WorldWideScience

Sample records for vestibular damage uvd

  1. Nitric oxide synthase and arginase expression changes in the rat perirhinal and entorhinal cortices following unilateral vestibular damage: a link to deficits in object recognition?

    Science.gov (United States)

    Liu, Ping; Gliddon, Catherine M; Lindsay, Libby; Darlington, Cynthia L; Smith, Paul F

    2004-01-01

    Previous studies have shown that peripheral vestibular damage causes long-term neurochemical changes in the hippocampus which may be related to spatial memory deficits. Since recent studies have also demonstrated deficits in non-spatial object recognition memory following vestibular lesions, the aim of the present study was to extend these investigations into the perirhinal cortex (PRC), which is known to be important for object recognition, and the related entorhinal cortex (EC). We examined the effects of unilateral vestibular deafferentation (UVD) on the expression of four enzymes associated with neuronal plasticity, neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), arginase I and arginase II (AI and II), in the rat EC and PRC using Western blotting. Tissue was collected at 10 hs, 50 hs and 2 weeks post-UVD. In the EC and PRC, nNOS protein expression decreased on the contralateral side at 2 weeks post-UVD but not before. At the same time, eNOS protein expression increased in both regions on the contralateral side. In the EC, AII protein expression increased on the ipsilateral side at 2 weeks post-UVD. In the PRC, AI increased and decreased on the contralateral and ipsilateral sides (respectively) at 2 weeks post-UVD. AII showed a bilateral increase in the PRC at 2 weeks post-UVD. These results demonstrate changes in NOS and arginase protein expression in the PRC and EC following UVD, which are unlikely to be due to the initial severity of the vestibular syndrome because they develop well after vestibular compensation has taken place. Neurochemical changes in these regions of the medial temporal lobe may be implicated in the development of object recognition deficits that contribute to cognitive dysfunction following peripheral vestibular damage.

  2. Compensation following bilateral vestibular damage

    Directory of Open Access Journals (Sweden)

    Bill J Yates

    2011-12-01

    Full Text Available Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that nonlabyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  3. Compensation following bilateral vestibular damage.

    Science.gov (United States)

    McCall, Andrew A; Yates, Bill J

    2011-01-01

    Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.

  4. The effects of L-NAME on vestibular compensation and NOS activity in the vestibular nucleus, cerebellum and cortex of the guinea pig.

    Science.gov (United States)

    Paterson, S; Zheng, Y; Smith, P F; Darlington, C L

    2000-10-06

    Nitric oxide (NO) has been implicated in the processes by which animals recover from peripheral vestibular damage ('vestibular compensation'). However, few data exist on the dose-response effects of systemic administration of the nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), on the vestibular compensation process. The aim of this study was to investigate the effects on compensation of 5, 10, 50 or 100 mM L-NAME administered by s.c osmotic minipump for 50 h following unilateral vestibular deafferentation (UVD) in guinea pig, either commencing the drug treatment at 4 h pre-UVD or at the time of the UVD (i.e., post-UVD). Post-UVD treatment with L-NAME, at any of the four concentrations used, had no effect on the compensation of spontaneous nystagmus (SN), yaw head tilt (YHT) or roll head tilt (RHT). By contrast, pre-UVD treatment with 100 mM L-NAME resulted in a significant decrease in SN frequency (Pvestibular nucleus (MVN)/prepositus hypoglossi (PH) (P<0.05) and that NOS activity in the ipsilateral MVN/PH was not significantly affected. However, NOS activity was significantly inhibited in the bilateral cerebellum and cortices for several concentrations of L-NAME. These results suggest that pre-UVD systemic administration of L-NAME can significantly increase the rate of SN compensation in guinea pig and that this effect is correlated with inhibition of NOS activity in several regions of the CNS.

  5. New mouse model for inducing and evaluating unilateral vestibular deafferentation syndrome.

    Science.gov (United States)

    Cassel, R; Bordiga, P; Pericat, D; Hautefort, C; Tighilet, B; Chabbert, C

    2018-01-01

    Unilateral vestibular deafferentation syndrome (uVDS) holds a particular place in the vestibular pathology domain. Due to its suddenness, the violence of its symptoms that often result in emergency hospitalization, and its associated original neurophysiological properties, this syndrome is a major source of questioning for the otoneurology community. Also, its putative pathogenic causes remain to be determined. There is currently a strong medical need for the development of targeted and effective countermeasures to improve the therapeutic management of uVDS. The present study reports the development of a new mouse model for inducing and evaluating uVDS. Both the method for generating controlled excitotoxic-type peripheral vestibular damages, through transtympanic administration of the glutamate receptors agonist kainate (TTK), and the procedure for evaluating the ensuing clinical signs are detailed. Through extensive analysis of the clinical symptoms characteristics, this new animal model provides the opportunity to better follow the temporal evolution of various uVDS specific symptoms, while better appreciating the different phases that composed this syndrome. The uVDS evoked in the TTK mouse model displays two main phases distinguishable by their kinetics and amplitudes. Several parameters of the altered vestibular behaviour mimic those observed in the human syndrome. This new murine model brings concrete information about how uVDS develops and how it affects global behaviour. In addition, it opens new opportunity to decipher the etiopathological substrate of this pathology by authorizing the use of genetically modified mouse models. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances.

    Science.gov (United States)

    Darlington, C L; Smith, P F

    2000-10-01

    The aim of this review is to summarise and critically evaluate studies of vestibular compensation published over the last 2 years, with emphasis on those concerned with the molecular mechanisms of this process of lesion-induced plasticity. Recent studies of vestibular compensation have confirmed and extended the previous findings that: (i) compensation of the static ocular motor and postural symptoms occurs relatively rapidly and completely compared to the dynamic symptoms, many of which either do not compensate substantially or else compensate variably due to sensory substitution and the development of sensori-motor strategies which suppress or minimize symptoms; (ii) static compensation is associated with, and may be at least partially caused by a substantial recovery of resting activity in the ipsilateral vestibular nucleus complex (VNC), which starts to develop very quickly following the unilateral vestibular deafferentation (UVD) but does not correlate perfectly with the development of some aspects of static compensation (e.g., postural compensation); and (iii) many complex biochemical changes are occurring in the VNC, cerebellum and even areas of the central nervous system like the hippocampus, following UVD. However, despite many recent studies which suggest the importance of excitatory amino acid receptors such as the N-methyl-D-aspartate receptor, expression of immediate early gene proteins, glucocorticoids, neurotrophins and nitric oxide in the vestibular compensation process, how these various factors are linked and which of them may have a causal relationship with the physiological changes underlying compensation, remains to be determined.

  7. Evidence for reduced nitric oxide synthase (NOS) activity in the ipsilateral medial vestibular nucleus and bilateral prepositus hypoglossi following unilateral vestibular deafferentation in the guinea pig.

    Science.gov (United States)

    Anderson, T V; Moulton, A R; Sansom, A J; Kerr, D R; Laverty, R; Darlington, C L; Smith, P F

    1998-03-23

    The aim of the present study was to examine, using a radioenzymatic assay technique, nitric oxide synthase (NOS) activity in the bilateral medial vestibular nuclei (MVN) and prepositus hypoglossi (PH), during the development of vestibular compensation for unilateral vestibular deafferentation (UVD) in the guinea pig. In the MVN ipsilateral to the UVD, and bilaterally in PH, NOS activity decreased following UVD compared to sham controls and did not recover significantly up to 50 h later, when a substantial degree of behavioural vestibular compensation had occurred. These results suggest that UVD causes a decrease in NOS activity in the ipsilateral MVN and the bilateral PH, and that a consequent decrease in NO may be responsible for some of the ocular motor and postural symptoms of UVD. Copyright 1998 Elsevier Science B.V.

  8. Vestibular damage in chronic ototoxicity: a mini-review.

    Science.gov (United States)

    Sedó-Cabezón, Lara; Boadas-Vaello, Pere; Soler-Martín, Carla; Llorens, Jordi

    2014-07-01

    Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles. Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons. Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the afferent terminals, of differing severity depending on the ototoxicity model. One major pathway frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity. In addition, greater involvement of the afferent terminals may occur, particularly the calyx units contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory loss associated with chronic exposure and aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Physical therapy management of peripheral vestibular dysfunction: two clinical case reports.

    Science.gov (United States)

    Gill-Body, K M; Krebs, D E; Parker, S W; Riley, P O

    1994-02-01

    We describe the treatment of two patients with peripheral vestibular dysfunction using a novel, staged exercise program. Response to treatment was documented. The first patient, a 62-year-old woman with unilateral vestibular dysfunction (UVD) and a 6-month history of disequilibrium following herpes zoster oticus resulting in damage to the right inner ear, was treated with an 8-week course of vestibular physical therapy. During the 8 weeks, the patient attended weekly physical therapy sessions and was trained to perform vestibular adaptation exercises on a daily basis at home. The second patient, a 53-year-old woman with progressive disequilibrium secondary to profound bilateral vestibular hypofunction (BVH), was treated with a 16-week course of vestibular physical therapy. During the first 8 weeks, the patient attended weekly physical therapy sessions and was trained to perform vestibular adaptation and substitution exercises on a daily basis at home. During the second 8 weeks, the patient continued performing vestibular physical therapy exercises at home independently. Vestibular function (sinusoidal vertical axis rotation testing), postural control (clinical tests and posturography), stability during the performance of selected activities of daily living (ADLs), and self-perception of symptoms and handicap were measured prior to and at the conclusion of treatment for both patients and at the midpoint of treatment for the patient with BVH. After 8 weeks of treatment, both patients reported improvements in self-perception of symptoms and handicap and demonstrated objective improvements in clinical balance tests, posturography, and several kinematic indicators of stability during the performance of selected ADLs. Further improvements were noted in the patient with BVH after 16 weeks of treatment. Improvements in postural control were noted after 8 weeks of treatment for the patient with UVD and after 16 weeks for the patient with BVH. Vestibular function improved

  10. Structure and function of the UVDE repair protein

    NARCIS (Netherlands)

    Paspaleva, Keti

    2009-01-01

    UVDE is a repair enzyme discovered for the first time in the fission yeast Schizaromyces pombe. The initial biochemical characterization of this enzyme showed that its substrate specificity includes not only UV lesions, but also abasic sites and some nucleotide mismatches. The mechanism, however, of

  11. Differences in NOS protein expression and activity in the rat vestibular nucleus following unilateral labyrinthectomy.

    Science.gov (United States)

    Zheng, Y; Horii, A; Smith, P F; Darlington, C L

    2001-03-31

    We used Western blotting to analyse the expression of different isoforms of nitric oxide synthase (NOS) in the rat vestibular nucleus complex (VNC) at various times following unilateral vestibular deafferentation (UVD), together with a radioenzymatic assay to compare NOS activity at the same time points. nNOS expression did not change significantly in the ipsilateral or contralateral VNC at any time following UVD. However, eNOS expression decreased significantly (P<0.05) in the contralateral VNC at 6 h post-UVD, recovering to normal levels by 50 h. iNOS was not expressed at any time following UVD. NOS activity demonstrated a significant increase in the contralateral VNC at 6 h post-UVD (P<0.05), recovering toward normal levels by 50 h.

  12. Nitric oxide synthase and arginase expression in the vestibular nucleus and hippocampus following unilateral vestibular deafferentation in the rat.

    Science.gov (United States)

    Liu, Ping; Zheng, Yiwen; King, Jaimee; Darlington, Cynthia L; Smith, Paul F

    2003-03-14

    The aim of this study was to investigate the possible relationship between changes in neuronal and endothelial nitric oxide synthase (nNOS and eNOS) and arginase expression in the vestibular nucleus complex and the hippocampus (CA1, CA2/3 and the dentate gyrus (DG) at 10 h or 2 weeks following a unilateral vestibular deafferentation (UVD) in rats. There were no significant differences in nNOS or arginase II expression in the ipsilateral or contralateral VNC at either 10 h or 2 weeks post-UVD. For eNOS, there was only a significant decrease in expression in the ipsilateral VNC at 2 weeks post-UVD (P<0.01). In the hippocampus, the only significant difference in nNOS expression was a decrease in the ipsilateral DG at 2 weeks post-UVD (P<0.05). There was a significant decrease in eNOS expression in the contralateral CA2/3 region at 10 h post-UVD (P<0.01). The only other significant change in eNOS was an increase in the contralateral DG at 10 h post-UVD (P<0.01). Although arginase II was expressed in all regions of the hippocampus, there were no significant differences in arginase II expression at any time point following UVD. These results suggest that the changes in NOS expression that occur in the VNC and hippocampus following UVD are not correlated with one another or with changes in arginase II.

  13. Functional and anatomic alterations in the gentamicin-damaged vestibular system in the guinea pig

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, HM; Dijk, T; Stokroos, [No Value; van der Want, TJL; Albers, FWJ

    Hypothesis: The purpose of this study was to investigate the expected functional and morphologic effect of gentamicin on the vestibular system simultaneously by measurement of vestibular evoked potentials and electron microscopic evaluation. Background: Vestibular short-latency evoked potentials to

  14. [Expressions of c-Fos and NADPH-d in the related brainstem during vestibular compensation].

    Science.gov (United States)

    Jiang, Zi-Dong; Wen, Yan-Hua

    2008-12-01

    To study the mechanism of vestibular compensation and to observe the changes of c-Fos and NADPH-d expressions in the brainstem of the vestibular deafferentation rats in static status or following angular acceleration stimulation. Totally 60 SD rats were randomly divided into control group (labyrinthine intact), complete unilateral vestibular deafferentation (UVD) group, simultaneous complete bilateral vestibular deafferentation (BVD) group (n = 20 in each group). Subgroups (n = 10 in each subgroup) were set for static status or following angular acceleration stimulation in each group. Double labeling with histochemistry-immunohistochemistry was performed to observe c-Fos/NADPH-d neurons. No positive c-Fos/NADPH-d expression was observed in the both sides of medial vestibular nucleus (MVN) and prepositus hypoglossi (PrH) of normal rats in static status and BVD rats whether following canal rotation or not. c-Fos/ NADPH-d expression was observed in the ipsilesional MVN and the contralesional PrH of UVD rats. However, c-Fos/NADPH-d were detected in both sides of MVN and PrH in UVD rats and normal rats following angular acceleration stimulation. In the ipsilesional MVN and the contralesional PrH, c-Fos plays an important role in vestibular compensation, in which nitric oxide acts as a key neurotransmitter.

  15. Damage to the vestibular inner ear causes long-term changes in neuronal nitric oxide synthase expression in the rat hippocampus.

    Science.gov (United States)

    Zheng, Y; Horii, A; Appleton, I; Darlington, C L; Smith, P F

    2001-01-01

    The vestibular inner ear detects head acceleration and initiates compensatory eye movement and postural reflexes that help keep the visual image of the world stable on the retina, and maintain balance, during unexpected head movement. The most primitive vestibular systems are estimated to have evolved more than 500 million years ago and in mammalian and submammalian species the vestibular reflexes are mediated by basic brainstem pathways (see Wilson and Melvill Jones, 1979 for review). Although the contributions of the vestibular system to higher cognitive function have generally received less attention than its reflexive roles, vestibular sensory information is transmitted to higher centres in the brain and humans with vestibular damage are known to experience debilitating perceptual illusions (see Curthoys and Halmagyi, 1995; Berthoz, 1996 for reviews). Increasing behavioural and neurophysiological evidence suggests that the hippocampus uses information from the vestibular inner ear in order to build up maps of space that can be used in the development of spatial memory during learning tasks (McNaughton et al., 1991; Chapuis et al., 1992; Wiener and Berthoz, 1993; O'Mara et al., 1994; Wiener et al., 1995; Gavrilov et al., 1995; Stackman and Taube, 1996; Vitte et al., 1996; Taube et al., 1996; Save et al., 1998; Peruch et al., 1999; Cuthbert et al., 2000; Russell et al., 2000). However, to date, there has been no indication of the long-term neurochemical effects of the loss of vestibular input on hippocampal function. Since nitric oxide has been implicated in the mechanisms of hippocampal synaptic plasticity associated with the development of short-term memory (e.g. Schuman and Madison, 1991; Schuman et al., 1994; Arancio et al., 1996; Wu et al., 1997; Lu et al., 1999), we examined whether changes occur in the activity and expression of the enzymes responsible for nitric oxide production (nitric oxide synthases) in subregions of the rat hippocampus at different

  16. Out-of-Body Experiences and Other Complex Dissociation Experiences in a Patient with Unilateral Peripheral Vestibular Damage and Deficient Multisensory Integration.

    Science.gov (United States)

    Kaliuzhna, Mariia; Vibert, Dominique; Grivaz, Petr; Blanke, Olaf

    2015-01-01

    Out-of-body experiences (OBEs) are illusory perceptions of one's body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient's behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient's symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.

  17. Vestibular migraine

    DEFF Research Database (Denmark)

    Lempert, Thomas; Olesen, Jes; Furman, Joseph

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  18. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.

    Science.gov (United States)

    Hong, Sung Hwa; Park, Sook Kyung; Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Ki Ryung; Kim, Myung Gu; Chung, Won-Ho

    2006-01-01

    Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction.

  19. Vestibular mechanisms.

    Science.gov (United States)

    Precht, W

    1979-01-01

    It is apparent from this and other reviews of the subject that our knowledge of vestibular function is most complete for the primary canal and otolithic afferents. Relatively little progress has been made in the understanding of receptor mechanisms and the functional importance of the efferent vestibular system. Since most of it has been summarized previously the latter were not considered here. Considerably more knowledge has accumulated in the field of central vestibular mechanisms, particularly those related to eye movements. Recent advances in functional synaptology of direct and indirect vestibuloocular pathways are described. It appears that the indirect pathways are essential for the central integration of the peripheral head velocity into a central eye position signal. Candidates for the neural integrator are presented and discussed and their connectivity described both for the horizontal and the relatively poorly studied vertical eye movement system. This field will certainly be studied extensively during the next years. Another interesting field is the role of the cerebellum in the control the vestibuloocular reflex. Recent data and hypotheses, including the problem of cerebellar plasticity, are summarized and evaluated. That the vestibular nuclei are by no means a simple relay system for specific vestibular signals destined for other sensory or motor centers is evidenced in this review by the description of multiple canal-canal, canalotolith, and visual-vestibular convergence at the nuclear level. Canal-otolith and polysensory convergence in vestibular neurons enables them to correct for the inherent inadequacies of the peripheral canal system in the low frequency range. The mechanisms of polysensory interaction in the central vestibular system will undoubtedly be an important and interesting field for future research.

  20. Changing perspective: The role of vestibular signals

    OpenAIRE

    Deroualle, Diane; Borel, Liliane; Deveze, Arnaud; Lopez, Christophe

    2015-01-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking....

  1. Structure-based insights into the repair of UV-damaged DNA

    NARCIS (Netherlands)

    Meulenbroek, Elisabeth Maria

    2012-01-01

    Repair of damage in the DNA is essential for an organism. Therefore, several repair mechanisms have evolved. In this thesis, the mechanism of Transcription-Coupled Nucleotide Excision Repair (TC-NER) and the UV Damage Endonuclease repair pathway (UVDE) have been studied. Central to TC-NER is the

  2. Vestibular compensation following vestibular neurotomy.

    Science.gov (United States)

    Devèze, A; Montava, M; Lopez, C; Lacour, M; Magnan, J; Borel, L

    2015-09-01

    Four studies assessing vestibular compensation in Menière's disease patients undergoing unilateral vestibular neurotomy, using different analysis methods, are reviewed, with a focus on the different strategies used by patients according to their preoperative sensory preference. Four prospective studies performed in a university tertiary referral center were reviewed, measuring the pattern of vestibular compensation in Menière's disease patients before and after unilateral vestibular neurotomy on various assessment protocols: postural syndrome assessed on static posturography and gait analysis; perceptual syndrome assessed on subjective visual vertical perception; and oculomotor syndrome assessed on ocular cyclotorsion. Vestibular compensation occurred at variable intervals depending on the parameter investigated. Open-eye postural control and gait/walking returned to normal one month after neurotomy. Fine balance analysis found that visual perception of the vertical and ocular cyclotorsion impairment persisted at long-term follow-up. Clinical postural disturbance persisted only when visual afferents were cut off (eyes closed). These impairments were the expression of a postoperative change in postural strategy related to the new use of visual and non-visual references. Understanding pre-operative interindividual variation in balance strategy is critical to screening for postural instability and tailoring vestibular rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Vestibular implants studied in animal models: clinical and scientific implications.

    Science.gov (United States)

    Lewis, Richard F

    2016-12-01

    Damage to the peripheral vestibular system can result in debilitating postural, perceptual, and visual symptoms. A potential new treatment for this clinical problem is to replace some aspects of peripheral vestibular function with an implant that senses head motion and provides this information to the brain by stimulating branches of the vestibular nerve. In this review I consider animal studies performed at our institution over the past 15 years, which have helped elucidate how the brain processes information provided by a vestibular (semicircular canal) implant and how this information could be used to improve the problems experienced by patients with peripheral vestibular damage. Copyright © 2016 the American Physiological Society.

  4. Changing perspective: The role of vestibular signals.

    Science.gov (United States)

    Deroualle, Diane; Borel, Liliane; Devèze, Arnaud; Lopez, Christophe

    2015-12-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking. Yet, no study merged natural full-body vestibular stimulations and explicit visuo-spatial perspective taking tasks in virtual environments. In Experiment 1, we combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the viewpoint of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the viewpoint of a distant avatar. Our results showed that vestibular signals influence perspective taking in a direction-specific way: participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. In Experiment 2, participants realized 3D object mental rotations, which did not involve perspective taking, during the same whole-body vestibular stimulation. Our results demonstrated that vestibular stimulation did not affect 3D object mental rotations. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking (self-centered mental imagery), but not a general effect on mental imagery. Findings from this study suggest that vestibular signals contribute to one of the most crucial mechanisms of social cognition: understanding others' actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    that this may be caused by both cochlear and retrocochlear mechanisms. Multiple mechanisms may also be at play in the case of dizziness, which may broaden perspectives of therapeutic approach. This study presents a systematic and detailed assessment of vestibular histopathology in temporal bones from patients...... with VS. METHODS: Retrospective analysis of vestibular system histopathology in temporal bones from 17 patients with unilateral VS. The material was obtained from The Copenhagen Temporal Bone Collection. RESULTS: Vestibular schwannomas were associated with atrophy of the vestibular ganglion, loss of fiber...... density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...

  6. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effects of vestibular lesions on hippocampal function in rats.

    Science.gov (United States)

    Smith, Paul F; Horii, Arata; Russell, Noah; Bilkey, David K; Zheng, Yiwen; Liu, Ping; Kerr, D Steve; Darlington, Cynthia L

    2005-04-01

    Interest in interaction between the vestibular system and the hippocampus was stimulated by evidence that peripheral vestibular lesions could impair performance in learning and memory tasks requiring spatial information processing. By the 1990s, electrophysiological data were emerging that the brainstem vestibular nucleus complex (VNC) and the hippocampus were connected polysynaptically and that hippocampal place cells could respond to vestibular stimulation. The aim of this review is to summarise and critically evaluate research published in the last 5 years that has seen major progress in understanding the effects of vestibular damage on the hippocampus. In addition to new behavioural studies demonstrating that animals with vestibular lesions exhibit impairments in spatial memory tasks, electrophysiological studies have confirmed long-latency, polysynaptic pathways between the VNC and the hippocampus. Peripheral vestibular lesions have been shown to cause long-term changes in place cell function, hippocampal EEG activity and even CA1 field potentials in brain slices maintained in vitro. During the same period, neurochemical investigations have shown that some hippocampal subregions exhibit long-term changes in the expression of neuronal nitric oxide synthase, arginase I and II, and the NR1 and NR2A N-methyl-D-aspartate (NMDA) receptor subunits following peripheral vestibular damage. Despite the progress, a number of important issues remain to be resolved, such as the possible contribution of auditory damage associated with vestibular lesions, to the hippocampal effects observed. Furthermore, although these studies demonstrate that damage to the vestibular system does have a long-term impact on the electrophysiological and neurochemical function of the hippocampus, they do not indicate precisely how vestibular information might be used in hippocampal functions such as developing spatial representations of the environment. Understanding this will require detailed

  8. Clinical vestibular testing assessed with machine-learning algorithms.

    Science.gov (United States)

    Priesol, Adrian J; Cao, Mengfei; Brodley, Carla E; Lewis, Richard F

    2015-04-01

    Dizziness and imbalance are common clinical problems, and accurate diagnosis depends on determining whether damage is localized to the peripheral vestibular system. Vestibular testing guides this determination, but the accuracy of the different tests is not known. To determine how well each element of the vestibular test battery segregates patients with normal peripheral vestibular function from those with unilateral reductions in vestibular function. Retrospective analysis of vestibular test batteries in 8080 patients. Clinical medical records were reviewed for a subset of individuals with the reviewers blinded to the vestibular test data. A group of machine-learning classifiers were trained using vestibular test data from persons who were "manually" labeled as having normal vestibular function or unilateral vestibular damage based on a review of their medical records. The optimal trained classifier was then used to categorize patients whose diagnoses were unknown, allowing us to determine the information content of each element of the vestibular test battery. The information provided by each element of the vestibular test battery to segregate individuals with normal vestibular function from those with unilateral vestibular damage. The time constant calculated from the rotational test ranked first in information content, and measures that were related physiologically to the rotational time constant were 10 of the top 12 highest-ranked variables. The caloric canal paresis ranked eighth, and the other elements of the test battery provided minimal additional information. The sensitivity of the rotational time constant was 77.2%, and the sensitivity of the caloric canal paresis was 59.6%; the specificity of the rotational time constant was 89.0%, and the specificity of the caloric canal paresis was 64.9%. The diagnostic accuracy of the vestibular test battery increased from 72.4% to 93.4% when the data were analyzed with the optimal machine-learning classifier

  9. Isosorbide delays gentamicin-induced vestibular sensory cell death.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2005-01-01

    The efficacy of isosorbide for protection from vestibular sensory cell damage was investigated. The effects of isosorbide on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular sensory cell damage was examined by using an in vitro LIVE/DEAD system. Isosorbide inhibited the production of both NO and ROS. Isosorbide limited the vestibular sensory cell damage caused by gentamicin. It is, therefore, suggested that isosorbide may help to treat inner ear disorders.

  10. Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: A review

    OpenAIRE

    Laura M. Franke, PhD; William C. Walker, MD; David X. Cifu, MD; Alfred L. Ochs, PhD; Henry L. Lew, MD, PhD

    2012-01-01

    Vestibular symptoms are persistent and problematic sequelae of blast exposure. Several lines of evidence suggest that these symptoms often stem from injury to the central nervous system. Current methods of assessing the vestibular system have described vestibular deficits that follow traumatic brain injury and differentiate blunt and blast trauma but have not examined the full range of vestibular functions that depend on the cerebral structures above the midbrain. Damage to the central vestib...

  11. Feasibility and application of an HPLC/UVD to determine dinotefuran and its shorter wavelength metabolites residues in melon with tandem mass confirmation.

    Science.gov (United States)

    Rahman, Md Musfiqur; Park, Jong-Hyouk; Abd El-Aty, A M; Choi, Jeong-Heui; Yang, Angel; Park, Ki Hun; Nashir Uddin Al Mahmud, Md; Im, Geon-Jae; Shim, Jae-Han

    2013-01-15

    A new analytical method was developed for dinotefuran and its metabolites, MNG, UF, and DN, in melon using high-performance liquid chromatography (HPLC) coupled with an ultraviolet detector (UVD). Due to shorter wavelength, lower sensitivity to UV detection, and high water miscibility of some metabolites, QuEChERs acetate-buffered version was modified for extraction and purification. Mobile phases with different ion pairing or ionisation agents were tested in different reverse phase columns, and ammonium bicarbonate buffer was found as the best choice to increase the sensitivity of target analytes to the UV detector. After failure of dispersive SPE clean-up with primary secondary amine, different solid phase extraction cartridges (SPE) were used to check the protecting capability of analytes against matrix interference. Finally, samples were extracted with a simple and rapid method using acetonitrile and salts, and purified through C(18)SPE. The method was validated at two spiking levels (three replicates for each) in the matrix. Good recoveries were observed for all of the analytes and ranged between 70.6% and 93.5%, with relative standard deviations of less than 10%. Calibration curves were linear over the calibration ranges for all the analytes with r(2)≥ 0.998. Limits of detection ranged from 0.02 to 0.05 mg kg(-1), whereas limits of quantitation ranged from 0.06 to 0.16 mg kg(-1) for dinotefuran and its metabolites. The method was successfully applied to real samples, where dinotefuran and UF residues were found in the field-incurred melon samples. Residues were confirmed via LC-tandem mass spectrometry (LC-MS/MS) in positive-ion electrospray ionisation (ESI(+)) mode. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Sensorintegrative dysfunction underlying vestibular disorders after traumatic brain injury: a review.

    Science.gov (United States)

    Franke, Laura M; Walker, William C; Cifu, David X; Ochs, Alfred L; Lew, Henry L

    2012-01-01

    Vestibular symptoms are persistent and problematic sequelae of blast exposure. Several lines of evidence suggest that these symptoms often stem from injury to the central nervous system. Current methods of assessing the vestibular system have described vestibular deficits that follow traumatic brain injury and differentiate blunt and blast trauma but have not examined the full range of vestibular functions that depend on the cerebral structures above the midbrain. Damage to the central vestibular circuits can lead to deficits in vital processes of spatial perception and navigation, in addition to dizziness and disequilibrium, and may also affect emotional functioning, particularly noradrenergically modulated states of anxiety. Perceptual functions can be assessed to determine the extent of central nervous system involvement in vestibular symptoms and to provide greater confidence when vestibular dysfunction is to be excluded. The ability to detect central vestibular dysfunction will significantly enhance our response to the dizziness and balance symptoms that are a common source of distress for Veterans.

  13. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  14. Common Vestibular Disorders

    OpenAIRE

    Balatsouras, Dimitrios G

    2017-01-01

    The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV), Meniere's disease (MD) and vestibular neuritis (VN), are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the ...

  15. Vestibular perception following acute unilateral vestibular lesions.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Little is known about the vestibulo-perceptual (VP system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO and VP function in 25 patients with vestibular neuritis (VN acutely (2 days after onset and after compensation (recovery phase, 10 weeks. Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2 and velocity steps of 90°/s (acceleration 180°/s(2. We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of

  16. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  17. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  18. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  19. Recent Evidence About the Effectiveness of Vestibular Rehabilitation.

    Science.gov (United States)

    Whitney, Susan L; Alghadir, Ahmad H; Anwer, Shahnawaz

    2016-03-01

    Vestibular rehabilitation of persons with peripheral and central vestibular disorders requires a thorough evaluation and a customized plan of care. Collaboration of the various members of the treatment team optimizes outcomes. Early intervention appears to be better than referring patients who have developed chronic symptoms of balance loss, dizziness, anxiety, and depression. There is a body of emerging evidence that supports that the central nervous system has the capability to reweigh sensory inputs in order to improve function. There continues to be a dearth of knowledge related to how to treat persons with otolithic dysfunction as compared to those with semicircular canal damage. With the use of vestibular rehabilitation, patients are less likely to fall, are less dizzy, balance and gait improve, and quality of life is enhanced. Recent Cochrane reviews and a clinical practice guideline support the use of vestibular rehabilitation for persons with vestibular dysfunction. Typical symptoms and their management including dysregulated gait, falling, fear of falling, increased sway in standing, visual blurring, symptoms with complex visual scenes in the periphery, and weakness are all discussed with ideas for intervention. Any patient with a vestibular disorder may benefit from a trial of vestibular rehabilitation. A discussion of recent evidence and innovations related to vestibular rehabilitation is also included.

  20. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction.

    Science.gov (United States)

    Hillier, Susan L; McDonnell, Michelle

    2011-02-16

    This is an update of a Cochrane Review first published in The Cochrane Library in Issue 4, 2007.Unilateral peripheral vestibular dysfunction (UPVD) can occur as a result of disease, trauma or postoperatively. The dysfunction is characterised by complaints of dizziness, visual or gaze disturbances and balance impairment. Current management includes medication, physical manoeuvres and exercise regimes, the latter known collectively as vestibular rehabilitation (VR). To assess the effectiveness of vestibular rehabilitation in the adult, community-dwelling population of people with symptomatic unilateral peripheral vestibular dysfunction. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; ISRCTN and additional sources for published and unpublished trials. The most recent search was 1 July 2010, following a previous search in March 2007. Randomised trials of adults living in the community, diagnosed with symptomatic unilateral peripheral vestibular dysfunction. We sought comparisons of VR versus control (placebo etc.), other treatment (non-VR, e.g. pharmacological) or another form of VR. We considered the outcome measures of frequency and severity of dizziness or visual disturbance; changes in balance impairment, function or quality of life; and measure/s of physiological status with known functional correlation. Both authors independently extracted data and assessed trials for risk of bias. We included 27 trials, involving 1668 participants, in the review. Trials addressed the effectiveness of VR against control/sham interventions, medical interventions or other forms of VR. Individual and pooled data showed a statistically significant effect in favour of VR over control or no intervention. The exception to this was when movement-based VR was compared to physical manoeuvres for benign

  1. Central vestibular system: vestibular nuclei and posterior cerebellum.

    Science.gov (United States)

    Barmack, Neal H

    2003-06-15

    The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a

  2. Enlarged Vestibular Aqueducts and Childhood Hearing Loss

    Science.gov (United States)

    ... Infections, and Deafness Enlarged Vestibular Aqueducts and Childhood Hearing Loss On this page: What are vestibular aqueducts? How ... How are enlarged vestibular aqueducts related to childhood hearing loss? Research suggests that most children with enlarged vestibular ...

  3. [Therapy of vestibular vertigo].

    Science.gov (United States)

    Hamann, K F

    1993-05-01

    The non-surgical treatment of vestibular disorders must be based on current knowledge of vestibular pathophysiology. It is generally accepted that after vestibular lesions a self-repair mechanism exists that allows a more or less complete recovery. In cases of persisting vestibular complaints the physician's duty consists in stimulation of these pre-existing mechanisms. This can be done by physical exercises, as has been recommended since the work of Cawthorne and Cooksey in 1946. This concept is meanwhile supported by modern neurophysiological research. This article describes a short training program consisting of exercises for fixation during rotations, smooth pursuit, optokinetic nystagmus and motor learning mechanisms. Physical exercises can be reinforced by nootropic drugs.

  4. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  5. Vestibular function testing.

    LENUS (Irish Health Repository)

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  6. Common Vestibular Disorders

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Balatsouras

    2017-01-01

    Full Text Available The three most common vestibular diseases, benign paroxysmal positional vertigo (BPPV, Meniere's disease (MD and vestibular neuritis (VN, are presented in this paper. BPPV, which is the most common peripheral vestibular disorder, can be defined as transient vertigo induced by a rapid head position change, associated with a characteristic paroxysmal positional nystagmus. Canalolithiasis of the posterior semicircular canal is considered the most convincing theory of its pathogenesis and the development of appropriate therapeutic maneuvers resulted in its effective treatment. However, involvement of the horizontal or the anterior canal has been found in a significant rate and the recognition and treatment of these variants completed the clinical picture of the disease. MD is a chronic condition characterized by episodic attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure and a progressive loss of audiovestibular functions. Presence of endolymphatic hydrops on postmortem examination is its pathologic correlate. MD continues to be a diagnostic and therapeutic challenge. Patients with the disease range from minimally symptomatic, highly functional individuals to severely affected, disabled patients. Current management strategies are designed to control the acute and recurrent vestibulopathy but offer minimal remedy for the progressive cochlear dysfunction. VN is the most common cause of acute spontaneous vertigo, attributed to acute unilateral loss of vestibular function. Key signs and symptoms are an acute onset of spinning vertigo, postural imbalance and nausea as well as a horizontal rotatory nystagmus beating towards the non-affected side, a pathological headimpulse test and no evidence for central vestibular or ocular motor dysfunction. Vestibular neuritis preferentially involves the superior vestibular labyrinth and its afferents. Symptomatic medication is indicated only during the acute phase to relieve the vertigo and nausea

  7. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  8. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    OpenAIRE

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental...

  9. Perspectives on Aging Vestibular Function

    National Research Council Canada - National Science Library

    Anson, Eric; Jeka, John

    2016-01-01

    Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing...

  10. Neurotransmitters in the vestibular system.

    Science.gov (United States)

    Balaban, C D

    2016-01-01

    Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders. © 2016 Elsevier B.V. All rights reserved.

  11. Vestibular telemedicine and rehabilitation. Applications for virtual reality.

    Science.gov (United States)

    Viirre, E

    1996-01-01

    This paper will discuss the use of Virtual Reality (VR) technologies in the rehabilitation of patients with vestibular disorders and in the provision of remote medical consultations for those patients. Patients with a vestibular problem are very common (vertigo is the second most common neurological complaint after headache) and yet there are very few vestibular neurotologists: specialists in their diagnosis and treatment. New treatments for various disorders causing vertigo now exist. This means that appropriate diagnosis can significantly improve patients' well-being. Remote medical diagnosis and treatment facilities could make the few vestibular disorder specialists much more available to patients. An analysis of the technological and economic factors influencing the provision of this service is necessary. The main long term effect of many vestibular disorders is damage to the sensing apparatus of the inner ear. The damage can lead to inappropriate interaction between visually driven orientation sensing and sensing of orientation by the inner ear. The consequence for the patient is vertigo (a sensation of turning), motion sickness and imbalance. Current rehabilitation efforts are intended to drive the nervous system to adapt to the disordered vestibular input. Adaptation appears to occur slowly in many subjects, even those within rehabilitation programs. An appropriately designed VR experience could greatly increase the rate of adaptation in these patients.

  12. [Presbyastasis and application of vestibular rehabilitation in geriatrics].

    Science.gov (United States)

    Costa de Araujo, P; Demanez, L; Lechien, J; Bauvir, P; Petermans, J

    2011-03-01

    Balance disorders can have a major functional impact among the elderly. The main risk is falling. Three elements are implicated in the loss of balance: vision, proprioception and the vestibular system. This article will discuss mainly vestibular damage and its implications. The assessment of balance disorders, particularly in geriatric patients, is based on validated scales composed of several items. These provide scores and are based on the results of chronometric measurements. They can be useful for the application of Vestibular Rehabilitation (VR), a technique improving the adaptation and autonomy of these patients. Vestibular rehabilitation is therefore part of an overall support, the goal of therapy being to improve daily life and to reduce the risk of falls.

  13. Vestibular tributaries to the vein of the vestibular aqueduct

    DEFF Research Database (Denmark)

    Hansen, Jesper Marsner; Qvortrup, Klaus; Friis, Morten

    2010-01-01

    CONCLUSION: The vein of the vestibular aqueduct drains blood from areas extensively lined by vestibular dark cells (VDCs). A possible involvement in the pathogenesis of an impaired endolymphatic homeostasis can be envisioned at the level of the dark cells area. OBJECTIVES: The aim of this study...... was to investigate the vascular relationship between the vein of the vestibular aqueduct and the vestibular apparatus, with focus on the VDCs. METHODS: Sixteen male Wistar rats were divided into groups of 6 and 10. In the first group, 2 µm thick sections including the vein of the vestibular aqueduct, utricle...... relation to the VDCs in the utricle and the crista ampullaris of the lateral semicircular canal in the vestibular apparatus. One major vein emanated from these networks, which emptied into the vein of the vestibular aqueduct. Veins draining the saccule and the common crus of the superior and posterior...

  14. Dyscalculia and vestibular function.

    Science.gov (United States)

    Smith, P F

    2012-10-01

    A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The challenge of vestibular migraine.

    Science.gov (United States)

    Sargent, Eric W

    2013-10-01

    Migraine is a common illness and migraine-related dizziness occurs in up to 3% of the population. Because the diagnosis is controversial and may be difficult, many patients go undiagnosed and untreated. This review summarizes current understanding of the taxonomy and diagnosis of vestibular migraine, the relation of vestibular migraine to labyrinthine disease, and the treatment of the condition in adults and children. The categories of migraine accepted by the International Headache Society do not reflect the complex presentations of patients suspected of having vestibular migraine. In clinical practice and research, criteria are increasingly accepted that divide patients suspected of vestibular migraine into 'definite vestibular migraine' and 'probable vestibular migraine.' Because vertigo itself may trigger migraine, patients with vestibular migraine should be suspected of having vestibular end-organ disease until proven otherwise. Treatment remains controversial because of a notable lack of randomized controlled studies of vestibular migraine treatment. For now, the best strategy for the treatment of suspected vestibular migraine patients is dietary/lifestyle modification, antinausea/antiemetics for acute vertigo, and preventive medication for patients who have continued disruptive symptoms. Patients with vestibular migraine should be monitored regularly for the development of latent audiovestibular end-organ disease.

  16. Evaluation of Cervical Vestibular Evoked Myogenic Potential in Subjects with Chronic Noise Exposure.

    Science.gov (United States)

    Abd El Salam, Nehal Mamdouh; Ismail, Elshahat Ibrahem; El Saeed El Sharabasy, Ayman

    2017-12-14

    Noise has been recognized as a major cause of cochlear damage resulting in both tinnitus and hearing loss. On the other hand, damage to the vestibular system, especially the saccule, can be considered as a potential problem. The cervical vestibular-evoked myogenic potentials (cVEMPs) have been established as a clinical test of measuring both sac-cular and inferior vestibular nerve function. Therefore, it is thought to be sensitive to the noise-induced damage to the vestibular system. Accordingly, this study was designed to assess the vestibular system in subjects exposed to noise during work by using cVEMPs. This study was performed in over 60 adult males who were divided into a study group (consisting of 40 adult males) with history of chronic occupational noise exposure and with variable degree of hearing levels and a control group consisting of 20 healthy adults with normal peripheral hearing, with no history of noise exposure and no vestibular complaints. cVEMP recordings were elicited using 95dB nHL click stimuli. There was statistically significant prolonged cVEMP latency of the P13 and N23 waves of the study versus the control groups. As regard to the sense of imbalance, there were significant prolonged cVEMPs latencies in present versus absent sense of imbalance. However, there were statistically insignificant reduced cVEMP amplitudes in present versus absent sense of imbalance. Chronic noise exposure damages the vestibular system especially the saccule in addition to cochlear damage.

  17. The vestibular body: Vestibular contributions to bodily representations.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Haggard, Patrick

    2016-01-01

    Vestibular signals are integrated with signals from other sensory modalities. This convergence could reflect an important mechanism for maintaining the perception of the body. Here we review the current literature in order to develop a framework for understanding how the vestibular system contributes to body representation. According to recent models, we distinguish between three processes for body representation, and we look at whether vestibular signals might influence each process. These are (i) somatosensation, the primary sensory processing of somatic stimuli, (ii) somatoperception, the processes of constructing percepts and experiences of somatic objects and events and (iii) somatorepresentation, the knowledge about the body as a physical object in the world. Vestibular signals appear to contribute to all three levels in this model of body processing. Thus, the traditional view of the vestibular system as a low-level, dedicated orienting module tends to underestimate the pervasive role of vestibular input in bodily self-awareness.

  18. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    Science.gov (United States)

    ... vestibular schwannoma is key to preventing its serious consequences. There are three options for managing a vestibular ... Disorders Balance Problems and Disorders - National Institute on Aging Enlarged Vestibular Aqueducts and Childhood Hearing Loss Genetics ...

  19. Is Vestibular Neuritis an Immune Related Vestibular Neuropathy Inducing Vertigo?

    Directory of Open Access Journals (Sweden)

    A. Greco

    2014-01-01

    Full Text Available Objectives. To review the current knowledge of the aetiology of vestibular neuritis including viral infections, vascular occlusion, and immunomediated mechanisms and to discuss the pathogenesis with relevance to pharmacotherapy. Systematic Review Methodology. Relevant publications on the aetiology and treatment of vestibular neuritis from 1909 to 2013 were analysed. Results and Conclusions. Vestibular neuritis is the second most common cause of peripheral vestibular vertigo and is due to a sudden unilateral loss of vestibular function. Vestibular neuronitis is a disorder thought to represent the vestibular-nerve equivalent of sudden sensorineural hearing loss. Histopathological studies of patients who died from unrelated clinical problems have demonstrated degeneration of the superior vestibular nerve. The characteristic signs and symptoms include sudden and prolonged vertigo, the absence of auditory symptoms, and the absence of other neurological symptoms. The aetiology and pathogenesis of the condition remain unknown. Proposed theories of causation include viral infections, vascular occlusion, and immunomediated mechanisms. The management of vestibular neuritis involves symptomatic treatment with antivertiginous drugs, causal treatment with corticosteroids, and physical therapy. Antiviral agents did not improve the outcomes.

  20. Neuropharmacology of Vestibular System Disorders

    OpenAIRE

    Soto, Enrique; Vega, Rosario

    2010-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in...

  1. Prophylactic treatment of vestibular migraine

    OpenAIRE

    Salmito, Márcio Cavalcante; Duarte, Juliana Antoniolli; Morganti, Lígia Oliveira Golçalves; Brandão, Priscila Valéria Caus; Nakao, Bruno Higa; Villa, Thais Rodrigues; Ganança,Fernando Freitas

    2017-01-01

    Abstract Introduction: Vestibular migraine (VM) is now accepted as a common cause of episodic vertigo. Treatment of VM involves two situations: the vestibular symptom attacks and the period between attacks. For the latter, some prophylaxis methods can be used. The current recommendation is to use the same prophylactic drugs used for migraines, including β-blockers, antidepressants and anticonvulsants. The recent diagnostic definition of vestibular migraine makes the number of studies on its ...

  2. Drug therapy for peripheral vestibular vertigo

    Directory of Open Access Journals (Sweden)

    L. M. Antonenko

    2017-01-01

    Full Text Available The choice of effective treatments for vestibular vertigo is one of the important problems, by taking into account the high prevalence of peripheral vestibular diseases. Different drugs, such as vestibular suppressants for the relief of acute vertigo attacks and vestibular compensation stimulants for rehabilitation treatment, are used to treat vestibular vertigo. Drug therapy in combination with vestibular exercises is effective in patients with vestibular neuronitis, Meniere's disease, so is that with therapeutic maneuvers in patients with benign paroxysmal positional vertigo. The high therapeutic efficacy and safety of betahistines permit their extensive use for the treatment of various vestibular disorders.

  3. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  4. Vestibular schwannoma: an unusual post radiotherapy response.

    Science.gov (United States)

    Uddin, Najam; Iqbal, Muhammad; Memon, Muhammad Ali; Farrukh, Salman

    2014-11-01

    Vestibular schwannoma is a relatively uncommon tumor. Although, it is benign but locally expansile and spreads to damage the adjacent structures. Treatment strategy includes surgery, Stereotactic Radiosurgery (SRS) either by standard or hypofractionated protocols. Due to its benign nature, radiation therapy cannot remove the tumor completely, instead radiation therapy halts the growth of vestibular schwannoma and inactivates this benign tumor. Response of radiation in the form of tumor shrinkage is seen 2 - 2.5 years after the radiations. We report a case of vestibular Schwannoma in which residual tumor of 3.1 cm size following subtotal resection was irradiated of the dose of 54 Gy in 30 equal fractions on 3-Dimensional Conformal Radiation Therapy (3-DCRT). A follow-up CT scan brain after 2 months of radiotherapy showed complete disappearance of the disease categorized as complete response. This is an unusual phenomenon and is likely due to the very rarely seen malignant transformation or presence of malignant component in this benign tumor.

