Sample records for vessel wall layers

  1. Wall Layers (United States)


    Sydney, Australia. December 6, 1990. Lumley, J. L. A dynamical-systems-theory approach to the wall region. Environmental Engineering Laboratory, CSIRO...Nonlinear Science. Holmes, P. Editor in Chief, Nonlinear Scinece Today. Holmes, P. Reviewer for Physica D, J. Sound Vib., J. Phys., Q. Appl. Math, Phys...Spring, 1994; Organizing committee member. Holmes, P. Editorial Board Member: Archive for Rational Mechanics and Analysis; Journal of Nonlinear Scinece

  2. Breast arterial calcification and risk of carotid atherosclerosis: Focusing on the preferentially affected layer of the vessel wall

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Nahid, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Radmard, Amir Reza, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Radmehr, Ali, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Hashemi, Pari, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Hajizadeh, Abdolmahmoud, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Taheri, Amir Pejman Hashemi, E-mail: [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of)


    Objective: To assess the relationship between breast arterial calcification (BAC) detected on screening mammography and atherosclerosis of carotid arteries considering the most likely involved layer of the arterial wall. Materials and methods: A total of 537 consecutive women who underwent screening mammography were enrolled in this study. Seventy-nine subjects having BAC, aged 46-75 years, and 125 age-matched controls from those without BAC were selected for ultrasound examination of carotid arteries assessing intima-media thickness (IMT) and plaque presence. Participants were divided into three groups of risk including, low-risk: IMT < 0.6 mm without plaque, medium-risk: 0.6 mm {<=} IMT {<=} 0.8 mm without plaque and high-risk: IMT > 0.8 mm and/or plaque. Risk factors for atherosclerosis were obtained from medical records for independent effects. Results: BAC was present in 14.7% of mammograms. According to multivariable logistic regression analyses, significant association was identified between the carotid atherosclerosis risk and presence of BAC. Compared to women with IMT < 0.6 mm, those with 0.6 mm {<=} IMT{<=} 0.8 mm and IMT > 0.8 mm had OR (95% CI) of 4.88 (1.47-16.16) and 23.36 (4.54-120.14), respectively. The OR (95% CI) for carotid plaque was 3.13 (1.3-7.57). There was no interaction between IMT category and plaque. Significant associations were also detected with postmenopausal duration (P = 0.02) and hypertension (P = 0.004). Conclusion: The risk of carotid atherosclerosis increases with the presence of BAC. Women with BAC are more likely to have thicker IMT than plaque, which could be attributed to the preferentially similar affected layer of media causing thick IMT rather than plaque.

  3. Role of arginase in vessel wall remodeling

    Directory of Open Access Journals (Sweden)

    William eDurante


    Full Text Available Arginase metabolizes the semi-essential amino acid L-arginine to L-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and L-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages towards an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide synthesis by competing with nitric oxide synthase for substrate, L-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.

  4. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection

    Directory of Open Access Journals (Sweden)

    Sotirios Raptis


    and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency. Specific vessel parameters (centerline, width, location, fall-away rate, main orientation are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs. These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions, representing almost 2% of the 2D volume, good speed versus accuracy/time trade-off. Results show the potentials of our approach in terms of time for detection ROC analysis and accuracy of vessel pixel (VP detection.

  5. Vessel wall characterization using quantitative MRI: what's in a number? (United States)

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J


    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  6. Intracranial vessel wall imaging at 7.0 tesla MRI

    NARCIS (Netherlands)

    van der Kolk, A.G.


    Intracranial atherosclerosis is one of the main causes of ischemic stroke. Current conventional imaging techniques assessing intracranial arterial disease in vivo only visualize the vessel wall lumen instead of the pathological vessel wall itself. Therefore, not much is known about the imaging

  7. Magnetic resonance imaging of vessel wall morphology and function

    NARCIS (Netherlands)

    Kröner, Eleanore Sophie Jeanine


    This thesis evaluates morphological and functional vessel wall properties measured by magnetic resonance imaging techniques in healthy volunteers and patients with various diseases (i.e. Marfan syndrome patients (MFS), patients with thoracic aortic aneurysm and patients with a previous myocardial

  8. Motion of red blood cells near microvessel walls: effects of a porous wall layer (United States)



    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  9. Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics. (United States)

    Chee, Adrian J Y; Ho, Chung Kit; Yiu, Billy Y S; Yu, Alfred C H


    As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.

  10. Force acting on spheres adhered to a vessel wall. (United States)

    Sugihara-Seki, M; Skalak, R


    To evaluate the force and torque acting on leukocytes attached to the vessel wall, we numerically study the flow field around the leukocytes by using rigid spherical particles adhered to the wall of a circular cylindrical tube as a model of adherent leukocytes. The adherent particles are assumed to be placed regularly in the flow direction with equal spacings, in one row or two rows. The flow field of the suspending fluid is analyzed by a finite element method applied to the Stokes equations, and the drag force and torque acting on each particle, as well as the apparent viscosity, are evaluated as a function of the particle to tube diameter ratio and the particle arrangements. For two-row arrangements of adhered particles where neighboring particles are placed alternately on opposite sides of the vessel, the drag and the torque exerted on each particle are higher than those for single-row arrangements, for constant particle to tube diameter ratio and axial spacing between neighboring particles. This is enhanced for larger particles and smaller axial spacings. The apparent viscosity of the flow through vessels with adhered particles is found to be significantly higher than that without adhered particles or when the particles are freely floating through the vessels.

  11. Coagulation and the vessel wall in thrombosis and atherosclerosis. (United States)

    Kleinegris, Marie-Claire; Ten Cate-Hoek, Arina J; Ten Cate, Hugo


    The blood coagulation system is a key survival mechanism that has developed to protect man against lethal bleeding. A second function of blood coagulation is its close interaction with immunity. The immune-mediated coagulation responses may broadly be regarded as an element of response to injury. Pathological coagulation responses, including thromboembolism and disseminated intravascular coagulation (DIC), could therefore be regarded as excessive immune responses to a vessel wall injury. Virchow's triad, which comprises changes in the components of the blood, the state of the vessel wall, and the blood flow, was originally proposed for venous thrombosis. However, lately it appears that the same principles can be applied to arterial thrombosis and even DIC. It has even been postulated that all forms of thrombosis may be part of a continuous spectrum of the same disease. Over the past few years, an accumulation of evidence has shown that the etiopathogenetic mechanisms behind venous and arterial thrombosis are quite similar. The traditional elements of Virchow's triad are found to apply to both arterial and venous thrombosis. Yet, nowadays more emphasis is placed on the vessel wall and vascular bed specificity and the interaction with inflammation and hypercoagulability. This narrative review will discuss recent advances in research on the possible interactions between coagulation, the vascular endothelium, and atherosclerosis as well as the consequences of such interactions for venous and arterial thrombosis.

  12. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)


    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  13. Automated image segmentation and registration of vessel wall MRI for quantitative assessment of carotid artery vessel wall dimensions and plaque composition

    NARCIS (Netherlands)

    Klooster, Ronald van 't


    The main goal of this thesis was to develop methods for automated segmentation, registration and classification of the carotid artery vessel wall and plaque components using multi-sequence MR vessel wall images to assess atherosclerosis. First, a general introduction into atherosclerosis and

  14. Nanoparticle motion near a blood vessel wall in targeted drug delivery (United States)

    Vitoshkin, Helena; Yu, Hsiu-Yu; Eckmann, David M.; Radhakrishnan, Ravi; Ayyaswamy, Portonovo S.


    A computational study of the motion of a spherical nanoparticle close to the bounding wall of a blood vessel in targeted drug delivery is presented. An arbitrary Lagrangian-Eulerian algorithm has been carried out, taking into account both the Brownian and the hydrodynamic effects. Pertinent to targeted drug delivery, we focus on the condition when the particle is in the lubrication layer. The velocity auto-correlation function (VACF) is seen to initially decay faster by a factor of particle radius divided by the fluid gap thickness compared to that in an unbounded medium. Long time decay is found to be algebraic. Focusing on hydrodynamic interaction between the particle and the wall, effects of wall curvature, particle size, and variations in density of the particle are investigated. We also study adhesive interactions of a nanoparticle with an endothelial cell located on the vessel wall by the modeling the nanoparticle tethered by a harmonic spring with varying spring constants. It is shown that the particle velocity is affected by hydrodynamic and harmonic spring forces leading to VACF oscillations which decay algebraically at long times. The results agree with those predicted by earlier theories for particle VACF near a wall. These findings have applications in medication administration and in the colloidal sciences. Supported by NIH Grant U01 EB016027.

  15. Subclavian vein aneurysm secondary to a benign vessel wall hamartoma

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Patrick [Nationwide Children' s Hospital, Section of Pediatric Interventional Radiology, Columbus, OH (United States); Spaeth, Maya [Nationwide Children' s Hospital, Section of Plastic and Reconstructive Surgery, Columbus, OH (United States); Prasad, Vinay [Nationwide Children' s Hospital, Section of Pediatric Pathology, Columbus, OH (United States); McConnell, Patrick [Nationwide Children' s Hospital, Section of Cardiothoracic Surgery, Columbus, OH (United States)


    Venous aneurysms are rare clinical entities, particularly in children, and their presentation and natural history often depend on the anatomical location and underlying etiology. We present a single case of a 12-year-old girl who presented with a palpable right supraclavicular mass. Imaging evaluation with CT, conventional venography, MRI and sonography revealed a large fusiform subclavian vein aneurysm with an unusual, mass-like fibrofatty component incorporated into the vessel wall. The girl ultimately required complete resection of the right subclavian vein with placement of a synthetic interposition graft. This case provides a radiology/pathology correlation of an entity that has not previously been described as well as an example of the utility of multiple imaging modalities to aid diagnosis and preoperative planning. (orig.)

  16. In vivo and ex vivo vessel wall MRI of the circle of Willis

    NARCIS (Netherlands)

    Harteveld, A.A.|info:eu-repo/dai/nl/413650286


    In recent years, several MRI sequences have been developed for direct evaluation of the intracranial vessel wall and its pathology in vivo. These MRI sequences enable detection of intracranial vessel wall abnormalities, including those that have not yet caused luminal narrowing. The research field

  17. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    Permanent link: Keywords. Stability; triple-deck; separation; boundary-layer; compliant wall. Abstract. The stability of liquid layer flow over an inclined flexible wall is studied using asymptotic methods based on the assumption that the Reynolds number is large.

  18. Automated Design of Restraint Layer of an Inflatable Vessel (United States)

    Spexarth, Gary


    A Mathcad computer program largely automates the design and analysis of the restraint layer (the primary load-bearing layer) of an inflatable vessel that consists of one or more sections having cylindrical, toroidal, and/or spherical shape(s). A restraint layer typically comprises webbing in the form of multiple straps. The design task includes choosing indexing locations along the straps, computing the load at every location in each strap, computing the resulting stretch at each location, and computing the amount of undersizing required of each strap so that, once the vessel is inflated and the straps thus stretched, the vessel can be expected to assume the desired shape. Prior to the development of this program, the design task was performed by use of a difficult-to-use spreadsheet program that required manual addition of rows and columns depending on the numbers of strap rows and columns of a given design. In contrast, this program is completely parametric and includes logic that automatically adds or deletes rows and columns as needed. With minimal input from the user, this program automatically computes indexing locations, strap lengths, undersizing requirements, and all design data required to produce detailed drawings and assembly procedures. It also generates textual comments that help the user understand the calculations.

  19. Histological study on the influences of an ultrasonic scalpel on skeletonized vessel wall. (United States)

    Fukata, Yoshio; Horike, Kazuya; Kano, Masashi


    The objective of this study was to histologically clarify the difference of vascular wall damage when an ultrasonic scalpel is used in varied ways in the vicinity of a vessel. 1) The surface of sodium carbonate-containing jelly was manually brushed with the edge of a dissecting hook type Harmonic Scalpel (HS), and the thickness of the air bubble layer was measured to investigate the range to which the vibrations of the instrument reached. 2) The internal thoracic artery (ITA), radial artery (RA) and vein skeletonized were cut bluntly or brushed using HS ex vivo, and tissue damages were observed histologically. 3) The depth of thermal degeneration (TD) of residual stumps of ITAs skeletonized by HS using an output power level (level) of 2 and the quick touch method at the time of coronary arterial bypass grafting (CABG) were investigated histologically. 1) The mean thickness of the air bubble layers by single brushing was 3.7, 3.7 and 3.1 mm at level 4, 3 and 2, and no significant difference. When brushed 5 times, it was 6.9, 5.5 and 6.7 mm, respectively, showing marked increases compared with single brushing. 2) A: One side of the RA stump cut with a dissecting hook at level 2 was nicely occluded by a degenerated protein coagulum, but the contralateral had no coagulum. An ITA cut by a shear type blade at level 3 showed that both stumps were nicely occluded, but the vessel wall was introverted and fragmented. B: ITAs brushed 5 or 10 times at level 2 showed that TD occurred in tunica externa, the mean depth of 100 or 203 microm, and never exceeded the external elastic lamella. RAs brushed 10 times at level 2 and 3 showed that TD and air bubble generation occurred in the tunica externa, and the mean depth was 203 and 203 microm. However, TD exceeded the external lamella in some cases at level 3. Veins brushed 10 times at level 3 showed that TD spread to all layers. 3) The depth of TD in ITAs skeletonized clinically by HS was 400 to 530 microm, and apart from the

  20. High-Resolution Vessel Wall Magnetic Resonance Imaging in Varicella-Zoster Virus Vasculitis. (United States)

    Tsivgoulis, Georgios; Lachanis, Stefanos; Magoufis, Georgios; Safouris, Apostolos; Kargiotis, Odysseas; Stamboulis, Elefterios


    Varicella-zoster virus vasculopathy is a rare but potentially treatable condition. Diagnosis has been based on angiography, brain magnetic resonance imaging (MRI), and cerebrospinal fluid analysis. High-resolution vessel wall MRI may aid to the diagnosis by differentiating inflammation from other vessel wall pathologies. We present the characteristic MRI findings of this condition in a young patient presenting with ischemic stroke. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Estrogen receptor expression and vessel density in the vagina wall in postmenopausal women with prolapse. (United States)

    Lara, Lúcia Alves da Silva; Ribeiro da Silva, Alfredo; Rosa-e-Silva, Julio Cesar; Silva-de-Sá, Marcos Felipe; Rosa-e-Silva, Ana Carolina Japur de Sá


    After menopause, critically estrogen low levels result in modifications in vaginal wall. This cross-sectional study aims to determine whether there is a change in the number of vessels in the lamina propria of the vagina after menopause in parallel to the ER-alpha expression on the vaginal wall. Twelve women who underwent a genital surgery for genital prolapse up to grade II were selected. They were divided into two groups: a premenopausal group (PG) consisting of six women who were 18-40 years old with FSH levels =12 mIU/ml and regular cycles, and a menopausal group (MG) consisting of six women at least one year after menopause who were <65 years old with FSH levels =40 mIU/ml. Slides were stained for ER-alpha immunohistochemistry, and an endothelial cell marker CD3 was used to label vessels which were identified by using a system for morphometry. The number of vessels was significantly higher in the PG than in the MG both on the anterior wall (PG: 1.055 ± 145.8 vessels/mm(2), MG: 346.6 ± 209.9 vessels/mm(2), p<0.0001) and on the posterior wall (PG: 1064 ± 303.3 vessels/mm(2), MG: 348.6 ± 167.3 vessels/mm(2), p=0.0005). The ER-alpha score was significantly higher in the PG than the score for the MG on both the anterior and posterior walls (PG: 6.0 ± 0.52, MG: 2.5 ± 0.89, p=0.007; PG: 5.8 ± 0.79, MG: 2.7 ± 0.95, p=0.03, respectively). There was a positive correlation between the ER-alpha score and the vessel concentration on the anterior (r=0.6656, p=0.018) and posterior (r=0.6738, p=0.016) vaginal walls. Age was strongly negatively correlated with vessel concentration on the vaginal walls (respectively r=-0.9033, p<0.0001, r=-0.7440, p=0.0055). Therefore, postmenopausal women with genital prolapse have a smaller number of vessels on the vaginal wall compared to normoestrogenic controls with the same pathological condition. Hypoestrogenism and advancing age are factors that are associated to these changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. (United States)

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung


    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but

  3. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T

    Energy Technology Data Exchange (ETDEWEB)

    Harteveld, Anita A.; Kolk, Anja G. van der; Dieleman, Nikki; Siero, Jeroen C.W.; Luijten, Peter R.; Zwanenburg, Jaco J.M.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Worp, H.B. van der; Frijns, Catharina J.M. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Kuijf, Hugo J. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)


    Several intracranial vessel wall sequences have been described in recent literature, with either 3-T or 7-T magnetic resonance imaging (MRI). In the current study, we compared 3-T and 7-T MRI in visualising both the intracranial arterial vessel wall and vessel wall lesions. Twenty-one elderly asymptomatic volunteers were scanned by 3-T and 7-T MRI with an intracranial vessel wall sequence, both before and after contrast administration. Two raters scored image quality, and presence and characteristics of vessel wall lesions. Vessel wall visibility was equal or significantly better at 7 T for the studied arterial segments, even though there were more artefacts hampering assessment. The better visualisation of the vessel wall at 7 T was most prominent in the proximal anterior cerebral circulation and the posterior cerebral artery. In the studied elderly asymptomatic population, 48 vessel-wall lesions were identified at 3 T, of which 7 showed enhancement. At 7 T, 79 lesions were identified, of which 29 showed enhancement. Seventy-one percent of all 3-T lesions and 59 % of all 7-T lesions were also seen at the other field strength. Despite the large variability in detected lesions at both field strengths, we believe 7-T MRI has the highest potential to identify the total burden of intracranial vessel wall lesions. (orig.)

  4. Functional electronic inversion layers at ferroelectric domain walls. (United States)

    Mundy, J A; Schaab, J; Kumagai, Y; Cano, A; Stengel, M; Krug, I P; Gottlob, D M; Dog Anay, H; Holtz, M E; Held, R; Yan, Z; Bourret, E; Schneider, C M; Schlom, D G; Muller, D A; Ramesh, R; Spaldin, N A; Meier, D


    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO 3 . We relate the transition to the formation-and eventual activation-of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  5. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection? (United States)

    González-Suárez, Ana; Trujillo, Macarena; Burdío, Fernando; Andaluz, Anna; Berjano, Enrique


    To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. First,in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. The geometries of thermal lesions around the vessels in the in vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device.

  6. Increased coronary vessel wall thickness in HIV-infected young adults. (United States)

    Abd-Elmoniem, Khaled Z; Unsal, Aylin B; Eshera, Sarah; Matta, Jatin R; Muldoon, Nancy; McAreavey, Dorothea; Purdy, Julia B; Hazra, Rohan; Hadigan, Colleen; Gharib, Ahmed M


    Individuals with long-term human immunodeficiency virus (HIV) infection are at risk for premature vasculopathy and cardiovascular disease (CVD). We evaluated coronary vessel wall thickening, coronary plaque, and epicardial fat in patients infected with HIV early in life compared with healthy controls. This is a prospective cross-sectional study of 35 young adults who acquired HIV in early life and 11 healthy controls, free of CVD. Time resolved phase-sensitive dual inversion recovery black-blood vessel wall magnetic resonance imaging (TRAPD) was used to measure proximal right coronary artery (RCA) wall thickness, and multidetector computed tomography (CT) angiography was used to quantify coronary plaque and epicardial fat. RCA vessel wall thickness was significantly increased in HIV-infected patients compared with sex- and race-matched controls (1.32 ± 0.21 mm vs 1.09 ± 0.14 mm, P = .002). No subject had discrete plaque on CT sufficient to cause luminal narrowing, and plaque was not related to RCA wall thickness. In multivariate regression analyses, smoking pack-years (P = .004) and HIV infection (P = .007) were independently associated with thicker RCA vessel walls. Epicardial fat did not differ between groups. Among the HIV-infected group, duration of antiretroviral therapy (ART) (P = .02), duration of stavudine exposure (P ART, hyperlipidemia, and smoking contributed to proximal RCA thickening, independent of atherosclerotic plaque quantified by CT. These modifiable risk factors appear to influence early atherogenesis as measured by coronary wall thickness and may be important targets for CVD risk reduction. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Gerald F.; Hofbeck, Michael; Sieverding, Ludger [University of Tuebingen, Department of Pediatric Cardiology, Children' s Hospital, Tuebingen (Germany); Seeger, Achim; Miller, Stephan; Claussen, Claus D. [University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); Botnar, Rene M. [Technical University Munich, Department of Nuclear Medicine, Cardiovascular Division, Munich (Germany)


    In patients with Kawasaki disease (KD) serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. To apply whole-heart coronary MR angiography (CMRA) and black-blood coronary vessel wall imaging in children with KD. Six children (mean age 4.6 years, range 2.5-7.8 years) with KD underwent CMRA using a free-breathing, T2-prepared, three-dimensional steady-state free-precession (3D-SSFP), whole-heart approach with navigator gating and tracking. Vessel walls were imaged with an ECG-triggered and navigator-gated double inversion recovery (DIR) black-blood segmented turbo spin-echo sequence. There was complete agreement between CMRA and conventional angiography (n=6) in the detection of CAA (n=15). Excellent agreement was found between the two techniques in determining the maximal diameter (mean difference 0.2{+-}0.7 mm), length (mean difference 0.1{+-}0.8 mm) and distance from the ostium (mean difference -0.8{+-}2.1 mm) of the CAAs. In all subjects with a CAA, abnormally thickened vessel walls were found (2.5{+-}0.5 mm). CMRA accurately defines CAA in free-breathing sedated children with KD using the whole-heart approach and detects abnormally thickened vessel walls. This technique may reduce the need for serial X-ray coronary angiography, and improve risk stratification and monitoring of therapy. (orig.)

  8. Damping of double wall panels including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Stainhaouer, G.; Bakamidis, S.; Charalabopoulou, F.


    This paper deals with the dynamic behaviour of double wall panels, with emphasis on damping and sound radiation. It will be shown that a narrow air layer separating the two plates of a panel significantly alters the mentioned quantities by its viscothermal properties. Numerical and experimental

  9. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    layer flows over flat plates have been extensively studied and it is well-known that wall flexibility greatly affects the growth of Tollmien-Schlichting waves, see Carpenter & Garrad (1985). The problem of a lami- nar separation bubble interacting with ...

  10. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting

    NARCIS (Netherlands)

    Gao, Shan; van't Klooster, Ronald; Kitslaar, Pieter H.; Coolen, Bram F.; van den Berg, Alexandra M.; Smits, Loek P.; Shahzad, Rahil; Shamonin, Denis P.; de Koning, Patrick J. H.; Nederveen, Aart J.; van der Geest, Rob J.


    Purpose: The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI.

  11. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. (United States)

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon


    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. Copyright © 2015 the American Physiological Society.

  12. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, Marcus R. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Charite-Universitaetsmedizin, Department of Radiology, Berlin (Germany); Jansen, Christian H.P. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Ebersberger, Ullrich; Spector, Tim D. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Schaeffter, Tobias; Razavi, Reza [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Mangino, Massimo [King' s College London, Department of Twin Research and Genetic Epidemiology, London (United Kingdom); National Institute for Health Research (NIHR) Biomedical Research Centre at Guy' s and St. Thomas' Foundation Trust, London (United Kingdom); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Greil, Gerald F. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom)


    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. (orig.)

  13. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla

    Directory of Open Access Journals (Sweden)

    Sebastian Kelle


    Full Text Available Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd contrast administration and coronary vessel wall enhancement (LGE detected by 3T magnetic resonance imaging (MRI in healthy subjects and patients with coronary artery disease (CAD. Materials and Methods. Four healthy subjects (4 men, mean age 29  ±  3 years and eleven CAD patients (6 women, mean age 61±10 years were studied on a commercial 3.0 Tesla (T whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands. T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd (0.1 mmol/kg Gd-DTPA. Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3% segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0% and at time-interval 3, 29 of 39 evaluable segments (74.4% were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30–45 minutes after administration of the contrast agent.

  14. Growth Description for Vessel Wall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution. (United States)

    Grytsan, Andrii; Eriksson, Thomas S E; Watton, Paul N; Gasser, T Christian


    (1) Background: Vascular tissue seems to adapt towards stable homeostatic mechanical conditions, however, failure of reaching homeostasis may result in pathologies. Current vascular tissue adaptation models use many ad hoc assumptions, the implications of which are far from being fully understood; (2) Methods: The present study investigates the plausibility of different growth kinematics in modeling Abdominal Aortic Aneurysm (AAA) evolution in time. A structurally motivated constitutive description for the vessel wall is coupled to multi-constituent tissue growth descriptions; Constituent deposition preserved either the constituent's density or its volume, and Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG), in-Thickness Volume Growth (TVG) and No Volume Growth (NVG) describe the kinematics of the growing vessel wall. The sensitivity of key modeling parameters is explored, and predictions are assessed for their plausibility; (3) Results: AAA development based on TVG and NVG kinematics provided not only quantitatively, but also qualitatively different results compared to IVG and PVG kinematics. Specifically, for IVG and PVG kinematics, increasing collagen mass production accelerated AAA expansion which seems counterintuitive. In addition, TVG and NVG kinematics showed less sensitivity to the initial constituent volume fractions, than predictions based on IVG and PVG; (4) Conclusions: The choice of tissue growth kinematics is of crucial importance when modeling AAA growth. Much more interdisciplinary experimental work is required to develop and validate vascular tissue adaption models, before such models can be of any practical use.

  15. Conditioning of the vacuum vessel walls of tokamaks, a preliminary look

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.


    The main features and operating characteristics of the primary vacuum system of many of the presently operating tokamak devices are presented. Particular attention is paid to the methods used to condition and clean the vessel walls in situ. For the devices discussed, a combination of a high-temperature bakeout and/or discharge cleaning is employed. In addition, discussions of the vacuum systems and wall conditioning methods anticipated for the next generation of tokamaks are presented. Since this report was written during a limited time period, it should be considered as preliminary and is not intended to be a general review. Much of the information that is presented was obtained by private communication and there is no bibliography. This study was initiated to aid in the design of TFTR. As presently envisioned, the TFTR vacuum system and methods for wall conditioning are consistent with what is presently practiced.

  16. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements. (United States)

    Ohtani, Misato; Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Uy, Abigail Loren Tung; Yamamoto, Atsushi; Kurata, Tetsuya; Nakano, Yoshimi; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota; Demura, Taku


    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell's metabolic

  17. Pressure measurements in a rapidly sheared turbulent wall layer (United States)

    Diwan, Sourabh; Morrison, Jonathan


    The aim of the present work is to improve understanding of the role of pressure fluctuations in the generation of coherent structures in wall-bounded turbulent flows, with particular regard to the rapid and slow source terms. The work is in part motivated by the recent numerical simulations of Sharma et al. (Phy. Fluids, 23, 2011), which showed the importance of pressure fluctuations (and their spatial gradients) in the dynamics of large-scale turbulent motions. Our experimental design consists of first generating a shearless boundary layer in a wind tunnel by passing a grid-generated turbulent flow over a moving floor whose speed is matched to the freestream velocity, and then shearing it rapidly by passing it over a stationary floor further downstream. Close to the leading edge of the stationary floor, the resulting flow is expected to satisfy the approximations of the Rapid Distortion Theory and therefore would be an ideal candidate for studying linear processes in wall turbulence. We carry out pressure measurements on the wall as well as within the flow - the former using surface mounted pressure transducers and the latter using a static pressure probe similar in design to that used by Tsuji et al. (J. Fluid. Mech. 585, 2007). We also present a comparison between the rapidly sheared flow and a more conventional boundary layer subjected to a turbulent free stream. We acknowledge the financial support from EPSRC (Grant No. EP/I037938).

  18. Quantification and Statistical Analysis Methods for Vessel Wall Components from Stained Images with Masson's Trichrome: e0146954

    National Research Council Canada - National Science Library

    Pablo Hernández-Morera; Irene Castaño-González; Carlos M Travieso-González; Blanca Mompeó-Corredera; Francisco Ortega-Santana


    ... (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson's trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained...

  19. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms (United States)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.


    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  20. Recording of unexpectedly high frequency vibrations of blood vessel walls in experimental arteriovenous fistulae of rabbits using a laser vibrometer. (United States)

    Stehbens, W E; Liepsch, D W; Poll, A; Erhardt, W


    Because arteriovenous fistulae are associated with a palpable thrill and an audible murmur, the vibrational activity of the blood vessel walls about experimental arteriovenous fistulae in rabbits was investigated using, for the first time, a high-resolution laser vibrometer. Frequencies of mural vibrations up to 2200 Hz were recorded at different sites about the fistulae. The relationship of this vibratory activity of blood vessel walls to physiological and pathological conditions warrants further investigation.

  1. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers (United States)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.


    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  2. Gullies and Layers in Crater Wall in Newton (United States)


    This dramatic view of gullies emergent from layered outcrops occurs on the wall of a crater within the much larger impact basin, Newton. Newton Crater and its surrounding terrain exhibit many examples of gullies on the walls of craters and troughs. The gullies exhibit meandering channels with fan-shaped aprons of debris located downslope. The gullies are considered to have been formed by erosion--both from a fluid (such as water) running downslope, and by slumping and landsliding processes driven by the force of gravity. This picture was obtained by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in March 2001; it is illuminated from the upper left and covers an area 3 km (1.9 mi) across.

  3. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall. (United States)

    Zhang, Qinghui; Zhang, Yufeng; Zhou, Yi; Zhang, Kun; Zhang, Kexin; Gao, Lian


    This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue's motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity.

  4. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.


    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  5. A completely noninvasive method of dissolved oxygen monitoring in disposable small-scale cell culture vessels based on diffusion through permeable vessel walls. (United States)

    Gupta, Priyanka A; Ge, Xudong; Kostov, Yordan; Rao, Govind


    Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small-scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2 ). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene-made T-75 tissue culture flask and fluorinated ethylene propylene (FEP)-made Vuelife(®) cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife(®) cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers.

  6. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy


    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  7. [The exogenous and genetic components of some vessel wall characteristics in the pig (author's transl)]. (United States)

    Wegner, W


    Insufficiencies of the circulatory system and increasing transport losses in pigs as well as analogies with respect to atherosclerosis of men and swine were the motives for a broad statistical investigation of important characteristics of the circulatory system in a big population of female German landrace pigs, fattened as progeny groups under identical conditions in a testing station and slaughtered at 100 kg weight. As the most essential results, highly significant seasonal and genetical influences on several traits are to be mentioned, and some meaningful correlations between them: Plasma cholesterol, ceruloplasmin and hematocrit showed markedly lower levels in the summer and increased values in the cold season; the thickness of the intima (aorta and arteria pulmonalis) was quite distinctly greatest in the spring, this phenomenon being almost exactly paralleled by augmented amounts of copper and iron in the aortic wall. Increased heart weights were again found in the cold, decreased ones in the warm seasons. On average, bigger hearts and vessels were accompanied by higher elastin contents of the aorta, but these contents stood in very significant negative correlation to the ash content and the amounts of certain mineral components (Ca, Mg and P) of the vessel wall, especially to the ash percentage of the elastic fibers. This indicates that calcifying and mineralizing processes in the wall obviously take place at the cost of the elastic components. The estimation of heritabilities in half and full sibs revealed with h2 = 60% high henetic influences on the elastin content of the aorta and equally so on the ash percentage of elastic fibers. Future investigations must correlate these findings with direct measurements of biomechanical and rheological properties of the vessels.

  8. Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience. (United States)

    Qi, Haikun; Sun, Jie; Qiao, Huiyu; Chen, Shuo; Zhou, Zechen; Pan, Xinlei; Wang, Yishi; Zhao, Xihai; Li, Rui; Yuan, Chun; Chen, Huijun


    Purpose To develop a three-dimensional (3D) high-spatial-resolution time-efficient sequence for use in quantitative vessel wall T1 mapping. Materials and Methods A previously described sequence, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging, was extended by introducing 3D golden angle radial k-space sampling (GOAL-SNAP). Sliding window reconstruction was adopted to reconstruct images at different inversion delay times (different T1 contrasts) for voxelwise T1 fitting. Phantom studies were performed to test the accuracy of T1 mapping with GOAL-SNAP against a two-dimensional inversion recovery (IR) spin-echo (SE) sequence. In vivo studies were performed in six healthy volunteers (mean age, 27.8 years ± 3.0 [standard deviation]; age range, 24-32 years; five male) and five patients with atherosclerosis (mean age, 66.4 years ± 5.5; range, 60-73 years; five male) to compare T1 measurements between vessel wall sections (five per artery) with and without intraplaque hemorrhage (IPH). Statistical analyses included Pearson correlation coefficient, Bland-Altman analysis, and Wilcoxon rank-sum test with data permutation by subject. Results Phantom T1 measurements with GOAL-SNAP and IR SE sequences showed excellent correlation (R(2) = 0.99), with a mean bias of -25.8 msec ± 43.6 and a mean percentage error of 4.3% ± 2.5. Minimum T1 was significantly different between sections with IPH and those without it (mean, 371 msec ± 93 vs 944 msec ± 120; P = .01). Estimated T1 of normal vessel wall and muscle were 1195 msec ± 136 and 1117 msec ± 153, respectively. Conclusion High-spatial-resolution (0.8 mm isotropic) time-efficient (5 minutes) vessel wall T1 mapping is achieved by using the GOAL-SNAP sequence. This sequence may yield more quantitative reproducible biomarkers with which to characterize IPH and monitor its progression. (©) RSNA, 2017.

  9. Remote through-wall sampling of the Trawsfynydd reactor pressure vessel: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Curry, A.; Clayton, R. [Magnox Electric, Berkeley (United Kingdom)


    This paper summarizes the application of robotic equipment for gaining access to, and removing through-wall samples, from, welds of the reactor pressure vessel at Trawsfyndd power station. The environment, which presents hazards due to ionising radiation, radioactive contamination and asbestos-bearing materials is described. The means of access, by use of remote vehicles with robotic manipulators supported by additional vehicles, it reviewed. The use of abrasive water jet cutting for sample removal is introduced. The relative advantages and disadvantages of this technique are discussed. (Author).

  10. Remote through-wall sampling of the Trawsfynydd reactor pressure vessel: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Curry, A.; Clayton, R. [Magnox Electric, Dartford (United Kingdom). Remote Operations


    This paper summarises the application of robotic equipment for gaining access to and removing through-wall samples from welds of the reactor pressure vessel at Trawsfynydd power station. The environment, which presents hazards due to ionising radiation, radioactive contamination and asbestos bearing materials is described. The means of access, by use of remote vehicles complete with robotic manipulators supported by additional vehicles, is reviewed. The use of Abrasive Water Jet Cutting for sample removal is introduced. The relative advantages and disadvantages of this technique are discussed. (UK).

  11. Estimation of the radial force on the tokamak vessel wall during fast transient events

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V. D., E-mail: [National Research Center Kurchatov Institute (Russian Federation)


    The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for future applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.

  12. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture (United States)

    Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.


    This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.

