the facial nerve in all its aspects (motor cortex-alpha moto-neurone-facial muscle) in an non invasive and painless way. We studied 12 patients using two levels of stimuli, the first was at an occipital level and the second at the primary motor cortex in the frontal lobe. We compared the results of this technique with those obtained by electric stimulation of the nerve.

  8. Vagal nerve stimulation for medically refractory epilepsy in Angelman syndrome: a series of three cases.

    Science.gov (United States)

    Tomei, Krystal L; Mau, Christine Y; Ghali, Michael; Pak, Jayoung; Goldstein, Ira M

    2018-03-01

    We describe three children with Angelman syndrome and medically refractory epilepsy. Case series of three pediatric patients with Angelman syndrome and medically refractory epilepsy. All three patients failed medical treatment and were recommended for vagal nerve stimulator (VNS) implantation. Following VNS implantation, all three patients experienced reduction in seizure frequency greater than that afforded by medication alone. We present vagal nerve stimulator implantation as a viable treatment option for medically refractory epilepsy associated with Angelman syndrome.

  9. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  10. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  11. Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults.

    Science.gov (United States)

    Johnson, Mark I; Claydon, Leica S; Herbison, G Peter; Jones, Gareth; Paley, Carole A

    2017-10-09

    Fibromyalgia is characterised by persistent, widespread pain; sleep problems; and fatigue. Transcutaneous electrical nerve stimulation (TENS) is the delivery of pulsed electrical currents across the intact surface of the skin to stimulate peripheral nerves and is used extensively to manage painful conditions. TENS is inexpensive, safe, and can be self-administered. TENS reduces pain during movement in some people so it may be a useful adjunct to assist participation in exercise and activities of daily living. To date, there has been only one systematic review in 2012 which included TENS, amongst other treatments, for fibromyalgia, and the authors concluded that TENS was not effective. To assess the analgesic efficacy and adverse events of TENS alone or added to usual care (including exercise) compared with placebo (sham) TENS; no treatment; exercise alone; or other treatment including medication, electroacupuncture, warmth therapy, or hydrotherapy for fibromyalgia in adults. We searched the following electronic databases up to 18 January 2017: CENTRAL (CRSO); MEDLINE (Ovid); Embase (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS; PEDRO; Web of Science (ISI); AMED (Ovid); and SPORTDiscus (EBSCO). We also searched three trial registries. There were no language restrictions. We included randomised controlled trials (RCTs) or quasi-randomised trials of TENS treatment for pain associated with fibromyalgia in adults. We included cross-over and parallel-group trial designs. We included studies that evaluated TENS administered using non-invasive techniques at intensities that produced perceptible TENS sensations during stimulation at either the site of pain or over nerve bundles proximal (or near) to the site of pain. We included TENS administered as a sole treatment or TENS in combination with other treatments, and TENS given as a single treatment or as a course of treatments. Two review authors independently determined study eligibility by assessing each record and

  12. Facial demyelinating neuropathy caused by previous stereotactic irradiation to a vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Makoto; Kurita, Hiroki; Sasaki, Tomio [Tokyo Univ. (Japan). Faculty of Medicine

    1997-12-01

    This is a report of a vestibular schwannoma patient who received surgical treatment 8 months after stereotactic gamma knife irradiation. The previous irradiation caused facial demyelinating neuropathy of the facial nerve, and it made the identification and preservation of the nerve during subsequent microsurgery difficult. In the affected nerve segments, stimulation even to the exposed facial nerve evoked only attenuated response or no responses in electromyography. As a result, the flattened facial nerve located behind the tumor was indistinguishable. In order to prevent damage of the facial nerve, subcapsular tumor removal had to be performed at the demyelinated segments. This sequela of stereotactic irradiation should be considered when the irradiation is planned as a primary treatment modality of a vestibular schwannoma, in particular in young patients who will eventually receive another surgery afterwards. (author)

  13. Somatosensory evoked potentials elicited by dorsal penile and posterior tibial nerve stimulation.

    Science.gov (United States)

    Fitzpatrick, D F; Hendricks, S E; Graber, B; Balogh, S E; Wetzel, M

    1989-01-01

    SEPs were elicited by stimulation of the dorsal penile nerve (DPN) or posterior tibial nerve (PTN) under 3 conditions of stimulation: random and constant interstimulus intervals, and subject-initiated stimulation. Within these conditions, the effects of repeated stimulation were also examined. The latency of the N90 peak decreased with repeated stimulation. N90 amplitude decreased with increased foreknowledge as well as with repeated stimulation. Factors extracted by principal components analysis revealed similar effects. A difference between DPN and PTN stimulation was seen in a factor associated with the N90 peak, wherein the condition involving subject self-initiation of the stimulus reflected a significantly greater decrease in SEP amplitude when the DPN was stimulated. Morphological commonalities were observed in the SEPs elicited by DPN and PTN for a given subject.

  14. Extracorporeal stimulation of sacral nerve roots for observation of pelvic autonomic nerve integrity: Description of a novel methodological setup.

    Science.gov (United States)

    Moszkowski, Tomasz; Kauff, Daniel; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin; Krueger, Thilo; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner

    2017-05-12

    Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.

  15. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  16. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation.

    Science.gov (United States)

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan

    2009-05-01

    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  17. Increased electrical nerve stimulation threshold of the sciatic nerve in patients with diabetic foot gangrene: a prospective parallel cohort study.

    Science.gov (United States)

    Keyl, Cornelius; Held, Tanja; Albiez, Georg; Schmack, Astrid; Wiesenack, Christoph

    2013-07-01

    Peripheral neuropathy may affect nerve conduction in patients with diabetes mellitus. This study was designed to test the hypothesis that the electrical stimulation threshold for a motor response of the sciatic nerve is increased in patients suffering from diabetic foot gangrene compared to non-diabetic patients. Prospective non-randomised trial with two parallel groups. Two university-affiliated hospitals. Patients scheduled for surgical treatment of diabetic foot gangrene (n = 30) and non-diabetic patients (n = 30) displaying no risk factors for neuropathy undergoing orthopaedic foot or ankle surgery. The minimum current intensity required to elicit a typical motor response (dorsiflexion or eversion of the foot) at a pulse width of 0.1 ms and a stimulation frequency of 1 Hz when the needle tip was positioned under ultrasound control directly adjacent to the peroneal component of the sciatic nerve. The non-diabetic patients were younger [64 (SD 12) vs. 74 (SD 7) years] and predominantly female (23 vs. 8). The geometric mean of the motor stimulation threshold was 0.26 [95% confidence interval (95% CI) 0.24 to 0.28] mA in non-diabetic and 1.9 (95% CI 1.6 to 2.2) mA in diabetic patients. The geometric mean of the electrical stimulation threshold was significantly (P diabetic compared to non-diabetic patients. The electrical stimulation threshold for a motor response of the sciatic nerve is increased by a factor of 7.2 in patients with diabetic foot gangrene, which might hamper nerve identification.

  18. Efficacy of Electrical Pudendal Nerve Stimulation versus Transvaginal Electrical Stimulation in Treating Female Idiopathic Urgency Urinary Incontinence.

    Science.gov (United States)

    Wang, Siyou; Lv, Jianwei; Feng, Xiaoming; Lv, Tingting

    2017-06-01

    We compared the efficacy of electrical pudendal nerve stimulation vs transvaginal electrical stimulation to treat female idiopathic urgency urinary incontinence. A total of 120 female patients with idiopathic urgency urinary incontinence refractory to medication were randomized at a ratio of 2:1 to group 1 of 80 patients and group 2 of 40. Groups 1 and 2 were treated with electrical pudendal nerve stimulation and transvaginal electrical stimulation, respectively. To perform electrical pudendal nerve stimulation long acupuncture needles were deeply inserted into 4 sacrococcygeal points and electrified to stimulate pudendal nerves. Outcome measures were the 24-hour pad test and a questionnaire to measure the severity of symptoms and quality of life in women with urgency urinary incontinence. The median severity of symptoms and quality of life score on the urgency urinary incontinence questionnaire (urgency urinary incontinence total score) was 13 (range 7 to 18.75) in group 1 and 11 (range 8 to 16) in group 2 before treatment, which decreased to 2 (range 0 to 6.75) in group 1 and 6.5 (range 3.25 to 10.75) in group 2 (both p incontinence total score was lower and the therapeutic effect was better in group 1 than in group 2 (both p incontinence. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. A micro-scale printable nanoclip for electrical stimulation and recording in small nerves

    Science.gov (United States)

    Lissandrello, Charles A.; Gillis, Winthrop F.; Shen, Jun; Pearre, Ben W.; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Gardner, Timothy J.

    2017-06-01

    Objective. The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. Approach. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. Main results. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Significance. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.

  20. The efficiency of simultaneous binaural ocular vestibular evoked myogenic potentials: a comparative study with monaural acoustic stimulation in healthy subjects.

    Science.gov (United States)

    Kim, Min-Beom; Ban, Jae Ho

    2012-12-01

    To evaluate the test-retest reliability and convenience of simultaneous binaural acoustic-evoked ocular vestibular evoked myogenic potentials (oVEMP). Thirteen healthy subjects with no history of ear diseases participated in this study. All subjects underwent oVEMP test with both separated monaural acoustic stimulation and simultaneous binaural acoustic stimulation. For evaluating test-retest reliability, three repetitive sessions were performed in each ear for calculating the intraclass correlation coefficient (ICC) for both monaural and binaural tests. We analyzed data from the biphasic n1-p1 complex, such as latency of peak, inter-peak amplitude, and asymmetric ratio of amplitude in both ears. Finally, we checked the total time required to complete each test for evaluating test convenience. No significant difference was observed in amplitude and asymmetric ratio in comparison between monaural and binaural oVEMP. However, latency was slightly delayed in binaural oVEMP. In test-retest reliability analysis, binaural oVEMP showed excellent ICC values ranging from 0.68 to 0.98 in latency, asymmetric ratio, and inter-peak amplitude. Additionally, the test time was shorter in binaural than monaural oVEMP. oVEMP elicited from binaural acoustic stimulation yields similar satisfactory results as monaural stimulation. Further, excellent test-retest reliability and shorter test time were achieved in binaural than in monaural oVEMP.

  1. Temperature-controlled optical stimulation of the rat prostate cavernous nerves

    Science.gov (United States)

    Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  2. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  3. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.

    Science.gov (United States)

    You, Mengxian; Mou, Zongxia

    2017-07-01

    This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

  4. Removal of Vagus Nerve Stimulator Leads and Reuse of Same Site for Reimplantation: Technique and Experience.

    Science.gov (United States)

    Kumar, Ramesh; Winston, Ken R; Folzenlogen, Zach

    2016-07-01

    This report describes the authors' experience and technique in removing vagus nerve stimulator leads, including coils, and reuse of the same site on the vagus nerve for implantation of new coils. The charts of all patients who underwent complete removal by the authors of vagus nerve stimulator leads between 1 September 2001 and 1 July 2015 were retrospectively reviewed. Thirty patients underwent 31 surgeries for removal of vagus nerve stimulator leads. Complete removal, including proximal coils around the vagus nerve, was achieved in all cases. Reimplantation was performed immediately at the same location in 24 patients, delayed in 1 patient, and never replaced in 6. Long-term vocal cord paralysis followed 2 of 9 surgeries performed with sharp dissection and followed one of 22 surgeries in which dissection was performed with monopolar microneedle electrocautery. Vagus nerve stimulator coils can be removed from the vagus nerve, via monopolar microneedle electrocautery, and the same site reused for immediate reimplantation with relative safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Optical and electrical stimulation of the rat prostate cavernous nerves: priming and fatigue studies

    Science.gov (United States)

    Kaouk, Ghallia S.; Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2015-02-01

    Optical nerve stimulation (ONS) is being explored as an alternative to electrical nerve stimulation (ENS) for use as an intra-operative diagnostic method for identification and preservation of prostate cavernous nerves (CNs) during radical prostatectomy. Nerve priming and fatigue studies were performed to further characterize CNs and provide insight into the different ONS and ENS mechanisms. ONS studies were conducted using a 1455-nm diode laser, coupled to fiber optic probe, and delivering a collimated, 1-mm-diameter laser spot on CNs. For nerve priming studies, laser power was escalated in 5 mW increments (15 - 60 mW) with each stimulation lasting 15 s, until a strong ICP response was observed, and then power was similarly de-escalated. For ONS fatigue studies, a constant laser power was delivered for a period of 10 min. ENS studies were conducted for comparison, with standard parameters (4 V, 5 ms, 16 Hz) for fatigue studies (10 min. duration), but incrementally increasing/decreasing voltage (0.1 - 4.0 V) for priming studies with 15 s stimulations. ONS threshold was approximately 20% higher during initial escalating laser power steps (6.4 W/cm2) than in subsequently de-escalating laser power steps (5.1 W/cm2), demonstrating a nerve priming effect. Evidence of nerve priming during ENS was not observed. For nerve fatigue studies, ONS of CNs showed a peak ICP response at about 60 s, followed by a gradual decay in ICP, while ENS maintained a strong, but cyclical ICP. Nerve priming may allow repetitive ONS of CNs at lower and hence safer laser power settings. Both nerve priming and fatigue studies revealed different mechanisms for ONS and ENS.

  6. Release of relaxin-like gonad-stimulating substance from starfish radial nerves by lonomycin.

    Science.gov (United States)

    Mita, Masatoshi

    2013-07-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. Recently, GSS was purified from radial nerves of the starfish Asterina pectinifera and identified as a relaxin-like peptide. This study examines the mechanism of GSS secretion from radial nerves. When radial nerves isolated from A. pectinifera were incubated in artificial seawater containing ionomycin as a calcium ionophore, GSS release increased in a dose-dependent manner; 50% activity of GSS release was obtained with approximately 10 µM ionomycin. Another calcium ionophore, A23187, also stimulated GSS release from radial nerves. In contrast, membrane permeable cyclic AMP and cyclic GMP analogs failed to induce GSS release. These results suggest that GSS secretion is induced by intracellular Ca(2+) as a second messenger.

  7. Now you feel both: Galvanic vestibular stimulation induces lasting improvements in the rehabilitation of chronic tactile extinction

    Directory of Open Access Journals (Sweden)

    Lena eSchmidt

    2013-03-01

    Full Text Available Tactile extinction is frequent, debilitating and often persistent after brain damage. Currently, there is no treatment available for this disorder. In two previous case studies we showed an influence of galvanic vestibular stimulation (GVS on tactile extinction. Here, we evaluated in further patients the immediate and lasting effects of GVS on tactile extinction. GVS is known to induce polarity-specific changes in cerebral excitability in the vestibular cortices and adjacent cortical areas. Tactile extinction was examined with the Quality Extinction Test (QET where subjects have to discriminate six different tactile fabrics in bilateral, double simultaneous stimulations (DSS on their dorsum of hands with identical or different tactile fabrics. Twelve patients with stable left-sided tactile extinction after unilateral right-hemisphere lesions were divided into two groups. The GVS group (N=6 performed the QET under six different experimental conditions (two Baselines, Sham-GVS, left-cathodal/right-anodal GVS, right-cathodal/left-anodal GVS, and a follow-up test. The second group of patients with left-sided extinction (N=6 performed the QET six times repetitively, but without receiving GVS (control group. Both right-cathodal/left-anodal as well as left-cathodal/right-anodal GVS (mean: 0.67 mA improved tactile identification of identical and different stimuli in the experimental group. These results show a generic effect of GVS on tactile extinction, but not in a polarity-specific way. These observed effects persisted at Follow-up. Sham-GVS had no significant effect on extinction. In the control group, no significant improvements were seen in the QET after the six measurements of the QET, thus ruling out test repetition effects. In conclusion, GVS improved bodily awareness permanently for the contralesional body side in patients with tactile extinction and thus offers a novel treatment option for these patients.

  8. Central vestibular system: vestibular nuclei and posterior cerebellum.

    Science.gov (United States)

    Barmack, Neal H

    2003-06-15

    The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a

  9. Semiconditional electrical stimulation of pudendal nerve afferents stimulation to manage neurogenic detrusor overactivity in patients with spinal cord injury.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Jung Moon; Im, Hyung Tae; Lee, Kye-Wook; Kim, Sung Hoon; Hur, Dong Min

    2011-10-01

    To evaluate the effect of semiconditional electrical stimulation of the pudendal nerve afferents for the neurogenic detrusor overactivity in patients with spinal cord injury. Forty patients (36 males, 4 males) with spinal cord injury who had urinary incontinence and frequency, as well as felt bladder contraction with bladder filling sense or autonomic dysreflexic symptom participated in this study. Patients with neurogenic detrusor overactivity were subdivided into complete injury and incomplete injury groups by ASIA classification and subdivided into tetraplegia and paraplegia groups by neurologic level of injury. Bladder function, such as bladder volumes infused to the bladder until the first occurrence of neurogenic detrusor overactivity (V(ini)) and the last contraction suppressed by electrical stimulation (V(max)) was measured by water cystometry (CMG) and compared with the results of each subgroup. Among the 40 subjects, 35 patients showed neurogenic detrusor overactivity in the CMG study. Among these 35 patients, detrusor overactivity was suppressed effectively by pudendal nerve afferent electrical stimulation in 32 patients. The infusion volume until the occurrence of the first reflex contraction (V(ini)) was 99.4±80.3 ml. The volume of saline infused to the bladder until the last contraction suppressed by semiconditional pudendal nerve stimulation (V(max)) was 274.3±93.2 ml, which was significantly greater than V(ini). In patients with good response to the pudendal nerve afferent stimulation, the bladder volume significantly increased by stimulation in all the patients. In this study, semiconditional electrical stimulation on the dorsal penile afferent nerve could effectively inhibit neurogenic detrusor overactivity and increase bladder volume in patients with spinal cord injury.

  10. Vagus nerve stimulation in the treatment of drug-resistant epilepsy in 29 children.

    Science.gov (United States)

    Bodin, Emilie; Le Moing, Anne-Gaëlle; Bourel-Ponchel, Emilie; Querne, Laurent; Toussaint, Patrick; Berquin, Patrick

    2016-05-01

    Vagus nerve stimulation (VNS) has been demonstrated to be safe and effective for adults and children with drug-resistant epilepsy and is able to improve most types of epilepsy. The aim of this study, in a paediatric population, was to assess the overall efficacy of vagus nerve stimulation on seizures, to assess tolerability and quality of life. This single-centre, retrospective study reviewed the files of 29 children in whom a vagus nerve stimulator was implanted between 1995 and 2012. The response rate (greater than 50% reduction of the seizure frequency), antiepileptic efficacy according to the type of epilepsy or age at implantation or age at onset of epilepsy, the time-course of seizures, adverse effects, overall quality of life and number of hospitalisations were studied. In our population, vagus nerve stimulation achieved a significant reduction in the seizure frequency throughout follow-up (p = 0.015). Response rates were 59% at 3 months, and 66% at 6 months, and the response rate then remained stable at about 70%. Stimulation tended to be more effective in patients with non-idiopathic partial epilepsy than in patients with non-idiopathic and idiopathic generalised epilepsy (0.01 Vagus nerve stimulation is a safe and effective treatment option in children with drug-resistant epilepsy who are not candidates for surgery. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. Corpus callosotomy for childhood-onset drug-resistant epilepsy unresponsive to vagus nerve stimulation.

    Science.gov (United States)

    Arya, Ravindra; Greiner, Hansel M; Horn, Paul S; Turner, Michele; Holland, Katherine D; Mangano, Francesco T

    2014-12-01

    Corpus callosotomy and vagus nerve stimulation are common palliative options for people with drug-resistant epilepsy when resective epilepsy surgery is not feasible. Because most of the published corpus callosotomy experience comes from a period before vagus nerve stimulation was approved and widely used, there is a paucity of data about efficacy of corpus callosotomy in patients with inadequate response to vagus nerve stimulation. We report seven patients who had complete corpus callosotomy after an inadequate response to vagus nerve stimulation. At the time of surgery, these patients had failed a median of six antiseizure medications, three patients also had failed a trial of ketogenic diet, and all the patients had a vagus nerve stimulation implanted for a mean duration of 2.5 years with maximal tolerated settings. There was a decrease in total daily seizure frequency of 34.7% (± 94.7; median, 71.4%; interquartile range, 55.3) after corpus callosotomy at a mean follow-up of 2.6 years (± 1.4). One patient achieved complete seizure freedom and five patients had ≥ 50% reduction in seizure frequency. Six patients continued to have partial-onset seizures though the frequency was decreased. Drop attacks and tonic seizures stopped in all the patients. Seizure outcomes after corpus callosotomy in our series are most likely a result of complex dynamic interaction between the natural history of epilepsy, the effect of the surgery, ongoing vagus nerve stimulation modulation, and modification in antiseizure drugs. Our study supports the clinical decision to try corpus callosotomy in patients having nonlateralizing drug-resistant epilepsy with inadequate response to vagus nerve stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Vestibular stimulation interferes with the dynamics of an internal representation of gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R

    2017-11-01

    The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.