  5. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation

    Directory of Open Access Journals (Sweden)

    Jack eDigiovanna

    2016-04-01

    Full Text Available The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of ‘optimal’ stimulation configurations for humans. Here we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time-point, we further examined how it affected subsequent pulse rate and pulse amplitude modulation. Pulse amplitude modulation was more effective than pulse rate modulation for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost pulse amplitude modulation. Co-modulation of pulse rate and amplitude has been experimentally shown to induce both

  6. Vestibular pathways involved in cognition

    Directory of Open Access Journals (Sweden)

    Martin eHitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the vestibular cortical projections areas, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  7. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  8. True incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  9. Normal pressure hydrocephalus after gamma knife radiosurgery for vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Mohammed T

    2010-01-01

    Full Text Available Vestibular schwannomas are not uncommon, and gamma knife radiosurgery is one of the treatment options for symptomatic tumors. Hydrocephalus is a complication of gamma knife treatment of vestibular schwannoma, though the mechanism of the development of hydrocephalus remains controversial. We present an unusual case of normal pressure hydrocephalus (NPH after gamma knife radiosurgery of a vestibular schwannoma in which the timeline of events strongly suggests that gamma knife played a contributory role in the development of the hydrocephalus. This is probably the first case of NPH post radiosurgery with normal cerebrospinal fluid protein. Communicating hydrocephalus should be treated with placement of shunt while non-communicating hydrocephalus can be treated with third ventriculostomy. Frequent monitoring and early intervention post radiosurgery is highly recommended to prevent irreversible cerebral damage.

  10. Hypervascular vestibular Schwannoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja Young; Yu, In Kyu [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2014-11-15

    Most vestibular schwannoma is hypovascular with well known poor tumor staining in cerebral angiography. However, hypervascular vestibular schwannoma might be observed as a rare subtype with increased risk of bleeding during surgery. Multimodal imaging features which represent hypervascularity of the tumor can be observed in hypervascular vestibular schwannoma. Here we report a case of hypervascular vestibular schwannoma with brief literature review.

  11. Vestibular evoked myogenic potentials in patients with ankylosing spondylitis.

    Science.gov (United States)

    Özgür, Abdulkadir; Serdaroğlu Beyazal, Münevver; Terzi, Suat; Coşkun, Zerrin Özergin; Dursun, Engin

    2016-10-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease with unknown etiology. Although sacroiliac joint involvement is the classic sign along with the formed immune mediators, it may result in immune-mediated inner ear disease and may cause damage to the audiovestibular system. Vestibular evoked myogenic potentials (VEMP) is a clinical reflex test used in the diagnosis of vestibular diseases and is performed by recording and evaluating the muscle potentials resulting from the stimulation of the vestibular system with different stimuli. The aim of this study is to evaluate the cervical VEMP test results in AS patients without vestibular symptoms. Thirty-three patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. VEMP wave latency, P13-N23 wave amplitude, and VEMP asymmetry ratio (VAR) values were compared between the groups. The relationship between clinical and laboratory findings of the AS patients and VEMP data were also investigated. Compared with healthy people, this study shows the response rate of patients with ankylosing spondylitis was reduced in the VEMP test, and P13-N23 wave amplitude showed a decrease in AS patients who had VEMP response (p ankylosing spondylitis. The data obtained from this study suggest that AS may lead to decreased sensitivity of the vestibular system.

  12. Vestibular rehabilitation outcomes in the elderly with chronic vestibular dysfunction.

    Science.gov (United States)

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-11-01

    Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction.

  13. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    OpenAIRE

    Esther Bernal Valls; Víctor Faus Cuñat; Raquel Bernal Valls

    2006-01-01

    El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a represent...

  14. The vestibular system and cognition.

    Science.gov (United States)

    Smith, Paul F

    2017-02-01

    The last year has seen a great deal of new information published relating vestibular dysfunction to cognitive impairment in humans, especially in the elderly. The objective of this review is to summarize and critically evaluate this new evidence in the context of the previous literature. This review will address the recent epidemiological/survey studies that link vestibular dysfunction with cognitive impairment in the elderly; recent clinical investigations into cognitive impairment in the context of vestibular dysfunction, both in the elderly and in the cases of otic capsule dehiscence and partial bilateral vestibulopathy; recent evidence that vestibular impairment is associated with hippocampal atrophy; and finally recent evidence relating to the hypothesis that vestibular dysfunction could be a risk factor for dementia. The main implication of these recent studies is that vestibular dysfunction, possibly of any type, may result in cognitive impairment, and this could be especially so for the elderly. Such symptoms will need to be considered in the treatment of patients with vestibular disorders.

  15. Pharmacology of the vestibular system.

    Science.gov (United States)

    Smith, P F

    2000-02-01

    In the past year significant advances have been made in our understanding of the neurochemistry and neuropharmacology of the peripheral and central vestibular systems. The recognition of the central importance of excitatory amino acids and their receptors at the level of the hair cells, vestibular nerve and vestibular nucleus has progressed further, and the role of nitric oxide in relation to activation of the N-methyl-D-aspartate receptor subtype is becoming increasingly clear. Increasing evidence suggests that excessive N-methyl-D-aspartate receptor activation and nitric oxide production after exposure to aminoglycoside antibiotics is a critical part of hair cell death, and new pharmacological strategies for preventing aminoglycoside ototoxicity are emerging as a result. Conversely, the use of aminoglycosides to lesion the peripheral vestibular system in the treatment of Meniere's disease has been studied intensively. In the vestibular nucleus, new studies suggest the importance of opioid, nociceptin and glucocorticoid receptors in the control of vestibular reflex function. Finally, the mechanisms of action and optimal use of antihistamines in the treatment of vestibular disorders has also received a great deal of attention.

  16. Is the Headache in Patients with Vestibular Migraine Attenuated by Vestibular Rehabilitation?

    OpenAIRE

    Sugaya, Nagisa; ARAI, Miki; Goto, Fumiyuki

    2017-01-01

    Background Vestibular rehabilitation is the most effective treatment for dizziness due to vestibular dysfunction. Given the biological relationship between vestibular symptoms and headache, headache in patients with vestibular migraine (VM) could be improved by vestibular rehabilitation that leads to the improvement of dizziness. This study aimed to compare the effects of vestibular rehabilitation on headache and other outcomes relating to dizziness, and the psychological factors in patien...

  17. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Directory of Open Access Journals (Sweden)

    Esther Bernal Valls

    2006-12-01

    Full Text Available El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a representative way, what evidences this is a profitable process for this kind of patients. The good results suggest that vestibular exercises permit a postural stability and a decrease in the perception of disequilibrium.

  18. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular

  19. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders.

    Science.gov (United States)

    Manso, Andréa; Ganança, Mauricio Malavasi; Caovilla, Heloisa Helena

    2016-01-01

    Visual stimuli can induce vestibular adaptation and recovery of body balance. To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental group) or Cawthorne-Cooksey exercises (control group). The Dizziness Handicap Inventory (DHI), dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. Before and after the intervention, there was no difference between the experimental and control groups (p>0.005) regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p<0.05) in the DHI and the dizziness analog scale, and higher values (p<0.05) in the static balance tests in some of the assessed conditions. The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    Directory of Open Access Journals (Sweden)

    Andréa Manso

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD (experimental group or Cawthorne-Cooksey exercises (control group. The Dizziness Handicap Inventory (DHI, dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. RESULTS: Before and after the intervention, there was no difference between the experimental and control groups (p > 0.005 regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p < 0.05 in the DHI and the dizziness analog scale, and higher values (p < 0.05 in the static balance tests in some of the assessed conditions. CONCLUSION: The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders.

  1. Vestibular Contributions to Human Memory

    OpenAIRE

    Smith, Laura; N/A,

    2017-01-01

    The vestibular system is an ancient structure which supports the detection and control of self-motion. The pervasiveness of this sensory system is evidenced by the diversity of its anatomical projections and the profound impact it has on a range of higher level functions, particularly spatial memory. The aim of this thesis was to better characterise the association between the vestibular system and human memory; while many studies have explored this association from a biological perspective f...

  2. Perspectives on aging vestibular function

    Directory of Open Access Journals (Sweden)

    Eric eAnson

    2016-01-01

    Full Text Available Much is known about age related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities like standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multi-sensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multi-sensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  3. Perspectives on Aging Vestibular Function.

    Science.gov (United States)

    Anson, Eric; Jeka, John

    2015-01-01

    Much is known about age-related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities such as standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multisensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper, we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multisensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.

  4. Vestibular findings in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2011-07-01

    Full Text Available Introduction: Fibromyalgia (FM is a non-inflammatory musculoskeletal chronic syndrome, whose etiology is unknown, characterized by a diffuse pain, increase in palpation sensitivity and such symptoms as tiredness, insomnia, anxiety, depression, cold intolerance and otologic complaints. Objective: Evaluate the vestibular behavior in fibromyalgia patients. Method: A retrospective transversal study was performed. 25 patients aged between 26 and 65 (average age - 52.2 and standard deviation - 10.3 were evaluated and submitted to the following procedures: anamnesis, otorhinolaryngologic and vestibular evaluation by way of vector electronystamography. Results: a The most evident otoneurologic symptoms were: difficulty or pain when moving the neck and pain was spread to an arm or shoulder (92.0% in each, dizziness (84.0% and headache (76.0%. The different clinical symptoms mostly reported were: depression (80.0%, anxiety (76.0% and insomnia (72.0%; b vestibular examination showed an alteration in 12 patients (48.0% in the caloric test; c an alteration in the peripheral vestibular system prevailed, and d deficient peripheral vestibular disorders were prevalent. Conclusion: This study enabled the importance of the labyrinthic test to be verified, thus emphasizing that this kind of people must be studied better, since a range of rheumatologic diseases can cause severe vestibular changes as a result of their manifestations and impairment areas.

  5. Neuropharmacology of vestibular system disorders.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario

    2010-03-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and drug mechanisms of action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulator receptors and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. A critical review of the pharmacology and highlights of the major advances are discussed in each case.

  6. Eye movements in vestibular disorders.

    Science.gov (United States)

    Kheradmand, A; Colpak, A I; Zee, D S

    2016-01-01

    The differential diagnosis of patients with vestibular symptoms usually begins with the question: is the lesion central or is it peripheral? The answer commonly emerges from a careful examination of eye movements, especially when the lesion is located in otherwise clinically silent areas of the brain such as the vestibular portions of the cerebellum (flocculus, paraflocculus which is called the tonsils in humans, nodulus, and uvula) and the vestibular nuclei as well as immediately adjacent areas (the perihypoglossal nuclei and the paramedian nuclei and tracts). The neural circuitry that controls vestibular eye movements is intertwined with a larger network within the brainstem and cerebellum that also controls other types of conjugate eye movements. These include saccades and pursuit as well as the mechanisms that enable steady fixation, both straight ahead and in eccentric gaze positions. Navigating through this complex network requires a thorough knowledge about all classes of eye movements to help localize lesions causing a vestibular disorder. Here we review the different classes of eye movements and how to examine them, and then describe common ocular motor findings associated with central vestibular lesions from both a topographic and functional perspective. © 2016 Elsevier B.V. All rights reserved.

  7. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    Directory of Open Access Journals (Sweden)

    Cécile eTravo

    2012-06-01

    Full Text Available In a previous study (Brugeaud et al., 2007, we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fundamental trait of altered vestibular endorgans and to decipher the cellular mechanisms that support such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa’s ganglion from young and adult rodents. We demonstrate that under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. This reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.

  8. Treatment of peripheral vestibular dysfunction using photobiomodulation

    Science.gov (United States)

    Lee, Min Young; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun; Rhee, Chung Ku

    2017-08-01

    Gentamicin, which is still used in modern medicine, is a known vestibular toxic agent, and various degrees of balance problems have been observed after exposure to this pharmacologic agent. Photobiomodulation is a candidate therapy for vertigo due to its ability to reach deep inner ear organs such as the cochlea. Previous reports have suggested that photobiomodulation can improve hearing and cochlea function. However, few studies have examined the effect of photobiomodulation on balance dysfunction. We used a rat model to mimic human vestibulopathy resulting from gentamicin treatment and evaluated the effect of photobiomodulation on vestibular toxicity. Slow harmonic acceleration (SHA) rotating platform testing was used for functional evaluation and both qualitative and quantitative epifluorescence analyses of cupula histopathology were performed. Animals were divided into gentamicin only and gentamicin plus laser treatment groups. Laser treatment was applied to one ear, and function and histopathology were evaluated in both ears. Decreased function was observed in both ears after gentamicin treatment, demonstrated by low gain and no SHA asymmetry. Laser treatment minimized the damage resulting from gentamicin treatment as shown by SHA asymmetry and recovered gain in the treated ear. Histology results reflected the functional results, showing increased hair cell density and epifluorescence intensity in laser-treated cupulae.

  9. [Effect of nitric oxide in vestibular compensation].

    Science.gov (United States)

    Jiang, Zi-dong; Zhang, Lian-shan

    2003-10-01

    To study the effect of nitric oxide (NO) in vestibular compensation after unilateral vestibular deafferentation. Eighteen animals were divided into two groups, 6 of group a as control, 12 of group b received gentamicin intratympanic injection in the left ear. Half of the animals were killed respectively after 5 days and 10 days. Vestibular endorgan and brainstem tissue sections were subjected to NADPH-d reactive test of NOS for histochemical examination. In group a, NOS-like reactivity in both sides of vestibular endorgan and nucli. In group b during 5 days, NOS-like reactivity in right side of vestibular endorgan and nucli, those of the left side were negative. During 10 days, NOS-like reactivity only in the right side of vestibular endorgan. Changes of NOS expression in the contralateral vestibular nucli might have played a role in vestibular compensation.

  10. Recovery of Vestibular Ocular Reflex Function and Balance Control after a Unilateral Peripheral Vestibular Deficit

    OpenAIRE

    John eAllum

    2012-01-01

    This review describes the effect of unilateral peripheral vestibular deficit (UPVD) on balance control for stance and gait tests. Because a UPVD is normally defined based on vestibular ocular reflex (VOR) tests, we compared recovery observed in balance control with patterns of recovery in VOR function. Two general types of UPVD are considered; acute vestibular neuritis (AVN) and vestibular neurectomy. The latter was subdivided into vestibular loss after cerebellar pontine angle tumor surgery ...

  11. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery

    OpenAIRE

    Lacour, Michel; Bernard-Demanze, Laurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to per...

  12. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    OpenAIRE

    LACOUR eMichel; BERNARD DEMANZE eLaurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to p...

  13. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  14. An adaptive vestibular rehabilitation technique.

    Science.gov (United States)

    Crane, Benjamin T; Schubert, Michael C

    2017-05-23

    There is a large variation in vestibular rehabilitation (VR) results depending on type of therapy, adherence, and the appropriateness for the patient's level of function. A novel adaptive vestibular rehabilitation (AVR) program was developed and evaluated. Technology and procedure development, and prospective multicenter trial. Those with complete unilateral vestibular hypofunction and symptomatic at least 3 months with a Dizziness Handicap Inventory (DHI) >30 were eligible. Patients were given a device to use with their own computer. They were instructed to use the program daily, with each session lasting about 10 minutes. The task consisted of reporting orientation of the letter C, which appeared when their angular head velocity exceeded a threshold. The letter size and head velocity required were adjusted based on prior performance. Performance on the task was remotely collected by the investigator as well as a weekly DHI score. Four patients aged 31 to 74 years (mean = 51 years) were enrolled in this feasibility study to demonstrate efficacy. Two had treated vestibular schwannomas and two had vestibular neuritis. Starting DHI was 32 to 56 (mean = 42), which was reduced to 0 to 16 (mean = 11.5) after a month of therapy, a clinically and statistically significant (P VR in terms of cost and customization for patient ability and obtained a major improvement in symptoms. This study demonstrated a clinically and statistically significant decrease in symptoms after 4 weeks of therapy. 2b Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Lipopolysaccharide-induced expression of nitric oxide synthase II in the guinea pig vestibular end organ.

    Science.gov (United States)

    Takumida, M; Anniko, M

    1998-01-01

    The purpose of the investigation was to ascertain whether inoculation of bacterial lipopolysaccharide (LPS) into the vestibular organ of the guinea pig might induce formation of nitric oxide synthase (NOS) II. Forty-eight hours after the animals were injected with 1 mg transtympanic LPS, varying degrees of impaired caloric responses were observed with similar degeneration of vestibular hair cells. These effects could be blocked with N-nitro-L-arginine methylester, a competitive inhibitor of NOS. Findings suggested that NOS II, which was not normally detectable in the guinea pig vestibular organ but was present following inoculation of LPS, produced the nitric oxide as the toxic factor causing cell damage. If true, LPS may represent a reproducible method for studying the vestibular pathogenesis of inner ear disease.

  16. Aging of vestibular function evaluated using correlational vestibular autorotation test

    Directory of Open Access Journals (Sweden)

    Hsieh LC

    2014-09-01

    Full Text Available Li-Chun Hsieh,1,2 Hung-Ching Lin,2,3 Guo-She Lee4,5 1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan; 3Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taipei, Taiwan; 4Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5Department of Otolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Background: Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT. In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT system that included a small, light sensor (less than 20 g with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods: We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results: Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05. The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old.Conclusion: Vestibular function evaluated using mean CCC revealed a decline with

  17. Ethical, anatomical and physiological issues in developing vestibular implants for human use.

    Science.gov (United States)

    Guyot, Jean-Philippe; Gay, Annietta; Kos, Maria Izabel; Pelizzone, Marco

    2012-01-01

    Effort towards the development of a vestibular implant for human use are being made. This paper will summarize the first important steps conducted in Geneva towards this ambitious goal. Basically, we have faced three major issues. First, an ethical issue. While it was clear that such development would require the collaboration of human volunteers, it was also clear that stimulation of the vestibular system may produce periods of significant incomfort. We know today how to minimize (and potentially eliminate) this type of incomfort. The second issue was anatomical. The anatomical topology of the vestibular system is complex, and of potentially dangerous access (i.e. facial nerve damage). We choose not to place the electrodes inside the ampullae but close the vestibular nerve branches, to avoid any opening of the inner ear and limit the risk of hearing loss. Work on cadaver heads, confirmed by acute stimulations trials on patients undergoing ear surgery under local anesthesia, demonstrated that it is possible to stimulate selectively both the posterior and lateral ampullary nerves, and elicit the expected vertical and horizontal nystagmic responses. The third issue was physiological. One of the goal of a vestibular implant will be to produce smooth eye movements to stabilize gaze direction when the head is moving. Indeed, after restoring a baseline or "rest" activity in the vestibular pathways with steady-state electrical stimulation, we demonstrated that modulation of this stimulation is producing smooth eye movements. In conclusion, humans can adapt to electrical stimulation of the vestibular system without too much discomfort. Surgical access to the posterior and lateral ampullary nerves have been developed and, electrical stimulation of the vestibular system can be used to artificially elicit smooth eye movements of different speeds and directions, once the system is in adapted state. Therefore, the major prerequisites to develop a prototype vestibular implant

  18. Stereotactic radiotherapy for vestibular schwannoma

    DEFF Research Database (Denmark)

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL......; Web of Science; CAB Abstracts; ISRCTN and additional sources for published and unpublished trials. The date of the search was 24 July 2014. SELECTION CRITERIA: Randomised controlled trials (RCTs) exploring the efficacy of stereotactic radiotherapy compared with observation alone, microsurgical...

  19. The cognitive neurology of the vestibular system.

    Science.gov (United States)

    Seemungal, Barry M

    2014-02-01

    The aim is to reappraise the current state about what we know of vestibular cognition. The review focuses on cognition and perception, and hence the stress on human studies. In addition, the cerebral cortex is the main but not exclusive brain region of interest. There is a brief mention of vestibular ocular function if only to demonstrate the differential processing between reflex and perception. The effect of vestibular activation on some aspects of cognition, for example neglect, is not reviewed, as there have been no recent landmark findings in this area. The vestibular cerebellum is pivotal in the differential gating of vestibular perceptual and ocular signals to the cerebral cortex. The neuroanatomical correlates mediating vestibular sensations of self-motion ('am I moving?') and spatial orientation ('where am I now?') are distinct. Vestibular-motion perception is supported by a widespread white matter network. Vestibular activation specifically reduces visual motion cortical excitability, whereas other visual cortical regions show an increase in excitability. As the vestibular ocular reflex (VOR) and self-motion perception can be uncoupled both behaviourally and in neural correlate, deficits underlying vestibular patients' symptoms may not be revealed by simple VOR assessment. Given the pivotal cerebellar role in gating vestibular signals to perceptual regions, modulating mechanisms of cerebellar plasticity, for example by combining training with medication or brain stimulation, may prove fruitful in treating the symptoms of chronic dizzy patients.

  20. Negative emotional stimuli enhance vestibular processing.

    Science.gov (United States)

    Preuss, Nora; Ellis, Andrew W; Mast, Fred W

    2015-08-01

    Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information. (c) 2015 APA, all rights reserved).

  1. Perspectival Structure and Vestibular Processing

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2016-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...

  2. Vestibular Stimulation for Stress Management in Students.

    Science.gov (United States)

    Kumar, Sai Sailesh; Rajagopalan, Archana; Mukkadan, Joseph Kurien

    2016-02-01

    Although several methods are developed to alleviate stress among college students, logistic limitations in adopting them have limited their utility. Hence, we aimed to test a very practical approach to alleviate stress among college students by achieving vestibular stimulation using swings. In this study 60 male and female participants were randomly assigned into vestibular stimulation or control groups. Depression, anxiety, stress scores, sleep quality, heart rate, blood pressure, Autonomic functions, respiratory, haematological, cognitive function, Quality of life were recorded before and after 1(st), 7(th), 14(th), 21(st), 28(th) days of vestibular stimulation. STAI S and STAI T scores were significantly improved on day 28(th) following vestibular stimulation. Diastolic and mean arterial blood pressure were significantly decreased and remained within normal limits in vestibular group on day 28(th) following vestibular stimulation. Postural fall in blood pressure was significantly improved on day 14 onwards, following vestibular stimulation. Respiratory rate was significantly improved on day 7 onwards, following vestibular stimulation. PSQI sleep disturbance, PSQI sleep latency, PSQI total score and bleeding time was significantly improved following vestibular stimulation. Our study supports the adoption of vestibular stimulation for stress management. Hence, placement of swings in college campuses must be considered, which may be a simple approach to alleviate stress among college students.

  3. Vestibular Findings in Military Band Musicians

    Directory of Open Access Journals (Sweden)

    Zeigelboim, Bianca Simone

    2014-04-01

    Full Text Available Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years. They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%, hearing difficulties (47.3%, dizziness (36.8%, headache (26.3%, intolerance to intense sounds (21.0%, and earache (15.7%. Seven musicians (37.0% showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%. There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  4. Vestibular findings in military band musicians.

    Science.gov (United States)

    Zeigelboim, Bianca Simone; Gueber, Crislaine; Silva, Thanara Pruner da; Liberalesso, Paulo Breno Noronha; Gonçalves, Claudia Giglio de Oliveira; Faryniuk, João Henrique; Marques, Jair Mendes; Jurkiewicz, Ari Leon

    2014-04-01

    Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years). They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%), hearing difficulties (47.3%), dizziness (36.8%), headache (26.3%), intolerance to intense sounds (21.0%), and earache (15.7%). Seven musicians (37.0%) showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%). There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations.

  5. Mechanisms of vestibular compensation: recent advances.

    Science.gov (United States)

    Dutia, Mayank B

    2010-10-01

    This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.

  6. Efficacy of vestibular rehabilitation on chronic unilateral vestibular dysfunction.

    Science.gov (United States)

    Topuz, Oya; Topuz, Bülent; Ardiç, F Necdet; Sarhuş, Merih; Ogmen, Gülsen; Ardiç, Füsun

    2004-02-01

    To assess the efficacy of vestibular rehabilitation exercises on patients with chronic unilateral vestibular dysfunction. Prospective study. Physical Medicine and Rehabilitation Clinic and Otolaryngology Clinic of a tertiary referral hospital. One-hundred and twenty-five patients with unilateral chronic vestibular dysfunction were included in the study. Eight-week, two-staged (clinic and home) vestibular rehabilitation programme with components of Cawthorne-Cooksey and Norre exercises was applied. Dizziness Handicap Inventory (DHI) and visual analogue scale (VAS) were completed three times (at the beginning, end of the second week and end of the treatment). Data for 112 patients in the first stage and 93 patients in the second stage were evaluated because of insufficient compliance of the other patients. The mean DHI score was decreased from 50.42 +/- 24.12 points to 21.21 +/- 15.97 points (p < 0.001) at the end of first two weeks, and to 19.93 +/- 19.33 points at the end of the whole treatment. The mean VAS score was decreased from 5.87 +/- 2.27 to 2.02 +/- 1.75 (p < 0.001) at the end of second week, and to 1.51 +/- 1.29 at the end of eighth week. In respect to both VAS and DHI scores, improvement was noted in 67 patients (77.4%). Age, gender and disability level had no predictive value about therapy outcome. There was a fast recovery in the supervised exercise session, whereas there was no significant difference in the home exercise session. These findings suggest that either supervised exercise is better than home exercise or that 10 supervised sessions are sufficient to get the end result.

  7. Physical therapy for persons with vestibular disorders.

    Science.gov (United States)

    Whitney, Susan L; Alghwiri, Alia; Alghadir, Ahmad

    2015-02-01

    Persons with vestibular disorders experience symptoms of dizziness and balance dysfunction, resulting in falls, as well as impairments of daily life. Various interventions provided by physical therapists have been shown to decrease dizziness and improve postural control. In the present review, we will focus on the role of physical therapy in the management of vestibular symptoms in patients with peripheral and central vestibular disorders. Persons with both acute and chronic central and peripheral vestibular disorders improve with vestibular rehabilitation. New interventions during the past 5 years have been designed to enhance recovery from problems with balance and dizziness. Examples include the use of virtual reality, vibrotactile feedback, optokinetic flow, YouTube videos, and innovative methods to change the gain of the vestibulo-ocular reflex (VOR). Patients with central and peripheral vestibular disorders benefit from physical therapy interventions. Advances in physical therapy interventions include new methods to stimulate adaptation of the VOR and the vestibulospinal systems.

  8. Vestibular consequences of mild traumatic brain injury and blast exposure: a review.

    Science.gov (United States)

    Akin, Faith W; Murnane, Owen D; Hall, Courtney D; Riska, Kristal M

    2017-01-01

    The purpose of this article is to review relevant literature on the effect of mild traumatic brain injury (mTBI) and blast injury on the vestibular system. Dizziness and imbalance are common sequelae associated with mTBI, and in some individuals, these symptoms may last for six months or longer. In war-related injuries, mTBI is often associated with blast exposure. The causes of dizziness or imbalance following mTBI and blast injuries have been linked to white matter abnormalities, diffuse axonal injury in the brain, and central and peripheral vestibular system damage. There is some evidence that the otolith organs may be more vulnerable to damage from blast exposure or mTBI than the horizontal semicircular canals. In addition, benign paroxysmal positional vertigo (BPPV) is a common vestibular disorder following head injury that is treated effectively with canalith repositioning therapy. Treatment for (non-BPPV) mTBI-related vestibular dysfunction has focused on the use of vestibular rehabilitation (VR) augmented with additional rehabilitation methods and medication. New treatment approaches may be necessary for effective otolith organ pathway recovery in addition to traditional VR for horizontal semicircular canal (vestibulo-ocular reflex) recovery.

  9. Personality changes in patients with vestibular dysfunction

    OpenAIRE

    Paul eSmith; Cynthia eDarlington

    2013-01-01

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflex...

  10. Motor development after vestibular deprivation in rats.

    Science.gov (United States)

    Geisler, H C; Gramsbergen, A

    1998-07-01

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control, which is characterized by a retarded EMG development in postural muscles. Our results indicate that the developing nervous system cannot compensate for a vestibular deficit during the early phase of ontogeny.

  11. Prosthetic implantation of the human vestibular system.

    Science.gov (United States)

    Golub, Justin S; Ling, Leo; Nie, Kaibao; Nowack, Amy; Shepherd, Sarah J; Bierer, Steven M; Jameyson, Elyse; Kaneko, Chris R S; Phillips, James O; Rubinstein, Jay T

    2014-01-01

    A functional vestibular prosthesis can be implanted in human such that electrical stimulation of each semicircular canal produces canal-specific eye movements while preserving vestibular and auditory function. A number of vestibular disorders could be treated with prosthetic stimulation of the vestibular end organs. We have previously demonstrated in rhesus monkeys that a vestibular neurostimulator, based on the Nucleus Freedom cochlear implant, can produce canal-specific electrically evoked eye movements while preserving auditory and vestibular function. An investigational device exemption has been obtained from the FDA to study the feasibility of treating uncontrolled Ménière's disease with the device. The UW/Nucleus vestibular implant was implanted in the perilymphatic space adjacent to the three semicircular canal ampullae of a human subject with uncontrolled Ménière's disease. Preoperative and postoperative vestibular and auditory function was assessed. Electrically evoked eye movements were measured at 2 time points postoperatively. Implantation of all semicircular canals was technically feasible. Horizontal canal and auditory function were largely, but not totally, lost. Electrode stimulation in 2 of 3 canals resulted in canal-appropriate eye movements. Over time, stimulation thresholds increased. Prosthetic implantation of the semicircular canals in humans is technically feasible. Electrical stimulation resulted in canal-specific eye movements, although thresholds increased over time. Preservation of native auditory and vestibular function, previously observed in animals, was not demonstrated in a single subject with advanced Ménière's disease.

  12. Vestibular perception is slow: a review.

    Science.gov (United States)

    Barnett-Cowan, Michael

    2013-01-01

    Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.

  13. Vestibular insights into cognition and psychiatry.

    Science.gov (United States)

    Gurvich, Caroline; Maller, Jerome J; Lithgow, Brian; Haghgooie, Saman; Kulkarni, Jayashri

    2013-11-06

    The vestibular system has traditionally been thought of as a balance apparatus; however, accumulating research suggests an association between vestibular function and psychiatric and cognitive symptoms, even when balance is measurably unaffected. There are several brain regions that are implicated in both vestibular pathways and psychiatric disorders. The present review examines the anatomical associations between the vestibular system and various psychiatric disorders. Despite the lack of direct evidence for vestibular pathology in the key psychiatric disorders selected for this review, there is a substantial body of literature implicating the vestibular system in each of the selected psychiatric disorders. The second part of this review provides complimentary evidence showing the link between vestibular dysfunction and vestibular stimulation upon cognitive and psychiatric symptoms. In summary, emerging research suggests the vestibular system can be considered a potential window for exploring brain function beyond that of maintenance of balance, and into areas of cognitive, affective and psychiatric symptomology. Given the paucity of biological and diagnostic markers in psychiatry, novel avenues to explore brain function in psychiatric disorders are of particular interest and warrant further exploration. © 2013 Elsevier B.V. All rights reserved.

  14. Personality changes in patients with vestibular dysfunction.

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L

    2013-10-29

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalization and derealization symptoms such as feeling "spaced out", "body feeling strange" and "not feeling in control of self". We propose in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction (TPJ).

  15. International Clinical Protocol on Vestibular Disorders (Dizziness).

    Science.gov (United States)

    Trinus, Kostiantyn; Claussen, Claus-Frenz

    2017-12-01

    26-28 May at 43 Congress of Neurootological and Equilibriometric Society (Budapest, Hungary) International Clinical Protocol on Vestibular Disorders (Dizziness) being discussed and accepted as Consensus Document. Cochrane reports estimates that dizziness has prevalence of 22.9% in the last 12 months and an incidence of 3.1%. Only 1.8% of adults consulted a physician in the last 12 months. Cochrane reviews suggest that the evidence base for dizziness evaluation is weak, thus necessitates the creation of evidence-based document. Protocol is based at the new concept of vestibular system, which involves the vestibular peripheral sensors, space orientation tetrad, vestibular presentations in the brain cortex and vestibular effectory projections in the brain. Labyrinth consists of sensors, for which six modalities are adequate: 1. acceleration, 2. gravitation, 3. low frequency whole-body vibration, 4. Infrasound, 5. magnetic impulse, 6. metabolic changes. Vestibular system from rhomboid fosse gets the inputs from visual, acoustic, somatosensory organs, integrating them and forming space perception and orientation. Interaction with space is realized through sensory, motor, vegetative and limbic projections. So, vestibular disturbances may manifest as paropsia, tinnitus, numbness. Vestibular evoked potentials (not VEMP) and craniocorpography have highest sensitivity (90% and more). As vestibular dysfunction has recurrent character patients need monitoring.

  16. Vestibular activation, smooth pursuit tracking, and psychosis.

    Science.gov (United States)

    Jones, A M; Pivik, R T

    1985-04-01

    Pursuit tracking and vestibular activation procedures were combined in an investigation to determine if smooth pursuit tracking deficits could be related to abnormalities of visual-vestibular interaction in psychiatric patients. In actively psychotic patients, but not in comparison groups of schizophrenic outpatients with remitted symptomatology or normal controls, a significant failure of visual fixation to suppress caloric nystagmus was related to a higher incidence of disordered tracking during both baseline and postirrigation conditions. Other vestibular irregularities including dysrhythmia and reduced fast phase velocity were observed in these same patients. The results are supportive of a central deficit in visual-vestibular interaction that may contribute to pursuit tracking deficits in psychosis.

  17. The role of the vestibular assessment.

    Science.gov (United States)

    Phillips, J S; FitzGerald, J E; Bath, A P

    2009-11-01

    To evaluate the role of vestibular assessment in the management of the dizzy patient. A retrospective review of case notes and vestibular assessment reports of 100 consecutive patients referred for vestibular assessment. Sixty of the 100 patients had an abnormal vestibular assessment. Eleven patients had benign paroxysmal positional vertigo as the sole diagnosis, of whom nine had not had a Dix-Hallpike manoeuvre performed before referral. Of patients referred for vestibular rehabilitation, 76 per cent had an abnormal electrophysiological assessment. After vestibular assessment, 35 patients were discharged with no further follow-up appointments in the ENT department. All patients should have a Dix-Hallpike manoeuvre performed prior to referral for vestibular assessment. The majority of our patients undergoing vestibular rehabilitation had abnormal test results, although a significant number did not. Prior to referral, it is worth considering the implication of a 'normal' and 'abnormal' result for the management of the patient. Careful consideration should be given to the development of dedicated dizziness clinics run by practitioners with a specialist interest in balance disorders, in order to ensure appropriate requests for vestibular assessment.

  18. Epidemiology and natural history of vestibular schwannomas

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Caye-Thomasen, Per

    2012-01-01

    This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma. A treatm......This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma....... A treatment strategy based on the natural history of tumor growth and hearing also is discussed....

  19. Personality Changes in Patients with Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-10-01

    Full Text Available The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalisation and derealisation symptoms such as feeling ‘spaced out’, ‘body feeling strange’ and ‘not feeling in control of self’. We suggest in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through the information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction.

  20. [Effectiveness of Self-efficacy Promoting Vestibular Rehabilitation Program for Patients with Vestibular Hypofunction].

    Science.gov (United States)

    Lee, Hyun Jung; Choi-Kwon, Smi

    2016-10-01

    In this study an examination was done of the effect of self-efficacy promoting vestibular rehabilitation (S-VR) on dizziness, exercise selfefficacy, adherence to vestibular rehabilitation (VR), subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness in patients with vestibular hypofunction. This was a randomized controlled study. Data were collected 3 times at baseline, 4 and 8 weeks after beginning the intervention. Outcome measures were level of dizziness, exercise self-efficacy, and level of adherence to VR. Subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness were also obtained. Data were analyzed using Windows SPSS 21.0 program. After 4 weeks of S-VR, there was no difference between the groups for dizziness, subjective and objective vestibular functions. However, exercise self-efficacy and adherence to VR were higher in the experimental group than in the control group. After 8 weeks of S-VR, dizziness (p=.018) exercise self-efficacy (pVR (pVR is effective in reducing dizziness, and improving exercise self-efficacy, subjective vestibular function and adherence to VR. Objective vestibular function and vestibular compensation were also improved in the experimental group at the end of 8 weeks of S-VR.

  1. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].

    Science.gov (United States)

    Stolbkov, Iu K; Gerasimenko, Iu P

    2014-06-01

    Locomotion is the most important mode of our movement in space. The role of the vestibular system during human locomotion is not well studied, mainly due to problems associated with its isolation stimulation. It is difficult to stimulate this system in isolation during locomotion because the real movement of the head to activate the vestibular end-organs inevitably leads to the activation of other sensory inputs. Galvanic stimulation is not a natural way to stimulate the vestibular system, but it has the advantage providing an isolated stimulation of the vestibular inputs. This technique is relatively novel in the examination of vestibular contributions during human locomotion. In our review we consider the current data regarding the effect of vestibular signals on human locomotion by using galvanic vestibular stimulation.

  2. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    Directory of Open Access Journals (Sweden)

    Miranda A. Mathews

    2017-08-01

    Full Text Available Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN, and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  3. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits.

    Science.gov (United States)

    Mathews, Miranda A; Camp, Aaron J; Murray, Andrew J

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.

  4. Vestibular Function and Activities of Daily Living

    Directory of Open Access Journals (Sweden)

    Aisha Harun MD

    2015-09-01

    Full Text Available Objective: Vestibular dysfunction increases with age and is associated with mobility difficulties and fall risk in older individuals. We evaluated whether vestibular function influences the ability to perform activities of daily living (ADLs. Method: We analyzed the 1999 to 2004 National Health and Nutrition Examination Survey of adults aged older than 40 years ( N = 5,017. Vestibular function was assessed with the Modified Romberg test. We evaluated the association between vestibular function and difficulty level in performing specific basic and instrumental ADLs, and total number of ADL impairments. Results: Vestibular dysfunction was associated with significantly higher odds of difficulty with nine ADLs, most strongly with difficulty managing finances (odds ratio [ OR ] = 2.64, 95% confidence interval [CI] = [1.18, 5.90]. In addition, vestibular dysfunction was associated with a significantly greater number of ADL impairments (β = .21, 95% CI = [0.09, 0.33]. This effect size was comparable with the influence of heavy smoking (β = .21, 95% CI = [0.06, 0.36] and hypertension (β = .10, 95% CI = [0.02, 0.18] on the number of ADL impairments. Conclusion: Vestibular dysfunction significantly influences ADL difficulty, most strongly with a cognitive rather than mobility-based task. These findings underscore the importance of vestibular inputs for both cognitive and physical daily activities.

  5. Motor development after vestibular deprivation in rats

    NARCIS (Netherlands)

    Geisler, HC; Gramsbergen, A

    This review summarizes the postural development in the rat and the influences of vestibular deprivation from the 5th postnatal day on this development. Vestibular deprivation leads to a delay in motor development. Most probably this delay is caused by a delay in the development of postural control,

  6. A função vestibular em indivíduos usuários de implante coclear Vestibular function in cochlear implant users

    Directory of Open Access Journals (Sweden)

    Ariane Solci Bonucci

    2008-04-01

    worsening. 13 % of the patients showed an improvement, and this could be related to the vestibular compensation phenomenon and to electric stimulation. However, it was observed, in the caloric responses, a worsening in the vestibular system function, for both implanted and non-implanted ears. Thus, there is no evidence of more damage to the implanted ear. CONCLUSION: the study showed that cochlear implant surgeries could injure the vestibular system in both ears. However, the vestibular symptoms take place in a smaller proportion, and can improve after cochlear implant surgery.

  7. Vestibular Function and Depersonalization/Derealization Symptoms.

    Science.gov (United States)

    Jáuregui Renaud, Kathrine

    2015-01-01

    Patients with an acquired sensory dysfunction may experience symptoms of detachment from self or from the environment, which are related primarily to nonspecific symptoms of common mental disorders and secondarily, to the specific sensory dysfunction. This is consistent with the proposal that sensory dysfunction could provoke distress and a discrepancy between the multi-sensory frame given by experience and the actual perception. Both vestibular stimuli and vestibular dysfunction can underlie unreal experiences. Vestibular afferents provide a frame of reference (linear and angular head acceleration) within which spatial information from other senses is interpreted. This paper reviews evidence that symptoms of depersonalization/derealization associated with vestibular dysfunction are a consequence of a sensory mismatch between disordered vestibular input and other sensory signals of orientation.

  8. [Vestibular rehabilitation in elderly patients with dizziness].

    Science.gov (United States)

    Zanardini, Francisco Halilla; Zeigelboim, Bianca Simone; Jurkiewicz, Ari Leon; Marques, Jair Mendes; Martins-Bassetto, Jackeline

    2007-01-01

    The aging of the population is a natural process and is manifested by a decline in the functions of several organs. Vestibular rehabilitation (VR) is a therapeutic process that seeks to promote a significant reduction in the symptoms of the labyrinth. To verify the benefits of VR exercises through the application of the Dizziness Handicap Inventory (DHI) questionnaire--Brazilian version--pre and post rehabilitation. Participants of this study were eight elderly patients with dizziness, ages between 63 and 82 years, three male and five female. The following procedures were carried out: medical history, otologic inspection, vestibular evaluation with vectoelectronystagmography (VENG), application of the DHI questionnaire and of the Cawthorne (1944) and Cooksey (1946) VR exercises. Regarding the auditory and vestibular complaints which were referred to in the medical history, the following was observed: presence of tinnitus, hearing loss, postural vertigo and of unbalance. In the evaluation of the vestibular function alterations were observed for all of the participants, mainly in the caloric test, with a prevalence of unilateral and bilateral hypofunction. In the vestibular exam the following was observed: three cases of unilateral peripheral vestibular deficit syndrome, three cases of bilateral peripheral vestibular deficit syndrome, one case of bilateral central vestibular deficit syndrome and one case of irritating bilateral central vestibular syndrome. There was a statistically significant improvement of the following aspects after VR: physical (p=0.00413), functional (p=0.00006) and emotional (p=0.03268). The VR protocol favored the improvement of life quality of the participants and was of assistance in the process of vestibular compensation.

  9. The contribution of nitric oxide to vestibular compensation: are there species differences?

    Science.gov (United States)

    Smith, P F; Zheng, Y; Paterson, S; Darlington, C L

    2001-01-01

    Nitric oxide (NO) has been implicated in the processes by which animals recover from peripheral vestibular damage ("vestibular compensation"). However, there is little systematic data available on the effects of NO inhibition on the vestibular compensation process. In the present study we administered the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) using a subcutaneous osmotic minipump and examined its effects on the compensation of spontaneous nystagmus (SN), yaw head tilt (YHT) and roll head tilt (RHT) in guinea pigs. Following unilateral labyrinthectomy (UL), treatment with 5, 10, 50 or 100 mM L-NAME had no effect on the expression of any of these symptoms or their rate of compensation. By contrast, pre-UL treatment with 100 mM L-NAME resulted in a decrease in SN frequency at 10 h post-UL and an increase in its rate of compensation. Lower concentrations had no effect on SN. Pre-UL treatment with L-NAME had no significant effect on YHT or RHT at any particular time point. Analysis of NOS activity demonstrated that the highest concentration of L-NAME inhibited NOS activity in the contralateral vestibular nucleus complex, bilateral cerebellum and bilateral cortices. These results suggest that L-NAME may have different effects on vestibular compensation in guinea pigs compared to other species, such as the rat and frog.

  10. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Directory of Open Access Journals (Sweden)

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  11. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study.

    Science.gov (United States)

    Brugnera, Cibele; Bittar, Roseli Saraiva Moreira; Greters, Mário Edvin; Basta, Dietmar

    2015-01-01

    Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR). To evaluate the effectiveness of Vertiguard™ biofeedback equipment as a sensory substitution (SS) of the vestibular system in patients who did not obtain sufficient improvement from VR. This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG), which received the vibrotactile stimulus from Vertiguard™ for ten days, and a control group (CG), which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT) protocol of the Computerized Dynamic Posturography (CDP) and two scales of balance self-perception, Activities-specific Balance Confidence (ABC) and Dizziness Handicap Inventory (DHI), were used. After treatment, only the SG showed statistically significant improvement in C5 (p=0.007) and C6 (p=0.01). On the ABC scale, there was a significant difference in the SG (p=0.04). The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p=0.04). The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard™ system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Galvanic vestibular stimulation improves the results of vestibular rehabilitation.

    Science.gov (United States)

    Carmona, Sergio; Ferrero, Antonela; Pianetti, Guillermina; Escolá, Natalia; Arteaga, María Victoria; Frankel, Lilian

    2011-09-01

    Here, we present findings from a three-step investigation of the effect of galvanic vestibular stimulation (GVS) in normal subjects and in subjects undergoing vestibular rehabilitation (VR). In an initial study, we examined the body sway of 10 normal subjects after one minute of 2 mA GVS. The effect of the stimulation lasted for at least 20 minutes in all subjects and up to two hours in 70% of the subjects. We then compared a group of patients who received conventional VR (40 patients) with a group that received a combination of VR and GVS. Results suggest a significant improvement in the second group. Finally, we attempted to establish the optimal number of GVS sessions and to rule out a placebo effect. Fifteen patients received "systematic" GVS: five sessions, once a week. Five patients received "nonsystematic" galvanic stimulation in a sham protocol, which included two stimulations of the clavicle. These data were analyzed with Fisher's exact test and indicated that the best results were obtained after three sessions of GVS and no placebo effect was observed. © 2011 New York Academy of Sciences.

  13. Genetic disorders of the vestibular system.

    Science.gov (United States)

    Eppsteiner, Robert W; Smith, Richard J H

    2011-10-01

    This review highlights the current body of literature related to the genetics of inherited vestibular disorders and provides a framework for the characterization of these disorders. We emphasize peripheral causes of vestibular dysfunction and highlight recent advances in the field, point out gaps in understanding, and focus on key areas for future investigation. The discovery of a modifier gene that leads to a more severe Usher syndrome phenotype calls into question the assumption that Usher syndrome is universally a monogenic disorder. Despite the use of several investigational approaches, the genetic basis of Menière's disease remains poorly understood. Evidence for a vestibular phenotype associated with DFNB1 suggests that mutations in other genes causally related to nonsyndromic hearing loss also may have an unrecognized vestibular phenotype. Our understanding of the genetic basis for vestibular disorders is superficial. Significant challenges include defining the genetics of inherited isolated vestibular dysfunction and understanding the pathological basis of Menière's disease. However, improved characterization of inherited vestibular dysfunction, coupled with advanced genetic techniques such as targeted genome capture and massively parallel sequencing, provides an opportunity to investigate these diseases at the genetic level.

  14. Anatomy of the vestibular system: a review.

    Science.gov (United States)

    Khan, Sarah; Chang, Richard

    2013-01-01

    A sense of proper sensory processing of head motion and the coordination of visual and postural movements to maintain equilibrium is critical to everyday function. The vestibular system is an intricate organization that involves multiple levels of sensory processing to achieve this goal. This chapter provides an overview of the anatomical structures and pathways of the vestibular system. The five major vestibular structures are located in the inner ear and include: the utricle, the saccule, and the lateral, superior, and posterior semicircular canals. Hair cells on the neuroepithelium of the peripheral vestibular organs carry sensory impulses to primary processing centers in the brainstem and the cerebellum. These areas send input via ascending and descending projections to coordinate vital reflexes, such as the vestibuloocular reflex and the vestibulospinal reflex, which allow for the proper orientation of the eyes and body in response to head motion. Specific connections regarding higher level cortical vestibular structures are poorly understood. Vestibular centers in the brainstem, cerebellum, and cerebral cortex function to integrate sensory information from the peripheral vestibular organs, visual system, and proprioceptive system to allow for proper balance and orientation of the body in its environment.

  15. Embryological development and large vestibular aqueduct syndrome.

    Science.gov (United States)

    Pyle, G M

    2000-11-01

    Large vestibular aqueduct syndrome (LVAS) is a significant cause of hearing loss in early childhood. Many theories on the origins and causes of LVAS have been proposed, including arrest or maldevelopment of the vestibular labyrinth in embryonic life. Prior studies have described postnatal and adult vestibular aqueduct anatomy, but none has analyzed aqueduct growth throughout embryonic life. This study was undertaken to characterize the growth of the developing vestibular aqueduct to gain a better understanding of the possible origins of LVAS. Basic science, temporal bone histopathological study. Serial sections from 48 temporal bones from human embryos ranging in age from 5 weeks' gestation to full term were studied with computer image analysis. Measurements of vestibular aqueduct internal and external aperture, midportion diameter, and length were analyzed to obtain a growth model of development. The vestibular aqueduct grows in a nonlinear fashion throughout embryonic life. All parameters fit a similar growth curve and never reached a maximum or began narrowing during development. Growth in one parameter correlated well with growth of another. There was good side-to-side correlation with all but the external aperture. Most of the membranous labyrinth reaches adult size by 20 weeks' gestation, but the vestibular aqueduct grows throughout embryonic life. The measurements and growth model obtained in this study are not consistent with the theory that LVAS results from an arrest in development early in fetal life. The data suggest that LVAS may result from postnatal and early childhood maldevelopment.