  13. Segmentation of elastic fibres in images of vessel wall sections stained with Weigert's resorcin-fuchsin. (United States)

    Hernández-Morera, Pablo; Travieso-González, Carlos M; Castaño-González, Irene; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco


    The elastic fibres are an essential component of the extracellular matrix in blood vessel walls that allows a long-range of deformability and passive recoil without energy input. The quantitative determination of elastic fibres will provide information on the state of the vascular wall and to determine the role and behaviour of this key structural element in different physiological and pathological vascular processes. We present a segmentation method to identify and quantify elastic fibres based on a local threshold technique and some morphological characteristics measured on the segmented objects that facilitate the discrimination between elastic fibres and other image components. The morphological characteristics analysed are the thickness and the length of an object. The segmentation method was evaluated using an image database of vein sections stained with Weigert's resorcin-fuchsin. The performance results are based on a ground truth generated manually resulting in values of sensitivity greater than 80% with the exception in two samples, and specificity values above 90% for all samples. Medical specialists carried out a visual evaluation where the observations indicate a general agreement on the segmentation results' visual quality, and the consistency between the methodology proposed and the subjective observation of the doctors for the evaluation of pathological changes in vessel wall. The proposed methodology provides more objective measurements than the qualitative methods traditionally used in the histological analysis, with a significant potential for this method to be used as a diagnostic aid for many other vascular pathological conditions and in similar tissues such as skin and mucous membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene


    Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage....... A related vascular pattern has been observed in larger vessels from several organs during angiography. In the larger vessels the occurrence of the pattern does not appear to be related to acute hypertension. A unifying feature between the phenomenon in large and small vessels seems to be an increase...... observed experimentally. Most importantly, it suggests that the "sausaging" phenomenon is neither caused by a mechanical failure of the vessel wall due to a high blood pressure nor is it due to standing pressure waves caused by the beating of the heart. Rather, it is the expression of a general instability...

  15. Dynamic vessel wall properties and their reproducibility in subjects with increased cardiovascular risk. (United States)

    van den Berkmortel, F; Wollersheim, H; van Langen, H; Thien, T


    To determine reproducibility figures of dynamic arterial wall properties such as cross-sectional compliance (CC) and distensibility (DC) in subjects with increased cardiovascular risk, in comparison with healthy adults. A total of 34 persons were divided into three groups with varying cardiovascular risk factors. Diameters (D) and diameter changes (deltaD) during the heart cycle of both common carotid (CCA) and right common femoral (CFA) arteries were measured by a vessel wall movement detector system. Blood pressures (BP) were recorded non-invasively by a semi-automated oscillometric device. CC (=piD(deltaD/2deltaP) in unit mm2/kPa) and DC (=2deltaD/D)/deltaP in unit 10(-3)/kPa) were calculated from the above-mentioned parameters. Measurements were performed twice during one visit and twice again with a time interval of at least 3 days to determine intra-observer intra- and intersession variability. Reproducibility figures of CC and DC of the CCA varied between 8 and 12%, and between 13 and 22% for the CFA. Intra-observer intra- and intersession variability were similar in the three groups. In our studies the reproducibility of dynamic vascular wall properties determined by ultrasound was good. Despite differences in the absolute values for CC and DC in groups with increased cardiovascular risk, mean reproducibility figures remained at a similar level (8-12%) as in healthy volunteers.

  16. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants. (United States)

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko


    Water flow through xylem vessels encounters hydraulic resistance when passing through the vessel lumen and end wall. Comparative studies have reported that lumen and end wall resistivities co-limit water flow through stem xylem in several angiosperm woody species that have vessels of different average diameter and length. This study examined the intra-specific relationship between the lumen and end wall resistivities (Rlumen and Rwall) for vessels within the stem xylem using three deciduous angiosperm woody species found in temperate forest. Morus australis Poir. and Acer rufinerve Siebold et Zucc. are early- and late-successional species, and Vitis coignetiae Pulliat ex Planch is a woody liana. According to the Hagen-Poiseuille equation, Rlumen is proportional to the fourth power of vessel diameter (D), whereas vessel length (L) and inter-vessel pit area (Apit) determine Rwall. To estimate Rlumen and Rwall, the scaling relationships between the L and D and between Apit and D were measured. The scaling exponents between L and D were 1.47, 3.19 and 2.86 for A. rufinerve, M. australis and V. coignetiae, respectively, whereas those between Apit and D were 0.242, 2.11 and 2.68, respectively. Unlike the inter-specific relationships, the wall resistivity fraction (Rwall/(Rlumen + Rwall)) within xylem changed depending on D. In M. australis and V. coignetiae, this fraction decreased with increasing D, while in A. rufinerve, it increased with D. Vessels with a high wall resistivity fraction have high Rwall and total resistivity but are expected to have low susceptibility to xylem cavitation due to a small cumulative Apit. In contrast, vessels with a low wall resistivity fraction have low Rwall and total resistivity but high susceptibility to xylem cavitation. Because the wall resistivity fraction varies with D, the stem xylem contains vessels with different hydraulic efficiencies and safety to xylem cavitation. These features produce differences in the hydraulic properties

  17. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz


    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  18. Evaluation of acoustic emission signals during monitoring of thick-wall vessels operating at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, A.; Tsimogiannis, A. [Envirocoustics S.A., El. Venizelou 7 and Delfon, Athens (Greece)


    Acoustic Emission testing of thick wall vessels, operating at elevated temperatures is discussed and pattern recognition methodologies for AE data evaluation are presented. Two different types of testing procedures are addressed: Cool Down monitoring and semi-continuous periodic monitoring. In both types of tests, temperature variation is the driving force of AE as opposed to traditional AE testing where controlled pressure variation is used as AE stimulus. Representative examples of reactors cool down testing as well as in-process vessel monitoring are given. AE activity as a function of temperature and pressure variation is discussed. In addition to the real-time limited criteria application, unsupervised pattern recognition is applied as a post-processing tool for multidimensional sorting, noise discrimination, characterizing defects and/or damage. On the other hand, Supervised Pattern Recognition is used for data classification in repetitive critical tests, leading to an objective quantitative comparison between repeated tests. Results show that damage sustained by the equipment can be described by the plotting the cumulative energy of AE, from critical signal classes, versus temperature. Overall, the proposed methodology can reduce the complexity of AE tests in many cases leading to higher efficiency. The possibility for real time signals classification, during permanent AE installations and continuous monitoring is discussed. (orig.)

  19. Modelling wall pressure fluctuations under a turbulent boundary layer (United States)

    Doisy, Yves


    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  20. Rupture Properties of Blood Vessel Walls Measured by Pressure-Imposed Test (United States)

    Ohashi, Toshiro; Sugita, Syukei; Matsumoto, Takeo; Kumagai, Kiichiro; Akimoto, Hiroji; Tabayashi, Koichi; Sato, Masaaki

    It is expected to be clinically useful to know the mechanical properties of human aortic aneurysms in assessing the potential for aneurysm rupture. For this purpose, a newly designed experimental setup was fabricated to measure the rupture properties of blood vessel walls. A square specimen of porcine thoracic aortas is inflated by air pressure at a rate of 10mmHg/s (≈1.3MPa/s) until rupture occurs. Mean breaking stress was 1.8±0.4 MPa (mean±SD) for the specimens proximal to the heart and 2.3±0.8MPa for the distal specimens, which are not significantly different to those values obtained longitudinally from conventional tensile tests. Moreover, the local breaking stretch ratio in the longitudinal direction was significantly higher at the ruptured site (2.7±0.5) than at the unruptured site (2.2±0.4). This testing system for studying the rupture properties of aortic walls is expected to be applicable to aortic aneurysms. Experimental verification of the present technique for the homogeneous, isotropic material is also presented.

  1. Added Value of Vessel Wall Magnetic Resonance Imaging for Differentiation of Nonocclusive Intracranial Vasculopathies. (United States)

    Mossa-Basha, Mahmud; Shibata, Dean K; Hallam, Danial K; de Havenon, Adam; Hippe, Daniel S; Becker, Kyra J; Tirschwell, David L; Hatsukami, Thomas; Balu, Niranjan; Yuan, Chun


    Our goal is to determine the added value of intracranial vessel wall magnetic resonance imaging (IVWI) in differentiating nonocclusive vasculopathies compared with luminal imaging alone. We retrospectively reviewed images from patients with both luminal and IVWI to identify cases with clinically defined intracranial vasculopathies: atherosclerosis (intracranial atherosclerotic disease), reversible cerebral vasoconstriction syndrome, and inflammatory vasculopathy. Two neuroradiologists blinded to clinical data reviewed the luminal imaging of defined luminal stenoses/irregularities and evaluated the pattern of involvement to make a presumed diagnosis with diagnostic confidence. Six weeks later, the 2 raters rereviewed the luminal imaging in addition to IVWI for the pattern of wall involvement, presence and pattern of postcontrast enhancement, and presumed diagnosis and confidence. Analysis was performed on per-lesion and per-patient bases. Thirty intracranial atherosclerotic disease, 12 inflammatory vasculopathies, and 12 reversible cerebral vasoconstriction syndrome patients with 201 lesions (90 intracranial atherosclerotic disease, 64 reversible cerebral vasoconstriction syndrome, and 47 inflammatory vasculopathy lesions) were included. For both per-lesion and per-patient analyses, there was significant diagnostic accuracy improvement with luminal imaging+IVWI when compared with luminal imaging alone (per-lesion: 88.8% versus 36.1%; Pimprove the differentiation of nonocclusive intracranial vasculopathies when combined with traditional luminal imaging modalities. © 2017 American Heart Association, Inc.

  2. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael


    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  3. Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome

    NARCIS (Netherlands)

    Lindeman, J.H.N.; Ashcroft, B.A.; Beenakker, J.-W.M.; Es, M. van; Koekkoek, N.B.R.; Prins, F.A.; Tielemans, J.F.; Abdul-Hussien, H.; Bank, R.A.; Oosterkamp, T.H.


    An aneurysm of the aorta is a common pathology characterized by segmentalweakeningof the artery.Althoughit isgenerally accepted that the vessel-wall weakening is caused by an impaired collagen metabolism, a clear association has been demonstrated only for rare syndromes such as the vascular type

  4. The influence of manufacturing factors on the formation of layer connections in multilayer exterior walls

    Directory of Open Access Journals (Sweden)

    Korol' Elena Anatol'evna


    Full Text Available Multilayer exterior walls are wide-spread in modern civil construction. One type of such structures is a three-layer wall with insulation layer made of lightweight concrete and exterior layers made of structural concrete. It is necessary to provide durable monolithic connection of concrete layers in the process of manufacturing this structure in order to decrease the percentage of web reinforcement and increase thermal engineering homogeneity of multilayer exterior walls. Experimental research of three-layer samples with external layers made of claydite-concrete and internal layer made of polystyrene concrete were conducted in order to establish the strength of layer connections in the multilayer exterior wall. Different temporal parameters and concrete strength were assigned during manufacturing of the samples. The samples were tested under axial tension and shear in the layer contact zone. The nature of tensile rupture and shearing failure was checked after the tests. The relations between manufacturing parameters, strength of the concrete used in samples and layer connection strength were established as a result of experimental research. The climatic tests of three-layer exterior wall model made of claydite-concrete and polystyrene concrete were conducted in order to establish the reduction of the layers contact zone strength during the maintenance. The wall model was made of concrete samples of varying strength. The experimental model was exposed to 35 cycles of alternate freezing and thawing in climatic chamber. During freezing and thawing, the strength tests of external and internal layers contact zone by tearing the cylindrical samples were conducted. Consequently, the nature of contact zone strength reduction for the samples with different concrete strength of external and internal layers was established. As a result of the conducted research, the optimal temporal parameters of manufacturing and optimal concrete strength were established

  5. Effect of Heat Flux on Creep Stresses of Thick-Walled Cylindrical Pressure Vessels

    Directory of Open Access Journals (Sweden)

    Mosayeb Davoudi Kashkoli


    Full Text Available Assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical solution is presented for the calculation of time-dependent creep stresses and displacements of homogeneous thick-walled cylindrical pressure vessels. For the stress analysis in a homogeneous pressure vessel, having material creep behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state are needed. This corresponds to the solution of materials with linear elastic behavior. Therefore, using equations of equilibrium, stress-strain and strain-displacement, a differential equation for displacement is obtained and then the stresses at a time equal to zero are calculated. Using Norton’s law in the multi-axial form in conjunction with the above-mentioned equations in the rate form, the radial displacement rate is obtained and then the radial, circumferential and axial creep stress rates are calculated. When the stress rates are known, the stresses at any time are calculated iteratively. The analytical solution is obtained for the conditions of plane strain and plane stress. The thermal loading is as follows: inner surface is exposed to a uniform heat flux, and the outer surface is exposed to an airstream. The heat conduction equation for the one-dimensional problem in polar coordinates is used to obtain temperature distribution in the cylinder. The pressure, inner radius and outer radius are considered constant. Material properties are considered as constant. Following this, profiles are plotted for the radial displacements, radial stress, circumferential stress and axial stress as a function of radial direction and time.

  6. Numerical modeling of the pulse wave propagation in large blood vessels based on liquid and wall interaction (United States)

    Rup, K.; Dróżdż, A.


    The purpose of this article is to develop a non-linear, one-dimensional model of pulse wave propagation in the arterial cardiovascular system. The model includes partial differential equations resulting from the balance of mass and momentum for the fluid-filled area and the balance equation for the area of the wall and vessels. The considered mathematical model of pulse wave propagation in the thoracic aorta section takes into account the viscous dissipation of fluid energy, realistic values of parameters describing the physicochemical properties of blood and vessel wall. Boundary and initial conditions contain the appropriate information obtained from in vivo measurements. As a result of the numerical solution of the mass and momentum balance equations for the blood and the equilibrium equation for the arterial wall area, time- dependent deformation, respective velocity profiles and blood pressure were determined.

  7. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model--comparison of gadofosveset and gadopentetate dimeglumine. (United States)

    Lobbes, Marc B I; Miserus, Robbert-Jan J H M; Heeneman, Sylvia; Passos, Valeria Lima; Mutsaers, Peter H A; Debernardi, Nicola; Misselwitz, Bernd; Post, Mark; Daemen, Mat J A P; van Engelshoven, Jos M A; Leiner, Tim; Kooi, Marianne E


    To investigate the potential of gadofosveset for contrast material-enhanced magnetic resonance (MR) imaging of plaque in a rabbit model of atherosclerosis. All experiments were approved by the animal ethics committee. Thirty-one New Zealand White rabbits were included in one of four study groups: animals with atherosclerosis imaged with gadofosveset (n = 10) or gadopentetate dimeglumine (n = 7) and control animals imaged with gadofosveset (n = 7) or gadopentetate dimeglumine (n = 7). Aortic atherosclerosis was induced through endothelial denudation combined with a cholesterol-enriched diet. Control rabbits underwent a sham surgical procedure and received a regular diet. After 8 weeks, pre- and postcontrast T1-weighted MR images of the aortic vessel wall were acquired. Relative signal enhancement was determined with dedicated software. Statistical analysis was performed by using a generalized linear mixed model. Immunohistochemical staining with CD31 and albumin was used to assess microvessel density and the albumin content of the vascular wall. Group differences were analyzed by using a chi(2) test. Gadofosveset spatial distribution and content within the vessel wall were determined with proton-induced x-ray emission (PIXE) analysis. Postcontrast signal enhancement was significantly greater for atherosclerotic than for control animals imaged with gadofosveset (P = .022). Gadopentetate dimeglumine could not enable discrimination between normal and atherosclerotic vessel walls (P = .428). PIXE analysis showed higher amounts of gadopentetate dimeglumine than gadofosveset in both atherosclerotic and normal rabbit aortas. Immunohistochemical staining revealed the presence of albumin and increased microvessel density in the vascular walls of atherosclerotic rabbits. These results suggest that gadofosveset can be used to differentiate between atherosclerotic and normal rabbit vessel walls. RSNA, 2009

  8. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail:; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G


    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible.

  9. Preliminary electromagnetic, thermal and mechanical design for first wall and vacuum vessel of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Lucca, F., E-mail: [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Bertolini, C. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Crescenzi, F.; Crisanti, F. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Di Gironimo, G. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Labate, C. [CREATE, Università di Napoli Parthenope, Via Acton 38, 80133 Napoli (Italy); Manzoni, M.; Marconi, M.; Pagani, I. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, G. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Renno, F. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Roccella, M. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Roccella, S. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Viganò, F. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)


    The fusion advanced study torus (FAST), with its compact design, high toroidal field and plasma current, faces many of the problems met by ITER, and at the same time anticipates much of the DEMO relevant physics and technology. The conceptual design of the first wall (FW) and the vacuum vessel (VV) has been defined on the basis of FAST operative conditions and of “Snow Flakes” (SF) magnetic topology, which is also relevant for DEMO. The EM loads are one of the most critical load components for the FW and the VV during plasma disruptions and a first dimensioning of these components for such loads is mandatory. During this first phase of R&D activities the conceptual design of the FW and VV have been assessed estimating, by means of FE simulations, the EM loads due to a typical vertical disruption event (VDE) in FAST. EM loads were then transferred on a FE mechanical model of the FAST structures and the mechanical response of the FW and VV design for the analyzed VDE event was assessed. The results indicate that design criteria are not fully satisfied by the current drawing of the VV and FW components. The most critical regions have been individuated and the effect of some geometrical and material changes has been checked in order to improve the structure.

  10. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. (United States)

    Takebe, T; Kobayashi, S; Kan, H; Suzuki, H; Yabuki, Y; Mizuno, M; Adegawa, T; Yoshioka, T; Tanaka, J; Maegawa, J; Taniguchi, H


    Transplantation of bioengineered elastic cartilage is considered to be a promising approach for patients with craniofacial defects. We have previously shown that human ear perichondrium harbors a population of cartilage progenitor cells (CPCs). The aim of this study was to examine the use of a rotating wall vessel (RWV) bioreactor for CPCs to engineer 3-D elastic cartilage in vitro. Human CPCs isolated from ear perichondrium were expanded and differentiated into chondrocytes under 2-D culture conditions. Fully differentiated CPCs were seeded into recently developed pC-HAp/ChS (porous material consisted of collagen, hydroxyapatite, and chondroitinsulfate) scaffolds and 3-D cultivated utilizing a RWV bioreactor. 3-D engineered constructs appeared shiny with a yellowish, cartilage-like morphology. The shape of the molded scaffold was maintained after RWV cultivation. Hematoxylin and eosin staining showed engraftment of CPCs inside pC-HAp/ChS. Alcian blue and Elastica Van Gieson staining showed of proteoglycan and elastic fibers, which are unique extracellular matrices of elastic cartilage. Thus, human CPCs formed elastic cartilage-like tissue after 3-D cultivation in a RWV bioreactor. These techniques may assist future efforts to reconstruct complicate structures composed of elastic cartilage in vitro. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. "Choke" vessels between vascular territories of the abdominal wall: literature review and rare case of Leriche's syndrome. (United States)

    Ye, Xuan; Rozen, Warren M; Alonso-Burgos, Alberto; Ashton, Mark W


    We undertook a review of the anatomical changes of "choke" vessels between the internal thoracic artery (ITA) and deep inferior epigastric artery (DIEA), as highlighted by a case of aortoiliac occlusive disease (Leriche's syndrome), and discuss the physiological concepts observed with regard to surgical delay procedures within the abdominal wall performed prior to abdominal cutaneous free flaps and coronary artery bypass grafting. Computed tomographic angiography (CTA) was undertaken on a patient with a rare case of Leriche's syndrome and a literature review of over 200 references on the anatomy, physiology and clinical uses of choke vessels in the abdominal wall was undertaken. The CTA demonstrated that in patients with Leriche's syndrome, there is a marked dilatation of all ITA-DIEA pathways and increased flow through choke vessels. If these changes can be surgically replicated in the form of a delay procedure for patients seeking to undergo autologous breast construction, this could improve the outcomes of abdominal cutaneous free flaps and coronary artery bypass grafting. We accordingly propose three surgical methods for augmenting blood flow to the abdominal wall: a) ligation of the DIEA; b) ligation of the distal ITA; and c) creation of an arterio-venous fistulae in the DIEA. Our review of the literature confirmed the viability of these propositions. The dilatation of choke vessels in response to increased haemodynamic stress may thus be utilised to enhance blood supply to tissues prior to transfer and can be achieved through simple and minimally invasive methods. Copyright © 2012 Wiley Periodicals, Inc.

  12. Application of Multi-Layered Polyurethane Foams for Flat-Walled Anechoic Linings

    DEFF Research Database (Denmark)

    Xu, J. F.; Buchholz, Jörg; Fricke, Fergus R.


    of the application of multi-layered polyurethane foams as the flat-walled anechoic lining. The investigation includes aspects such as the efficacy of a single layer of material, the minimum number of layers of linings to achieve the minimum overall thickness for low (100Hz), mid (250Hz) and high (500Hz) cut...

  13. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.


    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  14. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL


    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  15. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor (United States)

    Margolis, L. B.; Fitzgerald, W.; Glushakova, S.; Hatfill, S.; Amichay, N.; Baibakov, B.; Zimmerberg, J.


    The pathogenesis of HIV infection involves a complex interplay between both the infected and noninfected cells of human lymphoid tissue, the release of free viral particles, the de novo infection of cells, and the recirculatory trafficking of peripheral blood lymphocytes. To develop an in vitro model for studying these various aspects of HIV pathogenesis we have utilized blocks of surgically excised human tonsils and a rotating wall vessel (RWV) cell culture system. Here we show that (1) fragments of the surgically excised human lymphoid tissue remain viable and retain their gross cytoarchitecture for at least 3 weeks when cultured in the RWV system; (2) such lymphoid tissue gradually shows a loss of both T and B cells to the surrounding growth medium; however, this cellular migration is reversible as demonstrated by repopulation of the tissue by labeled cells from the growth medium; (3) this cellular migration may be partially or completely inhibited by embedding the blocks of lymphoid tissue in either a collagen or agarose gel matrix; these embedded tissue blocks retain most of the basic elements of a normal lymphoid cytoarchitecture; and (4) both embedded and nonembedded RWV-cultured blocks of human lymphoid tissue are capable of productive infection by HIV-1 of at least three various strains of different tropism and phenotype, as shown by an increase in both p24 antigen levels and free virus in the culture medium, and by the demonstration of HIV-1 RNA-positive cells inside the tissue identified by in situ hybridization. It is therefore reasonable to suggest that gel-embedded and nonembedded blocks of human lymphoid tissue, cocultured with a suspension of tonsillar lymphocytes in an RWV culture system, constitute a useful model for simulating normal lymphocyte recirculatory traffic and provide a new tool for testing the various aspects of HIV pathogenesis.

  16. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. (United States)

    Shin, Joong Won; Sung, Kyung Rim; Lee, Ji Yun; Kwon, Junki; Seong, Mincheol


    To investigate peripapillary vessel density at various spatial locations and layers in healthy and normal tension glaucoma eyes using optical coherence tomography angiography (OCTA). A commercial OCTA device (AngioPlex; Carl Zeiss Meditec) was used to image microvasculature in a 6 × 6-mm optic disc region. Vessel densities of superficial and deep retinal layers were calculated using an automatic thresholding algorithm. Vessel density maps were plotted by averaging individual angiogram images. The spatial characteristics of vessel densities were analyzed at clock-hour sectors and in five 0.7-mm-thick concentric circles from a diameter of 2.0 to 5.5 mm. Areas under the receiver operating characteristics curves (AUCs) assessed the glaucoma diagnostic ability. Vessel density maps of superficial and deep retinal layers were significantly reduced at the 7 and 11 o'clock positions in glaucomatous eyes. In superficial layer, vessel density significantly decreased as the distance from the optic disc margin increased, except in the innermost circle (2.0-2.7-mm). There were significant differences in AUCs of superficial vessel density between innermost circle and the other outer circles. In the deep layer, the innermost circle showed significantly higher vessel density than the outer circles. Vessel density at 7 o'clock showed the best diagnostic performance (AUCs, 0.898 and 0.789) both in the superficial and deep layers. The innermost circle showed eccentric feature compared to the outer circles in terms of spatial characteristics and diagnostic ability. Understanding of the spatial characteristics of peripapillary vasculature may be helpful in clinical practice and determining the optimal measurement area of vessel density.

  17. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.

    Directory of Open Access Journals (Sweden)

    V Lai Nguyen

    Full Text Available PURPOSE: Increased microvascularization of the abdominal aortic aneurysm (AAA vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. MATERIALS AND METHODS: Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (K(trans , which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV. Further, the relationship between K(trans and AAA size was investigated. RESULTS: DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4 with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for K(trans based on the Patlak model (17% were significantly lower compared to the Tofts (37% and Extended Tofts model (42% (p<0.001. K(trans scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22% was comparable with the Tofts (ICC = 0.61, CV = 23% and Extended Tofts model (ICC = 0.76, CV = 22%. K(trans was positively correlated with maximal AAA diameter (Spearman's ρ = 0.38, p = 0.02 using the Patlak model. CONCLUSION: Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good K(trans scan-rescan reproducibility.

  18. Computerized flow and vessel wall analyses of coronary arteries for detection of non-calcified plaques in coronary CT angiography (United States)

    Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Hadjiiski, Lubomir; Kazerooni, Ella


    The buildup of non-calcified plaques (NCP) that are vulnerable to rupture in coronary arteries is a risk for myocardial infarction. We are developing a computer-aided detection (CADe) system to assist radiologists in detecting NCPs in cCTA. A major challenge of NCP detection is the large number of false positives (FPs) caused by the small sized coronary arteries, image noise and artifacts. In this study, our purpose is to design new image features to reduce FPs. A data set of 98 cCTA scans was retrospectively collected from patient files. We first used vessel wall analysis, in which topological features were extracted from vessel wall and fused with a support-vector machine, to identify the NCP candidates from the segmented coronary tree. Computerized flow dynamic (CFD) features that characterize the change in blood flow due to the presence of plaques and a vascular cross-sectional (VCS) feature that quantifies the presence of low attenuation region at the vessel wall were designed for FP reduction. Using a leave-one-out resampling method, a support vector machine classifier was trained to merge the features into a NCP likelihood score using the vessel wall features alone or in combination with the new CDF and VCS features. The performance of the new features in classification of true NCPs and FPs was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Without the new CFD and VCS features, the test AUC was 0.84+/-0.01. The AUC was improved to 0.88+/-0.01 with the addition of the new features. The improvement was statistically significant (p < 0.001). The study indicated that the new flow dynamic and vascular cross-sectional features were useful for differentiation of NCPs from FPs in cCTA.

  19. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke. (United States)

    Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio


    Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.

  20. HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Pasquinelli Gianandrea


    Full Text Available Abstract Background HIV infection elicits the onset of a progressive immunodeficiency and also damages several other organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a target of HIV pathogenesis. This paper investigated the interaction between HIV-1 and vascular wall resident human mesenchymal stem cells (MSCs. Results MSCs were challenged with classical R5 and X4 HIV-1 laboratory strains demonstrating that these strains are able to enter and integrate their retro-transcribed proviral DNA in the host cell genome. Subsequent experiments indicated that HIV-1 strains and recombinant gp120 elicited a reliable increase in apoptosis in sub-confluent MSCs. Since vascular wall MSCs are multipotent cells that may be differentiated towards several cell lineages, we challenged HIV-1 strains and gp120 on MSCs differentiated to adipogenesis and endotheliogenesis. Our experiments showed that the adipogenesis is increased especially by upregulated PPARγ activity whereas the endothelial differentiation induced by VEGF treatment was impaired with a downregulation of endothelial markers such as vWF, Flt-1 and KDR expression. These viral effects in MSC survival and adipogenic or endothelial differentiation were tackled by CD4 blockade suggesting an important role of CD4/gp120 interaction in this context. Conclusions The HIV-related derangement of MSC survival and differentiation may suggest a direct role of HIV infection and gp120 in impaired vessel homeostasis and in genesis of vessel damage observed in HIV-infected patients.

  1. Liquid-crystalline state of the wall-adjacent layers of some polar liquids

    National Research Council Canada - National Science Library

    Derjaguin, B.V; Popovskij, Yu.M; Altoiz, B.A


    ... of some polar liquids, of interfaces separating boundary layers with modified properties from the bulk liquid phase (1). The existence of such an interface was established, for example, in work (2) when studying the local values of viscosity in the wall-adjacent layers of sebacine-amyl ester. Figure 1 represents the dependence calculated according to data (2)...

  2. Growth mechanisms of perturbations in boundary layers over a compliant wall (United States)

    Malik, M.; Skote, Martin; Bouffanais, Roland


    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.

  3. Extremal states of energy of a double-layered thick-walled tube - application to residually stressed arteries. (United States)

    Waffenschmidt, Tobias; Menzel, Andreas


    Various biological tissues are designed to optimally support external loads for complex geometries and mechanobiological structures. This results in complex microstructures of such materials. The design of, for instance, (healthy) arteries, which are in the focus of this work, is characterised by a residually stressed fibre-reinforced multi-layered composite with highly non-linear elastic response. The complex interaction of material properties with the geometry and residual stress effects enables the optimal support under different blood pressures, respectively blood flow, within the vessel. The fibres reinforcing the arterial wall, as well as residual stresses present in the vessel, strongly influence its overall behaviour and performance. Turn-over and remodelling processes of the collagenous fibres occurring in the respective layers - either resulting from natural growth phenomena or from artificially induced changes in loading condition such as stent deployment - support the optimisation of the multi-layered composite structure of arteries for the particular loading conditions present in the artery. Within this contribution, the overall energetic properties of an artery are discussed by means of the inflation, bending and extension of a double-layered cylindrical tube. Different states of residual stresses and different fibre orientations are considered so that, for instance, representative fibre angles that result in extremal states of the total potential energy can be identified. In view of turn-over and remodelling processes, these orientations are considered to constitute preferred directions of fibre alignment. In summary, the main goal of this work is to calculate optimal material, structural and loading parameters by concepts of energy-minimisation. Several numerical studies show that the obtained values - such as the fibre orientations, the residual axial stretch and the opening angle - are in good agreement with respective physiological parameters

  4. Transient Non-Newtonian Blood Flow under Magnetic Targeting Drug Delivery in an Aneurysm Blood Vessel with Porous Walls (United States)

    Alimohamadi, Haleh; Imani, Mohsen


    The present investigation deals with numerical solution of blood flow patterns through an aneurysm artery under the applied magnetic field. Transient extended Navier-Stokes, Brinkman, continuity, and heat conduction equations govern this phenomenon and unsteady pulsatile inlet velocity varies by human heart-beating frequency. Our simulation demonstrates applying 105 magnetic field intensity (MnF) to recirculate flow and increase fluid flux and maximum blood temperature by 62.5x and 3.5%, respectively, in the aneurysm region. It is also shown that the vessel's wall porosity plays an important role in magnetic targeting of drug delivery performance, as this parameter can noticeably change maximum blood temperature and pressure.

  5. Streaming effect of wall oscillation to boundary layer separation (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.


    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  6. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoyi; Li, Dongye [Capital Medical University and Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Beijing (China); Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Zhao, Huilin [Shanghai Jiao Tong University, Department of Radiology, Renji Hospital, School of Medicine, Shanghai (China); Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Cui, Yuanyuan [PLA General Hospital, Department of Radiology, Beijing (China); Zhou, Zechen [Philips Research China, Healthcare Department, Beijing (China); Yuan, Chun [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); University of Washington, Department of Radiology, Seattle, WA (United States); Zhao, Xihai [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Beijing Institute for Brain Disorders, Center for Stroke, Beijing (China)


    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  7. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer (United States)

    Hwang, Jinyul; Sung, Hyung Jin


    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 attached eddies addressed by Perry and coworkers. The streamwise turbulent intensity of these tall attached structures follows the logarithmic distribution with the distance from the wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  8. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. (United States)

    Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; Lovstakken, Lasse; Segers, Patrick


    Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. An in-house code ("TANGO") was developed to strongly couple the flow solver FLUENT and structural solver ABAQUS using an interface quasi-Newton technique. FIELD II was used to model realistic transducer and scan settings. The input to the FSI-US model is a scatterer phantom on which the US waves reflect, with the scatterer displacement derived from the FSI flow and displacement fields. The authors applied the simulation tool to a 3D straight tube, representative of the common carotid artery (length: 5 cm; and inner and outer radius: 3 and 4 mm). A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a noninvasively measured pressure waveform, was chosen and scaled to simulate three different degrees of arterial distension (1%, 4%, and 9%). The RF data from the FSI-US coupling were further processed for arterial wall and flow imaging. Using an available wall tracking algorithm, arterial distensibility was assessed. Using an autocorrelation estimator, blood velocity and shear

  9. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed


    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  10. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers (United States)

    Baldwin, B. S.; Maccormack, R. W.


    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  11. Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Mikkelsen, Robert; Sørensen, Jens Nørkær


    , is based on imposing body forces over the whole domain to maintain a desired unsteady ow, where the ground is modeled as a slip-free boundary which in return hampers the need for grid refinement and/or wall modeling close to the solid walls. Another strength of this method besides being computationally......This paper aims at presenting a simple and computationally fast method for simulation of the Atmospheric Boundary Layer (ABL) and comparing the results with the commonly used wall-modelled Large Eddy Simulation (WMLES). The simple method, called Prescribed Mean Shear and Turbulence (PMST) hereafter...

  12. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    Directory of Open Access Journals (Sweden)

    Katunská Jana


    Full Text Available The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now, by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  13. Vibroacoustic Response of a Double-Walled Cylindrical FGM Shell with a Porous Sandwiched Layer (United States)

    Ramezani, H.; Talebitooti, R.


    The transmission loss of sound through a cylindrical structure whose walls sandwich a layer of porous material is predicted on the basis of the classical shell theory for shells made of functionally graded materials (FGMs). FGM shells composed of metal and ceramic, with three different distributions (power-law, sigmoid, or exponential) of their volume fractions across the wall thickness, are considered. The porous layer is modeled as a fluid with equivalent properties. The transmission loss through the multilayered structure is obtained analytically in a broad frequency band. To validate the results found, they are compared with some known ones. The effects of variation in the volume fractions of materials are also studied.

  14. The effects of the metal temperature and wall thickness on flake graphite layer in ductile iron

    Directory of Open Access Journals (Sweden)

    M. Górny


    Full Text Available This article addresses the effect of mold filling and wall thickness on the flake graphite layer in ductile iron. The research was conducted for castings with different wall thickness (3-8 mm and using molding sand with furan resin. A thermal analysis has been performed along the length of the castings to determine the initial temperature of the metal in the mold cavity and the contact time of the liquid metal with the mold. Results demonstrated the strong influence of the temperature decrease of the metal in the mold cavity on the occurrence and the thickness of the flake graphite in the surface layer in ductile iron.

  15. Construction and characterisation of MRI coils for vessel wall imaging at 7 tesla



    Atherosclerotic plaques in the bifurcation of the carotid artery vessels can pose a significant stroke risk from stenosis, thrombosis and emboli, or plaque rupture. However, the possibility of the latter depends on the structure of the plaque and its stability. So far, the assessment of such depositions, and the evaluation of the risk they pose, is not satisfactory with 3 Tesla black blood imaging. It is expected that the SNR increase at 7 Tesla, together with an appropriate and patient-safe ...

