WorldWideScience

Sample records for vessel wall caused

  1. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene

    2002-01-01

    Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage....... A related vascular pattern has been observed in larger vessels from several organs during angiography. In the larger vessels the occurrence of the pattern does not appear to be related to acute hypertension. A unifying feature between the phenomenon in large and small vessels seems to be an increase...... observed experimentally. Most importantly, it suggests that the "sausaging" phenomenon is neither caused by a mechanical failure of the vessel wall due to a high blood pressure nor is it due to standing pressure waves caused by the beating of the heart. Rather, it is the expression of a general instability...

  2. Intracranial vessel wall imaging at 7.0 tesla MRI

    NARCIS (Netherlands)

    van der Kolk, A.G.

    2014-01-01

    Intracranial atherosclerosis is one of the main causes of ischemic stroke. Current conventional imaging techniques assessing intracranial arterial disease in vivo only visualize the vessel wall lumen instead of the pathological vessel wall itself. Therefore, not much is known about the imaging

  3. Role of arginase in vessel wall remodeling

    Directory of Open Access Journals (Sweden)

    William eDurante

    2013-05-01

    Full Text Available Arginase metabolizes the semi-essential amino acid L-arginine to L-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and L-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages towards an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide synthesis by competing with nitric oxide synthase for substrate, L-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.

  4. In vivo and ex vivo vessel wall MRI of the circle of Willis

    NARCIS (Netherlands)

    Harteveld, A.A.|info:eu-repo/dai/nl/413650286

    2017-01-01

    In recent years, several MRI sequences have been developed for direct evaluation of the intracranial vessel wall and its pathology in vivo. These MRI sequences enable detection of intracranial vessel wall abnormalities, including those that have not yet caused luminal narrowing. The research field

  5. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection

    Directory of Open Access Journals (Sweden)

    Sotirios Raptis

    2010-01-01

    and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency. Specific vessel parameters (centerline, width, location, fall-away rate, main orientation are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs. These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions, representing almost 2% of the 2D volume, good speed versus accuracy/time trade-off. Results show the potentials of our approach in terms of time for detection ROC analysis and accuracy of vessel pixel (VP detection.

  6. Vessel wall characterization using quantitative MRI: what's in a number?

    Science.gov (United States)

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  7. Magnetic resonance imaging of vessel wall morphology and function

    NARCIS (Netherlands)

    Kröner, Eleanore Sophie Jeanine

    2015-01-01

    This thesis evaluates morphological and functional vessel wall properties measured by magnetic resonance imaging techniques in healthy volunteers and patients with various diseases (i.e. Marfan syndrome patients (MFS), patients with thoracic aortic aneurysm and patients with a previous myocardial

  8. Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics.

    Science.gov (United States)

    Chee, Adrian J Y; Ho, Chung Kit; Yiu, Billy Y S; Yu, Alfred C H

    2016-07-18

    As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.

  9. Force acting on spheres adhered to a vessel wall.

    Science.gov (United States)

    Sugihara-Seki, M; Skalak, R

    1997-01-01

    To evaluate the force and torque acting on leukocytes attached to the vessel wall, we numerically study the flow field around the leukocytes by using rigid spherical particles adhered to the wall of a circular cylindrical tube as a model of adherent leukocytes. The adherent particles are assumed to be placed regularly in the flow direction with equal spacings, in one row or two rows. The flow field of the suspending fluid is analyzed by a finite element method applied to the Stokes equations, and the drag force and torque acting on each particle, as well as the apparent viscosity, are evaluated as a function of the particle to tube diameter ratio and the particle arrangements. For two-row arrangements of adhered particles where neighboring particles are placed alternately on opposite sides of the vessel, the drag and the torque exerted on each particle are higher than those for single-row arrangements, for constant particle to tube diameter ratio and axial spacing between neighboring particles. This is enhanced for larger particles and smaller axial spacings. The apparent viscosity of the flow through vessels with adhered particles is found to be significantly higher than that without adhered particles or when the particles are freely floating through the vessels.