  16. Neuropharmacological basis of vestibular system disorder treatment.

    Science.gov (United States)

    Soto, Enrique; Vega, Rosario; Seseña, Emmanuel

    2013-01-01

    This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Clinicians are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and of drug action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulators dynamics and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. The critical analysis of the literature reveals that there is a significant lack of information defining the real utility of diverse drugs used in clinical practice. The development of basic studies addressing drug actions at the molecular, cellular and systems level, combined with reliable and well controlled clinical trials, would provide the scientific basis for new strategies for the treatment of vestibular disorders.

  17. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Science.gov (United States)

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  18. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    OpenAIRE

    Mathews, Miranda A.; Camp, Aaron J.; Murray, Andrew J.

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate...

  19. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    OpenAIRE

    Arash Bayat; Nader Saki

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. T...

  20. Potencial evocado miogênico vestibular

    OpenAIRE

    Felipe,Lilian; Kingma, Herman; Gonçalves, Denise Utsch

    2012-01-01

    INTRODUÇÃO: O Potencial Evocado Miogênico Vestibular (VEMP) é um teste promissor para a avaliação do sistema vestíbulo-cólico descendente. Este reflexo depende da integridade da mácula sacular, do nervo vestibular inferior, dos núcleos vestibulares, das vias vestíbulo-espinhais e do músculo efetor. OBJETIVO: Realizar revisão sistemática de literatura pertinente por meio de bases de dados (COCHRANE, MEDLINE, LILACS, CAPES). CONCLUSÃO: A aplicação clínica do VEMP expandiu-se nos últimos anos, c...

  1. Vestibular rehabilitation in a university hospital

    OpenAIRE

    Flávia da Silva Tavares; Maria Francisca Colella dos Santos; Keila Alessandra Baraldi Knobel

    2008-01-01

    A Reabilitação Vestibular visa melhorar o equilíbrio global, a qualidade de vida e orientação espacial dos pacientes com tontura. OBJETIVOS: Traçar o perfil dos pacientes atendidos no Ambulatório de Reabilitação Vestibular do Setor de Otoneurologia de um hospital universitário e verificar os resultados obtidos no período de novembro/2000 a dezembro/2004. MATERIAL E MÉTODO: Levantamento de dados contidos nas fichas dos 93 pacientes submetidos à Reabilitação Vestibular no período. FORMA DE ESTU...

  2. Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome With Vertigo.

    Science.gov (United States)

    Martin-Sanz, Eduardo; Rueda, Almudena; Esteban-Sanchez, Jonathan; Yanes, Joaquin; Rey-Martinez, Jorge; Sanz-Fernandez, Ricardo

    2017-08-01

    To evaluate vestibular restoration and the evolution of the compensatory saccades in acute severe inflammatory vestibular nerve paralysis, including vestibular neuritis and Ramsay Hunt syndrome with vertigo. Prospective. Tertiary referral center. Vestibular neuritis (n = 18) and Ramsay Hunt syndrome patients with vertigo (n = 13) were enrolled. After treatment with oral corticosteroids, patients were followed up for 6 months. Functional recovery of the facial nerve was scored according to the House-Brackman grading system. Caloric and video head impulse tests were performed in every patient at the time of enrolment. Subsequently, successive video head impulse test (vHIT) exploration was performed at the 1, 3, and 6-month follow-up. Eighteen patients with vestibular neuritis and 13 with Ramsay Hunt syndrome and associated vertigo were included. Vestibular function was significantly worse in patients with Ramsay Hunt syndrome than in those with vestibular neuritis. Similar compensatory saccades velocity and latency values were observed in both groups, in both the caloric and initial vHIT tests. Successive vHIT results showed a significantly higher vestibulo-ocular reflex gain recovery in vestibular neuritis patients than in Ramsay Hunt syndrome patients. A significantly faster reduction in the latency, velocity, and organization of the compensatory saccades was observed in neuritis than in Ramsay Hunt syndrome patients. In addition to the recovery of the vestibulo-ocular reflex, the reduction of latency, velocity and the organization of compensatory saccades play a role in vestibular compensation.

  3. Molecular aging of the mammalian vestibular system.

    Science.gov (United States)

    Brosel, Sonja; Laub, Christoph; Averdam, Anne; Bender, Andreas; Elstner, Matthias

    2016-03-01

    Dizziness and imbalance frequently affect the elderly and contribute to falls and frailty. In many geriatric patients, clinical testing uncovers a dysfunction of the vestibular system, but no specific etiology can be identified. Neuropathological studies have demonstrated age-related degeneration of peripheral and central vestibular neurons, but the molecular mechanisms are poorly understood. In contrast, recent studies into age-related hearing loss strongly implicate mitochondrial dysfunction, oxidative stress and apoptotic cell death of cochlear hair cells. While some data suggest that analogous biological pathomechanisms may underlie vestibular dysfunction, actual proof is missing. In this review, we summarize the available data on the molecular causes of vestibular dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Idiopathic scoliosis and the vestibular system

    National Research Council Canada - National Science Library

    Hawasli, Ammar H; Hullar, Timothy E; Dorward, Ian G

    2015-01-01

    ... in the etiology of scoliosis. In this article, we discuss putative mechanisms for adolescent idiopathic scoliosis and review the current evidence supporting a role for the vestibular system in adolescent idiopathic...

  5. Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit.

    Directory of Open Access Journals (Sweden)

    John eAllum

    2012-05-01

    Full Text Available This review describes the effect of unilateral peripheral vestibular deficit (UPVD on balance control as observed in stance and gait tests. Normally, a UPVD is defined based on vestibular ocular reflex (VOR function. Therefore, we compare recovery observed in balance control over time with similar patterns of recovery or lack thereof in VOR function. Three types of UPVD are considered; acute vestibular neuritis, vestibular loss prior to and after cerebellar pontine angle tumor (CPAT surgery during which a vestibular neurectomy was performed, and vestibular loss following neurectomy to eliminate disabling Ménière’s disease.To measure balance control, body-worn gyroscopes, mounted near the body’s centre of mass, were used for stance and gait tests. Measurement variables were the pitch (anterior-posterior and roll (lateral sway angles and angular velocities of the lower trunk-pelvis. All three groups showed balance deficits during stance tasks on foam, especially with eyes closed when stable control is highly dependent on vestibular inputs. Deficits in balance control during gait were present but were more profound for complex gait tasks such as tandem gait. Differences emerged between the groups concerning the severity of the deficit and its recovery. Generally, the effects of acute neuritis were more severe but recovered rapidly, deficits due to vestibular neurectomy were less severe but longer lasting. These results paralleled deficits in VOR function and raise questions about two modes of neural plasticity occurring in the vestibular system following vestibular loss: one mode being the limited central compensation for the loss, and the second mode being some restoration of peripheral vestibular function. Future work will need to correlate deficits in balance control during stance and gait more exactly with VOR deficits and carefully consider the differences between insufficient central compensation compared to inadequate peripheral

  6. BASIC CONCEPTS IN UNDERSTANDING RECOVERY OF FUNCTION IN VESTIBULAR REFLEX NETWORKS DURING VESTIBULAR COMPENSATION

    Directory of Open Access Journals (Sweden)

    Kenna ePeusner

    2012-02-01

    Full Text Available Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural deficits with the symptoms at rest, the static symptoms, partially or completely normalizing shortly after the lesion due to a process known as vestibular compensation. The symptoms are thought to result from changes in the activity of vestibular sensorimotor reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investigations have focused on studying these neurons after lesions. At present, the neuronal plasticity underlying early recovery from the static symptoms is not fully understood. Here we propose that knowledge of the reflex identity and input-output connections of the recorded neurons is essential to link the responses to animal behavior. We further propose that the cellular mechanisms underlying vestibular compensation can be sorted out by characterizing the synaptic responses and time course for change in morphologically-defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses on the perspective gained by performing electrophysiological and immunolabeling studies on a specific subset of morphologically-defined, glutamatergic vestibular reflex projection neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent findings from other studies on vestibular nuclei neurons, but no comprehensive review of the literature is intended since broad reviews already exist. From recording excitatory and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed. This work is important for it defines for the first time the excitatory and inhibitory nature of the changing synaptic inputs and the time course for changes in a morphologically-defined subset of vestibular reflex projection neurons during early stages of vestibular compensation.

  7. Idiopathic scoliosis and the vestibular system.

    Science.gov (United States)

    Hawasli, Ammar H; Hullar, Timothy E; Dorward, Ian G

    2015-02-01

    Despite its high prevalence, the etiology underlying idiopathic scoliosis remains unclear. Although initial scrutiny has focused on genetic, biochemical, biomechanical, nutritional and congenital causes, there is growing evidence that aberrations in the vestibular system may play a role in the etiology of scoliosis. In this article, we discuss putative mechanisms for adolescent idiopathic scoliosis and review the current evidence supporting a role for the vestibular system in adolescent idiopathic scoliosis. A comprehensive search of the English literature was performed using PubMed ( http://www.ncbi.nlm.nih.gov/pubmed ). Research articles studying interactions between adolescent idiopathic scoliosis and the vestibular system were selected and evaluated for inclusion in a literature review. Eighteen manuscripts of level 3-4 clinical evidence to support an association between adolescent idiopathic scoliosis (AIS) and dysfunction of the vestibular system were identified. These studies include data from physiologic and morphologic studies in humans. Clinical data are supported by animal model studies to suggest a causative link between the vestibular system and AIS. Clinical data and a limited number of animal model studies suggest a causative role of the vestibular system in AIS, although this association has not been reproduced in all studies.

  8. Current treatment options in vestibular migraine

    Directory of Open Access Journals (Sweden)

    Mark eObermann

    2014-12-01

    Full Text Available Approximately 1% of the general population in western industrialized countries suffers from vestibular migraine. However, it remains widely unknown and often under diagnosed even despite the recently published diagnostic criteria for vestibular migraine. Treatment trials that specialize on vestibular migraine are scarce and systematic randomized controlled clinical trials are only now emerging.This review summarizes the knowledge on the currently available treatment options that were tested specifically for vestibular migraine and gives an evidence-based, informed treatment recommendation with all its limitations.To date only two randomized controlled treatment trials provide limited evidence for the use of rizatriptan and zolmitriptan for the treatment of vestibular migraine attacks because of methodological shortcommings. There is an on-going a multicenter randomized placebo-controlled trial testing metoprolol 95 mg vs. placebo (PROVEMIG-trial. Therefore, the therapeutic recommendations for the prophylactic treatment of vestibular migraine are currently widely based on the guidelines of migraine with and without aura as well as expert opinion.

  9. Nitric oxide in the rat vestibular system.

    Science.gov (United States)

    Harper, A; Blythe, W R; Zdanski, C J; Prazma, J; Pillsbury, H C

    1994-10-01

    Nitric oxide is known to function as a neurotransmitter in the central nervous system. It is also known to be involved in the central nervous system excitatory amino acid neurotransmission cascade. Activation of excitatory amino acid receptors causes an influx of calcium, which activates nitric oxide synthase. The resulting increase in intracellular nitric oxide activates soluble guanylate cyclase, leading to a rise in cyclic guanosine monophosphate. The excitatory amino acids glutamate and aspartate are found in the vestibular system and have been postulated to function as vestibular system neurotransmitters. Although nitric oxide has been investigated as a neurotransmitter in other tissues, no published studies have examined the role of nitric oxide in the vestibular system. Neuronal NADPH-diaphorase has been characterized as a nitric oxide synthase. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing nitric oxide during the reaction. We used a histochemical stain characterized by Hope et al. (Proc Natl Acad Sci 1991;88:2811) as specific for neuronal nitric oxide synthase to localize the enzyme in the rat vestibular system. An immunocytochemical stain was used to examine rat inner ear tissue for the presence of the enzyme's end product, L-citrulline, thereby demonstrating nitric oxide synthase activity. Staining of vestibular ganglion sections showed nitric oxide synthase presence and activity in ganglion cells and nerve fibers. These results indicate the presence of active nitric oxide synthase in these tissues and suggest modulation of vestibular neurotransmission by nitric oxide.

  10. Vestibular function assessment using the NIH Toolbox

    Science.gov (United States)

    Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry

    2013-01-01

    Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = −0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540

  11. Vestibular function assessment using the NIH Toolbox.

    Science.gov (United States)

    Rine, Rosemarie M; Schubert, Michael C; Whitney, Susan L; Roberts, Dale; Redfern, Mark S; Musolino, Mark C; Roche, Jennica L; Steed, Daniel P; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F; Beaumont, Jennifer; Carey, John P; Shepard, Neil P; Jacobson, Gary P; Wrisley, Diane M; Hoffman, Howard J; Furman, Gabriel; Slotkin, Jerry

    2013-03-12

    Development of an easy to administer, low-cost test of vestibular function. Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41-0.94) and sensitivity and specificity (50%-73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42-0.48) and dynamic posturography (r = -0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system.

  12. Unilateral Vestibular Loss Impairs External Space Representation

    Science.gov (United States)

    Borel, Liliane; Redon-Zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Devèze, Arnaud; Magnan, Jacques; Péruch, Patrick

    2014-01-01

    The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation), and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss. PMID:24523916

  13. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  14. Vestibular schwannoma: negative growth and audiovestibular features.

    Science.gov (United States)

    Stipkovits, E M; Graamans, K; Van Dijk, J E

    2001-11-01

    At the University Medical Center Utrecht, non-operative management was used for 44 patients with a unilateral vestibular schwannoma between 1990 and 1997. During that period, consecutive tumor sizes were determined by magnetic resonance imaging. Three of the 44 patients showed an average decrease in tumor size of 16.7% according to American Academy of Otolaryngology-Head and Neck Surgery standards. This study describes the initial vestibular status and audiometric changes measured over up to 10 years in these three patients. Vestibular function was determined once, by means of the bithermal caloric test, the torsion test, the saccade test, the smooth pursuit test, and the registration of spontaneous nystagmus. The three patients had severe vestibular paresis on the affected side. Pure-tone and speech audiometry were performed at regular intervals. Although the size of their tumors decreased, their hearing gradually deteriorated, just as it does in the majority of patients with a growing or stable vestibular schwannoma. The observations presented here suggest that the development of symptoms in a vestibular schwannoma does not differentiate between patients with a stable, growing or shrinking tumor. The development of symptoms may be the result of the same pathogenetic mechanism.

  15. The vestibular contribution to the head direction signal and navigation.

    Science.gov (United States)

    Yoder, Ryan M; Taube, Jeffrey S

    2014-01-01

    Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction (HD) cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we review the role of the vestibular system in generating various spatial signals in rodents, focusing primarily on HD cells. We also examine the vestibular system's role in navigation and the possible pathways by which vestibular information is conveyed to higher navigation centers.

  16. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation

    Science.gov (United States)

    Balaban, Carey D.; Hoffer, Michael E.; Gottshall, Kim R.

    2012-01-01

    This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on ‘naturalistic’ recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation. PMID:22981400

  17. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  18. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.

    Science.gov (United States)

    Barmack, N H; Yakhnitsa, V

    2015-10-01

    Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and

  19. Click-evoked responses in vestibular afferents in rats

    National Research Council Canada - National Science Library

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Mustain, William; Xu, Youguo; Zhou, Wu

    2011-01-01

    Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles...

  20. From ear to uncertainty: Vestibular contributions to cognitive function.

    OpenAIRE

    Paul eSmith; Yiwen eZheng

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, espe...

  1. Auditory and Vestibular Issues Related to Human Spaceflight

    Science.gov (United States)

    Danielson, Richard W.; Wood, Scott J.

    2009-01-01

    Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.

  2. Interactive Healthcare Systems in the Home: Vestibular Rehabilitation

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Grönvall, Erik; Larsen, Simon Bo

    2010-01-01

    Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction.......Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction....

  3. Task, muscle and frequency dependent vestibular control of posture

    OpenAIRE

    Forbes, Patrick A.; Gunter P Siegmund; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...

  4. The thalamocortical vestibular system in animals and humans

    OpenAIRE

    LOPEZ, Christophe; Blanke, Olaf

    2011-01-01

    The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data fro...

  5. Longitudinal performance of an implantable vestibular prosthesis.

    Science.gov (United States)

    Phillips, Christopher; Ling, Leo; Oxford, Trey; Nowack, Amy; Nie, Kaibao; Rubinstein, Jay T; Phillips, James O

    2015-04-01

    Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Complications of Microsurgery of Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Jan Betka

    2014-01-01

    Full Text Available Background. The aim of this study was to analyze complications of vestibular schwannoma (VS microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225 removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI was observed in 124 cases (45% immediately after surgery and in 104 cases (33% on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%, headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery.

  7. Visual dependency and dizziness after vestibular neuritis.

    Directory of Open Access Journals (Sweden)

    Sian Cousins

    Full Text Available Symptomatic recovery after acute vestibular neuritis (VN is variable, with around 50% of patients reporting long term vestibular symptoms; hence, it is essential to identify factors related to poor clinical outcome. Here we investigated whether excessive reliance on visual input for spatial orientation (visual dependence was associated with long term vestibular symptoms following acute VN. Twenty-eight patients with VN and 25 normal control subjects were included. Patients were enrolled at least 6 months after acute illness. Recovery status was not a criterion for study entry, allowing recruitment of patients with a full range of persistent symptoms. We measured visual dependence with a laptop-based Rod-and-Disk Test and severity of symptoms with the Dizziness Handicap Inventory (DHI. The third of patients showing the worst clinical outcomes (mean DHI score 36-80 had significantly greater visual dependence than normal subjects (6.35° error vs. 3.39° respectively, p = 0.03. Asymptomatic patients and those with minor residual symptoms did not differ from controls. Visual dependence was associated with high levels of persistent vestibular symptoms after acute VN. Over-reliance on visual information for spatial orientation is one characteristic of poorly recovered vestibular neuritis patients. The finding may be clinically useful given that visual dependence may be modified through rehabilitation desensitization techniques.

  8. Sensorial countermeasures for vestibular spatial disorientation.

    Science.gov (United States)

    Paillard, Aurore C; Quarck, Gaëlle; Denise, Pierre

    2014-05-01

    Spatial disorientation is defined as an erroneous body orientation perceived by pilots during flights. Limits of the vestibular system provoke frequent spatial disorientation mishaps. Although vestibular spatial disorientation is experienced frequently in aviation, there is no intuitive countermeasure against spatial disorientation mishaps to date. The aim of this review is to describe the current sensorial countermeasures and to examine future leads in sensorial ergonomics for vestibular spatial disorientation. This work reviews: 1) the visual ergonomics, 2) the vestibular countermeasures, 3) the auditory displays, 4) the somatosensory countermeasures, and, finally, 5) the multisensory displays. This review emphasizes the positive aspects of auditory and somatosensory countermeasures as well as multisensory devices. Even if some aspects such as sensory conflict and motion sickness need to be assessed, these countermeasures should be taken into consideration for ergonomics work in the future. However, a recent development in aviation might offer new and better perspectives: unmanned aerial vehicles. Unmanned aerial vehicles aim to go beyond the physiological boundaries of human sensorial systems and would allow for coping with spatial disorientation and motion sickness. Even if research is necessary to improve the interaction between machines and humans, this recent development might be incredibly useful for decreasing or even stopping vestibular spatial disorientation.

  9. A review of the interrelationship between vestibular dysfunction ...

    African Journals Online (AJOL)

    problems and dyslexia were also associated with dysfunction of the vestibular system. Different tests evaluating vestibular loss were identified of which some can be used successfully by practitionars. Various programmes and activities were identified to successfully rehabilitate vestibular function. For better understanding ...

  10. Origin of vestibular dysfunction in Usher syndrome type 1B.

    NARCIS (Netherlands)

    Sun, J.; Alphen, A.M. van; Wagenaar, M.; Huygen, P.L.M.; Hoogenraad, C.C.; Hasson, T.; Koekkoek, S.K.; Bohne, B.A.; Zeeuw, C.I. de

    2001-01-01

    It is still debated to what extent the vestibular deficits in Usher patients are due to either central vestibulocerebellar or peripheral vestibular problems. Here, we determined the origin of the vestibular symptoms in Usher 1B patients by subjecting them to compensatory eye movement tests and by

  11. [The research progress of large vestibular aqueduct syndrome].

    Science.gov (United States)

    Abulikemu, Yiming; Tang, Liang; Zhang, Jin

    2012-11-01

    Large vestibular aqueduct syndrome (LVAS) is one of common non-syndromic hearing disorders. With the rapid development of medical imaging, audiology, molecular biology, genetics, cochlear implant surgery, we have made remarkable achievements in the diagnosis and treatment of large vestibular aqueduct syndrome. This article reviewed related researches of the large vestibular aqueduct syndrome.

  12. Vestibular Schwannoma or acoustic neuroma

    Directory of Open Access Journals (Sweden)

    Hekmatara M

    1997-04-01

    Full Text Available Vestibular schwannoma is the most common tumor of the posterior fossa of the skull. Patients referred with the primary otologic symptoms such as hearing loss, tinnitus, vertigo, imbalance, and the cranial nerve palsy. Thirty-three patients were operated and treated by a team of otolaryngologist and neurosurgeon, anudiometrist, and internist. Patients'chiefcomplaint was due to 94% hearing loss and 27% tinnitus. They scarcely complain of vertigo. If a patient refers with the palsy or paralysis of facial nerve preoperation, we must think of the facial nerve schwannoma or hemangioma or congential cholestoma or malignant metastases rather than acoustic neuroma. The best way for preoperative diagnosis is audiometry, ABR (Auditory Brain Response, and SDS (speech discrimination score with 90% success, but computer Tomography (CT scan and MRI (Magnetic Resonance Image are the valuable anatomic diagnostic radiographic devices. The best method of operation is translabirynthine approach (TLA, since it has the advantages such as an easy access to nerve paths and being the nearest path to CPA (Cerebellopontine Angle. Physicians ought to talk to patients about the importance of the microscopic surgery, surgical methods, and their probable diverse effects such as hearing loss, facial nerve palsy, and intracranial problems.

  13. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  14. Lateral medullary syndrome following injury of the vestibular pathway to the core vestibular cortex: Diffusion tensor imaging study.

    Science.gov (United States)

    Yeo, Sang Seok; Jang, Sung Ho; Kwon, Jung Won

    2017-12-05

    The parieto-insular vestibular cortex (PIVC) is a core region of vestibular input into regions of the cortex. The vestibular nuclei have reciprocal connections with the PIVC. However, little is known about injury of the core vestibular pathway to the PIVC in patients with dorsolateral medullary infarctions. In this study, using diffusion tensor tractography (DTT), we investigated injury of the neural connections between the vestibular nuclei and the PIVC in patients with typical central vestibular disorder. Eight consecutive patients with lateral medullary syndrome and 10 control subjects were recruited for this study. To reconstruct the core vestibular pathway to the PIVC, we defined the seed region of interest (ROI) as the vestibular nuclei of the pons and the target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The core vestibular pathway to the PIVC showed significantly lower tract volume in patients compared with the control group (p0.05). In conclusion, injury of the core vestibular pathway to the PIVC was demonstrated in patients with lateral vestibular syndrome following dorsolateral medullary infarcts. We believe that analysis of the core vestibular pathway to the PIVC using DTT would be helpful in evaluating patients with lateral medullary syndrome. Copyright © 2017. Published by Elsevier B.V.

  15. Vestibular rehabilitation: useful but not universally so.

    Science.gov (United States)

    Krebs, David E; Gill-Body, Kathleen M; Parker, Stephen W; Ramirez, Jose V; Wernick-Robinson, Mara

    2003-02-01

    Although vestibular rehabilitation (VR) is gaining popularity, few data support its utility in improving locomotor stability, and no good predictors exist of whom will benefit most. A double-blind, placebo-controlled randomized trial of vestibular rehabilitation was conducted at a large tertiary care hospital on 124 patients (59 +/- 18 years old) with unilateral (n = 51) or bilateral (n = 73) vestibular hypofunction, of whom 86 completed a 12-week intervention. Of these 86, 27 returned for long-term (1-year) follow-up testing. The primary outcome measure was locomotor stability. Group A (6 weeks of VR) significantly (P VR; there were no group differences at 1 year. Of the 86 who completed the intervention, 52 (61%) had clear locomotor gains. VR is helpful for most patients in providing locomotor stability, but further work is needed to determine the factors that prevent VR from being effective for all patients with vestibulopathy.

  16. Eye Movements as Indicators of Vestibular Dysfunction.

    Science.gov (United States)

    Menshikova, Galina Ya; Kovalev, Artem I; Klimova, Oxana A; Chernorizov, Alexander M

    2015-01-01

    Virtual reality technologies are in wide use in sport psychology. An advantage of this kind of technology is the possibility to assess sportspeople's readiness to perform complex movements. This study is aimed at developing a method for the evaluation of vestibular function disturbances in young skaters. Such disturbances may occur while skaters are performing rotation movements. To achieve this goal, we induced a vection illusion, accompanied by virtual environment rotation in a CAVE virtual reality system. Vestibular disturbances were tested for two groups-professional skaters and people who had very little or no skating experience. The quantitative evaluation of vestibular dysfunction was based on eye movement characteristics, which were recorded in subjects experiencing a vection illusion. © The Author(s) 2015.

  17. Vestibular rehabilitation following mild traumatic brain injury.

    Science.gov (United States)

    Gurley, James M; Hujsak, Bryan D; Kelly, Jennifer L

    2013-01-01

    Vertigo, dizziness, and imbalance are a symptom complex that is commonly found following concussion. Early metabolic changes following concussion may lead to worsening of the injury and symptoms in individuals not properly managed from the outset. When symptoms do not recover spontaneously, skilled vestibular rehabilitation can be an effective modality in an attempt to normalize the individual's vestibular responses. The purpose of this review is to appraise the current and accepted methods available to the skilled clinician in quantifying and treating vestibular dysfunction following concussion. Incidence and prognostic indicators will be reviewed along with common barriers to recovery. Vestibular Rehabilitation following concussion utilizes similar tools and techniques employed when treating those solely with peripheral pathology. The clinician must not only have a solid understanding of when and why certain exercises are required, but also be willing to accept that less exercise may be indicated in this population. As injury to the system following mild traumatic brain injury can include both peripheral and central structures, the duration of therapy and the time to recovery may be prolonged. Co-morbidities including cognitive and behavioral issues, visual-perceptual dysfunction, metabolic dysfunction, and autonomic dysfunction may hamper the effectiveness of the traditional Vestibular Rehabilitation approach. As successful treatment does not occur in a vacuum, working closely with other disciplines well versed in treating these co-morbid issues will help the individual to obtain optimal recovery. Vestibular Rehabilitation is an effective modality for managing dizziness, vertigo, and imbalance following concussion. Careful consideration of the acuity of the injury, along with effective management of co-morbid conditions will optimize the result.

  18. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    Directory of Open Access Journals (Sweden)

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  19. Patient with headache and peripheral vestibular dysfunction: case report

    OpenAIRE

    Rossi,Tatiane Maria; Luciano,Naonne Santos Camargo; Oricoli, Polliay Freire; Marchiori,Luciana Lozza de Moraes; Melo, Juliana Jandre

    2009-01-01

    TEMA: a Reabilitação Vestibular constitui-se numa opção de tratamento para pacientes portadores de síndrome vestibular periférica e cefaleia. PROCEDIMENTOS: o paciente, do sexo feminino com 26 anos de idade apresentava síndrome vestibular periférica acompanhada de crises de cefaleia. Foi realizada avaliação e terapia fonoaudiológica com exercícios de habituação vestibular além de fisioterapia e dieta recomendada pelo nutricionista. RESULTADOS: no período de 3 meses com reabilitação vestibular...

  20. Non-linear Galilean vestibular receptive fields.

    Science.gov (United States)

    Bennequin, D; Berthoz, A

    2011-01-01

    We present a set of formulas for the receptive fields of the vestibular neurons that are motivated by Galilean invariance. We show that these formulas explain non-trivial data in neurophysiology, and suggest new hypothesis to be tested in dynamical 3D conditions. Moreover our model offers a way for neuronal computing with 3D displacements, which is reputed to be hard, underlying the vestibular reflexes. This computation is presented in a Bayesian framework. The basis of the model is the necessity of living bodies to work invariantly in space-time, allied to the necessary discreteness of neuronal transmission.

  1. Effects of vestibular rehabilitation therapy on emotional aspects in chronic vestibular patients.

    Science.gov (United States)

    Meli, Annalisa; Zimatore, Giovanna; Badaracco, Carlo; De Angelis, Ezio; Tufarelli, Davide

    2007-08-01

    A strong relationship exists between vestibular dysfunction and anxiety disorders. The aim of this study was to assess the anxiety and depression levels in patients with chronic dizziness and to assess the effects of vestibular rehabilitation (VR) therapy, on the anxiety and depression levels, without a behavioural or pharmacological therapy. Two groups of 40 patients, each affected by chronic vestibular deficit, were studied. The first one underwent VR, and the latter did not. The psychometric tests used were the State-Trait Anxiety Inventory (STAI) and the Centre for Epidemiological Studies Depression Scale (CES-D). Psychological factors influence the level of handicap experienced by chronic dizziness patients, and disequilibrium influences the anxiety and depression levels. STAI and CES-D scales significantly decrease after VR therapy (PVR therapy positively influences the emotional condition of chronic vestibular deficit patients without pharmacological or psychotherapy treatments.

  2. From ear to uncertainty: Vestibular contributions to cognitive function.

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2013-11-01

    Full Text Available In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in spatial orientation. In this review we summarise the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation, can modulate cognitive function.

  3. Interactions between Stress and Vestibular Compensation - A Review.

    Science.gov (United States)

    Saman, Yougan; Bamiou, D E; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  4. From ear to uncertainty: vestibular contributions to cognitive function.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2013-11-26

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.

  5. Interactions between stress and vestibular compensation – a review

    Directory of Open Access Journals (Sweden)

    Yougan eSaman

    2012-07-01

    Full Text Available Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function, and plasticity have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.

  6. Interactions between Stress and Vestibular Compensation – A Review

    Science.gov (United States)

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B.

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders. PMID:22866048

  7. Receptors of glutamate and neurotrophin in vestibular neuronal functions.

    Science.gov (United States)

    Chan, Y S; Chen, L W; Lai, C H; Shum, D K Y; Yung, K K L; Zhang, F X

    2003-01-01

    The last decade has witnessed advances in understanding the roles of receptors of neurotrophin and glutamate in the vestibular system. In the first section of this review, the biological actions of neurotrophins and their receptors in the peripheral and central vestibular systems are summarized. Emphasis will be placed on the roles of neurotrophins in developmental plasticity and in the maintenance of vestibular function in the adult animal. This is reviewed in relation to the developmental expression pattern of neurotrophins and their receptors within the vestibular nuclei. The second part is focused on the functional role of different glutamate receptors on central vestibular neurons. The developmental expression pattern of glutamate receptor subunits within the vestibular nuclei is reviewed in relation to the potential role of glutamate receptors in regulating the development of vestibular function. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  8. Physiological principles of vestibular function on earth and in space

    Science.gov (United States)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  9. Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure

    Directory of Open Access Journals (Sweden)

    Økstad Siri

    2006-12-01

    Full Text Available Abstract Background Vestibular neuritis (VN is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. Case presentations We describe three patients with symptoms suggestive of VN, but normal calorics. All 3 had unilateral loss of vestibular evoked myogenic potential. A slight, asymptomatic position dependent nystagmus, with the pathological ear down, was observed. Conclusion We believe that these patients suffer from pure inferior nerve vestibular neuritis.

  10. Brain-derived neurotrophic factor and nitric oxide synthase inhibitor protect the vestibular organ against gentamicin ototoxicity.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2002-01-01

    In order to find a way to develop a new treatment for inner ear disorders, the effects of a nitric oxide synthase (NOS) inhibitor [N-nitro-L-arginine methylester (L-NAME)] and a neurotrophin [brain-derived neurotrophic factor (BDNF)] were investigated. The effect of L-NAME and BDNF on gentamicin-induced vestibular hair cell damage was investigated by using the in vitro LIVE/DEAD system. Both L-NAME and BDNF individually reduced the vestibular hair cell damage caused by gentamicin but the combination of L-NAME and BDNF was more successful in preventing damage. It is therefore suggested that treatment with a combination of an NOS inhibitor and a neurotrophin will help us to treat inner ear disorders.

  11. Remission of anosognosia for right hemiplegia and neglect after caloric vestibular stimulation.

    Science.gov (United States)

    Ronchi, Roberta; Rode, Gilles; Cotton, François; Farnè, Alessandro; Rossetti, Yves; Jacquin-Courtois, Sophie

    2013-01-01

    Neglect and related phenomena, as anosognosia for hemiplegia and somatoparaphrenia, are often associated to right-hemisphere lesions. These deficits can be alleviated by caloric vestibular stimulation, but little is known about the efficacy of this physiological intervention on neglect following left-hemisphere lesions. Here we report the case of an ambidextrous left brain-damaged patient with severe right personal and extrapersonal neglect, anosognosia for right hemiplegia and somatoparaphrenia. These symptoms co-occurred with more typical manifestations of left-brain damage, such as aphasia and apraxia. Neurological examination revealed right hemiplegia, hemianesthesia and hemianopia. Visuo-spatial tests for personal and extrapersonal neglect, as well as an anosognosia questionnaire, were submitted before and after caloric vestibular stimulation. Results showed a dramatic improvement of anosognosia for hemiplegia and neglect; no change was observed for the remaining deficits. The results confirm the notion of the selectivity of vestibular stimulation for neglect and related disorders and extend this notion by showing that similar effects can be obtained after lesion of the left hemisphere, suggesting that similar mechanisms are responsible for left- and right-sided neglect. Such a peculiar association of language and visuo-spatial disorders jointly present after a left-sided lesion opens the question of the link between handedness and lateralization of cognitive functions.

  12. [Apoptosis and its molecular mechanism in vestibular hair cell after gentamycin toxicity].

    Science.gov (United States)

    Jiang, Xuejun; Li, Wei; Zang, Hongrui; Wang, Jin; Guan, Chao; Yang, Ning

    2005-10-01

    To investigate the character of damaged vestibular hair cells caused by gentamycin, and to identify whether apoptosis and phosphorylation of JNK occurs in the damaged cells. Healthy guinea pigs were divided into experimental group and control group randomly with 15 in each group, animals in experimental and control group received systemic injection of gentamycin [100 mg/(kg x d)] and saline respectively for 7 consequent days. All the animals were sacrificed on the 8th day, the crista vestibular of each were observed by preparation and frozen dissection. The apoptosis of hair cell were detected by TUNEL method and phosphorylation of JNK were detected by immunochemistry. The lesion and apoptosis of hair cells could be seen in the experimental group,and the phosphorylation could be observed too; the hair cells of control group showed no sign of apoptosis or phosphorylation of JNK. Gentamycin cause vestibular hair lesion by inducing apoptosis and activation of JNK plays an important role in the procedure of apoptosis.

  13. Central Vestibular Dysfunction in an Otorhinolaryngological Vestibular Unit: Incidence and Diagnostic Strategy

    Directory of Open Access Journals (Sweden)

    Mostafa, Badr E.

    2014-03-01

    Full Text Available Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years. Provisional videonystagmography (VNG results were: 40% benign paroxysmal positional vertigo (BPPV, 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41 had magnetic resonance imaging (MRI and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23% were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus. Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  14. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: ten recommendations for optimal functional recovery

    Directory of Open Access Journals (Sweden)

    LACOUR eMichel

    2015-01-01

    Full Text Available This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation, which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalogue of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodelling, the instructive role that VR therapy may play in this functional reorganisation, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive and emotional profile of the patient to propose individual or à la carte VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  15. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery.

    Science.gov (United States)

    Lacour, Michel; Bernard-Demanze, Laurence

    2014-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.

  16. CONTRIBUTION OF THE AUDIOLOGICAL AND VESTIBULAR ASSESSMENT TO THE DIFFERENTIAL AND ETIOLOGICAL DIAGNOSIS OF PERIPHERIC VESTIBULAR SYNDROMES

    Directory of Open Access Journals (Sweden)

    Loreta Ungureanu

    2012-09-01

    Full Text Available Scope of the study: Vestibular pathology is a complex one, requiring a minute clinical evaluation, as well as numerous paraclinical investigations. The present study analyzes the contribution of the modern methods of vestibular and auditive investigation to the diagnosis of dizziness. Materials and method: The results of the investigations performed on 84 patients with peripheric vestibular syndrome, on whom a complete audiological and vestibular assessment had been also made, have been retrospectively analyzed. Results: Anamnestic data and the results of evaluation permitted classification of peripheric vestibular pathology according to topo-lesional and etiological criteria. The most frequently diagnosed diseases were: benign paroxysmal positional vertigo, Ménière syndrome and vestibular neuronitis. Conclusions: Testing of the vestibulo-ocular and vestibulo-spinal reflexes through videonystagmoscopy and, respectively, computerized dynamic posturography, besides tonal vocal audiometry and precocious auditive potentials, is especially important for a positive diagnosis and etiological differentiation of vestibular syndromes.

  17. Time constants of vestibular nuclei neurons in the goldfish: a model with ocular propioception.

    Science.gov (United States)

    Allum, J H; Graf, W

    1977-12-22

    A simple model of the vestibular-ocular reflex with a proprioceptive eye velocity feedback loop is used to simulate recent data on the vestibular responses of neurons in the vestibular nuclei of spinal goldfish. The data support the hypothesis that a proprioceptive feedback loop elongates the vestibular nucleus time constant to equal that of the slow phase eye movements of vestibular nystagmus.

  18. Effects of Sound on the Vestibular System

    Science.gov (United States)

    1976-03-01

    receptors and directly affects central nervous system nuclei. Visual, olfactory, and gustatory responses would be expected if sound directly affected the...AMRL-TR-75-89 EFFECTS OF SOUND ON THE VESTIBULAR SYSTEM MIAMI UNIVERSITY NO OXFORD, OHIO 45056 MARCH 1976 | j...Approvedrfor public release: distribution unlimited AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DMSION Air Force Systems Command Wright.Patterson

  19. Latent nystagmus: vestibular nystagmus with a twist.

    Science.gov (United States)

    Brodsky, Michael C; Tusa, Ronald J

    2004-02-01

    Latent nystagmus is a horizontal binocular oscillation that is evoked by unequal visual input to the 2 eyes. It develops primarily in humans with congenital esotropia. To investigate the interrelationship between latent and peripheral vestibular nystagmus and their corollary neuroanatomical pathways. Examination of subcortical neuroanatomical pathways producing latent nystagmus and review of the neurophysiological mechanisms by which they become activated in congenital esotropia. The vestibular nucleus presides over motion input from the eyes and labyrinths. Latent nystagmus corresponds to the optokinetic component of ocular rotation that is driven monocularly by nasal optic flow during a turning movement of the body in lateral-eyed animals. Congenital esotropia alters visual pathway development from the visual cortex to subcortical centers that project to the vestibular nucleus, allowing this primitive subcortical motion detection system to generate latent nystagmus under conditions of monocular fixation. Latent nystagmus is the ocular counterpart of peripheral vestibular nystagmus. Its clinical expression in humans proclaims the evolutionary function of the eyes as sensory balance organs.

  20. Vestibular migraine: clinical and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Ligia Oliveira Gonçalves Morganti

    Full Text Available ABSTRACT INTRODUCTION: Vestibular migraine (VM is one of the most often common diagnoses in neurotology, but only recently has been recognized as a disease. OBJECTIVE: To analyze the clinical and epidemiological profile of patients with VM. METHODS: This was a retrospective, observational, and descriptive study, with analysis of patients' records from an outpatient VM clinic. RESULTS: 94.1% of patients were females and 5.9% were males. The mean age was 46.1 years; 65.6% of patients had had headache for a longer period than dizziness. A correlation was detected between VM symptoms and the menstrual period. 61.53% of patients had auditory symptoms, with tinnitus the most common, although tonal audiometry was normal in 68.51%. Vectoelectronystagmography was normal in 67.34%, 10.20% had hyporeflexia, and 22.44% had vestibular hyperreflexia. Electrophysiological assessment showed no abnormalities in most patients. Fasting plasma glucose and glycemic curve were normal in most patients, while the insulin curve was abnormal in 75%. 82% of individuals with MV showed abnormalities on the metabolism of carbohydrates. CONCLUSION: VM affects predominantly middle-aged women, with migraine headache representing the first symptom, several years before vertigo. Physical, auditory, and vestibular evaluations are usually normal. The most frequent vestibular abnormality was hyperreflexia. Most individuals showed abnormality related to carbohydrate metabolism.

  1. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  2. Stereotactic radiation therapy for large vestibular schwannomas

    NARCIS (Netherlands)

    Mandl, Ellen S.; Meijer, Otto W. M.; Slotman, Ben J.; Vandertop, W. Peter; Peerdeman, Saskia M.

    2010-01-01

    Background and purpose: To evaluate the morbidity and tumor-control rate in the treatment of large vestibular schwannomas (VS) after stereotactic radiation therapy in our institution. Material and methods: Twenty-five consecutive patients (17 men, 8 women) with large VS (diameter 3.0 cm or larger),

  3. Facial demyelinating neuropathy caused by previous stereotactic irradiation to a vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Makoto; Kurita, Hiroki; Sasaki, Tomio [Tokyo Univ. (Japan). Faculty of Medicine

    1997-12-01

    This is a report of a vestibular schwannoma patient who received surgical treatment 8 months after stereotactic gamma knife irradiation. The previous irradiation caused facial demyelinating neuropathy of the facial nerve, and it made the identification and preservation of the nerve during subsequent microsurgery difficult. In the affected nerve segments, stimulation even to the exposed facial nerve evoked only attenuated response or no responses in electromyography. As a result, the flattened facial nerve located behind the tumor was indistinguishable. In order to prevent damage of the facial nerve, subcapsular tumor removal had to be performed at the demyelinated segments. This sequela of stereotactic irradiation should be considered when the irradiation is planned as a primary treatment modality of a vestibular schwannoma, in particular in young patients who will eventually receive another surgery afterwards. (author)

  4. New Insights into Pathophysiology of Vestibular Migraine

    Science.gov (United States)

    Espinosa-Sanchez, Juan M.; Lopez-Escamez, Jose A.

    2015-01-01

    Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory–inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM

  5. New insights into pathophysiology of vestibular migraine

    Directory of Open Access Journals (Sweden)

    Juan Manuel Espinosa-Sanchez

    2015-02-01

    Full Text Available Vestibular migraine (VM is a common disorder in which genetic, epigenetic and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal grey, locus coeruleus and nucleus raphe magnus are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs and pain. The interactions among several functional and structural neural networks could explain the pathogenic

  6. Vestibular evaluation in children with otitis media with effusion.

    Science.gov (United States)

    Kolkaila, E A; Emara, A A; Gabr, T A

    2015-04-01

    Fifty per cent of children with serous otitis media may have some balance disturbances. To evaluate vestibular function in children with otitis media with effusion. The control group comprised 25 children with bilateral normal hearing and middle-ear function. The study group consisted of 30 children with bilateral otitis media with effusion; these were divided into 2 subgroups according to air-bone gap size. Measures included the Arabic Dizziness Handicap Inventory, an imbalance evaluation sheet for children, vestibular bedside tests for children, and air- and bone-conducted vestibular-evoked myogenic potential testing. Arabic Dizziness Handicap Inventory scores and some vestibular bedside test results were significantly abnormal, with normal video-nystagmography results, in children with otitis media with effusion. Air-conducted vestibular-evoked myogenic potentials were recorded in 73 per cent of children with otitis media with effusion, with significantly delayed latencies. Bone-conducted vestibular-evoked myogenic potentials were successfully detected in 100 per cent of children with otitis media with effusion with similar results to the control group. The Arabic Dizziness Handicap Inventory and vestibular bedside tests are valuable tools for detecting vestibular impairment in children. Bone-conducted vestibular-evoked myogenic potentials are useful for vestibular system evaluation.

  7. Off-center yaw rotation: effect of naso-occipital linear acceleration on the nystagmus response of normal human subjects and patients after unilateral vestibular loss.

    Science.gov (United States)

    Curthoys, I S; Haslwanter, T; Black, R A; Burgess, A M; Halmagyi, G M; Topple, A N; Todd, M J

    1998-12-01

    ) of around 12 degrees]. The linear acceleration decreased the time constant of decay of the horizontal component of the post-rotatory nystagmus: from an average of 24.8 degrees/s facing-in to an average of 11.3 degrees/s facing-out. The linear acceleration dumps torsional eye velocity in an manner analogous to, but independent of, the dumping of horizontal eye velocity. Patients with UVD had dramatically reduced torsional eye velocities for both facing-in and facing-out headings, and there was little if any shift of the AEV in UVD patients. The relatively small effects of linear acceleration on human canal-induced nystagmus found here confirms other recent studies in humans (Fetter et al. 1996) in contrast to evidence from monkeys and emphasizes the large and important differences between humans and monkeys in otolith-canal interaction. Our results confirm the vestibular control of the axis of eye velocity of humans is essentially head-referenced whereas in monkeys that control is essentially space-referenced.

  8. Exhibition of Stochastic Resonance in Vestibular Perception

    Science.gov (United States)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  9. Understanding the links between vestibular and limbic systems regulating emotions.

    Science.gov (United States)

    Rajagopalan, Archana; Jinu, K V; Sailesh, Kumar Sai; Mishra, Soumya; Reddy, Udaya Kumar; Mukkadan, Joseph Kurien

    2017-01-01

    Vestibular system, which consists of structures in the inner ear and brainstem, plays a vital role is body balance and patient well-being. In recent years, modulating this system by vestibular stimulation techniques are reported to be effective in stress relief and possibly patient's emotional well-being. Emotions refer to an aroused state involving intense feeling, autonomic activation, and related change in behavior, which accompany many of our conscious experiences. The limbic system is primarily involved in the regulation of emotions. Considering the extensive networks between vestibular and limbic system, it is likely that vestibular stimulation techniques may be useful in influencing emotions. Hence, we review here, the possible mechanisms through which vestibular system can influence emotions and highlight the necessary knowledge gaps, which warrants further research to develop vestibular stimulation techniques as a means to treat health conditions associated with emotional disturbances.

  10. Anxiety changes depersonalization and derealization symptoms in vestibular patients.

    Science.gov (United States)

    Kolev, Ognyan I; Georgieva-Zhostova, Spaska O; Berthoz, Alain

    2014-01-01

    Depersonalization and derealization are common symptoms reported in the general population. Objective. The aim of the present study was to establish the relationship between anxiety and depersonalization and derealization symptoms in patients with peripheral vestibular disorders. Twenty-four vestibular patients with anxiety and 18 vestibular patients without anxiety were examined for depersonalization and derealization symptoms. They were also compared to healthy controls. The results revealed that anxiety consistently changes depersonalization and derealization symptoms in vestibular patients. They are more frequent, more severe, and qualitatively different in vestibular patients with anxiety than in those without anxiety. Anxiety has an effect on depersonalization and derealization symptoms in vestibular patients. The various hypotheses about the underlying mechanism of this effect were discussed.

  11. Bionic balance organs: progress in the development of vestibular prostheses.

    Science.gov (United States)

    Smith, Paul F

    2017-09-01

    The vestibular system is a sensory system that is critically important in humans for gaze and image stability as well as postural control. Patients with complete bilateral vestibular loss are severely disabled and experience a poor quality of life. There are very few effective treatment options for patients with no vestibular function. Over the last 10 years, rapid progress has been made in developing artificial 'vestibular implants' or 'prostheses', based on cochlear implant technology. As of 2017, 13 patients worldwide have received vestibular implants and the results are encouraging. Vestibular implants are now becoming part of an increasing effort to develop artificial, bionic sensory systems, and this paper provides a review of the progress in this area.

  12. Evaluation of postural control in unilateral vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Rafaela Maia Quitschal

    2014-07-01

    Full Text Available INTRODUCTION: Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. OBJECTIVE: To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. METHOD: This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. RESULTS: For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. CONCLUSION: Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction.

  13. Prediction in the Vestibular Control of Arm Movements.

    Science.gov (United States)

    Blouin, Jean; Bresciani, Jean-Pierre; Guillaud, Etienne; Simoneau, Martin

    2015-01-01

    The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.