  16. Distribution and natural course of intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, Anja G. van der; Luijten, Peter R.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Brundel, Manon; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Utrecht (Netherlands); Visser, Fredy [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Philips Healthcare, Best (Netherlands)


    Previous studies using intracranial vessel wall MRI techniques showed that over 50 % of patients with ischemic stroke or TIA had one or more intracranial vessel wall lesions. In the current study, we assessed the preferential location of these lesions within the intracranial arterial tree and their potential changes over time in these patient groups. Forty-nine patients with ischemic stroke (n = 25) or TIA (n = 24) of the anterior cerebral circulation underwent 7.0 T MRI, including a T{sub 1}-weighted magnetization-preparation inversion recovery turbo-spin-echo (MPIR-TSE) sequence within one week and approximately one month after symptom onset. Intracranial vessel wall lesions were scored for multiple locations within the arterial tree and differences between one-week and one-month images. At baseline, 132 intracranial vessel wall lesions were found in 41 patients (84 %), located primarily in the anterior cerebral circulation (74 %), with a preferential location in the distal internal carotid artery and M1 and M2 segments of the middle cerebral artery. During follow-up, presence or enhancement patterns changed in 14 lesions (17 %). A large burden of intracranial vessel wall lesions was found in both the anterior and posterior cerebral circulation. Most lesions were found to be relatively stable, possibly indicating a more generalized atherosclerotic process. (orig.)

  17. Optical coherence tomography for identification and quantification of human airway wall layers

    NARCIS (Netherlands)

    d'Hooghe, Julia N. S.; Goorsenberg, Annika W. M.; de Bruin, Daniel M.; Roelofs, Joris J. T. H.; Annema, Jouke T.; Bonta, Peter I.


    High-resolution computed tomography has limitations in the assessment of airway wall layers and related remodeling in obstructive lung diseases. Near infrared-based optical coherence tomography (OCT) is a novel imaging technique that combined with bronchoscopy generates highly detailed images of the

  18. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni


    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  19. Ion energy distribution function in the wall layer at a negative wall potential with respect to the plasma (United States)

    Sukhomlinov, Vladimir S.; Mustafaev, Alexander S.; Murillo, Oskar


    On the basis of the kinetic approach, the self-consistent problem of the gas discharge ion distribution function in the sheath near a surface at a negative potential with respect to the plasma is solved. For the first time, the solution takes into account the dependence of the ion charge exchange cross section from the atom on the ion energy, as well as the real ion distribution function in the unperturbed plasma. It is shown that the dependence of the charge exchange cross section on the ion energy significantly affects the shape of the ion distribution function. It is found that the mean energy of the ions near the wall depends on the electron mean energy in the unperturbed plasma. It was also found that, at the same electron mean energy, the form of the distribution function has practically no effect on the ion distribution function in the wall sheath. The calculations are in good agreement with the known mass spectrometric measurements of the ion distribution function. The obtained results give an opportunity to develop a self-consistent solution of the wall layer structure problem including the quasi-neutral presheath.

  20. Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changwu [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Qiao, Huiyu; He, Le [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Yuan, Chun [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, University of Washington, Seattle, WA (United States); Chen, Huijun; Zhang, Qiang; Li, Rui [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Wang, Wei; Du, Fang [Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Li, Cheng, E-mail: [Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing (China); Zhao, Xihai, E-mail: [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China)


    Purpose: To investigate the characteristics of plaque in the thoracic aorta using three dimensional multicontrast magnetic resonance imaging. Materials and methods: Elderly subjects (≥60 years) were recruited in this study. Thoracic aorta was imaged on a 3.0T MR scanner by acquiring multicontrast sequences. The plaque burden was evaluated by measuring lumen area, wall area, wall thickness, and normalized wall index. The presence or absence of plaque and intraplaque hemorrhage (IPH)/mural thrombus (MT) were identified. The characteristics of atherosclerosis among different thoracic aorta segments (AAO: ascending aorta; AOA: aortic arch, and DOA: descending aorta) were determined. Results: Of 66 recruited subjects (mean age 72.3 ± 6.2 years, 30 males), 55 (83.3%) had plaques in the thoracic aorta. The prevalence of plaque in AAO, AOA, and DAO was 5.4%, 72.7%, and 71.2%, respectively. In addition, 21.2% of subjects were found to have lesions with IPH/MT in the thoracic aorta. The prevalence of IPH/MT in segment of AAO, AOA and DAO was 0%, 13.6%, and 12.1%, respectively. The aortic wall showed the highest NWI in DAO (34.1% ± 4.8%), followed by AOA (31.2% ± 5%), and AAO (26.8% ± 3.3%) (p < 0.001). Conclusion: Three dimensional multicontrast MR imaging is capable of characterizing atherosclerotic plaques in the thoracic aorta. The findings of high prevalence of plaques and the presence of high risk plaques in the thoracic aorta suggest early screening for aortic vulnerable lesions in the elderly.

  1. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David


    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  2. The ability of 5% Tamarindus indica extract as cleaner of the root canal wall smear layer

    Directory of Open Access Journals (Sweden)

    Erawati Wulandari


    Full Text Available Tamarindus indica is one of traditional medicines. Pulpa tamaridorum consist of organic acid that is usually used as irrigant and to remove root canal wall smear layer. The aimed of this study was to elucidate the ability of 5% Tamarindus indica extract as a root canal irrigant to remove root canal wall smear layer. Eighteen tooth samples were cut on cervical line and divided into 2 then groups were prepared with K file and irrigated. Group 1 was irrigated by sterile aquabidest and group 2 was irrigated by 5% Tamarindus indica extract. Samples were cut longitudinally and formed 7 × 2× 2 mm specimen. Each specimen was photographed by scanning electron microscope, scored and summed. The total score obtained is used as the hygiene value of root canal wall. The collected data were statistically analyzed by using independent t test at 0.05 level. The result of the study showed there was a significant difference between 5% Tamarindus indica extract and sterile aquabidest (p < 0.05, the hygiene value of 5% Tamarindus indica extract was higher than sterile aquabidest. The conclusion of this investigation showed that 5% Tamarindus indica extract remove root canal wall smear layer.

  3. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    Undetermined, U.


    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  4. Layer-dependent role of collagen recruitment during loading of the rat bladder wall. (United States)

    Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M


    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.

  5. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)


    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  6. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)


    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  7. Statistical Permutation-based Artery Mapping (SPAM): a novel approach to evaluate imaging signals in the vessel wall. (United States)

    Seifert, Robert; Scherzinger, Aaron; Kiefer, Friedemann; Hermann, Sven; Jiang, Xiaoyi; Schäfers, Michael A


    Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in order to identify high-risk plaques, which might escape detection using conventional methods based on the assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical landmarks, ensuring to compare equivalent regions across different subjects. We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is especially useful for the understanding of complex and heterogeneous regional processes during the course of atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge these strategies have so far not been applied in cardiovascular molecular imaging. We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels. We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences

  8. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations. (United States)

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles


    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Effect of the thickness of flowable composite as intermediate layer to reduce microleakage on gingival wall (United States)

    Natasha, V.; Suprastiwi, E.


    Microleakage of composite restoration in proximal composite restoration often occurs on the gingival wall. The purpose of this study is to evaluate the influence of flowable composite as an intermediate layer to reduce microleakage on the gingival wall. Thirty whole,extracted, upper premolars were divided into three groups. Within box-like cavities, the first group was restored with packable composite only. Group 2 was restored with flowable composite of a1mm thickness and then was restored with incrementally packable composite. Group 3 was restored similarly to group 2, however with a flowable composite thickness of 2mm. After thermocycling, the penetration of 1% methylene blue was investigated along the gingival wall. There were significant differences between group 1 and groups 2 and 3. No significant differences were found between groups 2 and 3. Flowable composite, as an intermediate layer, reduces microleakage of the gingival wall of proximal composite restorations. Nonetheless, the thickness of the flowable composite has no influence on the amount of microleakage observed.

  10. Protein-Bound Uremic Toxins Stimulate Crosstalk between Leukocytes and Vessel Wall (United States)

    Glorieux, Griet; Schepers, Eva; Cohen, Gerald; Gondouin, Bertrand; Van Landschoot, Maria; Eloot, Sunny; Rops, Angelique; Van de Voorde, Johan; De Vriese, An; van der Vlag, Johan; Brunet, Philippe; Van Biesen, Wim; Vanholder, Raymond


    Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels. PMID:24009240

  11. A Wall-Function Approach to Incorporating Knudsen-Layer Effects in Gas Micro Flow Simulations (United States)


    conditions, such as those due to Kogan [3] and Cercignani [4], attempt to compensate for the structure of the Knudsen layer by adding a “fictitious...restrict our attention to its effect on the stress/strain relationship. For a planar wall bounding a monatomic gas flow, Cercignani derived the form of...curve-fitted approximation to the velocity correction function, I(x/λ) (obtained numerically by Cercignani ) as follows: 2 1 20 7

  12. Fluctuating wall shear stress and velocity measurements in a turbulent boundary layer (United States)

    Pabon, Rommel; Ukeiley, Lawrence; Barnard, Casey; Sheplak, Mark


    Knowledge of mean wall shear stress on a surface can shed light on important performance parameters, but the fluctuating shear, even in simple flows, has not been as easily measured, and can be of interest in fundamental boundary layer research. Experiments on a flat plate model were performed to investigate the relationship between the wall shear stress and large scale events in the turbulent boundary layer. A MEMS based differential capacitance shear stress system with 1 mm × 1 mm floating element which can measure the fluctuating and static components of shear simultaneously, coupled with a hot wire anemometer were used for characterizing the turbulent boundary layer. Velocity profiles and turbulence statistics approaching the wall characterized the two dimensionality of the flat plate, and a trailing edge flap was used to impose a zero pressure gradient. The mean streamwise velocity profile was scaled by the friction velocity using the measured shear stress and independently compared to classical fits. Correlations between the fluctuating shear and measured velocities were used to elucidate the large scale events and to compare with previous fluctuating shear measurements for validation.

  13. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository



    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  14. Convection of wall shear stress events in a turbulent boundary layer (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark


    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  15. Detection of vessel wall calcifications in vertebral arteries using susceptibility weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Lisa C.; Boeker, Sarah M.; Bender, Yvonne Y.; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R. [Department of Radiology, Charite, Berlin (Germany); Liebig, Thomas [Department of Neuroradiology, Charite, Berlin (Germany)


    Calcification of the brain supplying arteries has been linked to an increased risk for cerebrovascular disease. The purpose of this study was to test the potential of susceptibility weighted MR imaging (SWMR) for the detection of vertebral artery calcifications, based on CT as a reference standard. Four hundred seventy-four patients, who had received head CT and 1.5 T MR scans with SWMR, including the distal vertebral artery, between January 2014 and December 2016, were retrospectively evaluated and 389 patients were included. Sensitivity and specificity for the detection of focal calcifications and intra- and interobserver agreement were calculated for SWMR and standard MRI, using CT as a standard of reference. The diameter of vertebral artery calcifications was used to assess correlations between imaging modalities. Furthermore, the degree of vessel stenosis was determined in 30 patients, who had received an additional angiography. On CT scans, 40 patients showed a total of 52 vertebral artery calcifications. While SWMR reached a sensitivity of 94% (95% CI 84-99%) and a specificity of 97% (95% CI 94-98%), standard MRI yielded a sensitivity of 33% (95% CI 20-46%), and a specificity of 93% (95% CI 90-96%). Linear regression analysis of size measurements confirmed a close correlation between SWMR and CT measurements (R {sup 2} = 0.74, p < 0.001). Compared to standard MRI (ICC = 0.52; CI 0.45-0.59), SWMR showed a higher interobserver agreement for calcification measurements (ICC = 0.84; CI 0.81-0.87). For detection of distal vertebral artery calcifications, SWMR demonstrates a performance comparable to CT and considerably higher than conventional MRI. (orig.)

  16. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer (United States)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  17. A multi-layer description of Reynolds stresses in canonical wall bounded flows (United States)

    Chen, Xi; Hussain, Fazle; She, Zhen-Su


    A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.

  18. Gold nanoparticle inclusion into protein nanotube as a layered wall component. (United States)

    Goto, Shun; Amano, Yusuke; Akiyama, Motofusa; Böttcher, Christoph; Komatsu, Teruyuki


    We describe the synthesis, structure, and catalytic activity of human serum albumin (HSA) nanotubes (NTs) including gold nanoparticles (AuNPs) as a layered wall component. The NTs were fabricated as an alternating layer-by-layer assembly of AuNP and HSA admixture (a negatively charged part) and poly-l-arginine (PLA, a positively charged part) into a track-etched polycarbonate membrane (400 nm pore diameter) with subsequent dissolution of the template. SEM images showed the formation of uniform hollow cylinders of (PLA/AuNP-HSA)3 with a 426 ± 12 nm outer diameter and 65 ± 7 nm wall thickness. Transmission electron microscopy and energy dispersive X-ray measurements revealed high loading of AuNPs in the tubular wall. HSAs bind strongly onto the individual AuNP (K = 1.25 × 10(9) M(-1)), generating a core-shell AuNP-HSA corona, which is the requirement of the robust NT formation. Calcination of the (PLA/AuNP-HSA)3 NTs at 500 °C under air yielded red solid NTs composed of thermally fused AuNPs. From the mass decrease by heat treatment, we calculated the weight of the organic components (PLA and HSA) and thereby constructed a six-layer model of the tube. The (PLA/AuNP-HSA)3 NTs serve as a heterogeneous catalyst for reduction of 4-nitrophenol with sodium borohydrate. Furthermore, implantation of the stiff (PLA/AuNP-HSA)3 NTs vertically onto glass plate produced uniformly cylindrical tube arrays.

  19. Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John


    Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  20. Analysis of Stress and Strain Distribution in the Artery Wall Consisted of Layers with Different Elastic Modulus and Opening Angle (United States)

    Matsumoto, Takeo; Sato, Masaaki

    Bovine thoracic aorta is stiffer in the inner wall than in the outer, and its opening angle is larger in the inner layer than in the outer. A model for mechanical analysis of such a heterogeneous artery wall was developed. The wall was assumed to be made of thin, incompressible, homogeneous, and isotropic layers having different elastic properties and opening angle. Stress and strain distributions in the wall were calculated using the opening angle and stress-strain relationship measured in thin sliced layers of bovine thoracic aortas. Stress distribution was uniform under a physiological condition if elastic properties and the opening angle were set uniform. Stress distribution was not uniform under any condition when the material heterogeneity was introduced. Such non-uniformity was reduced if heterogeneity in the opening angle was considered. The opening angle may be higher in the inner wall to compensate stress concentration caused by the material heterogeneity.

  1. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    CERN Document Server

    Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco


    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...

  2. Further insight into physics of rough-wall turbulent boundary layer (United States)

    Bhaganagar, Kiran; Juttijudata, Vejapong; Sen, Mehmet


    To get a good understanding of the effect of surface-roughness in altering the flow in a turbulent boundary layer it is important to understand the alterations in the dynamical activity of the flow. For this purpose direct proper orthogonal decomposition (POD) has been used as a tool. The data used for the POD has been obtained from direct numerical simulation of flow in a channel with egg-carton roughness elements. In this talk the effects of surface-roughness on the temporal flow dynamics such as bursting frequency of the energetic structures in the flow will be discussed. VITA detection technique has been used to obtain the bursting frequency. It has confirmed that rough-wall has a shorter bursting period and a higher turbulence activity compared to the smooth-wall. The results have confirmed the existence of roll and propagating modes for flow over rough-wall. In addition to the turbulent kinetic energy, the concept of entropy that has been introduced in this study within the context of degree of distribution of energy over range of scales, is a useful metric to categorize the rough-wall flow dynamics.

  3. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

    Directory of Open Access Journals (Sweden)

    Jameson K. Gardner


    Full Text Available The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV bioreactor was designed by the National Aeronautics and Space Administration (NASA to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.

  4. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors

    Directory of Open Access Journals (Sweden)

    Tyler DiStefano


    Full Text Available Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25 reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.

  5. Neutron fluence at the reactor pressure vessel wall - a comparison of French and German procedures and strategies in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, N. [Institut de Radioprotection et de Surete Nucleaire, IRSN/DES/SECCA, 92 - Fontenay aux Roses (France); Jendrich, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)


    While the neutrons within the core may take part in the chain reaction, those neutrons emitted from the core are basically lost for the energy production. This 'neutron leakage' represents a loss of fuel efficiency and causes neutron embrittlement of the reactor pressure vessel (RPV) wall. The latter raises safety concerns, needs to be monitored closely and may necessitate mitigating measures. There are different strategies to deal with these two undesirable effects: The neutron emission may be reduced to some extent all around the core or just at the 'hot spots' of RPV embrittlement by tailored core loading patterns. A higher absorption rate of neutrons may also be achieved by a larger water gap between the core and the RPV. In this paper the inter-relations between the distribution of neutron flux, core geometry, core loading strategy, RPV embrittlement and its surveillance are discussed at first. Then the different strategies followed by the German and French operators are described. Finally the conclusions will highlight the communalities and differences between these strategies as different approaches to the same problem of safety as well as economy. (authors)

  6. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H


    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  7. Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers (United States)

    Gokoglu, S. A.; Rosner, D. E.


    Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.

  8. A Visualization Study of Wall Layer of Swirling Turbulent Pipe Flow (United States)

    Malek, Meriam; Hager, Rachael; Savas, Omer


    The streaky vortical structure of the viscous sublayer of a turbulent boundary layer is well known. Turbulent flows in pipes also exhibit similar structures. The effect of swirl on that structure is the subject matter of this study. The experiments are conducted in water in a 5-cm diameter clear cast-acrylic pipe at Reynolds numbers up to 80,000. Initial geometric swirl angles up to 60° at the wall are generated by placing 3D printed inserts at the inlet of the pipe. Flows are visualized using reflective flakes of size distribution 10-80 μm under diffuse illumination. Flows are recorded at high framing rates. After preprocessing, the streaky structure is quantified by using autocorrelation of the images. Lateral spacing and longitudinal length scales are extracted. Also studied is the decay of the swirl angle and its influence of the wall structure. Undergraduate Researcher.

  9. Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption

    DEFF Research Database (Denmark)

    Balci, Adnan; Andersen, Morten; Thompson, M. C.


    A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall. This vorticity may organize itself into vortices that erupt from the separated boundary layer. We study how the eruption process in terms of the streamline topology is initiated and varies in dependence of t...

  10. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology (United States)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum


    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  11. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology (United States)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum


    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  12. Bryozoan filter feeding in laminar wall layers: flume experiments and computer simulation

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Matlok, Simon; Riisgård, Hans Ulrik


    gradient (1-4 s-1). The laminar wall layer simulated viscous sublayers found in the field for smooth surfaces. Incurrents to lines of 3-10 zooids typically distort paths of particles approaching the colony at heights 1-2 mm above the level of lophophore inlets and theycapture particles from paths 0...... line colony to be about 16 times the frontal area of a simulated lophophore. Fluid particles were captured from paths about 1.3 mm above the sink. At twice the flowrate, the area cleared of particles reduced to about 7 times the frontal area while feeding rate increased by about 19%.KEY WORDS: ambient...

  13. Regeneration of three layers vascular wall by using BMP2-treated MSC involving HIF-1α and Id1 expressions through JAK/STAT pathways. (United States)

    Belmokhtar, Karim; Bourguignon, Thierry; Worou, Morel E; Khamis, Georges; Bonnet, Pierre; Domenech, Jorge; Eder, Véronique


    Engineering living, multilayered blood vessels to form in vivo arteries is a promising alternative to peripheral artery bypass using acellular grafts restricted by thrombosis and occlusion at long term. Bone Morphogenetic Protein 2 (BMP2) is a growth factor determining in the early vascular embryonic development. The aim of the present study was evaluate the collaborative effect of recombinant human--BMP2 and Bone marrow--Mesenchymal stem cells (BM-MSCs) seeded on vascular patch to regenerate a vascular arterial wall in a rat model. BM-MSCs expressing green fluorescent protein (GFP) seeded on vascular patch were cultured in presence of recombinant human-BMP2 [100 ng/mL] during 1 week before their implantation on the abdominal aorta of Wistar rats. We observed after 2 weeks under physiological arterial flow a regeneration of a three layers adult-like arterial wall with a middle layer expressing smooth muscle proteins and a border layer expressing endothelial marker. In vitro study, using Matrigel assay and co-culture of BM-MSCs with endothelial cells demonstrated that rh-BMP2 promoted tube-like formation even at long term (90 days) allowing the organization of thick rails. We demonstrated using inhibitors and siRNAs that rh-BMP2 enhanced the expression of HIF-1α and Id1 through, at least in part, the stimulation of JAK2/STAT3/STAT5 signaling pathways. Rh-BMP2 by mimicking embryological conditions allowed vascular BM-MSCs differentiation.

  14. A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Grooteman, F.P.


    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means


    The report presents the theoretical development of a method for calculating the incompressible turbulent boundary layer based on the ’ law of the wall...8217 and the ’ law of the wake.’ This development was carried out to provide a more rigorous solution of the boundary-layer equations for turbulent flow

  16. Bioreactor rotating wall vessel (United States)


    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  17. Differentiation of deep subcortical infarction using high-resolution vessel wall MR imaging of middle cerebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Choi, Byung Se; Jung, Cheol Kyu; Yoon, Yeon Hong; Sunwoo, Leonard; Kim, Jae Hyoung; Bae, Hee Joon [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)


    To evaluate the utility of high-resolution vessel wall imaging (HR-VWI) of middle cerebral artery (MCA), and to compare HR-VWI findings between striatocapsular infarction (SC-I) and lenticulostriate infarction (LS-I). This retrospective study was approved by the Institutional Review Board, and informed consent was waived. From July 2009 to February 2012, 145 consecutive patients with deep subcortical infarctions (SC-I, n = 81; LS-I, n = 64) who underwent HR-VWI were included in this study. The degree of MCA stenosis and the characteristics of MCA plaque (presence, eccentricity, location, extent, T2-high signal intensity [T2-HSI], and plaque enhancement) were analyzed, and compared between SC-I and LS-I, using Fisher's exact test. Stenosis was more severe in SC-I than in LS-I (p = 0.040). MCA plaque was more frequent in SC-I than in LS-I (p = 0.028), having larger plaque extent (p = 0.001), more T2-HSI (p = 0.001), and more plaque enhancement (p = 0.002). The eccentricity and location of the plaque showed no significant difference between the two groups.Both SC-I and LS-I have similar HR-VWI findings of the MCA plaque, but SC-I had more frequent, larger plaques with greater T2-HSI and enhancement. This suggests that HR-VWI may have a promising role in assisting the differentiation of underlying pathophysiological mechanism between SC-I and LS-I.

  18. An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall. (United States)

    Chun, Youngjae; Kealey, Colin P; Levi, Daniel S; Rigberg, David A; Chen, Yanfei; Tillman, Bryan W; Mohanchandra, K P; Shayan, Mahdis; Carman, Gregory P


    Sputter-deposited thin film nitinol constructs with various micropatterns were fabricated to evaluate their effect on the vessel wall in vivo when used as a covering for commercially available stents. Thin film nitinol constructs were used to cover stents and deployed in non-diseased swine arteries. Swine were sacrificed after approximately four weeks and the thin film nitinol-covered stents were removed for histopathologic evaluation. Histopathology revealed differences in neointimal thickness that correlated with the thin film nitinol micropattern. Devices covered with thin film nitinol with a lateral × vertical length = 20 × 40 µm diamond pattern had minimal neointimal growth with well-organized cell architecture and little evidence of ongoing inflammation. Devices covered with thin film nitinol with smaller fenestrations exhibited a relatively thick neointimal layer with inflammation and larger fenestrations showed migration of inflammatory and smooth muscle cells through the micro fenestrations. This "proof-of-concept" study suggests that there may be an ideal thin film nitinol porosity and pore geometry to encourage endothelialization and incorporation of the device into the vessel wall. Future work will be needed to determine the optimal pore size and geometry to minimize neointimal proliferation and in-stent stenosis.

  19. Wall parallel cross-correlations of volumetric PTV measurements in a perturbed turbulent boundary layer (United States)

    Tan, Yan Ming; Longmire, Ellen


    A canonical turbulent boundary layer (Reτ = 2500) was perturbed by a narrowly spaced (0.2 δ) array of cylinders extending normal to the wall. Two array heights were considered, H = 0.2 δ and H = δ . Volumetric PTV measurements were acquired to understand 3-D variations in large scale structures within the log region of the unperturbed and perturbed flow. The recovery in the streamwise velocity coherence across the depth of the log region was analyzed using cross correlations between wall parallel planes. Conditional cross correlations are analyzed to examine the recovery in coherence specific to low momentum regions (LMRs), which can be signatures of vortex packets. The measurement volume was 0.70 δ (streamwise,x), 0.90 δ (spanwise,y), 0.12 δ (wall-normal,z). In the unperturbed flow, LMRs frequently extended through the entire depth (155 <=z+ <= 465). The cross correlations between planes at z+ = 155 and z+ = 465 exhibited strong skewness indicative of forward leaning structures. By comparison, downstream of the H = δ array, the wall normal extent of individual LMRs was frequently limited to the lower part of the measurement volume. The cross correlation magnitude and skewness remained suppressed relative to unperturbed flow up to 4.7 δ downstream. These observations suggest reduced coherence of LMRs and high momentum regions across the log region. This result was consistent with previous planar PIV measurements at z+ = 500 that showed hardly any long LMRs over distances up to 7 δ downstream of the H = δ array.

  20. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers. (United States)

    Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian


    This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Use of yeast cell walls and Yucca schidigera extract in layer hens’ diets

    Directory of Open Access Journals (Sweden)

    Yasemin Oznurlu


    Full Text Available This research was conducted to determine the impact of diet supplementation with yeast cell walls (YCW and Yucca schidigera extract (YE on performance, egg weight, specific gravity, body weight, and intestinal tissue hist­ology in layer hens. White, 48-week-old, Hy-line hybrid hens (n=320 were divided into four main groups, each comprising eight groups of 10 hens: (1 control, (2 500 mg/kg YCW added, (3 500 mg/kg YE added and (4 250 mg/kg YE plus 2500 mg/kg YCW added. While the egg production and feed intake of the hens was significantly affected, overall feed efficiency, damaged-egg ratio, dirty-egg ratio, egg weight and specific gravity did not differ between the control group and the YCW, YE or YCW+YE groups. Final body weight was higher in the YCW, YE and YCW+YE groups than in the control group. There were differences in the width, muscle layer thickness and height/crypt depth ratio of the duodenal villus and the width of the ileal villus among the four groups. It can be concluded that YCW and YCW+YE supplementation for layer hens are beneficial for egg production.

  2. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence. (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley


    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  3. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition (United States)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.


    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  4. Effect of hypertension on low-density lipoprotein transport within a multi-layered arterial wall: modelling consistent with experiments

    CERN Document Server

    Jesionek, Katarzyna; Kostur, Marcin


    The influence of hypertension on low-density lipoproteins intake into the arterial wall is an important factor for understanding mechanisms of atherosclerosis. It has been experimentally observed that the increased pressure leads to the higher level of the LDL inside the wall. In this paper we attempt to construct a model of the LDL transport which reproduces quantitatively experimental outcomes. We supplement the well known four-layer arterial wall model to include two pressure induced effects: the compression of the intima tissue and the increase of the fraction of leaky junctions. We demonstrate that such model can reach the very good agreement with experimental data.

  5. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang


    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  6. Maintenance and Durability of the Concrete External Layer of Curtain Walls in Prefabricated Technological Poznan Large Panel System (United States)

    Jasiczak, Józef; Girus, Krzysztof


    The issue of usability and durability of large-panel building constructed several decades ago is a subject of an in-depth analysis of many domestic and foreign investments. When considering the durability of specific large-panel system, one should consider, among others, the process of making external walls. The long-term and direct impact of weather conditions on the external layer of curtain walls is significant for the durability of large-panel buildings. For the needs of the presented paper, in 2016, the survey of cracks and a series of other tests of large-panel façade, residential building constructed in 1986, in Poland, in the PLP process system - Rataje was executed. Several hundred large-size, triple-layer curtain-wall slab with a 6-cm, concrete exterior cladding layer anchored using pins and hangers with the load-bearing layer, a 9-cm insulation layer made of mineral wool, and a 21-cm structural layer were surveyed. Significant deviations in thicknesses of particular wall layers were proven. Other significant damages and defects of external layers were found. At the second stage, many tests, both nondestructive and destructive, were conducted. They involved determining mechanical properties of an external layer. The concrete thickness was measured using with a type N Schmidt sclerometer and core samples were taken from this layer in order to mark concrete’s compressive strength. The range of carbonation (by phenolphthalein method) and the actual location and condition of reinforcement were estimated using a ferromagnetic device to determine the condition of the external layer. The diagnosis conducted in such a manner was the verification of necessary repair of the walls and their thermal efficiency improvement while ensuring safe conditions of their operation and modern functional and utility requirements. It should be also emphasized that the method of diagnosing the external walls presented in this paper may be popularized when evaluating such

  7. Effect of Immersed Wall-Bounded Cylinders on Turbulent Boundary Layer Structure (United States)

    Zheng, Shaokai; Longmire, Ellen; Hallberg, Michael; Ryan, Mitchell


    Single spanwise arrays of wall-mounted cylinders with H/ δ <= 0.2, where H is the cylinder height and δ is the boundary layer thickness, were used to modify turbulent boundary layers (Reτ=2500) in an attempt to affect the organization of the coherent structures in the logarithmic and outer regions. Flow downstream of several array spacings was investigated and compared against an unperturbed case. Instantaneous and averaged velocity fields in streamwise-spanwise planes were obtained by stereo PIV. The PIV cameras and laser sheet optics could be traversed at the local mean flow speed in order to track the evolution of larger structures in the flow. The results are analyzed to determine the streamwise evolution of dominant spanwise modes. Different array spacings are shown to either inhibit or reinforce the organization of vortex packet structures over streamwise distances up to 8 δ. The flying stereo PIV measurements suggest also that dominant structures upstream of the arrays can strongly affect the organization and location of structures downstream. supported by NSF CBET-0933341.

  8. Effect of wall-mounted cylinders on a turbulent boundary layer: hot wire measurements (United States)

    Ortiz-Dueñas, Cecilia; Ryan, Mitchell; Longmire, Ellen


    Wall-mounted cylinders with height-to-diameter ratio H/D = 2 and large enough to protrude into the logarithmic region, H^+= 200, are used to alter a turbulent boundary layer with Reτ=1150 in an attempt to affect the organization of the coherent vortical structures. Hot-wire measurements, including velocity profiles and frequency spectra, were acquired downstream of a single cylinder and spanwise arrays of cylinders. The single cylinder yielded a momentum deficit that extended from z^+=20 to 200, and a redistribution of the streamwise rms velocity towards the half cylinder height with a corresponding increase in the power spectral density over a broad frequency range. Cylinder arrays with 3D spanwise spacing yielded significant wake interactions. The largest mean streamwise velocity deficits and rms values occurred in the log region at mid-span between cylinders. More detail on the effect of cylinder spacing will be provided in the talk. The results suggest that turbulence within the boundary layer leads to broader spanwise interactions than those occurring in wakes of cylinder arrays in uniform cross flow.

  9. Low dimensional models of the wall region in a turbulent boundary layer: New results (United States)

    Berkooz, Gal; Holmes, Philip; Lumley, John L.


    Using an optimally convergent representation, a low dimensional model is constructed, which embodies in a streamwise-invariant form the effects of streamwise structure. Results of Stone show that the model is capable of mimicking the stability change due to favorable and unfavorable pressure gradients. Results of Aubry et al. suggest that polymer drag reduction is associated with stabilization of the secondary instabilities, as has been speculated. Results of Bloch and Marsden indicate that drag can be reduced by feedback, and that this is mathematically equivalent to polymer drag reduction. The authors showed that dynamical systems based on the Proper Orthogonal Decomposition have, on the average, the best short term tracking time (the time that a model tracks the true system accurately; essential for control) for a given number of modes. In recent work, the authors have shown that several assumptions made on an intuitive basis in the work of Aubry et al. may be justified formally. Berkooz has made rigorous estimates using the proper orthogonal decomposition showing that a structured turbulent flow, such as the wall layer, has a phase space representation that remains within a thin slab centered on the most energetic modes for most of the time. Campbell and Holmes have shown several results in connection with symmetry breaking in systems with structurally stable heteroclinic cycles. This work is relevant to our models of interacting coherent structures in boundary layers with discrete spanwise symmetry, such as that caused by riblets, which are known to produce drag reduction.

  10. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.


    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  11. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V


    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  12. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding.

    Directory of Open Access Journals (Sweden)

    Jacqueline F Donoghue

    Full Text Available Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.

  13. Characterization of Layer-by-layer Self-assembled Multi-walled Carbon Nanotube Film Sensor and Its Ethanol Gas-sensing Properties

    Directory of Open Access Journals (Sweden)

    Bokai Xia


    Full Text Available Multi-wall carbon nanotubes (MWNTs film-based sensor on the substrate of printed circuit board (PCB with interdigital electrodes (IDE were fabricated using layer-by-layer self-assembly, and the electrical properties of MWNTs film sensor were investigated through establishing models involved with number of self-assembled layers and IDE finger gap, and also its ethanol gas-sensing properties with varying gas concentration are characterized at room temperature. Through comparing with the thermal evaporation method, the experiment results shown that the layer-by-layer self-assembled MWNTs film sensor have a faster response and more sensitive resistance change when exposed to ethanol gas, indicated a prospective application for ethanol gas detection with high performance and low-cost.


    DEFF Research Database (Denmark)

    Giusca, Cristina E; Tison, Yann; Silva, S. Ravi P.


    Scanning Tunneling Microscopy and Spectroscopy have been used in an attempt to elucidate the electronic structure of nanotube systems containing two constituent shells. Evidence for modified electronic structure due to the inter-layer interaction in double-walled carbon nanotubes is provided by t...

  15. Protein-enabled layer-by-layer syntheses of aligned, porous-wall, high-aspect-ratio TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Berrigan, John D.; Cai, Ye; Sandhage, Kenneth H. [School of Materials Science and Engineering, Air Force Center of Excellence on Bio-Nano-Enabled Inorganic/Organic Nanocomposites and Improved Cognition (BIONIC), Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0400 (United States); Kang, Tae-Sik; Deneault, James R.; Durstock, Michael F. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-7702 (United States)


    An aqueous, protein-enabled (biomimetic), layer-by-layer titania deposition process is developed, for the first time, to convert aligned-nanochannel templates into high-aspect-ratio, aligned nanotube arrays with thin (34 nm) walls composed of co-continuous networks of pores and titania nanocrystals (15 nm ave. size). Alumina templates with aligned open nanochannels are exposed in an alternating fashion to aqueous protamine-bearing and titania precursor-bearing (Ti(IV) bis-ammonium-lactato-dihydroxide, TiBALDH) solutions. The ability of protamine to bind to alumina and titania, and to induce the formation of a Ti-O-bearing coating upon exposure to the TiBALDH precursor, enables the layer-by-layer deposition of a conformal protamine/Ti-O-bearing coating on the nanochannel surfaces within the porous alumina template. Subsequent protamine pyrolysis yields coatings composed of co-continuous networks of pores and titania nanoparticles. Selective dissolution of the underlying alumina template through the porous coating then yields freestanding, aligned, porous-wall titania nanotube arrays. The interconnected pores within the nanotube walls allow enhanced loading of functional molecules (such as a Ru-based N719 dye), whereas the interconnected titania nanoparticles enable the high-aspect-ratio, aligned nanotube arrays to be used as electrodes (as demonstrated for dye-sensitized solar cells with power conversion efficiencies of 5.2 {+-} 0.4%). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods. (United States)

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N


    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  17. Effect of wall-mounted cylinders on a turbulent boundary layer: V3V measurements (United States)

    Ryan, Mitchell; Ortiz-Dueñas, Cecilia; Longmire, Ellen; Troolin, Dan


    Volumetric 3-Component Velocimetry (V3V) was used to examine the flow structure downstream of arrays of wall mounted-cylinders in a turbulent boundary layer with Reτ=2460. The cylinders, which had height-to-diameter ratio H/D = 4 and H^+= 455, extended through the logarithmic region. Measurements were acquired in fields that extended over a range 16 to 34 cylinder-diameters downstream of spanwise arrays of cylinders with a spacing of four and eight cylinder diameters (0.2δ and 0.4δ). The cylinder array with 4D spacing yielded significant wake interactions: the streamwise velocity deficit was greater at the mid-spacing than directly behind a cylinder; the distinction between the downwash regions (behind a cylinder) and the upwash regions (at the mid-spacing) diminishes with increasing downstream distance; and the rms velocity in all components is highest at the half-cylinder-height. These effects occur to a much lesser degree in the case of the array with 8D spacing. Details on parametric effects as well as the instantaneous three-dimensional structure will be provided in the talk.