  13. Can electromagnetic fields emitted by mobile phones stimulate the vestibular organ?

    Science.gov (United States)

    Pau, Hans Wilhelm; Sievert, Uwe; Eggert, Siegfried; Wild, Walter

    2005-01-01

    Pulsating electromagnetic (EM) radiation emitted by mobile phones is often incriminated for causing tissue alterations by caloric effects. In particular, the eye and the ear were regarded as possible "hot spots," with heating up to 1 degree C, in which EM radiation might have negative effects. If so, these temperature increments should be large enough to cause vestibular excitation. In this study, we attempted to verify this theory by clinical testing and in vitro experiments. In our laboratory, a simulated GSM signal (889.6 MHz/2.2 W) was applied to 1 ear at a time, while video nystagmography was performed. The experimental setup was similar to that used for caloric (hot and cold water) testing of the peripheral vestibular organ. Data were evaluated by a computer system. There were 13 volunteers (26 ears) included in our study. In an additional experiment, temperatures of human temporal bones were measured by thermography, while a continuous or pulsating EM field was applied. In no volunteer could EM radiation-induced nystagmus be recorded. This corresponds well to our findings that in the human temporal bone very weak caloric effects could only be found in the tissue layers next to the radiation source (antenna of the mobile phone), whereas deeper regions (horizontal semicircular canal) seemed unaffected (at least less than 0.1 degree C). These results do not support the theory that mobile phone-induced EM radiation may cause caloric negative effects in the human ear.

  14. Is the vagus nerve stimulation a way to decrease body weight in humans?

    Science.gov (United States)

    Bugajski, Andrzej; Gil, Krzysztof

    2012-01-01

    Obesity and its complications constitute an important health problem in growing number of people. Behavioral and pharmacological treatment is not much effective and surgical treatment carries too many threats. Promising method to be used is pharmacological or electric manipulation of vagus nerves. Regulation of food intake and energy utilization is a complex process regulated by centers in hypothalamus and brainstem which are receiving information from the peripheral via afferent neural pathways and sending peripherally adequate instructions by efferent neural pathways. In these signals conduction an important role plays vagus nerve. Additionally central nervous system stays under influence of endocrine, paracrine and neuroendocrine signals taking part in these regulations, functioning directly onto the centre or on the afferent neural endings. 80-90% fibers of vagus nerve are afferent fibers, so their action is mainly afferent, but possible contribution of the efferent fibers cannot be excluded. Efferent stimulation induces motility and secretion in the intestinal tract. Afferent unmyelinated C-type fibres of the vagus nerve are more sensitive and easily electrically stimulated. Information from vagus nerve is transmitted to nucleus tractus solitarius, which has projections to nucleus arcuate of the medio-basal hypothalamus, involved in the control of feeding behavior. It is suggested, that interaction onto the vagus nerve (stimulation or blocking) can be an alternative for other ways of obesity treatment. Through the manipulation of the vagus nerve activity the goal is achieved by influence on central nervous system regulating the energy homeostasis.

  15. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells.

    Science.gov (United States)

    Prabhakaran, Molamma P; Ghasemi-Mobarakeh, Laleh; Jin, Guorui; Ramakrishna, Seeram

    2011-11-01

    Tissue engineering of nerve grafts requires synergistic combination of scaffolds and techniques to promote and direct neurite outgrowth across the lesion for effective nerve regeneration. In this study, we fabricated a composite polymeric scaffold which is conductive in nature by electrospinning and further performed electrical stimulation of nerve stem cells seeded on the electrospun nanofibers. Poly-L-lactide (PLLA) was blended with polyaniline (PANi) at a ratio of 85:15 and electrospun to obtain PLLA/PANi nanofibers with fiber diameters of 195 ± 30 nm. The morphology, chemical and mechanical properties of the electrospun PLLA and PLLA/PANi scaffolds were carried out by scanning electron microscopy (SEM), X-ray photo electron spectroscopy (XPS) and tensile instrument. The electrospun PLLA/PANi fibers showed a conductance of 3 × 10⁻⁹ S by two-point probe measurement. In vitro electrical stimulation of the nerve stem cells cultured on PLLA/PANi scaffolds applied with an electric field of 100 mV/mm for a period of 60 min resulted in extended neurite outgrowth compared to the cells grown on non-stimulated scaffolds. Our studies further strengthen the implication of electrical stimulation of nerve stem cells on conducting polymeric scaffolds towards neurite elongation that could be effective for nerve tissue regeneration. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Health Care Utilization Following Vagus Nerve Stimulation Therapy in Pediatric Epilepsy Patients From a Pediatric Accountable Care Organization.

    Science.gov (United States)

    Patel, Anup; Wang, Ling; Gedela, Satyanarayana

    2017-01-01

    Vagus nerve stimulation has been a therapy for epilepsy approved by the US Food and Drug Administration (FDA) for patients 4 and older and shown efficacy and safety in younger pediatric patients. The authors performed a retrospective analysis utilizing Medicaid claims from an accountable care organization to measure the intervention of vagus nerve stimulation therapy in regard to unplanned health care utilization. Thirteen unique patients were included who had vagus nerve stimulation therapy who had at least 6 months of continuous enrollment in a managed Medicaid health plan. Comparison with 12 months of data before and after vagus nerve stimulation implantation was performed. Patients had statistically significant fewer unplanned inpatient visits per patient per enrollment month after vagus nerve stimulation implantation. Utilizing claims data, vagus nerve stimulation implantation demonstrates a reduction in unplanned hospitalizations.

  17. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    Science.gov (United States)

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  18. Stimulating catheter as a tool to evaluate peripheral nerve function during hip rotationplasty.

    Science.gov (United States)

    Werdehausen, Robert; Braun, Sebastian; Hermanns, Henning; Krauspe, Rüdiger; Lipfert, Peter; Stevens, Markus F

    2007-01-01

    Stimulating catheters have been introduced into clinical practice to confirm perineural localization of the catheters. The muscular twitch induced over the catheter may be used to evaluate nerve function intraoperatively. Therefore, the function of the sciatic nerve was evaluated during major cancer surgery of the femur. A 7-year-old boy (29 kg) was scheduled for hip rotationplasty for resection of an osteosarcoma of the left femur under general anesthesia and postoperative pain therapy with an epidural stimulating catheter. In hip rotationplasty the femur is resected, the lower limb and foot are rotated 180 degrees and the tibia plateau is attached to the pelvic acetabulum to form a new hip joint. During preparation of the left thigh and the sciatic nerve, motor responses to stimulation of the catheter were preserved, but the stimulation threshold increased. After vascular anastomosis the foot remained cold, therefore ropivacaine was applied epidurally and subsequently a warming of the foot was observed. At the end of the operation, the patient was free of pain, a good capillary pulse of the leg was observed, and the patient was able to move the foot and toes of the rotated leg. The use of epidural stimulating catheters as a tool to monitor nerve function is a novel and simple procedure to monitor nerve function intraoperatively and to enable good postoperative pain control.

  19. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.

    Science.gov (United States)

    Hurlow, Adam; Bennett, Michael I; Robb, Karen A; Johnson, Mark I; Simpson, Karen H; Oxberry, Stephen G

    2012-03-14

    Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominantly used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role in pain management but the effectiveness of TENS is currently unknown. This is an update of the original review published in Issue 3, 2008. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. The initial review searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases in April 2008. We performed an updated search of CENTRAL, MEDLINE, EMBASE, CINAHL and PEDRO databases in November 2011. We included only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults. The search strategy identified a further two studies for possible inclusion. One of the review authors screened each abstract using a study eligibility tool. Where eligibility could not be determined, a second author assessed the full paper. One author used a standardised data extraction sheet to collect information on the studies and independently assess the quality of the studies using the validated five-point Oxford Quality Scale. The small sample sizes and differences in patient study populations of the three included studies (two from the original review and a third included in this update) prevented meta-analysis. For the original review the search strategy identified 37 possible published studies; we divided these between two pairs of review authors who decided on study selection; all four review authors discussed and agreed final scores. Only one additional RCT met the eligibility criteria (24 participants) for this updated review. Although this was a feasibility study, not designed to investigate intervention effect, it suggested that TENS may improve bone pain on movement in a

  20. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  1. In vitro electrophoresis and in vivo electrophysiology of peripheral nerve using DC field stimulation

    DEFF Research Database (Denmark)

    Madison, Roger D.; Robinson, Grant A.; Krarup, Christian

    2014-01-01

    BACKGROUND: Given the movement of molecules within tissue that occurs naturally by endogenous electric fields, we examined the possibility of using a low-voltage DC field to move charged substances in rodent peripheral nerve in vitro. NEW METHOD: Labeled sugar- and protein-based markers were...... applied to a rodent peroneal nerve and then a 5-10 V/cm field was used to move the molecules within the extra- and intraneural compartments. Physiological and anatomical nerve properties were also assessed using the same stimulation in vivo. RESULTS: We demonstrate in vitro that charged and labeled...... compounds are capable of moving in a DC field along a nerve, and that the same field applied in vivo changes the excitability of the nerve, but without damage. CONCLUSIONS: The results suggest that low-voltage electrophoresis could be used to move charged molecules, perhaps therapeutically, safely along...

  2. Complications of Spinal Cord Stimulation and Peripheral Nerve Stimulation Techniques: A Review of the Literature.

    Science.gov (United States)

    Eldabe, Sam; Buchser, Eric; Duarte, Rui V

    2016-02-01

    Spinal cord and peripheral neurostimulation techniques have been practiced since 1967 for the relief of pain, and some techniques are also used for improvement in organ function. Neuromodulation has recognized complications, although very rarely do these cause long-term morbidity. The aim of this article is to present a review of complications observed in patients treated with neurostimulation techniques. A review of the major recent publications in the literature on the subjects of spinal cord, occipital, sacral, and peripheral nerve field stimulation was conducted. The incidence of complications reported varies from 30% to 40% of patients affected by one or more complications. Adverse events can be subdivided into hardware-related complications and biological complications. The commonest hardware-related complication is lead migration. Other lead related complications such as failure or fracture have also been reported. Common biological complications include infection and pain over the implant. Serious biological complications such as dural puncture headache and neurological damage are rarely observed. Spinal cord and peripheral neurostimulation techniques are safe and reversible therapies. Hardware-related complications are more commonly observed than biological complications. Serious adverse events such as neurological damage are rare.

  3. The electrophysiology of thyroid surgery: electrophysiologic and muscular responses with stimulation of the vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve.

    Science.gov (United States)

    Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory

    2017-03-01

    Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4

  4. Intraoperative pelvic nerve stimulation performed under continuous electromyography of the internal anal sphincter.

    Science.gov (United States)

    Kneist, Werner; Kauff, Daniel W; Rahimi Nedjat, Roman K; Rink, Andreas D; Heimann, Axel; Somerlik, Karin; Koch, Klaus P; Doerge, Thomas; Lang, Hauke

    2010-11-01

    The aim of this animal study was to investigate the effect of intraoperative pelvic nerve stimulation on internal anal sphincter electromyographic signals in order to evaluate its possible use for neuromonitoring during nerve-sparing pelvic surgery. Eight pigs underwent low anterior rectal resection. The intersphincteric space was exposed, and the internal (IAS) and external anal sphincter (EAS) were identified. Electromyography of both sphincters was performed with bipolar needle electrodes. Intermittent bipolar electric stimulation of the inferior hypogastric plexus and the pelvic splanchnic nerves was carried out bilaterally. The recorded signals were analyzed in its frequency spectrum. In all animals, electromyographic recordings of IAS and EAS were successful. Intraoperative nerve stimulation resulted in a sudden amplitude increase in the time-based electromyographic signals of IAS (1.0 (0.5-9.0) μV vs. 4.0 (1.0-113.0) μV) and EAS (p < 0.001). The frequency spectrum of IAS in the resting state ranged from 0.15 to 5 Hz with highest activity in median at 0.77 Hz (46 cycles/min). Pelvic nerve stimulation resulted in an extended spectrum ranging from 0.15 to 20 Hz. EAS signals showed higher frequencies mainly in a range of 50 to 350 Hz. However, after muscle relaxation with pancuronium bromide, only the low frequency spectrum of the IAS signals was still present. Intraoperative verification of IAS function by stimulation of pelvic autonomic nerves is possible. The IAS electromyographic response could be used to monitor pelvic autonomic nerve preservation.

  5. The "vagal ansa": a source of complication in vagus nerve stimulation.

    Science.gov (United States)

    Gopalakrishnan, Chittur Viswanathan; Kestle, John R W; Connolly, Mary B

    2015-05-01

    A 16-year-old boy underwent vagus nerve stimulation for treatment-resistant multifocal epilepsy. During intraoperative system diagnostics, vigorous contraction of the ipsilateral sternomastoid muscle was observed. On re-exploration, a thin nerve fiber passing from the vagus to the sternomastoid was found hooked up in the upper electrode. Detailed inspection revealed an abnormal course of the superior root of the ansa cervicalis, which descended down as a single nerve trunk with the vagus and separated to join the inferior root. The authors discuss the variation in the course of the ansa cervicalis and how this could be a reason for postoperative neck muscle contractions.

  6. A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy.

    Science.gov (United States)

    Ward, Matthew P; Qing, Kurt Y; Otto, Kevin J; Worth, Robert M; John, Simon W M; Irazoqui, Pedro P

    2015-05-01

    Electrical vagus nerve stimulation is a treatment alternative for many epileptic and depressed patients whose symptoms are not well managed with pharmaceutical therapy. However, the fixed stimulus, open loop dosing mechanism limits its efficacy and precludes major advances in the quality of therapy. A real-time, responsive form of vagus nerve stimulation is needed to control nerve activation according to therapeutic need. This personalized approach to therapy will improve efficacy and reduce the number and severity of side effects. We present autonomous neural control, a responsive, biofeedback-driven approach that uses the degree of measured nerve activation to control stimulus delivery. We demonstrate autonomous neural control in rats, showing that it rapidly learns how to most efficiently activate any desired proportion of vagal A, B, and/or C fibers over time. This system will maximize efficacy by minimizing patient response variability and by minimizing therapeutic failures resulting from longitudinal decreases in nerve activation with increasing durations of treatment. The value of autonomous neural control equally applies to other applications of electrical nerve stimulation.

  7. Near-infrared signals associated with electrical stimulation of peripheral nerves

    Science.gov (United States)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  8. Influence of Different Geometric Representations of the Volume Conductor on Nerve Activation during Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    José Gómez-Tames

    2014-01-01

    Full Text Available Volume conductor models with different geometric representations, such as the parallel layer model (PM, the cylindrical layer model (CM, or the anatomically based model (AM, have been employed during the implementation of bioelectrical models for electrical stimulation (FES. Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1 Does the nerve activation differ between CM and PM? (2 How well do CM and PM approximate an AM? (3 What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance, nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM.

  9. Peripheral nerve field stimulation for pruritus relief in a patient with notalgia paraesthetica.

    LENUS (Irish Health Repository)

    Ricciardo, Bernadette

    2012-02-01

    This case study is presented to exemplify the application of peripheral nerve field stimulation in the treatment of recalcitrant notalgia paraesthetica. The patient was a 60-year-old woman with severe and disabling notalgia paraesthetica. The itch persisted despite the use of several medications - topical and oral. Following a successful trial of peripheral nerve field stimulation with a temporary electrode, two subcutaneous electrodes were inserted into the affected area with a battery implanted subcutaneously in her right buttock. The patient was reviewed at 5 months post implantation. She reported a greater than 85% improvement in her itch. She also reported a major improvement in her quality of life, with particular improvement in her ability to sleep through the night. This case illustrates the possible utilization of peripheral nerve field stimulation in the treatment of notalgia paraesthetica, which is a common yet poorly understood and treated condition. Replication and controlled studies are required to determine the general applicability of this approach.

  10. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    Science.gov (United States)

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2.

  11. Management of overactive bladder review: the role of percutaneous tibial nerve stimulation

    Directory of Open Access Journals (Sweden)

    Elita Wibisono

    2017-01-01

    Full Text Available Overactive bladder (OAB is a common condition that is experienced by around 455 million people (11% of the world population and associated with significant impact in patients’ quality of life. The first line treatments of OAB are conservative treatment and anti-muscarinic medication. For the refractory OAB patients, the treatment options available are surgical therapy, electrical stimulation, and botulinum toxin injection. Among them, percutaneous tibial nerve stimulation (PTNS is a minimally invasive option that aims to stimulate sacral nerve plexus, a group of nerve that is responsible for regulation of bladder function. After its approval by food and drug administration (FDA in 2007, PTNS revealed considerable promise in OAB management. In this review, several non-comparative and comparative studies comparing PTNS with sham procedure, anti-muscarinic therapy, and multimodal therapy combining PTNS and anti-muscarinic had supportive data to this consideration.

  12. Ocular vestibular evoked myogenic potentials in response to air-conducted 500 Hz short tones: Effect of stimulation procedure (monaural or binaural), age and gender.

    Science.gov (United States)

    Versino, Maurizio; Colnaghi, Silvia; Ranzani, Marina; Alloni, Roberto; Bolis, Carlotta; Sacco, Simone; Moglia, Arrigo; Callieco, Roberto

    2015-01-01

    The ocular vestibular myogenic potentials (oVEMP) can be elicited by monaural air-conducted sound stimulation, and are usually recorded from the contralateral eye. In clinical setting a binaural stimulation would save time and require less effort from the subjects. We evaluated the differences between monaural and binaural stimulation, and the possible effect of age and gender on oVEMP parameters. Air-conducted oVEMP were recorded by binaural and by monaural stimulation in a group of 54 normal subjects, aged from 12 to 83 years, and in 50 vestibular patients. From each side, we measured the latency of the N1 component, and the peak-to-peak N1-P1 amplitude. For both parameters we also computed the asymmetry ratio. In normal subjects binaural stimulation produced slightly larger responses than monaural stimulation; detectability, latency and amplitude ratio were the same for the two techniques. We found no differences related to gender, and the age-induced amplitude decline was likely to be negligible.oVEMP recorded not in an acute phase of their disorder, proved to be abnormal in about 20% of the patients, and the normal or abnormal findings obtained either with monaural or with binaural stimulation were always concordant. The oVEMP obtained after binaural and monaural stimulation are very similar, and they are largely independent from age and gender.

  13. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation.

    Science.gov (United States)

    Benedičič, Mitja; Beltram, Matej; Olup, Brigita Drnovšek; Bošnjak, Roman

    2012-12-01

    The aim of this study was to present cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation due to malignant melanoma of the choroid or the ciliary body. These cortical potentials were related to cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors. Cortical potentials were recorded with surface occipital electrode (Oz) in six patients undergoing orbital enucleation under total intravenous anesthesia. Two thin needle stimulating electrodes were inserted inside the intraorbital part of the optic nerve. The electrical stimulus consisted of a rectangular current pulse of varying intensity (0.2-10.0 mA) and duration (0.1-0.3 ms); the stimulation rate was 2 Hz; the bandpass filter was 1-1,000 Hz; the analysis time was 50-300 ms. Cortical potentials could not be obtained or were inconsistently elicitable in three patients with longstanding history (>3 months) of severe visual deterioration, while they consisted of several positive and negative deflections in a patient with a short history of mild visual impairment. In two other patients, cortical potentials consisted of N20, P30 and N40 waves. Cortical potentials after electrical intraneural stimulation of the optic nerve could be recorded in patients with a short history of visual deterioration and without optic nerve atrophy and appear more heterogeneous than cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors.

  15. Design of a compact laparoscopic probe for optical stimulation of the cavernous nerves

    Science.gov (United States)

    Tozburun, Serhat; Fried, Nathaniel M.

    2009-02-01

    The cavernous nerves are responsible for erectile function and course along the prostate surface, varying in size and location among patients, making preservation of sexual function challenging after prostate cancer surgery. Electrical stimulation has proven inconsistent and unreliable in identifying these nerves and evaluating nerve function. Optical stimulation of the rat cavernous nerves has recently been reported as a alternative to electrical stimulation, with potential advantages including noncontact stimulation and improved spatial selectivity. This study describes the design of a compact laparoscopic probe for future clinical use in optical nerve stimulation. The 10-Fr (3.4-mm-OD) prototype laparoscopic probe includes an aspheric lens for collimation of the laser beam with a 0.8- mm-diameter spot, coupled with a 200-μm-core optical fiber. A 45° gold-coated rod mirror in the probe tip provides side-firing delivery of the laser radiation. The probe handle houses a miniature linear motorized stage for lateral scanning of the probe tip over a 25-mm line along the prostate surface. A 5.5-W Thulium fiber laser with tunable wavelength range of 1850-1880 nm was tested with the probe. The probe fits through a standard 5-mm-ID laparoscopic port and is capable of delivering pulse energies up to 8 mJ (1.6 J/cm2) at a 2.5-ms pulse duration, well above the threshold (~ 0.35 J/cm2) for optical stimulation of the cavernous nerves.