  14. The value of close monitoring in vestibular rehabilitation therapy.

    Science.gov (United States)

    Itani, M; Koaik, Y; Sabri, A

    2017-03-01

    Vestibular rehabilitation therapy is a well-established treatment modality for patients with vestibular problems. Performing vestibular rehabilitation therapy in a closely monitored setting may result in a better outcome than a home exercise programme. A retrospective study was conducted of patients undergoing vestibular rehabilitation therapy between June 2005 and November 2012 in a tertiary university hospital. The Dynamic Gait Index, the main outcome measure, was utilised before and after the rehabilitation programme. The magnitude of improvement for all patients was analysed, mainly to compare the home exercise group with the closely monitored therapy group. Only 32 patients underwent the vestibular rehabilitation therapy programme. In all patients, there was significant improvement in the mean Dynamic Gait Index score (from 11.75 to 17.38; p rehabilitation therapy resulted in improved performance status. More studies are needed to establish the efficiency of vestibular rehabilitation therapy and compare closely monitored therapy with tailored home exercise rehabilitation.

  15. Vestibular Aqueduct Midpoint Width and Hearing Loss in Patients With an Enlarged Vestibular Aqueduct.

    Science.gov (United States)

    Ascha, Mustafa S; Manzoor, Nauman; Gupta, Amit; Semaan, Maroun; Megerian, Cliff; Otteson, Todd D

    2017-06-01

    Elucidating the relationship between vestibular aqueduct size and hearing loss progression may inform the prognosis and counseling of patients who have an enlarged vestibular aqueduct (EVA). To examine the association between vestibular aqueduct size and repeated measures of hearing loss. For this retrospective medical record review, 52 patients with a diagnosis of hearing loss and radiologic diagnosis of EVA according to the Valvassori criterion were included. All available speech reception threshold and word recognition score data was retrieved; mixed-effects models were constructed where vestibular aqueduct size, age at diagnosis of hearing loss, and time since diagnosis of hearing loss were used to predict repeated measures of hearing ability. This study was performed at an academic tertiary care center. Variable vestibular aqueduct size, age at first audiogram, length of time after first audiogram. Speech reception threshold (dB) and word recognition score (%) during routine audiogram. Overall, 52 patients were identified (29 females [56%] and 23 males [44%]; median age at all recorded audiograms, 7.8 years) with a total of 74 ears affected by EVA. Median (range) vestibular aqueduct size was 2.15 (1.5-5.9) mm, and a median (range) of 5 (1-18) tests were available for each patient. Each millimeter increase in vestibular aqueduct size above 1.5 mm was associated with an increase of 17.5 dB in speech reception threshold (95% CI, 7.2 to 27.9 dB) and a decrease of 21% in word recognition score (95% CI, -33.3 to -8.0 dB). For each extra year after a patient's first audiogram, there was an increase of 1.5 dB in speech recognition threshold (95% CI, 0.22 to 3.0 dB) and a decrease of 1.7% in word recognition score (95% CI, -3.08 to -0.22 dB). Hearing loss in patients with an EVA is likely influenced by vestibular aqueduct midpoint width. When considering hearing loss prognosis, vestibular aqueduct midpoint width may be useful for the clinician who counsels patients

  16. The thalamocortical vestibular system in animals and humans.

    Science.gov (United States)

    Lopez, Christophe; Blanke, Olaf

    2011-06-24

    The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data from electrophysiology and neuroanatomy in animals by comparing them with data from neuroimagery and neurology in humans. Multiple thalamic nuclei are involved in vestibular processing, including the ventroposterior complex, the ventroanterior-ventrolateral complex, the intralaminar nuclei and the posterior nuclear group (medial and lateral geniculate nuclei, pulvinar). These nuclei contain multisensory neurons that process and relay vestibular, proprioceptive and visual signals to the vestibular cortex. In non-human primates, the parieto-insular vestibular cortex (PIVC) has been proposed as the core vestibular region. Yet, vestibular responses have also been recorded in the somatosensory cortex (area 2v, 3av), intraparietal sulcus, posterior parietal cortex (area 7), area MST, frontal cortex, cingulum and hippocampus. We analyze the location of the corresponding regions in humans, and especially the human PIVC, by reviewing neuroimaging and clinical work. The widespread vestibular projections to the multimodal human PIVC, somatosensory cortex, area MST, intraparietal sulcus and hippocampus explain the large influence of vestibular signals on self-motion perception, spatial navigation, internal models of gravity, one's body perception and bodily self-consciousness. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Interactions between Stress and Vestibular Compensation – A Review

    OpenAIRE

    Saman, Yougan; Bamiou, D. E.; Gleeson, Michael; Dutia, Mayank B

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting...

  18. Static Balance in Patients with Vestibular Impairments: A Preliminary Study

    OpenAIRE

    Hossein Talebi; Mohammad Taghi Karimi; Seyed Hamid Reza Abtahi; Niloofar Fereshtenejad

    2016-01-01

    Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments. Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50 ? 7). We evaluated excursion and velocity of center of ...

  19. Anxiety Changes Depersonalization and Derealization Symptoms in Vestibular Patients

    OpenAIRE

    Kolev, Ognyan I.; Georgieva-Zhostova, Spaska O.; Alain Berthoz

    2014-01-01

    Background. Depersonalization and derealization are common symptoms reported in the general population. Objective. The aim of the present study was to establish the relationship between anxiety and depersonalization and derealization symptoms in patients with peripheral vestibular disorders. Methods. Twenty-four vestibular patients with anxiety and 18 vestibular patients without anxiety were examined for depersonalization and derealization symptoms. They were also compared to healthy controls...

  20. Responses evoked by a vestibular implant providing chronic stimulation

    OpenAIRE

    Thompson L.A.; Haburcakova C.; Gong W; Lee D.J.; Wall Iii C.; Merfeld D.M.; Lewis R.F.

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly in...

  1. The Moving History of Vestibular Stimulation as a Therapeutic Intervention

    OpenAIRE

    Grabherr, Luzia; Lenggenhager, Bigna; Macauda, Gianluca

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox’s chair or Hallaran’s swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recogni...

  2. Vestibular stimulation: A simple but effective intervention in diabetes care

    OpenAIRE

    Sailesh, Kumar Sai; Archana, R.; Mukkadan, J. K.

    2015-01-01

    Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential interve...

  3. Internal models and neural computation in the vestibular system

    OpenAIRE

    Green, Andrea M.; Dora E. Angelaki

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem–...

  4. Virtual vestibular re-education. A new technology.

    Science.gov (United States)

    Boniver, R

    2006-01-01

    This paper will provide an introduction to the use of virtual environments for vestibular re-education. The author illustrates some of the ways in which researchers are using virtual reality to improve therapy for vertigo. Users of virtual reality must make adaptations to avoid mismatches between perception due to virtual reality and that due to vestibular and proprioceptive subsystems. Virtual reality may be an interesting new way of studying vestibular compensation in normal and pathological conditions.

  5. [Acute unilateral total deafness and vestibular findings after gunshot noise].

    Science.gov (United States)

    Psillas, G; Constantinidis, J; Triaridis, S; Vital, V

    2007-12-01

    Acute acoustic trauma is usually acquired during military service after exposure to impulse or blast wave noise. The typical audiometric shape is a notch centered at about 4 kHz with some recovery above this frequency. This is the first case of an immediate induced unilateral total hearing loss in a young soldier following exposure to gunfire noise. A 25-year-old right-handed army officer during military training, after realizing a series of five shots with a rifle (G3), immediately experienced on the right ear otalgia, tinnitus and severe hearing loss, without imbalance or dizziness. The pure tone audiogram revealed a cophosis on the right ear without any residual remnants. In order to estimate the extent of the labyrinth damage, a caloric test and vestibular evoked myogenic potentials (VEMPs) were performed, which were both abnormal. The possible mechanical and metabolic damage effects on the cochlea from the intense gunfire noise were discussed. As the caloric test showed directional preponderance and the VEMPs were totally abolished, it has been concluded that the saccule and to a lesser degree the posterior labyrinth have been also found affected. The importance of wearing hearing protectors such as ear plugs and ear muffs during exposure to intense noise was underlined.

  6. The vestibular system: balancing more than just the body.

    Science.gov (United States)

    Lopez, Christophe

    2016-02-01

    The review presents a selection of recent studies in the field of vestibular neuroscience, including how vestibular stimulation modulates space and body perception. Recent neuroimaging studies identified the operculo-insular/retroinsular cortex as the core vestibular cortex and showed how it is reorganized after vestibular dysfunctions. Subliminal galvanic vestibular stimulation (GVS) induces long-term reduction of hemispatial neglect and improves vertical perception in stroke patients, but the underlying mechanisms remain to be identified. Healthy volunteer research suggests that GVS and caloric vestibular stimulation (CVS) modulate visual and somatosensory processing and that beneficial effects of GVS/CVS in stroke patients are not limited to merely rebalancing brain hemispheric activity. Another mechanism would be that GVS/CVS anchors the self to the body, thus promoting an egocentric frame of reference. In addition to 'balancing the body', the vestibular cortical network contributes to modulate space, body and self-awareness. Emerging evidence suggests that the vestibular network expands into dimensions of emotion processing, mental health, and social cognition. Here, the importance of connecting vestibular physiology, affective neuroscience, and social neuroscience to better understand the psychological aspects of vertigo in otoneurology is discussed.

  7. Task, muscle and frequency dependent vestibular control of posture

    Directory of Open Access Journals (Sweden)

    Patrick A Forbes

    2015-01-01

    Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  8. Task, muscle and frequency dependent vestibular control of posture.

    Science.gov (United States)

    Forbes, Patrick A; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system's contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  9. The History and Evolution of Surgery on the Vestibular Labyrinth.

    Science.gov (United States)

    Naples, James G; Eisen, Marc D

    2016-11-01

    The history of surgery on the vestibular labyrinth is rich but sparsely documented in the literature. The story begins over a century ago with the labyrinthectomy in an era that consisted exclusively of ablative surgery for infection or vertigo. Improved understanding of vestibular physiology and pathology produced an era of selective ablation and hearing preservation that includes semicircular canal occlusion for benign paroxysmal positional vertigo. An era of restoration began with a discovery of superior semicircular canal dehiscence and its repair. The final era of vestibular replacement is upon us as the possibility of successful prosthetic vestibular implantation becomes reality. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  10. K+ Currents in Isolated Vestibular Afferent Calyx Terminals

    National Research Council Canada - National Science Library

    Dhawan, Ritu; Mann, Scott E; Meredith, Frances L; Rennie, Katherine J

    2010-01-01

    Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons...

  11. Bedside examination for vestibular screening in occupational medicine

    Directory of Open Access Journals (Sweden)

    Ewa Zamysłowska-Szmytke

    2015-04-01

    Full Text Available Objectives: The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG oculomotor tests (central group and 43 subjects with normal VNG. Material and Methods: Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT, Dynamic Visual Acuity (DVA and gaze nystagmus assessment. Results: Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73% had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. Conclusions: The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes.

  12. Bedside examination for vestibular screening in occupational medicine.

    Science.gov (United States)

    Zamysłowska-Szmytke, Ewa; Szostek-Rogula, Sylwia; Śliwińska-Kowalska, Mariola

    2015-01-01

    The aim of the study was to assess the usefulness of bedside examination for screening of vestibular and balance system for occupational medicine purposes. Study group comprised 165 patients referred to Audiology and Phoniatric Clinic due to vestibular and/or balance problems. Caloric canal paresis of 19% was the cut off value to divide patients into 43 caloric-positive vestibular subjects and 122 caloric-negative patients. The latter group comprised 79 subjects revealing abnormalities of videonystagmographic (VNG) oculomotor tests (central group) and 43 subjects with normal VNG. Vestibular and balance symptoms were collected. Five tests were included to bedside examination: Romberg and Unterberger tests, Head Impulse Test (HIT), Dynamic Visual Acuity (DVA) and gaze nystagmus assessment. Vestibular and balance symptoms were reported by 82% of vestibular, 73% of central and 40% of VNG-normal patients. Thirteen out of 18 VNG-normal but symptomatic subjects (73%) had abnormal tests in clinical assessment. The sensitivity of bedside test set for vestibular pathology was 88% as compared to caloric test and 68% for central pathology as compared to VNG oculomotor tests. The combination of 5 bedside tests reveal satisfactory sensitivity to detect vestibular abnormalities. Bedside examination abnormalities are highly correlated with vestibular/balance symptoms, regardless the normal results of VNG. Thus, this method should be recommended for occupational medicine purposes. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Periosteal Pedicle Flap Harvested during Vestibular Extension for Root Coverage

    Directory of Open Access Journals (Sweden)

    Shubham Kumar

    2015-01-01

    Full Text Available Root exposure along with inadequate vestibular depth is a common clinical finding. Treatment option includes many techniques to treat such defects for obtaining predictable root coverage. Normally, the vestibular depth is increased first followed by a second surgery for root coverage. The present case report describes a single-stage technique for vestibular extension and root coverage in a single tooth by using the Periosteal Pedicle Flap (PPF. This technique involves no donor site morbidity and allows for reflection of sufficient amount of periosteal flap tissue with its own blood supply at the surgical site, thus increasing the chances of success of root coverage with simultaneous increase in vestibular depth.

  14. Gentamicin perfusion vestibular response and hearing loss.

    Science.gov (United States)

    Light, Joshua P; Silverstein, Herbert; Jackson, Lance E

    2003-03-01

    To compare hearing results as a function of vestibular ablation in the treatment of Ménière's Disease, using gentamicin perfusion. A retrospective review of patients with Ménière's Disease treated by gentamicin perfusion of the inner ear via the MicroWick device. A tertiary otologic referral center. The charts of patients treated with gentamicin perfusion via the MicroWick between the years 1998 and 2000 were reviewed. The results for patients with functional hearing in the affected ear were analyzed and were compared with the results in patients without functional hearing. Audiologic and vestibular test results as well as subjective symptoms. There were 45 patients who met the inclusion criteria. The averages for speech discrimination score and pure tone average before treatment were 92% and 38 dB, and after treatment were 82% and 47 dB. Patients were divided into two groups: Group 1 (20 patients), less than 75% ice air caloric reduced vestibular response (RVR); Group 2 (25 patients), those who reached greater than 75% ice air caloric RVR. There were 8 patients (17.6%) with persistent vertigo; 7 were from Group 1, and 1 was from Group 2, which was statistically significant (p = 0.007)wwww. The pure tone average dropped an average of 3 dB for Group 1 and 15 dB for Group 2. The difference in hearing loss between the two groups was statistically significant (p = 0.01). This study suggests that there is a correlation between the degree of vestibular ablation, the control of vertigo, and the risk of hearing loss. Patients with functional hearing seem to have a similar success rate for vertigo control, compared with patients who already had lost functional hearing before treatment. Future investigation may determine if less than 100% RVR, but greater than 75% RVR, is an alternative end point with adequate vertigo control and reduced risk of hearing loss.

  15. Effects of Vestibular Rehabilitation Interventions in the Elderly with Chronic Unilateral Vestibular Hypofunction

    Science.gov (United States)

    Bayat, Arash; Saki, Nader

    2017-01-01

    Introduction: Although vestibular rehabilitation therapy (VRT) methods are relatively popular in treating patients with body balance deficits of vestibular origin, only limited studies have been conducted into customized exercises for unilateral vestibular hypofunction (UVH). Furthermore, very little evidence is available on the outcomes of VRT in the elderly population with chronic UVH. Materials and Methods: A total of 21 patients, aged 61 to 74 years, with UVH participated in this study. The dizziness handicap inventory (DHI) was performed immediately before, and 2 and 8 weeks after treatment. Results: All patients showed a reduction in DHI scores during the study. The average decrease in DHI score was 25.98 points after 2 weeks’ intervention (P0.05). There were no relationships between the scores and gender. Conclusion: Our study demonstrates that VRT is an effective method for the management of elderly patients with UVH, and shows maximal effect on functional aspects. PMID:28819615

  16. Non surgical treatment of vestibular schwannoma.

    Science.gov (United States)

    Arribas, Leoncio; Chust, María L; Menéndez, Antonio; Arana, Estanislao; Vendrell, Juan B; Crispín, Vicente; Pesudo, Carmen; Mengual, José L; Mut, Alejandro; Arribas, Mar; Guinot, José L

    2015-01-01

    To evaluate the results of local control and complications in the treatment of vestibular schwannoma treated with radiation. A retrospective study of 194 patients diagnosed with vestibular schwannoma, treated consecutively with radiation (either stereotactic radiosurgery or fractionated radiotherapy) from 1997 to 2012. We analyze the local control of tumors, as well as secondary complications to treatment with radiation. A total of 132 (68%) tumors 68% are grade I-II tumors of the Koos classification, 40 (19%) are grade III, and 22 (13%) are grade IV. The tumors associated with neurofibromatosis (NF2), are 3.6% (6 tumors in 4 patients). The tumor control for the overall serie is 97% at 5 years, with a median follow-up of 80.4 months. For large tumors the local control is 91% at 5 years. Free survival of chronic complications is 89% at 5 years. Additionally, 50 tumors were subjected to regular follow-up with MRI without treatment, and 28 (58%) did not experienced tumor growth. Radiation and follow up with MRI, are an alternative to surgery in the treatment of vestibular schwannoma, with a low level of complications inside of multidisciplinary approach. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  17. Molecular studies of vestibular schwannomas: a review.

    Science.gov (United States)

    Welling, D Bradley; Packer, Mark D; Chang, Long-Sheng

    2007-10-01

    To summarize advances in understanding the molecular biology of vestibular schwannomas over the past year. The role of the neurofibromatosis type 2 protein, denoted as merlin or schwannomin, in embryonic development, cellular adherence, and in cell proliferation has become better elucidated in the past year. Likewise, the role of merlin in Schwann cell-axon interaction has been studied. Additionally, two comprehensive analyses of the spectrum of human neurofibromatosis type 2 mutations have been compiled which make up a valuable resource in understanding critical regions of the neurofibromatosis type 2 gene. Neurofibromatosis type 2 screening guidelines for young patients with solitary vestibular schwannomas have been published. The role of electromagnetic radiation via cellular and portable telephones as a predisposing factor to vestibular schwannoma formation has also been the topic of several studies. Based on increased knowledge of the pathways in which merlin functions and the available transgenic and xenograft mouse models, preliminary data regarding directed pharmacotherapy are also summarized. With increased knowledge of the pathologic mechanisms and interacting proteins associated with merlin, the research community is poised to begin trials of targeted interventions in vitro and in the current mouse models.

  18. [Emergency diagnosis of the acute vestibular syndrome].

    Science.gov (United States)

    Tamás, T László; Garai, Tibor; Király, István; Mike, Andrea; Nagy, Csaba; Paukovics, Ágnes; Schmidt, Péter; Szatmári, Ferenc; Tompos, Tamás; Vadvári, Árpád; Szirmai, Ágnes

    2017-12-01

    To diagnose acute vestibular syndrome (AVS) in a prospective study by a new bedside test (providing 1A evidence) based on oculomotor analysis and assessment of hearing loss. To assess the frequency of central and peripheral causes of acute vestibular syndrome in the emergency room. To establish the diagnostic accuracy of acute cranial computed tomography as compared to oculomotor analysis done by video oculography goggles and audiometry. Between 1st March 2016 and 1st March 2017 we documented 125 patients (62 women, 63 men, average age 53 years) in the emergency room of the Petz Aladár County Teaching Hospital using the above bedside and instrumental testing. Diagnosis was verified by cranial magnetic resonance imaging. According to the results of the instrumental examination in AVS in 67% we found a peripheral cause and in 33% a central pathology. In 62% isolated posterior circulation stroke manifested itself by isolated vertigo without additional focal signs and the acute cranial computed tomography showed negative results in 96%. The instrumental examination increased diagnostic accuracy by making the diagnosis of isolated inferior semicircular canal vestibular neuritis possible. The new bedside oculomotor test is suitable for the diagnosis of posterior circulation stroke manifesting with isolated vertigo in early cases, when the routine neuroradiologic methods have a lower sensitivity or are not available. Orv Hetil. 2017; 158(51): 2029-2040.

  19. Laboratory testing of the vestibular system.

    Science.gov (United States)

    Clarke, Andrew H

    2010-10-01

    Recent reports on vestibular testing, relevant to clinical diagnosis, are reviewed.Besides the case history and bedside examination, objective measurement of the vestibuloocular reflex in all of its facets remains the cornerstone in the diagnostic process. In recent years, this has been enhanced considerably by reliable unilateral tests for the otolith organs, most notably by vestibular-evoked myogenic potential recording and estimation of subjective visual vertical. In addition, progress has been made in the investigation of multisensory interaction, involving visual acuity and posturography.Technological developments include improved eye movement measurement techniques, electrotactile and vibrotactile sensory enhancement or substitution, the use of virtual reality devices and motion stimulators such as hexapods and the rediscovery of galvanic vestibular stimulation as a research and diagnostic tool. The recent introduction of new tests, together with the development of novel technologies, is gradually increasing the scope of the physical and bedside examination of the dizzy patient (see chapter 'Medical management of peripheral disorders' in this issue). The use of more complex equipment, such as rotating chairs, linear sleds, hexapods and posturography platforms, is likely to become limited to specialized laboratories and rehabilitation centers in future years. Further, high resolution magnetic resonance tomography (MRT) and computed tomography have allowed insight into the morphology and determination of malformations of the human labyrinth.

  20. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  1. The Modulation of Hippocampal Theta Rhythm by the Vestibular System.

    Science.gov (United States)

    Aitken, Phillip; Zheng, Yiwen; Smith, Paul F

    2017-11-22

    The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3-12 Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, either using natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus and the septum, to the hippocampus, is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia. Copyright © 2017, Journal of Neurophysiology.

  2. Differential central projections of vestibular afferents in pigeons

    Science.gov (United States)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  3. Effect of personal music system use on sacculocollic reflex assessed by cervical vestibular-evoked myogenic potential: A preliminary investigation.

    Science.gov (United States)

    Singh, Niraj Kumar; Sasidharan, Chithra Sobha

    2016-01-01

    Listening to music through a portable personal music system (PMS) is a growing trend, especially among the youth. The preferred listening level in such kinds of PMS has been reported to cross the safe levels and its impact on the auditory system was demonstrated in several previous investigations. Owing to the commonality in several aspects between the auditory and the vestibular systems, it appears likely that the deleterious effects of PMS use could also be impinging on the vestibular system, which has never been investigated. The present study therefore, aimed at evaluating the effects of PMS use on the sacculocollic reflex assessed by the cervical vestibular-evoked myogenic potential (cVEMP) technique. Thirty-two regular PMS users and 32 nonregular PMS users underwent cVEMP testing using alternating polarity 500 Hz tone bursts. The results revealed no significant group difference in latencies and interaural asymmetry ratio. However, the cVEMP was significantly reduced in the group of individuals in whom the diffused field equivalent sound pressure levels (SPLs) were above the damage risk criteria (DRC) compared to those with diffused field equivalent SPLs below it (P< 0.01). Therefore, the use of PMS at high levels of volume controls could be deleterious to the vestibular well-being of an individual.

  4. Effect of personal music system use on sacculocollic reflex assessed by cervical vestibular-evoked myogenic potential: A preliminary investigation

    Directory of Open Access Journals (Sweden)

    Niraj Kumar Singh

    2016-01-01

    Full Text Available Listening to music through a portable personal music system (PMS is a growing trend, especially among the youth. The preferred listening level in such kinds of PMS has been reported to cross the safe levels and its impact on the auditory system was demonstrated in several previous investigations. Owing to the commonality in several aspects between the auditory and the vestibular systems, it appears likely that the deleterious effects of PMS use could also be impinging on the vestibular system, which has never been investigated. The present study therefore, aimed at evaluating the effects of PMS use on the sacculocollic reflex assessed by the cervical vestibular-evoked myogenic potential (cVEMP technique. Thirty-two regular PMS users and 32 nonregular PMS users underwent cVEMP testing using alternating polarity 500 Hz tone bursts. The results revealed no significant group difference in latencies and interaural asymmetry ratio. However, the cVEMP was significantly reduced in the group of individuals in whom the diffused field equivalent sound pressure levels (SPLs were above the damage risk criteria (DRC compared to those with diffused field equivalent SPLs below it (P< 0.01. Therefore, the use of PMS at high levels of volume controls could be deleterious to the vestibular well-being of an individual.

  5. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation.

    Science.gov (United States)

    Cronin, Thomas; Arshad, Qadeer; Seemungal, Barry M

    2017-01-01

    The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections-from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals-typically in combination with other sensory and motor systems-may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  6. Vestibular Deficits in Neurodegenerative Disorders: Balance, Dizziness, and Spatial Disorientation

    Directory of Open Access Journals (Sweden)

    Thomas Cronin

    2017-10-01

    Full Text Available The vestibular system consists of the peripheral vestibular organs in the inner ear and the associated extensive central nervous system projections—from the cerebellum and brainstem to the thalamic relays to cortical projections. This system is important for spatial orientation and balance, both of critical ecological importance, particularly for successful navigation in our environment. Balance disorders and spatial disorientation are common presenting features of neurodegenerative diseases; however, little is known regarding central vestibular processing in these diseases. A ubiquitous aspect of central vestibular processing is its promiscuity given that vestibular signals are commonly found in combination with other sensory signals. This review discusses how impaired central processing of vestibular signals—typically in combination with other sensory and motor systems—may account for the impaired balance and spatial disorientation in common neurodegenerative conditions. Such an understanding may provide for new diagnostic tests, potentially useful in detecting early disease while a mechanistic understanding of imbalance and spatial disorientation in these patients may enable a vestibular-targeted therapy for such problems in neurodegenerative diseases. Studies with state of the art central vestibular testing are now much needed to tackle this important topic.

  7. Making Sense of the Body: the Role of Vestibular Signals.

    Science.gov (United States)

    Lopez, Christophe

    2015-01-01

    The role of the vestibular system in posture and eye movement control has been extensively described. By contrast, how vestibular signals contribute to bodily perceptions is a more recent research area in the field of cognitive neuroscience. In the present review article, I will summarize recent findings showing that vestibular signals play a crucial role in making sense of the body. First, data will be presented showing that vestibular signals contribute to bodily perceptions ranging from low-level bodily perceptions, such as touch, pain, and the processing of the body's metric properties, to higher level bodily perceptions, such as the sense of owning a body, the sense of being located within this body (embodiment), and the anchoring of the visuo-spatial perspective to this body. In the second part of the review article, I will show that vestibular information seems to be crucially involved in the visual perception of biological motion and in the visual perception of human body structure. Reciprocally, observing human bodies in motion influences vestibular self-motion perception, presumably due to sensorimotor resonance between the self and others. I will argue that recent advances in the mapping of the human vestibular cortex afford neuroscientific models of the vestibular contributions to human bodily self-consciousness.

  8. Long-term hearing preservation in vestibular schwannoma

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  9. Evaluation and treatment of vestibular dysfunction in children.

    Science.gov (United States)

    Rine, Rose Marie; Wiener-Vacher, Sylvette

    2013-01-01

    The effect of vestibular dysfunction since birth is more debilitating than that attained later in life, and unlike adults, children with vestibular dysfunction since or shortly after birth do not recover function without intervention. The purpose of this report is to provide an overview of the etiology of vestibular dysfunction in children as well as the related impairments, and to describe testing methods and evidence based interventions to ameliorate the vestibular related impairments in children. In recent years, investigations have revealed that vestibular dysfunction is more common in children than previously thought, with consequent impairments in motor development, balance and reading abilities. The dysfunction may be due to central or peripheral lesions, each with distinct presentation of symptoms and test results. Common etiologies and clinical presentation of vestibular dysfunction in children are reviewed; appropriate screening and diagnostic techniques and efficacious medical and rehabilitation interventions are presented. Despite advances in clinical and diagnostic testing of vestibular function in children and infants, testing of vestibular function is not typically done. Comprehensive testing of signs and symptoms is critical for diagnosis and implementation of appropriate interventions.

  10. Paediatric Acquired Recto –Vestibular Fistula: Experience In Accra ...

    African Journals Online (AJOL)

    The association of acquired recto-vaginal fistula (RVF) with the human immunodeficiency virus is increasingly being recognized and reported in the literature Congenital recto - vestibular fistulae associated with imperforate anus is not uncommon, but it is rare to see children with acquired recto - vestibular fistula. From 1997 ...

  11. Connections of the vestibular nuclei in the rabbit

    NARCIS (Netherlands)

    A.H. Epema

    1990-01-01

    textabstractThis thesis descnbes the afferent, efferent and intrinsic connections of the vestibular nuclei in the Dutch belted rabbit. Different anatomical tracing techniques were used to study these projections. A description of the vestibular complex was added, since recent data for the rabbit

  12. Vestibular vertigo in emergency neurology and cervical osteochondrosis

    Directory of Open Access Journals (Sweden)

    T S Barykova

    2010-01-01

    had acute peripheral vestibular pathology that required cerebral stroke or hemorrhage to be ruled out according to clinical data in most cases. Intermittent, recurrent, short-term vestibular crisis in the examined group of patients is temporarily or clinically unrelated to an exacerbation of cervical osteochondrosis.

  13. Molecular mechanisms of vestibular compensation in the central vestibular system--review.

    Science.gov (United States)

    Kitahara, T; Takeda, N; Kiyama, H; Kubo, T

    1998-01-01

    Vestibular compensation consists of two stages: the inhibition of the contralesional medial vestibular nucleus (contra-MVe) activities at the acute stage after unilateral labyrinthectomy (UL) and the recovery and maintenance of the ipsilesional MVe (ipsi-MVe) spontaneous activities at the chronic stage after UL. In this paper, we reviewed molecular mechanisms of vestibular compensation in the central vestibular system using several morphological and pharmacological approaches in rats. Based on our examinations, we propose the following hypotheses: i) at the acute stage after UL, the activated neurons in the ipsi-MVe project their axons into the flocculus to inhibit the contra-MVe neurons via the NMDA receptor, nitric oxide (NO) and/or GABA-mediated signalling, resulting in the restoration of balance between intervestibular nuclear activities. ii) At the chronic stage after UL, the flocculus depresses the inhibitory effects on the ipsi-MVe neurons via protein phosphatase 2A (PP2A) beta, protein kinase C (PKC) and glutamate receptor (GluR) delta-2, to help the recovery and maintenance of ipsi-MVe activities.

  14. Postoperative management of nasal vestibular stenosis - The custom-made vestibular device

    NARCIS (Netherlands)

    Menger, Dirk-Jan; Lohuis, Peter J. F. M.; Kerssemakers, Steven; Nolst Trenité, Gilbert J.

    2005-01-01

    Objective: To evaluate the effect of a custom-made postoperative vestibular device on the occurrence and severity), of restenosis. Design: This was a retrospective study conducted at the Department of Otorhinolaryngology/Head and Neck Surgery, Center for Facial Plastic and Reconstructive Surgery of

  15.  A Novel V- Silicone Vestibular Stent: Preventing Vestibular Stenosis andPreserving Nasal Valves

    Directory of Open Access Journals (Sweden)

    Rashid Al Abri

    2012-01-01

    Full Text Available  This report presents a novel style of placing nasal stents. Patientsundergoing surgical procedures in the region of nasal vestibuleand nasal valves are at risk of developing vestibular stenosis andlifelong problems with the external and internal nasal valves;sequels of the repair. The objective of the report is to demonstratea simple and successful method of an inverted V- Stent placementto prevent potential complication of vestibular stenosis and nasalvalve compromise later in life. Following a fall on a sharp edge ofa metallic bed, a sixteen month old child with a deep laceratednasal wound extending from the collumellar base toward thetip of the nose underwent surgical exploration and repair of thenasal vestibule and nasal cavity. A soft silicone stent fashioned asinverted V was placed bilaterally. The child made a remarkablerecovery with no evidence of vestibular stenosis or nasal valveabnormalities. In patients with nasal trauma involving the nasalvestibule and internal and external nasal valves stent placementavoids sequels, adhesions, contractures, synechia vestibularstenosis and fibrosis involving these anatomical structures.The advantages of the described V- stents over the traditionalreadymade ridged nasal stents, tubing’s and composite aural graftsare: a technical simplicity of use, b safety, c less morbidity, dmore comfortable, and e economical. To our knowledge, this isthe first report of such a stent for prevention of vestibular stenosisand preserving nasal valves.

  16. Vestibular schwannoma with contralateral facial pain – case report

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammad

    2003-03-01

    Full Text Available Abstract Background Vestibular schwannoma (acoustic neuroma most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon. Case presentation Among 156 cases of operated vestibular schwannoma, we found one case with unusual presentation of contralateral hemifacial pain. Conclusion The presentation of contralateral facial pain in the vestibular schwannoma is rare. It seems that displacement and distortion of the brainstem and compression of the contralateral trigeminal nerve in Meckel's cave by the large mass lesion may lead to this atypical presentation. The best practice in these patients is removal of the tumour, although persistent contralateral pain after operation has been reported.

  17. Congenital and compensated vestibular dysfunction in childhood: an overlooked entity.

    Science.gov (United States)

    Weiss, Avery H; Phillips, James O

    2006-07-01

    We report five children with previously unrecognized vestibular dysfunction detected by clinical examination and confirmed by quantitative vestibular testing. Patient 1 presented with fluctuating visual acuity and intermittent nystagmus. Patient 2 had congenital hearing loss associated with imbalance, delayed motor development, and cyclic vomiting. Patient 3 had neurotrophic keratitis with an intermittent head tilt, imbalance, and motor delays. Patient 4 showed ataxia and eye movement abnormalities following traumatic brain injury and had reading difficulties. Patient 5 had episodic vertigo and eye movement abnormalities from infancy. Clinical vestibular testing emphasized spontaneous nystagmus, rapid head thrust, and assessment of post-rotatory nystagmus. Quantitative vestibular testing included the sinusoidal chair rotation and velocity step tests, measurement of dynamic visual acuity, post-head-shake nystagmus, and computerized platform posturography. Pediatric neurologists encounter children with congenital and compensated vestibular dysfunction, which can be recognized on the basis of relevant history and clinical abnormalities of the ocular-ocular reflex.

  18. Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation.

    Science.gov (United States)

    Shao, Mei; Popratiloff, Anastas; Hirsch, June C; Peusner, Kenna D

    2009-01-01

    Vestibular compensation refers to the recovery of function occurring after unilateral vestibular deafferentation, but some patients remain uncompensated. Similarly, more than half of the operated chickens compensate three days after unilateral vestibular ganglionectomy (UVG), but the rest remain uncompensated. This review focuses on the studies performed on the principal cells of the chick tangential nucleus after UVG. The tangential nucleus is a major avian vestibular nucleus whose principal cells are all second-order, vestibular reflex projection neurons participating in the vestibuloocular and vestibulocollic reflexes controlling posture, balance, and eye movements. Using whole-cell patch-clamp approach in brain slice preparations, spontaneous spike firing, ionic conductances, and spontaneous excitatory postsynaptic currents (sEPSCs) are recorded in principal cells from controls and operated chickens three days after UVG. In compensated chickens, the proportion of spontaneous spike firing principal cells and their spike discharge rate are symmetric on the lesion and intact sides, with the rates increased over controls. However, in the uncompensated chickens, the spike discharge rate increases on the lesion side, but not on the intact side, where only silent principal cells are recorded. In all the experimental groups, including controls, silent principal cells are distinguished from spontaneous spiking cells by smaller persistent sodium conductances and higher activation thresholds for the fast sodium channel. In addition, silent principal cells on the intact side of uncompensated chickens have larger dendrotoxin-sensitive potassium conductances, with a higher ratio of immunolabeling for surface/cytoplasmic expression of a dendrotoxin-sensitive, potassium channel subunit, Kv1.1. Finally, in compensated chickens, sEPSC frequency is symmetric bilaterally, but in uncompensated chickens sEPSC frequency increased only on the lesion side, where the expression of Kv1

  19. Vestibular characterization in the menstrual cycle Caracterização vestibular no ciclo menstrual

    Directory of Open Access Journals (Sweden)

    Cintia Ishii

    2009-06-01

    Full Text Available Hormonal disorders in the menstrual cycle can affect labyrinthine fluid homeostasis, causing balance and hearing dysfunctions. STUDY DESIGN: Clinical prospective. AIM: compare the results from vestibular tests in young women, in the premenstrual and postmenstrual periods. MATERIALS AND METHODS: twenty women were selected with ages ranging from 18 to 35 years, who were not using any kind of contraceptive method for at least six months, and without vestibular or hearing complaints. The test was carried out in each subject before and after the menstrual period, respecting the limit of ten days before or after menstruation. RESULTS: there was a statistically significant difference in the menstrual cycle phases only in the following vestibular tests: calibration, saccadic movements, PRPD and caloric-induced nystagmus. We also noticed that age; a regular menstrual cycle; hearing loss or dizziness cases in the family; and premenstrual symptoms such as tinnitus, headache, sleep disorders, anxiety, nausea and hyperacusis can interfere in the vestibular test. CONCLUSION: there are differences in the vestibular tests of healthy women when comparing their pre and postmenstrual periods.As alterações hormonais do ciclo menstrual podem comprometer a homeostase dos fluidos labirínticos, gerando alterações no equilíbrio e na audição. FORMA DO ESTUDO: Clínico prospectivo. OBJETIVO: Comparar os resultados dos testes do exame vestibular em mulheres jovens, nos períodos pré e pós-menstrual. MATERIAL E MÉTODO: Foram selecionadas vinte mulheres, entre dezoito e trinta e cinco anos, que não fizessem uso de qualquer tipo de anticoncepcional, com audição normal e sem queixas vestibulares. O exame vestibular foi realizado em cada participante no período pré e no período pós-menstrual, em ordem aleatória, e respeitando o limite de até dez dias antes do início da menstruação e até dez dias após o início da menstruação. RESULTADO: Foi observada

  20. State Anxiety Subjective Imbalance and Handicap in Vestibular Schwannoma.

    Science.gov (United States)

    Saman, Yougan; Mclellan, Lucie; Mckenna, Laurence; Dutia, Mayank B; Obholzer, Rupert; Libby, Gerald; Gleeson, Michael; Bamiou, Doris-Eva

    2016-01-01

    Evidence is emerging for a significant clinical and neuroanatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety, and there is a relationship between increased state anxiety and worsening balance function. (1) To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit. (2) To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. Two separate cohorts of vestibular schwannoma (VS) patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials, and caloric responses) and questionnaire assessments [vertigo handicap questionnaire (VHQ), vertigo symptom scale (VSS), and state-trait anxiety inventory (STAIY)]. Fifteen post-resection VS patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1). Forty-five patients with VS in situ formed the cohort for Experiment 2 (Aim 2). Experiment 1: VS subjects (N = 15) with a complete post-resection unilateral vestibular deafferentation completed a state anxiety questionnaire before caloric assessment and again afterward with the point of maximal vertigo as the reference (Aim 1). Experiment 2: state anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of patients with VS in situ presenting with balance symptoms (Group 1, N = 26) and without balance symptoms (Group 2, N = 11) (Aim 2). The presence of balance symptoms was defined as having a positive score on the VSS-VER. In Experiment 1, a significant difference (p handicap (p < 0.001). Anxiety

  1. The molecular biology and novel treatments of vestibular schwannomas.

    Science.gov (United States)

    Fong, Brendan; Barkhoudarian, Garni; Pezeshkian, Patrick; Parsa, Andrew T; Gopen, Quinton; Yang, Isaac

    2011-11-01

    Vestibular schwannomas are histopathologically benign tumors arising from the Schwann cell sheath surrounding the vestibular branch of cranial nerve VIII and are related to the NF2 gene and its product merlin. Merlin acts as a tumor suppressor and as a mediator of contact inhibition. Thus, deficiencies in both NF2 genes lead to vestibular schwannoma development. Recently, there have been major advances in our knowledge of the molecular biology of vestibular schwannomas as well as the development of novel therapies for its treatment. In this article the authors comprehensively review the recent advances in the molecular biology and characterization of vestibular schwannomas as well as the development of modern treatments for vestibular schwannoma. For instance, merlin is involved with a number of receptors including the CD44 receptor, EGFR, and signaling pathways, such as the Ras/raf pathway and the canonical Wnt pathway. Recently, merlin was also shown to interact in the nucleus with E3 ubiquitin ligase CRL4(DCAF1). A greater understanding of the molecular mechanisms behind vestibular schwannoma tumorigenesis has begun to yield novel therapies. Some authors have shown that Avastin induces regression of progressive schwannomas by over 40% and improves hearing. An inhibitor of VEGF synthesis, PTC299, is currently in Phase II trials as a potential agent to treat vestibular schwannoma. Furthermore, in vitro studies have shown that trastuzumab (an ERBB2 inhibitor) reduces vestibular schwannoma cell proliferation. With further research it may be possible to significantly reduce morbidity and mortality rates by decreasing tumor burden, tumor volume, hearing loss, and cranial nerve deficits seen in vestibular schwannomas.

  2. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  3. Neurosonology Accuracy for Isolated Acute Vestibular Syndromes.

    Science.gov (United States)

    Tábuas-Pereira, Miguel; Sargento-Freitas, João; Isidoro, Luís; Silva, Fernando; Galego, Orlando; Nunes, César; Cordeiro, Gustavo; Cunha, Luís

    2017-12-01

    The clinical approach to acute vestibular syndromes is often complex for the physician. Neurosonology offers a noninvasive method to study the cervicocephalic circulation when a vascular etiology is suspected. We aim to evaluate the diagnostic accuracy of a vascular neurosonological exam in isolated acute vestibular syndrome. All patients submitted to cerebrovascular ultrasound and magnetic resonance imaging during the period between 2011 and 2015 with acute isolated vestibular syndrome. Those with any clinical sign of brainstem lesion on presentation were excluded. All patients performed the neuroimaging study (brain computed tomography and magnetic resonance imaging) and neurologic surveillance. Neurosonological exam included all intra- and extracranial segments of the vertebrobasilar circulation. Positive ultrasound exam was defined as the presence of stenotic or occlusive disease in any of these segments related to the infarcted area. A total of 108 patients were included: 60 (53.6%) were males (mean age: 60.75 years (standard deviation, 14.17)). In 27 patients (25.0%) a cerebral ischemic lesion was found to be the cause of the vertigo. Neurosonological assessment showed a sensitivity of 40.7% (95% confidence interval (CI): 22.4; 61.2), specificity of 100% (95% CI: 95.5; 100.0), positive predictive value (PPV) of 100% (95% CI: 71.5; 100.0), and negative predictive value (NPV) of 83.5% (95% CI: 74.6; 90.3). Our study suggests that cerebrovascular ultrasound is a highly specific method for the diagnosis of cerebrovascular vertigo. However, its low sensitivity makes it a poor candidate for screening. © 2017 by the American Institute of Ultrasound in Medicine.

  4. EL SINDROME VESTIBULAR EN EL ADULTO MAYOR

    OpenAIRE

    Suárez, Hamlet; Suárez, Alejo

    2016-01-01

    El vértigo, la inestabilidad y las caídas tienen una incidencia relevante en el adulto mayor, disminuye su calidad de vida y puede ser causa de muerte en esta población. Este artículo describe las presentaciones clínicas y el abordaje de la evaluación de la patología vestibular en este grupo de edad, utilizando diferentes instrumentos para el diagnóstico así como también las reglas generales del tratamiento.

  5. EL SINDROME VESTIBULAR EN EL ADULTO MAYOR

    Directory of Open Access Journals (Sweden)

    Dr. Hamlet Suárez

    2016-11-01

    Full Text Available El vértigo, la inestabilidad y las caídas tienen una incidencia relevante en el adulto mayor, disminuye su calidad de vida y puede ser causa de muerte en esta población. Este artículo describe las presentaciones clínicas y el abordaje de la evaluación de la patología vestibular en este grupo de edad, utilizando diferentes instrumentos para el diagnóstico así como también las reglas generales del tratamiento.

  6. Vestibular schwannoma presenting with sudden facial paralysis.

    Science.gov (United States)

    Wexler, D B; Fetter, T W; Gantz, B J

    1990-04-01

    Facial paralysis is an unusual manifestation of vestibular schwannoma, and generally signifies an advanced stage of tumor growth. We describe a case of eighth-nerve schwannoma that presented initially with rapid-onset complete unilateral facial paralysis. At the time of operation the nerve was found to be electrically intact despite marked compression by tumor. The facial nerve was preserved and facial motion has partially recovered postoperatively. All unexplained persistent facial paralysis should be evaluated by magnetic resonance imaging with paramagnetic contrast enhancement.

  7. Symptomatic recovery in Miller Fisher Syndrome parallels vestibular-perceptual and not vestibular-ocular reflex function

    Directory of Open Access Journals (Sweden)

    Barry M Seemungal

    2011-02-01

    Full Text Available Unpleasant visual symptoms including oscillopsia and dizziness may occur when there is unexpected motion of the visual world across the subject’s retina (‘retinal-slip’ as in an acute spontaneous nystagmus or on head movement with an acute ophthalmoplegia. In contrast, subjects with chronic ocular dysmotility, e.g. congenital nystagmus or CPEO (chronic progressive external ophthalmoplegia, are typically symptom free. The adaptive processes that render chronic patients asymptomatic are obscure but may include a suppression of oscillopsia perception as well as an increased tolerance to perceived oscillopsia. Such chronic asymptomatic patients display an attenuation of vestibular-mediated angular velocity perception, implying a possible contributory role in the adaptive process. In order to assess causality between symptoms, signs (i.e. eye-movements and vestibular perceptual function, we prospectively assessed symptom ratings and ocular-motor and perceptual vestibular function, in a patient with acute but transient ophthalmoplegia due to Miller Fisher Syndrome (as a model of visuo-vestibular adaptation. The data show that perceptual measures of vestibular function display a significant attenuation as compared to ocularmotor measures during the acute, symptomatic period. Perhaps significantly, both symptomatic recovery and normalisation of vestibular perceptual function were delayed and then occurred in a parallel fashion. This is the first report showing that symptomatic recovery of visuo-vestibular symptoms is better paralleled by vestibular-perceptual testing than VOR (vestibular ocular reflex measures. The findings may have implications for the understanding of patients with chronic vestibular symptoms where VOR testing is often unhelpful.

  8. Reabilitação vestibular na criança: estudo preliminar Vestibular rehabilitation in children: preliminary study

    Directory of Open Access Journals (Sweden)

    Roseli S. M. Bittar

    2002-08-01

    Full Text Available Forma de estudo: Clínico prospectivo. Objetivo: O estudo analisa prospectivamente os resultados da Reabilitação Vestibular pelo método de Cawtorne & Cooksey em 22 crianças, portadoras de vestibulopatia periférica, associada ou não a sintomas centrais, com idade média de 8,6 anos. Material e método: Os exames quantitativos da função vestibular utilizados para quantificar a vestibulopatia foram a eletronistagmografia e a prova rotatória pendular decrescente (PRPD, mas a história clínica altamente sugestiva de processo vestibular foi considerada diagnóstica mesmo na presença de exames normais. Resultado: Os resultados apontam a Reabilitação Vestibular como uma opção válida no tratamento das vestibulopatias na infância, uma vez que não houve casos não responsivos ao tratamento.Study design: Clinical prospective. Aim: The authors analyze prospectively 22 children (mean age 8,6 years with vestibulopathy treated with Vestibular Rehabilitation in order to verify its results. Material and methody: Twenty two children with peripheral vestibular disorders associated or not to central symptoms were submitted to vestibular stimulation by the method of Cawthorne & Cooksey. The methods used to quantify the vestibular abnormalities were the electronystagmography and rotational chair testing, but a suggestive history of vestibular disorder was accepted even the exams were normal. Results: All the patients improved and our results suggest that VR is a therapeutic alternative for the treatment of vestibular disorders in the children.