  10. Coagulation and the vessel wall in thrombosis and atherosclerosis.

    Science.gov (United States)

    Kleinegris, Marie-Claire; Ten Cate-Hoek, Arina J; Ten Cate, Hugo

    2012-01-01

    The blood coagulation system is a key survival mechanism that has developed to protect man against lethal bleeding. A second function of blood coagulation is its close interaction with immunity. The immune-mediated coagulation responses may broadly be regarded as an element of response to injury. Pathological coagulation responses, including thromboembolism and disseminated intravascular coagulation (DIC), could therefore be regarded as excessive immune responses to a vessel wall injury. Virchow's triad, which comprises changes in the components of the blood, the state of the vessel wall, and the blood flow, was originally proposed for venous thrombosis. However, lately it appears that the same principles can be applied to arterial thrombosis and even DIC. It has even been postulated that all forms of thrombosis may be part of a continuous spectrum of the same disease. Over the past few years, an accumulation of evidence has shown that the etiopathogenetic mechanisms behind venous and arterial thrombosis are quite similar. The traditional elements of Virchow's triad are found to apply to both arterial and venous thrombosis. Yet, nowadays more emphasis is placed on the vessel wall and vascular bed specificity and the interaction with inflammation and hypercoagulability. This narrative review will discuss recent advances in research on the possible interactions between coagulation, the vascular endothelium, and atherosclerosis as well as the consequences of such interactions for venous and arterial thrombosis.

  11. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  12. Increased coronary vessel wall thickness in HIV-infected young adults.

    Science.gov (United States)

    Abd-Elmoniem, Khaled Z; Unsal, Aylin B; Eshera, Sarah; Matta, Jatin R; Muldoon, Nancy; McAreavey, Dorothea; Purdy, Julia B; Hazra, Rohan; Hadigan, Colleen; Gharib, Ahmed M

    2014-12-15

    Individuals with long-term human immunodeficiency virus (HIV) infection are at risk for premature vasculopathy and cardiovascular disease (CVD). We evaluated coronary vessel wall thickening, coronary plaque, and epicardial fat in patients infected with HIV early in life compared with healthy controls. This is a prospective cross-sectional study of 35 young adults who acquired HIV in early life and 11 healthy controls, free of CVD. Time resolved phase-sensitive dual inversion recovery black-blood vessel wall magnetic resonance imaging (TRAPD) was used to measure proximal right coronary artery (RCA) wall thickness, and multidetector computed tomography (CT) angiography was used to quantify coronary plaque and epicardial fat. RCA vessel wall thickness was significantly increased in HIV-infected patients compared with sex- and race-matched controls (1.32 ± 0.21 mm vs 1.09 ± 0.14 mm, P = .002). No subject had discrete plaque on CT sufficient to cause luminal narrowing, and plaque was not related to RCA wall thickness. In multivariate regression analyses, smoking pack-years (P = .004) and HIV infection (P = .007) were independently associated with thicker RCA vessel walls. Epicardial fat did not differ between groups. Among the HIV-infected group, duration of antiretroviral therapy (ART) (P = .02), duration of stavudine exposure (P ART, hyperlipidemia, and smoking contributed to proximal RCA thickening, independent of atherosclerotic plaque quantified by CT. These modifiable risk factors appear to influence early atherogenesis as measured by coronary wall thickness and may be important targets for CVD risk reduction. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Automated image segmentation and registration of vessel wall MRI for quantitative assessment of carotid artery vessel wall dimensions and plaque composition

    NARCIS (Netherlands)

    Klooster, Ronald van 't

    2014-01-01

    The main goal of this thesis was to develop methods for automated segmentation, registration and classification of the carotid artery vessel wall and plaque components using multi-sequence MR vessel wall images to assess atherosclerosis. First, a general introduction into atherosclerosis and

  14. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall.

    Science.gov (United States)

    Zhang, Qinghui; Zhang, Yufeng; Zhou, Yi; Zhang, Kun; Zhang, Kexin; Gao, Lian

    2016-01-01

    This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue's motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity.

  15. Subclavian vein aneurysm secondary to a benign vessel wall hamartoma

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Patrick [Nationwide Children' s Hospital, Section of Pediatric Interventional Radiology, Columbus, OH (United States); Spaeth, Maya [Nationwide Children' s Hospital, Section of Plastic and Reconstructive Surgery, Columbus, OH (United States); Prasad, Vinay [Nationwide Children' s Hospital, Section of Pediatric Pathology, Columbus, OH (United States); McConnell, Patrick [Nationwide Children' s Hospital, Section of Cardiothoracic Surgery, Columbus, OH (United States)

    2013-11-15

    Venous aneurysms are rare clinical entities, particularly in children, and their presentation and natural history often depend on the anatomical location and underlying etiology. We present a single case of a 12-year-old girl who presented with a palpable right supraclavicular mass. Imaging evaluation with CT, conventional venography, MRI and sonography revealed a large fusiform subclavian vein aneurysm with an unusual, mass-like fibrofatty component incorporated into the vessel wall. The girl ultimately required complete resection of the right subclavian vein with placement of a synthetic interposition graft. This case provides a radiology/pathology correlation of an entity that has not previously been described as well as an example of the utility of multiple imaging modalities to aid diagnosis and preoperative planning. (orig.)