  16. Long-term efficacy and safety of sacral nerve stimulation for fecal incontinence.

    Science.gov (United States)

    Mellgren, Anders; Wexner, Steven D; Coller, John A; Devroede, Ghislain; Lerew, Darin R; Madoff, Robert D; Hull, Tracy

    2011-09-01

    Sacral nerve stimulation is effective in the treatment of urinary incontinence and is currently under Food and Drug Administration review in the United States for fecal incontinence. Previous reports have focused primarily on short-term results of sacral nerve stimulation for fecal incontinence. The present study reports the long-term effectiveness and safety of sacral nerve stimulation for fecal incontinence in a large prospective multicenter study. Patients with fecal incontinent episodes more than twice per week were offered participation in this multicentered prospective trial. Patients showing ≥ 50% improvement during test stimulation were offered chronic implantation of the InterStim Therapy system (Medtronic; Minneapolis, MN). The aims of the current report were to provide 3-year follow-up data on patients from that study who underwent sacral nerve stimulation and were monitored under the rigors of an Food and Drug Administration-approved investigational protocol. One hundred thirty-three patients underwent test stimulation with a 90% success rate, of whom 120 (110 females) with a mean age of 60.5 years and a mean duration of fecal incontinence of 7 years received chronic implantation. Mean length of follow-up was 3.1 (range, 0.2-6.1) years, with 83 patients completing all or part of the 3-year follow-up assessment. At 3 years follow-up, 86% of patients (P < .0001) reported ≥ 50% reduction in the number of incontinent episodes per week compared with baseline and the number of incontinent episodes per week decreased from a mean of 9.4 at baseline to 1.7. Perfect continence was achieved in 40% of subjects. The therapy also improved the fecal incontinence severity index. Sacral nerve stimulation had a positive impact on the quality of life, as evidenced by significant improvements in all 4 scales of the Fecal Incontinence Quality of Life instrument at 12, 24, and 36 months of follow-up. The most common device- or therapy-related adverse events through the

  17. Effects of percutaneous posterior tibial nerve stimulation on voiding dysfunctions in cerebral palsy: A case report

    Directory of Open Access Journals (Sweden)

    Farshideh Alishahi

    2017-01-01

    Full Text Available The present study, conducted on three children with cerebral palsy who had voiding dysfunction. After collecting demographic information, symptoms of voiding dysfunctions were recorded. Then; we did an ultrasonographic evaluation of the bladder to measure residual urine volume. Physiotherapy treatment through percutaneous electrical stimulation of the posterior tibial nerve was performed in 12 sessions. Bladder ultrasonography was repeated after treatment. Abnormal residual urine volume became normal in patients with urinary retention. Percutaneous posterior tibial nerve stimulation reduces symptoms of voiding dysfunctions in children with cerebral palsy

  18. Is Vestibular Neuritis an Immune Related Vestibular Neuropathy Inducing Vertigo?

    Directory of Open Access Journals (Sweden)

    A. Greco

    2014-01-01

    Full Text Available Objectives. To review the current knowledge of the aetiology of vestibular neuritis including viral infections, vascular occlusion, and immunomediated mechanisms and to discuss the pathogenesis with relevance to pharmacotherapy. Systematic Review Methodology. Relevant publications on the aetiology and treatment of vestibular neuritis from 1909 to 2013 were analysed. Results and Conclusions. Vestibular neuritis is the second most common cause of peripheral vestibular vertigo and is due to a sudden unilateral loss of vestibular function. Vestibular neuronitis is a disorder thought to represent the vestibular-nerve equivalent of sudden sensorineural hearing loss. Histopathological studies of patients who died from unrelated clinical problems have demonstrated degeneration of the superior vestibular nerve. The characteristic signs and symptoms include sudden and prolonged vertigo, the absence of auditory symptoms, and the absence of other neurological symptoms. The aetiology and pathogenesis of the condition remain unknown. Proposed theories of causation include viral infections, vascular occlusion, and immunomediated mechanisms. The management of vestibular neuritis involves symptomatic treatment with antivertiginous drugs, causal treatment with corticosteroids, and physical therapy. Antiviral agents did not improve the outcomes.

  19. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    Science.gov (United States)

    Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2013-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas βII-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and βII-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury. PMID:23152293

  20. A microcontroller-based implantable nerve stimulator used for rats.

    Science.gov (United States)

    Sha, Hong; Zheng, Zheng; Wang, Yan; Ren, Chaoshi

    2005-01-01

    A microcontroller-based stimulator that can be flexible programmed after it has been implanted into a rat was studied. Programmability enables implanted stimulators to generate customized, complex protocols for experiments. After implantation, a coded light pulse train that contains information of specific identification will unlock a certain stimulator. If a command that changing the parameters is received, the microcontroller will update its flash memory after it affirms the commands. The whole size of it is only 1.6 cubic centimeters, and it can work for a month. The devices have been successfully used in animal behavior experiments, especially on rats.

  1. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation.

    Science.gov (United States)

    Mourdoukoutas, Antonios P; Truong, Dennis Q; Adair, Devin K; Simon, Bruce J; Bikson, Marom

    2017-10-27

    To develop the first high-resolution, multi-scale model of cervical non-invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds. An MRI-derived Finite Element Method (FEM) model was developed to accurately simulate key macroscopic (e.g., skin, soft tissue, muscle) and mesoscopic (cervical enlargement, vertebral arch and foramen, cerebral spinal fluid [CSF], nerve sheath) tissue components to predict extracellular potential, electric field (E-Field), and activating function along the vagus nerve. Microscopic scale biophysical models of axons were developed to compare axons of varying size (Aα-, Aβ- and Aδ-, B-, and C-fibers). Rheobase threshold estimates were based on a step function waveform. Macro-scale accuracy was found to determine E-Field magnitudes around the vagus nerve, while meso-scale precision determined E-field changes (activating function). Mesoscopic anatomical details that capture vagus nerve passage through a changing tissue environment (e.g., bone to soft tissue) profoundly enhanced predicted axon sensitivity while encapsulation in homogenous tissue (e.g., nerve sheath) dulled axon sensitivity to nVNS. These findings indicate that realistic and precise modeling at both macroscopic and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on this approach, we predict conventional cervical nVNS protocols can activate A- and B- but not C-fibers. Our state-of-the-art implementation across scales is equally valuable for models of spinal cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models. © 2017 International Neuromodulation Society.

  2. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial.

    Science.gov (United States)

    Eftekhar, Tahereh; Teimoory, Nastaran; Miri, Elahe; Nikfallah, Abolghasem; Naeimi, Mahsa; Ghajarzadeh, Mahsa

    2014-01-01

    Overactive bladder (OAB) is a disabling disorder. Treatment of cases with OAB includes behavioral, pharmacological, surgical interventions and peripheral electrical stimulation. The goal of this study was to determine effects of posterior tibial nerve stimulation on sexual function and pelvic disorders in women with Overactive bladder (OAB). Fifty women were randomly assigned to PTNS (posterior tibial nerve stimulation) plus tolterodine or tolterodine alone treatment. Tolterodine group received 4 mg tolterodine daily for three months while the other group received this treatment plus percutaneous tibial nerve stimulation for 12 consequence weeks. Two in PTNS group and 8 in the control group withdrew from the study. Age, education level, and occupation status were not significantly different between two groups. Mean total FSFI and its subscales were not significantly different before and after treatment between two groups. Urine leakage associated with a feeling of urgency and loss of stool or gas from the rectum beyond patient's control became significantly different after treatment between two groups. Posterior tibial nerve stimulation could help urinary problems in women with a neurologic bladder.

  3. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Tahereh Eftekhar

    2014-11-01

    Full Text Available Overactive bladder (OAB is a disabling disorder. Treatment of cases with OAB includes behavioral, pharmacological, surgical interventions and peripheral electrical stimulation. The goal of this study was to determine effects of posterior tibial nerve stimulation on sexual function and pelvic disorders in women with Overactive bladder (OAB. Fifty women were randomly assigned to PTNS (posterior tibial nerve stimulation plus tolterodine or tolterodine alone treatment. Tolterodine group received 4 mg tolterodine daily for three months while the other group received this treatment plus percutaneous tibial nerve stimulation for 12 consequence weeks. Two in PTNS group and 8 in the control group withdrew from the study. Age, education level, and occupation status were not significantly different between two groups. Mean total FSFI and its subscales were not significantly different before and after treatment between two groups. Urine leakage associated with a feeling of urgency and loss of stool or gas from the rectum beyond patient's control became significantly different after treatment between two groups. Posterior tibial nerve stimulation could help urinary problems in women with a neurologic bladder.

  4. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    Directory of Open Access Journals (Sweden)

    Mihaylova Stanka

    2012-07-01

    Full Text Available Abstract Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v. rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham. Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements, cytokines (IFN-γ, TNF-α, IL-6, IL-10, hypoxic and apoptosis signaling molecules (HIF-2α, Bax were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline. Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P P  Conclusions Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials.

  5. Relationship of vocal cord paralysis to the coil diameter of vagus nerve stimulator leads.

    Science.gov (United States)

    Robinson, Leslie C; Winston, Ken R

    2015-03-01

    This investigation was done to examine, following implantation of vagus nerve stimulators, the relationship of vocal cord paralysis to the inner diameter of the coils used to attach the stimulator lead to the nerve. All data in this investigation were collected, as mandated by the FDA, by the manufacturer of vagus nerve stimulators and were made available without restrictions for analysis by the authors. The data reflect all initial device implantations in the United States for the period from 1997 through 2012. Vocal cord paralysis was reported in 193 of 51,882 implantations. In patients aged 18 years and older, the incidence of paralysis was 0.26% when the stimulator leads had coil diameters of 3 mm and 0.51% when the leads had 2-mm-diameter coils (p vagus nerve stimulator leads having 2-mm-diameter coils than with leads having 3-mm-diameter coils. The incidence of vocal cord paralysis increases with patient age at implantation.

  6. A Study on Duration of Effect of Transcutaneous Electrical Nerve Stimulation Therapy on Whole Saliva Flow.

    Science.gov (United States)

    Bhasin, Neha; Reddy, Sreedevi; Nagarajappa, Anil Kumar; Kakkad, Ankur

    2015-06-01

    Saliva is a complex fluid, whose important role is to maintain the well being of oral cavity. Salivary gland hypofunction or hyposalivation is the condition of having reduced saliva production which leads to the subjective complaint of oral dryness termed xerostomia.(7) Management of xerostomia includes palliative therapy using topical agents or systemic therapy. Electrostimulation to produce saliva was studied in the past and showed moderate promise but never became part of mainstream therapy. Hence, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate in healthy adults and to evaluate how long this effect of TENS lasts on salivary flow. One hundred healthy adult subjects were divided into five age groups with each group containing 20 subjects equally divided into males and females in each group. Unstimulated saliva was collected using a graduated test tube fitted with funnel and quantity was measured. Transcutaneous electrical nerve stimulation unit was activated and stimulated saliva was collected. Saliva was again collected 30 minutes and 24 hours post stimulation. The mean unstimulated whole saliva flow rate for all subjects (n = 100) was 2.60 ml/5 min. During stimulation, it increased to 3.60 ± 0.39 ml/5 min. There was 38.46% increase in salivary flow. Ninety six out of 100 responded positively to TENS therapy. Salivary flow remained increased 30 minutes and 24 hours post stimulation with the values being 3.23 ± 0.41 ml/5 min and 2.69 ± 0.39 ml/5 min respectively. Repeated measures One way analysis of variance (ANOVA) test showed that the difference between these values were statistically significant. Transcutaneous electrical nerve stimulation therapy was effective for stimulation of whole saliva in normal, healthy subjects and its effect retained till 30 minutes and a little up to 24 hours. Transcutaneous electrical nerve stimulation may work best synergistically with other

  7. Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation.

    Science.gov (United States)

    Usami, Kenichi; Kawai, Kensuke; Sonoo, Masahiro; Saito, Nobuhito

    2013-07-01

    Vagus nerve stimulation (VNS) is a palliative treatment for drug resistant epilepsy for which the efficacy and safety are well established. Accumulating evidence suggests that ascending vagal signals modulate abnormal cortical excitability via various pathways. However, there is no direct evidence for an ascending conduction of neural impulses in a clinical case of VNS. We recorded and analyzed the short-latency components of the vagus nerve (VN) evoked potential (EP) from the viewpoint of determining whether or not it is a marker for the ascending neural conduction. EPs within 20 ms were prospectively recorded simultaneously from a surgical wound in the neck and at multiple scalp sites during implantation surgery in 25 patients with drug-resistant epilepsy. Electrical stimulation was delivered using the clinical VNS Therapy system. A recording was made before and after a muscle relaxant was administered, when changing the rostrocaudal position of stimulation, or when stimulating the ansa cervicalis instead of the VN. The short-latency components consisted of four peaks. The early component around 3 ms, which was most prominent in A1-Cz, remained unchanged after muscle relaxation while the later peaks disappeared. Rostral transition of the stimulation resulted in an earlier shift of the early component. The estimated conduction velocity was 27.4 ± 10.2 m/s. Stimulation of the ansa cervicalis induced no EP. The early component was regarded as directly resulting from ascending neural conduction of A fibers of the VN, probably originating around the jugular foramen. Recording of VN-EP might document the cause of treatment failure in some patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Differentiation and interaction of tibial versus spinal nerve stimulation for micturition control in the rat

    Science.gov (United States)

    Su, Xin; Nickles, Angela; Nelson, Dwight E

    2015-01-01

    Aims To determine time course of the bladder inhibitory response to unilateral or bilateral stimulation of the tibial nerve (TN) and spinal nerve (SN) as well as the interaction of stimulation at these two sites. Methods In anesthetized female rats, a wire electrode was placed under either one or both of the TN or L6 SN. A cannula was placed into the bladder via the urethra. Saline infusion induced bladder rhythmic contraction (BRC). Results Compared to SN neuromodulation, TN neuromodulation is less efficacious. The first 5-min stimulation at three times motor threshold on the SN and TN decreased the BRC frequency to 9% and 69% of controls, respectively. In contrast to SN stimulation, bilateral TN neuromodulation is not more effective than unilateral and sustained TN stimulation results in an apparent desensitization of the bladder response. If a 15-min TN stimulation was applied, BRCs were shutdown only during the first 5 min of stimulation. If a 5-min stimulation, using sufficient current to abolish BRC, is repeated, at least 20 min between stimulations was required in order for the responses to the first and second stimulations to be equivalent. Finally, stimulation of the TN combined with SN never produced a significantly greater effect than TN or SN stimulation alone. Conclusions Based on the current experiments, it would appear that SN neuromodulation of bladder activity is preferable to TN stimulation and there is no evidence to suggest that stimulation at both sites would offer a therapeutic advantage over spinal stimulation alone. Neurourol. Urodynam. 34:92–97, 2015. © 2013 The Authors. Neurourology & Urodynamics published by Wiley Periodicals, Inc. PMID:24151044

  9. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2013-06-01

    Objective. Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach. We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results. Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a ten contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7-45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance. This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for

  10. Vestibular migraine

    DEFF Research Database (Denmark)

    Lempert, Thomas; Olesen, Jes; Furman, Joseph

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  11. An electronic prosthesis mimicking the dynamic vestibular function

    Science.gov (United States)

    Shkel, Andrei M.

    2006-03-01

    This paper reports our progress toward development of a unilateral vestibular prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope. Similarly to the natural semicircular canal, the microscopic gyroscope senses angular motion of the head and generates voltages proportional to the corresponding angular accelerations. Then, voltages are sent to the pulse generating unit where angular motion is translated into voltage pulses. The voltage pulses are converted into current pulses and are delivered through specially designed electrodes, conditioned to stimulate the corresponding vestibular nerve branch. Our preliminary experimental evaluations of the prosthesis on a rate table indicate that the device's output matches the average firing rate of vestibular neurons to those in animal models reported in the literature. The proposed design is scalable; the sensing unit, pulse generator, and the current source can be potentially implemented on a single chip using integrated MEMS technology.

  12. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity.

    Science.gov (United States)

    Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M

    2011-08-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments....... of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...

  14. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.

    Science.gov (United States)

    Giordano, Flavio; Zicca, Anna; Barba, Carmen; Guerrini, Renzo; Genitori, Lorenzo

    2017-04-01

    Indications for vagus nerve stimulation (VNS) therapy include focal, multifocal epilepsy, drop attacks (tonic/atonic seizures), Lennox-Gastaut syndrome, tuberous sclerosis complex (TSC)-related multifocal epilepsy, and unsuccessful resective surgery. Surgical outcome is about 50-60% for seizures control, and may also improve mood, cognition, and memory. On this basis, VNS has also been proposed for the treatment of major depression and Alzheimer's' disease. The vagus nerve stimulator must be implanted with blunt technique on the left side to avoid cardiac side effects through the classic approach for anterior cervical discectomy. The actual device is composed of a wire with three helical contacts (two active contacts, one anchoring) and a one-pin battery. VNS is usually started 2 weeks after implantation with recommended settings of stimulation (1.0-2.0 mA; 500 μs pulse width; 20-30 Hz; 30 s ON, 5 min OFF). The complications of VNS therapy are early (related to surgery) and late (related to the device and to stimulation of the vagus nerve). Early complications include the following: intraoperative bradycardia and asystole during lead impedance testing, peritracheal hematoma, infections (3-8%), and vagus nerve injury followed by hoarseness, dyspnea, and dysphagia because of left vocal cord paralysis. Delayed morbidity due to the device includes late infections or problems in wound healing; other more rare events are due to late injury of the nerve. Late complications due to nerve stimulation include delayed arrhythmias, laryngopharyngeal dysfunction (hoarseness, dyspnea, and coughing), obstructive sleep apnea, stimulation of phrenic nerve, tonsillar pain mimicking glossopharyngeal neuralgia, and vocal cord damage during prolonged endotracheal intubation. The laryngopharyngeal dysfunction occurs in about 66% of patients and is usually transitory and due to the stimulation of the inferior (recurrent) laryngeal nerve. A true late paralysis of the left vocal cord

  15. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.

    Science.gov (United States)

    Chhetri, Dinesh K; Neubauer, Juergen; Bergeron, Jennifer L; Sofer, Elazar; Peng, Kevin A; Jamal, Nausheen

    2013-12-01

    Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Basic science study using an in vivo canine model. The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal-activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Vibratory phase was symmetric in all symmetric activation conditions, but consistent phase asymmetry toward the vocal fold with higher superior laryngeal-nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. This study directly links vocal-fold tension asymmetry with vibratory phase asymmetry, in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    Science.gov (United States)

    2012-01-01

    Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v.) rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham). Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements), cytokines (IFN-γ, TNF-α, IL-6, IL-10), hypoxic and apoptosis signaling molecules (HIF-2α, Bax) were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline). Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P vagus nerve stimulated (VNS) animals. Evoked potential amplitudes were stabilized in VNS (15 ± 7 μV; n.s. versus baseline) as compared to vagotomised rats (8 ± 5 μV; P Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials. PMID:22830560

  17. Inhibition of the triceps surae stretch reflex by stimulation of the deep peroneal nerve in persons with spastic stroke

    NARCIS (Netherlands)

    Veltink, Petrus H.; Ladouceur, Michel; Sinkjaer, Thomas

    2000-01-01

    Inhibition of the triceps surae stretch reflex by stimulation of the deep peroneal nerve in persons with spastic stroke. Arch Phys Med Rehabil 2000;81:1016-24. Objective: To reduce the triceps surae stretch reflex by electrical stimulation of the deep peroneal nerve. Design: Intervention study.

  18. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  19. Correlation between quality of life and voiding variables in patients treated with percutaneous tibial nerve stimulation.

    NARCIS (Netherlands)

    Pal, F. van der; Balken, M.R. van; Heesakkers, J.P.; Debruyne, F.M.J.; Kiemeney, L.A.L.M.; Bemelmans, B.L.H.

    2006-01-01

    OBJECTIVE: To investigate the relationship between quality of life (QoL) and voiding variables in patients with lower urinary tract dysfunction treated with percutaneous tibial nerve stimulation (PTNS), as it is assumed that improvements in voiding will lead to a better QoL in such patients.

  20. Vagus nerve stimulation in patients with catastrophic childhood epilepsy, a 2-year follow-up study.

    NARCIS (Netherlands)

    Majoie, H.J.; Berfelo, M.W.; Aldenkamp, A.P.; Renier, W.O.; Kessels, A.G.H.

    2005-01-01

    PURPOSE: To establish the long-term efficacy and tolerability of vagus nerve stimulation (VNS) in children with a Lennox-like syndrome. METHOD: This study was a longitudinal observational prospective cohort analysis. Baseline: 6 months. Follow-up: 24 months. Screening (baseline and every 6 months):

  1. Reference values and clinical application of magnetic peripheral nerve stimulation in cats

    NARCIS (Netherlands)

    Van Soens, Iris; Struys, Michel M. R. F.; Bhatti, Sofie F. M.; Van Ham, Luc M. L.

    Magnetic stimulation of radial (RN) and sciatic (SN) nerves was performed bilaterally in 40 healthy cats. Reference values for onset latency and peak-to-peak amplitude of magnetic motor evoked potentials (MMEPs) were obtained and compared with values of electric motor evoked potentials (EMEPs) in

  2. Surface peroneal nerve stimulation in lower limb hemiparesis : Effect on quantitative gait parameters

    NARCIS (Netherlands)

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas; Buurke, Jaap H.; Ijzerman, Maarten J.; Chae, John

    2015-01-01

    Objective: The objective of this study was to evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation vs. usual care via quantitative gait analysis. Design: This study is a randomized controlled clinical trial. Setting: The

  3. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis

    NARCIS (Netherlands)

    Sheffler, L.R.; Taylor, P.N.; Gunzler, D.D.; Buurke, Jaap; IJzerman, Maarten Joost; Chae, J.