  9. STATE ANXIETY, SUBJECTIVE IMBALANCE AND HANDICAP IN VESTIBULAR SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Yougan Saman

    2016-07-01

    Full Text Available ABSTRACTEvidence is emerging of a significant clinical and neuro-anatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety and there is a relationship between increased state anxiety and worsening balance function. Aims1.To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit.2.To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. MethodsTwo separate cohorts Vestibular Schwannoma (VS patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials and caloric responses and questionnaire assessment (Vertigo handicap Questionnaire, Vertigo Symptom Scale, State Trait Anxiety InventoryFifteen post resection Vestibular schwannoma patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1. Forty-five patients with VS in-situ and with preserved vestibular function formed the cohort for Experiment 2 (Aim 2. Experiment 1: VS subjects (N=15 with a complete post-resection unilateral vestibular deafferentation completed a State anxiety questionnaire before caloric assessment and again afterwards with the point of maximal vertigo as the reference (Aim 1. Experiment 2: State anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of presenting with balance symptoms (Group 1 N=26 and without balance symptoms (Group 2 N=11 (Aim 2. The presence of balance symptoms was defined as having a positive score on the VSS-VER.ResultsIn experiment 1, a significant difference (p<0.01 was found when comparing

  10. Vestibular Rehabilitation Therapy: Review of Indications, Mechanisms, and Key Exercises

    Science.gov (United States)

    Song, Hyun Seok; Kim, Ji Soo

    2011-01-01

    Vestibular rehabilitation therapy (VRT) is an exercise-based treatment program designed to promote vestibular adaptation and substitution. The goals of VRT are 1) to enhance gaze stability, 2) to enhance postural stability, 3) to improve vertigo, and 4) to improve activities of daily living. VRT facilitates vestibular recovery mechanisms: vestibular adaptation, substitution by the other eye-movement systems, substitution by vision, somatosensory cues, other postural strategies, and habituation. The key exercises for VRT are head-eye movements with various body postures and activities, and maintaining balance with a reduced support base with various orientations of the head and trunk, while performing various upper-extremity tasks, repeating the movements provoking vertigo, and exposing patients gradually to various sensory and motor environments. VRT is indicated for any stable but poorly compensated vestibular lesion, regardless of the patient's age, the cause, and symptom duration and intensity. Vestibular suppressants, visual and somatosensory deprivation, immobilization, old age, concurrent central lesions, and long recovery from symptoms, but there is no difference in the final outcome. As long as exercises are performed several times every day, even brief periods of exercise are sufficient to facilitate vestibular recovery. Here the authors review the mechanisms and the key exercises for each of the VRT goals. PMID:22259614

  11. Impedance pattern of vaginal and vestibular mucosa in cyclic goats

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The changes of vaginal and vestibular impedance during the oestrous cycle in goats were examined. The onset of oestrus was teased with a buck once a day during the experiment. Impedance was mea­sured by a four-terminal method. The vaginal impedance was recorded under slight pressure of electrodes to the vaginal dorsal wall at the cervix. The vestibular impedance was recorded under slight pressure of electrodes to the vestibular dorsal wall 5 cm from the vulva and at the vulva. The im­pe­dan­ce was measured once a day from 4 days before the expected oestrus to 6 days after onset of oestrus. The vaginal impedance at the cervix decreased during pro-oestrus (P < 0.01 and increased du­ring oestrus (P < 0.01. The vestibular impedance 5 cm from the vulva decreased during pro-oestrus (P < 0.01 and increased after oestrus (P < 0.01. The decrease of vaginal impedance during peri-oestrus was nearly twofold in comparison with the vestibular impedance 5 cm from the vulva. No sig­ni­fi­cant decrease of the vestibular impedance at the vulva was found during the oestrous cycle. The results indicate that the vaginal impedance at the cervix and vestibular impedance 5 cm from the vulva measured by means of a four-terminal method during the oestrous cycle display cyclic changes that are closely related to the oestrous behaviour of goats.

  12. Betahistine treatment in managing vertigo and improving vestibular compensation: clarification.

    Science.gov (United States)

    Lacour, Michel

    2013-01-01

    Betahistine dihydrochloride (betahistine) is currently used in the management of vertigo and vestibular pathologies with different aetiologies. The main goal of this review is to clarify the mechanisms of action of this drug, responsible for the symptomatic relief of vertigo and the improvement of vestibular compensation. The review starts with a brief summary recalling the role of histamine as a neuromodulator/neurotransmitter in the control of the vestibular functions, and the role of the histaminergic system in vestibular compensation. Then are presented data recorded in animal models demonstrating that betahistine efficacy can be explained by mechanisms targeting the histamine receptors (HRs) at three different levels: the vascular tree, with an increase of cochlear and vestibular blood flow involving the H1R; the central nervous system, with an increase of histamine turnover implicating the H3R, and the peripheral labyrinth, with a decrease of vestibular input implying the H3R/H4R. Clinical data from vestibular loss patients show the impact of betahistine treatment for the long-term control of vertigo, improvement of balance and quality of life that can be explained by these mechanisms of action. However, two conditions, at least, are required for reaching the betahistine therapeutic effect: the dose and the duration of treatment. Experimental and clinical data supporting these requirements are exposed in the last part of this review.

  13. Adaptive plasticity in vestibular influences on cardiovascular control

    Science.gov (United States)

    Yates, B. J.; Holmes, M. J.; Jian, B. J.

    2000-01-01

    Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.

  14. The relationship between senile hearing loss and vestibular activity

    Directory of Open Access Journals (Sweden)

    Hanifi Kurtaran

    Full Text Available Abstract Introduction: A considerable high number of SNHL patients also suffer from dizziness and related vestibular symptoms. Objective: To evaluate the association of vestibular dysfunction and sensorineural hearing loss (SNHL in adult patients. Methods: Prospective, double-blinded, controlled studies composed by 63 adult patients without any vestibular symptoms or diagnosed vestibular diseases. Audiological status was measured with pure tone audiometry and the vestibular system was tested with vestibular evoked myogenic potential (VEMP. Patients were divided into two groups: a study group (patients with SNHL and a control group (patients without SNHL. VEMP results of the groups were calculated and compared. Results: Mean P1 (23.54 and N1 (30.70 latencies were prolonged in the study group (p < 0.001 and the amplitudes of the study group were significantly reduced (p < 0.001. Both parameters of the VEMP test were abnormal in the study group when compared to the control group. Conclusions: These findings suggest that age-related SNHL may be accompanied by vestibular weakness without any possible predisposing factors for vestibulopathy.

  15. Recovery of dynamic visual acuity in bilateral vestibular hypofunction.

    Science.gov (United States)

    Herdman, Susan J; Hall, Courtney D; Schubert, Michael C; Das, Vallabh E; Tusa, Ronald J

    2007-04-01

    To determine the effect of vestibular exercises on the recovery of visual acuity during head movement in patients with bilateral vestibular hypofunction (BVH). Prospective, randomized, double-blinded study. Outpatient clinic, academic setting. Thirteen patients with BVH, aged 47 to 73 years. One group (8 patients) performed vestibular exercises designed to enhance remaining vestibular function, and the other (5 patients) performed placebo exercises. Measurements of dynamic visual acuity (DVA) during predictable head movements using a computerized test; measurement of intensity of oscillopsia using a visual analog scale. As a group, patients who performed vestibular exercises showed a significant improvement in DVA (P = .001), whereas those performing placebo exercises did not (P = .07). Only type of exercise (ie, vestibular vs placebo) was significantly correlated with change in DVA. Other factors examined, including age, time from onset, initial DVA, and complaints of oscillopsia and disequilibrium, were not significantly correlated with change in DVA. Change in oscillopsia did not correlate with change in DVA. Use of vestibular exercises is the main factor involved in recovery of DVA in patients with BVH. We theorize that exercises may foster the use of centrally programmed eye movements that could substitute for the vestibulo-ocular reflex. clinicaltrials.gov Identifier: NCT00411216.

  16. Responses evoked by a vestibular implant providing chronic stimulation.

    Science.gov (United States)

    Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.

  17. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    Science.gov (United States)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  18. The relationship between senile hearing loss and vestibular activity.

    Science.gov (United States)

    Kurtaran, Hanifi; Acar, Baran; Ocak, Emre; Mirici, Emre

    A considerable high number of SNHL patients also suffer from dizziness and related vestibular symptoms. To evaluate the association of vestibular dysfunction and sensorineural hearing loss (SNHL) in adult patients. Prospective, double-blinded, controlled studies composed by 63 adult patients without any vestibular symptoms or diagnosed vestibular diseases. Audiological status was measured with pure tone audiometry and the vestibular system was tested with vestibular evoked myogenic potential (VEMP). Patients were divided into two groups: a study group (patients with SNHL) and a control group (patients without SNHL). VEMP results of the groups were calculated and compared. Mean P1 (23.54) and N1 (30.70) latencies were prolonged in the study group (p<0.001) and the amplitudes of the study group were significantly reduced (p<0.001). Both parameters of the VEMP test were abnormal in the study group when compared to the control group. These findings suggest that age-related SNHL may be accompanied by vestibular weakness without any possible predisposing factors for vestibulopathy. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. The clinical manifestations of vestibular migraine: A review.

    Science.gov (United States)

    O'Connell Ferster, Ashley P; Priesol, Adrian J; Isildak, Huseyin

    2017-06-01

    To provide an overview of vestibular migraines presentation, pathology, and diagnosis, as well as an update on current diagnostic criteria. A review of the most recent literature on vestibular migraines was performed. Vestibular migraine is a process with significant impact on the quality of life for those afflicted with the disease, with attacks of spontaneous or positional vertigo and migraine symptoms lasting several minutes to 72h. Inner ear disease can co-exist with migraine and the vestibular symptoms occurring with vestibular migraine can mimic inner ear disorders providing a challenge for clinicians in establishing diagnosis. Recent diagnostic criteria for vestibular migraine proposed by a joint committee of the Bárány Society and the International Headache Society provide an important standard for clinical diagnosis and research endeavor. Vestibular migraine is a challenging disease process to both diagnose and treat. Proper diagnosis and treatment requires a thorough understanding of the current literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hyperventilation-induced nystagmus in patients with vestibular schwannoma.

    Science.gov (United States)

    Califano, Luigi; Iorio, Giuseppina; Salafia, Francesca; Mazzone, Salvatore; Califano, Maria

    2015-02-01

    To determine the utility of the hyperventilation test (HVT) in the diagnosis of vestibular schwannoma (VS). A retrospective analysis of hyperventilation-induced nystagmus (HVIN) in 45 patients with unilateral VS. A tertiary referral center. Forty-five patients with VS; 30 patients with chronic vestibular neuritis; 20 healthy subjects with normal hearing and without symptoms or a history of vertigo, migraine, or neurological diseases (control group). Audiological and vestibular examination; "side-stream" measurement of end-tidal CO2 pressure (P(EtCO2)) to standardize the procedure; magnetic resonance imaging (MRI) centered on the cerebellopontine angle. An analysis of HVIN, its patterns, and its appearance threshold via the measurement of P(EtCO2) correlations with the tumor size. HVIN was observed in 40 of 45 cases (88.9%) in the schwannoma group and in 12 of 30 cases (40%) in the chronic vestibular neuritis group; HVIN was not observed in the control group (0/20 cases) (p hyperventilation event causes metabolic changes in the vestibular system and reveals a latent vestibular asymmetry. The presence of an excitatory pattern is the major criterion that suggests VS in patients with signs of unilateral vestibular deficit.

  1. Vestibular animal models: contributions to understanding physiology and disease.

    Science.gov (United States)

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  2. Intrinsic membrane properties of central vestibular neurons in rodents.

    Science.gov (United States)

    Eugène, Daniel; Idoux, Erwin; Beraneck, Mathieu; Moore, L E; Vidal, Pierre-Paul

    2011-05-01

    Numerous studies in rodents have shown that the functional efficacy of several neurotransmitter receptors and the intrinsic membrane excitability of central vestibular neurons, as well as the organization of synaptic connections within and between vestibular nuclei can be modified during postnatal development, after a lesion of peripheral vestibular organs or in vestibular-deficient mutant animals. This review mainly focuses on the intrinsic membrane properties of neurons of the medial vestibular nuclei of rodents, their postnatal maturation, and changes following experimental or congenital alterations in vestibular inputs. It also presents the concomitant modifications in the distribution of these neurons into different neuron types, which has been based on their membrane properties in relation to their anatomical, biochemical, or functional properties. The main points discussed in this review are that (1) the intrinsic membrane properties can be used to distinguish between two dominant types of neurons, (2) the system remains plastic throughout the whole life of the animal, and finally, (3) the intracellular calcium concentration has a major effect on the intrinsic membrane properties of central vestibular neurons.

  3. Treating vertigo with vestibular rehabilitation: results in 155 patients.

    Science.gov (United States)

    Bittar, R S M; Pedalini, M E B; Lorenzi, M C; Formigoni, L G

    2002-01-01

    Balance is fundamental to our daily activities and the vestibular system, together with vision and proprioceptive functions, are the main structures involved in this process. Dizziness is the main clinical manifestation of malfunction of these systems. The mechanisms of vestibular compensation are one of the most studied aspects since they play an important role in the patient's everyday activities. In this retrospective description of a series of cases the authors present their results in 155 patients that underwent a program of vestibular rehabilitation (VR). The program, first described by Cawthorne and Coosey, is based on mechanisms of potentiation of the cervico-ocular reflex and substitution of the lost vestibular cues for visual and somatosensory cues. The results were satisfactory (remission or partial cure) in 75.5% of the patients, with an average treatment time of up to 2 months and 5 or fewer sessions performed in most of the cases. The results were somewhat inferior in those cases in which a central vestibular lesion or more than one etiologic factor was present. The results of a subgroup of elderly patients (age > 65 years) were similar to those of the total number of studied subjects. Vestibular rehabilitation, associated to the specific etiological treatment, appears to be a very useful tool in the management of patients suffering from dizziness of all ages, although different clinical responses to the therapy may vary according to the presence of a central or a peripheral vestibular lesion or multiple etiological factors.

  4. Laboratory examinations for the vestibular system.

    Science.gov (United States)

    van de Berg, Raymond; Rosengren, Sally; Kingma, Herman

    2018-02-01

    In the last decades, researchers suggested that clinical assessment of labyrinthine function in detail became easy thanks to video head impulse tests (VHITs), vestibular evoked myogenic potential test (VEMP) and video-oculography (VOG). It has been argued that they can replace electronystagmography, the caloric and rotatory chair tests. This review addresses the latest evaluations of these tests and the opportunities they offer, but also the limitations in clinical practice. The VHIT and suppression head impulse test (SHIMP) are under ideal circumstances able to accurately identify deficits of the VOR in 3D. However, in a relevant part of the patient population, pupil tracking is inaccurate, video-goggles slip and VOR quantification is problematic. The dissociation between the VHIT and caloric test suggests that these tests are complementary. A new 3D-VOG technique claims to quantify eye torsion better than before, opening multiple diagnostic possibilities. VEMPs remain difficult to standardize. Variability in normal cervical vestibular-evoked myogenic potential amplitude is large. VEMPs become smaller or absent with age, raising questions of whether there is a lower normal limit at all. Recent research shows that the labyrinth is directly stimulated in the MRI offering new opportunities for diagnostics and research. In clinical practice, the VHIT, SHIMP, VEMP and new 3D-VOG techniques improve diagnostic power. Unfortunately, technical issues or variability prevent reliable quantitative evaluation in a part of the regular patient population. The traditional caloric and rotatory chair test can still be considered as valuable complementary tests.

  5. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  6. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial

  7. Vestibular syndrome: a change in internal spatial representation.

    Science.gov (United States)

    Borel, L; Lopez, C; Péruch, P; Lacour, M

    2008-12-01

    The vestibular system contributes to a wide range of functions from reflexes to spatial representation. This paper reviews behavioral, perceptive, and cognitive data that highlight the role of changes in internal spatial representation on the vestibular syndrome. Firstly, we review how visual vertical perception and postural orientation depend on multiple reference frames and multisensory integration and how reference frames are selected according to the status of the peripheral vestibular system (i.e., unilateral or bilateral hyporeflexia), the environmental constraints (i.e., sensory cues), and the postural constraints (i.e., balance control). We show how changes in reference frames are able to modify vestibular lesion-induced postural and locomotor deficits and propose that fast changes in reference frame may be considered as fast-adaptive processes after vestibular loss. Secondly, we review data dealing with the influence of vestibular loss on higher levels of internal representation sustaining spatial orientation and navigation. Particular emphasis is placed on spatial performance according to task complexity (i.e., the required level of spatial knowledge) and to the sensory cues available to define the position and orientation within the environment (i.e., real navigation in darkness or visual virtual navigation without any actual self-motion). We suggest that vestibular signals are necessary for other sensory cues to be properly integrated and that vestibular cues are involved in extrapersonal space representation. In this respect, vestibular-induced changes would be based on a dynamic mental representation of space that is continuously updated and that supports fast-adaptive processes.

  8. Diagnosis of acute unilateral vestibular deficit by virtual reality.

    Science.gov (United States)

    Mora, Renzo; Cesarani, Antonio; Meloni, Francesco; Passali, Francesco Maria; Mora, Francesco; Passali, Giulio Cesare; Barbieri, Marco

    2004-01-01

    The aim of our study was to establish a new diagnostic approach, through the use of virtual reality, to the study of the subjective vertical bar in unilateral peripheral vestibular dysfunction. We subjected 174 patients with unilateral peripheral vestibular dysfunction (ages 18-82 years) to vestibular diagnosis with the virtual reality system. We changed the classic configuration of the subjective visual vertical into a subjective visual horizontal bar. This technique revealed values of the subjective visual horizontal outside the normal range in 91% of patients.

  9. Vestibular rehabilitation using a wide field of view virtual environment.

    Science.gov (United States)

    Sparto, P J; Furman, J M; Whitney, S L; Hodges, L F; Redfern, M S

    2004-01-01

    This paper presents a theoretical justification for using a wide field of view (FOV) virtual reality display system for use in vestibular rehabilitation. A wide FOV environment offers some unique features that may be beneficial to vestibular rehabilitation. Primarily, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. If this hypothesis is correct, then wide FOV systems will have an advantage over narrow field of view input devices such as head mounted or desktop displays. Devices that we have incorporated into our system that are critical for monitoring improvement in this clinical population will also be described.

  10. Outcomes after vestibular rehabilitation and Wii® therapy in patients with chronic unilateral vestibular hypofunction.

    Science.gov (United States)

    Verdecchia, Daniel H; Mendoza, Marcela; Sanguineti, Florencia; Binetti, Ana C

    2014-01-01

    Vestibular rehabilitation therapy is an exercise-based programme designed to promote central nervous system compensation for inner ear deficit. The objective of the present study was to analyse the differences in the perception of handicap, the risk of falls, and gaze stability in patients diagnosed with chronic unilateral vestibular hypofunction before and after vestibular rehabilitation treatment with complementary Wii® therapy. A review was performed on the clinical histories of patients in the vestibular rehabilitation area of a university hospital between April 2009 and May 2011. The variables studied were the Dizziness Handicap Inventory, the Dynamic Gait Index and dynamic visual acuity. All subjects received complementary Wii® therapy. There were 69 cases (41 woman and 28 men), with a median age of 64 years. The initial median Dizziness Handicap Inventory score was 40 points (range 0-84, percentile 25-75=20-59) and the final, 24 points (range 0-76, percentile 25-75=10.40), P<.0001. The initial median for the Dynamic Gait Index score was 21 points (range 8-24, percentile 25-75=17.5-2.3) and the final, 23 (range 12-24, percentile 25-75=21-23), P<.0001. The initial median for dynamic visual acuity was 2 (range 0-6, percentile 25-75=1-4) and the final, 1 (range 0-3, percentile 25-75=0-2), P<.0001. A reduction was observed in the Dizziness Handicap Inventory Values. Values for the Dynamic Gait Index increased and dynamic visual acuity improved. All these variations were statistically significant. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  11. Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss.

    Science.gov (United States)

    Barros, Camila Giacomo Carneiro; Bittar, Roseli Saraiva Moreira; Danilov, Yuri

    2010-06-07

    The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort((R))) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the surface of the tongue was created by a dynamic pattern of electrical pulses and the patient was able to adjust the intensity of stimulation and spatially centralize the stimulus on the electrode array. Patients were directed to continuously adjust head orientation and to maintain the stimulus pattern at the center of the array. Postural tasks that present progressive difficulties were given during the use of the device. Pre- and post-treatment distribution of the sensory organization test (SOT) composite score showed an average value of 38.3+/-8.7 and 59.9+/-11.3, respectively, indicating a statistically significant improvement (p=0.01). Electrotactile tongue biofeedback significantly improved the postural control of the study group, even if they had not improved with conventional VR. The electrotactile tongue biofeedback system was able to supply additional information about head position with respect to gravitational vertical orientation in the absence of vestibular input, improving postural control. Patients with BVL can integrate electrotactile information in their postural control in order to improve stability after conventional VR. These results were obtained and verified not only by the subjective questionnaire but also by the SOT composite score. The limitations of the study are the small sample size and short duration of the follow-up. The current findings show that the sensory substitution mediated by electrotactile tongue biofeedback may contribute to the improved balance experienced by these patients compared to VR. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Vestibular compensation after vestibular schwannoma surgery: normalization of the subjective visual vertical and disability.

    Science.gov (United States)

    Batuecas-Caletrio, Angel; Santacruz-Ruiz, Santiago; Muñoz-Herrera, Angel; Sousa, Pablo; Otero, Alvaro; Perez-Fernandez, Nicolas

    2013-05-01

    The degree of caloric weakness before surgery influences faster or slower recovery of patients undergoing vestibular schwannoma surgery. The Dizziness Handicap Inventory (DHI) is a good index to show the recovery of patients as it relates directly to an improvement or not of the subjective visual vertical (SVV). To evaluate the process of recovery of patients as measured by the SVV and the DHI after surgical removal of vestibular schwannoma. We studied 24 consecutive patients of the University Hospital of Salamanca who underwent vestibular schwannoma surgery. We assessed age, tumour size, degree of canalicular weakness and preoperative SVV, and their relationship with DHI and SVV at discharge and also at 1, 3 and 6 months postoperatively. Patients with lesser degrees of caloric weakness took longer to normalize SVV than those with a higher caloric weakness before surgery (p < 0.05). There was a significant correlation between DHI and improvements in SVV with time. The differences disappeared in 6 months where all patients, with greater or lesser degree of caloric weakness, had the same results.

  13. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review.

    Science.gov (United States)

    Porciuncula, Franchino; Johnson, Connie C; Glickman, Leslie B

    2012-01-01

    Adults with bilateral vestibular hypofunction (BVH) experience significant disability. A systematic review assessed evidence for vestibular rehabilitation (VR). NUMBER OF STUDIES: 14 studies. Search identification of studies based on inclusion criteria: (a) population: adults with BVH of peripheral origin; (b) interventions: vestibular exercises, balance training, education, or sensory prosthetics; (c) comparison: single interventions or compared to another psychophysical intervention, placebo, or healthy population; (d) outcomes: based on International Classification of Functioning, Disability and Health (ICF) Body Functions and Structure, Activity, and Participation; (e) study designs: prospective and interventional, Levels of Evidence I to III per Centre of Evidence-based Medicine grading. Coding and appraisal based on ICF framework and strength of evidence synthesis. Five Level II studies and nine Level III studies: All had outcomes on gaze and postural stability, five with outcomes on gait speed and perceptions of oscillopsia and disequilibrium. (a) Moderate evidence strength on improved gaze and postural stability (ICF-Body Functions) following exercise-based VR; (b) Inadequate number of studies supporting benefit of VR on ICF-Participation outcomes; (c) Sensory prosthetics in early phase of development. Moderate evidence strength in support of VR from an impairment level; clinical practice and research needed to explore interventions extending to ICF-Activity and Participation.

  14. Effects of vestibular rehabilitation and social reinforcement on recovery following ablative vestibular surgery.

    Science.gov (United States)

    Mruzek, M; Barin, K; Nichols, D S; Burnett, C N; Welling, D B

    1995-07-01

    This study investigated the relative effects of vestibular rehabilitation (VR) and social reinforcement (SR) on recovery following ablative vestibular surgery. Twenty-four subjects were randomly assigned to three treatment groups of either VR with SR, VR without SR, or general range of motion (ROM) exercises with SR. Outcome measures included equilibrium scores in dynamic posturography, asymmetry index in rotation testing, motion sensitivity quotient (MSQ), and dizziness handicap inventory (DHI). A multiple comparison of the overall outcome measures showed no significant differences in group performance over an 8-week period. When individual outcome measures were compared, MSQ and DHI results at the end of the 8-week treatment period revealed less motion sensitivity and dizziness handicap in groups who received VR, with or without SR, as compared with the group who received ROM exercises. These results suggest that after a vestibular injury most patients can effectively utilize central compensation mechanisms to recover from such an injury, regardless of the type of therapeutic intervention used. On the other hand, the reduction in motion sensitivity and dizziness handicap for patients who received VR could indicate a more rapid and complete recovery for these patients. This investigation is continuing as a long-term follow-up study to determine whether there are any long-term benefits in participating in a VR program.

  15. Saccadic entropy of head impulses in acute unilateral vestibular loss

    Directory of Open Access Journals (Sweden)

    Li-Chun Hsieh

    2017-10-01

    Conclusion: Entropy and gain analysis of HIT using wireless electro-oculography system could be used to detect the VOR dysfunctions of AUVL and may become effective methods for evaluating vestibular disorders.

  16. Audio-Vestibular Findings in Increased Intracranial Hypertension Syndrome.

    Science.gov (United States)

    Çoban, Kübra; Aydın, Erdinç; Özlüoğlu, Levent Naci

    2017-04-01

    Idiopathic intracranial hypertension (IIH) can be manifested by audiological and vestibular complaints. The aim of the present study is to determine the audio-vestibular pathologies and their pathophysiologies in this syndrome by performing current audio-vestibular tests. The study was performed prospectively on 40 individuals (20 IIH patients, 20 healthy volunteers). Pure tone audiometry, tympanometry, vestibular evoked myogenic potentials, and electronystagmography tests were performed in both groups and the results were compared. The mean age of both groups was found to be 30.2±18.7. There were 11 females and 9 males in each group. The study group patients had significantly worse hearing levels. Pure tone averages were significantly higher in both ears of the study group (pintracranial pressure may affect the inner ear with similar mechanisms as in hydrops.

  17. Natural history of hearing deterioration in intracanalicular vestibular schwannoma

    NARCIS (Netherlands)

    Pennings, R.J.E.; Morris, D.P.; Clarke, L.; Allen, S.; Walling, S.; Bance, M.L.

    2011-01-01

    BACKGROUND: Intracanalicular vestibular schwannomas have a range of treatment options that can preserve hearing: microsurgery, stereotactic radiotherapy, and conservative observation. OBJECTIVE: To evaluate the natural course of hearing deterioration during a period of conservative observation.

  18. Inner ear malformations in siblings presenting with vestibular ...

    African Journals Online (AJOL)

    frequency 's' sounds. ... endolymphatic ducts and sacs, and a type II incomplete partition. (classic Mondini) defect (Figs 3 and 4). ABR/auditory ... MRI confirmed bilateral enlarged vestibular aqueducts and type. II incomplete partition defects. He was ...

  19. [Neuronal plasticity of otolith-related vestibular system].

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Zhang, Fu-Xing; Ma, Chun-Wai; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    This review focuses on our effort in addressing the development and lesion-induced plasticity of the gravity sensing system. After severance of sensory input from one inner ear, there is a bilateral imbalance in response dynamics and spatial coding behavior between neuronal subpopulations on the two sides. These data provide the basis for deranged spatial coding and motor deficits accompanying unilateral labyrinthectomy. Recent studies have also confirmed that both glutamate receptors and neurotrophin receptors within the bilateral vestibular nuclei are implicated in the plasticity during vestibular compensation and development. Changes in plasticity not only provide insight into the formation of a spatial map and recovery of vestibular function but also on the design of drugs for therapeutic strategies applicable to infants or vestibular disorders such as vertigo and dizziness.

  20. Vestibular stimulation: A simple but effective intervention in diabetes care.

    Science.gov (United States)

    Sailesh, Kumar Sai; Archana, R; Mukkadan, J K

    2015-01-01

    Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential intervention to prevent or delay the development of diabetes mellitus in at-risk population, but also to use it as supplementary therapy for diabetic patients management. We urge clinicians to recommend vestibular stimulation by simple means like swing as a goal in maintaining a healthy lifestyle.

  1. Probing the human vestibular system with galvanic stimulation

    National Research Council Canada - National Science Library

    Richard C. Fitzpatrick; Brian L. Day

    2004-01-01

    .... This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses...

  2. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma

    DEFF Research Database (Denmark)

    Huang, Xiaowen; Cayé-Thomasen, Per; Stangerup, Sven-Eric

    2013-01-01

    We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage...... of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles...... on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed...

  3. Vestibulary rehabilitation--election treatment method for compensating vestibular impairment.

    Science.gov (United States)

    Georgescu, Mădălina; Stoian, Sorina; Mogoantă, Carmen Aurelia; Ciubotaru, Gh V

    2012-01-01

    This paper aims to reveal the actual benefit of vestibular rehabilitation (VR) in patients with unilateral vestibular loss. Case report of a young female patient with acute unilateral vestibular loss due to facial nerve schwannoma developed above the internal auditory canal (IAC) from where it seems to have entered the IAC. Betahistine associated to VR treatment was recommended due to persisting imbalance after tumor removal. The benefit of the combined therapy was evaluated objectively (sensory organization test) and subjectively (questionnaires regarding self-perception of the deficit in quality of life). Both evaluations revealed great improvement in stability (SOT scores) as well as in health-related quality of life (HRQoL)--improvement of self-perception scores of disequilibrium in all questionnaires used. Combined recommended treatment (betahistine and VR) improves HRQoL after acute unilateral vestibular loss. It reduces self-perceived disability and intensity of symptoms during usual activities.

  4. Vestibular rehabilitation: clinical benefits to patients with Parkinson's disease.

    Science.gov (United States)

    Zeigelboim, Bianca Simone; Klagenberg, Karlin Fabianne; Teive, Hélio A Ghizoni; Munhoz, Renato Puppi; Martins-Bassetto, Jackeline

    2009-06-01

    To evaluate the effectiveness of the vestibular rehabilitation (VR) exercises by means of an assessment before and after the application of the Brazilian version of the Dizziness Handicap Inventory (DHI) questionnaire. Twelve patients were studied, the following procedures were carried out: anamnesis, otorhinolaryngological and vestibular evaluation, and the application of the DHI before and after the VR. Clinically resting tremors and subjective postural instability were the motor complaints most frequently associated with complaints of vertigo in 12 cases (100%); in the vestibular exam, all the patients presented abnormalities, frequently from the uni and bilateral peripheral vestibular deficiency syndromes in 10 cases (83.3%); there was significant improvement in the physical, functional and emotional aspects of the DHI after the completion of the VR. The VR following the Cawthorne and Cooksey protocol were shown to be useful in managing subjective complaints of several aspects evaluated in this protocol.

  5. Clinical evaluation of elderly people with chronic vestibular disorder

    OpenAIRE

    Juliana Maria Gazzola; Fernando Freitas Ganança; Mayra Cristina Aratani; Monica Rodrigues Perracini; Maurício Malavasi Ganança

    2006-01-01

    A tontura de origem vestibular é comum entre idosos. OBJETIVO: Caracterizar idosos com disfunção vestibular crônica em relação aos dados sociodemográficos, clínico-funcionais e otoneurológicos. MATERIAL E MÉTODO: Estudo de casos que incluiu 120 idosos com disfunção vestibular crônica. Foram realizadas análises descritivas simples. RESULTADOS: A 5,77±amostra apresentou maioria feminina (68,3%), com média etária de 73,40 1,84±anos. O número médio de doenças associadas ao quadro vestibular foi d...

  6. Vestibular dysfunction in a child with embryonic exposure to accutane.

    Science.gov (United States)

    Westerman, S T; Gilbert, L M; Schondel, L

    1994-05-01

    Children with a history of embryonic exposure to Accutane (isotretinoin) are at great risk for major physical malformations, brain malformations, and decreased intelligence. A case is presented of a 4-year 7-month-old black male with a history of embryonic exposure to Accutane who was born with embryopathy that includes bilateral major ear deformities. The child has a significant bilateral conductive hearing loss, and, in addition, a left sided sensorineural loss. Vestibular function testing revealed evidence of peripheral and central vestibular dysfunction. A course of diphenhydramine hydrochloride and Donnatal (phenobarbital, hyoscyamine sulfate, atropine sulfate, and scopolamine hydrobromide) significantly alleviated the symptoms of vestibular dysfunction. Otologic management of these children should include clinical documentation of the external deformities, evaluation of cochlear function, and early auditory habilitation. Vestibular function should also be evaluated in all children with a history of embryonic exposure to isotretinoin.

  7. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function.

    Science.gov (United States)

    Curthoys, Ian S; MacDougall, Hamish G; Vidal, Pierre-Paul; de Waele, Catherine

    2017-01-01

    Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons, which form calyx synapses on type I striolar receptors, have irregular resting discharge and have low thresholds to high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-frequency sound and vibration likely causes fluid displacement which deflects the weakly tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We term these irregular afferents the transient system signaling dynamic otolithic stimulation. A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular afferents are not activated at intensities used in clinical testing, whereas irregular afferents have low thresholds. We show how this sustained and transient distinction applies at the vestibular nuclei. The two systems have differential responses to vibration and sound, to ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such differential sensitivity allows probing of the two systems. A 500-Hz vibration that selectively activates irregular otolithic afferents results in stimulus-locked eye movements in animals and humans. The preparatory myogenic potentials for these eye movements are measured in the new clinical test of otolith function-ocular vestibular-evoked myogenic potentials. We suggest 500-Hz vibration may identify the contribution of the transient system to vestibular controlled

  8. Effect of gravity on vestibular neural development

    Science.gov (United States)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  9. Vestibular ataxia and its measurement in man

    Science.gov (United States)

    Fregly, A. R.

    1974-01-01

    Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.

  10. Effect of gravity on vestibular neural development.

    Science.gov (United States)

    Ross, M D; Tomko, D L

    1998-11-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  11. Vestibular rehabilitation in elderly patients with dizziness

    OpenAIRE

    Zanardini, Francisco Halilla; Zeigelboim, Bianca Simone [UNIFESP; Jurkiewicz, Ari Leon; Marques, Jair Mendes; Martins-Bassetto,Jackeline

    2007-01-01

    TEMA: o envelhecimento populacional é um processo natural, manifesta-se por um declínio das funções de diversos órgãos. A reabilitação vestibular (RV) é um processo terapêutico que visa promover a redução significativa dos sintomas labirínticos. OBJETIVO: verificar os benefícios dos exercícios de RV por meio da avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI) - adaptação brasileira. MÉTODO: participaram deste estudo oito idosos com queixa de tontura, na faixa e...

  12. Treatment of Vestibular Dysfunction Using a Portable Stimulator

    Science.gov (United States)

    2017-04-01

    AWARD NUMBER: W81XWH-14-2-0012 TITLE: Treatment of Vestibular Dysfunction Using a Portable Stimulator PRINCIPAL INVESTIGATOR: Jorge M...PAGE UU 17 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Treatment of Vestibular...noise over a 2week stimulation paradigm Significant Results of Year 3 1) Research flyers have been posted to aid in recruitment. Fourteen

  13. Fractionated stereotactic radiotherapy of vestibular schwannomas accelerates hearing loss

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric

    2012-01-01

    To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hear......To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea...

  14. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  15. Vestibular animal models: contributions to understanding physiology and disease

    OpenAIRE

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E.

    2016-01-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research inclu...

  16. Treatment of Vestibular Dysfunction Using a Portable Simulator

    Science.gov (United States)

    2015-04-01

    Project Major Goal 1 - Develop a portable stimulator which can be worn continuously and used to improve vestibular function (April 2014 to June 2016...AD______________ AWARD NUMBER: W81XWH-14-2-0012 TITLE: TREATMENT OF VESTIBULAR DYSFUNCTION USING A PORTABLE STIMULATOR PRINCIPAL...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  17. Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways

    OpenAIRE

    Lee, Choongheon; Jones, Timothy A

    2017-01-01

    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransm...

  18. Morphological analysis of the vestibular aqueduct by computerized tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Sergio Ricardo [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil)]. E-mail: sergioanat.morf@epm.br; Smith, Ricardo Luiz [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Isotani, Sadao [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Alonso, Luis Garcia [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Anadao, Carlos Augusto [Otorhinolaryngology Department, Sao Paulo Federal University-Paulista Medical School, Sao Paulo (Brazil); Prates, Jose Carlos [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Lederman, Henrique Manoel [Image Diagnosis Department, Sao Paulo Federal University-Paulista Medical School, Sao Paulo (Brazil)

    2007-01-15

    Objective: In the last two decades, advances in the computerized tomography (CT) field revise the internal and medium ear evaluation. Therefore, the aim of this study is to analyze the morphology and morphometric aspects of the vestibular aqueduct on the basis of computerized tomography images (CTI). Material and method: Computerized tomography images of vestibular aqueducts were acquired from patients (n = 110) with an age range of 1-92 years. Thereafter, from the vestibular aqueducts images a morphometric analysis was performed. Through a computerized image processing system, the vestibular aqueduct measurements comprised of its area, external opening, length and the distance from the vestibular aqueduct to the internal acoustic meatus. Results: The morphology of the vestibular aqueduct may be funnel-shaped, filiform or tubular and the respective proportions were found to be at 44%, 33% and 22% in children and 21.7%, 53.3% and 25% in adults. The morphometric data showed to be of 4.86 mm{sup 2} of area, 2.24 mm of the external opening, 4.73 mm of length and 11.88 mm of the distance from the vestibular aqueduct to the internal acoustic meatus, in children, and in adults it was of 4.93 mm{sup 2}, 2.09 mm, 4.44 mm, and 11.35 mm, respectively. Conclusions: Computerized tomography showed that the vestibular aqueduct presents high morphological variability. The morphometric analysis showed that the differences found between groups of children and adults or between groups of both genders were not statistically significant.

  19. Vestibular rehabilitation: clinical benefits to patients with Parkinson's disease

    OpenAIRE

    Zeigelboim, Bianca Simone [UNIFESP; Klagenberg, Karlin Fabianne; TEIVE, HÉLIO A. GHIZONI; Munhoz,Renato Puppi; Martins-Bassetto,Jackeline

    2009-01-01

    OBJECTIVE: To evaluate the effectiveness of the vestibular rehabilitation (VR) exercises by means of an assessment before and after the application of the Brazilian version of the Dizziness Handicap Inventory (DHI) questionnaire. METHOD: Twelve patients were studied, the following procedures were carried out: anamnesis, otorhinolaryngological and vestibular evaluation, and the application of the DHI before and after the VR. RESULTS: Clinically resting tremors and subjective postural instabili...

  20. Ontogenetic development of vestibular reflexes in amphibians

    Directory of Open Access Journals (Sweden)

    Hans Straka

    2016-11-01

    Full Text Available Vestibulo-ocular reflexes ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt vestibulo-ocular reflexes (VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1-8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets.

  1. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Vestibular contributions to high-level sensorimotor functions.

    Science.gov (United States)

    Medendorp, W Pieter; Selen, Luc J P

    2017-10-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied, the role of the vestibular system in higher level sensorimotor functions is less clear. This review covers new research on the vestibular influence on perceptual judgments, motor decisions, and the ability to learn multiple motor actions. Guided by concepts such as optimization, inference, estimation and control, we focus on how the brain determines causal relationships between memorized and visual representations in the updating of visual space, and how vestibular, visual and efferent motor information are integrated in the estimation of body motion. We also discuss evidence that these computations involve multiple coordinate representations, some of which can be probed in parietal cortex using neuronal oscillations derived from EEG. In addition, we describe work on decision making during self-motion, showing a clear modulation of bottom-up acceleration signals on decisions in the saccadic system. Finally, we consider the importance of vestibular signals as contextual cues in motor learning and recall. Taken together, these results emphasize the impact of vestibular information on high-level sensorimotor functions, and identify future directions for theoretical, behavioral, and neurophysiological investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Visuo-vestibular contributions to anxiety and fear.

    Science.gov (United States)

    Coelho, Carlos M; Balaban, Carey D

    2015-01-01

    The interactive roles of the visual and vestibular systems allow for postural control within boundaries of perceived safety. In specific circumstances, visual vestibular and postural interactions act as a cue that trigger fear, similarly to what occurs in motion sickness. Unusual patterns of visuo-vestibular interaction that emerge without warning can elicit fear, which can then become associated to a certain stimuli or situation, creating a CS-US association, (i.e., phobia), or can emerge without warning but also without becoming associated to a particular concomitant event (i.e., panic). Depending on the individual sensitivity to visuo-vestibular unusual patterns and its impact in postural control, individuals will be more or less vulnerable to develop these disorders. As such, the mechanism we here propose is also sufficient to explain the lack of certain fears albeit exposure. Following this rationale, a new subcategory of anxiety disorders, named visuo-vestibular fears can be considered. This model brings important implications for developmental and evolutionary psychological science, and invites to place visuo-vestibular fears in a particular subtype or specification within the DSM-5 diagnostic criteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of vestibular rehabilitation in the elderly: a systematic review.

    Science.gov (United States)

    Martins E Silva, Diandra Caroline; Bastos, Victor Hugo; de Oliveira Sanchez, Mariana; Nunes, Monara Kedma Gomes; Orsini, Marco; Ribeiro, Pedro; Velasques, Bruna; Teixeira, Silmar Silva

    2016-08-01

    Aging is characterized by gradual physiological changes in body systems. Changes in the vestibular system can occur and cause dizziness, vertigo and imbalance, symptoms that are common in the elderly. Vestibular rehabilitation is a therapeutic resource that has been widely used to improve this condition. To complete a systematic review of the effects of vestibular rehabilitation on the elderly. A search for relevant publications was conducted in SCIELO, PUBMED, MEDLINE, COCHRANE and LILACS databases. Clinical trials and cohort studies that were written in the English language and published over the course of the last 10 years were selected. The methodological quality of the studies was assessed using the PEDro scale. A critical analysis of the studies was composed. Eight studies that involved subjects who were over the age of 60 were selected for inclusion in the systematic review. The most common vestibular dysfunction identified was complaints about dizziness and imbalance. The Dizziness Handicap Inventory was the most frequently used assessment instrument, and the treatment protocol that prevailed was that suggested by Cawthorne and Cooksey. The PEDro scale showed that only one article was of an acceptable methodological quality and presented satisfactory outcome measures. This was due, in part, to a lack of a hidden randomization, masking of the subject, evaluators and therapists, and lack of outcome measures, which can reduce the quality of the evidence presented in this study. Clinical trials indicate that vestibular rehabilitation represents an effective means of treating elderly patients with vestibular disorders; however, evidence of its effectiveness remains lacking.

  5. Evaluation of postural control in unilateral vestibular hypofunction.

    Science.gov (United States)

    Quitschal, Rafaela Maia; Fukunaga, Jackeline Yumi; Ganança, Maurício Malavasi; Caovilla, Heloísa Helena

    2014-01-01

    Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Replacing semicircular canal function with a vestibular implant.

    Science.gov (United States)

    Merfeld, Daniel M; Lewis, Richard F

    2012-10-01

    To summarize the recent progress in the development of vestibular implants. The review is timely because of the recent advances in the field and because MED-EL has recently announced that they are developing a vestibular implant for clinical applications. The handicap experienced by patients suffering from bilateral vestibulopathy has a strong negative impact on physical and social functioning that appears to justify a surgical intervention. Two different surgical approaches to insert electrodes to stimulate ampullary neurons have been shown to be viable. The three-dimensional vestibulo-ocular reflex in rhesus monkeys produced with a three-dimensional vestibular implant showed gains that were relatively normal during acute stimulation. Rotation cues provided by an implant interact with otolith cues in a qualitatively normal manner. The brain appears to adapt plastically to the cues provided via artificial electrical stimulation. Research to date includes just a few human studies, but available data from both humans and animals support the technological and physiological feasibility of vestibular implants. Although vestibular implant users should not expect normal vestibular function - any more than cochlear implant users should expect normal hearing - data suggest that significant functional improvements are possible.

  7. Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways.

    Science.gov (United States)

    Lee, Choongheon; Jones, Timothy A

    2017-09-01

    The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransmitter and neuromodulator receptors in the vestibular sensory pathways. Identifying these receptor targets provides a strategic basis to use specific pharmacological tools to modify receptor function in the treatment and management of debilitating balance disorders. A review of the literature reveals that most investigations of the neuropharmacology of peripheral vestibular function have been performed using in vitro or ex vivo animal preparations rather than studying drug action on the normal intact vestibular system in situ. Such noninvasive approaches could aid the development of more accurate and effective intervention strategies for the treatment of dizziness and vertigo. The current review explores the major neuropharmacological targets for drug action in the vestibular system.

  8. The Moving History of Vestibular Stimulation as a Therapeutic Intervention.

    Science.gov (United States)

    Grabherr, Luzia; Macauda, Gianluca; Lenggenhager, Bigna

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox's chair or Hallaran's swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recognition of vestibular contributions to various perceptual, motor, cognitive, and emotional processes, vestibular stimulation has been suggested as a powerful and non-invasive treatment for a range of psychiatric, neurological and neurodevelopmental conditions. Yet, the therapeutic interventions were, and still are, often not hypothesis-driven as broader theories remain scarce and underlying neurophysiological mechanisms are often vague. We aim to critically review the literature on vestibular stimulation as a form of therapy in various selected disorders and present its successes, expectations, and drawbacks from a historical perspective.

  9. Patterning of sympathetic nerve activity in response to vestibular stimulation

    Science.gov (United States)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  10. Neurectomia vestibular e coclear no guinea pig vivo: uma via occipital Vestibular and cochlear neurectomy in the alive guinea pig: an occipital approach

    Directory of Open Access Journals (Sweden)

    Ricardo David

    2001-09-01

    Full Text Available Forma de estudo: Experimental. Objetivo: Este artigo descreve uma nova via cirúrgica para atingir a inervatura vestíbulo-coclear (VIII par no Guinea pig vivo. Essa via é totalmente óssea (exceto o acesso ao próprio osso, o que implica em poucos danos às estruturas nobres do animal, o qual é passível de recuperação para estudos posteriores do sistema vestibular e coclear e todas as suas referências, com o ouvido interno, médio e externo. Conclusão: Mesmo exigindo precisão e controle, dada a proximidade com estruturas vitais, ela se mostra bastante viável do ponto de vista prático e muito menos invasiva e danosa em relação a outras cirurgias realizadas com a mesma finalidade, por permitir exames de imitanciometria, Bera, vemp, reflexos estapediais e do tensor do tímpano, entre outros físicos ou fisioelétricos.Study design: Experimental. Aim: This paper describes a new surgery neurectomy technique to the VIII pair in Guinea pig alive. This is a full boned way, except for the access to the bone itself, what implies in minor damage to important structures of the animal. The animal recuperation is pretty good for later studies of the vestibular and cochlear system, and all its references to inner, middle and external ears. Conclusion: Even though the precision and control necessary, because of the neighbourhoods vital structures, it shows enough availability from the practice sight, and much less invasible and damage than other surgeries with the same finality. It allows imitaciometry, bera, vemp, stapediun and tympanic tensor reflexes and others (physicals or physioelectric.

  11. Paciente com cefaleia e síndrome vestibular periférica: relato de caso Patient with headache and peripheral vestibular dysfunction: case report

    OpenAIRE

    Tatiane Maria Rossi; Naonne Santos Camargo Luciano; Polliay Freire Oricoli; Luciana Lozza de Moraes Marchiori; Juliana Jandre Melo

    2009-01-01

    TEMA: a Reabilitação Vestibular constitui-se numa opção de tratamento para pacientes portadores de síndrome vestibular periférica e cefaleia. PROCEDIMENTOS: o paciente, do sexo feminino com 26 anos de idade apresentava síndrome vestibular periférica acompanhada de crises de cefaleia. Foi realizada avaliação e terapia fonoaudiológica com exercícios de habituação vestibular além de fisioterapia e dieta recomendada pelo nutricionista. RESULTADOS: no período de 3 meses com reabilitação vestibular...