  16. Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome

    NARCIS (Netherlands)

    Lindeman, J.H.N.; Ashcroft, B.A.; Beenakker, J.-W.M.; Es, M. van; Koekkoek, N.B.R.; Prins, F.A.; Tielemans, J.F.; Abdul-Hussien, H.; Bank, R.A.; Oosterkamp, T.H.

    2010-01-01

    An aneurysm of the aorta is a common pathology characterized by segmentalweakeningof the artery.Althoughit isgenerally accepted that the vessel-wall weakening is caused by an impaired collagen metabolism, a clear association has been demonstrated only for rare syndromes such as the vascular type

  17. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  18. High-Resolution Vessel Wall Magnetic Resonance Imaging in Varicella-Zoster Virus Vasculitis.

    Science.gov (United States)

    Tsivgoulis, Georgios; Lachanis, Stefanos; Magoufis, Georgios; Safouris, Apostolos; Kargiotis, Odysseas; Stamboulis, Elefterios

    2016-06-01

    Varicella-zoster virus vasculopathy is a rare but potentially treatable condition. Diagnosis has been based on angiography, brain magnetic resonance imaging (MRI), and cerebrospinal fluid analysis. High-resolution vessel wall MRI may aid to the diagnosis by differentiating inflammation from other vessel wall pathologies. We present the characteristic MRI findings of this condition in a young patient presenting with ischemic stroke. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Estrogen receptor expression and vessel density in the vagina wall in postmenopausal women with prolapse.

    Science.gov (United States)

    Lara, Lúcia Alves da Silva; Ribeiro da Silva, Alfredo; Rosa-e-Silva, Julio Cesar; Silva-de-Sá, Marcos Felipe; Rosa-e-Silva, Ana Carolina Japur de Sá

    2014-04-01

    After menopause, critically estrogen low levels result in modifications in vaginal wall. This cross-sectional study aims to determine whether there is a change in the number of vessels in the lamina propria of the vagina after menopause in parallel to the ER-alpha expression on the vaginal wall. Twelve women who underwent a genital surgery for genital prolapse up to grade II were selected. They were divided into two groups: a premenopausal group (PG) consisting of six women who were 18-40 years old with FSH levels =12 mIU/ml and regular cycles, and a menopausal group (MG) consisting of six women at least one year after menopause who were <65 years old with FSH levels =40 mIU/ml. Slides were stained for ER-alpha immunohistochemistry, and an endothelial cell marker CD3 was used to label vessels which were identified by using a system for morphometry. The number of vessels was significantly higher in the PG than in the MG both on the anterior wall (PG: 1.055 ± 145.8 vessels/mm(2), MG: 346.6 ± 209.9 vessels/mm(2), p<0.0001) and on the posterior wall (PG: 1064 ± 303.3 vessels/mm(2), MG: 348.6 ± 167.3 vessels/mm(2), p=0.0005). The ER-alpha score was significantly higher in the PG than the score for the MG on both the anterior and posterior walls (PG: 6.0 ± 0.52, MG: 2.5 ± 0.89, p=0.007; PG: 5.8 ± 0.79, MG: 2.7 ± 0.95, p=0.03, respectively). There was a positive correlation between the ER-alpha score and the vessel concentration on the anterior (r=0.6656, p=0.018) and posterior (r=0.6738, p=0.016) vaginal walls. Age was strongly negatively correlated with vessel concentration on the vaginal walls (respectively r=-0.9033, p<0.0001, r=-0.7440, p=0.0055). Therefore, postmenopausal women with genital prolapse have a smaller number of vessels on the vaginal wall compared to normoestrogenic controls with the same pathological condition. Hypoestrogenism and advancing age are factors that are associated to these changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T

    Energy Technology Data Exchange (ETDEWEB)

    Harteveld, Anita A.; Kolk, Anja G. van der; Dieleman, Nikki; Siero, Jeroen C.W.; Luijten, Peter R.; Zwanenburg, Jaco J.M.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Worp, H.B. van der; Frijns, Catharina J.M. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Kuijf, Hugo J. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2017-04-15

    Several intracranial vessel wall sequences have been described in recent literature, with either 3-T or 7-T magnetic resonance imaging (MRI). In the current study, we compared 3-T and 7-T MRI in visualising both the intracranial arterial vessel wall and vessel wall lesions. Twenty-one elderly asymptomatic volunteers were scanned by 3-T and 7-T MRI with an intracranial vessel wall sequence, both before and after contrast administration. Two raters scored image quality, and presence and characteristics of vessel wall lesions. Vessel wall visibility was equal or significantly better at 7 T for the studied arterial segments, even though there were more artefacts hampering assessment. The better visualisation of the vessel wall at 7 T was most prominent in the proximal anterior cerebral circulation and the posterior cerebral artery. In the studied elderly asymptomatic population, 48 vessel-wall lesions were identified at 3 T, of which 7 showed enhancement. At 7 T, 79 lesions were identified, of which 29 showed enhancement. Seventy-one percent of all 3-T lesions and 59 % of all 7-T lesions were also seen at the other field strength. Despite the large variability in detected lesions at both field strengths, we believe 7-T MRI has the highest potential to identify the total burden of intracranial vessel wall lesions. (orig.)