    2013-01-01

    Objective: To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. Design: Single-blinded randomized controlled trial. Setting: Teaching hospital of

  4. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition and behaviour in aging

    NARCIS (Netherlands)

    Scherder, E.J A; van Someren, E.W J; Bouma, J.M.; van der Berg, M

    2000-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) improved cognition and behaviour in patients with Alzheimer's disease (AD). The rationale underlying these studies was that TENS could activate, e.g. the septo-hippocampal region and the hypothalamus through direct and indirect

  5. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, MW; Swaab, DF; Sergeant, JA; van Dijk, KRA; Scherder, EJA

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  6. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment.

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; Dijk, K.R.A.; Scherder, E.J.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  7. Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network

    Science.gov (United States)

    Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven

    2017-01-01

    Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…

  8. Intensity-dependent modulatory effects of vagus nerve stimulation on cortical excitability

    NARCIS (Netherlands)

    Mollet, L.; Grimonprez, A.; Raedt, R.; Delbeke, J.; El Tahry, R.; De Herdt, V.; Meurs, A.; Wadman, W.; Boon, P.; Vonck, K.

    2013-01-01

    OBJECTIVES - Vagus nerve stimulation (VNS) is an effective treatment for refractory epilepsy. It remains unknown whether VNS efficacy is dependent on output current intensity. The present study investigated the effect of various VNS output current intensities on cortical excitability in the motor

  9. High-reliability microcontroller nerve stimulator for assistance in regional anaesthesia procedures.

    Science.gov (United States)

    Ferri, Carlos A; Quevedo, Antonio A F

    2017-07-01

    In the last decades, the use of nerve stimulators to aid in regional anaesthesia has been shown to benefit the patient since it allows a better location of the nerve plexus, leading to correct positioning of the needle through which the anaesthetic is applied. However, most of the nerve stimulators available in the market for this purpose do not have the minimum recommended features for a good stimulator, and this can lead to risks to the patient. Thus, this study aims to develop an equipment, using embedded electronics, which meets all the characteristics, for a successful blockade. The system is made of modules for generation and overall control of the current pulse and the patient and user interfaces. The results show that the designed system fits into required specifications for a good and reliable nerve stimulator. Linearity proved satisfactory, ensuring accuracy in electrical current amplitude for a wide range of body impedances. Field tests have proven very successful. The anaesthesiologist that used the system reported that, in all cases, plexus blocking was achieved with higher quality, faster anaesthetic diffusion and without needed of an additional dose when compared with same procedure without the use of the device.

  10. Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats

    NARCIS (Netherlands)

    Larsen, L.E.; Wadman, W.J.; van Mierlo, P.; Delbeke, J.; Grimonprez, A.; Van Nieuwenhuyse, B.; Portelli, J.; Boon, P; Vonck, K.; Raedt, R.

    2015-01-01

    BACKGROUND: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal

  11. Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves

    DEFF Research Database (Denmark)

    Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil

    2000-01-01

    In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP-amp...

  12. Selective pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of internal anal sphincter and bladder innervation.

    Science.gov (United States)

    Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H

    2011-01-01

    Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.

  13. Multigrid solution of the potential field in modeling electrical nerve stimulation

    NARCIS (Netherlands)

    Hoekema, R.; Hoekema, Rudi; Venner, Cornelis H.; Struijk, J.J.; Struijk, Johannes J.; Holsheimer, J.

    1998-01-01

    In this paper, multilevel techniques are introduced as a fast numerical method to compute 3-D potential field in nerve stimulation configurations. It is shown that with these techniques the computing time is reduced significantly compared to conventional methods. Consequently, these techniques

  14. Calculation of the potential field in nerve stimulation using a multigrid method

    NARCIS (Netherlands)

    Hoekema, R.; Hoekema, Rudolf; Struijk, J.J.; Struijk, Johannes J.; Venner, Cornelis H.; Goodall, E.V.; Goodall, Eleanor V.; Holsheimer, J.

    1993-01-01

    This paper deals with the first step in the modeling of newe stimulation: the calculation of the potential field in a 3D volume conductor model of the nerve. surroundings and electrodes. Because of its time efficiency, a multigrid method was used to calculate the field. Compared to a Gauss-Seidel

  15. Clinical Vagus Nerve Stimulation Paradigms Induce Pronounced Brain and Body Hypothermia in Rats

    NARCIS (Netherlands)

    Larsen, L.E.; Van Lysebettens, W.; Germonpré, C.; Carrette, S.; Daelemans, S.; Sprengers, M.; Thyrion, L.; Wadman, W.J.; Carrette, E.; Delbeke, J.; Boon, P.; Vonck, K.; Raedt, R.

    Vagus nerve stimulation (VNS) is a widely used neuromodulation technique that is currently used or being investigated as therapy for a wide array of human diseases such as epilepsy, depression, Alzheimer’s disease, tinnitus, inflammatory diseases, pain, heart failure and many others. Here, we report

  16. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome

    NARCIS (Netherlands)

    Wall, L.L. de; Heesakkers, J.P.F.A.

    2017-01-01

    Overactive bladder syndrome (OAB) is a common condition affecting adults and children worldwide, resulting in a substantial economic and psychological burden. Percutaneous tibial nerve stimulation (PTNS) is derived from acupuncture used in Chinese traditional medicine and was first described in the

  17. The influence of sacral nerve stimulation on gastrointestinal motor function in patients with fecal incontinence

    DEFF Research Database (Denmark)

    Damgaard, M; Thomsen, F G; Sørensen, Michael

    2011-01-01

    Sacral nerve stimulation (SNS) is a well-established treatment for fecal incontinence of various etiologies. However, the mechanism of action remains unclear. The aim of the present study was to determine whether SNS affects gastric emptying, small intestinal transit or colonic transit times....

  18. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.

    Science.gov (United States)

    Koopman, Frieda A; Chavan, Sangeeta S; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P Richard; Mehta, Ashesh D; Levine, Yaakov A; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J; Tak, Paul P

    2016-07-19

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases.

  19. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    Science.gov (United States)

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  20. Semiconditional Electrical Stimulation of Pudendal Nerve Afferents Stimulation to Manage Neurogenic Detrusor Overactivity in Patients with Spinal Cord Injury

    OpenAIRE

    Lee, Young-Hee; Kim, Jung Moon; Im, Hyung Tae; Lee, Kye-Wook; Kim, Sung Hoon; Hur, Dong Min

    2011-01-01

    Objective To evaluate the effect of semiconditional electrical stimulation of the pudendal nerve afferents for the neurogenic detrusor overactivity in patients with spinal cord injury. Forty patients (36 males, 4 males) with spinal cord injury who had urinary incontinence and frequency, as well as felt bladder contraction with bladder filling sense or autonomic dysreflexic symptom participated in this study. Method Patients with neurogenic detrusor overactivity were subdivided into complete i...

  1. Pudendal nerve latency time in normal women via intravaginal stimulation

    Directory of Open Access Journals (Sweden)

    Geraldo A. Cavalcanti

    2006-12-01

    Full Text Available INTRODUCTION & OBJECTIVES: Studies of motor conduction for the efferent functional assessment of the pudendal nerve in women with pelvic dysfunctions have been conducted through researching distal motor latency times. The transrectal approach has been the classic approach for this electrophysiological examination. The objective of the present study is to verify the viability of the transvaginal approach in performing the exam, to establish normal values for this method and to analyze the influence of age, stature and parity in the latency value of normal women. MATERIALS AND METHODS: A total of 23 volunteers without genitourinary pathologies participated in this study. In each, pudendal motor latency was investigated through the transvaginal approach, which was chosen due to patient’s higher tolerance levels. RESULTS: The motor response represented by registering the M-wave was obtained in all volunteers on the right side (100% and in 13 volunteers on the left side (56.5%. The mean motor latency obtained in the right and left was respectively: 1.99 ± 0.41 and 1.92 ± 0.48 milliseconds (ms. There was no difference between the sides (p = 0.66. Latency did not correlate with age, stature or obstetric history. The results obtained in the present study were in agreement with those found by other researchers using the transrectal approach. CONCLUSION: The vaginal approach represents an alternative for pudendal nerve distal motor latency time, with similar results to those achieved through the transrectal approach. Normative values obtained herein might serve as a comparative basis for subsequent physiopathological studies.

  2. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    Science.gov (United States)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  3. Patient controlled versus automatic stimulation of pudendal nerve afferents to treat neurogenic detrusor overactivity.

    Science.gov (United States)

    Opisso, E; Borau, A; Rodríguez, A; Hansen, J; Rijkhoff, N J M

    2008-10-01

    We investigated whether patients with neurogenic detrusor overactivity can sense the onset of bladder contraction and in turn suppress the contraction by electrical stimulation of the dorsal penile-clitoral nerve. A total of 67 patients with different neurological disorders were recruited to undergo 3 filling cystometries. The first cystometry was done without stimulation. The second cystometry was performed with automatic controlled stimulation based on detrusor pressure. The third cystometry was done with patient controlled stimulation using a push button. Four females and 13 males underwent all 3 fillings. Compared to cystometry 1 average bladder capacity for cystometries 2 and 3 was 60% higher. Compared to peak pressure for cystometry 1 average peak pressure during suppressed contractions for cystometries 2 and 3 was 49% and 26% lower, respectively. The average delay of the onset of stimulation during cystometry 3 with respect to cystometry 2 was 5.7 seconds. The study shows that patient controlled genital nerve stimulation is as effective as automatic controlled stimulation to treat neurogenic detrusor overactivity. Thus, patient controlled stimulation is feasible in select patients, although patients must be trained in the technique.

  4. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.

    Science.gov (United States)

    Wangemann, P; Shen, Z; Liu, J

    1996-10-01

    Vestibular dark cells in the inner ear secrete K+ from perilymph containing 4 mM K+ to endolymph containing 145 mM K+. Sensory transduction causes K+ to flow from endolymph to perilymph, thus threatening the homeostasis of the perilymphatic K+ concentration which is crucial for maintaining sensory transduction since the basolateral membranes of the sensory cells and adjacent neuronal elements need to be protected from K(+)-induced depolarization. The present study addresses the questions (1) whether increases in the perilymphatic K+ concentration by as little as 1 mM are sufficient to stimulate KCl uptake across the basolateral membrane of vestibular dark cells, (2) whether K(+)-induced stimulation of KCl uptake causes stimulation of the IsK channel in the apical membrane, and (3) whether the rate of transepithelial K+ secretion depends on the perilymphatic (basolateral) K+ concentration when the apical side of the epithelium is bathed with a solution containing 145 mM K+, as in vivo. Uptake of KCl was monitored by measuring cell height as an indicator for cell volume. The current (IIsK), conductance (gIsK) and inactivation time constant (tau IsK) of the IsK channel as well as the apparent reversal potential of the apical membrane (Vr) were obtained with the cell-attached macro-patch technique. Vr was corrected for the membrane voltage previously measured with microelectrodes. The rate of transepithelial K+ secretion JK was obtained as equivalent short circuit current from measurements of the transepithelial voltage (Vt) and resistance (Rt) measured in the micro-Ussing chamber. Cell height of vestibular dark cells was 7.2 microns (average). Elevations of the extracellular K+ concentration from 3.5 to 4.5 mM caused cell swelling with an initial rate of cell height change of 11 nm/s. With 3.6 mM K+ in the pipette IIsK was outwardly directed and elevation of the extracellular K+ concentration from 3.6 to 25 mM caused an increase of IIsK from 12 to 65 pA, gIsK from 152

  5. Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project

    Science.gov (United States)

    Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan

    2012-01-01

    Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve

  6. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  7. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

    Science.gov (United States)

    Yan, Lu; Zhao, Bingxin; Liu, Xiaohong; Li, Xuan; Zeng, Chao; Shi, Haiyan; Xu, Xiaoxue; Lin, Tong; Dai, Liming; Liu, Yong

    2016-03-23

    The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.

  8. Rapid Remission of Conditioned Fear Expression with Extinction Training Paired with Vagus Nerve Stimulation

    Science.gov (United States)

    Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.

    2012-01-01

    Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749

  9. Short time effect of Delta oscillation under microcurrent transcutaneous electrical nerve stimulation at ST36.

    Science.gov (United States)

    Li, Shunan; Li, Donghui; Li, Huiyan; Wang, Jiang

    2014-01-01

    This paper was to study the short time effect of Delta brain oscillation under microcurrent transcutaneous electrical nerve stimulation (MTENS) at ST36 (Zusanli). The 64-channal electroencephalograph (EEG) signals from 12 healthy volunteers were recorded including baseline stage, during stimulation and after stimulation. Autoregressive (AR) Burg method was used to estimate the power spectrum. Then power variation rate (PVR) was calculated to quantify the effects compared with the baseline in Delta band. The results showed that MTENS at ST36 on right side led to increased Delta band power in left frontal.

  10. Effects of vagus nerve stimulation on cortical excitability in epileptic patients.

    Science.gov (United States)

    Di Lazzaro, V; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Meglio, M; Colicchio, G; Barba, C; Papacci, F; Tonali, P A

    2004-06-22

    Vagus nerve stimulation (VNS) is used as adjunctive treatment for medically refractory epilepsy, but little is known about its mechanisms of action. The effects of VNS on the excitatory and inhibitory circuits of the motor cortex were evaluated in five patients with epilepsy using single- and paired-pulse transcranial magnetic stimulation (TMS). Patients were examined with the stimulator on and off. VNS determined a selective and pronounced increase in the inhibition produced by paired-pulse TMS with no effects on the excitability by single-pulse TMS.

  11. Does sacral nerve stimulation improve continence through enhanced sensitivity of the anal canal? A pilot study

    DEFF Research Database (Denmark)

    Haas, S.; Brock, C.; Krogh, K.

    2016-01-01

    . DESIGN: This is an explorative study. PATIENTS: Fifteen women with idiopathic fecal incontinence (mean age, 58 ± 12.2 years) were selected. INTERVENTIONS: Cortical evoked potentials were recorded during repeated rapid balloon distension of the rectum and the anal canal both before and during temporary...... from stimulation of the anal canal by 50% (p = 0.03). No statistically significant differences were found in latencies, amplitudes, or spectral analysis. LIMITATIONS: This is a pilot study of limited size. CONCLUSIONS: In patients with idiopathic fecal incontinence, sacral nerve stimulation reduced...... the threshold for urge to defecate elicited from the anal canal, whereas supraspinal responses remained unaltered. This may suggest that sacral nerve stimulation, at least in part, acts via somatic afferent fibers enhancing anal sensation....

  12. Serratus muscle stimulation effectively treats notalgia paresthetica caused by long thoracic nerve dysfunction: a case series

    Directory of Open Access Journals (Sweden)

    Barad Meredith

    2009-09-01

    Full Text Available Abstract Currently, notalgia paresthetica (NP is a poorly-understood condition diagnosed on the basis of pruritus, pain, or both, in the area medial to the scapula and lateral to the thoracic spine. It has been proposed that NP is caused by degenerative changes to the T2-T6 vertebrae, genetic disposition, or nerve entrapment of the posterior rami of spinal nerves arising at T2-T6. Despite considerable research, the etiology of NP remains unclear, and a multitude of different treatment modalities have correspondingly met with varying degrees of success. Here we demonstrate that NP can be caused by long thoracic nerve injury leading to serratus anterior dysfunction, and that electrical muscle stimulation (EMS of the serratus anterior can successfully and conservatively treat NP. In four cases of NP with known injury to the long thoracic nerve we performed transcutaneous EMS to the serratus anterior in an area far lateral to the site of pain and pruritus, resulting in significant and rapid pain relief. These findings are the first to identify long thoracic nerve injury as a cause for notalgia paresthetica and electrical muscle stimulation of the serratus anterior as a possible treatment, and we discuss the implications of these findings on better diagnosing and treating notalgia paresthetica.

  13. Stimulation of trigeminal afferents improves motor recovery after facial nerve injury: functional, electrophysiological and morphological proofs.

    Science.gov (United States)

    Skouras, Emmanouil; Pavlov, Stoyan; Bendella, Habib; Angelov, Doychin N

    2013-01-01

    Recovery of mimic function after facial nerve transection is poor: the successful regrowth of axotomized motoneurons to their targets is compromised by (1) poor axonal navigation and excessive collateral branching, (2) abnormal exchange of nerve impulses between adjacent regrowing axons, and (3) insufficient synaptic input to facial motoneurons. As a result, axotomized motoneurons get hyperexcitable and unable to discharge. Since improvement of growth cone navigation and reduction of the ephaptic cross talk between axons turn out be very difficult, we concentrated our efforts on the third detrimental component and proposed that an intensification of the trigeminal input to axotomized electrophysiologically silent facial motoneurons might improve specificity of reinnervation. To test our hypothesis we compared behavioral, electrophysiological, and morphological parameters after single reconstructive surgery on the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery but combined with direct or indirect stimulation of the ipsilateral infraorbital (ION) nerve. We found that in all cases, trigeminal stimulation was beneficial for the outcome by improving the quality of target reinnervation and recovery of vibrissa! motor performance.

  14. The effect of chemoreceptor stimulation upon muscle sympathetic nerve activity.

    Science.gov (United States)

    Gates, Gregory J; Bartels, Matthew N; Downey, John A; De Meersman, Ronald E

    2009-07-31

    The aim of this investigation was to quantify the combined peripheral and central chemoreceptor contribution to sympathetic outflow above (post) and below (pre) the chemoreceptor ventilatory threshold (CVT). We measured muscle sympathetic nerve activity (MSNA) in seven subjects during hypoxic/hypercapnic and room air rebreathe protocols. Comparisons were made using a repeated measures analysis of variance with two within subject factors. One factor contained three levels--hyperventilation, pre-CVT, and post-CVT. The other factor contained two levels--rebreathe and control. Total MSNA increased from hyperventilation to pre-CVT to post-CVT in the rebreathe trial (385.7+/-95.9, 592.4+/-155.7, 882.0+/-235.4 au/15s respectively) and remained constant in the control trial (433.0+/-189.3, 409.1+/-183.4, 406.1+/-161.4 au/15s respectively). Ventilation increased in the rebreathe trial only. Heart rate and blood pressure did not change in either trial. These data suggest that the chemoreceptors significantly contribute to the modulation of sympathetic outflow.

  15. Vagus Nerve Stimulation in Ischemic Stroke: Old Wine in a New Bottle

    Directory of Open Access Journals (Sweden)

    Peter Y Cai

    2014-06-01

    Full Text Available Vagus nerve stimulation (VNS is currently FDA-approved for treatment of both medically refractory partial-onset seizures and severe, recurrent refractory depression which have failed to respond to medical interventions. Because of its ability to regulate mechanisms well-studied in neuroscience, such as norepinephrine and serotonin release, the vagus nerve may play an important role in regulating cerebral blood flow, edema, inflammation, glutamate excitotoxicity, and neurotrophic processes. There is strong evidence that these same processes are important in stroke pathophysiology. We reviewed the literature for the role of VNS in improving ischemic stroke outcomes by performing a systematic search for publications in Medline (1966-2014 with keywords vagus nerve stimulation AND stroke in subject headings and key words with no language restrictions. Of the 73 publications retrieved, we identified 7 studies from 3 different research groups that met our final inclusion criteria of research studies addressing the role of vagus nerve stimulation in ischemic stroke. Results from these studies suggest that VNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. Given the lack of success in Phase III trials for stroke neuroprotection, it is important to develop new therapies targeting different neuroprotective pathways. Further studies of the possible role of VNS, through normally physiologically active mechanisms, in ischemic stroke therapeutics should be conducted in both animal models and clinical studies. In addition, recent advent of a non-invasive, transcutaneous VNS could provide the potential for easier clinical translation.

  16. Sacral nerve stimulation for the treatment of severe faecal incontinence: results after 10 years experience.

    Science.gov (United States)

    Ruiz Carmona, M Dolores; Martín Arévalo, José; Moro Valdezate, David; Plá Martí, Vicente; Checa Ayet, Félix

    2014-05-01

    The objective of this study is to report our experience with sacral nerve stimulation for the treatment of severe faecal incontinence after the first 10 years with this technique. Between 2001 and 2011, 49 patients with severe faecal incontinence underwent sacral nerve stimulation. Anorectal manometry, endoanal ultrasound and pudendal nerve latency were performed. Bowel habit diary, severity of faecal incontinence and quality of life scales were evaluated preoperatively and at the end of follow-up. Morbidity occurred in a third of patients, mostly minor. Four definitive devices were explanted. With a median follow-up of 37 months, severity of faecal incontinence, urge and incontinence episodes significantly improved at the end of follow-up. Patients' subgroup with major follow-up of 5 years significantly improved the severity of faecal incontinence but not the parameters of the bowel habit diary. Quality of life showed no significant improvement. Descriptive data in patients with sphincter defects did not show worse results than with sphincter integrity. Sacral nerve stimulation is a safe technique for severe faecal incontinence with good functional medium-term results. In the long term, severity of the faecal incontinence also improves but studies with larger sample are necessary to show if other clinical parameters and the quality of life support this information. Preliminary results in patients with sphincter defects suggest that this technique could be effective in this group but future studies will have to confirm these findings. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  17. Median Nerve Stimulation in a Patient with Complex Regional Pain Syndrome Type II.