  18. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU


    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  19. Microanalysis of deposited layers in the inner divertor of JET with ITER-like wall

    Directory of Open Access Journals (Sweden)

    Y. Zhou


    Full Text Available In JET with ITER-like wall, beryllium eroded in the main chamber is transported to the divertor and deposited mainly at the horizontal surfaces of tiles 1 and 0 (high field gap closure, HFGC. These surfaces are tungsten coated carbon fibre composite (CFC. Surface sampleswere collected following the plasma operations in 2011–2012 and 2013–2014 respectively. The surfaces, as well as polished cross sections of the deposited layers at the surfaces have been studied with micro ion beam analysis methods (µ-IBA.Deposition of Beand other impurities, and retention of D is microscopically inhomogeneous. Impurities and trapped deuterium accumulate preferentially in cracks, pits and depressed regions, and at the sides of large pits in the substrate (e.g. arc tracks where the W coating has been removed. With careful overlaying of µ-NRA elemental maps with optical microscopy images, it is possible to separate surface roughness effects from depth profiles at microscopically flat surface regions.

  20. Comparing Two Implementations of a Micromixing Model. Part I: Wall Shear-Layer Flow (United States)

    Postma, John V.; Wilson, John D.; Yee, Eugene


    A Lagrangian stochastic (LS) micromixing model is used for estimating concentration fluctuations in plumes of a passive, non-reactive tracer dispersing from elevated and ground-level compact sources into a neutral wall shear-layer flow. SPMMM (for sequential particle micromixing model) implements the familiar IECM (interaction by exchange with the conditional mean) micromixing scheme. The parametrization of the scalar micromixing time scale is identical to that proposed in a previously reported LS-IECM model (Cassiani et al., Atmos Environ 39:1457-1469, 2005a). However, while SPMMM is mathematically equivalent to the previously reported model, it differs in its numerical implementation: SPMMM releases N independent particles sequentially, whereas the previously reported model releases N independent particles simultaneously. In both implementations, the trajectories of the N particles are governed by single-point velocity statistics. The sequential particle implementation is computationally efficient, but cannot be applied to the case of reacting species. Results from both implementations are compared to experimental wind-tunnel dispersion data and to each other.

  1. Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer (United States)

    Diaz-Daniel, Carlos; Laizet, Sylvain; Vassilicos, J. Christos


    The present work investigates numerically the statistics of the wall shear stress fluctuations in a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the near-wall region. The flow data are obtained from a Direct Numerical Simulation (DNS) of a zero pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lamballais, "High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy," J. Comput. Phys. 228(16), 5989 (2009)]. The maximum Reynolds number of the simulation is R e𝜃≈2000 , based on the free-stream velocity and the momentum thickness of the boundary layer. The simulation data suggest that the root-mean-squared fluctuations of the streamwise and spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds number, consistent with the empirical correlation of Örlü and Schlatter [R. Örlü and P. Schlatter, "On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows," Phys. Fluids 23, 021704 (2011)]. These functional dependencies can be used to estimate the Reynolds number dependence of the wall turbulence dissipation rate in good agreement with reference DNS data. Our results suggest that the rare negative events of τx can be associated with the extreme values of τz and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise vortices. We also develop a theoretical model, based on a generalisation of the Townsend-Perry hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress fluctuations and the second order structure function of fluctuating velocities at a distance y from the wall. This model suggests that the wall shear stress fluctuations may induce a higher slope in the turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry attached

  2. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif


    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  3. Validation of the k- ω turbulence model for the thermal boundary layer profile of effusive cooled walls (United States)

    Hink, R.


    The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.

  4. Implementation of a correction factor for the Pohlhausen laminar boundary layer applied on the CEVA curved wall jet model

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN


    Full Text Available Curved wall jets have many technical applications, ranging from aeronautical circulation controlled wings to micro-fluidics and cryogenics. This paper addresses the issue of correctly estimating the boundary layer separation for laminar curved wall jets. For this, the Pohlhausen model was used in conjunction with the CEVA wall jet model with a semi-empirical modification which increases the accuracy for very thin jets. The method is therefore a mix of analytical equations with curve fitted experimental data in order to produce a simple yet effective way of estimating the boundary layer velocity profile along the curved wall. In order to cross-check the results, Newman’s empirical equation – which only provides a separation location but no information regarding the velocity profile - for boundary layer separation was used with good results. The hereby model could be used as a pre-design tool for rapid assessment of aeronautical high-lift applications such as Upper Surface Blown (USB or entrainment wings.

  5. Collapsible Cryogenic Storage Vessel Project (United States)

    Fleming, David C.


    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  6. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.


    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  7. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  8. Drag Reduction for Turbulent Boundary Layer Flows Using an Oscillating Wall

    National Research Council Canada - National Science Library

    Bogard, David


    This research program used experimental measurements and computational simulations to study the drag reduction, and the resulting effects on turbulence structure, for a turbulent wall flow subjected...

  9. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)


    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  10. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding


    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  11. Preparation of porous solids composed of layered niobate walls from colloidal mixtures of niobate nanosheets and polystyrene spheres. (United States)

    Miyamoto, Nobuyoshi; Kuroda, Kazuyuki


    Macroporous solids with crystalline layered walls were fabricated from colloidal mixtures of size-controlled niobate nanosheets and polystyrene spheres. The macroporous solids, obtained after burning off the spheres, were characterized by scanning electron microscopy and X-ray diffraction. The obtained structures strongly depended on the lateral dimension L of the nanosheets used. When small nanosheets (L=100 nm) were used, partly ordered macroporous solids with interconnected pores were obtained, whereas sponge-like random macroporous structures were obtained with larger nanosheets (L=190 and 270 nm). Peapod-like hollow structures were obtained when we used small (L=190 nm) and very large (L=3 microm) nanosheets at the same time. The microstructure of the pore walls was controllable by changing the calcination conditions. The walls were composed of propylammonium/K(4)Nb(6)O(17) intercalation compound which has a layered structure with exchangeable cations in the interlayer space, stable up to 350 degrees C for 6 h on calcination. The walls were converted to crystalline K(8)Nb(18)O(49) after calcination at 500 degrees C for 6 h.

  12. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary. (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan


    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  13. Drag Reduction of a Turbulent Boundary Layer over an Oscillating Wall and Its Variation with Reynolds Number

    Directory of Open Access Journals (Sweden)

    Martin Skote


    Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.

  14. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys. (United States)

    Sopha, Hanna; Pohl, Darius; Damm, Christine; Hromadko, Ludek; Rellinghaus, Bernd; Gebert, Annett; Macak, Jan M


    In this work, we report for the first time on the use of melt spun glass-forming alloys - Ti75Zr10Si15 (TZS) and Ti60Zr10Si15Nb15 (TZSN) - as substrates for the growth of anodic oxide nanotube layers. Upon their anodization in ethylene glycol based electrolytes, highly ordered nanotube layers were achieved. In comparison to TiO2 nanotube layers grown on Ti foils, under the same conditions for reference, smaller diameter nanotubes (~116nm for TZS and ~90nm for TZSN) and shorter nanotubes (~11.5μm and ~6.5μm for TZS and TZSN, respectively) were obtained for both amorphous alloys. Furthermore, TEM and STEM studies, coupled with EDX analysis, revealed a double-wall structure of the as-grown amorphous oxide nanotubes with Ti species being enriched in the inner wall, and Si species in the outer wall, whereby Zr and Nb species were homogeneously distributed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Huber, V., E-mail: [Forschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich (Germany); Huber, A.; Mertens, Ph.; Sergienko, G. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Price, M.; Silburn, S.; Zastrow, K.-D. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Drewelow, P. [MPI für Plasmaphysik, Greifswald (Germany); Wynn, A. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)


    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  16. {sup 18}F-fluoroethylcholine uptake in arterial vessel walls and cardiovascular risk factors. Correlation in a PET-CT study

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan; Rominger, A.; Cumming, P.; Bartenstein, P.; Hacker, M. [Technische Univ. Muenchen (TUM) (Germany). Dept. of Nuclear Medicine; Saam, T.; Nikolaou, K.; Reiser, M.F. [Univ. Muenchen (Germany). Inst. of Clinical Radiology; Wolpers, S. [Technische Univ. Muenchen (TUM) (Germany). Dept. of Nuclear Medicine; Univ. Muenchen (Germany). Inst. of Clinical Radiology


    Fluorine-labelled choline derivatives were recently suggested as agents for visualizing vulnerable atherosclerotic plaques. We therefore aimed to evaluate the association between {sup 18}F-fluorethylcholine (FEC) uptake in the wall of large arteries, where calcification was also measured, with the presence of cardiovascular risk factors and occurrence of prior cardiovascular events. Detailed clinical information, including common cardiovascular risk factors, was obtained retrospectively in 60 prostate cancer patients examined with whole-body FEC PET-CT. In each patient, we calculated the mean blood pool-corrected SUV, as well as the mean target-to-background ratio (TBR), in addition to the sum of calcified plaques (CP{sub sum}) from six major vessels: ascending and descending aorta, aortic arch, abdominal aorta, and both iliac arteries. As reported previously, the CP{sub sum} correlated significantly with cardiovascular risk factors, in contrast to mean SUV or TBR scores, which did not show any significance with the presence of cardiovascular risk factors. There was no correlation between CP{sub sum}, mean TBR or SUV, nor was there any significant association of CP{sub sum}, mean TBR or SUV with the prior occurrence of cardio- or cerebrovascular events. Contrary to a recent report, we found in our rather large cohort of elderly prostate cancer patients no significant association between FEC uptake in large vessels and atherosclerotic plaque burden, or the presence of cardiovascular risk factors. In line with prior reports on structural changes in vessels, increased calcified atherosclerotic plaque burden was strongly associated with the occurrence of common cardiovascular risk factors. (orig.)

  17. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia


    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  18. Enhanced luminance of MEH-PPV based PLEDs using single walled carbon nanotube composite as an electron transporting layer

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Inderpreet, E-mail: [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Madhwal, Devinder; Verma, A.; Kumar, A.; Rait, S. [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Kaur, I.; Bharadwaj, L.M. [Central Scientific Instruments Organization, Sector-30, Chandigarh (India); Bhatia, C.S. [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Bhatnagar, P.K.; Mathur, P.C. [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)


    An efficient electron transporting layer (ETL) based on single walled carbon nanotube (SWCNT) composites has been developed for poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) based orange polymer light emitting diodes (PLEDs) and its effect on the performance of PLEDs has been examined. It is observed that with increase in SWCNT concentration, in ETL, the luminance and luminous efficiency of the PLEDs increase (about 5 times increase in luminance is observed at 5% w/w SWCNT concentration). The SWCNTs present in the MEH-PPV ETL boost the mobility of electrons injected from the cathode towards the emissive layer by establishing highly conducting percolation paths. This balances the concentration of holes and electrons in the emissive layer, which leads to enhanced emission from the PLEDs.

  19. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    Directory of Open Access Journals (Sweden)

    Amir Reza Sadrolhosseini

    Full Text Available Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg, lead (Pb, and iron (Fe ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  20. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique. (United States)

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir


    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  1. Whole-brain vessel wall MRI: A parameter tune-up solution to improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo. (United States)

    Yang, Qi; Deng, Zixin; Bi, Xiaoming; Song, Shlee S; Schlick, Konrad H; Gonzalez, Nestor R; Li, Debiao; Fan, Zhaoyang


    To propose and evaluate a parameter tune-up solution to expedite a three-dimensional (3D) variable-flip-angle turbo spin-echo (TSE) sequence for whole-brain intracranial vessel wall (IVW) imaging. Elliptical k-space sampling and prolonged echo train length (ETL), were used to expedite a 3D variable-flip-angle TSE-based sequence. To compensate for the potential loss in vessel wall signal, optimal combination of prescribed T 2 and ETL was experimentally investigated on 22 healthy volunteers at 3 Tesla. The optimized protocol (7-8 min) was then compared with a previous protocol (reference protocol, 11-12 min) in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and wall delineation quality on a 4-point scale (0:poor; 3:excellent) in 10 healthy volunteers. A pilot study of five patients was performed and lesion delineation score was used to demonstrate the diagnostic quality. A protocol with ETL = 52 and prescribed T 2  = 170 ms was deemed an optimized one, which, compared with the reference protocol, provided significantly improved wall SNR (12.0 ± 1.3 versus 10.0 ± 1.1; P = 0.002), wall-lumen CNR (9.7 ± 1.2 versus 8.0 ± 0.9; P = 0.002), wall-CSF CNR (2.8 ± 1.0 versus 1.7 ± 1.0; P = 0.026), similar vessel wall sharpness at both inner (1.59 ± 0.18 versus 1.58 ± 0.14, P = 0.87) and outer (1.71 ± 0.25 versus 1.83 ± 0.30; P = 0.18) boundaries, and comparable vessel wall delineation score for individual segments (1.95-3; P > 0.06). In all patients, atherosclerotic plaques (10) or wall dissection (5) were identified with a delineation score of 3 or 2. A parameter tune-up solution can accelerate 3D variable-flip-angle TSE acquisitions, particularly allowed for expedited whole-brain IVW imaging with preserved wall delineation quality. 2. Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:751-757. © 2017 International Society for Magnetic

  2. Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer (United States)

    Mclean, J. D.; Randall, J. L.


    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.

  3. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer (United States)

    Celic, Alan; Zilliac, Gregory G.


    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  4. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers (United States)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.


    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  5. The influence of manufacturing factors on the formation of layer connections in multilayer exterior walls

    National Research Council Canada - National Science Library

    Korol', E. A; Pugach, E. M; Khar'kin, Y. A


    .... It is necessary to provide durable monolithic connection of concrete layers in the process of manufacturing this structure in order to decrease the percentage of web reinforcement and increase...

  6. Selective inhibition of neutrophil activation by the subendothelial extracellular matrix: possible role in protection of the vessel wall during diapedesis. (United States)

    Matzner, Y; Vlodavsky, I; Michaeli, R I; Eldor, A


    Mobilization of circulating neutrophils toward an inflamed area involves adherence of the cells to the vascular endothelium and subsequent penetration through the endothelial cell layer without causing significant damage. To investigate the nature of a possible protective mechanism, granulocytes were incubated with the extracellular matrix (ECM) produced by cultured endothelial cells and tested for release of enzymes, chemoattractants, and free oxygen radicals. In the absence of exogenously added stimuli, the neutrophils adhered to the ECM but there was no detectable release of lysozyme, chemotactic activity, or production of O2-. In contrast, the cells readily released a heparan sulfate-degrading endoglycosidase (heparanase) to an extent comparable with that released in contact with polystyrene surfaces. Neutrophils treated with the calcium ionophore A23187 or with the peptide FMLP produced O2- to a much lesser degree when incubated in contact with ECM-coated surfaces than did those incubated in contact with uncoated polystyrene culture dishes. The ECM itself was devoid of superoxide dismutase activity. Stimulation with opsonized zymosan was not inhibited by the ECM. Experiments with isolated constituents of the ECM revealed that fibronectin but not collagen type IV or laminin could partially inhibit O2- production by Ca2+ ionophore-stimulated neutrophils. Treatment of the ECM with proteolytic enzymes, but not with heparanase, abolished its inhibitory effect on neutrophil activation. These results indicate that the subendothelial basement membrane has the capacity to inhibit release of potentially noxious agents excluding heparanase, suggesting a preferential involvement of this enzyme in neutrophil diapedesis.

  7. Electron scattering due to dislocation wall strain field in GaN layers


    Krasavin, S. E.


    The effect of edge-type dislocation wall strain field on the Hall mobility in n-type epitaxial GaN was theoretically investigated through deformation potential within the relaxation time approach. It was found that this channel of scattering can play a considerable role in the low-temperature transport at the certain set of the model parameters. The low temperature experimental data were fitted by including this mechanism of scattering along with ionized impurities and charge dislocation ones.

  8. Species-specific cell wall binding affinity of the S-layer proteins of mosquitocidal bacterium Bacillus sphaericus C3-41. (United States)

    Li, Jia; Hu, Xiaomin; Yan, Jianpin; Yuan, Zhiming


    The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH(152-210)) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the K(D) (equilibrium dissociation constant) values of rSLH(152-210) and rSLH(31-210) with purified cell wall sacculi were 1.11 x 10(-6) M and 1.40 x 10(-6) M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.

  9. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)


    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  10. Analytical Solution for Interference Fit for Multi-Layer Thick-Walled Cylinders and the Application in Crankshaft Bearing Design

    Directory of Open Access Journals (Sweden)

    Jun Qiu


    Full Text Available Interference fit is an important contact mode used for torque transmission existing widely in engineering design. To prevent trackslip, a certain magnitude of interference has to be ensured; meanwhile, the interference needs to be controlled to avoid failure of the mechanical components caused by high assembly stress. The finite element method (FEM can be used to analyze the stress, while the computational cost of FEM involving nonlinear contact algorithm is relatively high, and likely to come across low precision and convergence problems. Therefore, a rapid and accurate analytical method for estimation is of vital need, especially for the initial design stage when the parameters vary in a large range. In this study, an analytical method to calculate the contact pressure and stress between multi-layer thick-walled cylinders (MLTWC with multi-contact pairs and temperature-raising effect is proposed, and evaluated by FEM. The analytical solution of the interference for tri-layer thick-walled cylinders is applied to the design of engine crankshaft bearing. The results indicate that the analytical method presented in this study can reduce complexity of MLTWC problems and improve the computational efficiency. It is well suited to be used for the calculation model of parameter optimization in early design.

  11. Statistical structure and scaling behaviors of spanwise vorticity in smooth-wall turbulent boundary layers (United States)

    Klewicki, Joseph; Morrill-Winter, Caleb; Marusic, Ivan


    Within the canonical turbulent boundary layer the spanwise component of vorticity, ωz, is the only component that has a non-negligible mean value. For this and other reasons, the motions bearing ωz play a central role in boundary layer dynamics. A compact four element (`Foss-style') hotwire probe was used to acquire well-resolved ωz fluctuation time series over an unprecedented Reynolds number range, 1 , 500 behaviors of the statistical moments and frequency spectra of the ωz fluctuations, and further explores the self-similarity between the mean and rms profiles seen at low Reynolds number. The observed ωz behaviors are discussed relative to mean dynamical structure and the asymptotic properties of the boundary layer vorticity field. The support of the Australian Research Council and the National Science Foundation are gratefully acknowledged.

  12. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves. (United States)

    Malenovská, Hana


    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall

    Directory of Open Access Journals (Sweden)

    Teresa R. McCurdy


    Full Text Available Alpha-1 acid glycoprotein (AGP is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP, while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5Q eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.

  14. Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers (United States)


    l5Nl60 and 5N’ O titration gases to isolate surface-produced NO from all other possible sources. These experiments independently confirm the surface...For O-atom LIF, a Lambda-Physik ENG 103 XeCl Excimer laser was used to pump a Lambda-Physik FL 3002 dye laser filled with Coumarin 47 laser dye...system once isolated from the pump did slowly rise either from out-gassing of the system walls or from some undiscovered leak. In a separate experiment

  15. The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers, (United States)


    34match point") and then extrap - olating to x = 0, the virtual origin of the hydrodynamic flow field. The values of L for the artificially thickened...boundary layers developing over rough sur- faces is important for the design of many engineering components, including reentry vehicles, nuclear reactors

  16. Resistive-Wall Impedance of an Infinitely long Multi-Layer Cylindrical Beam Pipe

    CERN Document Server

    Métral, E; Zotter, B


    The resistive-wall impedance of cylindrical vacuum chambers was first calculated more than forty years ago under some approximations. Since then many papers have been published to extend its range of validity. In the last few years, the interest in this subject has again been revived for the LHC graphite collimators, for which a new physical regime is predicted. The first unstable betatron line in the LHC is at 8 kHz, where the skin depth for graphite is 1.8 cm, which is smaller than the collimator thickness of 2.5 cm. Hence one could think that the resistive thick-wall formula would be about right. It is found that it is not, and that the resistive impedance is about two orders of magnitude lower at this frequency, which is explained by the fact that the skin depth is much larger than the beam pipe radius. Starting from the Maxwell equations and using field matching, a consistent derivation of both longitudinal and transverse resistivewall impedances of an infinitely long cylindrical beam pipe is presented i...

  17. [High-resolution imaging of the layers of the gastrointestinal wall of pig and human specimens using an endoluminal MR receiver coil: correlation to histology]. (United States)

    Kramer, S; Palmowski, M; Macher-Göppinger, S; Müller, M; Volke, F; Düx, M; Kauczor, H-U; Grenacher, L


    High-resolution MR imaging of the layers of the gastrointestinal wall to provide a foundation for tumor staging based on morphological criteria. Over a period of 12 months, miscellaneous parts of the gastrointestinal tract of 15 human specimens and 30 porcine specimens were scanned using a 1.5 Tesla clinical MRI scanner combined with an endoluminal receiver coil. The sequences used were T 1-weighted opposed-phase, T 2-weighted turbo spin echo with fat saturation and fast T 2-weighted inversion recovery. The number of differentiable layers, their width and the signal intensity were documented. Then, the results were compared with histological specimens in order to link the imaged wall layers to the anatomical layers. Spearman's Rank Correlation was used to determine the soundness of the link between the images and their related histology. For both human and animal specimens, the MRI scanning produced 3 to 5, maximum 6 (pig), differentiable layers. The mucosa, submucosa and muscularis could be differentiated with a hyperintense, hypointense and intermediary signal, respectively. The subserosal layer displayed a hypointense signal. High-resolution MRI is able to produce differentiable images of the anatomical layers of the gastrointestinal wall in both humans and pigs. Accordingly, it is possible to use MR imaging to diagnose the extent of local tumor infiltration of the gastrointestinal wall.

  18. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    CERN Document Server

    Halpern, Federico D


    The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.

  19. Vibrational characteristics of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions using finite element modeling (United States)

    Rouhi, S.; Ansari, R.; Shahnazari, A.


    This paper aims to investigate the vibrational properties of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions. To this end, the finite element (FE) (approach is employed.Considering the similarity of molecular mechanics and structural mechanics, the mechanical properties of the utilized FE approach can be derived. The junctions with nanotubes at one side and both sides of the nanosheet are considered. It is shown that the frequencies of both sides located nanotubes are always larger than those of one side located nanotube. Moreover, the influences of geometrical parameters of nanosheet and nanotube on the frequencies of boron nitride nanosheet/nanotube junctions are studied. It is observed that the vibrational behavior of the considered junctions has an inverse relation to the nanotube and nanosheet dimensions.

  20. Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV (United States)

    Blackman, Karin; Perret, Laurent; Calmet, Isabelle; Rivet, Cédric


    In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density λp = 25% is studied within the wind tunnel using Particle Image Velocimetry (PIV) to investigate the Turbulent Kinetic Energy (TKE) budget. To access the full TKE budget, an estimation of the dissipation (ɛ) using both the transport equation of the resolved-scale kinetic energy and Large-Eddy (LE) PIV models based on the use of a subgrid-scale model following the methodology used in large-eddy simulations is employed. A low-pass filter, larger than the Taylor microscale, is applied to the data prior to the computation of the velocity gradients ensuring a clear cutoff in the inertial range where the models are valid. The presence of the cube roughness elements has a significant influence on the TKE budget due to the region of strong shear that develops over the cubes. The shear layer is shown to produce and dissipate energy, as well as transport energy through advection, turbulent transport, and pressure transport. The recirculation region that forms through the interaction of the shear layer and the canopy layer, which is the region below the height of the cube roughness, creates rapid longitudinal evolution of the mean flow thereby inducing weak production. Finally, through stochastic estimation of the conditional average, it is shown that localized regions of backscatter (energy transfer from unresolved to resolved scales) and forward scatter (energy transfer from resolved to unresolved scales) occur as a result of coherent vortical structures.

  1. Big bubble deep anterior lamellar keratoplasty: the collagen layer in the wall of the big bubble is unique. (United States)

    Dua, Harminder S; Mastropasqua, Leonardo; Faraj, Lana; Nubile, Mario; Elalfy, Mohamed S; Lanzini, Manuela; Calienno, Roberta; Said, Dalia G


    In big bubble (BB), deep anterior lamellar keratoplasty intracorneal injection of air separates Descemet's membrane (DM) and the pre-Descemet's layer (Dua's layer [DL]) to create a type 1 BB. We tested the hypothesis that air injection after excision or ablation of DL will fail to produce a BB. Nine human sclero-corneal discs were used. Three served as controls. In three, a type 1 BB was created, the bubble wall was excised and more air injected in an attempt to create another BB. In three samples, the DM was removed and 22μ of posterior cornea were ablated by phototherapeutic keratectomy (PTK). Air was injected to induce formation of a BB. Tissue from these experiments was subjected to light and electron microscopy. In all three control eyes, a type 1 BB (DL + DM) was obtained. Air injection after excision of the type 1 BB wall in three samples failed to produce another BB. Following PTK of DL, injection of air failed to create a BB in all three samples. Multiple points of air leak from the deep stroma were observed in all six samples. Light and electron microscopy showed a clear distinction between the ablated and non-ablated areas of cornea. This study supports the hypothesis that a BB cannot be created once the DL is excised or ablated. This adds to evidence that DL is unique. It also demonstrates that DL is not a random separation of deep stroma of the cornea. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Analisa Pergeseran Magnetic Domain Wall Pada Lapisan Tipis Free Layer CoFeB Untuk Sistem Spin-Valve Tunneling Magneto-Resistance (TMR) Sensor


    Setyawan, Galih; Suharyadi, Edi


    Telah dilakukan analisa pergeseran magnetic domain wall pada lapisan tipis free layer CoFeB untuk sistem spin-valve Tunneling Magneto-Resistance (TMR). Analisa telah dilakukan dengan menggunakan software Object Oriented Micromagnetic Framework (OOMMF) berdasarkan persamaan Landau-Lifshitz Gilbert (LLG). Analisa pergeseran magnetic domain wall pada CoFeB yang mempunyai ukuran luas 120x100 nm2 dengan variasi ketebalan 1 dan 4 nm. Dari simulasi didapatkan hasil analisa pergeseran magnetic domain...

  3. Analisa Pergeseran Magnetic Domain Wall Pada Lapisan Tipis Free Layer CoFeB Untuk Sistem Spin-Valve Tunneling Magneto-Resistance (TMR) Sensor


    Setyawan, Galih; Suharyadi, Edi


    Telah dilakukan analisa pergeseran magnetic domain wall pada lapisan tipis free layer CoFeB untuk sistem spin-valve Tunneling Magneto-Resistance (TMR). Analisa telah dilakukan dengan menggunakan software Object Oriented Micromagnetic Framework (OOMMF) berdasarkan persamaan Landau-Lifshitz Gilbert (LLG). Analisa pergeseran magnetic domain wall pada CoFeB yang mempunyai ukuran luas 120x100 nm2 dengan variasi ketebalan 1 dan 4 nm. Dari simulasi didapatkan hasil analisa pergeseran magnetic domain...

  4. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor (United States)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo


    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  5. Mass transfer through laminar boundary layer in 2-d microchannels with nonuniform cross section: the effect of wall curvature (United States)

    Pedacchia, Augusta; Adrover, Alessandra


    We provide an analytical solution for the combined diffusive and convective 2-d mass transport from a surface film (of arbitrary shape at a given uniform concentration) to a pure solvent flowing in creeping flow conditions into a microchannel, delimited by a flat no-slip surface and by the releasing film itself. Such a problem arises in the study of swelling and dissolution of polimeric thin films under the action of a solvent tangential flow simulating the oral thin film dissolution for drug relase towards the buccal mucosa or oral cavity. We present a similarity solution for laminar forced convection mass (or heat) transfer that generalizes the classical boundary layer solution of the Graetz-Nusselt problem (valid for straight channels or pipes) to a solvent flowing in creeping flow conditions into a 2-d channel with cross-section continuously varying along the axial coordinate x. Close to the releasing boundary, parametrized by a curvilinear abscissa s, both tangential and normal velocity components play a role and their scaling behavior, as a function of wall distance r, should be taken into account in order to have an accurate description of the concentration profile in the boundary layer and of the dependence of the Sherwood number on the curvilinear abscissa s.

  6. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention (United States)

    Torres, D.; Pinilla, J. L.; Suelves, I.


    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  7. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael


    .6-83.5 years) (best-corrected visual acuity (BCVA) 8-94 Early Treatment Diabetic Retinopathy Study (ETDRS) letters) and 55 mutation-free first-degree healthy relatives (age 8.9-68.7 years, BCVA 80-99). Analysis of fundus photographs provided integrated magnification-corrected measures of retinal vessel...... diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...

  8. Vessel Operating Units (Vessels) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  9. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow (United States)

    Evans, Neal D.; Capone, Dean E.; Bonness, William K.


    The vibration response of a thin cylindrical shell excited by fully developed turbulent pipe flow is measured and used to extract the fluctuating pressure levels generated by the boundary layer. Parameters used to extract the turbulent fluctuating pressure levels are determined via experimental modal analyses of the water-filled pipe and measured vibration levels from flow through the pipe at 5.8 m/s. Measurements are reported for hydraulically smooth and fully rough surface conditions. Smooth wall-pressure levels are compared to the turbulent boundary layer pressure model of Chase [The character of the turbulent wall pressure at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration112 (1) (1987) 125-147] and the measurements of Bonness et al. [Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. Journal of Sound and Vibration329 (2010) 4166-4180]. Results for the smooth pipe match the predicted smooth wall-pressure spectrum and correspond to a normalized low wavenumber-white level which is -41 dB below the maximum level at the convective peak. Pressure levels from the fully rough condition display a low-wavenumber-white level which is 28 dB below the convective peak level. This suggests an increase of 13 dB in low-wavenumber wall pressure for the uniformly distributed roughness elements in this study over a hydraulically smooth surface.

  10. Induction of embryogenesis in Brassica napus microspores produces a callosic subintinal layer and abnormal cell walls with altered levels of callose and cellulose

    Directory of Open Access Journals (Sweden)

    Veronica eParra-Vega


    Full Text Available The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca2+ levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer, and of irregular, incomplete cell walls. In these events, Ca2+ may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca2+ and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis.

  11. Reduced metabolic function and structural alterations in inherited retinal dystrophies: investigating the effect of peripapillary vessel oxygen saturation and vascular diameter on the retinal nerve fibre layer thickness. (United States)

    Bojinova, Rossiana I; Türksever, Cengiz; Schötzau, Andreas; Valmaggia, Christophe; Schorderet, Daniel F; Todorova, Margarita G


    To evaluate the relationship between the peripapillary metabolic alterations [retinal vessel Oximetry (RO)] and the structural findings [retinal vessel diameter and retinal nerve fibre layer thickness (RNFL)] in patients with inherited retinal dystrophies (IRD). Patients with IRD [24 patients with rod-cone dystrophy (RCD), 15 patients with cone-rod dystrophy, 13 patients with inherited maculopathy] and 18 age-matched controls, who underwent RO imaging and spectral domain optical coherence tomography, were included. The average and quadrant oxygen saturation in all four major peripapillary retinal arterioles (A-SO2 ) and venules (V-SO2 ) were measured, and their difference (A-V SO2 ) was calculated. The corresponding retinal vessel diameter of these arterioles (D-A) and venules (D-V) was measured. The data were compared to the peripapillary RNFL thickness within the IRD subgroups and to the data obtained in the controls. In general, patients with IRD had higher average V-SO2 values when compared to controls (p ≤ 0.029). Rod-cone dystrophy (RCD) patients differed from controls, but also from patients with other IRDs, when the average and quadrant oxygen saturation values (A-SO2 and V-SO2 ) were evaluated (p ≤ 0.026). Within the RCD group, the correlations of RNFL thickness to V-SO2 , A-V SO2 , D-A and D-V were significant (p ≤ 0.030), thus indicating a different relationship between the RNFL thickness and the examined parameters, when compared to the other groups. It becomes evident from our combined metabolic-structural approach that a prediction model, to identify which individual is at risk of developing a photoreceptor degeneration of RCD type, can be proposed. It will take into account the peripapillary retinal oxygen saturation, the retinal vessel diameter and the RNFL thickness values. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Gravity-driven creeping flow of two adjacent layers through a channel and down a plane wall (United States)

    Pozrikidis, C.


    We study the stability of the interface between (a) two adjacent viscous layers flowing due to gravity through an inclined or vertical channel that is confined between two parallel plane walls, and (b) two superimposed liquid films flowing down an inclined or vertical plane wall, in the limit of Stokes flow. In the case of channel flow, linear stability analysis predicts that, when the fluids are stably stratified, the flow is neutrally stable when the surface tension vanishes and the channel is vertical, and stable otherwise. This behaviour contrasts with that of the gravity-driven flow of two superimposed films flowing down an inclined plane, where an instability has been identified when the viscosity of the fluid next to the plane is less than that of the top fluid, even in the absence of fluid inertia. We investigate the nonlinear stages of the motion subject to finite-amplitude two-dimensional perturbations by numerical simulations based on boundary-integral methods. In both cases of channel and film flow, the mathematical formulation results in integral equations for the unknown interface and free-surface velocity. The properties of the integral equation for multi-film flow are investigated with reference to the feasibility of computing a solution by the method of successive substitutions, and a deflation strategy that allows an iterative procedure is developed. In the case of channel flow, the numerical simulations show that disturbances of sufficiently large amplitude may cause permanent deformation in which the interface folds or develops elongated fingers. The ratio of the viscosities and densities of the two fluids plays an important role in determining the morphology of the emerging interfacial patterns. Comparing the numerical results with the predictions of a model based on the lubrication approximation shows that the simplified approach can only describe a limited range of motions. In the case of film flow down an inclined plane, we develop a method

  13. The changes of individual carotid artery wall layer by aging and carotid intima-media thickness value for high risk. (United States)

    Bae, Jang-Ho; Kim, Wuon-Shik; Lee, Moo-Sik; Kim, Kee-Sik; Park, Jeong Bae; Youn, Ho-Joong; Park, Chang-Gyu; Hong, Kyung-Soon; Kim, Jang-Young; Jeong, Jin-Won; Park, Jong Chun; Lim, Do-Sun; Kim, Moo Hyun; Woo, Jeong Taek


    It is still unclear which layer (intima or media) is mainly involved in increased carotid intima-media thickness (CIMT) by aging and also unclear regarding CIMT value suggesting high cardiovascular risk, although 75th percentile value of CIMT is known as a high risk in asymptomatic adults. We sought to find the changes of carotid intima thickness (CIT) and carotid media thickness (CMT) by aging and the 75th percentile value of CIMT in asymptomatic Korean adults. This is an observational cohort study. Carotid ultrasound findings (n=2204 from 12 hospitals) were prospectively collected. The carotid images were sent to Korea Research Institute of Standards and Science for analysis using specialized software which can measure intima and media wall also. Mean age was 58.1±13.5 years old (52% of men). Pearson's correlation coefficient between age and right CIMT (r=.489, Pvalue was 0.778 and 0.771 mm, respectively. Mean right CIT was 0.311±0.069 and 0.303±0.064 mm (P=.009), and mean right CMT was 0.391±0.124 and 0.388±0.131 mm (P=.694) in male and female, respectively. Left carotid ultrasound findings showed similar to the right one. An increased CIMT by aging was mainly due to increased CMT rather than CIT in asymptomatic adults. The 75th percentile values of right CIMT were 0.778 and 0.771 mm in asymptomatic Korean male and female adults, respectively. © 2016 John Wiley & Sons Ltd.