  1. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

    Science.gov (United States)

    González-Suárez, Ana; Trujillo, Macarena; Burdío, Fernando; Andaluz, Anna; Berjano, Enrique

    2014-08-01

    To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. First,in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. The geometries of thermal lesions around the vessels in the in vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device.

  2. Computerized flow and vessel wall analyses of coronary arteries for detection of non-calcified plaques in coronary CT angiography

    Science.gov (United States)

    Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Hadjiiski, Lubomir; Kazerooni, Ella

    2016-03-01

    The buildup of non-calcified plaques (NCP) that are vulnerable to rupture in coronary arteries is a risk for myocardial infarction. We are developing a computer-aided detection (CADe) system to assist radiologists in detecting NCPs in cCTA. A major challenge of NCP detection is the large number of false positives (FPs) caused by the small sized coronary arteries, image noise and artifacts. In this study, our purpose is to design new image features to reduce FPs. A data set of 98 cCTA scans was retrospectively collected from patient files. We first used vessel wall analysis, in which topological features were extracted from vessel wall and fused with a support-vector machine, to identify the NCP candidates from the segmented coronary tree. Computerized flow dynamic (CFD) features that characterize the change in blood flow due to the presence of plaques and a vascular cross-sectional (VCS) feature that quantifies the presence of low attenuation region at the vessel wall were designed for FP reduction. Using a leave-one-out resampling method, a support vector machine classifier was trained to merge the features into a NCP likelihood score using the vessel wall features alone or in combination with the new CDF and VCS features. The performance of the new features in classification of true NCPs and FPs was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Without the new CFD and VCS features, the test AUC was 0.84+/-0.01. The AUC was improved to 0.88+/-0.01 with the addition of the new features. The improvement was statistically significant (p < 0.001). The study indicated that the new flow dynamic and vascular cross-sectional features were useful for differentiation of NCPs from FPs in cCTA.

  3. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Gerald F.; Hofbeck, Michael; Sieverding, Ludger [University of Tuebingen, Department of Pediatric Cardiology, Children' s Hospital, Tuebingen (Germany); Seeger, Achim; Miller, Stephan; Claussen, Claus D. [University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); Botnar, Rene M. [Technical University Munich, Department of Nuclear Medicine, Cardiovascular Division, Munich (Germany)

    2007-07-15

    In patients with Kawasaki disease (KD) serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. To apply whole-heart coronary MR angiography (CMRA) and black-blood coronary vessel wall imaging in children with KD. Six children (mean age 4.6 years, range 2.5-7.8 years) with KD underwent CMRA using a free-breathing, T2-prepared, three-dimensional steady-state free-precession (3D-SSFP), whole-heart approach with navigator gating and tracking. Vessel walls were imaged with an ECG-triggered and navigator-gated double inversion recovery (DIR) black-blood segmented turbo spin-echo sequence. There was complete agreement between CMRA and conventional angiography (n=6) in the detection of CAA (n=15). Excellent agreement was found between the two techniques in determining the maximal diameter (mean difference 0.2{+-}0.7 mm), length (mean difference 0.1{+-}0.8 mm) and distance from the ostium (mean difference -0.8{+-}2.1 mm) of the CAAs. In all subjects with a CAA, abnormally thickened vessel walls were found (2.5{+-}0.5 mm). CMRA accurately defines CAA in free-breathing sedated children with KD using the whole-heart approach and detects abnormally thickened vessel walls. This technique may reduce the need for serial X-ray coronary angiography, and improve risk stratification and monitoring of therapy. (orig.)

  4. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting

    NARCIS (Netherlands)

    Gao, Shan; van't Klooster, Ronald; Kitslaar, Pieter H.; Coolen, Bram F.; van den Berg, Alexandra M.; Smits, Loek P.; Shahzad, Rahil; Shamonin, Denis P.; de Koning, Patrick J. H.; Nederveen, Aart J.; van der Geest, Rob J.

    2017-01-01

    Purpose: The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI.

  5. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

    Science.gov (United States)

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon

    2015-11-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. Copyright © 2015 the American Physiological Society.