  12. Avaliação vestibular no tremor essencial Vestibular evaluation in the essential tremor

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2008-01-01

    Full Text Available TEMA: o tremor essencial é familial em cerca de 50% dos casos, com uma herança autossômica, possui início insidioso e é lentamente progressivo. PROCEDIMENTOS: avaliou-se no Setor de Otoneurologia de um Hospital Particular em fevereiro de 2007, uma paciente do sexo feminino, branca, 59 anos, casada, artista plástica, com história de tremor na cabeça desde os dois anos de idade (sic. A paciente relata queixa de tontura há vários meses de origem súbita sem acompanhamento de náusea e/ou queda. Nega perda de força muscular e formigamento em membros superiores e inferiores, rebaixamento da acuidade auditiva e zumbido. A paciente relata que um de seus filhos possuiu tremor nas mãos há dois anos e avós maternos e paternos com Parkinson. Realizaram-se os seguintes procedimentos: anamnese, inspeção otológica e avaliação vestibular por meio da vectoeletronistagmografia. RESULTADOS: observaram-se os seguintes achados ao exame vestibular: nistagmo de posicionamento com características centrais, nistagmo espontâneo presente com os olhos abertos, nistagmo semi-espontâneo do tipo múltiplo e hiper-reflexia em valor absoluto à prova calórica 20ºC (OD e OE. CONCLUSÃO: o exame vestibular mostrou-se sensível e importante para captar alterações em provas que sugerissem envolvimento do sistema nervoso central.BACKGROUND: essential tremors are family-related in about 50% of the cases with an autosomal inheritance and they register an insidious beginning with a slow progression. PROCEDURE: a 59 year old, white female patient, married and whose occupation is a plastic artist with a history of head tremors since she was two years (sic old was evaluated in the Otoneurology sector of a private hospital, during the period from February 2007. The patient had been complaining of dizziness from unknown origin for several months without accompanying nausea and/or falls. She denied any loss of muscular strength or tingling in her upper and lower

  13. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  14. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  15. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Science.gov (United States)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  16. Frequency response of human vestibular reflexes characterized by stochastic stimuli.

    Science.gov (United States)

    Dakin, Christopher J; Son, Gregory M Lee; Inglis, J Timothy; Blouin, Jean-Sébastien

    2007-09-15

    Stochastic vestibular stimulation (SVS) can be used to study the postural responses to unpredictable vestibular perturbations. The present study seeks to determine if stochastic vestibular stimulation elicits lower limb muscular responses and to estimate the frequency characteristics of these vestibulo-motor responses in humans. Fourteen healthy subjects were exposed to unpredictable galvanic currents applied on their mastoid processes while quietly standing (+/-3 mA, 0-50 Hz). The current amplitude and stimulation configuration as well as the subject's head position relative to their feet were manipulated in order to determine that: (1) the muscle responses evoked by stochastic currents are dependent on the amplitude of the current, (2) the muscle responses evoked by stochastic currents are specific to the percutaneous stimulation of vestibular afferents and (3) the lower limb muscle responses exhibit polarity changes with different head positions as previously described for square-wave galvanic vestibular stimulation (GVS) pulses. Our results revealed significant coherence (between 0 and 20 Hz) and cumulant density functions (peak responses at 65 and 103 ms) between SVS and the lower limbs' postural muscle activity. The polarity of the cumulant density functions corresponded to that of the reflexes elicited by square-wave GVS pulses. The SVS-muscle activity coherence and time cumulant functions were modulated by current amplitude, electrode position and head orientation with respect to the subject's feet. These findings strongly support the vestibular origin of the lower limb muscles evoked by SVS. In addition, specific frequency bandwidths in the stochastic vestibular signal contributed to the early (12-20 Hz) and late components (2-10 Hz) of the SVS-evoked muscular responses. These frequency-dependent SVS-evoked muscle responses support the view that the biphasic muscle response is conveyed by two distinct physiological processes.

  17. Prevalence of vestibular disorder in older people who experience dizziness

    Directory of Open Access Journals (Sweden)

    Allan T Chau

    2015-12-01

    Full Text Available Dizziness and imbalance are clinically poorly defined terms, which affect ~30% of people over 65 years of age. In these people it is often difficult to define the primary cause of dizziness, as it can stem from cardiovascular, vestibular, psychological and neuromuscular causes. However, identification of the primary cause is vital in determining the most effective treatment strategy for a patient. Our aim was to accurately identify the prevalence of: Benign Paroxysmal Positional Vertigo (BPPV, peripheral, and central vestibular hypofunction in people aged over 50 years who had experienced dizziness within the past year. Seventy six participants aged 51 to 92 (mean ± SD = 69 ± 9.5 years were tested using the Head Thrust Dynamic Visual Acuity (htDVA test, Dizziness Handicap Inventory (DHI, as well as sinusoidal and unidirectional rotational chair testing, in order to obtain data for: htDVA score; DHI score; sinusoidal (whole-body, 0.1 - 2 Hz with peak-velocity at 30deg/s Vestibulo-Ocular Reflex (VOR gain and phase; transient (whole-body, acceleration at 150deg/s/s to a constant velocity rotation of 50deg/s VOR gain and time constant; OptoKinetic Nystagmus (OKN gain and time constant (whole-body, constant velocity rotation at 50deg/s. We found that BPPV, peripheral and central vestibular hypofunction were present in 38% and 1% of participants respectively, suggesting a likely vestibular cause of dizziness in these people. Of those with a likely vestibular cause, 63% had BPPV; a figure higher than previously reported in dizziness clinics of ~25%. Our results indicate that htDVA, sinusoidal (particularly 0.5 - 1 Hz and transient VOR testing were the most effective at detecting people with BPPV or vestibular hypofunction, whereas DHI and OKN were effective at only detecting non-BPPV vestibular hypofunction.

  18. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains.

    Science.gov (United States)

    Jones, Sherri M; Jones, Timothy A

    2014-03-01

    A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease. American Academy of Audiology.

  19. Cognitive deficits in patients with a chronic vestibular failure.

    Science.gov (United States)

    Popp, Pauline; Wulff, Melanie; Finke, Kathrin; Rühl, Maxine; Brandt, Thomas; Dieterich, Marianne

    2017-03-01

    Behavioral studies in rodents and humans have demonstrated deficits of spatial memory and orientation in bilateral vestibular failure (BVF). Our aim was to explore the functional consequences of chronic vestibular failure on different cognitive domains including spatial as well as non-spatial cognitive abilities. Sixteen patients with a unilateral vestibular failure (UVF), 18 patients with a BVF, and 17 healthy controls (HC) participated in the study. To assess the cognitive domains of short-term memory, executive function, processing speed and visuospatial abilities the following tests were used: Theory of Visual Attention (TVA), TAP Alertness and Visual Scanning, the Stroop Color-Word, and the Corsi Block Tapping Test. The cognitive scores were correlated with the degree of vestibular dysfunction and the duration of the disease, respectively. Groups did not differ significantly in age, sex, or handedness. BVF patients were significantly impaired in all of the examined cognitive domains but not in all tests of the particular domain, whereas UVF patients exhibited significant impairments in their visuospatial abilities and in one of the two processing speed tasks when compared independently with HC. The degree of vestibular dysfunction significantly correlated with some of the cognitive scores. Neither the side of the lesion nor the duration of disease influenced cognitive performance. The results demonstrate that vestibular failure can lead to cognitive impairments beyond the spatial navigation deficits described earlier. These cognitive impairments are more significant in BVF patients, suggesting that the input from one labyrinth which is distributed into bilateral vestibular circuits is sufficient to maintain most of the cognitive functions. These results raise the question whether BVF patients may profit from specific cognitive training in addition to physiotherapy.

  20. Vestibular rehabilitation ameliorates chronic dizziness through the SIRT1 axis

    Directory of Open Access Journals (Sweden)

    Chung-Lan eKao

    2014-03-01

    Full Text Available Dizziness is a common clinical symptom frequently referred to general neurologists and practitioners. Exercise intervention, in the form of vestibular rehabilitation, is known as an effective clinical management for dizziness. This intervention is reported to have a functional role in correcting dizziness, improving gaze stability, retraining balance and gait and enhancing physical fitness. Dizziness is known to be highly related to inflammation and oxidative stress. SIRT1 is a major molecule for regulation of inflammation and mitigation of oxidative stress in chronic diseases such as atherosclerosis and chronic obstructive pulmonary disease. However, the bio-molecular roles of SIRT1 involved in the pathogenesis of dizziness are still largely unclear. In this study, a total of 30 subjects were recruited (15 patients with chronic dizziness, and 15 age/gender matched non-dizzy control subjects. The dizzy subjects group received 18 sessions of 30-minutes vestibular training. We found that the mRNA and protein expression levels of SIRT1 in the blood samples of chronic dizzy patients were repressed compared with those of healthy controls. After vestibular training, the dizzy patients had significant symptomatic improvements. The SIRT1 expression and its downstream genes (PPAR-γ and PGC-1α were upregulated after vestibular exercises in dizzy subjects. Notably, the catalytic activity of SIRT1, NADPH and antioxidant enzyme activities were also activated in dizzy patients after vestibular training. Furthermore, vestibular exercise training reduced oxidative events and p53 expression in patients with dizziness. This study demonstrated that vestibular exercise training improved dizziness symptoms, and mechanisms for alleviation of chronic dizziness may partly involve the activation of the SIRT1 axis and the repression of redox status.

  1. Older adults demonstrate superior vestibular perception for virtual rotations.

    Science.gov (United States)

    Peters, Ryan M; Blouin, Jean-Sébastien; Dalton, Brian H; Inglis, J Timothy

    2016-09-01

    Adult ageing results in a progressive loss of vestibular hair cell receptors and afferent fibres. Given the robustness of vestibulo-ocular and vestibular-evoked whole-body responses to age-related deterioration, it was proposed that the vestibular system compensates centrally. Here we examine the potential for central compensation in vestibular sensitivity with adult ageing by using a combination of real and virtual rotation-based psychophysical testing at two stimulus frequencies (0.1 & 1Hz). Real rotations activate semi-circular canal hair cell receptors naturally via mechanotransduction, while electrical current used to evoke virtual rotations does not rely on mechanical deformation of hair cell receptors to activate vestibular afferents. This two-pronged approach allows us to determine the independent effects of age-related peripheral afferent receptor loss and potential compensatory mechanisms. Older adults had thresholds for discriminating real rotations that were significantly greater than young adults at 0.1Hz (7.2 vs. 3°/s), but the effect of age was weaker (non-significant) at 1Hz (2.4 vs. 1.3°/s). For virtual rotations, older adults had greater thresholds than young adults at 0.1Hz (1.2 vs. 0.5mA), however, older adults outperformed young adults at 1Hz (0.6 vs. 1.1mA). Based on these thresholds, we argue that central vestibular processing gain is enhanced in older adults for 1Hz real and virtual rotations, partially offsetting the negative impact of normal age-related hair cell receptor and primary afferent loss. We propose that the frequency dependence of this compensation reflects the physiological importance of the 1-5Hz range in natural vestibular input. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Selective retromastoid vestibular neurectomy for intractable Ménière's disease: A technical note

    Directory of Open Access Journals (Sweden)

    Cho-Shun Li

    2015-03-01

    Conclusion: Sectioning of vestibular fibers was performed along the cochleovestibular cleavage landmark on the cochlear nerve where the overlapping zone was located, allowing for a safe and adequate vestibular neurectomy, while most of the cochlear fibers were spared.

  3. Vestibular dysfunction in patients with chronic pain or underlying neurologic disorders

    National Research Council Canada - National Science Library

    Gilbert, John W; Vogt, Manuel; Windsor, Robert E; Mick, Gregory E; Richardson, Gay B; Storey, Benjamin B; Herder, Stephanie L; Ledford, Susan; Abrams, Dee A; Theobald, Mary Katherine; Cunningham, Dana; Kelly, Louise; Herring, Kimberly V; Maddox, Michael L

    2014-01-01

    Individuals with vestibular dysfunction are at increased risk for falling. In addition, vestibular dysfunction is associated with chronic pain, which could present a serious public health concern as approximately 43...

  4. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem

    OpenAIRE

    Baizer, Joan S.

    2009-01-01

    Vestibular information is essential for the control of posture, balance, and eye movements. The vestibular nerve projects to the four nuclei of the vestibular nuclear complex (VNC), as well as to several additional brainstem nuclei and the cerebellum. We have found that expression of the calcium-binding proteins calretinin (CR) and calbindin (CB), and the synthetic enzyme for nitric oxide synthase (nNOS) define subdivisions of the medial vestibular nucleus (MVe) and the nucleus prepositus (Pr...

  5. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    OpenAIRE

    Hammam, Elie; Vaughan G Macefield

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity...

  6. [Anatomy and physiology of the vestibular system: review of the literature].

    Science.gov (United States)

    Sakka, L; Vitte, E

    2004-10-01

    The vestibular system is a complex system involving not only posterior labyrinth but also central structures such as cerebellum, striatum, thalamus, frontal and prefrontal cortex to assure balance, movements and walking. Information reaching the vestibular complex are not purely vestibular but also from visual, somatosensory and cerebellar origins. The equilibrium is also a complex physiological function needing concordance of vestibular, visual and somatosensory information or either central compensation after an injury but also an integrity of the central nervous system.

  7. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Amir Abbas Ebrahimi

    2018-01-01

    Full Text Available The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys with the profound sensorineural hearing loss (PTA>90 dB. They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP. For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT was completed pre- and post-intervention with SPS (Synapsys, Marseille, France. Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS, vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05. The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  8. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction.

    Science.gov (United States)

    Ebrahimi, Amir Abbas; Jamshidi, Ali Ashraf; Movallali, Guita; Rahgozar, Mehdi; Haghgoo, Hojjat Allah

    2017-11-01

    The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys) with the profound sensorineural hearing loss (PTA>90 dB). They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP). For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT) was completed pre- and post-intervention with SPS (Synapsys, Marseille, France). Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS), vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05). The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.

  9. Clinical romberg testing does not detect vestibular disease.

    Science.gov (United States)

    Longridge, Neil S; Mallinson, Arthur I

    2010-07-01

    To evaluate the effectiveness of tandem Romberg and tandem walking testing at detecting vestibular disease and to increase the difficulty of these standard screening assessments in an attempt to try and make them more effective in the clinical office setting. A prospective study in a tertiary and quaternary care neuro-otology clinic comparing performance on tandem Romberg and tandem walking between patients with vestibular disease and controls matched for age and sex. Making the tandem Romberg test and tandem walking tests more difficult for patients was not helpful because it also made the tests more difficult to perform for controls with no symptoms of vestibular disease. When comparing a young and an old cohort, there was a significant difference in performance. Our techniques of sharpening and sensitizing tandem Romberg and tandem walking tests were not useful at delineating vestibular disease, and age itself may be a confound that mimics the effects of balance system disease. The tandem Romberg and tandem walking tests, despite being in widespread clinical use as office screening tests, may not be effective at determining the presence of newly developed vestibular disease.

  10. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  11. Impaired math achievement in patients with acute vestibular neuritis.

    Science.gov (United States)

    Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2017-12-01

    Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Visual-vestibular processing deficits in mild traumatic brain injury.

    Science.gov (United States)

    Wright, W G; Tierney, R T; McDevitt, J

    2017-01-01

    The search for reliable and valid signs and symptoms of mild traumatic brain injury (mTBI), commonly synonymous with concussion, has lead to a growing body of evidence that individuals with long-lasting, unremitting impairments often experience visual and vestibular symptoms, such as dizziness, postural and gait disturbances. Investigate the role of visual-vestibular processing deficits following concussion. A number of clinically accepted vestibular, oculomotor, and balance assessments as well as a novel virtual reality (VR)-based balance assessment device were used to assess adults with post-acute concussion (n = 14) in comparison to a healthy age-matched cohort (n = 58). Significant between-group differences were found with the VR-based balance device (p = 0.001), with dynamic visual motion emerging as the most discriminating balance condition. The symptom reports collected after performing the oculomotor and vestibular tests: rapid alternating horizontal eye saccades, optokinetic stimulation, and gaze stabilization, were all sensitive to health status (p vestibular tasks most closely linked to spatial and self-motion perception had the greatest discriminatory outcomes. The current findings suggest that mesencephalic and parieto-occipital centers and pathways may be involved in concussion.

  13. Binding body and self in visuo-vestibular conflicts.

    Science.gov (United States)

    Macauda, Gianluca; Bertolini, Giovanni; Palla, Antonella; Straumann, Dominik; Brugger, Peter; Lenggenhager, Bigna

    2015-03-01

    Maintenance of the bodily self relies on the accurate integration of multisensory inputs in which visuo-vestibular cue integration is thought to play an essential role. Here, we tested in healthy volunteers how conflicting visuo-vestibular bodily input might impact on body self-coherence in a full body illusion set-up. Natural passive vestibular stimulation was provided on a motion platform, while visual input was manipulated using virtual reality equipment. Explicit (questionnaire) and implicit (skin temperature) measures were employed to assess illusory self-identification with either a mannequin or a control object. Questionnaire results pointed to a relatively small illusion, but hand skin temperature, plausibly an index of illusory body ownership, showed the predicted drop specifically in the condition when participants saw the mannequin moving in congruence with them. We argue that this implicit measure was accessible to visuo-vestibular modulation of the sense of self, possibly mediated by shared neural processes in the insula involved in vestibular and interoceptive signalling, thermoregulation and multisensory integration. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The role of stereo vision in visual-vestibular integration.

    Science.gov (United States)

    Butler, John S; Campos, Jennifer L; Bülthoff, Heinrich H; Smith, Stuart T

    2011-01-01

    Self-motion through an environment stimulates several sensory systems, including the visual system and the vestibular system. Recent work in heading estimation has demonstrated that visual and vestibular cues are typically integrated in a statistically optimal manner, consistent with Maximum Likelihood Estimation predictions. However, there has been some indication that cue integration may be affected by characteristics of the visual stimulus. Therefore, the current experiment evaluated whether presenting optic flow stimuli stereoscopically, or presenting both eyes with the same image (binocularly) affects combined visual-vestibular heading estimates. Participants performed a two-interval forced-choice task in which they were asked which of two presented movements was more rightward. They were presented with either visual cues alone, vestibular cues alone or both cues combined. Measures of reliability were obtained for both binocular and stereoscopic conditions. Group level analyses demonstrated that when stereoscopic information was available there was clear evidence of optimal integration, yet when only binocular information was available weaker evidence of cue integration was observed. Exploratory individual analyses demonstrated that for the stereoscopic condition 90% of participants exhibited optimal integration, whereas for the binocular condition only 60% of participants exhibited results consistent with optimal integration. Overall, these findings suggest that stereo vision may be important for self-motion perception, particularly under combined visual-vestibular conditions.

  15. Evaluation of diagnostic tests of the otolith organs and their application in various vestibular pathologies

    NARCIS (Netherlands)

    Winters, S.M.

    2014-01-01

    Current vestibular testing is limited. The general function of the vestibular system on both sides of the head can be tested, and one part of the peripheral vestibular organ, the horizontal semicircular canal, can be tested unilaterally. However, recently a test for the function of the otolith

  16. Vestibular vertigo and ataxia in emergency neurology

    Directory of Open Access Journals (Sweden)

    Natalia Vladimirovna Aptikeeva

    2013-01-01

    Full Text Available Patients with vestibular vertigo (VV are commonly referred to hospital, as emergently indicated, which makes the urgent establishment of the cause of VV relevant. One hundred and ninety-eight patients (86 men; mean age, 55.6±13.7 years and 112 women; mean age, 69.1±9.2 years with VV who had been admitted to hospital for suspected stroke were examined. Ischemic stroke in the vertebrobasilar system (VBS was diagnosed in only 28 (32.5% men and 22 (19.6% women; transient ischemic attack in VBS was seen in 10 (12.2% men and 6 (5.6% women; other diseases were identified in the remaining cases. VBS stroke was noted to be hyperdiagnosed in the patients with VV; whether itis expedient to apply a standardized approach to the problem of vertigo and unstable equilibrium and to attract a multidisciplinary team to examine patients in the admission room of a multidisciplinary hospital is discussed.

  17. Does spectacle use lead to vestibular suppression?

    Science.gov (United States)

    Thakar, A

    2016-11-01

    Laboratory experiments indicate that changes in retinal image size result in adaptive recalibration or suppression of the vestibulo-ocular reflex. Myopia correction with spectacles or contact lenses also leads to retinal image size changes, and may bring about similar vestibulo-ocular reflex alterations. A hypothesis-generating preliminary investigation was conducted. In this cross-sectional study, findings of electronystagmography including bithermal caloric testing were compared between 17 volunteer myopes using spectacles or contact lenses and 17 volunteer emmetropes (with no refractive error). Bilateral hypoactive caloric responses were demonstrated in 6 of 11 spectacle users, in 1 of 6 contact lens users and in 1 of 17 emmetropes. Hypoactive caloric responses were significantly more likely in spectacle users than in emmetropes (p spectacles have vestibulo-ocular reflex suppression, as demonstrated by the caloric test. This has implications for the interpretation of electronystagmography and videonystagmography results, and highlights spectacle use as a possible cause of vestibular impairment. Further corroboration of these findings is warranted, with more precise and direct vestibulo-ocular reflex tests such as rotational tests and the head impulse test.

  18. Extraterrestrial vestibular research, a new partial field of medical research into the human vestibular apparatus.

    Science.gov (United States)

    Pichler, H J

    1967-01-01

    The first otologic professorial chair in the world was established by Politzer in Vienna as long ago as 1861. In 1914 an assistant of the 1st Vienna Ear Clinic with Politzer as its head, Barany, was awarded the Nobel Prize for Medicine for his fundamental investigations into the organ of equilibration and for his discovery of the caloric sensitivity of the semicircular canals. Since that time Barany is regarded as the founder of the physiology of the vestibular apparatus. During the period 1959 to 1963 a new conception of fundamental research into the vestibule was demanded and elaborated in Vienna with the postulate that, in all theoretical deliberations and practical experience, one should take into consideration that our experiments into the vestibule do not take place on a static platform but rather on a diversely moving one, namely the surface of the earth. This led to new findings in the field of research into the otolith apparatus. In 1962 it was discovered that the gravitation of the sun at the distance of earth-sun represents a supraliminal stimulus, namely both in the aphelion as well as in the perihelion position of the earth. In 1965 it was suggested in Vienna that a new branch of research into the vestibule should be established on an international level, the so-called extraterrestrial vestibular research. The importance of this new branch of research is discussed for all problems of orientation of human beings in space.

  19. BETAHISTINE DIHYDROCHLORIDE IN CANINE PERIPHERAL VESTIBULAR SYNDROME DICLORIDRATO DE BETAISTINA NA SÍNDROME VESTIBULAR PERIFÉRICA CANINA

    Directory of Open Access Journals (Sweden)

    Tatiana Champion

    2010-04-01

    Full Text Available Vestibular disease is a common syndrome in small animals that  may resulst of central or peripheral disease. The pathophysiology of peripheral vestibular syndrome is unknown, however it can be related to an abnormal dynamic of endolymphatic fluid or neuritis of the vestibular portion of the VIII cranial nerve.  The recovery of neurological sings is slow and, in chronic cases, the neurological deficits can be irreversible. In veterinary medicine, thera are few medical options to treat this condition, however, in Medicine, betahistine dihydrochloride is used to treat peripheral vestibular disorders. These drug  was used in four dogs with vestibular syndrome. The results showed clinical improvement in 7 to 10 days of treatment and completed recovery in 20 to 30 days, followed by the cure. One year after the treatment, the dogs did not have recurrence of the syndrome. This report shows the use of betahistine dihydrochloride in dogs with peripheral vestibular syndrome, with rapid clinical recover, without laboratorial abnormalities or recurrence of the clinical signs .The results encourage the use of betahistine dihydrochloride in the treatment of  peripheral vestibular disorders in small animals.

    KEY WORDS: Betahistine, dog, vestibular syndrome.
    A síndrome vestibular periférica é uma condição clínica comum em cães. Várias doenças podem causar essa síndrome. Entretanto, sua patofisiologia ainda é pouco conhecida. As alterações clínicas geralmente são autolimitantes, a recuperação pode ser longa e, em casos crônicos, os déficits neurológicos podem ser irreversíveis. Em medicina veterinária, há poucas opções terapêuticas. Na Medicina, o dicloridrato de betaístina é amplamente utilizado. Essa medicação foi empregada em seis cães com síndrome vestibular periférica. Os resultados mostraram melhora clínica com sete a dez dias de tratamento e recuperação quase completa entre vinte e trinta dias. Este

  20. Case Report: Facial Nerve Bifurcation Noted During Resection of Vestibular Schwannoma.

    Science.gov (United States)

    Sokolowski, Jennifer D; Ruhl, Douglas S; Kesser, Bradley W; Asthagiri, Ashok R

    2018-01-13

    Resection of cerebellopontine angle tumors is challenging because the proximity of the facial nerve puts it at risk of inadvertent injury and subsequent dysfunction. It is critical to consider variations in anatomy and be aware of the potential deviations in the course of the nerve in order to avoid damage. We present a case of a facial nerve bifurcation identified during resection of a vestibular schwannoma. This is the only reported case of proximal facial nerve bifurcation. We review what is known about variations in proximal facial nerve anatomy, the rates of facial nerve injury after schwannoma resection, and the importance of neuromonitoring in identifying the nerve and predicting function postoperatively. Ultimately, understanding possible anatomic variations in the nerve is critical to minimize iatrogenic injury during surgery.

  1. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  2. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  3. Síndrome vestibular em canídeos

    OpenAIRE

    Ferreira, Ricardo Filipe da Silva

    2009-01-01

    Dissertação de Mestrado Integrado em Medicina Veterinária A síndrome vestibular é uma apresentação neurológica relativamente comum em Medicina Veterinária. É definida como o conjunto de sinais clínicos associados a uma doença do sistema vestibular. A função do sistema vestibular é traduzir as forças de gravidade e movimento em sinais neurológicos utilizados pelo encéfalo para a determinação da posição da cabeça no espaço, e para a coordenação dos movimentos da cabeça com os ...

  4. The phosphorylation status of merlin in sporadic vestibular Schwannomas.

    Science.gov (United States)

    Wang, Zhaoyan; Lu, Yanjun; Tang, Juanjuan; Wang, Haojie; Wu, Hao

    2009-04-01

    The events leading to Schwannomas development are still largely unknown. Some studies have demonstrated that merlin acts as a tumor suppressor by blocking Ras-mediated signaling. In this study, we analyze the clinical and biological behaviors of seven randomly selected sporadic vestibular Schwannomas removed from the patients. We find that merlin was commonly lost in these Schwannomas, due to loss of merlin expression or phosphorylation status of merlin expression. Heightened CDKs/cyclins signal transduction concomitant with loss of p27 was well correlated with loss of functional merlin in Schwannomas. More, we show that phosphorylated merlin Schwannomas exhibited increased Ras/Rac/PAK signal transduction. That was in agreement with the severe clinical behaviors, i.e., phosphorylation status of merlin increased tumor size in sporadic vestibular Schwannomas. These results led us to suggest that phosphorylated merlin, a kind of type of mutation merlin, is involved in tumorigenesis of sporadic vestibular Schwannomas.

  5. An electronic prosthesis mimicking the dynamic vestibular function

    Science.gov (United States)

    Shkel, Andrei M.

    2006-03-01

    This paper reports our progress toward development of a unilateral vestibular prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope. Similarly to the natural semicircular canal, the microscopic gyroscope senses angular motion of the head and generates voltages proportional to the corresponding angular accelerations. Then, voltages are sent to the pulse generating unit where angular motion is translated into voltage pulses. The voltage pulses are converted into current pulses and are delivered through specially designed electrodes, conditioned to stimulate the corresponding vestibular nerve branch. Our preliminary experimental evaluations of the prosthesis on a rate table indicate that the device's output matches the average firing rate of vestibular neurons to those in animal models reported in the literature. The proposed design is scalable; the sensing unit, pulse generator, and the current source can be potentially implemented on a single chip using integrated MEMS technology.

  6. Migraine patients consistently show abnormal vestibular bedside tests

    Directory of Open Access Journals (Sweden)

    Eliana Teixeira Maranhão

    2015-01-01

    Full Text Available Migraine and vertigo are common disorders, with lifetime prevalences of 16% and 7% respectively, and co-morbidity around 3.2%. Vestibular syndromes and dizziness occur more frequently in migraine patients. We investigated bedside clinical signs indicative of vestibular dysfunction in migraineurs.Objective To test the hypothesis that vestibulo-ocular reflex, vestibulo-spinal reflex and fall risk (FR responses as measured by 14 bedside tests are abnormal in migraineurs without vertigo, as compared with controls.Method Cross-sectional study including sixty individuals – thirty migraineurs, 25 women, 19-60 y-o; and 30 gender/age healthy paired controls.Results Migraineurs showed a tendency to perform worse in almost all tests, albeit only the Romberg tandem test was statistically different from controls. A combination of four abnormal tests better discriminated the two groups (93.3% specificity.Conclusion Migraine patients consistently showed abnormal vestibular bedside tests when compared with controls.

  7. The effects of aging on clinical vestibular evaluations

    Directory of Open Access Journals (Sweden)

    Maxime eMaheu

    2015-09-01

    Full Text Available Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cVEMP and oVEMP, then the caloric and vHIT methods for semi-circular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semi-circular canals function.

  8. The vein of the vestibular aqueduct with potential pathologic perspectives

    DEFF Research Database (Denmark)

    Friis, Morten; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2008-01-01

    HYPOTHESIS: Pathologic changes around the vein of the vestibular aqueduct (VVA) may cause obstruction to the flow of blood toward the sigmoid sinus. Furthermore, a distal obstruction of this vessel may be responsible for a development of a retrograde flow of blood with concomitant drainage...... of endolymphatic sac (ES) substances to the inner ear. BACKGROUND: The VVA is responsible for the venous drainage of the vestibular apparatus and endolymphatic duct and ES. Previous studies have linked the VVA to Ménière's disease. The aim of the present article was a 3-dimensional perspective study of the VVA...... with its adjacent anatomic structures. METHODS: In 14 rats, the VVA was examined by 3-dimensional reconstruction of 2-microm serial sections, corrosion cast technique, and scanning electron microscopy. RESULTS: From the external aperture of the vestibular aqueduct, the VVA is interposed between the ES...

  9. Effects of vestibular rehabilitation in the elderly complaining of dizziness

    Directory of Open Access Journals (Sweden)

    Andréa Paz-Oliveira

    2014-08-01

    Full Text Available Changes of body balance are among the most common complaints of the elderly. Vestibular rehabilitation is one of the most effective methods in the recovery of the body balance. The objective to investigate the effects of vestibular rehabilitation in body balance of a group of elderly people with dizziness complain through dizziness handicap inventory. The sample was comprised of 10 seniors (6 women and 4 men with mean age of 68.9 years. The elderly complaining of dizziness showed high score in the DHI in the physical, functional and emotional aspects in the condition pre-VR and these values decreased after vestibular rehabilitation program. Complaints of dizziness also decreased after the implementation of the programmee.  

  10. Does betahistine treatment have additional benefits to vestibular rehabilitation?

    Science.gov (United States)

    Karapolat, Hale; Celebisoy, Nese; Kirazli, Yesim; Bilgen, Cem; Eyigor, Sibel; Gode, Sercan; Akyuz, Aycan; Kirazli, Tayfun

    2010-08-01

    The aim of this study was to investigate the effect of high-dose betahistine treatment added to vestibular rehabilitation (VR) on the disability, balance and postural stability in patients with unilateral vestibular disorder. The VR group (group 1, n = 24) and the VR + betahistine group (group 2, n = 23) were analyzed retrospectively. All patients were evaluated before and after an 8-week customized VR in terms of disability (Dizziness Handicap Inventory, DHI), dynamic balance [Dynamic Gait Index (DGI)] and postural stability (static posturography). In group 1 and group 2, differences between DHI, DGI and falling index score on static posturography before and after the exercise program were significant (p VR and betahistine + VR have a positive effect on disability and balance in patients with unilateral vestibular disorder. Betahistine treatment added to VR was effective in increasing postural stability.

  11. Visual-vestibular conflict induced by virtual reality in humans.

    Science.gov (United States)

    Akiduki, Hironori; Nishiike, Suetaka; Watanabe, Hiroshi; Matsuoka, Katsunori; Kubo, Takeshi; Takeda, Noriaki

    2003-04-17

    Conflicting inputs from visual and vestibular afferents produce motion sickness and postural instability. However, the relationship of visual and vestibular inputs to each other remains obscure. In this study, we examined the development of subjective sickness- and balance-related symptoms and objective equilibrium ataxia induced by visual-vestibular conflict (VVC) stimulation using virtual reality. The subjective symptoms evaluated by Graybiel's and Hamilton's criteria got gradually worse during the VVC. The objective postural instability was not observed during the VVC, but it occurred immediately after the VVC. There was a time lag between the subjective symptoms and objective ataxia induced by VVC. Our study suggests that the VVC inputs are processed in different pathways causing subjective autonomic symptoms and postural instability in humans.

  12. Signal processing in the vestibular system during active versus passive head movements.

    Science.gov (United States)

    Cullen, Kathleen E; Roy, Jefferson E

    2004-05-01

    In everyday life, vestibular receptors are activated by both self-generated and externally applied head movements. Traditionally, it has been assumed that the vestibular system reliably encodes head-in-space motion throughout our daily activities and that subsequent processing by upstream cerebellar and cortical pathways is required to transform this information into the reference frames required for voluntary behaviors. However, recent studies have radically changed the way we view the vestibular system. In particular, the results of recent single-unit studies in head-unrestrained monkeys have shown that the vestibular system provides the CNS with more than an estimate of head motion. This review first considers how head-in-space velocity is processed at the level of the vestibular afferents and vestibular nuclei during active versus passive head movements. While vestibular information appears to be similarly processed by vestibular afferents during passive and active motion, it is differentially processed at the level of the vestibular nuclei. For example, one class of neurons in vestibular nuclei, which receives direct inputs from semicircular canal afferents, is substantially less responsive to active head movements than to passively applied head rotations. The projection patterns of these neurons strongly suggest that they are involved in generating head-stabilization responses as well as shaping vestibular information for the computation of spatial orientation. In contrast, a second class of neurons in the vestibular nuclei that mediate the vestibuloocular reflex process vestibular information in a manner that depends principally on the subject's current gaze strategy rather than whether the head movement was self-generated or externally applied. The implications of these results are then discussed in relation to the status of vestibular reflexes (i.e., the vestibuloocular, vestibulocollic, and cervicoocular reflexes) and implications for higher

  13. Plasticity during vestibular compensation: the role of saccades

    Directory of Open Access Journals (Sweden)

    Hamish Gavin MacDougall

    2012-02-01

    Full Text Available This paper is focussed on one major aspect of compensation: the recent behavioural findings concerning oculomotor responses in human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL. New measurement techniques have provided new insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during natural head movements. The present evidence is that there is little or no recovery of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. It may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss. Some patients do learn new strategies, new behaviours, to conceal their inadequate VOR but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, their vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation.

  14. [Localization of nitric oxide synthase in the chicken vestibular system].

    Science.gov (United States)

    Nie, Guohui; Wang, Jibao

    2002-08-01

    To locate nitric oxide synthase (NOS) in the chicken vestibular system. The frozen section were processed for NADPH-d histochemistry in a solution containing NADPH and nitroblue tetnazolium (NBT) to demonstrate NOS positive reactivity. NOS positive staining, black-blue in color, was seen at the nerve ending, nerve fibers of the utricul and saculla and ampiculium. Ganglion cells had different activity. The shape of the cells seems to be round or oral. Collectively, data indicate the presence of active NOS in these tissue and suggest modulation of vestibular neurotransmission by nitric oxide.

  15. Vestibular rehabilitation in elderly patients with benign paroxysmal positional vertigo

    OpenAIRE

    Resende Carolina R.; Taguchi Carlos K.; Almeida Juliane G. de; Fujita Reginaldo R.

    2003-01-01

    A Vertigem Posicional Paroxística Benigna (VPPB) é um distúrbio vestibular no qual os pacientes relatam breves momentos de vertigem e/ou leve instabilidade postural, ocasionados por uma mudança brusca na movimentação cefálica ou corporal. OBJETIVO: Verificar o benefício da reabilitação vestibular, realizada em grupo, em pacientes idosos portadores de VPPB. FORMA DE ESTUDO: Clínico prospectivo. MATERIAL E MÉTODO: Foram selecionados aleatoriamente 16 pacientes portadores de VPPB, todos medicado...

  16. Sensitization as a Basic Principle of Vestibular Adaptation to Microgravity

    Science.gov (United States)

    Horn, Eberhard R.

    2008-06-01

    The analysis of basic mechanisms of physiological adaptation to weightlessness suffers (1) on the rare flight opportunities, and (2) on the collection of data with a rough time resolution. The comparative approach using data from animal and human research might be helpful to overcome these problems even for human research. The advantage of the comparative approach became obvious for vestibular adaptation to microgravity. Neuroanatomical, neurophysiological, behavioural and psychophysical studies in snails, fish, amphibian, rodents, monkey and men clearly revealed vestibular sensitization as a basic mechanism of adaptation to weightlessness.

  17. Bilateral Vestibular Hypofunction: Challenges in Establishing the Diagnosis in Adults.

    Science.gov (United States)

    van de Berg, Raymond; van Tilburg, Mark; Kingma, Herman

    2015-09-15

    Bilateral vestibular hypofunction (BVH) probably represents a heterogeneous disorder with different types of clinical pictures, with and without vertigo. In spite of increasingly sophisticated electrophysiological testing, still many challenges are met when establishing a diagnosis of BVH. Here, we review the main challenges, which are a reflection of its often difficult clinical presentation and the lack of diagnostic standards regarding the implementation and interpretation of vestibular tests. These challenges show that there is an urgent need for standardization. The resulting decisions should be used for the development of uniform diagnostic criteria for BVH, which are, at present, not yet available. © 2015 S. Karger AG, Basel.

  18. A Case of Psychogenic Dizziness Mimicking Vestibular Epilepsy

    Science.gov (United States)

    Lee, Kyung Jae; Jeong, Seong-Hae; Baek, In Chul; Lee, Ae Young; Kim, Jae-Moon

    2012-01-01

    A 28-year-old patient presented with frequent episodes of clockwise whirling vertigo, with no ear symptoms or anxiety. He had a previous history of encephaloduroarteriosynangiosis from Moyamoya disease 3 years ago. We assumed that the ictus was a manifestation of vestibular epilepsy. Although the patient was monitored continuously with video and computerized electroencephalography equipment for 24 hours, his vertigo was not accompanied by electroencephalographic discharges. And thorough vestibular evaluation was normal. His symptom was alleviated by psychological support. Psychogenic dizziness may also manifest as recurrent whirling vertigo with unilateral directionality. PMID:24649463

  19. Increasing annual incidence of vestibular schwannoma and age at diagnosis

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Caye-Thomasen, Per

    2004-01-01

    During the last 26 years the annual number of diagnosed vestibular schwannomas (VS) has been increasing. The aim of this study is to describe and analyse this increase. Since 1976, 1446 new cases of VS have been diagnosed at the authors' centre. Special focus was on the age at diagnosis, the loca......During the last 26 years the annual number of diagnosed vestibular schwannomas (VS) has been increasing. The aim of this study is to describe and analyse this increase. Since 1976, 1446 new cases of VS have been diagnosed at the authors' centre. Special focus was on the age at diagnosis...

  20. [Vestibular rehabilitation in patients with relapsing-remitting multiple sclerosis].

    Science.gov (United States)

    Pavan, Karina; Marangoni, Bruna E M; Schmidt, Kizi B; Cobe, Fernanda A; Matuti, Gabriela S; Nishino, Lúcia K; Thomaz, Rodrigo B; Mendes, Maria Fernanda; Lianza, Sérgio; Tilbery, Charles Peter

    2007-06-01

    Multiple sclerosis (MS) is a demyelinating, inflammatory illness, that attack the white matter of the central nervous system, and abnormal vestibular sensations (vertigo, disequilibrium) are frequent. The vestibular rehabilitation (VR) is determined by mechanisms of adaptations, neural substitutions and compensations. This study evaluated the improvement of the central or peripheral vertigo in patients with relapsing-remitting MS submitted to the VR (exercises of Cawthorne-Cooksey), through the scale of Berg and Dizziness Handicap Inventory (DHI). In this sample of 4 cases the VR, carried through in a period of 2 months, demonstrated the improvement in 3 patients according to the Berg scale and in 2 patients considering that of the DHI.

  1. Stereotactic Radiosurgery for Cystic Vestibular Schwannomas.

    Science.gov (United States)

    Frisch, Christopher D; Jacob, Jeffrey T; Carlson, Matthew L; Foote, Robert L; Driscoll, Colin L W; Neff, Brian A; Pollock, Bruce E; Link, Michael J

    2017-01-01

    The optimum treatment for cystic vestibular schwannoma (VS) remains controversial. Anecdotally, many treating physicians feel that cystic VSs do not respond to stereotactic radiosurgery (SRS) as well as noncystic tumors. To present outcomes after treatment of predominantly cystic VS with SRS. A prospectively maintained clinical database of patients undergoing Gamma Knife (Elekta Instruments, Stockholm, Sweden) radiosurgery (GKRS) for VS at a single tertiary academic referral center was retrospectively reviewed. Patients diagnosed with cystic VS who were treated with GKRS between 1997 and 2014 were analyzed. Size-matched solid tumors treated with GKRS during this period were selected as controls. Twenty patients (12 women; median age at treatment, 56 years; range, 36-85 years) with cystic VS met inclusion criteria. The median radiologic follow-up within the cystic group was 63 months (range, 17-201 months), and the median change in tumor size was -4.9 mm (range, -10.4 to 9.3 mm). Sixteen tumors (80%) shrank, 2 (10%) remained stable, and 2 (10%) enlarged, accounting for a tumor control rate of 90%. The median radiologic follow-up in the noncystic control group was 67 months (range, 6-141 months), and the median change in size was -2.0 mm (range, -10.4 to 2.5 mm). Tumor control in the solid group was 90%. Comparing only those tumors that decreased in size showed that there was a trend toward a greater reduction within the cystic group ( P = .05). The present study demonstrates that tumor control after SRS for cystic VS may not differ from that of noncystic VS in selected cases.

  2. Multisession stereotactic radiosurgery for large vestibular schwannomas.

    Science.gov (United States)

    Casentini, Leopoldo; Fornezza, Umberto; Perini, Zeno; Perissinotto, Egle; Colombo, Federico

    2015-04-01

    Microsurgery is not the only option for larger vestibular schwannomas (VSs); recent reviews have confirmed the feasibility and efficacy of radiosurgery for larger VSs. This study illustrates the outcomes of a series of large VSs after multisession stereotactic radiosurgery (SRS). A series of 33 VSs larger than 8 cm(3) (range 8-24 cm(3), mean 11 cm(3), median 9.4 cm(3)) were treated using the CyberKnife from 2003 to 2011 with the multisession SRS technique in 2-5 fractions (14-19.5 Gy). Five patients had undergone surgical removal and 5 had ventriculoperitoneal shunts. Nine patients were eligible for but refused surgery. Twelve patients were older than 70 years and 5 were younger than 40 years. Two female patients had neurofibromatosis. The follow-up period ranged from 12 to 111 months (median 48 months); radiological growth control was achieved in 94% of cases: 19 tumors (58%) displayed no size variation or reduction in tumor diameter; 12 (36%), after a transient enlargement, presented with arrested growth or shrinkage. Seven patients had a volume reduction of more than 50%. Two patients (6%) needed debulking and 2 were treated with ventriculoperitoneal shunts. Actuarial progressionfree survival rates at 1 year and 5 years were 97% and 83%, respectively. Hearing was retained in 7 of the 8 patients with serviceable baseline hearing. Adverse events were limited to 1 case each of vertigo, tongue paresthesia, and trigeminal neuralgia. The good control rate obtained with multisession SRS deepens the controversy of the radiobiology of VSs and may extend the indication of radiation therapy (fractionated or SRS) for large VSs to include patients without symptoms of mass effect. The limited number of cases and short follow-up period do not provide sufficient support for widespread application of multisession SRS in young patients. Further studies with multisession SRS are warranted.

  3. Systematic review of vestibular disorders related to human immunodeficiency virus and acquired immunodeficiency syndrome.

    Science.gov (United States)

    Heinze, B; Swanepoel, D W; Hofmeyr, L M

    2011-09-01

    Disorders of the auditory and vestibular system are often associated with human immunodeficiency virus infection and acquired immunodeficiency syndrome. However, the extent and nature of these vestibular manifestations are unclear. To systematically review the current peer-reviewed literature on vestibular manifestations and pathology related to human immunodeficiency virus and acquired immunodeficiency syndrome. Systematic review of peer-reviewed articles related to vestibular findings in individuals with human immunodeficiency virus infection and acquired immunodeficiency syndrome. Several electronic databases were searched. We identified 442 records, reduced to 210 after excluding duplicates and reviews. These were reviewed for relevance to the scope of the study. We identified only 13 reports investigating vestibular functioning and pathology in individuals affected by human immunodeficiency virus and acquired immunodeficiency syndrome. This condition can affect both the peripheral and central vestibular system, irrespective of age and viral disease stage. Peripheral vestibular involvement may affect up to 50 per cent of patients, and central vestibular involvement may be even more prevalent. Post-mortem studies suggest direct involvement of the entire vestibular system, while opportunistic infections such as oto- and neurosyphilis and encephalitis cause secondary vestibular dysfunction resulting in vertigo, dizziness and imbalance. Patients with human immunodeficiency virus and acquired immunodeficiency syndrome should routinely be monitored for vestibular involvement, to minimise functional limitations of quality of life.

  4. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans.

    Science.gov (United States)

    Hammam, Elie; Macefield, Vaughan G

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; "super entrainment" was observed in some individuals. Low-frequency (vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans.

  5. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2009-06-01

    Full Text Available The vestibular evoked myogenic potential (VEMP test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the history, methods, current VEMP status, and discuss its specific application in the diagnosis of the Ménière's Syndrome.O teste do potencial evocado miogênico vestibular (PEMV é um instrumento diagnóstico relativamente novo e ainda em processo de validação em estudos com pacientes portadores de desordens vestibulares específicas. De forma resumida, o PEMV é uma resposta bifásica em resposta a estímulos sonoros gravados a partir de contrações do músculo esternocleidomastóideo e é o único recurso existente para avaliar a função do sáculo e da divisão inferior do nervo vestibular. OBJETIVO: Nesta revisão iremos destacar a história, método de realização, situação atual da pesquisa envolvendo o PEMV, além de discutir as suas aplicações específicas no diagnóstico da síndrome de Ménière.

  6. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in The VOR

    Directory of Open Access Journals (Sweden)

    Mina eRanjbaran

    2016-03-01

    Full Text Available The vestibulo-ocular reflex (VOR is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which can be distorted in case of peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain.In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e. different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies.

  7. Vertigo Perception and Quality of Life in Patients after Surgical Treatment of Vestibular Schwannoma with Pretreatment Prehabituation by Chemical Vestibular Ablation

    Directory of Open Access Journals (Sweden)

    Zdeněk Čada

    2016-01-01

    Full Text Available Surgical removal of vestibular schwannoma causes acute vestibular symptoms, including postoperative vertigo and oscillopsia due to nystagmus. In general, the dominant symptom postoperatively is vertigo. Preoperative chemical vestibular ablation can reduce vestibular symptoms postoperatively. We used 1.0 mL of 40 mg/mL nonbuffered gentamicin in three intratympanic installations over 2 days, 2 months preoperatively in 10 patients. Reduction of vestibular function was measured by the head impulse test and the caloric test. Reduction of vestibular function was found in all gentamicin patient groups. After gentamicin vestibular ablation, patients underwent home vestibular exercising for two months. The control group consisted of 10 patients who underwent only home vestibular training two months preoperatively. Postoperative rates of recovery and vertigo in both groups were evaluated with the Glasgow Benefit Inventory (GBI, the Glasgow Health Status Inventory (GHSI, and the Dizziness Handicap Inventory questionnaires, as well as survey of visual symptoms by specific questionnaire developed by us. There were no statistically significant differences between both groups with regard to the results of questionnaires. Patients who received preoperative gentamicin were more resilient to optokinetic and optic flow stimulation (p<0.05. This trial is registered with clinical study registration number NCT02963896.