  14. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement (United States)

    Schonberg, William P.


    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  15. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Directory of Open Access Journals (Sweden)

    Li C


    Full Text Available Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs is achieved using atomic layer deposition (ALD. Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  16. Analysis of a Floodplain I-Wall Embedded in Horizontally Stratified Soil Layers During Flood Events Using Corps I-Wall Software Version 1.0 (United States)


    as shown in Figure 3.67. In the header of the file, after numbers that aid the reading of the data, is the information for the seepage analysis ...node ERDC/ITL TR-16-3 282 mod mode, unit Modes of operation and unit system mode =1, Design mode =2, Analysis mode unit =1, English ...ER D C/ IT L TR -1 6- 3 Flood and Coastal Storm Damage Reduction Program Analysis of a Floodplain I-Wall Embedded in Horizontally

  17. Structural and Functional Analyses of the Secondary Cell Wall Polymer of Bacillus sphaericus CCM 2177 That Serves as an S-Layer-Specific Anchor (United States)

    Ilk, Nicola; Kosma, Paul; Puchberger, Michael; Egelseer, Eva M.; Mayer, Harald F.; Sleytr, Uwe B.; Sára, Margit


    Sacculi of Bacillus sphaericus CCM 2177 contain a secondary cell wall polymer which was completely extracted with 48% hydrofluoric acid. Nuclear magnetic resonance analysis showed that the polymer is composed of repeating units, as follows: →3)-[4,6-O-(1-carboxyethylidene)]∼0.5-β-d-ManpNAc-(1→4)-β-d-GlcpNAc-(1→. The N-terminal part of the S-layer protein carrying S-layer homologous motifs recognizes this polymer as a binding site. PMID:10601228

  18. Combining retinal nerve fiber layer thickness with individual retinal blood vessel locations allows modeling of central vision loss in glaucoma (United States)

    Wang, Hui; Wang, Mengyu; Baniasadi, Neda; Jin, Qingying; Elze, Tobias


    Purpose: To assess whether modeling of central vision loss (CVL) due to glaucoma by optical coherence tomography (OCT) retinal nerve fiber (RNF) layer thickness (RNFLT) can be improved by including the location of the major inferior temporal retinal artery (ITA), a known correlate of individual RNF geometry. Methods: Pat- tern deviations of the two locations of the Humphrey 24-2 visual field (VF) known to be specifically vulnerable to glaucomatous CVL and OCT RNFLT on the corresponding circumpapillary sector around the optic nerve head within the radius of 1.73mm were retrospectively selected from 428 eyes of 428 patients of a large clinical glaucoma service. ITA was marked on the 1.73mm circle by a trained observer. Linear regression models were fitted with CVL as dependent variable and VF mean deviation (MD) plus either of (1) RNFLT, (2) ITA, and (3) their combination, respectively, as regressors. To assess CVL over all levels of glaucoma severity, the three models were compared to a null model containing only MD. A Baysian model comparison was performed with the Bayes Factor (BF) as measure of strength of evidence (BF20: strong evidence over null model). Results: Neither RNFLT (BF=0.9) nor ITA (BF=1.4) alone provided positive evidence over the null model, but their combination resulted in a model with strong evidence (BF=21.4). Conclusion: While the established circumpapillary RNFLT sector, based on population statistics, could not satisfactorily model CVL, the inclusion of a retinal parameter related to individual eye anatomy yielded a strong structure-function model.

  19. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO


    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  20. Scanning electron microscopy of the dorsal vessel of Panstrongylus megistus (Burmeister, 1835 (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Nadir Francisca Sant'Anna Nogueira


    Full Text Available In this study we analyzed the microanatomy of the dorsal vessel of the triatomine Panstrongylus megistus. The organ is a tuble anatomically divided into an anterior aorta anad a posterior heart, connected to the body wall through 8 pairs of alary muscles. The heart is divided in 3 chambers by means of 2 pairs of cardiac valves. a pair of ostia can be observed in the lateral wall of each chamber. A bundle of nerve fibers was found outside the organ, running dorsally along its major axis. A group of longitudinal muscular fibers was found in the ventral portion of the vessel. The vessel was found to be lined both internally and externally by pericardial cells covered by a thin laminar membrane. Inseide the vessel the pericardial cells were disposed in layers and on the outside they formed clusters or rows.

  1. Surgically induced changes in retinal vessel diameter, retinal nerve fiber layer thickness, and the optic disc after 23-gauge vitreoretinal surgical procedures

    Directory of Open Access Journals (Sweden)

    Seung Uk Lee


    Full Text Available AIM:To investigate the retinal vascular caliber, retinal nerve fiber layer(RNFLthickness, and optic disc changes in patients after pars plana vitrectomy and adjunctive intraoperative procedures.METHODS:We examined 40 eyes in 40 patients who had undergone unilateral pars plana vitrectomy and adjunctive intraoperative procedure at three time points:prior to surgery, and at 3mo and 6mo after the operation. The diameters of central retinal arteries and veins were measured using retinal photographs. The central retinal arteriolar equivalent(CRAEand central retinal venular equivalent(CRVEwere calculated using the revised Parr-Hubbard formula. RNFL thickness was obtained using Stratus optical coherence tomography. The cup-to-disc vertical ratio of the optic disc was evaluated using stereo optic disc photography.RESULTS:There were no significant differences between the eyes of individual patients before the operation. Cup-to-disc vertical ratios of the optic disc were significantly increased 3mo and 6mo postoperatively(PPPPPPCONCLUSION:Whereas there were no changes in RNFL thickness, vitrectomy and adjunctive intraoperative procedures induced changes in the cup-to-disc vertical ratio of the optic disc and retinal vessel diameter for at least 6mo after surgery.

  2. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism. (United States)

    Sugano, Kiyohiko


    The aqueous boundary layer (ABL) affects various aspects of oral absorption of a drug, from dissolution of the drug to the apparent K(m) value of intestinal wall metabolism and carrier mediated transport. However, the importance of ABL has often been entirely ignored in oral absorption investigation. In this minireview, the effect of ABL on oral absorption of a drug is discussed in an easy-to-understand manner. This review starts with an introduction of the boundary layer theory with many illustrations (and links to public web movies visualizing the ABL), and then discusses some specific cases of interest in pharmaceutical science, such as dissolution of floating drug particles in the USP paddle apparatus. The effect of the boundary layer on the membrane permeation is also discussed from the viewpoint of structure permeability relationship, carrier mediated transport/metabolism and estimation of the fraction of a dose absorbed for poor solubility compounds.

  3. Fluid-structure interaction analysis on the effect of vessel wall hypertrophy and stiffness on the blood flow in carotid artery bifurcation (United States)

    Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul


    The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).

  4. Introducing new physical synergism effect arise together presence of multi wall carbon nanotube and Vulcan in the micro porous layer of gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Mirzaie, R. [Shahid Rajaee Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Gharibi, H. [Tarbiat Modarres Univ., Tehran (Iran, Islamic Republic of); Javaheri, M. [Tarbiat Modarres Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Asfa, A. [Shahid Rajaee Univ., Tehran (Iran, Islamic Republic of)


    This study investigated the influence of multi-wall carbon nanotube (MWCNT) in fuel cell components. In particular, it examined how vulcanization in the microporous layer affects the performance of the gas-diffusion electrode (GDE) for the cathodic oxygen reduction reaction. Different percentages of MWCNT and Vulcan were used in the microporous layer of the GDE. A porosimeter, scanning electron microscope (SEM) and four probe conductometer was used to study the morphological and physical structure of the fabricated microporous layer. Linear sweep voltametry (LSV), electrochemical impedance spectroscopy (EIS), chronoamperometry and SEM techniques were used to study the electrochemical performance of prepared gas diffusion electrodes for oxygen reduction reaction. The results showed that the combination of MWCNT and Vulcan perturb the morphological structure in the microporous layer. The optimized value of MWCNT in the microporous layer varies with different platinum loading in the reaction layer. The optimized values were found to be 60 wt per cent, 80 wt per cent and 40 wt per cent MWCNT at 0.115 mg per cm{sup 2}, 0.5 mg per cm{sup 2} and 1 mg per cm{sup 2} Pt loading respectively.

  5. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  6. Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid. (United States)

    Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu


    Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of High-sugar and High-fat Diet on Fat Deposition and Blood Vessel Wall on Sprague Dawley Rats Liver

    Directory of Open Access Journals (Sweden)

    Vera Citra Setiawan Hoei


    Full Text Available People nowadays tend to consume more fast food and sweetened beverages. These foods usually contain high amount sugar and fat that have effects on the body including liver.This study was conducted to explore the effects of extensive intake of sugar and fat on blood glucose and  cholesterol level as well as changes in liver. Research was conducted with experimental method using 20 Sprague Dawley rats which were divided into 4 groups; 2 controls and 2 treatments. Rats were given 5 ml sugar or lard alternatively every 2 consecutive days for 1-month and 2-month respectively. Data was retrieved include blood glucose and cholesterol level, fatty liver percentage and blood vessel thickening after intervention through HE staining. The results showed that both 1-month and 2-month intervention group has significant increase in blood glucose and cholesterol level. However, the enhancement of fatty liver percentage and number of thickened blood vessels (p<0.05 were only foundsignificant (p<0.05 in 1-month intervention group.  We concluded that high intake of sugar and fat within 1-monthintervention have significant effects on the rat body including liver. Nevertheless, it was not found significant in 2-months intervention. Further studies are still needed to analyze this incongruent result.Key words: high-sugar diet, high-fat diet, fatty liver, atherosclerosis 

  8. One repeat of the cell wall binding domain is sufficient for anchoring the Lactobacillus acidophilus surface layer protein

    NARCIS (Netherlands)

    Smit, E.; Pouwels, P.H.


    The N-terminal repeat (SAC1) of the S-protein of Lactobacillus acidophilus bound efficiently and specifically to cell wall fragments (CWFs) when fused to green fluorescent protein, whereas the C-terminal repeat (SAC2) did not. Treatment of CWFs with hydrofluoric acid, but not phenol, prevented

  9. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.


    We present atomic layer deposition (ALD) as a new method for the preparation of highly dispersed Ru-decorated Pt nanoparticles for use as catalyst in direct methanol fuel cells (DMFCs). The nanoparticles were deposited onto N-doped multi-walled carbon nanotubes (MWCNTs) at 250 °C using trimethyl......(methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...

  10. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases (United States)

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong


    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  11. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    Directory of Open Access Journals (Sweden)

    Li-Chun Wang


    Full Text Available In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.

  12. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. (United States)

    Kutkut, Issa; Meens, Merlijn J; McKee, Thomas A; Bochaton-Piallat, Marie-Luce; Kwak, Brenda R


    Atherosclerosis is a chronic inflammatory disease of large- to medium-sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field. PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. Current knowledge about lymphatic vessels in the arterial wall came from studies that examined the presence and location of such vessels in human atherosclerotic plaque specimens, as well as in a variety of arteries in animal models for atherosclerosis (e.g. rabbits, dogs, rats and mice). Generally, three experimental approaches have been used to investigate the functional role of plaque-associated lymphatic vessels; experimental lymphostasis was used to investigate lymphatic drainage of the arterial wall, and more recently, studies with genetic interventions and/or surgical transplantation have been performed. Lymphatic vessels seem to be mostly present in the adventitial layer of the arterial walls of animals and humans. They are involved in reverse cholesterol transport from atherosclerotic lesions, and arteries with a dense lymphatic network seem naturally protected against atherosclerosis. Lymphangiogenesis is a process that is an important part of the inflammatory loop in atherosclerosis. However, how augmenting or impeding the distribution of lymphatic vessels impacts disease progression remains to be investigated in future studies. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Effects of Passive Porous Walls on the First Mode of Hypersonic Boundary Layers Over a Sharp Cone (United States)


    Fedorov et al. [1, 2, 3] have shown that a porous coating greatly stabilizes the second mode of the hypersonic boundary layer on sharp slender cones. The...impedance and propagation constant of an iso- lated pore, respectively. Fedorov et al. [3] give the following expressions for the porous layer...performance with regards to both linear and nonlinear stability of first mode disturbances. References [1] A. V. Fedorov , N. D. Malmuth, A. Rasheed, and


    Smith, A.E.


    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  15. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii


    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  16. Customizable engineered blood vessels using 3D printed inserts. (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T


    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Two-layer model of coronary artery vasoactivity. (United States)

    Huo, Yunlong; Zhao, Xuefeng; Cheng, Yana; Lu, Xiao; Kassab, Ghassan S


    Since vascular tone is regulated by smooth muscle cells in the media layer, a multilayer mechanical model is required for blood vessels. Here, we performed biaxial mechanical tests in the intima-media layer of right coronary artery to determine the passive and active properties in conjunction with the passive properties of adventitia for a full vessel wall model. A two-layer (intima-media and adventitia) model was developed to determine the transmural stress and stretch across the vessel wall. The mean ± SE values of the outer diameters of intima-media layers at transmural pressure of 60 mmHg in active state were 3.17 ± 0.16 and 3.07 ± 0.18 mm at axial stretch ratio of 1.2 and 1.3, respectively, which were significantly smaller than those in passive state (i.e., 3.62 ± 0.19 and 3.49 ± 0.22 mm, respectively, P opening angles in zero-stress state had values of 159 ± 21° for intima-media layers and 98 ± 15° for adventitia layers, which suggests a residual strain between the two layers. There were slightly decreased active circumferential stresses (25%) in the intima-media layer compared with those in the intact vessel. This suggests that the adventitia layer affects vascular contraction. The two-layer analysis showed that the intima-media layer bears the majority of circumferential tensions, in contrast to the adventitia layer, while contraction results in decreased stress and stretch in both layers.

  18. Fast brazing development for the joining of the beryllium armour layer for the ITER first wall panels

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, C. [AREVA NP Technical centre, Porte Magenta, 71200 Le Creusot (France)], E-mail:; Boireau, B. [AREVA NP Technical centre, Porte Magenta, 71200 Le Creusot (France); Lorenzetto, P. [EFDA, Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Macel, D. [Institut de soudure, 4, boulevard Henri-Becquerel, 57970 Yutz (France)


    This paper describes the development of a flat pancake inductor for brazing beryllium tiles on a primary first wall (PFW) panel heat sink as well as the development of the brazing parameters. Two main variables were tested: brazing filler metal on one hand and PVD coating material on beryllium tiles on the other hand. The nickel coating and silver base brazing filler metal was the best couple and obtained shear values higher than 100 MPa. The inductor design and the choice of materials were applied to the brazing of a mock-up for high heat flux testing. Some tiles sustained 1000 cycles at 1.5 MW.

  19. Studies on the air distribution and thermal performance of the air circulation wall. Part 4. Study on the thermal emissivity of the air circulation layer`s surfaces; Gaidannetsu tsuki koho ni okeru tsuki sonai no netsu tsuki tokusei ni kansuru kenkyu. 4. Tsuki sonai hyomen no hosha tokusei ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kamimori, K.; Sakai, K.; Ishihara, O. [Kumamoto University, Kumamoto (Japan)


    The thermal and air distribution characteristics of the air circulation wall in a heat-insulated system were grasped using an experimental model. In this paper, the difference in the heat exchange between the wall and air was confirmed based on the radiation on the circulation layer`s surface. In this system, thin air circulation layers with ventilating holes at the top and bottom are attached to the south and north outer walls of a wooden building. This system is a kind of passive solar house that achieves the insolation screening effect and the temperature rising effect based on solar collection. The heat flow in a circulation layer is eliminated by the natural convection heat transfer on the outer wall. The heat flow passing through insulating materials is the heat transfer by radiation. The heat flow based on the in-layer natural convection is increasingly eliminated by the decrease in temperature on the air circulation layer`s surface. The decrease in room surface temperature using aluminum foil and the reflective heat-insulated effect showed that the heat passing through the wall surface decreases as the convection heat transfer in an air circulation layer increases. 6 refs., 20 figs., 3 tabs.

  20. Sonographic assessment of splanchnic arteries and the bowel wall

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.F. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)], E-mail:; Jedrzejczyk, M.; Ignee, A. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)


    The intestinal wall can be visualized using high resolution transabdominal ultrasound. The normal intestinal wall thickness in the terminal ileum, cecum, and right and left colon is <2 mm when examined with graded compression. It is important to appreciate that a contracted intestinal segment can be misinterpreted as a thickened wall. Vascularisation can be mainly displayed in the second hyperechoic layer (submucosal layer) as well as vessels penetrating the muscularis propria. Imaging of the gastrointestinal wall is dependent on the experience of the examiner as well dependent on the equipment used. Acute or chronic inflammation of the intestinal wall is accompanied by increased perfusion of the mesentery, which can be displayed non-quantitatively with colour duplex. In contrast, ischemia is characterised by hypoperfusion of the mesenteric arteries and the bowel wall. The most promising sonographic approach in assessing splanchnic arteries and the bowel wall is combining the analysis of superior and inferior mesenteric inflow by pulsed Doppler scanning (systolic and diastolic velocities, resistance index) with the end-organ vascularity by colour Doppler imaging diminishing the influence of examination technique only displaying bowel wall vascularity. Colour Doppler imaging has been described as helpful in a variety of gastrointestinal disorders, particularly in patients with Crohn's disease, celiac disease, mesenteric artery stenosis and other ischemic gastrointestinal diseases, graft versus host disease and hemorrhagic segmental colitis.

  1. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars (United States)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian


    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate

  2. Attenuation of Temperature Fluctuations on an External Surface of the Wall by a Phase Change Material-Activated Layer

    Directory of Open Access Journals (Sweden)

    Dariusz Heim


    Full Text Available Periodical changes of temperature on an external surface of building envelope, e.g., thermal stress or excessive heat gains, is often an undesirable phenomenon. The idea proposed and described in the following paper is to stabilize the external surface temperature in a period of significant heat gains by the originally developed, novel composite modified by phase change material (PCM and applied as an external, thin finishing plaster layer. The PCM composite is made from porous, granulated perlite soaked with paraffin wax (Tm = 25 °C and macro-encapsulated by synthetic resin. The effect of temperature attenuation was estimated for two designated periods of time—the heat gains season (HGS and the heat losses season (HLS. The attenuation coefficient (AC was proposed as evaluation parameter of isothermal storage of heat gains determining the reduction of temperature fluctuations. The maximum registered temperature of an external surface for a standard insulation layer was around 20 K higher than for the case modified by PCM. The calculated values of AC were relatively constant during HGS and around two times lower for PCM case. The obtained results confirmed that the proposed modification of an external partition by equipped with additional PCM layer can be effectively used to minimize temperature variations and heat flux in the heat gains season.

  3. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    by the research vessels RV Gaveshani and ORV Sagar Kanya are reported. The work carried out by the three charted ships is also recorded. A short note on cruise plans for the study of ferromanganese nodules is added...

  4. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rana, Anoop Raj Singh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Aziz, Md. Abdul; Oyama, Munetaka [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)


    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10{sup -9} mol L{sup -1} to 80.0 x 10{sup -9} mol L{sup -1} for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10{sup -10} mol L{sup -1} and 42 x 10{sup -10} mol L{sup -1} respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  5. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system (United States)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno


    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  6. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)


    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  7. Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers (United States)

    Rigoni, F.; Freddi, S.; Pagliara, S.; Drera, G.; Sangaletti, L.; Suisse, J.-M.; Bouvet, M.; Malovichko, A. M.; Emelianov, A. V.; Bobrinetskiy, I. I.


    A low-cost method for carbon nanotubes (CNTs) network production from solutions on flexible polyethylene naphthalate substrates has been adopted to prepare high quality and well characterized SWCNT bundle layers to be used as the active layer in chemiresistor gas sensors. Two types of SWCNTs have been tested: pristine SWCNTs, deposited from a surfactant solution, and covalently functionalized SWCNTs, deposited from a dimethyl-acetamide solution. The humidity effects on the sensitivity of the SWCNTs network to NH3 have been investigated. The results show that relative humidity favors the response to NH3, confirming recent theoretical predictions. The COOH-functionalized sample displays the largest response owing to both its hydrophilic nature, favoring the interaction with H2O molecules, and its largest surface area. Compared to data available in the literature, the present sensors display a remarkable sensitivity well below the ppm range, which makes them quite promising for environmental and medical applications, where NH3 concentrations (mostly of the order of tens of ppb) have to be detected.

  8. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit


    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  9. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature (United States)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.


    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  10. A two-layered suspension (particle-fluid) model for non-Newtonian fluid flow in a catheterized arterial stenosis with slip condition at the wall of stenosed artery (United States)

    Ponalagusamy, R.


    The primary concern of the present investigation is to study blood flow in a porous catheterized artery with an axially asymmetric and radially symmetric stenosis (constriction). In the present study, blood is characterized as a two-fluid system containing a cell-rich zone of suspension of blood cells described to be a particle-fluid suspension (Jeffrey fluid) and a cell-free plasma (Newtonian fluid) layer near the wall. The systematic expressions for flow characteristics such as fluid phase and particle phase velocities, flow rate, wall shear stress, resistive force, and frictional forces on walls of arterial stenosis and catheter are derived. It is recorded that the wall shear stress, flow resistance, and frictional forces are found to be increased with catheter size, red cell concentration, and slip parameter. When blood obeys the law of constitutive equation of a Jeffrey fluid, the flowing blood experiences lesser wall shear stress, flow resistance and frictional forces as compared to the case of blood being categorized as a Newtonian fluid. The increase in Darcy number, blood rheology as Jeffrey fluid, and the presence of peripheral plasma layer near the wall serves to reduce substantially the values of the flow characteristics (wall shear stress, flow resistance and frictional forces).

  11. Realization of solution-processed semiconducting single-walled carbon nanotubes thin film transistors with atomic layer deposited ZrAlOx gate insulator (United States)

    Huang, Chuan-Xin; Li, Jun; Zhong, De-Yao; Zhao, Cheng-Yu; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin


    In this study, the semiconducting single-walled carbon nanotube (semi-SWCNT) thin film transistors (TFTs) with high dielectric constant (κ) atomic layer deposited ZrAlOx gate insulator are fabricated by the drop-casted method. The hysteresis characteristic, negative gate voltage stress stability, and thermal stability are studied, and the semi-SWCNT TFTs with ZrAlOx gate insulators show a small hysteresis of 0.2 V, a little threshold voltage shift of 2.5 V under the negative gate voltage stress, and a threshold voltage shift of 2 V under the thermal stress. Such advantages are due to the amorphous structure and smooth surface of the atomic layer deposited ZrAlOx gate insulator, which induces less trap states. In addition, the thermal stress stability of semi-SWCNT TFTs is investigated. It is found that the behavior of semi-SWCNT TFTs under thermal stress obeys the thermally activated hopping model obviously. This model explains the threshold voltage shift of the device under thermal stress, which is very reasonable.

  12. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow (United States)

    Bonness, William K.; Capone, Dean E.; Hambric, Stephen A.


    The response of a structure to turbulent boundary layer (TBL) excitation has been an area of research for roughly 50 years, although uncertainties persist surrounding the low-wavenumber levels of the TBL surface pressure spectrum. In this experimental investigation, a cylindrical shell with a smooth internal surface is subjected to TBL excitation from water in fully developed pipe flow. The cylinder's vibration response to this excitation is used to determine low-wavenumber TBL surface pressure levels at lower streamwise wavenumbers than previously reported ( k1/ k cJournal of Sound and Vibration 112(1) (1987) 125-147] and is roughly 23 dB lower than an early TBL model by Corcos [ Journal of the Acoustical Society of America 35(2) (1963) 192-198]. The current data is a few decibels below the lower bound of related measurements in air by Farabee and Geib [ ICIASF '75 Record, 1975, pp. 311-319] and Martin and Leehey [ Journal of Sound and Vibration 52(1) (1977) 95-120]. A simple wavenumber white form for the TBL surface pressure spectrum at low-wavenumber is suggested.

  13. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arbab, Alvira Ayoub, E-mail: [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Kyung Chul, E-mail: [Department of Fuel cells and hydrogen technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Sahito, Iftikhar Ali, E-mail: [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Qadir, Muhammad Bilal, E-mail: [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeong, Sung Hoon, E-mail: [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)


    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  14. The Disruption of Vessel-Spanning Bubbles with Sloped Fins in Flat-Bottom and 2:1 Elliptical-Bottom Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Buchmiller, William C.; Jenks, Jeromy WJ; Chun, Jaehun; Russell, Renee L.; Schmidt, Andrew J.; Mastor, Michael M.


    Radioactive sludge was generated in the K-East Basin and K-West Basin fuel storage pools at the Hanford Site while irradiated uranium metal fuel elements from the N Reactor were being stored and packaged. The fuel has been removed from the K Basins, and currently, the sludge resides in the KW Basin in large underwater Engineered Containers. The first phase to the Sludge Treatment Project being led by CH2MHILL Plateau Remediation Company (CHPRC) is to retrieve and load the sludge into sludge transport and storage containers (STSCs) and transport the sludge to T Plant for interim storage. The STSCs will be stored inside T Plant cells that are equipped with secondary containment and leak-detection systems. The sludge is composed of a variety of particulate materials and water, including a fraction of reactive uranium metal particles that are a source of hydrogen gas. If a situation occurs where the reactive uranium metal particles settle out at the bottom of a container, previous studies have shown that a vessel-spanning gas layer above the uranium metal particles can develop and can push the overlying layer of sludge upward. The major concern, in addition to the general concern associated with the retention and release of a flammable gas such as hydrogen, is that if a vessel-spanning bubble (VSB) forms in an STSC, it may drive the overlying sludge material to the vents at the top of the container. Then it may be released from the container into the cell’s secondary containment system at T Plant. A previous study demonstrated that sloped walls on vessels, both cylindrical coned-shaped vessels and rectangular vessels with rounded ends, provided an effective approach for disrupting a VSB by creating a release path for gas as a VSB began to rise. Based on the success of sloped-wall vessels, a similar concept is investigated here where a sloped fin is placed inside the vessel to create a release path for gas. A key potential advantage of using a sloped fin compared to a

  15. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels. (United States)

    Connolly, Adam J; Vigmond, Edward; Bishop, Martin J


    Virtual electrodes formed by field stimulation during defibrillation of cardiac tissue play an important role in eliciting activations. It has been suggested that the coronary vasculature is an important source of virtual electrodes, especially during low-energy defibrillation. This work aims to further the understanding of how virtual electrodes from the coronary vasculature influence defibrillation outcomes. Using the bidomain model, we investigated how field stimulation elicited activations from virtual electrodes around idealized intramural blood vessels. Strength-interval curves, which quantify the stimulus strength required to elicit wavefront propagation from the vessels at different states of tissue refractoriness, were computed for each idealized geometry. Make excitations occurred at late diastolic intervals, originating from regions of depolarization around the vessel. Break excitations occurred at early diastolic intervals, whereby the vessels were able to excite surrounding refractory tissue due to the local restoration of excitability by virtual electrode-induced hyperpolarizations. Overall, strength-interval curves had similar morphologies and underlying excitation mechanisms compared with previous experimental and numerical unipolar stimulation studies of cardiac tissue. Including the presence of the vessel wall increased the field strength required for make excitations but decreased the field strength required for break excitations, and the field strength at which break excitations occurred was generally greater than 5 V/cm. Finally, in a more realistic ventricular slice geometry, the proximity of virtual electrodes around subepicardial vessels was seen to cause break excitations in the form of propagating unstable wavelets to the subepicardial layer. Representing the blood vessel wall microstructure in computational bidomain models of defibrillation is recommended as it significantly alters the electrophysiological response of the vessel to

  16. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)


    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  17. A dynamic ultrasound simulation of a pulsating three-layered CCA for validation of two-dimensional wall motion and blood velocity estimation algorithms. (United States)

    Hu, Xiao; Zhang, Yufeng; Cai, Guanghui; Zhang, Kexin; Deng, Li; Gao, Lian; Han, Suya; Chen, Jianhua


    A dynamic ultrasound simulation model for the common carotid artery (CCA) with three arterial layers for validation of two-dimensional wall motion and blood velocity estimation algorithms is proposed in the present study. This model describes layers with not only characteristics of echo distributions conforming to clinical ones but also varying thicknesses, axial, and radial displacements with pulsatile blood pressure during a cardiac cycle. The modeling process is as follows: first, a geometrical model according with the clinical structure size of a CCA is built based on the preset layer thicknesses and the diameter of lumen. Second, a three-dimensional scatterer model is constructed by a mapping with a Hilbert space-filling curve from the one-dimensional scatterer distribution with the position and amplitude following Gamma and Gaussian distributions, respectively. The characteristics of three layers and blood are depicted by smoothly adjusting the scatterer density, the scale, and shape parameters of the Gamma distribution as well as the mean and standard deviation of the Gaussian distribution. To obtain the values of parameters of scatterer distributions, including the shape parameter, density, and intensity, for arterial layers and blood, the envelope signals simulated from different configurations of scatterer distribution are compared with those from different kinds of tissue of CCAs in vivo through a statistic analysis. Finally, the dynamic scatterer model is realized based on the blood pressure, elasticity modulus of intima-media (IM) and adventitia, varying IM thickness, axial displacement of IM as well as blood flow velocity at central axis during a cardiac cycle. Then, the corresponding radiofrequency (RF) signals, envelope signals, and B-mode images of the pulsatile CCA are generated in a dynamic scanning mode using Field II platform. The three arterial layers, blood, and surrounding tissue in simulated B-mode ultrasound images are clearly legible. The

  18. Vessel wall reactions to endovascular stent implantation

    NARCIS (Netherlands)

    H.M.M. van Beusekom (Heleen)


    textabstractIn order to gain insight in the effects of stenting, we studied the process of wound healing and the short- and long-term effect of these permanently present foreign bodies. Both thrombogenic and less thrombogenic metals were evaluated with respect to thrombogenicity and tissue response.

  19. Natural convection of the oxide pool in a three-layer configuration of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Park, Hae-Kyun; Chung, Bum-Jin, E-mail:


    Highlights: • Natural convection of oxide pool in 3-layer configuration during IVR was investigated. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Heat ratio to light metal layer was 14% higher for 3-layer configuration than 2-layer one. • Heat transfer to heavy metal layer was poor and hence heat load to side wall increased. • Angular heat loads to side wall showed strengthened heat focusing at uppermost location. - Abstract: We investigated the natural convection of the oxide layer in a three-layer configuration of core melts in a severe accident. In order to achieve high modified Rayleigh numbers of 10{sup 12}–10{sup 13}, mass transfer experiments were performed using a copper sulfate electroplating system based upon the analogy between heat and mass transfer. Four different cooling conditions of the top and the bottom plates were tested. The upward heat ratios were 14% higher for three-layer than for two-layer due to the reduced heights and the downward heat ratios were lower the same amount. The local Nusselt numbers for the top and the bottom plates were measured and compared with the two layer configuration. To explore the heat load to the reactor vessel, the angle-dependent heat fluxes at the side wall, were measured and compared with the two-layer configuration. Heat load to the side wall and peak heat at the uppermost location were intensified for the three-layer configuration.

  20. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2 (United States)

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.


    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  1. Fabrication of single walled carbon nanotubes/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) layers under enhanced gravity drying

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, M.E.; Alvarado-Tenorio, G. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, Mor. (Mexico); Vargas, M.G. [Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, 62780 Zacatepec, Mor. (Mexico); Ramos, E. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, Mor. (Mexico); Sánchez-Tizapa, M., E-mail: [Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, C.P. 46600, Ameca, Jalisco (Mexico)


    In this contribution, we explore the use of enhanced gravity in order to achieve composite films of single walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) with improved properties. The samples were characterized by atomic force microscopy, scanning electron microscopy, and electrochemical impedance spectroscopy, in order to determine the differences caused by the enhanced gravity. Impedance spectroscopy results show that there is an improvement of the electrical properties of the SWCNT/PEDOT:PSS junction, manifested as lower contact resistance, modified chemical capacitance, and induced p-type doping. A force-induced interpenetration of the polymer into the SWCNT network and the efficient removal of water and PSS are proposed to explain the results. The transparency and electrical properties of these films forecast their application as a buffer layer in organic solar cell heterojunctions, or as hole transporting materials in perovskite-based solar cells. - Highlights: • A technique to fabricate conductive films of SWCNT/PEDOT:PSS is presented. • The technique is based on enhanced gravity drying. • Improved interpenetration of the bilayer SWCNT/PEDOT:PSS system • Enhanced gravity increases the p-type conductivity of the film. • Impedance spectroscopy confirms the improvement on the electrical properties.

  2. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition (United States)

    Kiribayashi, Hoshimitsu; Fujii, Takayuki; Kozawa, Akinari; Ogawa, Seigo; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro


    Amorphous Al2O3 buffer layers have been widely used to enhance the yield in the growth of single-walled carbon nanotubes (SWCNTs). In this study, we carried out SWCNT growth using a Rh catalyst on Al2O3 buffer layers that were prepared by three different methods based on electron beam (EB) evaporation: native oxidation of Al layer deposited by EB; thermal oxidation of Al layer deposited by EB; EB deposition of Al2O3 layer. We investigated the effects of fabrication method of the Al2O3 buffer layer on SWCNT yield and found that the SWCNT yield was the largest for Al2O3 layer prepared by EB deposition of Al2O3, while SWCNTs were not grown on the Al2O3 layer obtained by native oxidation of the Al layer. Based on the results of X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and atomic force microscopy, we examined the effects of crystalline quality and oxidation degree of Al2O3 layers on the catalytic activity.