  6. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, Marcus R. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Charite-Universitaetsmedizin, Department of Radiology, Berlin (Germany); Jansen, Christian H.P. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Ebersberger, Ullrich; Spector, Tim D. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Schaeffter, Tobias; Razavi, Reza [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Mangino, Massimo [King' s College London, Department of Twin Research and Genetic Epidemiology, London (United Kingdom); National Institute for Health Research (NIHR) Biomedical Research Centre at Guy' s and St. Thomas' Foundation Trust, London (United Kingdom); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom); Greil, Gerald F. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Wellcome Trust and EPSRC Medical Engineering Centre, London (United Kingdom); King' s College London, BHF Centre of Excellence, London (United Kingdom); King' s College London, NIHR Biomedical Research Centre, London (United Kingdom)

    2017-11-15

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. (orig.)

  7. Nanoparticle motion near a blood vessel wall in targeted drug delivery

    Science.gov (United States)

    Vitoshkin, Helena; Yu, Hsiu-Yu; Eckmann, David M.; Radhakrishnan, Ravi; Ayyaswamy, Portonovo S.

    2014-11-01

    A computational study of the motion of a spherical nanoparticle close to the bounding wall of a blood vessel in targeted drug delivery is presented. An arbitrary Lagrangian-Eulerian algorithm has been carried out, taking into account both the Brownian and the hydrodynamic effects. Pertinent to targeted drug delivery, we focus on the condition when the particle is in the lubrication layer. The velocity auto-correlation function (VACF) is seen to initially decay faster by a factor of particle radius divided by the fluid gap thickness compared to that in an unbounded medium. Long time decay is found to be algebraic. Focusing on hydrodynamic interaction between the particle and the wall, effects of wall curvature, particle size, and variations in density of the particle are investigated. We also study adhesive interactions of a nanoparticle with an endothelial cell located on the vessel wall by the modeling the nanoparticle tethered by a harmonic spring with varying spring constants. It is shown that the particle velocity is affected by hydrodynamic and harmonic spring forces leading to VACF oscillations which decay algebraically at long times. The results agree with those predicted by earlier theories for particle VACF near a wall. These findings have applications in medication administration and in the colloidal sciences. Supported by NIH Grant U01 EB016027.

  8. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla

    Directory of Open Access Journals (Sweden)

    Sebastian Kelle

    2010-01-01

    Full Text Available Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd contrast administration and coronary vessel wall enhancement (LGE detected by 3T magnetic resonance imaging (MRI in healthy subjects and patients with coronary artery disease (CAD. Materials and Methods. Four healthy subjects (4 men, mean age 29  ±  3 years and eleven CAD patients (6 women, mean age 61±10 years were studied on a commercial 3.0 Tesla (T whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands. T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd (0.1 mmol/kg Gd-DTPA. Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3% segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0% and at time-interval 3, 29 of 39 evaluable segments (74.4% were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30–45 minutes after administration of the contrast agent.

  9. Growth Description for Vessel Wall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution.

    Science.gov (United States)

    Grytsan, Andrii; Eriksson, Thomas S E; Watton, Paul N; Gasser, T Christian

    2017-08-25

    (1) Background: Vascular tissue seems to adapt towards stable homeostatic mechanical conditions, however, failure of reaching homeostasis may result in pathologies. Current vascular tissue adaptation models use many ad hoc assumptions, the implications of which are far from being fully understood; (2) Methods: The present study investigates the plausibility of different growth kinematics in modeling Abdominal Aortic Aneurysm (AAA) evolution in time. A structurally motivated constitutive description for the vessel wall is coupled to multi-constituent tissue growth descriptions; Constituent deposition preserved either the constituent's density or its volume, and Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG), in-Thickness Volume Growth (TVG) and No Volume Growth (NVG) describe the kinematics of the growing vessel wall. The sensitivity of key modeling parameters is explored, and predictions are assessed for their plausibility; (3) Results: AAA development based on TVG and NVG kinematics provided not only quantitatively, but also qualitatively different results compared to IVG and PVG kinematics. Specifically, for IVG and PVG kinematics, increasing collagen mass production accelerated AAA expansion which seems counterintuitive. In addition, TVG and NVG kinematics showed less sensitivity to the initial constituent volume fractions, than predictions based on IVG and PVG; (4) Conclusions: The choice of tissue growth kinematics is of crucial importance when modeling AAA growth. Much more interdisciplinary experimental work is required to develop and validate vascular tissue adaption models, before such models can be of any practical use.

  10. Conditioning of the vacuum vessel walls of tokamaks, a preliminary look

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.