    Science.gov (United States)

    Jeon, Ik-Chan; Kim, Min-Su; Kim, Seong-Ho

    2009-09-01

    A 54-year-old man experienced injury to the second finger of his left hand due to damage from a paintball gun shot 8 years prior, and the metacarpo-phalangeal joint was amputated. He gradually developed mechanical allodynia and burning pain, and there were trophic changes of the thenar muscle and he reported coldness on his left hand and forearm. A neuroma was found on the left second common digital nerve and was removed, but his symptoms continued despite various conservative treatments including a morphine infusion pump on his left arm. We therefore attempted median nerve stimulation to treat the chronic pain. The procedure was performed in two stages. The first procedure involved exposure of the median nerve on the mid-humerus level and placing of the electrode. The trial stimulation lasted for 7 days and the patient's symptoms improved. The second procedure involved implantation of a pulse generator on the left subclavian area. The mechanical allodynia and pain relief score, based on the visual analogue scale, decreased from 9 before surgery to 4 after surgery. The patient's activity improved markedly, but trophic changes and vasomotor symptom recovered only moderately. In conclusion, median nerve stimulation can improve chronic pain from complex regional pain syndrome type II.

  18. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulationof the AN [1, 2, 3] were considered in terms of their efficacy to predict the spike timing for anodic...... andcathodic stimulation of the AN of cat [4]. The models' responses to the electrical pulses of variousshapes [5] were also analyzed. It was found that, while the models can account for the ring rates inresponse to various biphasic pulse shapes, they fail to correctly describe the timing of AP in response...

  19. Alcohol and disorientation-related responses. IV, Effects of different alcohol dosages and display illumination tracking performance during vestibular stimulation.

    Science.gov (United States)

    1971-07-01

    A previous CAMI laboratory investigation showed that alcohol impairs the ability of men to suppress vestibular nystagmus while visually fixating on a cockpit instrument, thus degrading visual tracking performance (eye-hand coordination) during angula...

  20. Experience with a Low Single Cervical Incision for Implantation of a Vagus Nerve Stimulator: Technique and Advantages.

    Science.gov (United States)

    Kumar, Ramesh; Winston, Ken R; Folzenlogen, Zach

    2015-12-01

    This report describes the technique for implanting a vagus nerve stimulator via a single low anterior cervical incision and discusses the advantages of this technique over that of the more commonly used 2-incision technique. The authors performed a retrospective review of all patients who underwent implantation of a vagus nerve stimulator by the senior author over a 10-year period. One hundred thirty-one patients underwent implantation of vagus nerve stimulators via the single-incision technique. There were no instances of vagus nerve injury, postoperative hematoma, or wound infection, and cosmesis was excellent. The single-incision technique described here for implantation of vagus nerve stimulators is technically straightforward and safe, and has significant advantages over the 2-incision technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Move it or lose it--is stimulation of the vestibular system necessary for normal spatial memory?

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L; Zheng, Yiwen

    2010-01-01

    Studies in both experimental animals and human patients have demonstrated that peripheral vestibular lesions, especially bilateral lesions, are associated with spatial memory impairment that is long-lasting and may even be permanent. Electrophysiological evidence from animals indicates that bilateral vestibular loss causes place cells and theta activity to become dysfunctional; the most recent human evidence suggests that the hippocampus may cause atrophy in patients with bilateral vestibular lesions. Taken together, these studies suggest that self-motion information provided by the vestibular system is important for the development of spatial memory by areas of the brain such as the hippocampus, and when it is lost, spatial memory is impaired. This naturally suggests the converse possibility that activation of the vestibular system may enhance memory. Surprisingly, there is some human evidence that this may be the case. This review considers the relationship between the vestibular system and memory and suggests that the evolutionary age of this primitive sensory system as well as how it detects self-motion (i.e., detection of acceleration vs. velocity) may be the reasons for its unique contribution to spatial memory. Copyright 2009 Wiley-Liss, Inc.

  2. Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure

    Directory of Open Access Journals (Sweden)

    Økstad Siri

    2006-12-01

    Full Text Available Abstract Background Vestibular neuritis (VN is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. Case presentations We describe three patients with symptoms suggestive of VN, but normal calorics. All 3 had unilateral loss of vestibular evoked myogenic potential. A slight, asymptomatic position dependent nystagmus, with the pathological ear down, was observed. Conclusion We believe that these patients suffer from pure inferior nerve vestibular neuritis.

  3. TENS (transcutaneous electrical nerve stimulation) for labour pain.

    Science.gov (United States)

    Francis, Richard

    2012-05-01

    Because TENS is applied inconsistently and not always in line with optimal TENS application theory, this may explain why TENS for labour pain appears to be effective in some individuals and not in others. This article reviews TENS theory, advises upon optimal TENS application for labour pain and discusses some of the limitations of TENS research on labour pain. TENS application for labour pain may include TENS applied to either side of the lower spine, set to 200 mus pulse duration and 100 pulses per second. As pain increases, TENS intensity should be increased and as pain decreases, TENS intensity should be reduced to maintain a strong but pain free intensity of stimulation. This application may particularly reduce back pain during labour.

  4. Technical Note: Treatment of Sacroiliac Joint Pain with Peripheral Nerve Stimulation.

    Science.gov (United States)

    Guentchev, Marin; Preuss, Christian; Rink, Rainer; Peter, Levente; Wocker, Ernst-Ludwig; Tuettenberg, Jochen

    2015-07-01

    Sacroiliac joint (SIJ) pain affects older adults with a prevalence of up to 20% among patients with chronic low back pain. While pain medication, joint blocks and denervation procedures achieve pain relief in most patients, some cases fail to improve. Our goal was to determine the effectiveness of SIJ peripheral nerve stimulation in patients with severe conservative therapy-refractory SIJ pain. Here we present 12 patients with severe conservative therapy-refractory pain receiving an SIJ peripheral nerve stimulation. Patient satisfaction, pain, and quality of life were evaluated by means of the International Patient Satisfaction Index (IPSI), visual analog scale (VAS), and Oswestry Disability Index 2.0 (ODI) using standard questionnaires. For stimulation we placed an eight-pole peripheral nerve electrode parallel to the SIJ. Two weeks postoperatively, our patients reported an average ODI reduction from 57% to 32% and VAS from 9 to 2.1. IPSI was 1.1. After six months, the therapy was rated as effective in seven out of eight patients reporting at that period. The average ODI was low at 34% (p = 0.0006), while the VAS index rose to 3.8 (p VAS 1.7 (p < 0.0001), and IPSI 1.3. We conclude that SIJ stimulation is a promising therapeutic strategy in the treatment of intractable SIJ pain. Further studies are required to determine the precise target group and long-term effect of this novel treatment method. © 2014 International Neuromodulation Society.

  5. The role of laryngeal electromyography in vagus nerve stimulation-related vocal fold dysmotility.

    Science.gov (United States)

    Saibene, Alberto M; Zambrelli, Elena; Pipolo, Carlotta; Maccari, Alberto; Felisati, Giovanni; Felisati, Elena; Furia, Francesca; Vignoli, Aglaia; Canevini, Maria Paola; Alfonsi, Enrico

    2017-03-01

    Vagus nerve stimulation (VNS) is a useful tool for drug-resistant epilepsy, but it induces known laryngeal side effects, with a significant role on patients' quality of life. VNS patients may show persistent left vocal fold (LVF) palsy at rest and/or recurrent LVF adduction during stimulation. This study aims at electromyographically evaluating laryngeal muscles abnormalities in VNS patients. We compared endoscopic laryngeal evaluation data in six VNS patients with laryngeal muscle electromyography (LMEMG) carried out on the thyroarytenoid, cricothyroid, posterior cricoarytenoid, and cricopharyngeal muscles. Endoscopy showed LVF palsy at rest in 3/6 patients in whom LMEMG documented a tonic spastic activity with reduced phasic modulation. In four out of six patients with recurrent LVF adduction during VNS activation, LMEMG showed a compound muscle action potential persisting for the whole stimulation. This is the first LMEMG report of VNS-induced motor unit activation via recurrent laryngeal nerve and upper laryngeal nerve stimulation. LMEMG data were could, therefore, be considered consistent with the endoscopic laryngeal examination in all patient.

  6. A point process framework for modeling electrical stimulation of the auditory nerve

    Science.gov (United States)

    Rubinstein, Jay T.; Shea-Brown, Eric

    2012-01-01

    Model-based studies of responses of auditory nerve fibers to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe spiking activity while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of individual auditory nerve fibers that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semianalytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data of response to high and low pulse rate stimulation. We find that the model, although constructed to fit data from single and paired pulse experiments, can accurately predict responses to unmodulated and modulated pulse train stimuli. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds. PMID:22673331

  7. Subject-controlled stimulation of dorsal genital nerve to treat neurogenic detrusor overactivity at home.

    Science.gov (United States)

    Opisso, Eloy; Borau, Albert; Rijkhoff, Nico J M

    2013-09-01

    To investigate the effects of subject controlled dorsal genital nerve (DGN) electrical stimulation on neurogenic detrusor overactivity (NDO) in subjects at home. Subjects underwent a 5-day study at home with DGN stimulation. Stimulation was provided with surface electrodes placed either on the dorsal penile shaft in males and on or close to the clitoris in females. The days 1 and 5 were with no stimulation whereas days 2-4 were with stimulation. Two urodynamic studies were performed at the beginning and at the end of the study. A bladder diary was obtained. Eleven subjects with NDO and with urge incontinence were included. One subject stopped the protocol before the end of the 5-day trial and two did not undergo the second urodynamic study. The subjects showed a statistically significant increase in bladder capacities compared to baseline (P = 0.047). Mean volume per day voided significantly increased over the study within the subjects. Differences between day 1 and day 5 were statistically significant (P = 0.028). The feasibility and the globally positive outcomes of the study indicate that the stimulation of the dorsal genital nerve can be an option for the treatment of the NDO. Copyright © 2012 Wiley Periodicals, Inc.

  8. [Therapy of vestibular vertigo].

    Science.gov (United States)

    Hamann, K F

    1993-05-01

    The non-surgical treatment of vestibular disorders must be based on current knowledge of vestibular pathophysiology. It is generally accepted that after vestibular lesions a self-repair mechanism exists that allows a more or less complete recovery. In cases of persisting vestibular complaints the physician's duty consists in stimulation of these pre-existing mechanisms. This can be done by physical exercises, as has been recommended since the work of Cawthorne and Cooksey in 1946. This concept is meanwhile supported by modern neurophysiological research. This article describes a short training program consisting of exercises for fixation during rotations, smooth pursuit, optokinetic nystagmus and motor learning mechanisms. Physical exercises can be reinforced by nootropic drugs.

  9. A prospective randomised controlled trial of ultrasound guided versus nerve stimulation guided distal sciatic nerve block at the popliteal fossa.

    NARCIS (Netherlands)

    Geffen, G.J. van; Broek, E. van den; Braak, G.J.J.; Giele, J.L.P.; Gielen, M.J.M.; Scheffer, G.J.

    2009-01-01

    The direct visualisation of nerves and adjacent anatomical structures may make ultrasonography the preferred method for nerve localisation. In this prospective randomised study, we investigated whether, for distal sciatic nerve block in the popliteal fossa, an ultrasound guided technique would

  10. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain--a comparative study.

    Science.gov (United States)

    Rajpurohit, Bharat; Khatri, Subhash M; Metgud, Deepa; Bagewadi, Anjana

    2010-01-01

    To compare the effectiveness of transcutaneous electrical nerve stimulation (TENS) and microcurrent electrical nerve stimulation (MENS) on masticatory muscles pain bruxism patient. A total of 60 subjects with the clinical diagnosis of bruxism were randomly allocated to two study groups. Group A received TENS (50 Hz, pulse width 0.5 mSec, intensity 0-60 mA for 20 minutes for a period of seven days) and Group B received MENS (0.5 Hz, intensity 1,000 muA for 20 minutes for a period of seven days). The outcome measures were assessed in term of Visual Analog Scale (VAS) and digital pressometer of 2 Kgf. The study showed significant change in intensity of pain as per VAS score ( P

  11. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain - A comparative study

    Directory of Open Access Journals (Sweden)

    Rajpurohit Bharat

    2010-01-01

    Full Text Available Objectives: To compare the effectiveness of transcutaneous electrical nerve stimulation (TENS and microcurrent electrical nerve stimulation (MENS on masticatory muscles pain bruxism patient. Materials and Methods : A total of 60 subjects with the clinical diagnosis of bruxism were randomly allocated to two study groups. Group A received TENS (50 Hz, pulse width 0.5 mSec, intensity 0-60 mA for 20 minutes for a period of seven days and Group B received MENS (0.5 Hz, intensity 1,000 μA for 20 minutes for a period of seven days. The outcome measures were assessed in term of Visual Analog Scale (VAS and digital pressometer of 2 Kgf. Results : The study showed significant change in intensity of pain as per VAS score ( P ≤ 0.0001 and tenderness as per digital pressometer ( P ≤ 0.0001. Conclusion : MENS could be used as an effective pain-relieving adjunct to TENS in the treatment of masticatory muscle pain due to bruxism.

  12. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation.

    Directory of Open Access Journals (Sweden)

    John R W Menzies

    Full Text Available BACKGROUND: Vestibulo-ocular reflex (VOR gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD at vestibular synapses. METHODOLOGY/PRINCIPAL FINDINGS: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular and inhibitory (floccular inputs converging on medial vestibular nucleus (MVN neurons (input-spike-timing dependent plasticity, iSTDP. To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarization, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning. CONCLUSIONS: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR

  13. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect.

    Science.gov (United States)

    Huang, Jinghui; Lu, Lei; Zhang, Jianbin; Hu, Xueyu; Zhang, Yongguang; Liang, Wei; Wu, Siyu; Luo, Zhuojing

    2012-01-01

    Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect.

  14. Management of pain secondary to temporomandibular joint syndrome with peripheral nerve stimulation.

    Science.gov (United States)

    Rodriguez-Lopez, Manuel J; Fernandez-Baena, Mariano; Aldaya-Valverde, Carlos

    2015-01-01

    Temporomandibular joint syndrome, or Costen syndrome, is a clinically diagnosed disorder whose most common symptoms include joint pain and clicking, difficulty opening the mouth, and temporomandibular joint discomfort. The temporomandibular joint (TMJ) is supplied by the auriculotemporal nerve, a collateral branch of the mandibular nerve (the V3 branch of the trigeminal nerve). The aim of this study is to assess the effectiveness and safety of permanent peripheral nerve stimulation to relieve TMJ pain. This case series is a prospective study. Pain Unit of a regional universitary hospital. The study included 6 female patients with temporomandibular pain lasting from 2 to 8 years that did not respond to intraarticular local anesthetic and corticoid injections. After a positive diagnostic block test, the patients were implanted with quadripolar or octapolar leads in the affected preauricular region for a 2-week stimulation test phase, after which the leads were connected to a permanent implanted pulse generator. Results of the visual analog scale, SF-12 Health Survey, Brief Pain Inventory, and drug intake were recorded at baseline and at 4, 12, and 24 weeks after the permanent implant. Five out of 6 patients experienced pain relief exceeding 80% (average 72%) and received a permanent implant. The SF-12 Health Survey results were very positive for all specific questions, especially items concerning the physical component. Patients reported returning to normal physical activity and rest at night. Four patients discontinued their analgesic medication and 1 patient reduced their gabapentin dose by 50%. Sample size; impossibility of placebo control. Patients affected with TMJ syndrome who do not respond to conservative treatments may find a solution in peripheral nerve stimulation, a simple technique with a relatively low level of complications.

  15. Transport of heat in caloric vestibular stimulation. Conduction, convection or radiation?

    Science.gov (United States)

    Feldmann, H; Hüttenbrink, K B; Delank, K W

    1991-01-01

    Experiments in temporal bone specimens were carried out under strictly controlled conditions: temperature (37 degrees C) and humidity kept constant; standardized irrigation of the external ear canal by an automated system (in 15 s, 50 ml of water, 11 degrees C above temperature of specimen), thermistor probes of 0.2 mm diameter placed in different parts of the specimens. In the intact temporal bone such an irrigation causes a rise in temperature with a gradient from the external ear canal across the bony bridge to the lateral semicircular canal as expected with heat conduction. After removal of the bony bridge, which is the main route for heat conduction, the rise in temperature in the lateral semicircular canal is greater and faster than in the intact specimen. This effect again is drastically reduced by placing a reflecting shield between tympanic membrane and labyrinth. In the intact middle ear inserting a reflecting shield or filling the cavity with gel also reduces the heat transfer to the labyrinth, although the bony routes for heat conduction are left untouched. The experiments prove that radiation plays an important part in heat transfer in caloric stimulation.

  16. Human cerebrocortical potentials evoked by stimulation of the dorsal nerve of the penis.

    Science.gov (United States)

    Bradley, W E; Farrell, D F; Ojemann, G A

    1998-01-01

    Cortical evoked potentials resulting from stimulation of the dorsal nerve of the penis (DNP) provide a unique opportunity to document the cortical localization of sexual sensory representation in man. The DNP supplies sensory axons to the major portion of the human phallus, including the penile shaft and glans. Animal and human studies indicate that this nerve plays a crucial role in erection and ejaculation. Direct cortical evoked responses to DNP electrical stimulation were recorded in patients undergoing preoperative evaluation for resection of epileptic foci. These studies provided evidence that the primary sensory cortex contains a large area of cortex devoted to the afferent fibers of the DNP and that the sensory field is in a different location than previously described. The location and distribution of this response indicated the need for revision of the traditional concept of the sensory cortical homunculus.

  17. Effects of percutaneous posterior tibial nerve stimulation on voiding dysfunctions in cerebral palsy: A case report

    OpenAIRE

    Farshideh Alishahi; Reza Farjad; Farideh Dehghan Manshadi

    2016-01-01

    The present study, conducted on three children with cerebral palsy who had voiding dysfunction. After collecting demographic information, symptoms of voiding dysfunctions were recorded. Then; we did an ultrasonographic evaluation of the bladder to measure residual urine volume. Physiotherapy treatment through percutaneous electrical stimulation of the posterior tibial nerve was performed in 12 sessions. Bladder ultrasonography was repeated after treatment. Abnormal residual urine volume becam...

  18. Effects of transcutaneous electrical nerve stimulation and cryotherapy on pain threshold by induced pressure

    OpenAIRE

    Maciel,Lairton Fabricio de Menezes; Ferreira,Jose Jamacy de Almeida; Santos, Heleodorio Honorato dos; Andrade,Palloma Rodrigues de

    2014-01-01

    Studies have shown that cryotherapy, transcutaneous electrical nerve stimulation (TENS) and the association of them promotes analgesia, but the effectiveness of this association is unclear. The objective was to evaluate the effects of single and combined application of TENS and cryotherapy on pressure-induced pain threshold in healthy subjects. The sample consisted of 40 subjects, randomly assigned into four groups: (1) cryotherapy group - CG, (2) TENS group - GT; (3) cryotherapy + TENS group...

  19. A study on cross-talk nerve stimulation: electrode placement and current leakage lid

    Directory of Open Access Journals (Sweden)

    Nicolas Julémont

    2016-07-01

    Full Text Available Cross-talk phenomena should be avoided when stimulating nerves. One option to limit the current spread is to use tripolar electrodes, but at the cost of increasing the number of wires connection. This should be avoided since cables must be thin and compliant. We investigated the impact of the central electrode position and of current spread due to a gap between book and lid on cross-talk, in a set of tripolar or quasi-tripolar configurations.

  20. Percutaneous tibial nerve stimulation in treatment of overactive bladder: when should retreatment be started?

    Science.gov (United States)

    Marchal, Cristobal; Herrera, Bernardo; Antuña, Francisco; Saez, Felipe; Perez, Juan; Castillo, Elisabeth; Cantero, Juan; Milla, Francisco; Machuca, Javier; Redondo, Maximino; Galacho, Alejandro

    2011-11-01

    To study the response to posterior tibial nerve stimulation in patients with overactive bladder refractory to medical treatment. A cohort of 53 patients were treated by posterior tibial nerve stimulation and followed up for a maximum of 24 months. All patients completed the International Consultation on Incontinence Modular Questionnaire-Short Form quality of life questionnaire and kept a urination diary to record the daytime urination frequency and night-time urination frequency. Urodynamic studies were also conducted. At 6 months of follow-up, a cure/improvement rate of 92.4% (49 of 53 cases) had been achieved. Ten patients were given additional treatment and were excluded from subsequent follow-up analysis. At 12 months of follow-up, a cure/improvement rate of 91.69% had been achieved (39 of 43). At 24 months of follow-up, of the 16 patients initially included during the first year, a cure/improvement rate of 62.5% had been achieved (10 of 16). The first sensation of bladder filling had increased by the end of treatment, with differences observed before and after posterior tibial nerve stimulation (P ≤ .001). The average post-treatment bladder capacity had increased by 72.7 mL compared with the initial value (P ≤ .001). At 24 months of follow-up, the group of 16 patients evaluated recorded a significant worsening of night-time urination frequency (P ≤ .05) and quality of life (P ≤ .01). Posterior tibial nerve stimulation is a good option for the treatment of overactive bladder. In our series, the optimal point to start retreatment would be at 24 months after therapy completion. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Treatment of Idiopathic Chronic Orchialgia with Transcutaneous Electrical Nerve Stimulation (TENS):A Preliminary Result

    OpenAIRE

    Ekrem Akdeniz; Mustafa Suat Bolat; Sevda Akdeniz

    2016-01-01

    Purpose: Unilateral or bilateral testicular pain lasting more than 3 months is called as chronic orchialgia. Aproximately 25-50% of chronic orchialgia is idiopatic origin. This study aimed the effectiveness of Transcutaneous Electrical Nerve Stimulation (TENS) therapy due to Idiopathic Chronic Orchialgia (ICO). Methods: Five patients were included into this study with ICO that diagnosed with physical examination, urine analyses, urinary system x-ray film, and scrotal doppler ultrasound. Me...