  3. Erosion and break-up of light-gas layers by a horizontal jet in a multi-vessel, large-scale containment test system

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, Robert, E-mail:; Mignot, Guillaume; Kapulla, Ralf; Paladino, Domenico


    The distribution and eventual stratification of hydrogen released during a hypothetical severe accident and the stability of the stratification formed in the early phase of the transient is of particular safety concern in Light Water Reactors (LWRs). The large-scale containment test facility PANDA (PSI, Switzerland) has been used to perform a series of four tests examining the erosion and break-up of stratified light-gas layers in the frame of the OECD SETH-2 project. The ultimate goal of the test program is to set-up an experimental data base of high-quality and high-density data that can challenge and validate 3D containment codes like e.g. GOTHIC, GASFLOW or MARS and validate the applicability of CFD codes like FLUENT or CFX for LWR containment problems. The test series discussed here focuses on the erosion of a stratified, helium-rich layer by horizontal steam injection at different locations below the layer. An approach with step-wise increasing complexity has been chosen to examine this problem allowing control over the rate of pressure increase and the occurrence of condensation. The step-wise approach enables a thorough understanding of the influence of different phenomena like position of steam injection, diffusion, pressurization and condensation on the behavior and erosion of the stratified layer.

  4. Multiscale FEM modeling of vascular tone: from membrane currents to vessel mechanics. (United States)

    Kapela, Adam; Tsoukias, Nikolaos Michael


    Regulation of vascular tone is a complex process that remains poorly understood. Here, we present our recent efforts for the development of physiologically realistic models of arterial segments for the analysis of vasoreactivity in health and disease. Multiscale modeling integrates intracellular and cell membrane components into whole-cell models of calcium and membrane potential dynamics. Single-cell models of vascular cells are combined into a multicellular model of the vascular wall, and vessel wall biomechanics are integrated with calcium dynamics in the smooth muscle layer. At each scale, continuum models using finite element method can account for spatial heterogeneity in calcium signaling and for nonuniform deformations of a vessel segment. The outlined approach can be used to investigate cellular mechanisms underlying altered vasoreactivity in hypertension.

  5. Effect of neoadjuvant chemoradiation and postoperative radiotherapy on expression of heat shock protein 70 (HSP70 in head and neck vessels

    Directory of Open Access Journals (Sweden)

    Gellrich Nils-Claudius


    Full Text Available Abstract Background Preoperative radiotherapy and chemotherapy in patients with head and neck cancer result in changes to the vessels that are used to construct microsurgical anastomoses. The aim of the study was to investigate quantitative changes and HSP70 expression of irradiated neck recipient vessels and transplant vessels used for microsurgical anastomoses. Methods Of 20 patients included in this study five patients received neoadjuvant chemoradiation, another five received conventional radiotherapy and 10 patients where treated without previous radiotherapy. During surgical procedure, vessel specimens where obtained by the surgeon. Immunhistochemical staining of HSP70 was performed and quantitative measurement and evaluation of HSP70 was carried out. Results Conventional radiation and neoadjuvant chemoradiation revealed in a thickening of the intima layer of recipient vessels. A increased expression of HSP70 could be detected in the media layer of the recipient veins as well as in the transplant veins of patients treated with neoadjuvant chemoradiation. Radiation and chemoradiation decreased the HSP70 expression of the intima layer in recipient arteries. Conventional radiation led to a decrease of HSP70 expression in the media layer of recipient arteries. Conclusion Our results showed that anticancer drugs can lead to a thickening of the intima layer of transplant and recipient veins and also increase the HSP70 expression in the media layer of the recipient vessels. In contrast, conventional radiation decreased the HSP70 expression in the intima layer of arteries and the media layer of recipient arteries and veins. Comparing these results with wall thickness, it was concluded, that high levels of HSP70 may prevent the intima layer of arteries and the media layer of vein from thickening.

  6. Angiomyolipoma of the Thoracic Wall: An Extremely Rare Diagnostic Challenge

    Directory of Open Access Journals (Sweden)

    Georgios Gemenetzis


    Full Text Available Extrarenal angiomyolipoma (AML is an extremely uncommon lesion, accounting for less than 9% of all angiomyolipomas. We present a previously unreported case of a rarely located gigantic extrarenal angiomyolipoma at the posterolateral chest wall of a 35-year-old woman. Clinically, the lesion had all the characteristics of a benign tumor, being soft in palpation, painless, and growing in size in a slow rate. Histologically, the lesion consisted of convoluted thick-walled blood vessels without an elastic layer, interlacing fascicles of smooth muscle, and mature adipose tissue, features consistent with an angiomyolipoma. The mass was surgically removed, without any postoperative complications, and the patient has an uneventful postoperative course. Signs of local recurrence have not been observed. The purpose of this brief report is to point out the necessity of including angiomyolipoma in the differential diagnosis of adipose layer lesions.

  7. Modeling the microclimate inside a vessel in in vitro culture : vessel ...

    African Journals Online (AJOL)

    Numerical simulations show that variations in vessel internal humidity was sensitive to transfer coefficient, climatic conditions within the growth chamber, evaporation and condensation of water vapor on the walls of the vessel. The variations in water vapor pressure deficits (VPD) (low during the nyctiperiod and high during ...

  8. Interpretation of scrape-off layer profile evolution and first-wall ion flux statistics on JET using a stochastic framework based on fillamentary motion (United States)

    Walkden, N. R.; Wynn, A.; Militello, F.; Lipschultz, B.; Matthews, G.; Guillemaut, C.; Harrison, J.; Moulton, D.; Contributors, JET


    This paper presents the use of a novel modelling technique based around intermittent transport due to filament motion, to interpret experimental profile and fluctuation data in the scrape-off layer (SOL) of JET during the onset and evolution of a density profile shoulder. A baseline case is established, prior to shoulder formation, and the stochastic model is shown to be capable of simultaneously matching the time averaged profile measurement as well as the PDF shape and autocorrelation function from the ion-saturation current time series at the outer wall. Aspects of the stochastic model are then varied with the aim of producing a profile shoulder with statistical measurements consistent with experiment. This is achieved through a strong localised reduction in the density sink acting on the filaments within the model. The required reduction of the density sink occurs over a highly localised region with the timescale of the density sink increased by a factor of 25. This alone is found to be insufficient to model the expansion and flattening of the shoulder region as the density increases, which requires additional changes within the stochastic model. An example is found which includes both a reduction in the density sink and filament acceleration and provides a consistent match to the experimental data as the shoulder expands, though the uniqueness of this solution can not be guaranteed. Within the context of the stochastic model, this implies that the localised reduction in the density sink can trigger shoulder formation, but additional physics is required to explain the subsequent evolution of the profile.

  9. Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating. (United States)

    Hilton, Gina M; Taylor, Alexia J; Hussain, Salik; Dandley, Erinn C; Griffith, Emily H; Garantziotis, Stavros; Parsons, Gregory N; Bonner, James C; Bereman, Michael S


    Carbon nanotubes (CNTs), a prototypical engineered nanomaterial, have been increasingly manufactured for a variety of novel applications over the past two decades. However, since CNTs possess fiber-like shape and cause pulmonary fibrosis in rodents, there is concern that mass production of CNTs will lead to occupational exposure and associated pulmonary diseases. The aim of this study was to use contemporary proteomics to investigate the mechanisms of cellular response in E10 mouse alveolar epithelial cells in vitro after exposure to multi-walled CNTs (MWCNTs) that were functionalized by atomic layer deposition (ALD). ALD is a method used to generate highly uniform and conformal nanoscale thin-film coatings of metals to enhance novel conductive properties of CNTs. We hypothesized that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mouse alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Uncoated (U)-MWCNTs were functionalized by ALD with zinc oxide (ZnO) to yield Z-MWCNTs or aluminum oxide (Al2O3) to yield A-MWCNTs. Significant differential protein expression was found in the following critical pathways: mTOR/eIF4/p70S6K signaling and Nrf-2 mediated oxidative stress response increased following exposure to Z-MWCNTs, interleukin-1 signaling increased following U-MWCNT exposure, and inhibition of angiogenesis by thrombospondin-1, oxidative phosphorylation, and mitochondrial dysfunction increased following A-MWCNT exposure. This study demonstrates that specific types of metal oxide thin film coatings applied by ALD produce distinct cellular and biochemical responses related to lung inflammation and fibrosis compared to uncoated MWCNT exposure in vitro.

  10. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.


    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  11. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties (United States)

    Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.


    Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this

  12. Nuclear reactor construction with bottom supported reactor vessel (United States)

    Sharbaugh, John E.


    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  13. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann


    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  14. The plant cell wall in the feeding sites of cyst nematodes (United States)

    Bohlmann, Holger; Sobczak, Miroslaw


    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium. PMID:24678316

  15. Vessel Operator System (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  16. Cutaneous Small Vessel Vasculitis Accompanied by Pustulosis Palmaris et Plantaris

    Directory of Open Access Journals (Sweden)

    Motoko Kosaka


    Full Text Available We present the case of a 64-year-old woman who has suffered from pustulosis palmaris et plantaris for 10 years. At the first examination, many erythematous lesions with purpura, blood crusts, and blisters were present in the lower legs and dorsum of the feet. Painful swelling in the sternal region and dorsal pain were also noted. Elevation of the CRP and myogenic enzyme levels, and liver and renal dysfunctions were noted on blood testing. Histopathologically, leukocytoclastic vasculitis was noted in small blood vessels in the whole dermal layers, and deposition of IgM and C3 in the vascular wall was detected by the direct immunofluorescence techniques. Based on these findings, cutaneous small vessel vasculitis was diagnosed. Because the patient complained of a toothache during the clinical course, an X-ray examination was performed. On pantomography, a radicular cyst and apical periodontitis were noted. The tooth symptoms changed with exacerbation and remission of the skin symptoms. These findings indicate that odontogenic infection is very likely to be a cause of cutaneous small vessel vasculitis in a manner similar to pustulosis palmaris et plantaris.

  17. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.


    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  18. Nuclear reactor vessel fuel thermal insulating barrier (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.


    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  19. Vascular wall stress during intravascular optical coherence tomography imaging (United States)

    Sun, Cuiru; Yang, Victor


    Biomechanical properties of arterial wall is crucial for understanding the changes in the cardiovascular system. Catheters are used during intravascular optical coherence tomography (IVOCT) imaging. The presence of a catheter alters the flow field, pressure distribution and frictional resistance to flow in an artery. In this paper, we first study the transmural stress distribution of the catheterized vessel. COMSOL (COMSOL 4.4) was used to simulate the blood flow induced deformation in a catheterized vessel. Blood is modeled as an incompressible Newtonian fluid. Stress distribution from an three-layer vascular model with an eccentric catheter are simulated, which provides a general idea about the distribution of the displacement and the stress. Optical coherence elastography techniques were then applied to porcine carotid artery samples to look at the deformation status of the vascular wall during saline or water injection. Preliminary simulation results show nonuniform stress distribution in the circumferential direction of the eccentrically catheterized vascular model. Three strain rate methods were tested for intravascular OCE application. The tissue Doppler method has the potential to be further developed to image the vascular wall biomechnical properties in vivo. Although results in this study are not validated quantitatively, the experiments and methods may be valuable for intravascular OCE studies, which may provide important information for cardiovascular disease prevention, diagnosis and treatment.

  20. Thermal Load Calculations of Multilayered Walls


    Bashir M. Suleiman


    Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal ...


    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P


    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  2. Iterative Otsu's method for OCT improved delineation in the aorta wall (United States)

    Alonso, Daniel; Real, Eusebio; Val-Bernal, José F.; Revuelta, José M.; Pontón, Alejandro; Calvo Díez, Marta; Mayorga, Marta; López-Higuera, José M.; Conde, Olga M.


    Degradation of human ascending thoracic aorta has been visualized with Optical Coherence Tomography (OCT). OCT images of the vessel wall exhibit structural degradation in the media layer of the artery, being this disorder the final trigger of the pathology. The degeneration in the vessel wall appears as low-reflectivity areas due to different optical properties of acidic polysaccharides and mucopolysaccharides in contrast with typical ordered structure of smooth muscle cells, elastin and collagen fibers. An OCT dimension indicator of wall degradation can be generated upon the spatial quantification of the extension of degraded areas in a similar way as conventional histopathology. This proposed OCT marker can offer in the future a real-time clinical perception of the vessel status to help cardiovascular surgeons in vessel repair interventions. However, the delineation of degraded areas on the B-scan image from OCT is sometimes difficult due to presence of speckle noise, variable signal to noise ratio (SNR) conditions on the measurement process, etc. Degraded areas can be delimited by basic thresholding techniques taking advantage of disorders evidences in B-scan images, but this delineation is not optimum in the aorta samples and requires complex additional processing stages. This work proposes an optimized delineation of degraded areas within the aorta wall, robust to noisy environments, based on the iterative application of Otsu's thresholding method. Results improve the delineation of wall anomalies compared with the simple application of the algorithm. Achievements could be also transferred to other clinical scenarios: carotid arteries, aorto-iliac or ilio-femoral sections, intracranial, etc.

  3. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations ...

  4. The S-layer protein of Lactobacillus acidophilus ATCC 4356 : identification and characterisation of domains responsible for S-protein assembly and cell wall binding

    NARCIS (Netherlands)

    Smit, E.; Oling, F.; Demel, R.; Martinez, B.; Pouwels, P.H.


    Lactobacillus acidophilus, like many other bacteria, harbors a surface layer consisting of a protein (SA-protein) of 43 kDa. SA-protein could be readily extracted and crystallized in vitro into large crystalline patches on lipid monolayers with a net negative charge but not on lipids with a net

  5. The S-layer protein of Lactobacillus acidophilus ATCC 4356 : Identification and characterisation of domains responsible for S-protein assembly and cell wall binding

    NARCIS (Netherlands)

    Smit, E; Oling, F; Demel, R; Martinez, B; Pouwels, PH


    Lactobacillus acidophilus, like many other bacteria, harbors a surface layer consisting of a protein (S-A-protein) of 43 kDa. S-A-protein could be readily extracted and crystallized in vitro into large crystalline patches on lipid monolayers with a net negative charge but not on lipids with a net

  6. On-line monitoring and analysis of reactor vessel integrity

    Energy Technology Data Exchange (ETDEWEB)

    Ackerson, D.S.; Impink, A.J. Jr.; Balkey, K.R.; Andreychek, T.S.


    A method is described for on-line monitoring and analysis of nuclear reactor pressure vessel integrity in a unit in which reactor coolant is circulated along the inner wall of the pressure vessel, the method comprising the steps of: generating on an on-line basis, temperature signals representative of the temperature of the reactor coolant circulating along the inner wall of the pressure vessel; generating on an on-line basis, a pressure signal representative of the reactor coolant pressure; generating a signal representative of fast neutron fluence to which the reactor pressure vessel has been subjected; generating as a function of the fluence signal a visual representation of the actual real time reference nil-ductibility transition temperature (RT/sub ndt/) across the entire pressure vessel wall thickness at a preselected critical location in the wall; generating as a function of transients in the reactor coolant temperature and pressur signals, a visual representation of the real time required RT/sub ndt/, across the entire pressure vessel wall thickness at the selected critical location, the required RT/sub ndt/ being the RT/sub ndt/ that would be required in the pressure vessel wall for flaw initiation to occur as a result of stresses set-up by the transients; and superimposing the visual representations of the real-time actual and required RT/sub ndt's/ for flaw initiation across the entire pressure vessel wall thickness for the selected critical location to generate a visual representation of the difference in value between the actual and required RT/sub ndt/ presented as an RT/sub ndt/ margin.

  7. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis. (United States)

    Auriel, Eitan; Csiba, Laszlo; Berenyi, Ervin; Varkonyi, Ildiko; Mehes, Gabor; Kardos, Laszlo; Karni, Arnon; Bornstein, Natan M


    Leukoaraiosis refers to an age-related, abnormal appearance of the brain white matter on neuroimaging. The association between leukoaraiosis and cerebrovascular disease suggests that ischemia may be an important contributing factor; however, the pathogenesis of the condition remains controversial. We hypothesized that physical abnormalities of blood vessels might be culpable and compared the external and internal measurements of blood vessel walls between brains that demonstrated leukoaraiosis on imaging and normal control brains. Fourteen brains of individuals who had been diagnosed as having severe leukoaraiosis and five non-leukoaraiosis control brains were studied. Arterial cross-sections were evaluated by length measurements with an image analysis device. Arterial wall thickness and the ratio of the outer and inner diameters of the vessel were measured. We measured a total of 108 vessels in the leukoaraiosis group and 95 vessels in the control group. The vessel walls of the leukoaraiosis patients were an average of 5.5 µm thicker than the walls of control vessels of the same inside diameter (P = 0.0000, 95% CI 3.01-8.08) and an average of 2.3 µm thicker than walls of control vessels of the same outside diameter (P = 0.016, 95% CI 0.48-4.17). Our data provide evidence that leukoaraiosis is associated with vessel wall thickening in an additive fashion and indicate that structural vascular abnormalities are associated with leukoaraiosis. © 2011 Japanese Society of Neuropathology.

  8. Guam Abandoned Vessel Inventory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Guam. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  9. Florida Abandoned Vessel Inventory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Florida. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  10. Vessel Arrival Info - Legacy (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Arrival Info is a spreadsheet that gets filled out during the initial stage of the debriefing process by the debriefer. It contains vessel name, trip...

  11. ALICE HMPID Radiator Vessel

    CERN Multimedia


    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure.

  12. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. (United States)

    Bueno, Ericka M; Bilgen, Bahar; Barabino, Gilda A


    Hydrodynamic forces in bioreactors can decisively influence extracellular matrix deposition in engineered cartilage constructs. In the present study, the reduced fluid shear, high-axial mixing environment provided by a wavy-walled bioreactor was exploited in the cultivation of cartilage constructs using polyglycolic acid scaffolds seeded with bovine articular chondrocytes. Increased growth as defined by weight, cell proliferation and extracellular matrix deposition was observed in cartilage constructs from wavy-walled bioreactors in comparison with those from spinner flasks cultured under the same conditions. The wet weight composition of 4-week constructs from the wavy-walled bioreactor was similar to that of spinner flask constructs, but the former were 60% heavier due to equally higher incorporation of extracellular matrix and 30% higher cell population. It is most likely that increased construct matrix incorporation was a result of increased mitotic activity of chondrocytes cultured in the environment of the wavy-walled bioreactor. A layer of elongated cells embedded in type I collagen formed at the periphery of wavy-walled bioreactor and spinner flask constructs, possibly as a response to local shear forces. On the basis of the robustness and reproducibility of the extracellular matrix composition of cartilage constructs, the wavy-walled bioreactor demonstrated promise as an experimental cartilage tissue-engineering vessel. Increased construct growth in the wavy-walled bioreactor may lead to enhanced mechanical properties and expedited in vitro cultivation.

  13. Turbine airfoil with a compliant outer wall (United States)

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL


    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  14. Development of a self-supported single-wall carbon nanotube-based gas diffusion electrode with spatially well-defined reaction and diffusion layers (United States)

    Drillet, J.-F.; Bueb, H.; Dettlaff-Weglikowska, U.; Dittmeyer, R.; Roth, S.

    This work reports on the development of a solvent-free method for the fabrication of a self-supported single-wall carbon nanotubes electrode, which is based on successive sedimentation of both SWCNT/surfactant and PtRu-SWCNT/surfactant suspensions followed by a thermal treatment at 130 °C. The as-prepared self-supported electrode showed sufficient mechanical strength for half-cell investigation and membrane-electrodes assembly fabrication. By using a Pt catalyst loading of 1 mg cm -2, the overall thickness of the gas diffusion electrode reached 95 μm. Its electrochemical activity towards methanol oxidation was investigated by means of cyclic voltammetry and current-voltage polarisation measurements under half-cell and direct methanol fuel cell conditions.

  15. Development of a self-supported single-wall carbon nanotube-based gas diffusion electrode with spatially well-defined reaction and diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Drillet, J.-F.; Bueb, H.; Dittmeyer, R. [DECHEMA e.V., Society for Chemical Engineering and Biotechnology, Karl Winnacker Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main (Germany); Dettlaff-Weglikowska, U.; Roth, S. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)


    This work reports on the development of a solvent-free method for the fabrication of a self-supported single-wall carbon nanotubes electrode, which is based on successive sedimentation of both SWCNT/surfactant and PtRu-SWCNT/surfactant suspensions followed by a thermal treatment at 130 C. The as-prepared self-supported electrode showed sufficient mechanical strength for half-cell investigation and membrane-electrodes assembly fabrication. By using a Pt catalyst loading of 1 mg cm{sup -2}, the overall thickness of the gas diffusion electrode reached 95 {mu}m. Its electrochemical activity towards methanol oxidation was investigated by means of cyclic voltammetry and current-voltage polarisation measurements under half-cell and direct methanol fuel cell conditions. (author)

  16. An assessment for the erosion rate of DEMO first wall (United States)

    Tokar, M. Z.


    In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.

  17. What are the residual stresses doing in our blood vessels? (United States)

    Fung, Y C


    We show that the residual strain and stress in the blood vessels are not zero, and that the zero-stress state of a blood vessel consists of open-sector segments whose opening angles vary along the longitudinal axis of the vessel. When the homeostatic state of the blood vessel is changed, e.g., by a sudden hypertension, the opening angle will change. The time constant of the opening angle change is a few hours (e.g., in the pulmonary artery) or a few days (e.g., in the aorta). From a kinematic point of view, a change of opening angle is a bending of the blood vessel wall, which is caused by a nonuniformly distributed residual strain. From a mechanics point of view, changes of blood pressure and residual strain cause change of stress in the blood vessel wall. Correlating the stress with the change of residual strain yields a fundamental biological law relating the rate of growth or resorption of tissue with the stress in the tissue. Thus, residual stresses are related to the remodeling of the blood vessel wall. Our blood vessel remodels itself when stress changes. The stress-growth law provides a biomechanical foundation for tissue engineering.

  18. [Bladder injury by penetration of artificial vessel graft]. (United States)

    Wada, Naoki; Tamaki, Gaku; Kura, Tatsuhiko; Saga, Yuji; Kakizaki, Hidehiro


    Iatrogenic bladder injury by artificial vessel graft is extremely rare and only 3 cases have been reported. Herein, we report a case of bladder injury by penetration of artificial vessel graft. An 80-year-old male underwent a femoro-femoral crossover bypass surgery for arteriosclerosis obliterans in our hospital. Postoperatively he complained of urinary incontinence and was referred to the urology department. Ultrasonography for evaluating microscopic hematuria revealed a high echoic linear structure in the bladder and subsequent cystoscopy found an artificial vessel graft penetrating bladder wall. Vascular surgeons reconstructed femoro-femoral bypass and we removed the artificial vessel graft and repaired the injured bladder wall. This is the fourth case of bladder penetrating injury by artificial vessel graft and we summarize the reported cases.

  19. Behavior of platelets stained by 5,6-CF-encapsulated PEGylated liposomes after laser irradiation of vessel wall: an in-vivo model for studying site-selective delivery of diagnostic or therapeutic agents (United States)

    Mordon, Serge R.; Begu, Sylvie; Buys, Bruno; Tourne-Peteilh, Corine; Devoisselle, Jean-Marie


    Vascular endothelium serves as an extensive interface between circulating blood and various tissues and organs of the body. As such, it offers an accessible target for blood-borne pharmacological and genetic manipulations that can mediate both local and systemic effects. Thus, targeting of liposomes to activated vascular endothelial cells may provide a strategy for site-selective delivery in the vascular system with broad therapeutic applicability. This study aimed to evaluate an intravital fluorescence imaging technique to visualize in-situ and in real-time the activation of platelets after staining by 5,6-CF- encapsulated PEGylated liposomes injected intravenously. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. The skin micro circulation was observed with an intravital microscope (using x25 and x40 magnification) fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for play-back analysis with a digital video cassette recorder. An inflammatory response was induced by an Argon laser emitting at 514.5nm. The 80micrometers laser beam was focused on a vessel and its position was controlled with the microscope imaging system, it was possible to see individual platelets flowing in blood vessels. As liposomes were labeled with a fluorescent probe which was hydrophilic (located in the aqueous phase), the fluorescence of platelets was due only to the uptake of liposomes. After laser irradiation, platelets activation at sites of vascular injury was obtained. Tethering, translocation of some platelets inside the irradiated zone were clearly seen. At last, detachment and extravasation of platelets were observed. A perivascular fluorescence confirmed that platelets migrated across the basal lamina into the dermal connective tissue. In conclusion, staining of

  20. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO{sub 2} using cyclic Ar/C{sub 4}F{sub 8} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masatoshi [Electronic Device Systems Business Group, Hitachi High-Technologies Corporation, 794 Higashitoyoi, Kudamatsu, Yamaguchi 744-0002 (Japan); Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: [Department of Material Science and Engineering, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Li, Chen [Department of Physics, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)


    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.

  1. [The cell wall of Coelastrum (Chlorophycees)]. (United States)

    Reymond, O


    The cell wall of Coelastrum is usually composed of three layers. The outermost layer was studied most extensively. It consists of erect tubules which often bear long bristles whose function may be to stabilize the algae in its enviroment. The cell wall can modify its morphology according to the enviroment.

  2. The passive biomechanics of human pelvic collecting lymphatic vessels. (United States)

    Athanasiou, Dimitrios; Edgar, Lowell T; Jafarnejad, Mohammad; Nixon, Katherine; Duarte, Delfim; Hawkins, Edwin D; Jamalian, Samira; Cunnea, Paula; Lo Celso, Cristina; Kobayashi, Shunichi; Fotopoulou, Christina; Moore, James E


    The lymphatic system has a major significance in the metastatic pathways in women's cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport.

  3. Peculiarities of helium porosity formation in the surface layer of the structural materials used for the first wall of fusion reactor (United States)

    Chernov, I. I.; Stal'tsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu.


    Transmission electron microscopy is used to study the formation of helium porosity in the nearsurface layer of ferritic-martensitic steels and vanadium irradiated by 40-keV He+ ions at a temperature of 923 K up to fluence of 5 × 1020 He+/m2 and, then, by 7.5-MeV Ni2+ ions at 923 K up to dose of 100 dpa. Large gas bubbles are found to form in the zone with the maximum concentration of radiation vacancies during He+ ion irradiation. Moreover, small bubbles form in some grains at the depths that are larger than the He+ ion range in the irradiated material. Sequential irradiation by He+ and Ni2+ ions leads to the nucleation of helium bubbles at still larger depths due to helium atom transport via recoil and/or ion mixing. The precipitation hardening of the steels by Y2O3 oxide nanoparticles is found to suppress helium swelling substantially.

  4. Effects of a protein glycocalyx in the hemodynamics of small blood vessels (United States)

    Dimakopoulos, Yiannis; Delidakis, George; Tsamopoulos, John


    Glycocalyx is a protein layer of approximate thickness 0.5 μm that lines vessel walls. We study the effects this layer has on the blood flow inside arterioles and venules, where the relative size of the glycocalyx is significant. To properly describe phenomena that naturally occur in blood flow, such as the inhomogeneous distribution of red blood cells and their aggregation, we use an improved viscoelastic constitutive model. The glycocalyx layer is modeled as fixed porous media. Cells cannot penetrate inside it, since its hydraulic permeability is very low, and the flow inside this layer is described by the equations for a viscous fluid with an extra Brinkman term to account for the effects the porous medium has on the flow. The closed set of equations is solved using the Finite Element method, assuming steady-state with dependence only in the r-direction. Our results are favorably compared with the in vivo velocity profiles in venules of mice produced by Damiano et al. (2004) and the formation of cell-free layer near glycocalyx. Flow inside the glycocalyx layer is found to be severely attenuated due to the low hydraulic permeability, which can have interesting implications in the transport of various substances form the blood to the tissues or in the use of shear stresses as signals for the endothelial surface cells. Finally, we simulate the transient blood flow under pulsatile conditions.

  5. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R


    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  6. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid


    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  7. Mechanobiology of LDL mass transport in the arterial wall under the effect of magnetic field, part I: Diffusion rate

    Energy Technology Data Exchange (ETDEWEB)

    Aminfar, Habib, E-mail: [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: [Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471 (Iran, Islamic Republic of); Khajeh, Kosar, E-mail: [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)


    It is well-known that the Low Density Lipoprotein (LDL) can accumulate and penetrate into the arterial wall. Here, we have investigated the diffusion rate of macromolecules across the porous layer of blood vessel under the effects of magnetic force. By using a finite volume technique, it was found that magnetic field makes alterations in diffusion rate of LDLs, also surface concentration of macromolecules on the walls. As well, the influence of different value of Re and Sc number in the presence of a magnetic field have shown as nondimensional concentration profiles. Magnetic field considered as a body force, porous layer simulated by using Darcy's law and the blood regarded as nano fluid which was examined as a single phase model. - Highlights: • LDLs mass transfer across the arterial wall under magnetic field has simulated numerically. • Arterial wall assumed as a homogeneous porous layer by using Darcy's law. • Blood containing 4% Vol. Fe{sub 3}O{sub 4} regarded as nanofluid and has examined by single phase model. • Magnetic field significantly affects the diffusion rate of LDLs through porous arterial wall.

  8. Maury Journals - German Vessels (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  9. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube (United States)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad


    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  10. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange (United States)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.


    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  11. Purification of Mouse Brain Vessels. (United States)

    Boulay, Anne-Cécile; Saubaméa, Bruno; Declèves, Xavier; Cohen-Salmon, Martine


    In the brain, most of the vascular system consists of a selective barrier, the blood-brain barrier (BBB) that regulates the exchange of molecules and immune cells between the brain and the blood. Moreover, the huge neuronal metabolic demand requires a moment-to-moment regulation of blood flow. Notably, abnormalities of these regulations are etiological hallmarks of most brain pathologies; including glioblastoma, stroke, edema, epilepsy, degenerative diseases (ex: Parkinson's disease, Alzheimer's disease), brain tumors, as well as inflammatory conditions such as multiple sclerosis, meningitis and sepsis-induced brain dysfunctions. Thus, understanding the signaling events modulating the cerebrovascular physiology is a major challenge. Much insight into the cellular and molecular properties of the various cell types that compose the cerebrovascular system can be gained from primary culture or cell sorting from freshly dissociated brain tissue. However, properties such as cell polarity, morphology and intercellular relationships are not maintained in such preparations. The protocol that we describe here is designed to purify brain vessel fragments, whilst maintaining structural integrity. We show that isolated vessels consist of endothelial cells sealed by tight junctions that are surrounded by a continuous basal lamina. Pericytes, smooth muscle cells as well as the perivascular astrocyte endfeet membranes remain attached to the endothelial layer. Finally, we describe how to perform immunostaining experiments on purified brain vessels.

  12. General tissue characteristics of the lower urethral and vaginal walls in the domestic rabbit. (United States)

    Rodríguez-Antolín, Jorge; Xelhuantzi, Nicté; García-Lorenzana, Mario; Cuevas, Estela; Hudson, Robyn; Martínez-Gómez, Margarita


    In European rabbits, the distal urethra (DU) opens into the anterior pelvic vagina forming a single canal by which females copulate, give birth, and urinate. We investigated whether the histological characteristics of the DU and the pelvic and perineal vagina are different. The DU and vagina of rabbits (Oryctolagus cuniculus) were cut and stained with hematoxylin-eosin and Masson's trichrome (n = 3). Data were compared by using Friedman's ANOVA for repeated measures. The walls of the DU and vagina are composed of mucosa, submucosa, smooth muscle, and an external layer. Differences in tissue characteristics of the mucosa, orientation of the smooth muscle fibers, components of the external layer (connective tissue, blood vessels, and striated musculature), and thickness of the tissue layers were found among regions. The lack of histological homogeneity along the urethra and vagina possibly reflects differences in the functions of each segment.


    NARCIS (Netherlands)

    Beukers, A.; De Jong, T.


    Abstract of WO 9717570 (A1) The invention is directed to a wheel-shaped pressure-resistant vessel for gaseous, liquid or liquefied material having a substantially rigid shape, said vessel comprising a substantially continuous shell of a fiber-reinforced resin having a central opening, an inner

  14. Containment vessel drain system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Scott G.


    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  15. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others


    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  16. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall. (United States)

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng


    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  17. Acute traumatic abdominal wall hernia


    Hartog, Dennis; Tuinebreijer, Wim; Oprel, Pim; Patka, Peter


    textabstractAlthough blunt abdominal trauma is frequent, traumatic abdominal wall hernias (TAWH) are rare. We describe a large TAWH with associated intra-abdominal lesions that were caused by high-energy trauma. The diagnosis was missed by clinical examination but was subsequently revealed by a computed tomography (CT) scan. Repair consisted of an open anatomical reconstruction of the abdominal wall layers with reinforcement by an intraperitoneal composite mesh. The patient recovered well and...

  18. Towards cavitation-enhanced permeability in blood vessel on a chip (United States)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.


    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  19. Cholinergic innervation of human mesenteric lymphatic vessels. (United States)

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M


    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  20. Ultrasonography of chest wall lesion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H. [Seoul National University College of Medicine, Seoul (Korea, Republic of)


    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  1. Integrating Building Functions into Massive External Walls

    Directory of Open Access Journals (Sweden)

    Ahmed Hisham Hafez


    Full Text Available Well into the twentieth century, brick and stone were the materials used. Bricklaying and stonemasonry were the construction technologies employed for the exterior walls of virtually all major structures. However, with the rise in quality of life, the massive walls alone became incapable of fulfilling all the developed needs. Adjacent systems and layers had then to be attached to the massive layer. Nowadays, the external wall is usually composed of a layered construction. Each external wall function is usually represented by a separate layer or system. The massive layer of the wall is usually responsible for the load-bearing function. Traditional massive external walls vary in terms of their external appearance, their composition and attached layers. However, their design and construction process is usually a repeated process. It is a linear process where each discipline is concerned with a separate layer or system. These disciplines usually take their tasks away and bring them back to be re-integrated in a layered manner. New massive technologies with additional function have recently become available. Such technologies can provide the external wall with other functions in addition to its load-bearing function. The purpose of this research is to map the changes required to the traditional design and construction process when massive technologies with additional function are applied in external walls. Moreover, the research aims at assessing the performance of massive solutions with additional function when compared to traditional solutions in two different contexts, the Netherlands and Egypt. Through the analysis of different additional function technologies in external walls, a guidance scheme for different stakeholders is generated. It shows the expected process changes as related to the product level and customization level. Moreover, the research concludes that the performance of additional insulating technologies, and specifically

  2. Vessel discoloration detection in malarial retinopathy (United States)

    Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.


    Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.

  3. Wall Art (United States)

    McGinley, Connie Q.


    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  4. [Polyurethane vessels for microvascular surgical training to reduce animal use]. (United States)

    Meier, Sonja A; Lang, Axel; Beer, Gertrude M


    Systematic training of the manual skills is inevitable in learning microsurgery. Generally, first exercises are done on two-dimensional models, then the training continues on animals. With the growing ethical awareness, the obligation to protect animals and the stricter animal protection laws, realistic three-dimensional models have become necessary for training of microsurgery. However, the available alternatives all have certain disadvantages. We tested vessels made of polyurethane for microvascular surgical training and compared them to the available three-dimensional synthetic alternatives. Rose-coloured (arteries) or blue (veins), opaque vessels with a minimal wall thickness of 0.12 mm and a minimal internal diameter of 1 mm are used. To mimic the surgical access and the depth of the operative field, the vessels can be embedded in a synthetic box with or without a cap. The completed anastomosis is checked by injection of a coloured fluid. The consistency and the variable relation of the thickness of the wall to the internal diameter very closely reflect the biological situation. Even training on very fragile venous walls is possible in all manners. After completion of anastomosis the vessels can be opened longitudinally to check the patency of the anastomotic site. The described polyurethane vessels are very suitable for microsurgical training as a useful step between the two-dimensional model and the animal. The number of animals required for microsurgical training can clearly be reduced by the use of such synthetic polyurethane vessels.