    1976-03-01

    The main features and operating characteristics of the primary vacuum system of many of the presently operating tokamak devices are presented. Particular attention is paid to the methods used to condition and clean the vessel walls in situ. For the devices discussed, a combination of a high-temperature bakeout and/or discharge cleaning is employed. In addition, discussions of the vacuum systems and wall conditioning methods anticipated for the next generation of tokamaks are presented. Since this report was written during a limited time period, it should be considered as preliminary and is not intended to be a general review. Much of the information that is presented was obtained by private communication and there is no bibliography. This study was initiated to aid in the design of TFTR. As presently envisioned, the TFTR vacuum system and methods for wall conditioning are consistent with what is presently practiced.

  11. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements.

    Science.gov (United States)

    Ohtani, Misato; Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Uy, Abigail Loren Tung; Yamamoto, Atsushi; Kurata, Tetsuya; Nakano, Yoshimi; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota; Demura, Taku

    2016-11-01

    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell's metabolic

  12. Quantification and Statistical Analysis Methods for Vessel Wall Components from Stained Images with Masson's Trichrome: e0146954

    National Research Council Canada - National Science Library

    Pablo Hernández-Morera; Irene Castaño-González; Carlos M Travieso-González; Blanca Mompeó-Corredera; Francisco Ortega-Santana

    2016-01-01

    ... (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson's trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained...

  13. Recording of unexpectedly high frequency vibrations of blood vessel walls in experimental arteriovenous fistulae of rabbits using a laser vibrometer.

    Science.gov (United States)

    Stehbens, W E; Liepsch, D W; Poll, A; Erhardt, W

    1995-01-01

    Because arteriovenous fistulae are associated with a palpable thrill and an audible murmur, the vibrational activity of the blood vessel walls about experimental arteriovenous fistulae in rabbits was investigated using, for the first time, a high-resolution laser vibrometer. Frequencies of mural vibrations up to 2200 Hz were recorded at different sites about the fistulae. The relationship of this vibratory activity of blood vessel walls to physiological and pathological conditions warrants further investigation.

  14. A completely noninvasive method of dissolved oxygen monitoring in disposable small-scale cell culture vessels based on diffusion through permeable vessel walls.

    Science.gov (United States)

    Gupta, Priyanka A; Ge, Xudong; Kostov, Yordan; Rao, Govind

    2014-01-01

    Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small-scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2 ). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene-made T-75 tissue culture flask and fluorinated ethylene propylene (FEP)-made Vuelife(®) cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife(®) cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers.

  15. [The exogenous and genetic components of some vessel wall characteristics in the pig (author's transl)].

    Science.gov (United States)

    Wegner, W

    1975-01-01

    Insufficiencies of the circulatory system and increasing transport losses in pigs as well as analogies with respect to atherosclerosis of men and swine were the motives for a broad statistical investigation of important characteristics of the circulatory system in a big population of female German landrace pigs, fattened as progeny groups under identical conditions in a testing station and slaughtered at 100 kg weight. As the most essential results, highly significant seasonal and genetical influences on several traits are to be mentioned, and some meaningful correlations between them: Plasma cholesterol, ceruloplasmin and hematocrit showed markedly lower levels in the summer and increased values in the cold season; the thickness of the intima (aorta and arteria pulmonalis) was quite distinctly greatest in the spring, this phenomenon being almost exactly paralleled by augmented amounts of copper and iron in the aortic wall. Increased heart weights were again found in the cold, decreased ones in the warm seasons. On average, bigger hearts and vessels were accompanied by higher elastin contents of the aorta, but these contents stood in very significant negative correlation to the ash content and the amounts of certain mineral components (Ca, Mg and P) of the vessel wall, especially to the ash percentage of the elastic fibers. This indicates that calcifying and mineralizing processes in the wall obviously take place at the cost of the elastic components. The estimation of heritabilities in half and full sibs revealed with h2 = 60% high henetic influences on the elastin content of the aorta and equally so on the ash percentage of elastic fibers. Future investigations must correlate these findings with direct measurements of biomechanical and rheological properties of the vessels.

  16. Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience.

    Science.gov (United States)

    Qi, Haikun; Sun, Jie; Qiao, Huiyu; Chen, Shuo; Zhou, Zechen; Pan, Xinlei; Wang, Yishi; Zhao, Xihai; Li, Rui; Yuan, Chun; Chen, Huijun