  8. Central vestibular disorder due to ischemic injury on the parieto-insular vestibular cortex in patients with middle cerebral artery territory infarction: Observational study.

    Science.gov (United States)

    Yeo, Sang Seok; Jang, Sung Ho; Kwon, Jung Won

    2017-12-01

    Central vestibular disorder is common after middle cerebral artery (MCA) territory infarction. The MCA supplies blood to the parieto-insular vestibular cortex (PIVC), a core region of central vestibular symptoms. We report on patients that sustained injuries of the core vestibular pathway to the PIVC with central vestibular disorder following MCA territory infarction, demonstrated on diffusion tensor imaging (DTI). Nineteen patients with MCA territory infarction and 12 control subjects were recruited. To reconstruct the core vestibular pathway to the PIVC, we defined seed region of interest (ROI) as vestibular nuclei of pons and target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity, and tract volume were measured. In the affected hemisphere, FA value of the core vestibular pathway to the PIVC revealed significant difference between all patient groups and the control group (P territory infarction. Analysis of the core vestibular pathway to the PIVC using DTI would be beneficial in clinical evaluation and management of patients with MCA territory infarction. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  9. Quality of life of individuals submitted to vestibular rehabilitation Qualidade de vida de indivíduos submetidos à reabilitação vestibular

    Directory of Open Access Journals (Sweden)

    Olívia Helena Gomes Patatas

    2009-06-01

    Full Text Available Balance disorders affect social, family and professional activities. Vestibular rehabilitation can reduce the impact of these disorders on the quality of life of individuals with vertigo. AIM: to study the influence of vestibular rehabilitation on the quality of life of individuals, correlating it with gender, age, results from computerized vectoelectronystagmography and vertigo. Study type: Retrospective. MATERIALS AND METHODS:Twenty-two individuals were submitted to customized vestibular rehabilitation and the Brazilian Dizziness Handicap Inventory - DHI before and after vestibular rehabilitation. Results from this questionnaire were correlated with gender, age, vestibular assessment and the presence of vertigo. RESULTS: all the DHI scores reduced significantly after vestibular rehabilitation. There were no differences among genders; adults and elderly patients; irritative peripheral vestibular syndromes; deficiency syndromes and normal exams; the presence or absence of vertigo. CONCLUSION: all the individuals had improvements in their quality of life after customized vestibular rehabilitation.Desordens do equilíbrio comprometem atividades sociais, familiares e profissionais. A reabilitação vestibular pode reduzir o impacto dessas desordens na qualidade de vida dos indivíduos vertiginosos. OBJETIVO: Verificar a influência da reabilitação vestibular sobre a qualidade de vida dos indivíduos, correlacionando-a com gênero, idade, resultado da vectoeletronistagmografia computadorizada e presença de vertigem. Forma de Estudo: Retrospectivo. MATERIAL E MÉTODO: Vinte e dois indivíduos foram submetidos à reabilitação vestibular personalizada e ao Dizziness Handicap Inventory - DHI brasileiro - pré e pós-reabilitação vestibular. Os resultados desse questionário foram correlacionados com as variáveis gênero, idade, avaliação vestibular e presença de tontura do tipo vertigem. RESULTADOS: Todos os escores do DHI diminu

  10. Reabilitação vestibular na criança: estudo preliminar Vestibular rehabilitation in children: preliminary study

    OpenAIRE

    Bittar Roseli S.M.; Pedalini Maria E. B; Medeiros Ítalo R.T.; Bottino Marco A.; Bento Ricardo F.

    2002-01-01

    Forma de estudo: Clínico prospectivo. Objetivo: O estudo analisa prospectivamente os resultados da Reabilitação Vestibular pelo método de Cawtorne & Cooksey em 22 crianças, portadoras de vestibulopatia periférica, associada ou não a sintomas centrais, com idade média de 8,6 anos. Material e método: Os exames quantitativos da função vestibular utilizados para quantificar a vestibulopatia foram a eletronistagmografia e a prova rotatória pendular decrescente (PRPD), mas a história clínica altame...

  11. Predictors of Preoperative Tinnitus in Unilateral Sporadic Vestibular Schwannoma

    Directory of Open Access Journals (Sweden)

    Georgios Naros

    2017-08-01

    Full Text Available ObjectiveNearly two-thirds of patients with vestibular schwannoma (VS are reporting a significantly impaired quality of life due to tinnitus. VS-associated tinnitus is attributed to an anatomical and physiological damage of the hearing nerve by displacing growth of the tumor. In contrast, the current pathophysiological concept of non-VS tinnitus hypothesizes a maladaptive neuroplasticity of the central nervous system to a (hidden hearing impairment resulting in a subjective misperception. However, it is unclear whether this concept fits to VS-associated tinnitus. This study aims to determine the clinical predictors of VS-associated tinnitus to ascertain the compatibility of both pathophysiological concepts.MethodsThis retrospective study includes a group of 478 neurosurgical patients with unilateral sporadic VS evaluated preoperatively regarding the occurrence of ipsilateral tinnitus depending on different clinical factors, i.e., age, gender, tumor side, tumor size (T1–T4 according to the Hannover classification, and hearing impairment (Gardner–Robertson classification, GR1–5, using a binary logistic regression.Results61.8% of patients complain about a preoperative tinnitus. The binary logistic regression analysis identified male gender [OR 1.90 (1.25–2.75; p = 0.002] and hearing impairment GR3 [OR 1.90 (1.08–3.35; p = 0.026] and GR4 [OR 8.21 (2.29–29.50; p = 0.001] as positive predictors. In contrast, patients with large T4 tumors [OR 0.33 (0.13–0.86; p = 0.024] and complete hearing loss GR5 [OR 0.36 (0.15–0.84; p = 0.017] were less likely to develop a tinnitus. Yet, 60% of the patients with good clinical hearing (GR1 and 25% of patients with complete hearing loss (GR5 suffered from tinnitus.ConclusionThese data are good accordance with literature about non-VS tinnitus indicating hearing impairment as main risk factor. In contrast, complete hearing loss appears a negative predictor for tinnitus. For the first

  12. [Effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in the guinea pig].

    Science.gov (United States)

    Feng, B; Jiang, S; Yang, W; Han, D; Zhang, S

    2001-02-01

    To define the effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in guinea pigs. The animals involved in the study were exposed to 8 Hz infrasound at 135dB SPL for 90 minutes in a reverberant chamber. The sinusoidal pendular test (SPT), auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were respectively detected pre-exposure and at 0(within 2 hrs), 2 and 5 day after exposure. The ultrastructures of the inner ear were observed by scanning electron microscopy. The slow-phase velocity and the frequency of the vestibular nystagmus elicited by sinusoidal pendular test (SPT) declined slightly following infrasound exposure, but the changes were not significant (P > 0.05). No differences in the ABR thresholds, the latencies and the interval peak latencies of I, III, V waves were found between the normal and the experimental groups, and among experimental groups. The amplitudes of DPOAE at any frequency declined remarkably in all experimental groups. The ultrastructures of the inner ear were damaged to different extent. Infrasound could transiently depress the excitability of the vestibular end-organs, decrease the function of OHC in the organ of Corti and cause damage to the inner ear of guinea pigs.

  13. Reabilitação vestibular no tratamento da tontura e do zumbido Vestibular rehabilitation in the treatment of dizziness and tinnitus

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2008-01-01

    Full Text Available OBJETIVO: Verificar a efetividade dos exercícios de reabilitação vestibular na melhora do zumbido e da tontura por meio de avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI e Tinnitus Handicap Inventory (THI, ambos adaptados à população brasileira. MÉTODOS: Avaliaram-se seis pacientes (dois do sexo masculino e quatro do sexo feminino, na faixa etária de 43 a 70 anos. Os pacientes foram submetidos aos seguintes procedimentos: anamnese, inspeção otológica, avaliação vestibular por meio da vectoeletronistagmografia e aplicação dos questionários pré e pós-reabilitação vestibular, utilizando-se o protocolo de Cawthorne e Cooksey. RESULTADOS: a com relação às queixas mais referidas, observou-se desequilíbrio à marcha (83,3%, dor de cabeça (66,6% e depressão (66,6%; b no exame vestibular todos os pacientes apresentaram alteração na prova calórica, sendo a maior freqüência das síndromes vestibulares periféricas irritativas (83,3%; c constataram-se no exame vestibular dois casos de síndrome vestibular periférica irritativa, dois casos de síndrome vestibular periférica irritativa unilateral; um caso de síndrome vestibular periférica irritativa bilateral e um caso de síndrome vestibular periférica deficitária unilateral; d na aplicação do DHI, observou-se melhora nos aspectos: funcional e emocional, mantendo-se inalterado o aspecto físico; e na aplicação do THI, observou-se melhora em todos os aspectos avaliados. CONCLUSÃO: O protocolo utilizado de reabilitação vestibular promoveu diminuição do zumbido e da tontura, melhorando a qualidade de vida dos pacientes.PURPOSE: To verify the effectiveness of vestibular rehabilitation exercises in the improvement of tinnitus and dizziness through an evaluation carried out before and after the administration of the Dizziness Handicap Inventory (DHI and the Tinnitus Handicap Inventory (DHI questionnaires, both adapted to the

  14. What is the real incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Tos, Mirko; Stangerup, Sven-Eric; Cayé-Thomasen, Per

    2004-01-01

    OBJECTIVES: To present the incidence of vestibular schwannoma (VS) in Denmark, compare the incidence with that of previous periods, and discuss the real incidence of VS. DESIGN, SETTING, AND PATIENTS: Prospective registration of all diagnosed VS in Denmark, with a population of 5.1 to 5.2 million...

  15. Vestibular contributions to high-level sensorimotor functions

    NARCIS (Netherlands)

    Medendorp, W.P.; Selen, L.P.J.

    2017-01-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied,

  16. Anatomy, physiology, and physics of the peripheral vestibular system.

    Science.gov (United States)

    Kingma, H; van de Berg, R

    2016-01-01

    Many medical doctors consider vertigo and dizziness as the major, almost obligatory complaints in patients with vestibular disorders. In this chapter, we will explain that vestibular disorders result in much more diverse and complex complaints. Many of these other complaints are unfortunately often misinterpreted and incorrectly classified as psychogenic. When we really understand the function of the vestibular system, it becomes quite obvious why patients with vestibular disorders complain about a loss of visual acuity, imbalance, fear of falling, cognitive and attentional problems, fatigue that persists even when the vertigo attacks and dizziness decreases or even disappears. Another interesting new aspect in this chapter is that we explain why the function of the otolith system is so important, and that it is a mistake to focus on the function of the semicircular canals only, especially when we want to understand why some patients seem to suffer more than others from the loss of canal function as objectified by reduced caloric responses. © 2016 Elsevier B.V. All rights reserved.

  17. Medial vestibular connections with the hypocretin (orexin) system

    Science.gov (United States)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  18. Static Balance in Patients with Vestibular Impairments: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Hossein Talebi

    2016-01-01

    Full Text Available Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments. Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7. We evaluated excursion and velocity of center of pressure (COP and path length in anteroposterior (AP and mediolateral (ML planes with eyes open and with eyes closed. Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (p value > 0.05. In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (p value < 0.05. Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.

  19. Static Balance in Patients with Vestibular Impairments: A Preliminary Study.

    Science.gov (United States)

    Talebi, Hossein; Karimi, Mohammad Taghi; Abtahi, Seyed Hamid Reza; Fereshtenejad, Niloofar

    2016-01-01

    Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments. Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50 ± 7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed. Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (p value > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (p value static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.

  20. Update on the pharmacotherapy of cerebellar and central vestibular disorders.

    Science.gov (United States)

    Kalla, Roger; Teufel, Julian; Feil, Katharina; Muth, Caroline; Strupp, Michael

    2016-04-01

    An overview of the current pharmacotherapy of central vestibular syndromes and the most common forms of central nystagmus as well as cerebellar disorders is given. 4-aminopyridine (4-AP) is recommended for the treatment of downbeat nystagmus, a frequent form of acquired persisting fixation nystagmus, and upbeat nystagmus. Animal studies showed that this non-selective blocker of voltage-gated potassium channels increases Purkinje cell excitability and normalizes the irregular firing rate, so that the inhibitory influence of the cerebellar cortex on vestibular and deep cerebellar nuclei is restored. The efficacy of 4-AP in episodic ataxia type 2, which is most often caused by mutations of the PQ-calcium channel, was demonstrated in a randomized controlled trial. It was also shown in an animal model (the tottering mouse) of episodic ataxia type 2. In a case series, chlorzoxazone, a non-selective activator of small-conductance calcium-activated potassium channels, was shown to reduce the DBN. The efficacy of acetyl-DL-leucine as a potential new symptomatic treatment for cerebellar diseases has been demonstrated in three case series. The ongoing randomized controlled trials on episodic ataxia type 2 (sustained-release form of 4-aminopyridine vs. acetazolamide vs. placebo; EAT2TREAT), vestibular migraine with metoprolol (PROVEMIG-trial), cerebellar gait disorders (sustained-release form of 4-aminopyridine vs. placebo; FACEG) and cerebellar ataxia (acetyl-DL-leucine vs. placebo; ALCAT) will provide new insights into the pharmacotherapy of cerebellar and central vestibular disorders.

  1. Effect of exercise intervention on vestibular related impairments in ...

    African Journals Online (AJOL)

    2011-02-07

    ... the efficacy of exercise interventions in the treatment of vestibular-related deficits in hearing-impaired children. Sources: Extensive search of computerized bibliographic databases (MEDLINE, CINHAL, EMBASE, SCOPUS, ISI of web science, Cochrane Library, and AMED) was performed from earliest to February 7, 2011.

  2. Diabetic polyneuropathy may increase the handicap related to vestibular disease.

    Science.gov (United States)

    Aranda, Catalina; Meza, Anabel; Rodríguez, Raymundo; Mantilla, María Teresa; Jáuregui-Renaud, Kathrine

    2009-04-01

    We undertook this study to assess the influence of diabetic peripheral neuropathy on self-reported disability and postural control during quiet stance of patients with peripheral vestibular disease, before and after a standardized program of vestibular rehabilitation (Cawthorne & Cooksey exercises). Twenty patients with peripheral vestibular disease participated in the study (mean age 56+/-7.8 years), 10 with and 10 without peripheral neuropathy (age matched). The Dizziness Handicap Inventory and static posturography (eyes open/closed and firm/soft surface) were evaluated prior to rehabilitation and at week 7 of follow-up. Compared to patients without neuropathy, patients with neuropathy had more time elapsed since the diabetes was diagnosed, higher glycemia and HbAc level and higher composite scores on the Dizziness Handicap Inventory, but similar results on static posturography. After rehabilitation, although scores on the Dizziness Handicap Inventory decreased in the two groups, the difference between them persisted. In patients with neuropathy, static posturography showed improvement of postural control only with the eyes closed and soft surface, whereas in patients without neuropathy the postural control improved during all sensory conditions (eyes open/closed and firm/soft surface). In diabetic patients with peripheral vestibular disease, peripheral neuropathy contributes to self-reported disability and may interfere with complete balance recovery.

  3. Treatment of Vestibular Dysfunction Using a Portable Stimulation

    Science.gov (United States)

    2016-04-01

    dysfunction we will optimize stimulation using a portable stochastic noise electrical stimulator and determine the effectiveness of subsensory electrical ...stochastic noise electrical stimulator to improve driving performance and determine what effect subsensory electrical stimulation has on vestibular...the regulatory board prior to approval (Completed) c. Obtaining DoD HRPO approval (Completed) Milestone #2: Regulatory review and approval obtained

  4. Complex vestibular macular anatomical relationships need a synthetic approach

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Mammalian vestibular maculae are anatomically organized for complex parallel processing of linear acceleration information. Anatomical findings in rat maculae are provided in order to underscore this complexity, which is little understood functionally. This report emphasizes that a synthetic approach is critical to understanding how maculae function and the kind of information they conduct to the brain.

  5. Quantification of Head Acceleration during Vestibular Rehabilitation Exercises.

    Science.gov (United States)

    Hogan, Anne E; Spindel, Jonathan H; Gray, Lincoln C

    2018-01-01

    Vestibular rehabilitation exercises have been proven to reduce symptoms and diminish the risk of falls in those with dizziness and balance impairments. The first purpose of this study is to investigate a new method of measuring head movements during habituation vestibular rehabilitation exercises. The second is to explore the relationship between head acceleration measurements during select traditional vestibular rehabilitation exercises and the variables of age, dizziness, and poor balance confidence. A descriptive, cross-sectional study, in a university setting. Fifty-two participants, ranging in age from 20 to 96 yr. All were volunteers, with the majority (34) reporting no history of dizziness or balance confidence. Head accelerations were calculated from linear and angular displacements as measured by magnetometry. Head accelerations decreased with increasing age, dizziness, and low balance confidence during four habituation exercises. Head acceleration varies as a function of age, dizziness, and low balance confidence during head movement-based vestibular and balance rehabilitation therapy (habituation) exercises. The magnetometry measurement method used could be applied across the course of treatment to establish predictive measures based on change in acceleration over time. More diverse participant sampling is needed to create normative data.

  6. Unilateral Enlarged Vestibular Aqueduct Syndrome and Bilateral Endolymphatic Hydrops

    Science.gov (United States)

    Nola, Giuseppe; Sparvoli, Luca; Ralli, Giovanni

    2017-01-01

    Enlarged vestibular aqueduct (EVA) syndrome is a common congenital inner ear malformation characterized by a vestibular aqueduct with a diameter larger than 1.5 mm, mixed or sensorineural hearing loss that ranges from mild to profound, and vestibular disorders that may be present with a range from mild imbalance to episodic objective vertigo. In our study, we present the case of a patient with unilateral enlarged vestibular aqueduct and bilateral endolymphatic hydrops (EH). EH was confirmed through anamnestic history and audiological exams; EVA was diagnosed using high-resolution CT scans and MRI images. Therapy included intratympanic infusion of corticosteroids with a significant hearing improvement, more evident in the ear contralateral to EVA. Although most probably unrelated, EVA and EH may present with similar symptoms and therefore the diagnostic workup should always include the proper steps to perform a correct diagnosis. Association between progression of hearing loss and head trauma in patients with a diagnosis of EVA syndrome is still uncertain; however, these individuals should be advised to avoid activities that increase intracranial pressure to prevent further hearing deterioration. Intratympanic treatment with steroids is a safe and well-tolerated procedure that has demonstrated its efficacy in hearing, tinnitus, and vertigo control in EH. PMID:28607789

  7. Unilateral Enlarged Vestibular Aqueduct Syndrome and Bilateral Endolymphatic Hydrops

    Directory of Open Access Journals (Sweden)

    Massimo Ralli

    2017-01-01

    Full Text Available Enlarged vestibular aqueduct (EVA syndrome is a common congenital inner ear malformation characterized by a vestibular aqueduct with a diameter larger than 1.5 mm, mixed or sensorineural hearing loss that ranges from mild to profound, and vestibular disorders that may be present with a range from mild imbalance to episodic objective vertigo. In our study, we present the case of a patient with unilateral enlarged vestibular aqueduct and bilateral endolymphatic hydrops (EH. EH was confirmed through anamnestic history and audiological exams; EVA was diagnosed using high-resolution CT scans and MRI images. Therapy included intratympanic infusion of corticosteroids with a significant hearing improvement, more evident in the ear contralateral to EVA. Although most probably unrelated, EVA and EH may present with similar symptoms and therefore the diagnostic workup should always include the proper steps to perform a correct diagnosis. Association between progression of hearing loss and head trauma in patients with a diagnosis of EVA syndrome is still uncertain; however, these individuals should be advised to avoid activities that increase intracranial pressure to prevent further hearing deterioration. Intratympanic treatment with steroids is a safe and well-tolerated procedure that has demonstrated its efficacy in hearing, tinnitus, and vertigo control in EH.

  8. HINTS in the Acute Vestibular Syndrome: Pearls and Pitfalls.

    Science.gov (United States)

    Kung, Nathan H; Van Stavern, Gregory P; Gold, Daniel R

    2018-01-09

    The acute vestibular syndrome (AVS) is characterized by the rapid onset of vertigo, nausea/vomiting, nystagmus, unsteady gait, and head motion intolerance lasting more than 24 hours. We present 4 patients with AVS to illustrate the pearls and pitfalls of the Head Impulse, Nystagmus, Test of Skew (HINTS) examination.

  9. Sociodemographic factors and vestibular schwannoma: a Danish nationwide cohort study

    DEFF Research Database (Denmark)

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren

    2010-01-01

    Vestibular schwannoma (VS) (or acoustic neuroma) accounts for about 5%-6% of all intracranial tumors; little is known about the etiology. We investigated the association between various sociodemographic indicators and VS in a cohort of 3.26 million Danish residents, with 1087 cases identified in 35...

  10. Vertigo in Vestibular Schwannoma Patients Due to Other Pathologies.

    Science.gov (United States)

    Sahyouni, Ronald; Moshtaghi, Omid; Haidar, Yarah M; Mahboubi, Hossein; Moshtaghi, Afsheen; Lin, Harrison W; Djalilian, Hamid R

    2017-12-01

    To report findings from a cohort of vestibular schwannoma (VS) patients presenting with vertigo from a secondary comorbid vestibular disorder; and to discuss management strategies for this subset of patients presenting with both episodic vertigo and VS. All VS patients who presented with vertigo as the primary symptom from 2012 to 2015 and endorsing no other major complaints were examined. Treatment with migraine lifestyle and prophylactic therapy, or Epley maneuver. Resolution of vertigo following medical treatment alone. Of the nine patients studied, seven (78%) suffered from vestibular migraine, and two (22%) experienced benign positional vertigo. All patients experienced complete resolution of symptoms after treatment. As a result of symptomatic improvement, seven patients (78%) avoided surgery in favor of observation, while two patients (22%) underwent radiosurgery due to continued tumor growth and other nonvertigo symptoms. VS patients can sometimes present with a history of recurrent episodic vertigo. The etiology of the vertigo could be due to the tumor itself or may be due to an underlying comorbidity such as vestibular migraine or benign positional vertigo. VS patients presenting with vertigo should undergo a standard vertigo history and examination to identify other potential causes of vertigo. Most VS patients in our cohort avoided intervention and had resolution of their vertigo.

  11. Acrophobia and pathological height vertigo: indications for vestibular physical therapy?

    Science.gov (United States)

    Whitney, Susan L; Jacob, Rolf G; Sparto, Patrick J; Olshansky, Ellen F; Detweiler-Shostak, Gail; Brown, Emily L; Furman, Joseph M

    2005-05-01

    Acrophobia (fear of heights) may be related to a high degree of height vertigo caused by visual dependence in the maintenance of standing balance. The purpose of this case report is to describe the use of vestibular physical therapy intervention following behavioral therapy to reduce a patient's visual dependence and height vertigo. Mr N was a 37-year-old man with agoraphobia (fear of open spaces) that included symptoms of height phobia. Exposure to heights triggered symptoms of dizziness. Intervention. Mr N underwent 8 sessions of behavioral therapy that involved exposure to heights using a head-mounted virtual reality device. Subsequently, he underwent 8 weeks of physical therapy for an individualized vestibular physical therapy exercise program. After behavioral therapy, the patient demonstrated improvements on the behavioral avoidance test and the Illness Intrusiveness Rating Scale, but dizziness and body sway responses to moving visual scenes did not decrease. After physical therapy, his dizziness and sway responses decreased and his balance confidence increased. Symptoms of acrophobia and sway responses to full-field visual motion appeared to respond to vestibular physical therapy administered after completion of a course of behavioral therapy. Vestibular physical therapy may have a role in the management of height phobia related to excessive height vertigo.

  12. Vestibular evoked myogenic potential findings in multiple sclerosis.

    Science.gov (United States)

    Escorihuela García, Vicente; Llópez Carratalá, Ignacio; Orts Alborch, Miguel; Marco Algarra, Jaime

    2013-01-01

    Multiple sclerosis is an inflammatory disease involving the occurrence of demyelinating, chronic neurodegenerative lesions in the central nervous system. We studied vestibular evoked myogenic potentials (VEMPs) in this pathology, to allow us to evaluate the saccule, inferior vestibular nerve and vestibular-spinal pathway non-invasively. There were 23 patients diagnosed with multiple sclerosis who underwent VEMP recordings, comparing our results with a control group consisting of 35 healthy subjects. We registered p13 and n23 wave latencies, interaural amplitude difference and asymmetry ratio between both ears. Subjects also underwent an otoscopy and audiometric examination. The prolongation of p13 and n23 wave latencies was the most notable characteristic, with a mean p13 wave latency of 19.53 milliseconds and a mean latency of 30.06 milliseconds for n23. In contrast, the asymmetry index showed no significant differences with our control group. In case of multiple sclerosis, the prolongation of the p13 and n23 VEMP wave latencies is a feature that has been attributed to slowing of conduction by demyelination of the vestibular-spinal pathway. In this regard, alteration of the response or lack thereof in these potentials has a locator value of injury to the lower brainstem. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  13. Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age

    Directory of Open Access Journals (Sweden)

    Faisal Karmali

    2017-11-01

    Full Text Available We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1. Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral at 1 Hz, and z-translation (vertical at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1 among the five thresholds measured and (2 between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30–0.51 between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively. An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046 and not age (p = 0.10, sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt

  14. Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age.

    Science.gov (United States)

    Karmali, Faisal; Bermúdez Rey, María Carolina; Clark, Torin K; Wang, Wei; Merfeld, Daniel M

    2017-01-01

    We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1). Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral) at 1 Hz, and z-translation (vertical) at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1) among the five thresholds measured and (2) between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30-0.51) between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively). An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046) and not age (p = 0.10), sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt thresholds in

  15. Vestibular factors influencing the biomedical support of humans in space

    Science.gov (United States)

    Lichtenberg, Byron K.

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1- g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1- g

  16. Paciente com cefaleia e síndrome vestibular periférica: relato de caso Patient with headache and peripheral vestibular dysfunction: case report

    Directory of Open Access Journals (Sweden)

    Tatiane Maria Rossi

    2009-01-01

    Full Text Available TEMA: a Reabilitação Vestibular constitui-se numa opção de tratamento para pacientes portadores de síndrome vestibular periférica e cefaleia. PROCEDIMENTOS: o paciente, do sexo feminino com 26 anos de idade apresentava síndrome vestibular periférica acompanhada de crises de cefaleia. Foi realizada avaliação e terapia fonoaudiológica com exercícios de habituação vestibular além de fisioterapia e dieta recomendada pelo nutricionista. RESULTADOS: no período de 3 meses com reabilitação vestibular realizada semanalmente observou-se melhora no quadro vertiginoso e da cefaleia da paciente. CONCLUSÕES: evidenciou-se boa eficácia clínica para o tratamento desta paciente através da reabilitação vestibular com exercícios de habituação vestibular. Salienta-se a eficácia da reabilitação para a melhora na qualidade de vida da paciente e minimização das crises de cefaleia.BACKGROUND: vestibular rehabilitation is an option for treating peripheral vestibular syndrome and headache patients. PROCEDURES: the patient is a 29-year old woman and has Peripheral Vestibular Syndrome along with headache attacks. Evaluation and Phonoaudiological therapy with exercises of habituation tests with physical and nutritional therapy were carried out. RESULTS: in 3 month period with weekly vestibular rehabilitation therapy, we observed an improvement in the condition of the patient's vertigo and migraine. CONCLUSIONS: it was evident that the patient's treatment through the rehabilitation test with habituation test exercises had good efficiency. Please note the effectiveness of the rehabilitation for the improvement in the patient's life quality and minimization of headache attacks.

  17. Vestibular control of entorhinal cortex activity in spatial navigation

    Directory of Open Access Journals (Sweden)

    Pierre-Yves eJacob

    2014-06-01

    Full Text Available Navigation in rodents depends on both self-motion (idiothetic and external (allothetic information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that TTX administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.

  18. Vestibular control of entorhinal cortex activity in spatial navigation.

    Science.gov (United States)

    Jacob, Pierre-Yves; Poucet, Bruno; Liberge, Martine; Save, Etienne; Sargolini, Francesca

    2014-01-01

    Navigation in rodents depends on both self-motion (idiothetic) and external (allothetic) information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC) may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that tetrodotoxin (TTX) administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.

  19. [Pharmacotherapy of Vestibular Disorders, Nystagmus and Cerebellar Disorders].

    Science.gov (United States)

    Feil, K; Böttcher, N; Kremmyda, O; Muth, C; Teufel, J; Zwergal, A; Brandt, T; Strupp, M

    2018-01-01

    There are currently different groups of drugs for the pharmacotherapy of vertigo, nystagmus and cerebellar disorders: antiemetics; anti-inflammatories, antimenieres, and antimigraineous medications and antidepressants, anticonvulsants, aminopyridines as well as acetyl-DL-leucine. In acute unilateral vestibulopathy, corticosteroids improve the recovery of peripheral vestibular function, but currently there is not sufficient evidence for a general recommendation. There is insufficient evidence to support the view that 16 mg t. i. d. or 48 mg t. i. d. betahistine has an effect in Menière's disease. Therefore, higher dosages are recommended. In animal studies, it was shown that betahistine increases cochlear blood flow. In vestibular paroxysmia, oxcarbazepine was effective (one randomized controlled trial (RCT)). Aminopyridines are recommended for the treatment of downbeat nystagmus (two RCTs) and episodic ataxia type 2 (EA2, one RCT). There has been no RCT on the efficacy of beta-blockers or topiramate but one RCT on flunarizine in vestibular migraine. Based on clinical experience, a treatment analogous to that for migraine without aura can be recommended. Acetyl-DL-leucine improved cerebellar ataxia (two observational studies); it also accelerated central compensation in an animal model of acute unilateral lesion, but RCTs were negative. There are ongoing RCTs on treatment of vestibular paroxysmia with carbamazepine (VESPA), acute unilateral vestibulopathy with betahistine (BETAVEST), vestibular migraine with metoprolol (PROVEMIG), benign paroxysmal positional vertigo with vitamin D (VitD@BPPV), EA2 with 4-aminopyridine versus acetazolamide (EAT-2-TREAT), and cerebellar ataxias with acetyl-DL-leucine (ALCAT). Georg Thieme Verlag KG Stuttgart · New York.

  20. Aminoglycoside-induced vestibular injury: maintaining a sense of balance.

    Science.gov (United States)

    Ariano, Robert E; Zelenitsky, Sheryl A; Kassum, Diamond A

    2008-09-01

    To describe the mechanism and risk factors for the development of aminoglycoside-induced vestibular injury and discuss their implications for therapeutic monitoring of aminoglycoside antibiotics. A MEDLINE search (1975-January 2008) was performed to identify literature on aminoglycoside-induced vestibular injury and risk factors associated with this outcome and their impact on therapeutic drug monitoring. Additional references were identified through review of bibliographies of identified articles. Data on the mechanisms of vestibular toxicity and its development in association with aminoglycoside exposure were extracted from identified references. The mechanism leading to the development of irreversible vestibular injury from exposure to aminoglycosides appears to be through the excessive production of oxidative free radicals. This production and subsequent toxicity appears to be a time-dependent process and is unrelated to dose or serum concentration. For similarly designed studies, the pooled incidence of vestibular toxicity is 10.9% for gentamicin, 7.4% for amikacin, 3.5% for tobramycin, and 1.1% for netilmicin. Current evidence suggests that this form of drug toxicity is not restricted to traditionally dosed systemic therapy, since intraperitoneal administration, high-dose once-daily administration, topical inhalation, and eardrop administration have all been associated with the development of this adverse outcome. Given the lack of association between serum concentrations and vestibulotoxicity, it is imperative for the pharmacist to interview the patient and not focus solely on maintaining target range drug concentrations. Minimizing the duration of exposure to aminoglycosides is recommended to reduce the risk from this form of drug toxicity.

  1. [BEHAVIOURAL AND FUNCTIONAL VESTIBULAR DISTURBANCES AFTER SPACE FLIGHT. 1. MAMMALS].

    Science.gov (United States)

    Lychakov, D V

    2015-01-01

    The review contains data on functional changes in mammals caused by changes in the operation of vestibular system after space flight. These data show that the vestibular system of mammals responds to weightlessness challenge differently at various ontogenetic stages. Orbital space flight conditions have a weak effect on the developing vestibular system during embryonic period. The weightlessness conditions have rather beneficial effect on development of the fetuses. During the early postnatal period, when optimal sensory-motor tactics are created, the prolonged stay under conditions of space flight leads to development of novel, "extraterrestrial" sensory-motor programs that can be fixed in CNS, apparently, for the whole life. In adult individuals after landing essential vestibular changes and disturbances may occur that depend on the spaceflight duration. The adult organism must simultaneously solve two contradicting problems--it should adapt to weightlessness conditions, and should not adapt to them to pass the process of readaptation after returning easier. Thus, individuals must protect themselves against weightlessness influence to keep the intact initial state of health. The protection methods against weightlessness ought to be adjusted according to the duration of space flight. It should be mentioned that not all functional changes registered in adult individuals after landing can be adequately explained. Some of these changes may have chronic or even pathological character. The question of necessity to examine the influence of weightlessness on an aging (senile) organism and on its vestibular system is raised for the first time in this review. In our opinion the development of space gerontology, as a special branch of space biology and medicine, is of undoubted interest, and in the future it may be of practical importance especially taking into account the steadily growing age of cosmonauts (astronauts).

  2. Cochlear and Vestibular Effects of Combined Intratympanic Gentamicin and Dexamethasone.

    Science.gov (United States)

    Güneri, Enis Alpin; Olgun, Yüksel; Aslıer, Mustafa; Nuti, Daniele; Kırkım, Günay; Mungan, Serpil; Kolatan, Efsun; Aktaş, Safiye; Trabalzini, Franco; Ellidokuz, Hülya; Yılmaz, Osman; Mandala, Marco

    2017-04-01

    The aim of this study is to evaluate the effects of an intratympanic gentamicin-dexamethasone combination on the inner ear. Twenty-six Wistar albino rats were divided into four groups: Group I (Control), group II (Intratympanic dexamethasone; ITD), group III (Intratympanic gentamicin; ITG), and group IV (Intratympanic gentamicin and dexamethasone; ITGD). On the first day after basal auditory brainstem response (ABR) measurements, the ITG group received 0.03 mL of intratympanic gentamicin (26.7 mg/mL). Intratympanic injection of 0.06 mL of a solution containing 13.35 mg/mL gentamicin and 2 mg/mL dexamethasone was performed in the ITGD group. 0.03 mL of physiological intratympanic serum and dexamethasone (4 mg/mL) was applied in control and ITD groups, respectively. On the 7th day, ABR measurements were repeated and vestibular functions were evaluated. On the 21th day, ABR and vestibular tests were repeated, and the animals were sacrificed for histopathological investigation. The ITG group's hearing thresholds deteriorated in all frequencies. The ITGD group's hearing thresholds were significantly better than the ITG group, except at 8 kHz on the 7th day and in all frequencies at the 21th day measurements. The vestibular function scores of the ITG and ITGD groups were higher than the controls. Apoptotic changes were seen in cochlea, spiral ganglion, and vestibule of the ITG group. Cochlear and vestibular structures were well preserved in the ITGD group, similar to the controls. The ITGD combination led to a significant hearing preservation. Although in subjective vestibular tests, it seemed that vestibulotoxicity was present in both ITG and ITGD groups the histopathological investigations revealed no signs of vestibulotoxicity in the ITGD group in contrast to the ITG group. Further studies using a combination of different concentrations of gentamicin and dexamethasone are needed.

  3. Ocular vestibular evoked myogenic potential elicited from binaural air-conducted stimulations: clinical feasibility in patients with peripheral vestibular dysfunction.

    Science.gov (United States)

    Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya

    2013-07-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.

  4. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in

  5. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis.

    Science.gov (United States)

    Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe

    2014-01-01

    The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  6. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis

    Directory of Open Access Journals (Sweden)

    Angelica ePerez Fornos

    2014-04-01

    Full Text Available The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the Vestibulo-Ocular Reflex (VOR, the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  7. Vestibular function of patients with profound deafness related to GJB2 mutation.

    Science.gov (United States)

    Kasai, Misato; Hayashi, Chieri; Iizuka, Takashi; Inoshita, Ayako; Kamiya, Kazusaku; Okada, Hiroko; Nakajima, Yukinori; Kaga, Kimitaka; Ikeda, Katsuhisa

    2010-09-01

    GJB2 mutations are responsible not only for deafness but also for the occurrence of vestibular dysfunction. However, vestibular dysfunction tends to be unilateral and less severe in comparison with that of bilateral deafness. The correlation between the cochlear and vestibular end-organs suggests that some children with congenital deafness may have vestibular impairments. On the other hand, GJB2 gene mutations are the most common cause of nonsyndromic deafness. The vestibular function of patients with congenital deafness (CD), which is related to GJB2 gene mutation, remains to be elucidated. The purpose of this study was to analyze the relationship between GJB2 gene mutation and vestibular dysfunction in adults with CD. A total of 31 subjects, including 10 healthy volunteers and 21 patients with CD, were enrolled in the study. A hearing test and genetic analysis were performed. The vestibular evoked myogenic potentials (VEMPs) were measured and a caloric test was performed to assess the vestibular function. The percentage of vestibular dysfunction was then statistically analyzed. The hearing level of all CD patients demonstrated a severe to profound impairment. In seven CD patients, their hearing impairment was related to GJB2 mutation. Five of the seven patients with CD related to GJB2 mutation demonstrated abnormalities in one or both of the two tests. The percentage of vestibular dysfunction of the patients with CD related to GJB2 mutation was statistically higher than in patients with CD unrelated to GJB2 mutation and in healthy controls.

  8. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: preliminary report.

    Science.gov (United States)

    McGibbon, Chris A; Krebs, David E; Parker, Stephen W; Scarborough, Donna M; Wayne, Peter M; Wolf, Steven L

    2005-02-18

    Vestibular rehabilitation (VR) is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC), have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width), lower extremity sagittal plane mechanical energy expenditures (MEE), and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity), were measured. Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster gait and reduced excessive hip compensation. The VR group

  9. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: Preliminary report

    Directory of Open Access Journals (Sweden)

    Parker Stephen W

    2005-02-01

    Full Text Available Abstract Background Vestibular rehabilitation (VR is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC, have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. Methods We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width, lower extremity sagittal plane mechanical energy expenditures (MEE, and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity, were measured. Results Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Conclusion Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster

  10. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  11. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    NARCIS (Netherlands)

    Nguyen, T. A. K.; Cavuscens, Samuel; Ranieri, Maurizio; Schwarz, Konrad; Guinand, Nils; van de Berg, Raymond; van den Boogert, Thomas; Lucieer, Floor; van Hoof, Marc; Guyot, Jean-Philippe; Kingma, Herman; Micera, Silvestro; Perez Fornos, Angelica

    2017-01-01

    The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no

  12. Current treatment of nasal vestibular stenosis with CO2-laser surgery; prolonged vestibular stenting versus intraoperative mitomycin application. A case series of 3 patients

    NARCIS (Netherlands)

    Schijndel, O. van; Heerbeek, N. van; Ingels, K.J.A.O.

    2014-01-01

    These case studies describe three cases of unilateral nasal vestibular stenoses caused by chemical cauterization. Each case was treated with CO2-laser surgery together with intraoperative topic application of mitomycin or prolonged vestibular stenting for prevention of restenosis. Two patients

  13. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  14. Optimal duration of therapy in the recovery period of vestibular diseases

    Directory of Open Access Journals (Sweden)

    M. V. Zamergrad

    2014-01-01

    Full Text Available Dizziness is a common symptom in neurological and general medical practice. In most cases it is caused by diseases of the central or peripheral vestibular system. The most common vestibular system diseases include benign paroxysmal postural vertigo, dizziness, Meniere's disease, vestibular neuronitis, and cerebrovascular diseases. One of the main treatments for the diseases accompanied by dizziness is vestibular rehabilitation that is a complex of exercises, the goal of which is to stimulate vestibular compensation. Adequate vestibular compensation allows a patient to get rid of dizziness and unsteadiness even though vestibular system injury is irreversible. Some medications are able to enhance the efficiency of vestibular rehabilitation. At the same time, the optimal duration of treatment for the most common vestibular disorders has not beenadequately explored. The paper gives the results of an observational program, whose purpose was to determine the optimal duration of vestibular rehabilitation in combination with the use of tanakan in patients with non-progressive unilateral peripheral vestibular disorder.Patients and methods. Data on 46 patients aged 19 to 70 years who underwent vestibular rehabilitation and took tanakan for vertigo caused by vestibular neuronitis (n = 44, labyrinthitis (n =1, or Ramsay Hunt syndrome (n = 1 were analyzed. All the patients were examined four times. The symptoms were recorded and the histories of disease were considered. The degree of vestibular disorders, including vertigo, was assessed when collecting complaints. The symptoms of vertigo were objectivized using its vertigo rating scale and five-point subjective rating scale for vertigo. All the patients underwent standard somatic and neurological examinations and videonystagmography. During the first visit after diagnosis, vestibular exercises were chosen for the patients and tanakan was used in a dose of 40 mg thrice daily to accelerate

  15. Visual-vestibular integration motion perception reporting

    Science.gov (United States)

    Harm, Deborah L.; Reschke, Millard R.; Parker, Donald E.

    1999-01-01

    Self-orientation and self/surround-motion perception derive from a multimodal sensory process that integrates information from the eyes, vestibular apparatus, proprioceptive and somatosensory receptors. Results from short and long duration spaceflight investigations indicate that: (1) perceptual and sensorimotor function was disrupted during the initial exposure to microgravity and gradually improved over hours to days (individuals adapt), (2) the presence and/or absence of information from different sensory modalities differentially affected the perception of orientation, self-motion and surround-motion, (3) perceptual and sensorimotor function was initially disrupted upon return to Earth-normal gravity and gradually recovered to preflight levels (individuals readapt), and (4) the longer the exposure to microgravity, the more complete the adaptation, the more profound the postflight disturbances, and the longer the recovery period to preflight levels. While much has been learned about perceptual and sensorimotor reactions and adaptation to microgravity, there is much remaining to be learned about the mechanisms underlying the adaptive changes, and about how intersensory interactions affect perceptual and sensorimotor function during voluntary movements. During space flight, SMS and perceptual disturbances have led to reductions in performance efficiency and sense of well-being. During entry and immediately after landing, such disturbances could have a serious impact on the ability of the commander to land the Orbiter and on the ability of all crew members to egress from the Orbiter, particularly in a non-nominal condition or following extended stays in microgravity. An understanding of spatial orientation and motion perception is essential for developing countermeasures for Space Motion Sickness (SMS) and perceptual disturbances during spaceflight and upon return to Earth. Countermeasures for optimal performance in flight and a successful return to Earth require

  16. Role of the insula and vestibular system in patients with chronic subjective dizziness: An fMRI study using sound-evoked vestibular stimulation

    Directory of Open Access Journals (Sweden)

    Iole eIndovina

    2015-12-01

    Full Text Available Chronic subjective dizziness (CSD is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence, long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD.We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC.We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients

  17. Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project

    Science.gov (United States)

    Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan

    2012-01-01

    Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve

  18. The vestibular contribution to the head direction cells signal and navigation

    Directory of Open Access Journals (Sweden)

    Jeffrey S Taube

    2014-04-01

    Full Text Available Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we review the role of the vestibular system in generating various spatial signals in rodents, focusing primarily on head direction cells. We also examine the vestibular system’s role in navigation and the possible pathways by which vestibular information is conveyed to higher navigation centers.

  19. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Pialasse

    Full Text Available Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20 or severe (n = 16 spine deformation were compared to those of healthy control adolescents (n = 16. Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.

  20. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    Directory of Open Access Journals (Sweden)

    Christophe eLopez

    2013-12-01

    Full Text Available The consequences of vestibular disorders on balance, oculomotor control and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience, altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization. In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness.

  1. Is hippocampal neurogenesis modulated by the sensation of self-motion encoded by the vestibular system?

    Science.gov (United States)

    Smith, Paul F

    2017-12-01

    It is now well accepted that physical exercise stimulates hippocampal neurogenesis and may promote cognitive ability. Less clear are the mechanisms by which this process occurs. One potential contributing influence, that is usually neglected, is the vestibular system, which by its very nature must be activated during physical exercise and which essentially cannot be turned off without complete bilateral vestibular lesions. This paper reviews a small literature that demonstrates that bilateral vestibular loss (BVL) in rats modulates cell proliferation in the dentate gyrus (DG) and that artificial electrical activation of the vestibular system, using galvanic vestibular stimulation, does also. Although there are only a few piecemeal studies of this subject, because of the way that they were controlled, it is likely that the vestibular system has a regulatory role in cell proliferation in the DG and therefore possibly in neurogenesis, which needs to be taken into account in the interpretation of neurogenesis studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neuroprotection of vestibular sensory cells from gentamicin ototoxicity obtained using nitric oxide synthase inhibitors, reactive oxygen species scavengers, brain-derived neurotrophic factors and calpain inhibitors.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti; Shimizu, Akira; Watanabe, Hiroshi

    2003-01-01

    In order to devise a new treatment for inner ear disorders, the efficacy of a nitric oxide synthase inhibitor (L-N(G)-nitroarginine methylester [L-NAME]), a radical scavenger (D-methionine), a neurotrophin (brain-derived neurotrophic factor [BDNF]) and a calpain inhibitor (leupeptin) for protection from hair cell damage was investigated. The effects of these drugs on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular hair cell damage was examined by using an in vitro LIVE/DEAD system. L-NAME inhibited the production of NO, D-methionine and BDNF restricted the production of ROS and leupeptin inhibited neither NO nor ROS. All the drugs used limited the vestibular hair cell damage caused by gentamicin. The combinations L-NAME + BDNF, L-NAME + leupeptin and D-methionine + BDNF had a significantly stronger preventive effect on hair cell damage. It is suggested that combined treatment with a radical inhibitor and either a neurotrophin or calpain inhibitor may help to treat inner ear disorders more effectively.

  3. Effect of vision, proprioception, and the position of the vestibular organ on postural sway.

    OpenAIRE

    Ekvall-Hansson, Eva; Beckman, Anders; Håkansson, Anders

    2010-01-01

    Abstract Conclusion: When measured together, it seems that vision and proprioception as well as position of the vestibular organ affect postural sway, vision the most. Mediolateral (ML) sway does not seem to be influenced by the position of the vestibular organ. Objective: To investigate how postural sway was affected by provocation of vision, by the position of the vestibular organ, and by provocation of proprioception, when measured together. Methods: Postural sway was measured by using a f...

  4. The vestibular contribution to the head direction cells signal and navigation

    OpenAIRE

    Taube, Jeffrey S.; Yoder, Ryan M.

    2014-01-01

    Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we r...

  5. Determination of the functional status of vestibular apparatus at children aged 5-6 years old.

    Directory of Open Access Journals (Sweden)

    Moiseenko E.K.

    2012-02-01

    Full Text Available The physiological methods of determination of the functional state of vestibular analyzer are considered. The indexes of systole and diastole pressure, frequencies of heart-throbs, are chosen. Methods were used before and after standard vestibular irritation. Research was conducted on the base of child's preschool establishment. In it took part 120 children in age 5 - 6 years. Insufficient development of vestibular analyzer is set for children. Selected exercise for the improvement of spatial orientation and statodynamic stability.

  6. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Frequency response of vestibular reflexes in neck, back, and lower limb muscles.