  2. Treatment of intractable chronic cluster headache by occipital nerve stimulation: a cohort of 51 patients.

    Science.gov (United States)

    Miller, S; Watkins, L; Matharu, M

    2017-02-01

    Chronic cluster headache is a rare, highly disabling primary headache condition. When medically intractable, occipital nerve stimulation can offer effective treatment. Open-label series have provided data on small cohorts only. We analyzed 51 subjects to evaluate the long-term outcomes of highly intractable chronic cluster headache with occipital nerve stimulation. Patients with intractable chronic cluster headache were implanted with occipital nerve stimulators during the period 2007-2014. The primary endpoint was improvement in daily attack frequency. Secondary endpoints included attack severity, attack duration, quality-of-life measures, headache disability scores and adverse events. We studied 51 patients [35 males; mean age at implant 47.78 (range 31-70) years; mean follow-up 39.17 (range 2-81) months]. Nineteen patients had other chronic headache types in addition in chronic cluster headache. At final follow-up, there was a 46.1% improvement in attack frequency (P cluster headache alone and 40.3% (P = 0.036) in those with multiple phenotypes. There were no significant differences in response in those with or without multiple headache types. The overall response rate (defined as at least a 50% improvement in attack frequency) was 52.9%. Significant reductions were also seen in attack duration and severity. Improvements were noted in headache disability scores and quality-of-life measures. Triptan use of responders dropped by 62.56%, resulting in significant cost savings. Adverse event rates were highly favorable. Occipital nerve stimulation appears to be a safe and efficacious treatment for highly intractable chronic cluster headache even after a mean follow-up of over 3 years. © 2016 EAN.

  3. Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities.

    Science.gov (United States)

    Zhang, Jian-Liang; Zhang, Shi-Ping; Zhang, Hong-Qi

    2008-07-15

    Introduced about two decades ago, vagus nerve stimulation (VNS) therapy has been increasingly used for the treatment of refractory epilepsy recently. This study was set out to compare the effects between VNS and electroacupuncture (EA) on pentylenetetrazole (PTZ) induced epileptiform activities in the rat cerebral cortex. Under general anesthesia, the parietal cortex of the rat (n=20) was exposed to record the cortical epileptiform activities. The left vagus nerve was stimulated at 30 Hz, 1 mA or 3 mA for 5 min. For EA, "Dazhui" acupoint (GV14) was stimulated with a pair of acupuncture needles with the same parameters. The results show that both VNS and EA at either 1 mA or 3 mA could inhibit the PTZ-induced cortical epileptiform activities, and higher stimulation (3 mA) was not associated with a greater inhibition. In the cases that showed inhibitory responses, there were no statistically significant differences between the two modalities, implying that EA could be comparable to VNS in the treatment of epilepsy. Thus, under current experimental settings, the antiepileptic effect induced by electrical stimulation appeared not vagal specific, and EA could be a good alternative to VNS in the management of epilepsy.

  4. Changes in gustatory perceptions of patients with major depression treated with vagus nerve stimulation (VNS).

    Science.gov (United States)

    Sperling, W; Biermann, T; Spannenberger, R; Clepce, M; Padberg, F; Reulbach, U; Kornhuber, J; Thuerauf, N

    2011-03-01

    Olfactory and gustatory functions were investigated before and during vagus nerve stimulation (VNS) in a group of 9 patients with therapy-resistant depression, implanted with a VNS system. Gustation and olfaction were tested using standard sniffing tests. Subjects participated in 2 sessions with the vagal stimulator switched on and off, respectively. Under conditions of stimulation of the VNS, there were statistically significant differences of the threshold of perception, with an intensification of the taste "sweet" (Z = -2.0; p = 0.048) and "bitter" (Z = - 2.5; p = 0.011) compared to the "off-mode". A statistical trend (Z = - 1.7; p=0.098) for increased intensity of the taste "salty" was observed, however, these results would supposedly disappear after correction for multiple testing presumably due to the large number of variables and the small sample size. There were no statistically relevant differences concerning olfactory perception. The changes of gustatory perception under conditions of vagal nerve stimulation observed in this study show another important central nervous effect of vagal stimulation on the limbic system that might be of importance in the elucidation of mechanisms of action of VNS especially on refractory depression. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin

    Energy Technology Data Exchange (ETDEWEB)

    Caverson, M.M.; Ciriello, J.

    1987-04-01

    Experiments were done in ..cap alpha..-chloralose-anesthetized, paralyzed and artificially ventilated cats with vagus, cervical sympathetic, aortic depressor, and carotid sinus nerves cut bilaterally to investigate the effect of afferent renal nerve (ARN) stimulation on circulating levels of vasopressin (AVP). Electrical stimulation of ARN elicited a pressor response that had two components, a primary (1/sup 0/) component locked in time with the stimulus and a secondary (2/sup 0/) component that had a long onset latency and that outlasted the stimulation period. The 1/sup 0/ and 2/sup 0/ components of the pressor response were largest at stimulation frequencies of 30 and 40 Hz, respectively. Autonomic blockage with hexamethonium bromide and atropine methylbromide abolished the 1/sup 0/ component. Administration of the vasopressin V/sub 1/-vascular receptor antagonist d(CH/sub 2/)/sub 5/ VAVP during autonomic blockade abolished the 2/sup 0/C component. Plasma concentrations of AVP measured by radioimmunoassay increased from control levels of 5.2 +/- 0.9 to 53.6 +/- 18.6 pg/ml during a 5-min period of stimulation of ARN. Plasma AVP levels measured 20-40 min after simulation were not significantly different from control values. These data demonstrate that sensory information originating in the kidney alters the release of vasopressin from the neurohypophysis and suggest that ARN are an important component of the neural circuitry involved in homeostatic mechanisms controlling arterial pressure.

  6. Brain plasticity after implanted peroneal nerve electrical stimulation to improve gait in chronic stroke patients: Two case reports.

    Science.gov (United States)

    Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia

    2017-01-01

    Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    Science.gov (United States)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. [Comparative study of performance of lower extremities blocks under ultrasonography and nerve stimulator guidance].

    Science.gov (United States)

    Bubnov, R V; Strokan', A M; Abdullaiev, R Ia

    2011-01-01

    The aim of the study was to conduct a comparative analysis of regional anesthesia under neurostimulator, ultrasound guidance, and under combined guidance of the neurostimulator and ultrasound to ensure the safe and effective control of regional anesthesia with minimal discomfort for the patient. Ultrasound allows to gain significantly higher quality scores of local anesthesia than nerve stimulator control, to significantly reduce the number of needle extra insertions, needling cases, transposition, addition of general anesthesia, the number of unsuccessful blocks, reduce needle manipulation, significantly increase the occurrence of cases of complete blockade (sensitive and motor) on 30 min., causes less discomfort for patients. The use of ultrasound does not exclude the use of nerve stimulator as an additional means of verification of correct needle placement, particularly in the early stages of mastering the technique. The research combined use of ultrasound and nerve stimulator significantly decrease unsuccessful blockade and transposition need for a needle during manipulation. However, the difference between some indicators of quality of regional anesthesia is statistically unreliable; it requires further randomized and double blind studies on large patient groups, for different blockages.

  9. Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.

    Science.gov (United States)

    Chung, Yoojin; Delgutte, Bertrand; Colburn, H Steven

    2015-02-01

    Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners' sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model's ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons.

  10. Randomized clinical trial of transcutaneous electrical posterior tibial nerve stimulation versus lateral internal sphincterotomy for treatment of chronic anal fissure

    National Research Council Canada - National Science Library

    Youssef, Tamer; Youssef, Mohamed; Thabet, Waleed; Lotfy, Ahmed; Shaat, Reham; Abd-Elrazek, Eman; Farid, Mohamed

    2015-01-01

    The objective of this study was to evaluate the efficacy of transcutaneous electrical posterior tibial nerve stimulation in treatment of patients with chronic anal fissure and to compare it with the...

  11. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Science.gov (United States)

    Xiang, Yao-xian; Wang, Wen-xin; Xue, Zhe; Zhu, Lei; Wang, Sheng-bao; Sun, Zheng-hui

    2015-01-01

    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and interleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression. PMID:26170817

  12. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  13. Pressure changes under the ischial tuberosities during gluteal neuromuscular stimulation in spinal cord injury: a comparison of sacral nerve root stimulation with surface functional electrical stimulation.

    Science.gov (United States)

    Liu, Liang Qin; Ferguson-Pell, Martin

    2015-04-01

    To compare the magnitude of interface pressure changes during gluteal maximus contraction by stimulating sacral nerve roots with surface electrical stimulations in patients with spinal cord injuries (SCIs). Pilot interventional study. Spinal injury research laboratory. Adults (N=18) with suprasacral complete SCI. Sacral nerve root stimulation (SNRS) via a functional magnetic stimulator (FMS) or a sacral anterior root stimulator (SARS) implant; and surface functional electrical stimulation (FES). Interface pressure under the ischial tuberosity (IT) defined as peak pressure, gradient at peak pressure, and average pressure. With optimal FMS, a 29% average reduction of IT peak pressure was achieved during FMS (mean ± SD: 160.1±24.3mmHg at rest vs 114.7±18.0mmHg during FMS, t5=6.3, P=.002). A 30% average reduction of peak pressure during stimulation via an SARS implant (143.2±31.7mmHg at rest vs 98.5±21.5mmHg during SARS, t5=4.4, P=.007) and a 22% average decrease of IT peak pressure during FES stimulation (153.7±34.8mmHg at rest vs 120.5±26.1mmHg during FES, t5=5.3, P=.003) were obtained. In 4 participants who completed both the FMS and FES studies, the percentage of peak pressure reduction with FMS was slightly greater than with FES (mean difference, 7.8%; 95% confidence interval, 1.6%-14.0; P=.04). SNRS or surface FES can induce sufficient gluteus maximus contraction and significantly reduce ischial pressure. SNRS via an SARS implant may be more convenient and efficient for frequently activating the gluteus maximus. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Nerve Stimulator Guided Axillary Block in Painless Reduction of Distal Radius Fractures; a Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Hossein Alimohammadi

    2013-12-01

    Full Text Available Introduction: Given the high prevalence of upper extremity fractures and increasing need to perform painless reduction in the emergency departments, the use of analgesic methods with fewer complications and more satisfaction appears to be essential. The aim of this study is comparison the nerve stimulator guided axillary block (NSAB with intravenous sedation in induction of analgesia for painless reduction of distal radius fractures. Methods: In the present randomized clinical trial, 60 patients (18-70 years of age suffered from distal radius fractures, were divided into two equal groups. One group received axillary nerve block by nerve stimulator guidance and the other procedural sedation and analgesia (PSA using midazolam/fentanyl. Onset of analgesia, duration of analgesic effect, total procedure time and pain scores were recorded using visual analogue scale (VAS and the outcomes were compared. Chi-squared and student t test were performed to evaluate differences between two groups. Results: Sixty patients were randomly divided into two groups (83.3% male. The mean age of patients was 31 ±0.7 years. While the onset of analgesia was significantly longer in the NSAB group, the mean total time of procedure was shorter than PSA (p<0.001. The NSAB group needed a shorter post-operative observation time (P<0.001. Both groups experienced equal pain relief before, during and after procedure (p>0.05. Conclusion: It seems that shorter post-operative monitoring time and consequently lesser total time of procedure, make nerve stimulator guided axillary block as an appropriate alternative for procedural sedation and analgesia in painless reduction of distal radius fractures in emergency department. 

  15. [Protective effects of vagus nerve stimulation on rats with sepsis-associated encephalopathy].

    Science.gov (United States)

    Li, Na; Li, Zhifeng; Xiang, Hui; Wang, Xiang; Zhang, Xueyan; Li, Jianguo

    2015-06-01

    To observe the effects of electrical stimulation of the vagus nerve on sepsis-associated encephalopathy, and to explore its possible mechanism. Forty adult male Sprague-Dawley (SD) rats were randomly divided into sham group, model group, vagotomy group (VGX group), vagus nerve stimulation group (VNS group), with 10 rats in each group. The rat model of sepsis was reproduced by injecting lipopolysaccharide (LPS) through femoral vein, and rats of sham group were given the same volume of normal saline. The left cervical vagotomy was performed 30 minutes before LPS administration in VGX group, electrical stimulation of the left vagus nerve was initiated 30 minutes after LPS administration in VNS group. The rats in sham group were sacrificed after receiving electroencephalogram (EEG) examinations, and brain specimens were taken. The changes in EEG in the other three groups were monitored at 2, 4 and 6 hours after LPS administration, and the α wave activity percentage was calculated. The blood was collected from abdominal aorta 6 hours after LPS administration, the rats were sacrificed and brain tissue was harvested. The concentrations of tumor necrosis factor-α (TNF-α) in plasma and brain were measured with enzyme-linked immunosorbent assay (ELISA). The histology and ultrastructure changes in the prefrontal cortex in the rats were observed with both light microscope and transmission electron microscope. Compared with sham group, the percentage of α wave on EEG was significantly increased at 2, 4 and 6 hours after LPS administration in model group [(14.52±0.50)%, (16.70±0.85)%, (17.35±0.36)% vs. (12.60±0.46)%, all Pvagus nerve can activate anti-inflammatory effect through cholinergic pathway, and improve the cerebral function, and inhibit the development of sepsis-associated encephalopathy by reducing systemic and cerebral inflammatory reaction.

  16. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.

    Science.gov (United States)

    Bonaz, B; Sinniger, V; Pellissier, S

    2017-07-01

    Inflammatory bowel disease (IBD), that is Crohn's disease (CD) and ulcerative colitis, affects about 1.5 million persons in the USA and 2.2 million in Europe. The pathophysiology of IBD involves immunological, genetic and environmental factors. The treatment is medico-surgical but suspensive. Anti-TNFα agents have revolutionized the treatment of IBD but have side effects. In addition, a non-negligible percentage of patients with IBD stop or take episodically their treatment. Consequently, a nondrug therapy targeting TNFα through a physiological pathway, devoid of major side effects and with a good cost-effectiveness ratio, would be of interest. The vagus nerve has dual anti-inflammatory properties through its afferent (i.e. hypothalamic-pituitary-adrenal axis) and efferent (i.e. the anti-TNFα effect of the cholinergic anti-inflammatory pathway) fibres. We have shown that there is an inverse relationship between vagal tone and plasma TNFα level in patients with CD, and have reported, for the first time, that chronic vagus nerve stimulation has anti-inflammatory properties in a rat model of colitis and in a pilot study performed in seven patients with moderate CD. Two of these patients failed to improve after 3 months of vagus nerve stimulation but five were in deep remission (clinical, biological and endoscopic) at 6 months of follow-up and vagal tone was restored. No major side effects were observed. Thus, vagus nerve stimulation provides a new therapeutic option in the treatment of CD. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  17. Optimal Vagus Nerve Stimulation Frequency for Suppression of Spike-and-Wave Seizures in Rats.

    Science.gov (United States)

    Jiao, Jianhang; Harreby, Kristian R; Sevcencu, Cristian; Jensen, Winnie

    2016-06-01

    Vagus nerve stimulation (VNS) is used as an adjunctive therapy for drug-resistant epilepsy and results in a 50% seizure reduction in up to 50% of treated patients. The VNS frequency used in the clinic today is in the range of 10-30 Hz. The evidence for choosing the stimulation frequency is limited, and little knowledge is available on the effect of other VNS frequencies. Deep brain, trigeminal nerve, or spinal cord stimulation studies have suggested the use of stimulation frequencies above 80 Hz for seizure control. Therefore, our objective for the present study was to investigate if VNS using frequencies higher than those currently used in the clinic could be more effective in attenuating seizures. Spike-and-wave (SW) discharges were induced in 11 rats, which then were subjected to VNS sessions applied at the frequencies of 10, 30, 80, 130, and 180 Hz combined with control intervals without stimulation. The anticonvulsive effect of VNS was evaluated by comparing the normalized mean power (nMP) and frequency (nMSF) of the SW discharges derived from intracortical recordings collected during the stimulation and control intervals. Compared with the control intervals, all the tested VNS frequencies significantly reduced the nMP (in the range of 9-21%). However, we found that 130 and 180 Hz VNS induced a 50% larger attenuation of seizures than that achieved by 30 Hz VNS. In addition, we found that 80, 130, and 180 Hz VNS induced a significant reduction of the nMSF, that is by 5, 7, and 8%, respectively. These results suggest that a VNS stimulation frequency in the range of 130-180 Hz may be more effective in inhibiting seizures than the 30 Hz VNS applied in the clinic today. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes.

    Science.gov (United States)

    Steenbergen, Laura; Sellaro, Roberta; Stock, Ann-Kathrin; Verkuil, Bart; Beste, Christian; Colzato, Lorenza S

    2015-06-01

    The ever-changing environment we are living in requires us to apply different action control strategies in order to fulfill a task goal. Indeed, when confronted with multiple response options it is fundamental to prioritize and cascade different actions. So far, very little is known about the neuromodulation of action cascading. In this study we assessed the causal role of the gamma-aminobutyric acid (GABA)-ergic and noradrenergic system in modulating the efficiency of action cascading by applying transcutaneous vagus nerve stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve and to increase GABA and norepinephrine concentrations in the brain. A single-blind, sham-controlled, between-group design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n=30)-on a stop-change paradigm. Results showed that active, as compared to sham stimulation, enhanced response selection functions during action cascading and led to faster responses when two actions were executed in succession. These findings provide evidence for the important role of the GABA-ergic and noradrenergic system in modulating performance in action cascading. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    Science.gov (United States)

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Risk factors associated with vestibulocochlear nerve schwannoma: systematic review Fatores de risco associados ao Schwannoma do nervo vestibular: revisão sistemática

    Directory of Open Access Journals (Sweden)

    Ana Paula Corona

    2009-08-01

    Full Text Available The vestibulocochlear nerve schwannoma (VS is a benign tumor that stems from the edge of the Schwann´s sheath. It is considered the most frequent intracranial benign tumor, of low lethality rate and unknown etiology. AIM: to identify risk factors associated with VS. STUDY DESIGN: systematic review. METHODS: electronic search of studies using the following key words: "risk", "schwannoma", "vestibular", "neuroma" and "acoustic". All original articles on epidemiological studies published in Portuguese, English or Spanish describing measures of association were included. RESULTS: twenty case-control studies were found, most of them published in the United States. The analysis of those studies shows educational level, household income, occupation, exposure to ionizing radiation and noise, allergic diseases as well as the use of both cellular and cordless phones as risk factors for the VS. CONCLUSION: methodological limitations and lack of precision in the findings impose limits to definitive conclusions concerning those risk factors. The current study contributes with information which can subsidize decisions related to the methodology to be used, having in mind new investigations on risk factors for VS. Therefore, it is of great help for knowledge improvement in this field.O Schwannoma do nervo vestibular (SV é um tumor benigno que se origina da bainha de Schwann do VIII par craniano. É o tumor benigno intracraniano mais frequente, de baixa letalidade e etiologia obscura. OBJETIVO: Identificar fatores de risco associados ao SV. DESENHO DO ESTUDO: Revisão sistemática. MATERIAL E MÉTODO: Identificação de estudos em bases de dados eletrônicos utilizando as palavras-chaves "risk", "risco", "schwannoma", "vestibular", "neuroma" e "acoustic". Incluíram-se artigos originais de pesquisa epidemiológica publicados em português, espanhol ou inglês, que referiam alguma medida de associação. Foram comparados e analisados aspectos metodológicos e

  1. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Science.gov (United States)

    Cork, Simon C.; Eftekhar, Amir; Mirza, Khalid B.; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V.; Bloom, Stephen R.; Toumazou, Christofer

    2018-02-01

    Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.