    2017-11-08

    Purpose To develop a three-dimensional (3D) high-spatial-resolution time-efficient sequence for use in quantitative vessel wall T1 mapping. Materials and Methods A previously described sequence, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging, was extended by introducing 3D golden angle radial k-space sampling (GOAL-SNAP). Sliding window reconstruction was adopted to reconstruct images at different inversion delay times (different T1 contrasts) for voxelwise T1 fitting. Phantom studies were performed to test the accuracy of T1 mapping with GOAL-SNAP against a two-dimensional inversion recovery (IR) spin-echo (SE) sequence. In vivo studies were performed in six healthy volunteers (mean age, 27.8 years ± 3.0 [standard deviation]; age range, 24-32 years; five male) and five patients with atherosclerosis (mean age, 66.4 years ± 5.5; range, 60-73 years; five male) to compare T1 measurements between vessel wall sections (five per artery) with and without intraplaque hemorrhage (IPH). Statistical analyses included Pearson correlation coefficient, Bland-Altman analysis, and Wilcoxon rank-sum test with data permutation by subject. Results Phantom T1 measurements with GOAL-SNAP and IR SE sequences showed excellent correlation (R(2) = 0.99), with a mean bias of -25.8 msec ± 43.6 and a mean percentage error of 4.3% ± 2.5. Minimum T1 was significantly different between sections with IPH and those without it (mean, 371 msec ± 93 vs 944 msec ± 120; P = .01). Estimated T1 of normal vessel wall and muscle were 1195 msec ± 136 and 1117 msec ± 153, respectively. Conclusion High-spatial-resolution (0.8 mm isotropic) time-efficient (5 minutes) vessel wall T1 mapping is achieved by using the GOAL-SNAP sequence. This sequence may yield more quantitative reproducible biomarkers with which to characterize IPH and monitor its progression. (©) RSNA, 2017.

  17. Remote through-wall sampling of the Trawsfynydd reactor pressure vessel: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Curry, A.; Clayton, R. [Magnox Electric, Berkeley (United Kingdom)

    1997-02-01

    This paper summarizes the application of robotic equipment for gaining access to, and removing through-wall samples, from, welds of the reactor pressure vessel at Trawsfyndd power station. The environment, which presents hazards due to ionising radiation, radioactive contamination and asbestos-bearing materials is described. The means of access, by use of remote vehicles with robotic manipulators supported by additional vehicles, it reviewed. The use of abrasive water jet cutting for sample removal is introduced. The relative advantages and disadvantages of this technique are discussed. (Author).

  18. Remote through-wall sampling of the Trawsfynydd reactor pressure vessel: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Curry, A.; Clayton, R. [Magnox Electric, Dartford (United Kingdom). Remote Operations

    1996-12-31

    This paper summarises the application of robotic equipment for gaining access to and removing through-wall samples from welds of the reactor pressure vessel at Trawsfynydd power station. The environment, which presents hazards due to ionising radiation, radioactive contamination and asbestos bearing materials is described. The means of access, by use of remote vehicles complete with robotic manipulators supported by additional vehicles, is reviewed. The use of Abrasive Water Jet Cutting for sample removal is introduced. The relative advantages and disadvantages of this technique are discussed. (UK).

  19. Estimation of the radial force on the tokamak vessel wall during fast transient events

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for future applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.

  20. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.

    2002-01-01

    This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.

  1. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.

    Science.gov (United States)

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-03-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but

  2. Rhinoconjunctivitis and occupational asthma caused by Diplotaxis erucoides (wall rocket).

    Science.gov (United States)

    Brito, F F; Mur, P; Bartolomé, B; Galindo, P A; Gómez, E; Borja, J; Martínez, A

    2001-07-01

    Wall rocket (Diplotaxis erucoides) is a common Crucifera plant that grows in European and American vineyards and olive groves. We present the cases of 2 farmers with rhinoconjunctivitis and asthma related to wine-growing tasks during D erucoides pollination (March-April). The aim of this work was to demonstrate that occupational symptoms were caused by D erucoides pollen sensitization. Cutaneous tests, specific IgE measurements, conjunctival and bronchial provocation tests, and peak-flow measurements during working days were performed.

  3. Segmentation of elastic fibres in images of vessel wall sections stained with Weigert's resorcin-fuchsin.

    Science.gov (United States)

    Hernández-Morera, Pablo; Travieso-González, Carlos M; Castaño-González, Irene; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco

    2017-04-01

    The elastic fibres are an essential component of the extracellular matrix in blood vessel walls that allows a long-range of deformability and passive recoil without energy input. The quantitative determination of elastic fibres will provide information on the state of the vascular wall and to determine the role and behaviour of this key structural element in different physiological and pathological vascular processes. We present a segmentation method to identify and quantify elastic fibres based on a local threshold technique and some morphological characteristics measured on the segmented objects that facilitate the discrimination between elastic fibres and other image components. The morphological characteristics analysed are the thickness and the length of an object. The segmentation method was evaluated using an image database of vein sections stained with Weigert's resorcin-fuchsin. The performance results are based on a ground truth generated manually resulting in values of sensitivity greater than 80% with the exception in two samples, and specificity values above 90% for all samples. Medical specialists carried out a visual evaluation where the observations indicate a general agreement on the segmentation results' visual quality, and the consistency between the methodology proposed and the subjective observation of the doctors for the evaluation of pathological changes in vessel wall. The proposed methodology provides more objective measurements than the qualitative methods traditionally used in the histological analysis, with a significant potential for this method to be used as a diagnostic aid for many other vascular pathological conditions and in similar tissues such as skin and mucous membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Statistical Permutation-based Artery Mapping (SPAM): a novel approach to evaluate imaging signals in the vessel wall.