  5. Effects of Interface Layers and Domain Walls on the Ferroelectric-Resistive Switching Behavior of Au/BiFeO3/La0.6Sr0.4MnO3 Heterostructures. (United States)

    Feng, Lei; Yang, Shengwei; Lin, Yue; Zhang, Dalong; Huang, Weichuan; Zhao, Wenbo; Yin, Yuewei; Dong, Sining; Li, Xiaoguang


    The electric field effects on the electric and magnetic properties in multiferroic heterostructures are important for not only understanding the mechanisms of certain novel physical phenomena occurring at heterointerfaces but also offering a route for promising spintronic applications. Using the Au/BiFeO3/La0.6Sr0.4MnO3 (Au/BFO/LSMO) multiferroic heterostructure as a model system, we investigated the ferroelectric-resistive switching (RS) behaviors of the heterostructure. Via the manipulation of the BFO ferroelectric polarizations, the nonvolatile tristate of RS is observed, which is closely related to the Au/BFO and BFO/LSMO interface layers and the highly conducting BFO domain walls (DWs). More interestingly, according to the magnetic field dependence of the RS behavior, the negative magnetoresistance effect of the third resistance state, corresponding to the abnormal current peak in current-pulse voltage hysteresis near the electric coercive field, is also observed at room temperature, which mainly arises from the possible oxygen vacancy accumulation and Fe ion valence variation in the DWs.

  6. 2013 Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  7. 2011 Passenger Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. 2011 Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  9. 2013 Passenger Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  10. 2013 Tanker Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  11. 2013 Cargo Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  12. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang


    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  13. Cheboygan Vessel Base (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  14. Maury Journals - US Vessels (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  15. 2011 Cargo Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. 2011 Tanker Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. 2013 Fishing Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  18. Coastal Logbook Survey (Vessels) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  19. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, M.R.; Daie-e, G.


    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.

  20. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  1. Correlations of coronary plaque wall thickness with wall pressure and wall pressure gradient: a representative case study

    Directory of Open Access Journals (Sweden)

    Liu Biyue


    Full Text Available Abstract Background There are two major hemodynamic stresses imposed at the blood arterial wall interface by flowing blood: the wall shear stress (WSS acting tangentially to the wall, and the wall pressure (WP acting normally to the wall. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation, while the impact of blood pressure on plaque progression has been under-studied. Method The correlations of wall thickness (WT with wall pressure (WP, blood pressure on the lumen wall and spatial wall pressure gradient (WPG in a human atherosclerotic right coronary artery were studied. The pulsatile blood flow was simulated using a three dimensional mathematical model. The blood was treated as an incompressible viscous non-Newtonian fluid. The geometry of the artery was re-constructed using an in vivo intravascular ultrasound (IVUS 44-slice dataset obtained from a patient with consent obtained. The WT, the WP and the WPG were averaged on each slice, respectively, and Pearson correlation analysis was performed on slice averaged base. Each slice was then divided into 8 segments and averaged vessel WT, WP and WPG were collected from all 352 segments for correlation analysis. Each slice was also divided into 2 segments (inner semi-wall of bend and outer semi-wall of bend and the correlation analysis was performed on the 88 segments. Results Under mean pressure, the Pearson coefficient for correlation between WT and WP was r = − 0.52 (p  Conclusions Results from this representative case report indicated that plaque wall thickness correlated negatively with wall pressure (r = −0.81 by slice and positively with wall pressure gradient (r = 0.45. The slice averaged WT has a strong linear relationship with the slice averaged WP. Large-scale patient studies are needed to further confirm our findings.

  2. Improvement of wall condensation modeling with suction wall functions for containment application

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, Jan, E-mail: [RWTH Aachen University, Aachen (Germany); Kelm, Stephan, E-mail: [Forschungszentrum Jülich GmbH, Jülich (Germany); Bucci, Matteo [Commissariat à l’énergie atomique et aux énergies alternatives, Paris (France); Allelein, Hans-Josef [RWTH Aachen University, Aachen (Germany); Forschungszentrum Jülich GmbH, Jülich (Germany)


    Highlights: • Assessment of wall functions for single phase condensation models for large scale application. • Identification of modeling errors related to standard log-law due to buoyancy and wall normal mass transfer (suction). • Modeling of wall normal mass transfer by literature formulation (Sucec, 1999) and in-house approach (FIBULA). • Validation against isothermal Favre experimental data. • Comparison against reference fine grid solution for condensing conditions. - Abstract: To simulate wall condensation on containment scale with CFD methods at reasonable computational cost, a single phase approach has to be applied and wall functions have to be used. However, standard wall functions were derived for flows without heat and mass transfer and their fundamental simplifications are not appropriate to deal with condensation. This paper discusses the limitations of standard wall functions and proposes two wall functions for the momentum equation dealing with mass transfer normal to the sheared wall (suction). The first proposed suction wall function is an algebraic modification based on the standard wall function concept. The second proposed wall function is an in-house developed suction wall function with the potential to cover also heat and mass transfer effects by storing the complex solutions of the RANS-Equations in a lookup table. The wall function approaches are compared to experimental results for boundary layer flows with suction and to the reference results obtained using a refined grid in order to resolve the condensing boundary layer.

  3. Studies on in-vessel debris coolability in ALPHA program

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others


    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  4. Nuclear reactor having a polyhedral primary shield and removable vessel insulation (United States)

    Ekeroth, Douglas E.; Orr, Richard


    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  5. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    NARCIS (Netherlands)

    Banerjee, S.; Vasu, P.; von Hellermann, M.; Jaspers, R. J. E.


    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is,


    CERN Multimedia


    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  7. Structural Alterations of the Glomerular Wall And Vessels in Early ...

    African Journals Online (AJOL)

    The second group of 20 (the experimental group) was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, two months, and four months. Five rats at two months of age with hyperglycemia were treated with insulin for eight weeks. Renal tissues were ...

  8. The amount of C1q-adiponectin complex is higher in the serum and the complex localizes to perivascular areas of fat tissues and the intimal-medial layer of blood vessels of coronary artery disease patients. (United States)

    Hong, Eun Shil; Lim, Cheong; Choi, Hye Yeon; Ku, Eu Jeong; Kim, Kyoung Min; Moon, Jae Hoon; Lim, Soo; Park, Kyong Soo; Jang, Hak Chul; Choi, Sung Hee


    The complement component C1q triggers activation of the classical immune pathway and can bind to adiponectin (APN). Recently, some studies have been reported that serum C1q-APN/total APN ratio correlates with atherosclerosis and coronary artery disease (CAD). We assessed the relationships between C1q related variables and the severity of CAD, and investigated the localization of the C1q-APN complex. The sample included 153 subjects comprising healthy controls and patients with subclinical or overt CAD. We measured the serum concentrations of C1q, total APN, and high-molecular weight (HMW)-APN, and the amount of C1q-APN complex. We identified the sites of C1q-APN complex deposition in various adipose tissues and blood vessels. Serum concentrations of C1q and HMW-APN and the C1q/HMW-APN ratio were independently associated with the severity of coronary stenosis. The amount of C1q-APN complex was significantly higher in patients with CAD compared with controls. C1q and APN co-localized in perivascular areas of subcutaneous, visceral, and pericardial fat tissues, and the internal mammary artery of patients with severe CAD. Serum C1q concentration and the C1q/HMW-APN ratio were independent markers of coronary artery stenosis. The amount of C1q-APN complex was significantly greater in serum from CAD patients. C1q and APN co-localized to perivascular areas in adipose tissue and blood vessels. The association between the increased amount of the C1q-APN complex and CAD should be investigated further.

  9. Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel Dynamic Positioning System (United States)


    support vessels, cable layers, pipe-laying vessels, shuttle tankers , trenching and dredging vessels, [and] supply vessels” [3]. The term DP system ... SYSTEMS THEORETIC PROCESS ANALYSIS APPLIED TO AN OFFSHORE SUPPLY VESSEL DYNAMIC POSITIONING SYSTEM by Blake Ryan Abrecht B.S. Systems ...Engineering with a Focus on Human Factors United States Air Force Academy, 2014 SUBMITTED TO THE INSTITUTE FOR DATA, SYSTEMS , AND SOCIETY IN PARTIAL

  10. Microsurgical Training using Reusable Human Vessels from Discarded Tissues in Lymph Node Dissection

    Directory of Open Access Journals (Sweden)

    Naohiro Ishii


    Full Text Available The use of human vessels at the beginning of microsurgery training is highly recommended. But vessels with the appropriate length for training are not often obtained. Whether these vessels may be reused for training has not been reported. Accordingly, we harvested vessels from discarded tissues in lymph node dissection and demonstrated that vascular anastomosis training using the same human vessels several times is possible by placing the vessels in a freezer and defrosting them with hot water. Vascular walls can be stored for microsurgical training until about 4 years after harvest, as shown in the gross appearance and histologic findings of our preserved vessels. We recommend the technique presented here for the longterm reuse of human vessels for microsurgery training that closely resembles real procedures.

  11. Enhancing supply vessel safety

    Energy Technology Data Exchange (ETDEWEB)



    A supply-vessel bridge installation consists of a navigating bridge and a control position aft, from which operators control the ship when close to rigs or platforms, and operate winches and other loading equipment. The international Convention for Safety of I Ale at Sea (SOLAS) does not regulate the layout, so design varies to a large degree, often causing an imperfect working environment. As for other types of ships, more than half the offshore service vessel accidents at sea are caused by bridge system failures. A majority can be traced back to technical design, and operational errors. The research and development project NAUT-OSV is a response to the offshore industry's safety concerns. Analysis of 24 incidents involving contact or collision between supply vessels and offshore installations owned or operated by Norwegian companies indicated that failures in the bridge system were often the cause.

  12. THz reflectometric imaging of medieval wall paintings

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd


    Terahertz time-domain reflectometry has been applied to the investigation of a medieval Danish wall painting. The technique has been able to detect the presence of carbonblack layer on the surface of the wall painting and a buried insertion characterized by high reflectivity values has been found...

  13. Multiple large vessel aneurysmal formation in HIV-infected patients

    African Journals Online (AJOL)


    Nov 14, 2017 ... HIV proteins are noted within these lymphocytes, but the exact significance of this abnormality is yet to be defined. Transmural necrosis of the vessel wall occurs because of the probable ischemia and results in weakness and aneurysmal formation. The exact pathogenesis is still unknown. Theories such as ...

  14. Validation of the performance of a practical blood vessel imaging system to facilitate vessel punctures (United States)

    Cuper, Natascha J.; Verdaasdonk, Rudolf M.; de Roode, Rowland


    A practical system to visualize vessels underneath the skin has been developed, based on near-infrared (NIR) transillumination. A study in the clinical setting proved the system to be useful as a support in blood withdrawal in young children. During clinical application it was found that performance varied depending on vessel size, depth of vessels and surrounding lighting conditions. To gain more insight on the different variables that determine functioning of the system, we performed phantom studies. A combined liquid/solid phantom was fabricated with similar optical properties as the tissue layers of skin reported in literature at 850 nm. This phantom was used to estimate the depth of visibility in the relation to vessel size and darkness of the skin. Vessel contrast was determined analytically from images and evaluated by 3 independent observers. The knowledge gained from these experiments will be helpful to improve the imaging system and develop a solid phantom to be used as a gold standard to test the system under various clinical lighting conditions. The working range of the system was found to be appropriate to visualize the vessels used for the most procedures, such as blood withdrawal and placement of intravenous lines.

  15. Optimal Branching Structure of Fluidic Networks with Permeable Walls

    Directory of Open Access Journals (Sweden)

    Vinicius R. Pepe


    Full Text Available Biological and engineering studies of Hess-Murray’s law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray’s law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e., breaking the symmetry of the flow distribution may occur in this symmetrical dichotomous system. To derive expressions for the optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of vessels is only conforming to Hess-Murray’s law optimum as long as they have impervious walls. Findings also indicate that the optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes. Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the assembly of vessels.

  16. Network of endocardial vessels. (United States)

    Lee, Byung-Cheon; Kim, Hong Bae; Sung, Baeckkyoung; Kim, Ki Woo; Sohn, Jamin; Son, Boram; Chang, Byung-Joon; Soh, Kwang-Sup


    Although there have been reports on threadlike structures inside the heart, they have received little attention. We aimed to develop a method for observing such structures and to reveal their ultrastructures. An in situ staining method, which uses a series of procedures of 0.2-0.4% trypan blue spraying and washing, was applied to observe threadlike structures on the surfaces of endocardia. The threadlike structures were isolated and observed by using confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Networks of endocardial vessels (20 μm in thickness) with expansions (40-100 μm in diameter) were visualized; they were movable on the endocardium of the bovine atrium and ventricle. CLSM showed that (1) rod-shaped nuclei were aligned along the longitudinal direction of the endocardial vessel and (2) there were many cells inside the expansion. TEM on the endocardial vessel revealed that (1) there existed multiple lumens (1-7 μm in diameter) and (2) the extracellular matrices mostly consisted of collagen fibers, which were aligned along the longitudinal direction of the endocardial vessel or were locally organized in reticular structures. We investigated the endocardial circulatory system in bovine cardiac chambers and its ultrastructures, such as nucleic distributions, microlumens, and collagenous extracellular matrices. Copyright © 2011 S. Karger AG, Basel.

  17. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.


    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  18. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Nourgaliev, R.R.; Dinh, T.N.; Karbojian, A. [Division of Nuclear Power Safety, Royal Institute of Technology, Drottning Kristinas Vaeg., Stockholm (Sweden)


    This paper describes the FOREVER (Failure Of REactor VEssel Retention) experimental program, which is currently underway at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS). The objectives of the FOREVER experiments are to obtain data and develop validated models (i) on the melt coolability process inside the vessel, in the presence of water (in particular, on the efficacy of the postulated gap cooling to preclude vessel failure); and (ii) on the lower head failure due to the creep process in the absence of water inside and/or outside the lower head. The paper presents the experimental results and analysis of the first FOREVER-C1 test. During this experiment, the 1/10th scale pressure vessel, heated to about 900degC and pressurized to 26 bars, was subjected to creep deformation in a non-stop 24-hours test. The vessel wall displacement data clearly shows different stages of the vessel deformation due to thermal expansion, elastic, plastic and creep processes. The maximum displacement was observed at the lowermost region of the vessel lower plenum. Information on the FOREVER-C1 measured thermal characteristics and analysis of the observed thermal and structural behavior is presented. The coupled nature of thermal and mechanical processes, as well as the effect of other system conditions (such as depressurization) on the melt pool and vessel temperature responses are analyzed. (author)

  19. Mass and heat transfers in the parietal boundary layer and inside a flat porous wall submitted to effusion or transpiration; Transferts de masse et de chaleur dans la couche limite parietale et a l'interieur d'une paroi poreuse plane soumise a de l'effusion ou de la transpiration

    Energy Technology Data Exchange (ETDEWEB)

    Bellettre, J.


    The flows and the heat transfer near and inside a porous wall subjected to an internal flow are numerically and experimentally studied. Numerical simulations of the main flow are performed using a classical model of turbulence (RNG k-{xi} model). A discrete modeling of blowing through a porous plate is developed in order to predict interactions between the main flow and the injected fluid. Numerical results are in good agreement with experimental data obtained with a subsonic wind tunnel. The coupling between the heat transfer near and inside porous plates is studied for different injection rates, main flow temperatures and internal exchange surfaces of porous media. Surfaces temperatures are calculated using a nodal model of internal heat transfer, linked to the model of boundary layer submitted to injection. By comparing numerical and experimental temperatures of walls, the heat transfer coefficients inside porous media are calculated. In order to improve the thermal protection of walls, the transpiration with a liquid is studied. Experimental results, obtained with ethanol injection whereas the main flow is gaseous, show an important enhancement of the protection process. The coolant evaporation rate is calculated using measurement of mass fraction in the boundary layer and is used for the numerical study of mass transfer in the boundary layer. (author)

  20. Anther Wall Formation in Solanaceae Species (United States)



    Anther wall formation was studied in 32 species belonging to 27 genera of Solanaceae. Dicotyledonous and basic types of wall formation were observed, as well as several deviations due to subsequent periclinal divisions in the layers formed (middle layers and sometimes the endothecium). One type of wall formation was observed in each species. Some genera are uniform in their type of wall formation, while others are heterogeneous; a similar situation was observed at the tribal level. Summarizing all reported information on anther wall formation in the Solanaceae, 64 % of species show the basic type, while the remaining 36 % show the dicotyledonous type. Thus, neither type predominates, and no single type characterizes genera, tribes or the entire family. PMID:12451025

  1. Static inelastic analysis of RC shear walls (United States)

    Chen, Qin; Qian, Jiaru


    A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis. The model is composed of RC column elements and RC membrane elements. The column elements are used to model the boundary zone and the membrane elements are used to model the wall panel. Various types of constitutive relationships of concrete could be adopted for the two kinds of elements. To perform analysis, the wall is divided into layers along its height. Two adjacent layers are connected with a rigid beam. There are only three unknown displacement components for each layer. A method called single degree of freedom compensation is adopted to solve the peak value of the capacity curve. The post-peak stage analysis is performed using a forced iteration approach. The macro-model developed in the study and the complete process analysis methodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens.

  2. Robust hepatic vessel segmentation using multi deep convolution network (United States)

    Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei


    Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.

  3. Hawaii Abandoned Vessel Inventory, Kauai (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Kauai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  4. CNMI Abandoned Vessel Inventory, Tinian (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Tinian. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  5. Puerto Rico Abandoned Vessel Inventory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Puerto Rico. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  6. American Samoa Abandoned Vessel Inventory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for American Samoa. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  7. Hawaii Abandoned Vessel Inventory, Oahu (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Oahu, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  8. Hawaii Abandoned Vessel Inventory, Molokai (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Molokai, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  9. CNMI Abandoned Vessel Inventory, Rota (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Rota. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  10. Hawaii Abandoned Vessel Inventory, Lanai (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Lanai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  11. For-Hire Vessel Directory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Directory is maintained as the sample frame for the For-Hire Survey. I contains data on for-hire vessels on the Atlantic and Gulf coasts. Data include...

  12. CNMI Abandoned Vessel Inventory, Saipan (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Saipan. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  13. Hawaii Abandoned Vessel Inventory, Maui (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Maui. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  14. Vessels in Transit - Web Tool (United States)

    Department of Transportation — A web tool that provides real-time information on vessels transiting the Saint Lawrence Seaway. Visitors may sort by order of turn, vessel name, or last location in...

  15. Pressure vessel design manual

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.R.


    The first section of the book covers types of loadings, failures, and stress theories, and how they apply to pressure vessels. The book delineates the procedures for designing typical components as well as those for designing large openings in cylindrical shells, ring girders, davits, platforms, bins and elevated tanks. The techniques for designing conical transitions, cone-cylinder intersections, intermediate heads, flat heads, and spherically dished covers are also described. The book covers the design of vessel supports subject to wind and seismic loads and one section is devoted to the five major ways of analyzing loads on shells and heads. Each procedure is detailed enough to size all welds, bolts, and plate thicknesses and to determine actual stresses.

  16. New research vessels (United States)


    Two “new” ocean-going research vessels operated by the Scripps Institution of Oceanography and the National Science Foundation (NSF) will soon begin full-time scientific duties off the coast of California and in the Antarctic, respectively. The 37.5-m Scripps vessel, named Robert Gordon Sprout in honor of the ex-president of the University of California, replaces the smaller ship Ellen B. Scripps, which had served the institution since 1965. The new ship is a slightly modified Gulf Coast workboat. Under the name of Midnight Alaskan, it had been used for high-resolution geophysical surveys in American and Latin American waters by such firms as Arco Oil & Gas, Exxon, Pennzoil, and Racal-Decca before its purchase by Scripps from a Lousiana chartering firm last summer.

  17. Large vessel vasculitides


    Morović-Vergles, Jadranka; Pukšić, Silva; Gudelj Gračanin, Ana


    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in y...

  18. Very Versatile Vessel (United States)


    data. This source provides information on aluminum hydrofoil vessels without the added weight of foil structures. The composite armor around the...seating compartment. The sides should also limit wave splash on the deck. The freeboard should contribute reserve buoyancy , increasing large-angle and...Resistance, Powering, and Propulsion Savitsky’s Method Since model testing data or other reliable performance data was unavailable for the proposed

  19. Confinement Vessel Assay System: Design and Implementation Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory


    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  20. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  1. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha


    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  2. Evaluation of In-Vessel Corium Retention under a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon; Kang, Kyung-Ho; Ha, Kwang-Soon; Kim, Jong-Tae; Koo, Kil-Mo; Cho, Young-Ro; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong


    The current study on In-Vessel corium Retention and its application activities to the actual nuclear power plant have been reviewed and discussed in this study. Severe accident sequence which determines an initial condition of the IVR has been evaluated and late phase melt progression, heat transfer on the outer reactor vessel, and in-vessel corium cooling mechanism have been estimated in detail. During the high pressure sequence of the reactor coolant system, a natural circulation flow of the hot steam leads to a failure of the pressurizer surge line before the reactor vessel failure, which leads to a rapid decrease of the reactor coolant system pressure. The results of RASPLAV/MASCA study by OECD/NEA have shown that a melt stratification has occurred in the lower plenum of the reactor vessel. In particular, laver inversion has occurred, which is that a high density of the metal melt moves to the lower part of the oxidic melt layer. A method of heat transfer enhancement on the outer reactor vessel is an optimal design of the reactor vessel insulation for an increase of the natural circulation flow between the outer reactor vessel and the its insulation, and an increase of the critical Heat flux on the outer reactor vessel by using various method, such as Nono fluid, coated reactor vessel, and so on. An increase method of the in-vessel melt cooling is a development of the In-vessel core catcher and a decrease of focusing effect in the metal layer.

  3. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)


    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  4. ITER Vacuum Vessel design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Jun, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector -25, Gandhinagar 382025 (India); Preble, J.; Reich, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others


    After implementing a few design modifications (referred to as the 'Modified Reference Design') in 2009, the Vacuum Vessel (VV) design had been stabilized. The VV design is being finalized, including interface components such as support rails and feedthroughs for the in-vessel coils. It is necessary to make adjustments to the locations of the blanket supports and manifolds to accommodate design modifications to the in-vessel coils. The VV support design is also being finalized considering a structural simplification. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. The detailed layout of ferritic steel plates and borated steel plates was optimized based on the toroidal field ripple analysis. A dynamic test on the inter-modular key to support the blanket modules was performed to measure the dynamic amplification factor (DAF). An R and D program has started to select and qualify the welding and cutting processes for the port flange lip seal. The ITER VV material 316 L(N) IG was already qualified and the Modified Reference Design was approved by the Agreed Notified Body (ANB) in accordance with the Nuclear Pressure Equipment Order procedure.

  5. Transport of divalent cations: cation exchange capacity of intact xylem vessels. (United States)

    Van de Geijn, S C; Petit, C M


    The cation exchange capacity of the intact xylem vessels in cut shoots of papyrus (Cyperus papyrus spec.) has been determined. The cation exchange capacity is independent of the cation concentration in the transpiration stream, and is equal for Ca and Co. The high value of the cation exchange capacity (0.6 to 1 x 10(-7) equivalents per square centimeter vessel wall surface) leads to the hypothesis that the porous structure of the vessel wall, and not only the inner vessel wall surface, acts as a cation exchanger.Differences between anion ([(32)P]phosphate, [(45)Ca]EDTA(2-), [(115)Cd(m)]-EDTA(2-)), and cation ([(45)Ca](2+), [(115)Cd(m)](2+)) movement are explained in terms of transport with the transpiration flux or by exchange reactions. The competition between exchange sites and natural or synthetic ligands for the divalent cations is discussed.

  6. Influence of cerebral blood vessel movements on the position of perivascular synapses (United States)

    DeFelipe, Javier


    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396

  7. Experiments on rapidly-sheared wall turbulence (United States)

    Diwan, Sourabh; Morrison, Jonathan


    The use of linear theories in wall turbulence dates back to Townsend (1976, Cambridge University Press) who extensively used Rapid Distortion Theory (RDT) for understanding the structure of near-wall turbulence. Various other linear tools have been used in more recent investigations. The present study is an attempt to further explore this aspect and is in part motivated by the recent numerical work of Sharma et al. (Phys. Fluids 23, 2011) that highlighted the possible role of linear mechanisms in wall turbulence. Our experimental arrangement involves passing a grid-generated turbulent flow over a flat plate mounted downstream of the grid in a wind tunnel. The grid turbulence is subjected to large rates of shear strain by the wall layer close to the leading edge of the plate and as a result, over a certain region in its vicinity, the approximations of the RDT can be expected to be approximately satisfied. We present detailed single-point and planar velocity measurements, and pressure measurements using surface-mounted pressure transducers, the aim being to establish a turbulent wall layer in which linear processes are dominant. Such a flow can be used to evaluate the ideas relating to linear theories of Townsend and Landahl, among others. We also present the structural changes that take place as the rapidly-sheared wall layer evolves towards a more conventional boundary layer further downstream. We acknowledge financial support from EPSRC under Grant No. EP/I037938.

  8. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.


    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  9. Vessel Traffic Services. (United States)


    Yorker" articles titled Silent Spring by Rachel Carson in 1963 produced a unifying effect, "the sort of rallying point of the movement to protect the...6232, 92d Cong., 1st. sess., 1971, p. 2. 15. Carson , Rachel L. , The Sea Around Us, New York: Oxford Univesity Press, 195-, p. IV. 16. U.S., Congress...Government Printing Office, 1974. 63. Buhler, L. and Geiger, J., Vessel Traffic Data Extraction MethodoloqX, Silver Spring , Maryland, O6erFae-tns

  10. Vanishing corneal vessels (United States)

    Nicholson, Luke; Chana, Rupinder


    We wish to highlight the importance of acknowledging the accompanying effects of topical phenylephrine drops on the eye other than its intended mydriasis. We reported a case of a 92-year-old woman with a corneal graft who was noted to have superficial corneal vascularisation which was not documented previously. After the instillation of topical tropicamide 1% and phenylephrine 2.5%, for funduscopy, the corneal vascularisation was not visible. When reassessed on another visit, tropicamide had no effect on the vessels and only phenylephrine did. We wish to highlight that when reviewing patients in cornea clinics, instilling phenylephrine prior to being seen may mask important corneal vascularisation. PMID:24121816

  11. High-low reflectivity enhancement based retinal vessel projection for SD-OCT images. (United States)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai


    The retinal vessel visualization from spectral-domain optical coherence tomography (SD-OCT) images is important for ocular disease diagnosis and multimodal retinal image processing. The purpose is to display the retinal vessel in a single projection image from 3D SD-OCT images by using the light absorption and shadow characteristics of the retinal vessel. The authors present a novel retinal vessel projection method for SD-OCT images, which utilizes the light absorption and shadow characteristics of the retinal vessel, called high-low reflectivity enhancement (HLRE) method. The reflectivity of the retinal vessel increases between the internal limiting membrane and inner nuclear layer-outer plexiform layer (INL-OPL) layers because of the light absorption, and the reflectivity below the retinal vessel decreases because of the influence of the retinal vessel shadow. A retinal vessel mask image generated based on the reflectivity characteristics of the retinal vessel is used to enhance the subvolume projection image restricted between the INL-OPL and Bruch's membrane layers. Experimental results with 22 SD-OCT cubes from 12 patients and 10 normal persons demonstrate that the authors' method is more effective in displaying the retinal vessel than the summed-voxel projection and other five region restriction based projection methods. The average of the mean difference between the retinal vessel and background regions based on their HLRE method is 0.1921. The proposed HLRE method was more effective for the visualization of the retinal vessels than the state-of-art methods because it provides higher contrast and distinction.

  12. Investigation of hydrogen recycling in long-duration discharges and its modification with a hot wall in the spherical tokamak QUEST (United States)

    Hanada, K.; Yoshida, N.; Honda, T.; Wang, Z.; Kuzmin, A.; Takagi, I.; Hirata, T.; Oya, Y.; Miyamoto, M.; Zushi, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Kuroda, K.; Long, H.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nagata, T.; Takase, Y.; Fukuyama, A.; Mitarai, O.


    Fully non-inductive plasma maintenance was achieved by a microwave of 8.2 GHz and 40 kW for more than 1 h 55 min with a well-controlled plasma-facing wall (PFW) temperature of 393 K, using a hot wall in the middle-sized spherical tokamak QUEST, until the discharge was finally terminated by the uncontrollability of the density. The PFW was composed of atmospheric plasma-sprayed tungsten and stainless steel. The hot wall plays an essential role in reducing the amount of wall-stored hydrogen and facilitates hydrogen recycling. The behaviour of fuel hydrogen in the PFW was investigated by monitoring the injection and evacuation of hydrogen into and from the plasma-producing vessel. A fuel particle balance equation based on the presence of a hydrogen transport barrier between the deposited layer and the substrate was applied to the long-duration discharges. It was found that the model could readily predict the observed behaviour in which a higher wall temperature likely gives rise to faster wall saturation.


    Directory of Open Access Journals (Sweden)

    PRAMOD Sivan


    Full Text Available Light and electron microscopic studies were carried out on the secondary xylem of actively growing shoots of Hibiscus cannabinus treated with cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB. Treatment with 20µM DCB induced differentiation of xylem fibres with thin secondary walls and parenchyma cells with abnormal wall thickening and lignification. At concentration above 50 µM resulted in the disappearance of cambial zone, inhibition of secondary wall deposition, lignification of primary walls, deformed vessel walls and dispersed lignin distribution in secondary walls. Transmission electron microscopic study revealed the initiation and formation of large intercellular spaces between the walls of differentiating xylem elements. Abnormal pattern of wall deposition and inhomogeneous lignin distribution was evident in fibres and vessel. The length and width of both fibres and vessel elements were reduced significantly even with lower concentrations of DCB.

  14. Turbulent channel flows over complex walls (United States)

    Rosti, Marco Edoardo; Brandt, Luca


    We perform numerical simulations of turbulent channel flows over porous walls and deformable hyper-elastic walls. The flow over porous walls is simulated using volume-averaged Navier ``Stokes equations within the porous layers, while the multiphase flow over deformable walls is solved with a one-continuum formulation which allows the use of a fully Eulerian formulation. New insights on the effect of these complex walls on the turbulent flows in terms of friction, statistics and flow structures are discussed using a number of post-processing techniques. The turbulent flow in the channel is affected by the porous and moving walls in a similar manner even at low values of porosity and elasticity due to the non-zero fluctuations of vertical velocity at the interface that influence the flow dynamics. The near-wall streaks and the associated quasi-streamwise vortices are strongly reduced near porous and deformable isotropic wall while the flow becomes more correlated in the spanwise direction. On the contrary, an opposite behavior is noticed in the case of anisotropic porous layers, with an increase of streamwise correlation due to a strengthening of the low- and high-speed streaks.

  15. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells (United States)

    Tsvirkun, Daria; Grichine, Alexei; Duperray, Alain; Misbah, Chaouqi; Bureau, Lionel


    Microvasculatures-on-a-chip, i.e. in vitro models that mimic important features of microvessel networks, have gained increasing interest in recent years. Such devices have allowed investigating pathophysiological situations involving abnormal biophysical interactions between blood cells and vessel walls. Still, a central question remains regarding the presence, in such biomimetic systems, of the endothelial glycocalyx. The latter is a glycosaminoglycans-rich surface layer exposed to blood flow, which plays a crucial role in regulating the interactions between circulating cells and the endothelium. Here, we use confocal microscopy to characterize the layer expressed by endothelial cells cultured in microfluidic channels. We show that, under our culture conditions, endothelial cells form a confluent layer on all the walls of the circuit and display a glycocalyx that fully lines the lumen of the microchannels. Moreover, the thickness of this surface layer is found to be on the order of 600 nm, which compares well with measurements performed ex or in vivo on microcapillaries. Furthermore, we investigate how the presence of endothelial cells in the microchannels affects their hydrodynamic resistance and the near-wall motion of red blood cells. Our study thus provides an important insight into the physiological relevance of in vitro microvasculatures.

  16. 46 CFR 289.2 - Vessels included. (United States)


    ... CONSTRUCTION-DIFFERENTIAL SUBSIDY VESSELS, OPERATING-DIFFERENTIAL SUBSIDY VESSELS AND OF VESSELS SOLD OR ADJUSTED UNDER THE MERCHANT SHIP SALES ACT 1946 § 289.2 Vessels included. Vessels subject to the provisions of this part are: (a) All vessels which may in the future be constructed or sold with construction...

  17. Blood flow reprograms lymphatic vessels to blood vessels. (United States)

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S; Lu, MinMin; Stachelek, Stan J; Srinivasan, Sathish; Guo, Lili; Vicente, Andres; Vincente, Andres; Mericko, Patricia; Levy, Robert J; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L


    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.

  18. Heat-pipes-based first wall

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Khripunov, V. [Russian Research Center `Kurchatov Institute`, Nuclear Fusion Institute, Kurchatov Square, Moscow 123182 (Russian Federation); Antipenkov, A. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Ulianov, A. [State Enterprise `Krasnaya Zvezda`, Electrolytny pr-d., 1a, Moscow 115230 (Russian Federation)


    Feasibilities of heat pipes application for the heat transfer out of plasma facing components in test and power fusion reactors are discussed. Based on the space technology and practice the ``hot`` ITER first wall with liquid metal and water heat pipes are proposed in two options: heat-pipes and vapor-chamber options. Other high heat loading in-vessel elements such as divertor target and limiter can be provided by effective and reliable heat pipe cooling systems. (orig.).

  19. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? (United States)

    Jansen, Steven; Gortan, Emmanuelle; Lens, Frederic; Lo Gullo, Maria Assunta; Salleo, Sebastiano; Scholz, Alexander; Stein, Anke; Trifilò, Patrizia; Nardini, Andrea


    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the 'ionic effect' was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six Lauraceae species. • A positive correlation was found between ionic effect and vessel grouping parameters, especially the portion of vessel walls in contact with neighbouring vessels. Species with intervessel contact fraction (F(C)) values 0.1 exhibited a response between 10% and 32%. The ionic effect increased linearly with the mean fraction of the total vessel wall area occupied by intervessel pits as well as with the intervessel contact length. However, no significant correlation occurred between the ionic effect and total intervessel pit membrane area per vessel, vessel diameter, vessel length, vessel wall area, and intervessel pit membrane thickness. • Quantitative vessel and pit characters are suggested to contribute to interspecific variation of the ionic effect, whereas chemical properties of intervessel pit membranes are likely to play an additional role. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  20. Novel Method for Vessel Cross-Sectional Shear Wave Imaging. (United States)

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen


    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Through-wall sampling of the Trawsfynydd RPV

    Energy Technology Data Exchange (ETDEWEB)



    Four large, highly irradiated through-wall weld samples are to be removed from the Trawsfynydd Magnox reactor pressure vessel. The reactor was shut down in 1993 after 28 years of operation. The samples will be tested to investigate the integrity of steel pressure vessels. The choice of specialised tooling for the operation and its deployment are discussed. A Ultra High Power Pressure Water Jet cutting method has been selected to meet the demanding remote robotic requirements. (UK).