  2. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus

    Directory of Open Access Journals (Sweden)

    Francesca Anzellotti

    2016-01-01

    SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25 as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20, but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m and median (N27m-P27m nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  3. Role of the α-adrenoceptor in regulating noradrenaline overflow by nerve stimulation

    Science.gov (United States)

    Enero, María A; Langer, S Z; Rothlin, R P; Stefano, F J E

    1997-01-01

    A study of the actions of phenoxybenzamine on transmitter overflow, neuronal and extraneuronal uptake of noradrenaline and in causing α-adrenoceptor blockade was carried out using the isolated cat nictitating membrane preparation. Phenoxybenzamine increased transmitter overflow elicited by nerve-stimulation at 10 Hz in a concentration dependent manner in the range 10−8 to 10−5 g/ml. Neuronal uptake of [3H]-noradrenaline was not inhibited by concentrations lower than 10−6 g/ml of phenoxybenzamine. With 10−7 g/ml of phenoxybenzamine a significant increase in transmitter overflow was obtained, although neuronal uptake of noradrenaline was not affected. Higher concentrations of phenoxybenzamine (10−6 and 10−5 g/ml) inhibited the neuronal uptake of noradrenaline and further increased transmitter overflow. Extraneuronal uptake of [3H]-noradrenaline was inhibited only with the highest concentration of phenoxybenzamine tested (10−5 g/ml) and therefore appears to be unrelated to the effects on transmitter overflow. There was a significant correlation between the degree of α-adrenoceptor block produced by phenoxybenzamine and the increase in transmitter overflow obtained by nerve stimulation. These results indicate that phenoxybenzamine, in addition to increasing overflow by preventing reuptake of noradrenaline, may increase transmitter release. The possibility that phenoxybenzamine acts on α-adrenoceptors in the adrenergic nerve terminal is discussed. These receptors would be involved in a negative feedback mechanism regulating transmitter release. PMID:9142415

  4. Sacral nerve stimulation for urinary dysfunction: the first year of the Scottish national service.

    Science.gov (United States)

    Hilmy, M; Tatarov, O; McQueen, L; Small, D; Granitsiotis, P; Conn, I G

    2012-11-01

    Sacral nerve stimulation (SNS) has become an established treatment option for patients with intractable detrusor overactivity and non-obstructive urinary retention. The Scottish Sacral Nerve Stimulation service was established in April 2010 to provide a service for the population of Scotland. We report our experience from the first year of this new national service. All patients referred for SNS from the inception of the service in April 2010 until the end of March 2011 were studied. During the one-year period, there were 50 referrals. Thirty-three percutaneous nerve evaluations, eight tined lead tests and 16 permanent implantation procedures were performed during this period. Morbidity was low and both incontinence and quality-of-life questionnaires demonstrated statistically significant improvements (International Consultation on Incontinence Questionnaire [ICIQ-SF], P = 0.005; Incontinence Impact Questionnaire [IIQ 7], P = 0.0007; Urogenital Distress Inventory [UDI 6], P = 0.0002). Referral pattern was skewed towards the west of Scotland with some health boards producing no referrals during the year. Results from the first year of the service have shown that it is a safe and efficient procedure with significant improvement in incontinence, voluntary voiding and quality-of-life parameters. The limitation of funding for permanent implants inevitably impacts on the role of the technique as a management option in these patients.

  5. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders

    Science.gov (United States)

    Jin, Yu; Kong, Jian

    2017-01-01

    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD. PMID:28163670

  6. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects.

    Science.gov (United States)

    De Couck, M; Cserjesi, R; Caers, R; Zijlstra, W P; Widjaja, D; Wolf, N; Luminet, O; Ellrich, J; Gidron, Y

    2017-03-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects experimental design. Results revealed significant increases in only one HRV parameter (standard deviation of the RR intervals (SDNN)) following right-ear t-VNS. Study 2 examined the prolonged effects of t-VNS (1h) in the right ear. Compared to baseline, right-t-VNS significantly increased the LF and LF/HF components of HRV, and SDNN in women, but not in men. These results show limited effects of t-VNS on HRV, and are discussed in light of neuroanatomical and statistical considerations and future directions are proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine.

    Science.gov (United States)

    Hawkins, Jordan L; Cornelison, Lauren E; Blankenship, Brian A; Durham, Paul L

    2017-11-01

    Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.

  8. Carotid Sinus/Nerve Stimulation for Treatment of Resistant Hypertension and Heart Failure.

    Science.gov (United States)

    Yin, Dali; Slavin, Konstantin V

    2015-01-01

    Hypertension and cardiovascular disease are leading causes of morbidity and mortality worldwide. The prevalence of resistant hypertension remains high and is expected to increase. Moreover, there are limitations to therapeutic interventions aimed at treating resistant hypertension and heart failure despite the wide availability of therapeutic agents and dietary and lifestyle modification. Device-based therapy by baroreflex activation via carotid sinus/nerve stimulation is currently undergoing investigation, and promising findings from clinical trials have been published. Baroreflex activation therapy may represent a new approach for treatment of these conditions by reducing sympathetic drive and increasing parasympathetic activity. Here we describe a new technology which is designed to deliver carotid sinus stimulation to electrically activate the carotid baroreceptors and baroreflex, thereby reducing blood pressure and improving cardiac function. The theory, surgical techniques, and clinical trials of carotid sinus stimulation are highlighted. © 2016 S. Karger AG, Basel.

  9. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    Science.gov (United States)

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  10. Vestibular perception is slow: a review.

    Science.gov (United States)

    Barnett-Cowan, Michael

    2013-01-01

    Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.

  11. Vasopressin content in the cerebrospinal fluid and fluid perfusing cerebral ventricles in rats after the afferent vagus nerve fibres stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska-Majdak, M.; Traczyk, W.Z. [Akademia Medyczna, Lodz (Poland). Katedra Fizjologii

    1996-12-31

    Experiments were carried out on male rats in urethane anaesthesia. Cerebroventricular system was perfused with McIlwain-Rodniht`s solution from lateral ventricles to cerebellomedullary cistern. Both vagus nerves were cut and the central ends of the nerves were electrically stimulated during the collection of the third 30-min portion of perfusing fluid. Vasopressin (AVP) was determined by radioimmunoassay in samples of the cerebrospinal fluid (CSF) (the first portion) and in five successive samples of the perfusing fluid. AVP concentration in the CSF was several times greater than in the fluid perfusing cerebral ventricles. Alternate electrical stimulation of both vagus nerves did not change considerably the release of AVP into the fluid perfusing the cerebral ventricles in rat, although a certain upward tendency could be observed. It seems that only AVP raised in circulating blood and not in CSF, after vagus nerves stimulation may act on the central nervous structures. (author). 37 refs, 3 figs, 1 tab.

  12. Long-term durability of sacral nerve stimulation therapy for chronic fecal incontinence.

    Science.gov (United States)

    Hull, Tracy; Giese, Chad; Wexner, Steven D; Mellgren, Anders; Devroede, Ghislain; Madoff, Robert D; Stromberg, Katherine; Coller, John A

    2013-02-01

    Limited data have been published regarding the long-term results of sacral nerve stimulation, or sacral neuromodulation, for severe fecal incontinence. The aim was to assess the outcome of sacral nerve stimulation with the use of precise tools and data collection, focusing on the long-term durability of the therapy. Five-year data were analyzed. Patients entered in a multicenter, prospective study for fecal incontinence were followed at 3, 6, and 12 months and annually after device implantation. Patients with chronic fecal incontinence in whom conservative treatments had failed or who were not candidates for more conservative treatments were selected. Patients with ≥ 50% improvement over baseline in fecal incontinence episodes per week during a 14-day test stimulation period received sacral nerve stimulation therapy. Patients were assessed with a 14-day bowel diary and Fecal Incontinence Quality of Life and Fecal Incontinence Severity Index questionnaires. Therapeutic success was defined as ≥ 50% improvement over baseline in fecal incontinence episodes per week. All adverse events were collected. A total of 120 patients (110 women; mean age, 60.5 years) underwent implantation. Seventy-six of these patients (63%) were followed a minimum of 5 years (maximum, longer than 8 years) and are the basis for this report. Fecal incontinence episodes per week decreased from a mean of 9.1 at baseline to 1.7 at 5 years, with 89% (n = 64/72) having ≥ 50% improvement (p < 0.0001) and 36% (n = 26/72) having complete continence. Fecal Incontinence Quality of Life scores also significantly improved for all 4 scales between baseline and 5 years (n = 70; p < 0.0001). Twenty-seven of the 76 (35.5%) patients required a device revision, replacement, or explant. The therapeutic effect and improved quality of life for fecal incontinence is maintained 5 years after sacral nerve stimulation implantation and beyond. Device revision, replacement, or explant rate was acceptable, but future

  13. Intractable episodic bradycardia resulting from progressive lead traction in an epileptic child with a vagus nerve stimulator: a delayed complication.

    Science.gov (United States)

    Clark, Aaron J; Kuperman, Rachel A; Auguste, Kurtis I; Sun, Peter P

    2012-04-01

    Vagus nerve stimulation (VNS) is used as palliation for adult and pediatric patients with intractable epilepsy who are not candidates for curative resection. Although the treatment is generally safe, complications can occur intraoperatively, perioperatively, and in a delayed time frame. In the literature, there are 2 reports of pediatric patients with implanted VNS units who had refractory bradycardia that resolved after the stimulation was turned off. The authors report the case of a 13-year-old boy with a history of vagus nerve stimulator placement at 2 years of age, who developed intractable episodic bradycardia that persisted despite the cessation of VNS and whose imaging results suggested vagus nerve tethering by the leads. He was subsequently taken to the operating room for exploration, where it was confirmed that the stimulator lead was exerting traction on the vagus nerve, which was displaced from the carotid sheath. After the vagus nerve was untethered and the leads were replaced, the bradycardia eventually resolved with continual effective VNS therapy. When placing a VNS unit in a very young child, accommodations must be made for years of expected growth. Delayed intractable bradycardia can result from a vagus nerve under traction by tethered stimulator leads.

  14. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Directory of Open Access Journals (Sweden)

    Nikki A McLean

    Full Text Available Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  15. The use of transcutaneous electrical nerve stimulation (TENS) to aid perceptual embodiment of prosthetic limbs.

    Science.gov (United States)

    Mulvey, M R; Fawkner, H J; Radford, H; Johnson, M I

    2009-02-01

    Integration of prosthetic limb awareness into body schema is likely to aid manual control of the prosthesis. Physiotherapists and prosthetists use techniques to generate mechanical, visual and/or auditory feedback related to stimulation of the stump and proximal residual limb to improve prosthetic limb awareness. Electrical stimulation of afferent nerves using implanted electrodes can generate sensations of touch, joint movement, and position, in the missing, phantom limbs of amputees. We report here a novel hypothesis that non-invasive transcutaneous electrical nerve stimulation (TENS) could be used to facilitate the process of perceptual embodiment of a prosthesis into the body schema of amputees. Using a modified version of the rubber hand illusion (RHI), we have found that TENS paraesthesiae can be made to feel like it is emanating from a prosthetic hand in healthy participants with intact limbs. In addition, participants reported perceptual embodiment of the prosthetic hand into their body schema, i.e. it felt as if it is part of their body. We predict that projecting TENS paraesthesiae into the prosthetic limb(s) of amputees will provide sufficient sensory input to facilitate perceptual embodiment. This could prove to be a simple and inexpensive training aid to improve ambulation and prosthesis success.

  16. Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment.

    Science.gov (United States)

    Nesbitt, Alexander D; Marin, Juana C A; Tompkins, Esther; Ruttledge, Martin H; Goadsby, Peter J

    2015-03-24

    To report our initial experience with a novel device, designed to provide portable, noninvasive, transcutaneous stimulation of the vagus nerve, both acutely and preventively, as a treatment for cluster headache. Patients with cluster headache (11 chronic, 8 episodic), from 2 centers, including 7 who were refractory to drug treatment, had sufficient data available for analysis in this open-label observational cohort study. The device, known as the gammaCore, was used acutely to treat individual attacks as well as to provide prevention. Patient-estimated efficacy data were collected by systematic inquiry during follow-up appointments up to a period of 52 weeks of continuous use. Fifteen patients reported an overall improvement in their condition, with 4 reporting no change, providing a mean overall estimated improvement of 48%. Of all attacks treated, 47% were aborted within an average of 11 ± 1 minutes of commencing stimulation. Ten patients reduced their acute use of high-flow oxygen by 55% with 9 reducing triptan use by 48%. Prophylactic use of the device resulted in a substantial reduction in estimated mean attack frequency from 4.5/24 hours to 2.6/24 hours (p treatment in chronic cluster headache. Further evaluation of this treatment using randomized sham-controlled trials is thus warranted. This study provides Class IV evidence that for patients with cluster headache, transcutaneous stimulation of the vagus nerve aborts acute attacks and reduces the frequency of attacks. © 2015 American Academy of Neurology.

  17. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation.

    Science.gov (United States)

    Liu, Xifeng; Miller, A Lee; Park, Sungjo; Waletzki, Brian E; Zhou, Zifei; Terzic, Andre; Lu, Lichun

    2017-05-03

    Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by in situ reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering.

  18. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats.

    Science.gov (United States)

    Willand, Michael P; Rosa, Elyse; Michalski, Bernadeta; Zhang, Jennifer J; Gordon, Tessa; Fahnestock, Margaret; Borschel, Gregory H

    2016-10-15

    Despite advances in surgery, patients with nerve injuries frequently have functional deficits. We previously demonstrated in a rat model that daily electrical muscle stimulation (EMS) following peripheral nerve injury and repair enhances reinnervation, detectable as early as two weeks post-injury. In this study, we explain the enhanced early reinnervation observed with electrical stimulation. In two groups of rats, the tibial nerve was transected and immediately repaired. Gastrocnemius muscles were implanted with intramuscular electrodes for sham or muscle stimulation. Muscles were stimulated daily, eliciting 600 contractions for one hour/day, repeated five days per week. Sixteen days following nerve injury, muscles were assessed for functional reinnervation by motor unit number estimation methods using electromyographic recording. In a separate cohort of rats, surgical and electrical stimulation procedures were identical but muscles and distal nerve stumps were harvested for molecular analysis. We observed that stimulated muscles had significantly higher motor unit number counts. Intramuscular levels of brain-derived and glial cell line-derived neurotrophic factor (BDNF and GDNF) mRNA were significantly upregulated in muscles that underwent daily electrical stimulation compared to those without stimulation. The corresponding levels of trophic factor mRNA within the distal stump were not different from one another, indicating that the intramuscular electrical stimulus does not modulate Schwann cell-derived trophic factor transcription. Stimulation over a three-month period maintained elevated muscle-derived GDNF but not BDNF mRNA. In conclusion, EMS elevates intramuscular trophic factor mRNA levels which may explain how EMS enhances neural regeneration following nerve injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression

    Directory of Open Access Journals (Sweden)

    Jiliang Fang

    2017-01-01

    Full Text Available Transcutaneous vagus nerve stimulation (tVNS, a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways, which are influenced by tVNS compared with sham in depressed individuals, as well as determining neurobiomarkers of tVNS treatment success are needed to advance the application of tVNS for MDD. In order to address these questions, we measured fMRI brain activity of thirty-eight depressed patients assigned to undergo tVNS (n = 17 or sham (n = 21 treatment for 4 weeks, during the first stimulation session. The results showed significant fMRI signal increases in the left anterior insula, revealed by a direct comparison of tVNS and sham stimulation. Importantly, the insula activation level during the first stimulation session in the tVNS group was significantly associated with the clinical improvement at the end of the four-week treatment, as indicated by the Hamilton Depression Rating Scale (HAM-D score. Our findings suggest that anterior insula fMRI activity could serve as a potential cortical biomarker and an early predictor of tVNS longitudinal treatment success.

  20. Can natural ways to stimulate the vagus nerve improve seizure control?

    Science.gov (United States)

    Yuen, Alan W C; Sander, Josemir W

    2017-02-01

    The vagus nerve (VN) is the longest cranial nerve, innervating the neck, thorax and abdomen, with afferent fibers transmitting a range of interoceptive stimuli and efferent fibres to somatic structures and autonomic preganglions. Over the last few decades, electrical stimulation of the VN using implanted devices (VNS) has been developed leading to its approval for the treatment of epilepsy and depression. More recently, non-invasive devices to stimulation the VN have been developed. The VN has many functions and the activity that is most amenable to assessment is its effect in controlling the cardiac rhythm. This can be easily assessed by measuring heart rate variability (HRV). Decreased HRV is a result of poorer vagal parasympathetic tone and is associated with a wide range of ill health conditions including a higher risk of early mortality. People with epilepsy, particularly those with poorly controlled seizures, have been shown to have impaired parasympathetic tone. So, might natural ways to stimulate the VN, shown to improve parasympathetic tone as indicated by increased HRV, improve seizure control? There are numerous natural ways that have been shown to stimulate the VN, improving HRV and hence parasympathetic tone. These natural ways fall mainly into 3 categories - stress reduction, exercise, and nutrition. Though the natural ways to stimulate the VN have been shown to increase HRV, they have not been shown to reduce seizures. The exception is listening to Mozart's music, which has been shown to increase parasympathetic tone and decrease seizures. Clearly much more work is required to examine the effect of the various ways to increase HRV on seizure occurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    Science.gov (United States)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  2. Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury

    Directory of Open Access Journals (Sweden)

    Henrike eStutzki

    2014-02-01

    Full Text Available Axonal injury in the optic nerve is associated with retinal ganglion cell (RGC degeneration and irreversible loss of vision. However, inflammatory stimulation (IS by intravitreal injection of Pam3Cys transforms RGCs into an active regenerative state enabling these neurons to survive injury and to regenerate axons into the injured optic nerve. Although morphological changes have been well studied, the functional correlates of RGCs transformed either into a de- or regenerating state at a sub-cellular level remain unclear. In the current study, we investigated the signal propagation in single intraretinal axons as well as characteristic activity features of RGCs in a naive, a degenerative or a regenerative state in ex vivo retinae one week after either optic nerve cut alone (ONC or additional inflammatory stimulation (ONC+IS. Recordings of single RGCs using high-density microelectrode arrays demonstrate that the mean intraretinal axonal conduction velocity significantly decreased within the first week after ONC. In contrast, when ONC was accompanied by regenerative Pam3Cys treatment the mean intraretinal velocity was undistinguishable from control RGCs, indicating a protective effect on the proximal axon. Spontaneous RGC activity decreased for the two most numerous RGC types (ON- and OFF-sustained cells within one post-operative week, but did not significantly increase in RGCs after inflammatory stimulation. The analysis of light-induced activity revealed that RGCs in ONC animals respond on average later and with fewer spikes than control RGCs. IS significantly improved the responsiveness of the two studied RGC types.These results show that the transformation into a regenerative state by IS preserves, at least transiently, the physiological functional properties of injured RGCs.

  3. Haemodynamic Responses to Selective Vagal Nerve Stimulation under Enalapril Medication in Rats.

    Directory of Open Access Journals (Sweden)

    Mortimer Gierthmuehlen

    Full Text Available Selective vagal nerve stimulation (sVNS has been demonstrated to lower blood pressure (BP in rats without causing major side effects. This method might be adapted for the treatment of therapy-resistant hypertension in patients. Converting enzyme inhibitors (CEIs are among the first drugs that are administered for arterial hypertension and prominently reduce BP primarily by interacting with the renin-angiotensin system of the kidneys. Beyond the reduction of BP, CEI have a positive effect on the survival rate after myocardial infarction; they reduce the rates of stroke and improve the neurohormonal status in heart-failure patients. If sVNS might be introduced as a therapy against resistant hypertension, patients will at least partially stay on their CEI medication. It is therefore the aim of this study to investigate the influence of the CEI enalapril on the haemodynamic and respiratory effects of sVNS. In 10 male Wistar rats, a polyimide-based multichannel-cuff-electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibres. Stimulation parameters were adapted to the thresholds of the individual animals and included repetition frequencies between 30 and 50 Hz, amplitudes of 0.5 to 1.5 mA and pulse widths between 0.4 ms and 1.0 ms. BP responses were detected with a microtip transducer in the left carotid artery, and electrocardiography was recorded with subcutaneous electrodes. After intravenous administration of enalapril (2 mg/kg bodyweight, the animals' mean arterial blood pressures (MAPs decreased significantly, while the heart rates (HRs were not significantly influenced. The effects of sVNS on BP and HR were attenuated by enalapril but were still present. We conclude that sVNS can lower the MAP during enalapril treatment without relevant side effects.

  4. Topography of synchronization of somatosensory evoked potentials elicited by stimulation of the sciatic nerve in rat

    Directory of Open Access Journals (Sweden)

    Xuefeng eQu

    2016-05-01

    Full Text Available Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the

  5. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type.

    Science.gov (United States)

    Englot, Dario J; Chang, Edward F; Auguste, Kurtis I

    2011-10-01

    Medically refractory epilepsy is a morbid condition, and many patients are poor candidates for surgical resection because of multifocal seizure origin or eloquence near epileptic foci. Vagus nerve stimulation (VNS) was approved in 1997 by the US Food and Drug Administration as an adjunctive treatment of intractable epilepsy for individuals aged 12 years and more with partial epilepsy. Controversy persists regarding the efficacy of VNS for epilepsy and about which patient populations respond best to therapy. In this article, the authors retrospectively studied a patient outcome registry and report the largest, to their knowledge, analysis of VNS outcomes in epilepsy. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Vagus nerve stimulator in patients with epilepsy: indications and recommendations for use

    Directory of Open Access Journals (Sweden)

    Vera C Terra

    2013-11-01

    Full Text Available Epilepsy comprises a set of neurologic and systemic disorders characterized by recurrent spontaneous seizures, and is the most frequent chronic neurologic disorder. In patients with medically refractory epilepsy, therapeutic options are limited to ablative brain surgery, trials of experimental antiepileptic drugs, or palliative surgery. Vagal nerve stimulation is an available palliative procedure of which the mechanism of action is not understood, but with established efficacy for medically refractory epilepsy and low incidence of side-effects. In this paper we discuss the recommendations for VNS use as suggested by the Brazilian League of Epilepsy and the Scientific Department of Epilepsy of the Brazilian Academy of Neurology Committee of Neuromodulation.