    Science.gov (United States)

    Forbes, Patrick A; Dakin, Christopher J; Vardy, Alistair N; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2013-10-01

    Vestibular pathways form short-latency disynaptic connections with neck motoneurons, whereas they form longer-latency disynaptic and polysynaptic connections with lower limb motoneurons. We quantified frequency responses of vestibular reflexes in neck, back, and lower limb muscles to explain between-muscle differences. Two hypotheses were evaluated: 1) that muscle-specific motor-unit properties influence the bandwidth of vestibular reflexes; and 2) that frequency responses of vestibular reflexes differ between neck, back, and lower limb muscles because of neural filtering. Subjects were exposed to electrical vestibular stimuli over bandwidths of 0-25 and 0-75 Hz while recording activity in sternocleidomastoid, splenius capitis, erector spinae, soleus, and medial gastrocnemius muscles. Coherence between stimulus and muscle activity revealed markedly larger vestibular reflex bandwidths in neck muscles (0-70 Hz) than back (0-15 Hz) or lower limb muscles (0-20 Hz). In addition, vestibular reflexes in back and lower limb muscles undergo low-pass filtering compared with neck-muscle responses, which span a broader dynamic range. These results suggest that the wider bandwidth of head-neck biomechanics requires a vestibular influence on neck-muscle activation across a larger dynamic range than lower limb muscles. A computational model of vestibular afferents and a motoneuron pool indicates that motor-unit properties are not primary contributors to the bandwidth filtering of vestibular reflexes in different muscles. Instead, our experimental findings suggest that pathway-dependent neural filtering, not captured in our model, contributes to these muscle-specific responses. Furthermore, gain-phase discontinuities in the neck-muscle vestibular reflexes provide evidence of destructive interaction between different reflex components, likely via indirect vestibular-motor pathways.

  8. Influence of Caloric Vestibular Stimulation on Body Experience in Healthy Humans

    OpenAIRE

    Andreas eSchönherr; Christian-Albrecht eMay

    2016-01-01

    The vestibular system has more connections with and influence on higher cortical centers than previously thought. These interactions with higher cortical centers and the phenomena that they elicit require a structural intact cerebral cortex. To date, little is known about the role and influence of the vestibular system on one’s body experience. In this study we show that caloric vestibular stimulation (CVS) in healthy participants has an effect on the perceptive component of one’s body experi...

  9. Qualidade de vida de indivíduos submetidos à reabilitação vestibular

    OpenAIRE

    Gomes Patatas, Olívia Helena; Freitas Ganança, Cristina; Freitas Ganança, Fernando

    2009-01-01

    Balance disorders affect social, family and professional activities. Vestibular rehabilitation can reduce the impact of these disorders on the quality of life of individuals with vertigo. AIM: to study the influence of vestibular rehabilitation on the quality of life of individuals, correlating it with gender, age, results from computerized vectoelectronystagmography and vertigo. Study type: Retrospective. MATERIALS AND METHODS:Twenty-two individuals were submitted to customized vestibular re...

  10. Reabilitação vestibular: tendências e indicações

    OpenAIRE

    Teixeira,Clarissa Stefani; Pereira, Érico Felden; Rossi, Angela Garcia; Daronco, Luciane Sanchotene Etchepare

    2012-01-01

    The vestibular rehabilitation, generally recommended for the treatment of dysfunctions in the vestibular system, has been prescribed for people with other problems related to balance and to spacial orientation. This study, with a bibliographic basis, had as objective to make a synthesis of the studies about vestibular rehabilitation that are focused in other morbidities besides the vestibulopathies, pointing out the tendencies of investigations and the main results, specially the ones with in...

  11. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: FROM THE AMERICAN PHYSICAL THERAPY ASSOCIATION NEUROLOGY SECTION.

    Science.gov (United States)

    Hall, Courtney D; Herdman, Susan J; Whitney, Susan L; Cass, Stephen P; Clendaniel, Richard A; Fife, Terry D; Furman, Joseph M; Getchius, Thomas S D; Goebel, Joel A; Shepard, Neil T; Woodhouse, Sheelah N

    2016-04-01

    Uncompensated vestibular hypofunction results in postural instability, visual blurring with head movement, and subjective complaints of dizziness and/or imbalance. We sought to answer the question, "Is vestibular exercise effective at enhancing recovery of function in people with peripheral (unilateral or bilateral) vestibular hypofunction?" A systematic review of the literature was performed in 5 databases published after 1985 and 5 additional sources for relevant publications were searched. Article types included meta-analyses, systematic reviews, randomized controlled trials, cohort studies, case control series, and case series for human subjects, published in English. One hundred thirty-five articles were identified as relevant to this clinical practice guideline. Based on strong evidence and a preponderance of benefit over harm, clinicians should offer vestibular rehabilitation to persons with unilateral and bilateral vestibular hypofunction with impairments and functional limitations related to the vestibular deficit. Based on strong evidence and a preponderance of harm over benefit, clinicians should not include voluntary saccadic or smooth-pursuit eye movements in isolation (ie, without head movement) as specific exercises for gaze stability. Based on moderate evidence, clinicians may offer specific exercise techniques to target identified impairments or functional limitations. Based on moderate evidence and in consideration of patient preference, clinicians may provide supervised vestibular rehabilitation. Based on expert opinion extrapolated from the evidence, clinicians may prescribe a minimum of 3 times per day for the performance of gaze stability exercises as 1 component of a home exercise program. Based on expert opinion extrapolated from the evidence (range of supervised visits: 2-38 weeks, mean = 10 weeks), clinicians may consider providing adequate supervised vestibular rehabilitation sessions for the patient to understand the goals of the program

  12. Vertigo and the processing of vestibular information: A review in the context of predictive coding.

    Science.gov (United States)

    Klingner, Carsten M; Axer, Hubertus; Brodoehl, Stefan; Witte, Otto W

    2016-12-01

    This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights into several important questions regarding specific properties of the vestibular system. Particularly, we discuss why the vestibular network is more spatially distributed than other sensory networks, why a mismatch in the vestibular system is more clinically disturbing than in other sensory systems, why the vestibular system is only marginally affected by most cerebral lesions, and whether there is a primary vestibular cortex. The use of predictive coding as a theoretical framework further points to some problems with the current interpretation of results that are gained from vestibular stimulation studies. In particular, we argue that cortical responses of vestibular stimuli cannot be interpreted in the same way as responses of other sensory modalities. Finally, we discuss the implications of the new insights, hypotheses and problems that were identified in this review on further directions of research of vestibular information processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Vestibular Function in the Temporal and Parietal Cortex: Distinct Velocity and Inertial Processing Pathways

    Directory of Open Access Journals (Sweden)

    Jocelyne eVentre-Dominey

    2014-07-01

    Full Text Available A number of behavioural and neuroimaging studies have reported converging data in favour of a cortical network for vestibular function, distributed between the temporo-parietal cortex and the prefrontal cortex in the primate. In this review, we focus on the role of the cerebral cortex in visuo-vestibular integration including the motion sensitive temporo-occipital areas i.e. the middle superior temporal area (MST and the parietal cortex. Indeed these two neighbouring cortical regions, though they both receive combined vestibular and visual information, have distinct implications in vestibular function. In sum, this review of the literature leads to the idea of two separate cortical vestibular sub-systems forming (1 a velocity pathway including MST and direct descending pathways on vestibular nuclei. As it receives well defined visual and vestibular velocity signals, this pathway is likely involved in heading perception and rapid top-down regulation of eye/head coordination and (2 an inertial processing pathway involving the parietal cortex in connection with the subcortical vestibular nuclei complex responsible for velocity storage integration. This vestibular cortical pathway would be implicated in high order multimodal integration and cognitive functions, including world space and self- referential processing.

  14. Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways

    Science.gov (United States)

    Ventre-Dominey, Jocelyne

    2014-01-01

    A number of behavioral and neuroimaging studies have reported converging data in favor of a cortical network for vestibular function, distributed between the temporo-parietal cortex and the prefrontal cortex in the primate. In this review, we focus on the role of the cerebral cortex in visuo-vestibular integration including the motion sensitive temporo-occipital areas i.e., the middle superior temporal area (MST) and the parietal cortex. Indeed, these two neighboring cortical regions, though they both receive combined vestibular and visual information, have distinct implications in vestibular function. In sum, this review of the literature leads to the idea of two separate cortical vestibular sub-systems forming (1) a velocity pathway including MST and direct descending pathways on vestibular nuclei. As it receives well-defined visual and vestibular velocity signals, this pathway is likely involved in heading perception and rapid top-down regulation of eye/head coordination and (2) an inertial processing pathway involving the parietal cortex in connection with the subcortical vestibular nuclei complex responsible for velocity storage integration. This vestibular cortical pathway would be implicated in high-order multimodal integration and cognitive functions, including world space and self-referential processing. PMID:25071481

  15. The vestibular system: a spatial reference for bodily self-consciousness.

    Science.gov (United States)

    Pfeiffer, Christian; Serino, Andrea; Blanke, Olaf

    2014-01-01

    Self-consciousness is the remarkable human experience of being a subject: the "I". Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where "I" experience the world) and self-location (the feeling where "I" am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness.

  16. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    Science.gov (United States)

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.

  17. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography

    National Research Council Canada - National Science Library

    Daniel J. Brown; Christopher J. Pastras; Ian S. Curthoys

    2017-01-01

    .... Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort...

  18. Direct evidence of nitric oxide production in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-01-01

    Production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. The utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with L-arginine, and significantly increased after inoculation with LPS. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role for the vestibular physiology and also be involved in disease of the inner ear.

  19. Transformation of Vestibular Signals for the Control of Standing in Humans.

    Science.gov (United States)

    Forbes, Patrick A; Luu, Billy L; Van der Loos, H F Machiel; Croft, Elizabeth A; Inglis, J Timothy; Blouin, Jean-Sébastien

    2016-11-09

    During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms

  20. [Present situation and development of ocular vestibular-evoked myogenic potential].

    Science.gov (United States)

    Hu, Juan; Xu, Min; Zhang, Qing

    2013-04-01

    Myogenic potentials evoked by air conducted sound (ACS), bone conducted vibration (BCV) or galvanic pulses can be recorded with surface electrodes over contracted muscles. These myogenic potentials are of vestibular origin (utricle and saccule) and so these potentials are called vestibular evoked myogenic potentials (VEMPs). Since the vestibular system has projections to many muscle systems, there are many such VEMPs. In this review, we discuss the generated origin, response pathway, waveform characteristics and clinical application of ocular vestibular-evoked myogenic potential (oVEMP).

  1. Isolated cochlear neuritis from varicella reactivation mimicking a vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Adam D. Goodale

    2016-09-01

    Full Text Available We present a case of a patient with progressive unilateral sensorineural hearing loss and tinnitus with internal auditory canal enhancement on magnetic resonance imaging (MRI secondary to isolated cochlear neuritis from varicella reactivation. MRI following antiviral treatment showed resolution of enhancement. Varicella reactivation is commonly seen in the form of Ramsay Hunt syndrome, which is known to produce abnormal MRI enhancement from facial and vestibulocochlear neuritis; however, its characteristic clinical signs aid the diagnosis. This case is unique in that the only manifestation of varicella infection was unilateral hearing loss. This case outlines the importance of maintaining a broad differential diagnosis in the evaluation of unilateral hearing loss as well as recognizing the limited specificity of MRI. Keywords: Vestibular schwannoma, Acoustic neuroma, Vestibular neuritis, Ramsay Hunt syndrome, Varicella zoster virus

  2. Input/output properties of the lateral vestibular nucleus

    Science.gov (United States)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  3. The medial vestibular nuclei, a vulnerable target in thiamine deficiency.

    Science.gov (United States)

    Kattah, Jorge C; Guede, Cindy; Hassanzadeh, Bahareh

    2018-01-01

    Bilateral medial vestibular nuclei (MVN) is a common target in thiamine depletion and results in acute vestibular failure. Involvement of the MVN was present in 27 out of 38 brainstem sections reported in the largest thiamine deficiency autopsy cohort with Wernicke's encephalopathy. Serial clinical, imaging and vestibulo-ocular reflex gain measured with the video head impulse (vHIT) in one patient with acute thiamine deficiency. Low horizontal VOR gain correlated with an abnormal manual head impulse and with MRI evidence of MVN in an alcohol-dependent patient with low thiamine levels. The vertical VOR gain was either normal or mildly abnormal. Thiamine replacement and normal diet restored the VOR gain and MRI signal changes to normal. This single case study provides clinical-imaging correlation for symmetric MVN compromise in thiamine deficiency, its effect on the VOR gain and the favorable response to thiamine and diet replacement when identified early.

  4. Vestibular rehabilitation strategies and factors that affect the outcome.

    Science.gov (United States)

    Eleftheriadou, Anna; Skalidi, Nikoleta; Velegrakis, Georgios A

    2012-11-01

    Ever since the introduction of Cawthorne-Cooksey exercises, vestibular rehabilitation (VR) has been gaining popularity in the treatment of the dizzy patient. Numerous studies support the effectiveness of VR in improving balance/walking skills, eye-head coordination and the quality of life of the patient. Different rehabilitation protocols have been used to treat patients with peripheral and central vestibular disorders. Assessment of the patients' progress is based on the patients' selfperception of dizziness and their functional skills. Factors such as age, medication, time of onset of vertigo and home based VR have been evaluated on their effect on the rehabilitation's outcome. The aim of this review is to evaluate rehabilitation strategies and discuss the factors that affect the outcome.

  5. Saccadic entropy of head impulses in acute unilateral vestibular loss

    OpenAIRE

    Hsieh, Li-Chun; Lin, Hung-Ching; Lee, Guo-She

    2016-01-01

    To evaluate the complexity of vestibular–ocular reflex (VOR) in patients with acute unilateral vestibular loss (AUVL) via entropy analysis of head impulses. Methods: Horizontal head impulse test (HIT) with high-velocity alternating directions was used to evaluate 12 participants with AUVL and 16 healthy volunteers. Wireless electro-oculography and electronic gyrometry were used to acquire eye positional signals and head velocity signals. The eye velocity signals were then obtained through ...

  6. Bilateral vestibular hypofunction: Insights in etiologies, clinical subtypes and diagnostics

    OpenAIRE

    F. eLucieer; P. eVonk; N. eGuinand; R. eStokroos; H. eKingma; R. evan de Berg

    2016-01-01

    Objective:To evaluate the different etiologies and clinical subtypes of bilateral vestibular hypofunction (BVH) and the value of diagnostic tools in the diagnostic process of BVH.Materials and methods: A retrospective case review was performed on 154 patients diagnosed with BVH in a tertiary referral center, between 2013 and 2015. Inclusion criteria comprised 1) imbalance and/or oscillopsia during locomotion, and 2) summated slow phase velocity of nystagmus of less than 20 degrees per second ...

  7. Bilateral Vestibular Hypofunction: Insights in Etiologies, Clinical Subtypes, and Diagnostics

    OpenAIRE

    Lucieer, F.; Vonk, P.; Guinand, N; Stokroos, R.; Kingma, H.; van de Berg, Raymond

    2016-01-01

    Objective To evaluate the different etiologies and clinical subtypes of bilateral vestibular hypofunction (BVH) and the value of diagnostic tools in the diagnostic process of BVH. Materials and methods A retrospective case review was performed on 154 patients diagnosed with BVH in a tertiary referral center, between 2013 and 2015. Inclusion criteria comprised (1) imbalance and/or oscillopsia during locomotion and (2) summated slow phase velocity of nystagmus of less than 20°/s duri...

  8. Immersive Virtual Environment for Visuo-Vestibular Therapy: Preliminary Results

    OpenAIRE

    Gascuel, Jean-Dominique; Payno, Henri; Schmerber, Sébastien,; Martin, Olivier

    2012-01-01

    International audience; The sense of equilibrium aggregates several interacting cues. On patients with vestibular loss, vision plays a major role. In this study, the goal is to propose a new immersive therapy based on 3D opto-kinetic stimulation. We propose to demonstrate that 3D monoscopic optical flows are an efficient tool to stimulate adaptive postural adjustment. We developed an immersive therapeutic platform that enables to tune the balance task difficulty by managing optic flow speed a...

  9. Update on the pharmacotherapy of cerebellar and central vestibular disorders.

    OpenAIRE

    Kalla, Roger; Teufel, Julian; Feil, Katharina; Muth, Caroline; Strupp, Michael

    2016-01-01

    An overview of the current pharmacotherapy of central vestibular syndromes and the most common forms of central nystagmus as well as cerebellar disorders is given. 4-aminopyridine (4-AP) is recommended for the treatment of downbeat nystagmus, a frequent form of acquired persisting fixation nystagmus, and upbeat nystagmus. Animal studies showed that this non-selective blocker of voltage-gated potassium channels increases Purkinje cell excitability and normalizes the irregular firing rate, so t...

  10. Magnetic Vestibular Stimulation in Subjects with Unilateral Labyrinthine Disorders

    Directory of Open Access Journals (Sweden)

    Bryan Kevin Ward

    2014-03-01

    Full Text Available We recently discovered that static magnetic fields from high-strength MRI machines induce nystagmus in all normal humans, and that a magnetohydrodynamic (MHD Lorentz force, derived from ionic currents in the endolymph and pushing on the cupula, best explains this effect. Individuals with no labyrinthine function have no nystagmus. The influence of magnetic vestibular stimulation (MVS in individuals with unilateral loss of labyrinthine function is unknown and may provide insight into mechanism of MVS. These individuals should experience MVS, but with differences consistent with their residual labyrinthine function. We recorded eye movements in the static magnetic field of a 7T MRI machine in nine individuals with unilateral labyrinthine hypofunction, as determined by head impulse testing and vestibular-evoked myogenic potentials (VEMP. Eye movements were recorded using infrared videooculography. Static head positions were varied in pitch with the body supine, and slow-phase eye velocity (SPV was assessed. All subjects exhibited predominantly horizontal nystagmus after entering the magnet head-first, lying supine. The SPV direction reversed when entering feet-first. Pitching chin-to-chest caused subjects to reach a null point for horizontal SPV. Right unilateral vestibular hypofunction (UVH subjects developed slow-phase-up nystagmus and left UVH subjects, slow-phase-down nystagmus. Vertical and torsional components were consistent with superior semicircular canal excitation or inhibition, respectively, of the intact ear. These findings provide compelling support for the hypothesis that MVS is a result of a Lorentz force and suggest that the function of individual structures within the labyrinth can be assessed with MVS. As a novel method of comfortable and sustained labyrinthine stimulation, MVS can provide new insights into vestibular physiology and pathophysiology.

  11. Roles of the cerebellum in pursuit-vestibular interactions.

    Science.gov (United States)

    Fukushima, Kikuro

    2003-01-01

    This mini-review focuses on cerebellar roles in on-line control of smooth-pursuit eye movements during vestibular stimulation in primates. The smooth-pursuit system is necessary to track smoothly moving targets and must interact with the vestibular system during movement of the head and/or whole body to maintain the precision of eye movements in space (i.e. gaze movements). This interaction requires calculation of gaze velocity commands that match the eye velocity in space to the actual target velocity. Two cerebellar regions, the floccular lobe that consists of the flocculus and ventral paraflocculus, and the dorsal vermis, are known to be involved in smooth-pursuit. However, potential differences in their involvement are incompletely understood. To understand their roles, in particular whether the output of these regions codes gaze velocity or eye velocity, simple-spike activity of Purkinje (P-) cells was examined during smooth-pursuit and pursuit-vestibular interaction tasks in various directions in head-restrained monkeys. The results showed differences in discharge characteristics of vertical and horizontal P-cells within the floccular lobe and between the floccular lobe and dorsal vermis. These differences and other available evidence suggest that the dorsal vermis is involved more in the control of gaze movement whereas the floccular lobe primarily controls eye movement (in the orbit) as a component of the oculomotor neural integrator. Smooth-pursuit without vestibular stimulation cannot dissociate eye movement from gaze movement. To understand the cerebellar role in various aspects of smooth tracking of targets moving in the three dimensional space, more information is needed particularly on how the above mentioned two regions along with the dorsal paraflocclus and underlying deep cerebellar nuclei are involved in vergence tracking, how the cerebellum is involved in prediction and perception of target motion, and whether complex-spike discharge is involved

  12. Afferent diversity and the organization of central vestibular pathways

    OpenAIRE

    Goldberg, Jay M.

    2000-01-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitiv...

  13. Anatomical and Physiological Considerations in Vestibular Dysfunction and Compensation

    OpenAIRE

    Jones, Sherri M.; Jones, Timothy A.; Mills, Kristal N.; Gaines, G Christopher

    2009-01-01

    Sensory information from the vestibular, visual, and somatosensory/proprioceptive systems are integrated in the brain in complex ways to produce a final motor output to muscle groups for maintaining gaze, head and body posture, and controlling static and dynamic balance. The balance system is complex, which can make differential diagnosis of dizziness quite challenging. On the other hand, this complex system is organized anatomically in a variety of pathways and some of these pathways have be...

  14. Concussion Recovery Phase Affects Vestibular and Oculomotor Symptom Provocation.

    Science.gov (United States)

    Cheever, Kelly M; McDevitt, Jane; Tierney, Ryan; Wright, W Geoffrey

    2017-11-30

    Vestibular and oculomotor testing is emerging as a valuable assessment in sport-related concussion (SRC). However, their usefulness for tracking recovery and guiding return-to-play decisions remains unclear. Therefore the purpose of this study was to evaluate their clinical usefulness for tracking SRC recovery. Vestibular and oculomotor assessments were used to measure symptom provocation in an acute group (n=21) concussed≤10 days, prolonged symptoms group (n=10) concussed ≥16 days (median=84 days), healthy group (n=58) no concussions in >6 months. Known-groups approach was used with three groups at three time points (initial, 2-week and 6-week follow-up). Provoked symptoms for Gaze-Stabilization (GST), Rapid Eye Horizontal (REH), Optokinetic Stimulation (OKS), Smooth-Pursuit Slow (SPS) and Fast (SPF) tests, total combined symptoms scores and near point convergence (NPC) distance were significantly greater at initial assessment in both injury groups compared to controls. Injury groups improved on the King-Devick test and combined symptom provocation scores across time. The acute group improved over time on REH and SPF tests, while the prolonged symptoms group improved on OKS. A regression model (REH, OKS, GST) was 90% accurate discriminating concussed from healthy. Vestibular and ocular motor tests give valuable insight during recovery. They can prove beneficial in concussion evaluation given the modest equipment, training and time requirements. The current study demonstrates that when combined, vestibular and oculomotor clinical tests aid in the detection of deficits following a SRC. Additionally, tests such as NPC, GST, REH, SPS, SPF OKS and KD provide valuable information to clinicians throughout the recovery process and may aid in return to play decisions. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Leptomeningeal Carcinomatosis of Gastric Cancer Misdiagnosed as Vestibular Schwannoma

    OpenAIRE

    Kim, Shin-Jae; Kwon, Jeong-Taik; Mun, Seog-Kyun; Hong, Young-Ho

    2014-01-01

    Gastric cancer is one of the most common causes of cancer-related death in Asian countries, including Korea. We experienced a case of leptomeningeal carcinomatosis (LC) from gastric cancer that was originally misdiagnosed as vestibular schwannoma based on the similar radiological characteristics. To our knowledge, LC from gastric cancer is very rare. In conclusion, our experience with this case suggests that clinicians should consider the possibility of delayed leptomeningeal metastasis when ...

  16. Leptomeningeal carcinomatosis of gastric cancer misdiagnosed as vestibular schwannoma.

    Science.gov (United States)

    Kim, Shin-Jae; Kwon, Jeong-Taik; Mun, Seog-Kyun; Hong, Young-Ho

    2014-07-01

    Gastric cancer is one of the most common causes of cancer-related death in Asian countries, including Korea. We experienced a case of leptomeningeal carcinomatosis (LC) from gastric cancer that was originally misdiagnosed as vestibular schwannoma based on the similar radiological characteristics. To our knowledge, LC from gastric cancer is very rare. In conclusion, our experience with this case suggests that clinicians should consider the possibility of delayed leptomeningeal metastasis when treating patients with gastric cancer.

  17. Neurogenic vestibular evoked potentials using a tone pip auditory stimulus.

    Science.gov (United States)

    Papathanasiou, E S; Zamba-Papanicolaou, E; Pantziaris, M; Kleopas, K; Kyriakides, T; Papacostas, S; Pattichis, C; Iliopoulos, I; Piperidou, C

    2004-01-01

    To obtain neurogenic vestibular evoked potentials (NVESTEPs) with surface scalp recording using a tone pip auditory stimulus. Fourteen neurologically normal volunteers (Age range 26-45 years, 10 females and 4 males), and two patients with sensorineural hearing loss and possible multiple sclerosis respectively, were examined. Two channel recordings were obtained, the first channel being P3 referred to Fpz, and the second channel being P4 referred to Fpz. A 1 kHz tone pip stimulus with two cycles was delivered via headphones monoaurally with contralateral masking noise. A consistent negative wave with a mean absolute latency of 4.72 msec was obtained, which we have named N5. 25% of the ears tested had better responses at the ipsilateral parietal electrode. In the patient with bilateral sensorineural hearing loss, NVESTEPs was present, suggesting that the NVESTEP is not a cochlear response. In the patient with possible multiple sclerosis, an abnormal NVESTEP response and a normal BAEP response were found. Use of a tone-pip rather than a click auditory stimulus allows a lower click intensity to be used in the production of NVESTEP responses, leads to a shorter testing time, and is therefore more comfortable for the patient. This study adds to our impression that the NVESTEP may be a physiological response that can be used to assess the vestibular system and is different from the BAEP response. Further testing in patients with symptoms of dizziness and with disorders specific for the vestibular nerve is required.

  18. Bilateral Vestibular Hypofunction: Insights in Etiologies, Clinical Subtypes, and Diagnostics.

    Science.gov (United States)

    Lucieer, F; Vonk, P; Guinand, N; Stokroos, R; Kingma, H; van de Berg, Raymond

    2016-01-01

    To evaluate the different etiologies and clinical subtypes of bilateral vestibular hypofunction (BVH) and the value of diagnostic tools in the diagnostic process of BVH. A retrospective case review was performed on 154 patients diagnosed with BVH in a tertiary referral center, between 2013 and 2015. Inclusion criteria comprised (1) imbalance and/or oscillopsia during locomotion and (2) summated slow phase velocity of nystagmus of less than 20°/s during bithermal caloric tests. The definite etiology of BVH was determined in 47% of the cases and the probable etiology in 22%. In 31%, the etiology of BVH remained idiopathic. BVH resulted from more than 20 different etiologies. In the idiopathic group, the percentage of migraine was significantly higher compared to the non-idiopathic group (50 versus 11%, p development of BVH. The distribution of etiologies of BVH probably depends on the clinical setting. In the diagnostic process of BVH, the routine use of some blood tests can be reconsidered and a low-threshold use of audiometry and cerebral imaging is advised. The torsion swing test is not the "gold standard" for diagnosing BVH due to its lack of sensitivity. Future diagnostic criteria of BVH should consist of standardized vestibular tests combined with a history that is congruent with the vestibular findings.

  19. Mobile phones: influence on auditory and vestibular systems.

    Science.gov (United States)

    Balbani, Aracy Pereira Silveira; Montovani, Jair Cortez

    2008-01-01

    Telecommunications systems emit radiofrequency, which is an invisible electromagnetic radiation. Mobile phones operate with microwaves (450900 MHz in the analog service, and 1,82,2 GHz in the digital service) very close to the users ear. The skin, inner ear, cochlear nerve and the temporal lobe surface absorb the radiofrequency energy. literature review on the influence of cellular phones on hearing and balance. systematic review. We reviewed papers on the influence of mobile phones on auditory and vestibular systems from Lilacs and Medline databases, published from 2000 to 2005, and also materials available in the Internet. Studies concerning mobile phone radiation and risk of developing an acoustic neuroma have controversial results. Some authors did not see evidences of a higher risk of tumor development in mobile phone users, while others report that usage of analog cellular phones for ten or more years increase the risk of developing the tumor. Acute exposure to mobile phone microwaves do not influence the cochlear outer hair cells function in vivo and in vitro, the cochlear nerve electrical properties nor the vestibular system physiology in humans. Analog hearing aids are more susceptible to the electromagnetic interference caused by digital mobile phones. there is no evidence of cochleo-vestibular lesion caused by cellular phones.

  20. Saccadic entropy of head impulses in acute unilateral vestibular loss.

    Science.gov (United States)

    Hsieh, Li-Chun; Lin, Hung-Ching; Lee, Guo-She

    2017-10-01

    To evaluate the complexity of vestibular-ocular reflex (VOR) in patients with acute unilateral vestibular loss (AUVL) via entropy analysis of head impulses. Horizontal head impulse test (HIT) with high-velocity alternating directions was used to evaluate 12 participants with AUVL and 16 healthy volunteers. Wireless electro-oculography and electronic gyrometry were used to acquire eye positional signals and head velocity signals. The eye velocity signals were then obtained through differentiation, band-pass filtering. The approximate entropy of eye velocity to head velocity (RApEn) was used to evaluate chaos property. VOR gain, gain asymmetry ratio, and RApEn asymmetry ratio were also used to compare the groups. For the lesion-side HIT of the patient group, the mean VOR gain was significantly lower and the mean RApEn was significantly greater compared with both nonlesion-side HIT and healthy controls (p < 0.01, one-way analysis of variance). Both the RApEn asymmetry ratio and gain asymmetry ratio of the AUVL group were significantly greater compared with those of the control group (p < 0.05, independent sample t test). Entropy and gain analysis of HIT using wireless electro-oculography system could be used to detect the VOR dysfunctions of AUVL and may become effective methods for evaluating vestibular disorders. Copyright © 2017. Published by Elsevier B.V.

  1. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    Science.gov (United States)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  2. ETECVEST: PROJETO EDUCACIONAL PREPARATóRIO PARA O VESTIBULAR

    Directory of Open Access Journals (Sweden)

    Bruna Gabrielle Rodrigues Santana

    2017-05-01

    Full Text Available Esse artigo é uma análise de viabilidade da implantação de um projeto educacional preparatório para o vestibular inserida na estrutura da ETEC Profa. Ilza Nascimento Pintus, com o objetivo de preparar os alunos do curso técnico para ingressar em universidades públicas ou privadas. A proposta é a criação de um grupo voluntário de alunos graduandos e professores disponíveis como voluntários para preparar esses jovens e cooperar na preparação para as provas dos vestibulares. A pesquisa de campo foi efetuada nas dependências da ETEC, seu público alvo. O resultado demonstrou que na faixa etária em estudo a grande maioria tem interesse na graduação, porém, a renda familiar é restrita e avaliam ser muito importante o curso pré-vestibular na própria escola. Conclui-se que a criação de uma organização educacional na ETEC contribuiria para que esses alunos tivessem uma melhor preparação e suas chances de ingresso em uma universidade seriam maiores.

  3. Vulvar vestibular effects of ospemifene: a pilot study.

    Science.gov (United States)

    Murina, Filippo; Di Francesco, Stefania; Oneda, Silvia

    2018-01-15

    The study aimed to assess the effects of ospemifene on vulvar vestibule in postmenopausal women with vulvar pain and dyspareunia. Fifty-five postmenopausal women used oral ospemifene 60 mg/d for 60 d. Symptoms of dryness, burning, and dyspareunia were evaluated on a 10 cm visual analog scale. Visual examination of the vulvar vestibule was also conducted. Patients also underwent current perception threshold (CPT) testing obtained from the vulvar vestibule. Fifty-five patients (94.6%) completed the treatment. Hot flashes were the most frequent adverse effects, but this led to a discontinuation of therapy in three patients (5.4%). After therapy, there was a statistically significant decrease from the baseline in the mean scores for dryness, burning, and dyspareunia and reduction of vestibular trophic score (baseline value of 11.2-4.2 after the therapy, p ≤ 002) and cotton swab test scores (2.81 compared with 1.25, p = .001). There was a difference in CPT values for all nerve fibers and more consistent for C fibers (-38% of sensitivity). These results confirm the efficacy of ospemifene on postmenopausal vestibular symptoms and signs; moreover, the drug was effective in normalizing vestibular innervation sensitivity.

  4. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  5. Clinical features of otolith organ-specific vestibular dysfunction.

    Science.gov (United States)

    Fujimoto, Chisato; Suzuki, Sayaka; Kinoshita, Makoto; Egami, Naoya; Sugasawa, Keiko; Iwasaki, Shinichi

    2018-01-01

    To elucidate the clinical features and vestibular symptoms of patients with otolith organ dysfunction in the presence of normal function of the semicircular canals. We reviewed the clinical records of 277 consecutive new patients with balance disorders who underwent testing of cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) as well as caloric testing and video head impulse testing (vHIT). We identified 76 patients who showed normal caloric responses and normal vHIT findings in each SCC plane, but abnormal responses in cVEMP and/or oVEMP testing. Benign paroxysmal positional vertigo (BPPV) was the most common diagnosis. 37% of patients could not be categorized into any of the established clinical entities that could cause a balance disorder and did not show sensorineural hearing loss. The most common clinical manifestation in the idiopathic cases was recurrent rotatory vertigo with a duration of 1-12 h. The most common diagnosis of otolith organ-specific vestibular dysfunction was BPPV. The most common clinical manifestation in the idiopathic cases was recurrent rotatory vertigo. Specific dysfunction of the otolith organs occurs in association with some of the undiagnosed patients with recurrent rotatory vertigo. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Enxaqueca associada a disfunção auditivo-vestibular Migraine associated with auditory-vestibular dysfunction

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2008-08-01

    Full Text Available A associação de distúrbios da audição e equilíbrio com enxaqueca é reconhecida desde a Grécia antiga quando Aretaeus da Capadócia em 131 a.C., fez uma descrição precisa e com detalhes desta ocorrência durante uma crise de enxaqueca. Uma revisão ampla das manifestações otoneurológicas da enxaqueca é apresentada, usando as mais recentes publicações com respeito à epidemiologia, apresentação clínica, fisiopatologia, métodos diagnósticos e manejo desta síndrome. OBJETIVO: Descrever a entidade clínica "Enxaqueca associada a Disfunção Auditivo-vestibular" no intuito de ajudar médicos otorrinolaringologistas e neurologistas no diagnóstico e no manejo clínico dessa doença. COMENTÁRIOS FINAIS: Uma forte associação existe entre sintomas otoneurológicos e enxaqueca, sendo a enxaqueca associada a disfunção auditivo-vestibular a causa mais comum de vertigem episódica espontânea (não-posicional. Os sintomas podem variar bastante entre pacientes tornando um desafio diagnóstico para o otorrinolaringologista. Esta entidade geralmente se apresenta com ataques de vertigem espontâneos ou posicionais, durando de segundos a dias com sintomas de enxaqueca associados. Uma melhor elucidação da ligação entre os mecanismos vestibulares centrais e os mecanismos da enxaqueca em si, além da descoberta de defeitos em canais iônicos em algumas causas de enxaqueca, ataxia e vertigem, podem levar a um entendimento maior da fisiopatologia da enxaqueca associada a disfunção auditivo-vestibular.The association between hearing and balance disorders with migraine is known since the times of the ancient Greeks, when Aretaeus from Cappadocia in 131 B.C, made an accurate and detailed description of this occurrence during a migraine episode. We present a broad review of migraine neurotological manifestations, using the most recent publications associated with epidemiology, clinical presentation, pathophysiology, diagnostic methods and

  7. Reabilitação vestibular em idosos com Parkinson Vestibular rehabilitation in elderly patients with Parkinson

    Directory of Open Access Journals (Sweden)

    Jackeline Martins-Bassetto

    2007-06-01

    Full Text Available OBJETIVO: verificar a efetividade dos exercícios de reabilitação vestibular (RV por meio de avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI - adaptação brasileira. MÉTODOS: avaliaram-se oito pacientes (três do sexo feminino e cinco do sexo masculino, na faixa etária de 48 a 71 anos, encaminhados da Associação Paranaense de Parkinson para o Laboratório de Otoneurologia da Universidade Tuiuti do Paraná. Os pacientes foram divididos em dois grupos e submetidos aos seguintes procedimentos: anamnese, avaliação otorrinolaringológica, avaliação vestibular por meio da vectoeletronistagmografia (VENG e aplicação do questionário DHI - adaptação brasileira pré e pós RV utilizando-se os protocolos de Cawthorne e Cooksey (grupo A e Herdman (grupo B. RESULTADOS: a conforme as queixas otoneurológicas referidas na anamnese, observou-se a prevalência da tontura (100,0%, tremor (100,0% e desvio de marcha (75,0&; b no exame vestibular, todos os pacientes (100,0% apresentaram alteração, sendo a maior freqüência das síndromes vestibulares periféricas deficitárias (62,5%; c houve melhora significativa dos aspectos funcional (p = 0,020470 e emocional (p = 0,013631 após a realização dos exercícios de RV utilizando-se o protocolo de Cawthorne e Cooksey e do aspecto emocional (p=0,007316 utilizando-se o protocolo de Herdman. CONCLUSÃO: comparando-se os dois protocolos utilizados, verificou-se uma melhora significativa dos pacientes do grupo A, submetidos ao protocolo de Cawthorne e Cooksey (p=0.0231.PURPOSE: to check the effectiveness of vestibular rehabilitation exercises (RV by means of an evaluation of a pre and post application of the Dizziness Handicap Inventory (DHI questionnaire (Brazilian version. METHODS: eight patients were evaluated (three female and five male, in the age group varying from 48 to 71, referred from the Paraná Association of Parkinson to the Otoneurological Laboratory

  8. Reabilitação vestibular em um hospital universitário Vestibular rehabilitation in a university hospital

    Directory of Open Access Journals (Sweden)

    Flávia da Silva Tavares

    2008-04-01

    Full Text Available A Reabilitação Vestibular visa melhorar o equilíbrio global, a qualidade de vida e orientação espacial dos pacientes com tontura. OBJETIVOS: Traçar o perfil dos pacientes atendidos no Ambulatório de Reabilitação Vestibular do Setor de Otoneurologia de um hospital universitário e verificar os resultados obtidos no período de novembro/2000 a dezembro/2004. MATERIAL E MÉTODO: Levantamento de dados contidos nas fichas dos 93 pacientes submetidos à Reabilitação Vestibular no período. FORMA DE ESTUDO: Clínico retrospectivo. RESULTADOS: A média etária dos pacientes foi de 52,82 anos, 56 do sexo feminino e 37 do sexo masculino. O número médio de atendimentos foi 4,3, sendo maior para os pacientes com distúrbios otoneurológicos centrais (média de 5,9. Dentre os pacientes que concluíram o tratamento proposto, 37 (60,7% obtiveram melhora significativa, 14 (22,9% tiveram melhora parcial e 10 (16,4% não referiram benefícios significativos. Os pacientes que mais se beneficiaram com a Reabilitação Vestibular tinham distúrbios otoneurológicos periféricos. CONCLUSÃO: A maior parte dos pacientes era do sexo feminino, com idade média de 52,8 anos. Cinqüenta e um pacientes (83,6% tiveram benefício com a terapia confirmando a eficácia do tratamento.The aim of vestibular rehabilitation is to improve total balance, quality of life and spatial orientation of patients with dizziness. AIMS: To determine the characteristics of the patients who underwent the Vestibular Rehabilitation program of the Neurotology Ward of a University Hospital, and to verify the results obtained between November/2000 and December/2004. MATERIALS AND METHODS: analysis of 93 files from patients under Vestibular Rehabilitation during the studied period. STUDY DESIGN: Retrospective clinical. RESULTS: the mean age of patients was 52.82 years, 56 females and 37 males. The average number of therapy sessions was 4.3, higher for patients with central neurotological

  9. The Vestibular Implant Input Interacts with Residual Natural Function

    Directory of Open Access Journals (Sweden)

    Raymond van de Berg

    2017-12-01

    Full Text Available ObjectivePatients with bilateral vestibulopathy (BV can still have residual “natural” function. This might interact with “artificial” vestibular implant input (VI-input. When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how “artificial” VI-input is integrated with residual “natural” input by the central vestibular system. This, to explore (1 whether misalignment in the response of “artificial” VI-input is sufficiently counteracted by well-aligned residual “natural” input and (2 whether “artificial” VI-input is able to influence and counteract the response to residual “natural” input, to show feasibility of a “vestibular pacemaker.”Materials and methodsFive vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual “natural” input and predominantly horizontal and vertical “artificial” VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed.ResultsCombining residual “natural” input and “artificial” VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013. In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of “artificial” VI-input was not sufficiently counteracted by well-aligned residual

  10. The Vestibular Implant Input Interacts with Residual Natural Function.

    Science.gov (United States)

    van de Berg, Raymond; Guinand, Nils; Ranieri, Maurizio; Cavuscens, Samuel; Khoa Nguyen, T A; Guyot, Jean-Philippe; Lucieer, Florence; Starkov, Dmitrii; Kingma, Herman; van Hoof, Marc; Perez-Fornos, Angelica

    2017-01-01

    Patients with bilateral vestibulopathy (BV) can still have residual "natural" function. This might interact with "artificial" vestibular implant input (VI-input). When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how "artificial" VI-input is integrated with residual "natural" input by the central vestibular system. This, to explore (1) whether misalignment in the response of "artificial" VI-input is sufficiently counteracted by well-aligned residual "natural" input and (2) whether "artificial" VI-input is able to influence and counteract the response to residual "natural" input, to show feasibility of a "vestibular pacemaker." Five vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual "natural" input and predominantly horizontal and vertical "artificial" VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed. Combining residual "natural" input and "artificial" VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013). In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of "artificial" VI-input was not sufficiently counteracted by well-aligned residual "natural" input. "Artificial" VI-input was able to significantly influence and counteract the response to

  11. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  12. Vestibular information is necessary for maintaining metric properties of representational space: evidence from mental imagery.

    Science.gov (United States)

    Péruch, Patrick; Lopez, Christophe; Redon-Zouiteni, Christine; Escoffier, Guy; Zeitoun, Alain; Sanjuan, Mélanie; Devèze, Arnaud; Magnan, Jacques; Borel, Liliane

    2011-09-01

    The vestibular system contributes to a wide range of functions, from postural and oculomotor reflexes to spatial representation and cognition. Vestibular signals are important to maintain an internal, updated representation of the body position and movement in space. However, it is not clear to what extent they are also necessary to mentally simulate movement in situations that do not involve displacements of the body, as in mental imagery. The present study assessed how vestibular loss can affect object-based mental transformations (OMTs), i.e., imagined rotations or translations of objects relative to the environment. Participants performed one task of mental rotation of 3D-objects and two mental scanning tasks dealing with the ability to build and manipulate mental images that have metric properties. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (1 week and 1 month). They were compared to healthy participants tested at similar time intervals and to bilateral vestibular-defective patients tested after the recovery period. Vestibular loss impaired all mental imagery tasks. Performance varied according to the extent of vestibular loss (bilateral patients were frequently the most impaired) and according to the time elapsed after unilateral vestibular neurotomy (deficits were stronger at the early stage after neurotomy and then gradually compensated). These findings indicate that vestibular signals are necessary to perform OMTs and provide the first demonstration of the critical role of vestibular signals in processing metric properties of mental representations. They suggest that vestibular loss disorganizes brain structures commonly involved in mental imagery, and more generally in mental representation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  14. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    Directory of Open Access Journals (Sweden)

    Elie Hammam

    2017-07-01

    Full Text Available We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; “super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz sGVS revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow during vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (<0.2 Hz sinusoidal linear acceleration of seated or supine subjects to, respectively, target the utricular or saccular components of the otoliths. While others had discounted the semicircular canals, we showed that the contributions of the utricle and saccule to the vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans.

  15. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans

    Science.gov (United States)

    Hammam, Elie; Macefield, Vaughan G.

    2017-01-01

    We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; “super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz) sGVS revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow during vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (<0.2 Hz) sinusoidal linear acceleration of seated or supine subjects to, respectively, target the utricular or saccular components of the otoliths. While others had discounted the semicircular canals, we showed that the contributions of the utricle and saccule to the vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans. PMID:28798718

  16. Comparison of Virtual Reality Based Therapy with Customized Vestibular Physical Therapy for the Treatment of Vestibular Disorders

    Science.gov (United States)

    Alahmari, Khalid A.; Sparto, Patrick J; Marchetti, Gregory F.; Redfern, Mark S.; Furman, Joseph M.; Whitney, Susan L.

    2017-01-01

    We examined outcomes in persons with vestibular disorders after receiving virtual reality based therapy (VRBT) or customized vestibular physical therapy (PT) as an intervention for habituation of dizziness symptoms. Twenty subjects with vestibular disorders received VRBT and 18 received PT. During the VRBT intervention, subjects walked on a treadmill within an immersive virtual grocery store environment, for 6 sessions approximately one week apart. The PT intervention consisted of gaze stabilization, standing balance and walking exercises individually tailored to each subject. Before, one week after, and at 6-months after the intervention, subjects completed self-report and balance performance measures. Before and after each VRBT session, subjects also reported symptoms of nausea, headache, dizziness, and visual blurring. In both groups, significant improvements were noted on the majority of self-report and performance measures one week after the intervention. Subjects maintained improvements on self report and performance measures at 6 months follow up. There were not between group differences. Nausea, headache, dizziness and visual blurring increased significantly during the VRBT sessions, but overall symptoms were reduced at the end of the six-week intervention. While this study did not find a difference in outcomes between PT and VRBT, the mechanism by which subjects with chronic dizziness demonstrated improvement in dizziness and balance function may be different. PMID:24608691

  17. Comparison of virtual reality based therapy with customized vestibular physical therapy for the treatment of vestibular disorders.

    Science.gov (United States)

    Alahmari, Khalid A; Sparto, Patrick J; Marchetti, Gregory F; Redfern, Mark S; Furman, Joseph M; Whitney, Susan L

    2014-03-01

    We examined outcomes in persons with vestibular disorders after receiving virtual reality based therapy (VRBT) or customized vestibular physical therapy (PT) as an intervention for habituation of dizziness symptoms. Twenty subjects with vestibular disorders received VRBT and 18 received PT. During the VRBT intervention, subjects walked on a treadmill within an immersive virtual grocery store environment, for six sessions approximately one week apart. The PT intervention consisted of gaze stabilization, standing balance and walking exercises individually tailored to each subject. Before, one week after, and at six months after the intervention, subjects completed self-report and balance performance measures. Before and after each VRBT session, subjects also reported symptoms of nausea, headache, dizziness, and visual blurring. In both groups, significant improvements were noted on the majority of self-report and performance measures one week after the intervention. Subjects maintained improvements on self report and performance measures at six months follow up. There were not between group differences. Nausea, headache, dizziness and visual blurring increased significantly during the VRBT sessions, but overall symptoms were reduced at the end of the six-week intervention. While this study did not find a difference in outcomes between PT and VRBT, the mechanism by which subjects with chronic dizziness demonstrated improvement in dizziness and balance function may be different.

  18. Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment.

    Science.gov (United States)

    Lotfi, Younes; Rezazadeh, Nima; Moossavi, Abdollah; Haghgoo, Hojjat Allah; Rostami, Reza; Bakhshi, Enayatollah; Badfar, Faride; Moghadam, Sedigheh Farokhi; Sadeghi-Firoozabadi, Vahid; Khodabandelou, Yousef

    2017-12-01

    Balance function has been reported to be worse in ADHD children than in their normal peers. The present study hypothesized that an improvement in balance could result in better cognitive performance in children with ADHD and concurrent vestibular impairment. This study was designed to evaluate the effects of comprehensive vestibular rehabilitation therapy on the cognitive performance of children with combined ADHD and concurrent vestibular impairment. Subject were 54 children with combined ADHD. Those with severe vestibular impairment (n=33) were randomly assigned to two groups that were matched for age. A rehabilitation program comprising overall balance and gate, postural stability, and eye movement exercises was assigned to the intervention group. Subjects in the control group received no intervention for the same time period. Intervention was administered twice weekly for 12 weeks. Choice reaction time (CRT) and spatial working memory (SWM) subtypes of the Cambridge Neuropsychological Test Automated Battery (CANTAB) were completed pre- and post-intervention to determine the effects of vestibular rehabilitation on the cognitive performance of the subjects with ADHD and concurrent vestibular impairment. ANCOVA was used to compare the test results of the intervention and control group post-test. The percentage of correct trial scores for the CRT achieved by the intervention group post-test increased significantly compared to those of the control group (p=0.029). The CRT mean latency scores were significantly prolonged in the intervention group following intervention (p=0.007) compared to the control group. No significant change was found in spatial functioning of the subjects with ADHD following 12 weeks of intervention (p>0.05). The study highlights the effect of vestibular rehabilitation on the cognitive performance of children with combined ADHD and concurrent vestibular disorder. The findings indicate that attention can be affected by early vestibular

  19. Achados vestibulares em usuários de aparelho de amplificação sonora individual Vestibular findings in hearing aid users