  2. Cells, walls, and endless forms. (United States)

    Monniaux, Marie; Hay, Angela


    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)



    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  4. Ultrastructure of the ascospore wall in Pezizales (Ascomycetes) — II. Pyronemataceae sensu Eckblad

    NARCIS (Netherlands)

    Merkus, Emily


    The development of wall layers and ornamentation of ascospores is studied with the electron microscope in members of the Pyronemataceae. In all the species primary and secondary walls are formed successively. The primary wall appears to differentiate into two layers, an inner endospore and an outer

  5. [Large vessel vasculitides]. (United States)

    Morović-Vergles, Jadranka; Puksić, Silva; Gracanin, Ana Gudelj


    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in young ages. Although all large arteries can be affected, the aorta, subclavian and carotid arteries are most commonly involved. The most common symptoms included upper extremity claudication, hypertension, pain over the carotid arteries (carotidynia), dizziness and visual disturbances. Early diagnosis and treatment has improved the outcome in patients with TA.

  6. Vessel segmentation in screening mammograms (United States)

    Mordang, J. J.; Karssemeijer, N.


    Blood vessels are a major cause of false positives in computer aided detection systems for the detection of breast cancer. Therefore, the purpose of this study is to construct a framework for the segmentation of blood vessels in screening mammograms. The proposed framework is based on supervised learning using a cascade classifier. This cascade classifier consists of several stages where in each stage a GentleBoost classifier is trained on Haar-like features. A total of 30 cases were included in this study. In each image, vessel pixels were annotated by selecting pixels on the centerline of the vessel, control samples were taken by annotating a region without any visible vascular structures. This resulted in a total of 31,000 pixels marked as vascular and over 4 million control pixels. After training, the classifier assigns a vesselness likelihood to the pixels. The proposed framework was compared to three other vessel enhancing methods, i) a vesselness filter, ii) a gaussian derivative filter, and iii) a tubeness filter. The methods were compared in terms of area under the receiver operating characteristics curves, the Az values. The Az value of the cascade approach is 0:85. This is superior to the vesselness, Gaussian, and tubeness methods, with Az values of 0:77, 0:81, and 0:78, respectively. From these results, it can be concluded that our proposed framework is a promising method for the detection of vessels in screening mammograms.

  7. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)


    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  8. Simulation of the electromagnetic wall response to plasma wall-touching kink and vertical modes with application to ITER (United States)

    Atanasiu, Calin; Zakharov, Leonid; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika


    Realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls are necessary to understand plasma disruptions in tokamak. In large tokamaks like ITER, the wall-touching kink modes cause large sideway forces on the vacuum vessel determined by the sharing of asymmetric electric current between the plasma and the wall. Our model covers both eddy currents, excited inductively by vertical modes, and source/sink currents due to current sharing between the plasma and the thin conducting wall. The developed finite element approach calculates the electromagnetic wall response to perturbation of magnetic fields and to current sharing between the plasma and the wall. The current density entering/exiting the wall surface from the plasma and the time derivative of the magnetic vector potential of the plasma are the input values. The magnetic field and the vector potential from the wall currents are returned as output. Our model has been checked against analytical examples of a multiply-connected domain of a real ITER wall.

  9. [The application of ultrasonography to estimate blood vessel injury of upper limbs sustaining electric burns]. (United States)

    Chai, Jia-ke; Li, Li-gen; Chen, Yue-xiu; Hu, Xiao-juan; Yang, Yong-ming


    To explore a new method in estimating extent and degree of arterial injury in upper limbs sustaining high tension electric burns. Eighteen patients (twenty-four upper limbs) with high tension electricity injury were admitted from December 1998 to September 2002, The damaged limbs consisted of four parts: wrist wound part, 5 cm, 10 cm, 15 cm parts around wrist wound, where the radial and ulnar arteries were detected using B ultrasound and color WP Doppler examination. The changes of endangium, vessel diameter, thickness of the vessel wall and volume of blood flow were recorded respectively. The parameters of normal radial and ulnar arteries were also determined as normal control. B ultrasound and color WP Doppler examination showed that the endangium in radial and ulnar arteries become coarse, edema or exfoliation. The vessel wall was thicker than that of the normal control and the thickness was heterogeneity. The vessel wall could be necrosis in severe patient and the vessel cavity was stricture or beaded. Thrombosis or occlusion could occur at the site of severe injury area in vessel. The decrease in volume of blood flow was observed. The condition of the radial and ulnar arteries become well apart from 10 - 15 cm of wrist wound. The ultrasonography can be used to detect the changes in endangium, diameter, thickness of the vessel wall, blood flow volume in injury blood vessel caused by electric burn injury. It is helpful in judging the degree and extent of injury vessel and could be a safe, non-invasive diagnostic method and is worth popularizing.

  10. Numerical model study of radio frequency vessel sealing thermodynamics (United States)

    Pearce, John


    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  11. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies (United States)

    Cilip, Christopher M.; Rosenbury, Sarah B.; Giglio, Nicholas; Hutchens, Thomas C.; Schweinsberger, Gino R.; Kerr, Duane; Latimer, Cassandra; Nau, William H.; Fried, Nathaniel M.


    Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578±154, 530±171, and 426±174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0±0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).

  12. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition.

    Directory of Open Access Journals (Sweden)

    Youxi Yuan

    Full Text Available Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.

  13. Handlebar Hernia: A Rare Type of Abdominal Wall Hernia

    Directory of Open Access Journals (Sweden)

    Rooh-Allah Yegane


    Full Text Available Traumatic abdominal wall hernias are a type of acquired hernia secondary to blunt trauma Caused, by direct trauma from handlebar like objects. This rare hernia is named ‘Handlebar hernia'. We report a case of such hernia without any significant intra-abdominal injury. The abdominal wall defect was repaired in layers by Jones technique. Postoperative course was uneventful. The authors recommend clinical suspicion for traumatic hernia in all patients with traumatic abdominal wall injury. Definitive treatment includes surgical exploration with primary repair of all tissue layers of the abdominal wall.

  14. Handlebar Hernia: A Rare Type of Abdominal Wall Hernia

    Directory of Open Access Journals (Sweden)

    Rooh-Allah Yegane


    Full Text Available "nTraumatic abdominal wall hernias are a type of acquired hernia secondary to blunt trauma Caused, by direct trauma from handlebar like objects. This rare hernia is named ‘Handlebar hernia'. We report a case of such hernia without any significant intra-abdominal injury. The abdominal wall defect was repaired in layers by Jones technique. Postoperative course was uneventful. The authors recommend clinical suspicion for traumatic hernia in all patients with traumatic abdominal wall injury. Definitive treatment includes surgical exploration with primary repair of all tissue layers of the abdominal wall.

  15. Green Arctic Patrol Vessel (United States)


    composite structure which consists of two layers of composite laminates with a balsa wood or syntactic foam center will be used to construct the...Flight Deck Unidirectional/Syntactic Foam 33.3 278,500 Hangar Sides Noncrimp + Plain-weave/ Balsa Wood (15) 15.3 24,800 Forward Deck Noncrimp...Plain-weave/ Balsa Wood (20) 20.3 113,200 Table 7: Composite types for GAPV Naval Surface Warfare Center Carderock Division Center for Innovation

  16. Simulation of liquid dynamics in a cryogenic mobile vessels

    Directory of Open Access Journals (Sweden)

    E. Lisowski


    Full Text Available Technical gases becomes liquid in extremely low temperature ranging minus 200 °C and very high pressure what makes that transportationdevices have to perform very strict requirement. Presented paper shows selected aspect of simulation of liquefied gas sloshing in aspect of requirements that mobile vessels have to fulfill. Mobile vessel which is the object of simulation is a two shell tank with vacuum and layer insulation between shells adapted to 20 ft container. It is assigned for see, railway and road transport and have to follow all of requirements for such transportation systems. Requirements for such tank are enclosed in standard ISO 1496-3 which deals with freight containers and standard EN13530-2 that describes vacuum, cryogenic vessels. The standards EN13530-2 defines that vessels which are to be filled equal or less than 80% should be fitted with surge plates to provide vessel stability and limit dynamic loads. Additionally surge plates area has tobe at least 70% of cross section of the vessel and volume between surge plates shall be not higher than 7.5 m3. Structure of the vessel as well as the surge plate should resist of longitudinal acceleration of 2g. Additionally surge plates shall resists stresses caused by pressure distributed across the area of surge plate and the pressure shall be calculated as mass of liquid between plates and acceleration 2g. In this paper is presented way of simulation of dynamic behavior of liquefied Argon on vessel structure. A numerical methods likeComputational Fluid Dynamics (CFD and Finite Element Analysis (FEA were used for this purpose. Combination of both tools allowedto get pick value of dynamic pressure that arising during acceleration of 2g, which was assumed is 0.2 s and investigate resistance of vessel and container structure. Presented approach is called Fluid – Structure Interaction simulation. In CFD simulation was used Ansys CFX code, while for FEA calculations Pro/Mechanica package.

  17. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie


    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  18. The extended abdominal wall flap for transplantation. (United States)

    Hollenbeck, S T; Senghaas, A; Turley, R; Ravindra, K V; Zenn, M R; Levin, L S; Erdmann, D


    Patients with extensive loss of the abdominal wall tissue have few options for restoring the abdominal cavity. Composite tissue allotransplantation has been used for limited abdominal wall reconstruction in the setting of visceral transplantation, yet replacement of the entire abdominal wall has not been described. The purpose of this study was to determine the maximal abdominal skin surface available through an external iliac/femoral cuff-based pedicle. Five human cadaveric abdominal walls were injected with methylene blue to analyze skin perfusion based on either the deep inferior epigastric artery (DIEA; n = 5) or a cuff of external iliac/femoral artery (n = 5) containing the deep circumflex iliac, deep inferior epigastric, and superficial inferior epigastric, and superficial circumflex iliac arteries. Abdominal wall flaps were taken full thickness from the costal margin to the midaxillary line and down to the pubic tubercle and proximal thigh. In all specimens, the deep inferior epigastric, deep circumflex iliac, superficial inferior epigastric, and superficial circumflex iliac arteries were found to originate within a 4-cm cuff of the external iliac/femoral artery. Abdominal wall flaps injected through a unilateral external iliac/femoral segment had a significantly greater degree of total flap perfusion than those injected through the DIEA alone (76.5% ± 4% vs 57.2% ± 5%; Student t test, P DIEA vessel alone. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Novel Method to Detect Corneal Lymphatic Vessels In Vivo by Intrastromal Injection of Fluorescein. (United States)

    Le, Viet Nhat Hung; Hou, Yanhong; Horstmann, Jens; Bock, Felix; Cursiefen, Claus


    Corneal lymphatic vessels are clinically invisible because of their thin walls and clear lymph fluid. There is no easy and established method for in vivo imaging of corneal lymphatic vessels so far. In this study, we present a novel approach to visualize corneal lymphatic vessels in vivo by injecting intrastromal fluorescein sodium. Six- to eight-week-old female BALB/c mice were used in the mouse model of suture-induced corneal neovascularization. Two weeks after the suture placement, fluorescein sodium was injected intrastromally. The fluorescein, taken up by the presumed lymphatic vessels, was then tracked using a clinically used Spectralis HRA + OCT device. Immunohistochemistry staining with specific lymphatic marker LYVE-1 and pan-endothelial marker CD31 was used to confirm the indirect lymphangiography findings. By injecting fluorescein intrastromally, both corneal blood and lymphatic vessels were detected. While the lymphatic vessels were visible as bright vessel-like structures using HRA, the blood vessels appeared as dark networks. Fluorescein-labeled lymphatic vessels were colocalized with LYVE-1 in immunohistochemically stained sections of the same specimen. Corneal lymphatic vessels can be easily imaged in vivo in the murine model using intrastromal fluorescein injection.

  20. Fast blood-flow simulation for large arterial trees containing thousands of vessels. (United States)

    Muller, Alexandre; Clarke, Richard; Ho, Harvey


    Blood flow modelling has previously been successfully carried out in arterial trees to study pulse wave propagation using nonlinear or linear flow solvers. However, the number of vessels used in the simulations seldom grows over a few hundred. The aim of this work is to present a computationally efficient solver coupled with highly detailed arterial trees containing thousands of vessels. The core of the solver is based on a modified transmission line method, which exploits the analogy between electrical current in finite-length conductors and blood flow in vessels. The viscoelastic behaviour of the arterial-wall is taken into account using a complex elastic modulus. The flow is solved vessel by vessel in the frequency domain and the calculated output pressure is then used as an input boundary condition for daughter vessels. The computational results yield pulsatile blood pressure and flow rate for every segment in the tree. This solver is coupled with large arterial trees generated from a three-dimensional constrained constructive optimisation algorithm. The tree contains thousands of blood vessels with radii spanning ~1 mm in the root artery to ~30 μm in leaf vessels. The computation takes seconds to complete for a vasculature of 2048 vessels and less than 2 min for a vasculature of 4096 vessels on a desktop computer.

  1. 50 CFR 648.8 - Vessel identification. (United States)


    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Vessel identification. 648.8 Section 648.8... identification. (a) Vessel name and official number. Each fishing vessel subject to this part and over 25 ft (7.6... or ocean quahog vessels licensed under New Jersey law may use the appropriate vessel identification...

  2. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A


    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  3. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction. (United States)

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N


    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  4. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges (United States)

    Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas


    during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. Conclusion The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions. PMID:16790065


    Directory of Open Access Journals (Sweden)

    Javad Khazaei


    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  6. Southeast Region Headboat Survey-Vessel list/Vessel Directory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of vessels that have been on the SRHS through time, their owners/operators, marinas/docks and their contact information. This assists in...

  7. The influence of the crust layer on RPV structural failure under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianfeng, E-mail: [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Li, Xiangqing [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Bao, Shiyi [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, Lijia [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)


    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  8. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells. (United States)

    Dimakopoulos, Yannis; Kelesidis, George; Tsouka, Sophia; Georgiou, Georgios C; Tsamopoulos, John


    In microcirculation, the non-Newtonian behavior of blood and the complexity of the microvessel network are responsible for the high flow resistance and the large reduction of the blood pressure. Red blood cell aggregation along with inward radial migration are two significant mechanisms determining the former. Yet, their impact on hemodynamics in non-straight vessels is not well understood. In this study, the steady state blood flow in stenotic rigid vessels is examined, employing a sophisticated non-homogeneous constitutive law. The effect of red blood cells migration on the hydrodynamics is quantified and the constitutive model's accuracy is evaluated. A numerical algorithm based on the two-dimensional mixed finite element method and the EVSS/SUPG technique for a stable discretization of the mass and momentum conservation equations in addition to the constitutive model is employed. The numerical simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness for slow flow conditions. This causes the reduction of the drag force and the increase of the pressure gradient as the constriction ratio decreases. Viscoelastic effects in blood flow were found to be responsible for steeper decreases of tube and discharge hematocrits as decreasing function of constriction ratio.

  9. Dry wall Kras 2011

    Directory of Open Access Journals (Sweden)

    Domen Zupančič


    Full Text Available Despite the modesty of hiska, they show a simple understanding of corbelling technique. One could say they are all examples of human landscape cultivation. Although there is no evident common line when comparing all types of hiska, the cunning eye may observe one shared feature: the positioning of the entrance. More or less all the documented shelters have south or south-western facing entrances. The burja is a cold northerly wind; from the south (Adriatic Sea the winds are warmer. When resting, the setting sun is taken as a sign of the ending of the working day and a reward for the whole day’s efforts. Entrances are the only openings to these structures, and they should serve as well as possible - to watch over the crops, to wait when hunting, to enjoy the calm of evening light, to breathe the sea wind.The syntax of the architectural language of layering stone and shaping the pattern of the landscape remain an inventive realisation of spatial ideas from the past until today. Not only ideas of shaping space - these ideas are basic interventions in the natural habitat which contribute to survival. Culture and an awareness of its values are the origins of local development and reasonable heritage preservation. The next step are tutorial days with workshops on how to build dry stone structures, walls and other stone architecture, as the DSWA organisation in the UK is doing.

  10. Charged Domain Walls


    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.


    In this paper we investigate Charged Domain Walls (CDW's), topological defects that acquire surface charge density $Q$ induced by fermion states localized on the walls. The presence of an electric and magnetic field on the walls is also discussed. We find a relation in which the value of the surface charge density $Q$ is connected with the existence of such topological defects.

  11. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Broadhead, B.L. [Oak Ridge National Lab., TN (United States); Suzuki, M.; Kohsaka, A. [Japan Atomic Energy Research Institute, Tokai (Japan)


    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  12. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI (United States)

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.


    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  13. Wall conditioning and particle control in Extrap T2 (United States)

    Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.


    The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.

  14. Feeling Wall Tension in an Interactive Demonstration of Laplace's Law (United States)

    Letic, Milorad


    Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…

  15. Estimating local heat transfer coefficients from thin wall temperature measurements (United States)

    Gazizov, I. M.; Davletshin, I. A.; Paereliy, A. A.


    An approach to experimental estimation of local heat transfer coefficient on a plane wall has been described. The approach is based on measurements of heat-transfer fluid and wall temperatures during some certain time of wall cooling. The wall was a thin plate, a printed circuit board, made of composite epoxy material covered with a copper layer. The temperature field can be considered uniform across the plate thickness when heat transfer is moderate and thermal resistance of the plate in transversal direction is low. This significantly simplifies the heat balance written for the wall sections that is used to estimate the heat transfer coefficient. The copper layer on the plate etched to form a single strip acted as resistance thermometers that measured the local temperature of the wall.

  16. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  17. 2013 East Coast Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  18. SC/OQ Vessel Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data tables holding information for the Surf Clam/Ocean Quahog vessel and dealer/processor logbooks (negative and positive), as well as individual tag information...

  19. 2011 Great Lakes Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. 2011 West Coast Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  1. 2013 Great Lakes Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. 2011 East Coast Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. Integrin binding: Sticking around vessels (United States)

    Blatchley, Michael R.; Gerecht, Sharon


    A study demonstrates that controlled integrin binding on a biomaterial was capable of promoting vascular cell sprouting and formation of a non-leaky blood vessel network in a healthy and diseased state.

  4. Transposition of the great vessels (United States)

    ... vessel called the ductus arteriosus open, allowing some mixing of the 2 blood circulations. A procedure using ... they are not already immune. Eating well, avoiding alcohol, and controlling diabetes both before and during pregnancy ...

  5. 2013 West Coast Vessel Tracklines (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  6. Vessel Permit System Data Set (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  7. 2011 Tug Towing Vessel Density (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. Caribbean PR Logbook Survey (Vessels) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels fishing in Puerto Rico. The catch and effort data for the entire trip are...

  9. Coastal Discard Logbook Survey (Vessels) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data on the type and amount of marine resources that are discarded or interacted with by vessels that are selected to report to the Southeast...

  10. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß


    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  11. Prosopomorphic vessels from Moesia Superior

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana


    Full Text Available The prosopomorphic vessels from Moesia Superior had the form of beakers varying in outline but similar in size. They were wheel-thrown, mould-made or manufactured by using a combination of wheel-throwing and mould-made appliqués. Given that face vessels are considerably scarcer than other kinds of pottery, more than fifty finds from Moesia Superior make an enviable collection. In this and other provinces face vessels have been recovered from military camps, civilian settlements and necropolises, which suggests that they served more than one purpose. It is generally accepted that the faces-masks gave a protective role to the vessels, be it to protect the deceased or the family, their house and possessions. More than forty of all known finds from Moesia Superior come from Viminacium, a half of that number from necropolises. Although tangible evidence is lacking, there must have been several local workshops producing face vessels. The number and technological characteristics of the discovered vessels suggest that one of the workshops is likely to have been at Viminacium, an important pottery-making centre in the second and third centuries.

  12. The composition of collagen in the aneurysm wall of men and women

    NARCIS (Netherlands)

    Villard, C.; Eriksson, P.; Hanemaaijer, R.; Lindeman, J.H.; Hultgren, R.


    Background. Loss of vessel wall integrity by degradation is essential for the development of abdominal aortic aneurysm (AAA) and ultimately its rupture. The observed greater rupture rate in women with AAA might be related to gender differences in the biomechanical properties of the aneurysm wall.

  13. Probabilistic Structural Integrity Analysis of Boiling Water Reactor Pressure Vessel under Low Temperature Overpressure Event

    Directory of Open Access Journals (Sweden)

    Hsoung-Wei Chou


    Full Text Available The probabilistic structural integrity of a Taiwan domestic boiling water reactor pressure vessel has been evaluated by the probabilistic fracture mechanics analysis. First, the analysis model was built for the beltline region of the reactor pressure vessel considering the plant specific data. Meanwhile, the flaw models which comprehensively simulate all kinds of preexisting flaws along the vessel wall were employed here. The low temperature overpressure transient which has been concluded to be the severest accident for a boiling water reactor pressure vessel was considered as the loading condition. It is indicated that the fracture mostly happens near the fusion-line area of axial welds but with negligible failure risk. The calculated results indicate that the domestic reactor pressure vessel has sufficient structural integrity until doubling of the present end-of-license operation.

  14. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  15. Abdominal wall fat pad biopsy (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  16. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Directory of Open Access Journals (Sweden)

    Vinayak S Joshi

    Full Text Available The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  17. Multi-level deep supervised networks for retinal vessel segmentation. (United States)

    Mo, Juan; Zhang, Lei


    Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

  18. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)


    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  19. Scrape-off-layer current and EUV diagnostics and control on the HBT-EP tokamak (United States)

    Levesque, J. P.; Mauel, M. E.; Bialek, J.; Navratil, G. A.; Delgado-Aparicio, L.; Hansen, C. J.


    Non-axisymmetric currents in the scrape-off-layer (SOL) and conducting structure of a tokamak can produce severe forces at high plasma performance, compromising the device's structural integrity. Diagnosing these currents during disruptions is important for extrapolating forces in future machines including ITER. Progress on designing components to measure and control SOL and vessel currents in the HBT-EP tokamak is presented. Movable tiles positioned around limiting surfaces will measure SOL and vessel currents during mode activity and disruptions. Biasable plates at divertor strike points will allow control of field-aligned SOL currents for kink mode control studies and will drive convection in the plasma edge. In-vessel Rogowski coils will measure currents in wall components with high spatial resolution. A planned EUV diagnostic upgrade is also presented. Four sets of 16 poloidal views will allow tomographic reconstruction of plasma emissivity and internal kink mode structure. A separate two-color, 16-chord tangential system will allow reconstruction of temperature profiles versus time. Measurements will be input to HBT-EP's GPU-based feedback system, providing active feedback for kink modes using only optical sensors and both magnetic and edge current actuators. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  20. Scrape-off-layer currents during MHD activity and disruptions in HBT-EP (United States)

    Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.


    We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  1. 50 CFR 697.8 - Vessel identification. (United States)


    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 697.8 Section 697.8 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION....8 Vessel identification. (a) Vessel name and official number. Each fishing vessel issued a limited...

  2. Shock-induced collapse of a bubble inside a deformable vessel (United States)

    Coralic, Vedran; Colonius, Tim


    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  3. Mechanosensing in developing lymphatic vessels. (United States)

    Planas-Paz, Lara; Lammert, Eckhard


    The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.

  4. S-layers: principles and applications (United States)

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar


    Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139

  5. Turbulent Boundary Layer on a Cylinder in Axial Flow (United States)


    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  6. Platelet-derived growth factor B retention is essential for development of normal structure and function of conduit vessels and capillaries

    DEFF Research Database (Denmark)

    Nyström, Henrik C.; Lindblom, Per; Wickman, Anna


    : Passive and active properties of conduit vessels were studied using myograph techniques and histological examination. Capillary structure and function was studied using measurements of capillary density in skeletal muscle and by assessing aerobic physical performance in a treadmill setup. Cardiac function...... was assessed using echocardiography. RESULTS: Myograph experiments revealed an increased diameter and stiffness of the aorta in RetKO. Histological examination showed increased media collagen content and a decreased number of aortic wall layers, however with a similar number of vascular smooth muscle cells....... This outward eutrophic remodelling of the aorta was accompanied by endothelial dysfunction. RetKO showed decreased capillary density in skeletal muscle and signs of a defective delivery of capillary oxygen to skeletal muscle, as shown by a decreased physical performance. In RetKO mice, echocardiography...

  7. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)


    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  8. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. (United States)

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew


    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in

  9. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup


    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  10. 19 CFR 4.5 - Government vessels. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Government vessels. 4.5 Section 4.5 Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES Arrival and Entry of Vessels § 4.5 Government vessels. (a) No... that is the property of, the U.S. Department of Defense (DoD) will be treated as a Government vessel...

  11. Characterization of atherosclerotic plaque of carotid arteries with histopathological correlation: Vascular wall MR imaging vs. color Doppler ultrasonography (US)

    National Research Council Canada - National Science Library

    Watanabe, Yuji; Nagayama, Masako; Suga, Tsuyoshi; Yoshida, Kazumichi; Yamagata, Sen; Okumura, Akira; Amoh, Yoshiki; Nakashita, Satoru; Van Cauteren, Marc; Dodo, Yoshihiro


    To investigate whether the vessel wall MRI of carotid arteries would differentiate at-risk soft plaque from solid fibrous plaque by identifying liquid components more accurately than color Doppler ultrasonography (US...

  12. Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım


    Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.

  13. [Pulmonary blood vessels in goats]. (United States)

    Roos, H; Hegner, K; Vollmerhaus, B


    The blood vessels in the lung of the goat, which until now have received little attention, are described in detail for the first time. With regard to the segments of the lung, blood vessels are bronchovascular units in the lobi craniales, lobus medius and lobus accessorius, but bronchoartery units in the lobi caudales. We investigated the types of branches of the Aa. pulmonales dextra et sinistra, the inter- and intraspecific principles of the outlet of the pulmonary veins and the importance of bronchopulmonary segmentation of the lungs.

  14. [Ischemic disorders of the large intestinal wall. Ischemic colitis and rectitis secondary to intrinsic vascular disorders]. (United States)

    Saegesser, F; Roenspies, U; Robinson, J W


    Ischaemic diseases of the large intestinal wall is a characteristic syndrome caused by vascular insufficiency of varying degrees. The ischaemia results from haemodynamic disturbances and often arises in spite of the patency of the vessels. The mucosa of the intestine is the tissue layer that is most vulnerable to ischaemia. Ischaemia of the colon occurs in the presence of a microbial flora that is often highly pathogenic, and hence the lesions rapidly become infected. For this reason the inflammatory features of the disease tend to conceal its vascular origin and ischaemic colitis has often been confused with other infectious, inflammatory, ulcero-haemorrhagic disorders of the large intestine. Although the syndrome may occur in any patient, it is much more common in elderly subjects with a history of arteriesclerosis and cardiac disease. Two main varieties can be identified, depending on the extent of the vascular insufficiency. In the first, the lesion may heal spontaneously or evolve towards fibrous strictures of the colonic wall; in the second, gangrenous necrosis of the colon or rectum may develope, the clinical picture of which has more in common with an "acute abdomen' than with ulcerative disease of the colon.

  15. The wall traction induced by flowing red blood cells in model microvessels and its potential mechanotransduction (United States)

    Freund, Jonathan; Vermot, Julien


    There is evidence in early embryonic development, even well before advective oxygen transport is important, that the presence of red bloods cells per se trigger essential steps of normal vascular development. For example, showed that sequestration of blood cells early in the development of a mouse, such that the hematocrit is reduced, suppresses normal vascular network development. Vascular development also provides a model for remodeling and angiogenesis. We consider the transient stresses associated with blood cells flowing in model microvessels of comparable diameter to those at early stages of development (6 μm to 12 μm). A detailed simulation tool is used to show that passing blood cells present a significant fluctuating traction signature on the vessel wall, well above the mean stresses. This is particularly pronounced for slow flows (<= 50 μm/s) or small diameters (<= 7 μm), for which root-mean-square wall traction fluctuations can exceed their mean. These events potentially present mechanotranduction triggers that direct development or remodeling. Attenuation of such fluctuating tractions by a viscoelastic endothelial glycocalyx layer is also considered. NSF supported.

  16. Characteristics of blood vessels forming “sausages-on-a-string” patterns during hypertension (United States)

    Ravnsborg Beierholm, Ulrik; Christian Brings Jacobsen, Jens; Holstein-Rathlou, Niels-Henrik; Alstrøm, Preben


    A phenomenon of alternate constrictions and dilatations in blood vessels has been studied for over 50 years. Recently, a theory has been presented involving a Rayleigh type instability. We analyze the model in terms of the lengths of the deformations in relation to the wall thickness, blood pressure and stress. Analytical and numerical results obtained are consistent with experimental data.

  17. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)


    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  18. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.


    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  19. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels (United States)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon


    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  20. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka


    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  1. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida


    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  2. A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Suda


    Full Text Available The ascospores of Saccharomyces cerevisiae are surrounded by a complex wall that protects the spores from environmental stresses. The outermost layer of the spore wall is composed of a polymer that contains the cross-linked amino acid dityrosine. This dityrosine layer is important for stress resistance of the spore. This work reports that the dityrosine layer acts as a barrier blocking the diffusion of soluble proteins out of the spore wall into the cytoplasm of the ascus. Diffusion of a fluorescent protein out of the spore wall was used as an assay to screen for mutants affecting spore wall permeability. One of the genes identified in this screen, OSW3 (RRT12/YCR045c, encodes a subtilisin-family protease localized to the spore wall. Mutation of the active site serine of Osw3 results in spores with permeable walls, indicating that the catalytic activity of Osw3 is necessary for proper construction of the dityrosine layer. These results indicate that dityrosine promotes stress resistance by acting as a protective shell around the spore. OSW3 and other OSW genes identified in this screen are strong candidates to encode enzymes involved in assembly of this protective dityrosine coat.

  3. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio


    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  4. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka


    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  5. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik


    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...

  6. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)


    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  7. Invasion of lymphatic vessels into the eye after open globe injuries. (United States)

    Wessel, Julia M; Hofmann-Rummelt, Carmen; Kruse, Friedrich E; Cursiefen, Claus; Heindl, Ludwig M


    We analyzed whether lymphatic vessels can be detected in eyes enucleated after an open globe injury. The presence of lymphatic vessels was analyzed immunohistochemically using podoplanin as a specific lymphatic endothelial marker in 21 globes that had been enucleated after open globe injury. The localization of pathologic lymphatic vessels (within the eye wall or inside the eye) was correlated with the mechanism of trauma, anatomic site of perforation or rupture, and time interval between trauma and enucleation. Pathologic lymphatic vessels were detected in 15 of 21 eyes (71%) enucleated after an open globe injury. In 5 globes (24%) they were found within the eye, located in retrocorneal membranes, underneath the sclera, and adjacent to uveal tissue (ciliary body, iris). No significant association was observed between the presence of pathologic lymphatic vessels and the mechanism of trauma (P = 0.598), anatomic site of perforation or rupture (P = 0.303), and time interval between trauma and enucleation (P = 0.145). The human eye can be invaded secondarily by lymphatic vessels if the eye wall is opened by trauma. This mechanism could be important for wound healing, immunologic defense against intruding microorganisms, and autoimmune reactions against intraocular antigens.

  8. Compressibility measurements of gases using externally heated pressure vessels. (United States)

    Presnall, D. C.


    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  9. Commercial Passenger Fishing Vessel Fishery (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the logbook data from U.S.A. Commercial Passenger Fishing Vessels (CPFV) fishing in the U.S.A. EEZ and in waters off of Baja California, from...

  10. Pressure vessel and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Timothy


    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  11. BPC 157 and blood vessels. (United States)

    Seiwerth, Sven; Brcic, Luka; Vuletic, Lovorka Batelja; Kolenc, Danijela; Aralica, Gorana; Misic, Marija; Zenko, Anita; Drmic, Domagoj; Rucman, Rudolf; Sikiric, Predrag


    This review focuses on the described effects of BPC 157 on blood vessels after different types of damage, and elucidate by investigating different aspects of vascular response to injury (endothelium damage, clotting, thrombosis, vasoconstriction, vasodilatation, vasculoneogenesis and edema formation) especially in connection to the healing processes. In this respect, BPC 157 was concluded to be the most potent angiomodulatory agent, acting through different vasoactive pathways and systems (e.g. NO, VEGF, FAK) and leading to optimization of the vascular response followed, as it has to be expected, by optimization of the healing process. Formation of new blood vessels involves two main, partly overlapping mechanisms, angiogenesis and vasculogenesis. The additional mechanism of arteriogenesis is involved in the formation of collaterals. In conjunction with blood vessel function, we at least have to consider leakage of fluid/proteins/plasma, resulting in edema/exudate formation as well as thrombogenesis. Blood vessels are also strongly involved in tumor biology. In this aspect, we have neoangiogenesis resulting in pathological vascularization, vascular invasion resulting in release of metastatic cells and the phenomenon of homing resulting in formation of secondary tumors--metastases.

  12. The determinants of fishing vessel accident severity. (United States)

    Jin, Di


    The study examines the determinants of fishing vessel accident severity in the Northeastern United States using vessel accident data from the U.S. Coast Guard for 2001-2008. Vessel damage and crew injury severity equations were estimated separately utilizing the ordered probit model. The results suggest that fishing vessel accident severity is significantly affected by several types of accidents. Vessel damage severity is positively associated with loss of stability, sinking, daytime wind speed, vessel age, and distance to shore. Vessel damage severity is negatively associated with vessel size and daytime sea level pressure. Crew injury severity is also positively related to the loss of vessel stability and sinking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Equilibrium Wall Model Implementation in a Nodal Finite Element Flow Solver JENRE for Large Eddy Simulations (United States)


    IV. Boundary-Layer Flows in a C-D Nozzle ...............................................................................................4 V ...3) at an adiabatic wall condition. Taw is the adiabatic temperature on the wall, and Cp is the specific heat capacity. in an isotropic mesh. V . Conclusions The equilibrium wall model is implemented in our in-house finite element flow solver JENRE to simulate

  14. Ultrastructure of the ascospore wall in Pezizales (Ascomycetes) — III. Otideaceae and Pezizaceae

    NARCIS (Netherlands)

    Merkus, Emily


    The development of wall layers and ornamentation of ascospores is studied with the electron microscope in members of the Otideaceae and Pezizaceae. Primary wall, endospore, and epispore develop in the same way as in Ascodesmis and the Pyronemataceae; the development of the secondary wall and the

  15. Sustainable wall construction and exterior insulation retrofit technology process and structure (United States)

    Vohra, Arun


    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  16. 46 CFR 42.05-63 - Ship(s) and vessel(s). (United States)


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63... BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s) and vessel(s) are interchangeable or synonymous words, and include every description of watercraft...

  17. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  18. Aqueous Solution Vessel Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  19. Vessel tree extraction using locally optimal paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; van Ginneken, Bram; de Bruijne, Marleen


    This paper proposes a method to extract vessel trees by continually extending detected branches with locally optimal paths. Our approach uses a cost function from a multi scale vessel enhancement filter. Optimal paths are selected based on rules that take into account the geometric characteristics...... of the vessel tree. Experiments were performed on 10 low dose chest CT scans for which the pulmonary vessel trees were extracted. The proposed method is shown to extract a better connected vessel tree and extract more of the small peripheral vessels in comparison to applying a threshold on the output...

  20. Electrically conductive containment vessel for molten aluminum (United States)

    Holcombe, C.E.; Scott, D.G.


    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.