  7. The Video Head Impulse Test to Assess the Efficacy of Vestibular Implants in Humans

    Science.gov (United States)

    Guinand, Nils; Van de Berg, Raymond; Cavuscens, Samuel; Ranieri, Maurizio; Schneider, Erich; Lucieer, Floor; Kingma, Herman; Guyot, Jean-Philippe; Pérez Fornos, Angélica

    2017-01-01

    The purpose of this study was to evaluate whether it is possible to restore the high-frequency angular vestibulo-ocular reflex (aVOR) in patients suffering from a severe bilateral vestibulopathy (BV) and implanted with a vestibular implant prototype. Three patients (S1–3) participated in the study. They received a prototype vestibular implant with one to three electrode branches implanted in the proximity of the ampullary branches of the vestibular nerve. Five electrodes were available for electrical stimulation: one implanted in proximity of the left posterior ampullary nerve in S1, one in the left lateral and another one in the superior ampullary nerves in S2, and one in the right lateral and another one in the superior ampullary nerves in S3. The high-frequency aVOR was assessed using the video head impulse test (EyeSeeCam; EyeSeeTec, Munich, Germany), while motion-modulated electrical stimulation was delivered via one of the implanted vestibular electrodes at a time. aVOR gains were compared to control measurements obtained in the same patients when the device was not activated. In three out of the five tested electrodes the aVOR gain increased monotonically with increased stimulation strength when head impulses were delivered in the plane of the implanted canal. In these cases, gains ranging from 0.4 to values above 1 were measured. A “reversed” aVOR could also be generated when inversed stimulation paradigms were used. In most cases, the gain for excitatory head impulses was superior to that recorded for inhibitory head impulses, consistent with unilateral vestibular stimulation. Improvements of aVOR gain were generally accompanied by a concomitant decrease of corrective saccades, providing additional evidence of an effective aVOR. High inter-electrode and inter-subject variability were observed. These results, together with previous research, demonstrate that it is possible to restore the aVOR in a broad frequency range using motion

  8. Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans.

    Science.gov (United States)

    Mariorenzi, R; Zarola, F; Caramia, M D; Paradiso, C; Rossini, P M

    1991-04-01

    The interval between muscle stretch and the onset of the long latency electromyographic responses (LLRs) has been theoretically fragmented into an afferent time (AT), taken at the peak of wave N20 of somatosensory evoked potentials and an efferent time (ET), calculated by means of magnetic transcranial stimulation (TCS), the two being separated by a cortical interval (CI). If this were the case, the afferent input should progressively 'energize' the sensorimotor cortex during the CI and change the excitability of cortico-spinal tracts. To investigate this, motor evoked potentials (MEPs) from thumb flexor muscles were recorded, whilst a conditioning stimulation of median or ulnar nerve randomly preceded (10-48 msec intervals) magnetic brain TCS. Nerve stimulation was adjusted to motor threshold and amplitudes of conditioned and test MEPs at different nerve-TCS interstimulus intervals were evaluated. Conditioned MEPs were significantly attenuated with nerve-TCS intervals between 16 and 20 msec for elbow and 20 and 22 msec for wrist stimulation. This was followed by MEP potentiation with nerve-TCS intervals corresponding to the sum of AT + CI (mean 23.2 msec, range 21.7-24.8). The onset latency of facilitated conditioned MEPs was about 1 msec briefer than that of test MEPs, but invariably longer than the latency of MEPs facilitated by a voluntary contraction. This protocol did not demonstrate amplitude facilitation of the segmental H reflex, corroborating the idea that the facilitated part of the conditioning nerve-TCS curve receives a transcortical loop contribution.

  9. A system for delivering mechanical stimulation and robot-assisted therapy to the rat whisker pad during facial nerve regeneration.

    Science.gov (United States)

    Heaton, James T; Knox, Christopher J; Malo, Juan S; Kobler, James B; Hadlock, Tessa A

    2013-11-01

    Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic "whisk assist" system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either preprogrammed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, 20 rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5-20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model.

  10. Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells.

    Science.gov (United States)

    Wangemann, P; Liu, J; Shen, Z; Shipley, A; Marcus, D C

    1995-10-01

    Volume regulation of vestibular dark cells from the gerbilline inner ear in response to a hypo-osmotic challenge depends on the presence of cytosolic K+ and Cl-. The present study addresses the questions: (i) whether and by what mechanism K+ is released during volume regulation, (ii) whether the osmolarity of the basolateral medium has an effect on the steady-state rate of transepithelial K+ transport and (iii) whether there is cross-talk between the basolateral membrane responsible for K+ uptake and the apical membrane responsible for K+ release. K+ secretion (JK+,probe) and current density (Isc,probe) were measured with vibrating probes in the vicinity of the apical membrane and the transepithelial potential (Vt) and resistance (Rt) were measured in a micro-Ussing chamber. The equivalent short-circuit current (Isc) was calculated. The current (IIsK), conductance (gIsK) and inactivation time constant (tau IsK) of the IsK channel and the apparent reversal potential of the apical membrane (Vr) were obtained with the cell-attached macropatch technique. Vr was corrected (Vrc) for the membrane voltage (Vm) measured separately with microelectrodes. A hypo-osmotic challenge (294 to 154 mosM by removal of 150 mM mannitol) on the basolateral side of the epithelium increased JK+,probe and Isc,probe by a factor of 2.7 and 1.6. When this hypo-osmotic challenge was applied to both sides of the epithelium Vt and Isc increased from 5 to 14 mV and from 189 to 824 microA/cm2 whereas Rt decreased from 27 to 19 omega-cm2. With 3.6 mM K+ in the pipette IIsK was outwardly directed, tau IsK was 267 msec and the hypo-osmotic challenge caused IIsK and gIsK to increase from 14 to 37 pA and from 292 to 732 pS. Vrc hyperpolarized from -44 to -76 mV. With 150 mM K+ in the pipette IIsK was inwardly directed, tau IsK was 208 msec and the hypo-osmotic challenge caused IIsK and gIsK to increase in magnitude from 0 to -21 pA and from 107 to 1101 pS. Vrc remained unchanged (-2 vs. 1 mV). These

  11. Dyscalculia and vestibular function.

    Science.gov (United States)

    Smith, P F

    2012-10-01

    A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect.

    Directory of Open Access Journals (Sweden)

    Jinghui Huang

    Full Text Available BACKGROUND: Electrical stimulation (ES has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. METHODOLOGY/FINDINGS: In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor, P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. CONCLUSIONS/SIGNIFICANCE: Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect.

  13. Maternal and fetal outcomes associated with vagus nerve stimulation during pregnancy

    DEFF Research Database (Denmark)

    Sabers, Anne; Battino, Dina; Bonizzoni, Erminio

    2017-01-01

    OBJECTIVE: To access the effect of vagus nerve stimulation (VNS) on the outcome of pregnancy. METHODS: We used the International Registry of Antiepileptic Drugs and Pregnancy (EURAP) and its network to search for women receiving adjunctive VNS during pregnancy. Data on maternal and fetal outcomes...... were extracted from the registry databases and outcomes were evaluated. RESULTS: Twenty-six pregnancies were identified in 25 women. All women were exposed to a relative high VNS stimulation level (mean duty cycle 18%, range 5%-51%). Most women had seizures during pregnancy and almost 70% were...... on antiepileptic drug (AED) polytherapy. The proportion of women with obstetrical interventions was 53.9% (95% confidence interval [CI] 33.4%-73.4%) which was higher compared to the EURAP average (48.2%; 95% CI 47.2%-49.1%). One infant (3.9%; 95% CI 0.1%-19.6%) was born with a major malformation (unilateral...

  14. Vagus nerve stimulation may be a sound therapeutic option in the treatment of refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Murilo S. Meneses

    2013-01-01

    Full Text Available INTRODUCTION: Refractory epilepsy accounts for 20 to 30% of epilepsy cases and remains a challenge for neurologists. Vagus nerve stimulation (VNS is an option for palliative treatment. OBJECTIVE: It was to study the efficacy and tolerability of VNS in patients implanted with a stimulator at the Curitiba Institute of Neurology (INC. METHODS: A case study of six patients with refractory epilepsy submitted to a VNS procedure at the INC in the last four years was described and discussed. RESULTS: Mean age at time of implantation was 29 years. Mean follow-up was 26.6 months. Seizure frequency decreased in all patients (40-50% (n=2 and >80% (n=4. Three patients no longer required frequent hospitalizations. Two patients previously restricted to wheelchairs started to walk, probably because of improved mood. CONCLUSION: In this population, VNS proved to be a sound therapeutic option for treating refractory epilepsy.

  15. Spinal Fos labeling and penile erection elicited by stimulation of dorsal nerve of the rat penis.

    Science.gov (United States)

    Rampin, O; Gougis, S; Giuliano, F; Rousseau, J P

    1997-05-01

    Penile afferents present in the dorsal nerve of the penis (DNP) convey sensory information from the penis to the spinal cord and represent the afferent limb of reflexive erections. Immunocytochemical staining of Fos was used to identify spinal neurons that receive excitatory inputs from the DNP in anesthetized rats. Intracavernous pressure (ICP) was recorded as an index of erection. Dissection as well as stimulation of the DNP elicited a comparable increase in Fos staining. Labeling was present in the dorsal horn, the dorsal gray commissure, and the sacral parasympathetic nucleus, supporting the hypothesis of direct or indirect afferent projection from the penis and penile sheath in these areas. No change in ICP was observed in these rats. Stimulation of the DNP elicited both increased Fos labeling and ICP after spinalization, demonstrating the presence of a supraspinal inhibitory control exerted on the polysynaptic intraspinal circuitry responsible for reflexive penile erection.

  16. Pharmacology of the vestibular system.

    Science.gov (United States)

    Smith, P F

    2000-02-01

    In the past year significant advances have been made in our understanding of the neurochemistry and neuropharmacology of the peripheral and central vestibular systems. The recognition of the central importance of excitatory amino acids and their receptors at the level of the hair cells, vestibular nerve and vestibular nucleus has progressed further, and the role of nitric oxide in relation to activation of the N-methyl-D-aspartate receptor subtype is becoming increasingly clear. Increasing evidence suggests that excessive N-methyl-D-aspartate receptor activation and nitric oxide production after exposure to aminoglycoside antibiotics is a critical part of hair cell death, and new pharmacological strategies for preventing aminoglycoside ototoxicity are emerging as a result. Conversely, the use of aminoglycosides to lesion the peripheral vestibular system in the treatment of Meniere's disease has been studied intensively. In the vestibular nucleus, new studies suggest the importance of opioid, nociceptin and glucocorticoid receptors in the control of vestibular reflex function. Finally, the mechanisms of action and optimal use of antihistamines in the treatment of vestibular disorders has also received a great deal of attention.

  17. The effect of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease: randomised controlled trial.

    Science.gov (United States)

    Öncü, Emine; Zincir, Handan

    2017-07-01

    The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p  0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease

  18. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    OpenAIRE

    Mathews, Miranda A.; Camp, Aaron J.; Murray, Andrew J.

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate...

  19. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2014-01-01

    Full Text Available Background: The established methods of nerve location were based on either proper motor response on nerve stimulation (NS or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. Methods : A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60, or ultrasound guidance (group US, n = 60 for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. Results: The median (range number of skin punctures were 2 (2-4 in group US and 3 (2-5 in group NS (P =0.27. Insufficient block was observed in three patient (5% of group US and four patients (6.67% of group NS (P > =0.35. Patient acceptance was similarly good in the two groups. Conclusion: Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine.

  20. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input.

    Science.gov (United States)

    Pavlov, Stoyan P; Grosheva, Maria; Streppel, Michael; Guntinas-Lichius, Orlando; Irintchev, Andrey; Skouras, Emmanouil; Angelova, Srebrina K; Kuerten, Stefanie; Sinis, Nektarios; Dunlop, Sarah A; Angelov, Doychin N

    2008-05-01

    We have recently shown in rat that daily manual stimulation (MS) of vibrissal muscles promotes recovery of whisking and reduces polyinnervation of muscle fibers following repair of the facial nerve (facial-facial anastomosis, FFA). Here, we examined whether these positive effects were: (1) correlated with alterations of the afferent connections of regenerated facial motoneurons, and (2) whether they were achieved by enhanced sensory input through the intact trigeminal nerve. First, we quantified the extent of total synaptic input to motoneurons in the facial nucleus using synaptophysin immunocytochemistry following FFA with and without subsequent MS. We found that, without MS, this input was reduced compared to intact animals. The number of synaptophysin-positive terminals returned to normal values following MS. Thus, MS appears to counteract the deafferentation of regenerated facial motoneurons. Second, we performed FFA and, in addition, eliminated the trigeminal sensory input to facial motoneurons by extirpation of the ipsilateral infraorbital nerve (IONex). In this paradigm, without MS, vibrissal motor performance and pattern of end-plate reinnervation were as aberrant as after FFA without MS. MS did not influence the reinnervation pattern after IONex and functional recovery was even worse than after IONex without MS. Thus, when the sensory system is intact, MS restores normal vibrissal function and reduces the degree of polyinnervation. When afferent inputs are abolished, these effects are eliminated or even reversed. We conclude that rehabilitation strategies must be carefully designed to take into account the extent of motor and/or sensory damage.

  1. Transection of Omohyoid Muscle as an Aid During Vagus Nerve Stimulator Implantation.

    Science.gov (United States)

    Yowtak, June; Jenkins, Patrick; Giller, Cole

    2017-03-01

    Exposure of the carotid sheath during vagus nerve stimulator (VNS) implantation is usually straightforward but can be difficult for patients with a large body habitus. In addition, the exposure must be done with care if the surgeon wants to keep the vagus nerve in situ without using retractors that might impair access. We describe the use of the omohyoid muscle as a landmark for the jugular vein and report how transection of the omohyoid can facilitate rapid and wide exposure of the carotid sheath. We review the records of 59 consecutive patients undergoing VNS implantation from 2009-2015 and describe our technique incorporating omohyoid transection. We also summarize complications such as postoperative hoarseness, cough, dysphagia, or wound issues. Forty-two of the 59 patients (29 adults and 13 children) underwent omohyoid transection during implantation. In all cases, the carotid sheath and jugular vein were immediately visible after transection. One patient developed permanent hoarseness and coughing due to left vocal cord paresis, requiring further surgery. This result was most likely due to manipulation of the vagus nerve rather than division of the omohyoid muscle. Omohyoid transection provides excellent exposure of the carotid sheath during VNS implantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. In situ repair of vagus nerve stimulator lead damage: technical note.

    Science.gov (United States)

    Ralston, Ashley; Ogden, Patti; Kohrman, Michael H; Frim, David M

    2016-12-01

    Vagus nerve stimulators (VNSs) are currently an accepted treatment for intractable epilepsy not amenable to ablative surgery. Battery death and lead damage are the main reasons for reoperation in patients with VNSs. In general, any damage to the lead requires revision surgery to remove the helical electrodes from the vagus nerve and replace the electrode array and wire. The electrodes are typically scarred and difficult to remove from the vagus nerve without injury. The authors describe 6 patients with VNSs who presented with low lead impedance on diagnostic testing, leading to the intraoperative finding of lead insulation disruption, or who were found incidentally at the time of implantable pulse generator battery replacement to have a tear in the outer insulation of the electrode wire. Instead of replacement, the wire insulation was repaired and reinforced in situ, leading to normal impedance testing. All 6 devices remained functional over a follow-up period of up to 87 months, with 2 of the 6 patients having a relatively shorter follow-up of only 12 months. This technique, applicable in a subset of patients with VNSs requiring lead exploration, obviates the need for lead replacement with its attendant risks.

  3. The Use of Transcutaneous Electrical Nerve Stimulation After Total Knee Arthroplasty: A Prospective Randomized Controlled Trial.

    Science.gov (United States)

    Ramanathan, Deepak; Saleh, Anas; Klika, Alison K; Higuera, Carlos A; Barsoum, Wael K

    2017-07-25

    Multimodal pain management is used after total knee arthroplasty (TKA) to reduce opioid intake. Transcutaneous electrical nerve stimulation (TENS) has generated much interest as a non-pharmacologic, patient-controlled therapy. The aims of this study were to evaluate the efficacy of TENS in reducing opioid intake and improving recovery after TKA. This was a prospective, parallel-group, double-blinded, randomized trial of patients receiving femoral nerve catheter block with allocation to either active or placebo TENS device groups. All participants were 18-85 years and underwent unilateral, primary TKA at two academic hospitals. Device usage was monitored during inpatient and outpatient phases. Participants were requested to return at second, fourth, and sixth postoperative weeks for follow-up. The primary endpoint was opioid usage, as indicated by medication intake in equianalgesic equivalents to morphine. Secondary measures included: visual analogue scale (VAS) pain scores; functional assessments as measured from knee joint range of motion (ROM) and Timed Up and Go (TUG) test; and clinical outcomes as defined by modified Knee injury and Osteoarthritis Outcome Scores (KOOS) and the 12-item Short Form Survey Instrument (SF-12). Among 116 participants, overall withdrawal was 37.9% (44 patients) at similar rates in both study arms. After excluding for non-femoral nerve catheter (FNC) blocks (i.e., protocol deviations), there were 35 patients in the active group and 31 patients in the placebo group whose complete records were analyzed. There were no significant differences between groups in any of the clinical endpoints.

  4. Somatosensory evoked magnetic fields elicited by dorsal penile, posterior tibial and median nerve stimulation.

    Science.gov (United States)

    Nakagawa, H; Namima, T; Aizawa, M; Uchi, K; Kaiho, Y; Yoshikawa, K; Orikasa, S; Nakasato, N

    1998-01-01

    The aim of this study is to localize the primary sensory cortex of urogenital organs in the human brain. Using a newly developed MRI-linked magnetoencephalography system, we measured somatosensory evoked magnetic fields (SEFs) for unilateral stimuli on the dorsal penile nerve (DPN), posterior tibial nerve (PTN) and median nerve (MN). In five healthy male subjects, SEFs were clearly observed. Peak latency of the first cortical components were 63.8 +/- 9.2 ms for DPN, 39.8 +/- 3.0 ms for PTN and 20.7 +/- 0.7 ms for MN stimuli. Peak amplitude of the first cortical components were 63.1 +/- 10.8 fT for DPN, 160.2 +/- 50.1 fT for PTN and 335.2 +/- 70.3 fT for MN stimuli. Isofield map for the peak latencies indicated a single dipolar pattern for DPN as well as for PTN and MN stimuli. Using a single current dipole model, all SEF sources were localized on the contralateral central sulcus to the stimuli, indicating the primary sensory cortex. The DPN sources were localized on the interhemispheric surfaces, corresponding to previous speculations by direct cerebral stimulation. This non-invasive SEF technique promises further brain functional mapping for the urogenital organs.

  5. Prosthetic implantation of the human vestibular system.

    Science.gov (United States)

    Golub, Justin S; Ling, Leo; Nie, Kaibao; Nowack, Amy; Shepherd, Sarah J; Bierer, Steven M; Jameyson, Elyse; Kaneko, Chris R S; Phillips, James O; Rubinstein, Jay T

    2014-01-01

    A functional vestibular prosthesis can be implanted in human such that electrical stimulation of each semicircular canal produces canal-specific eye movements while preserving vestibular and auditory function. A number of vestibular disorders could be treated with prosthetic stimulation of the vestibular end organs. We have previously demonstrated in rhesus monkeys that a vestibular neurostimulator, based on the Nucleus Freedom cochlear implant, can produce canal-specific electrically evoked eye movements while preserving auditory and vestibular function. An investigational device exemption has been obtained from the FDA to study the feasibility of treating uncontrolled Ménière's disease with the device. The UW/Nucleus vestibular implant was implanted in the perilymphatic space adjacent to the three semicircular canal ampullae of a human subject with uncontrolled Ménière's disease. Preoperative and postoperative vestibular and auditory function was assessed. Electrically evoked eye movements were measured at 2 time points postoperatively. Implantation of all semicircular canals was technically feasible. Horizontal canal and auditory function were largely, but not totally, lost. Electrode stimulation in 2 of 3 canals resulted in canal-appropriate eye movements. Over time, stimulation thresholds increased. Prosthetic implantation of the semicircular canals in humans is technically feasible. Electrical stimulation resulted in canal-specific eye movements, although thresholds increased over time. Preservation of native auditory and vestibular function, previously observed in animals, was not demonstrated in a single subject with advanced Ménière's disease.

  6. Input/output properties of the lateral vestibular nucleus

    Science.gov (United States)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  7. Magnetic stimulation of the cavernous nerve for the treatment of erectile dysfunction in humans.

    Science.gov (United States)

    Shafik, A; el-Sibai, O; Shafik, A A

    2000-06-01

    A recent study in dogs has demonstrated that magnetic stimulation (MS) of the cavernous nerve produced an increase of the intracorporeal pressure and full penile erection. In view of these results, we tested the possible application of this procedure in humans with erectile dysfunction (ED). The study comprised 32 patients with ED (age 38.3 +/- 9.6 y) and 20 healthy volunteers (age 36.8 +/- 8.8 y). Routi