    Science.gov (United States)

    Seifert, Robert; Scherzinger, Aaron; Kiefer, Friedemann; Hermann, Sven; Jiang, Xiaoyi; Schäfers, Michael A

    2017-05-26

    Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in order to identify high-risk plaques, which might escape detection using conventional methods based on the assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical landmarks, ensuring to compare equivalent regions across different subjects. We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is especially useful for the understanding of complex and heterogeneous regional processes during the course of atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge these strategies have so far not been applied in cardiovascular molecular imaging. We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels. We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences

  5. Dynamic vessel wall properties and their reproducibility in subjects with increased cardiovascular risk.

    Science.gov (United States)

    van den Berkmortel, F; Wollersheim, H; van Langen, H; Thien, T

    1998-06-01

    To determine reproducibility figures of dynamic arterial wall properties such as cross-sectional compliance (CC) and distensibility (DC) in subjects with increased cardiovascular risk, in comparison with healthy adults. A total of 34 persons were divided into three groups with varying cardiovascular risk factors. Diameters (D) and diameter changes (deltaD) during the heart cycle of both common carotid (CCA) and right common femoral (CFA) arteries were measured by a vessel wall movement detector system. Blood pressures (BP) were recorded non-invasively by a semi-automated oscillometric device. CC (=piD(deltaD/2deltaP) in unit mm2/kPa) and DC (=2deltaD/D)/deltaP in unit 10(-3)/kPa) were calculated from the above-mentioned parameters. Measurements were performed twice during one visit and twice again with a time interval of at least 3 days to determine intra-observer intra- and intersession variability. Reproducibility figures of CC and DC of the CCA varied between 8 and 12%, and between 13 and 22% for the CFA. Intra-observer intra- and intersession variability were similar in the three groups. In our studies the reproducibility of dynamic vascular wall properties determined by ultrasound was good. Despite differences in the absolute values for CC and DC in groups with increased cardiovascular risk, mean reproducibility figures remained at a similar level (8-12%) as in healthy volunteers.

  6. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants.

    Science.gov (United States)

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2018-02-01

    Water flow through xylem vessels encounters hydraulic resistance when passing through the vessel lumen and end wall. Comparative studies have reported that lumen and end wall resistivities co-limit water flow through stem xylem in several angiosperm woody species that have vessels of different average diameter and length. This study examined the intra-specific relationship between the lumen and end wall resistivities (Rlumen and Rwall) for vessels within the stem xylem using three deciduous angiosperm woody species found in temperate forest. Morus australis Poir. and Acer rufinerve Siebold et Zucc. are early- and late-successional species, and Vitis coignetiae Pulliat ex Planch is a woody liana. According to the Hagen-Poiseuille equation, Rlumen is proportional to the fourth power of vessel diameter (D), whereas vessel length (L) and inter-vessel pit area (Apit) determine Rwall. To estimate Rlumen and Rwall, the scaling relationships between the L and D and between Apit and D were measured. The scaling exponents between L and D were 1.47, 3.19 and 2.86 for A. rufinerve, M. australis and V. coignetiae, respectively, whereas those between Apit and D were 0.242, 2.11 and 2.68, respectively. Unlike the inter-specific relationships, the wall resistivity fraction (Rwall/(Rlumen + Rwall)) within xylem changed depending on D. In M. australis and V. coignetiae, this fraction decreased with increasing D, while in A. rufinerve, it increased with D. Vessels with a high wall resistivity fraction have high Rwall and total resistivity but are expected to have low susceptibility to xylem cavitation due to a small cumulative Apit. In contrast, vessels with a low wall resistivity fraction have low Rwall and total resistivity but high susceptibility to xylem cavitation. Because the wall resistivity fraction varies with D, the stem xylem contains vessels with different hydraulic efficiencies and safety to xylem cavitation. These features produce differences in the hydraulic properties

  7. Histological study on the influences of an ultrasonic scalpel on skeletonized vessel wall.

    Science.gov (United States)

    Fukata, Yoshio; Horike, Kazuya; Kano, Masashi

    2002-10-01

    The objective of this study was to histologically clarify the difference of vascular wall damage when an ultrasonic scalpel is used in varied ways in the vicinity of a vessel. 1) The surface of sodium carbonate-containing jelly was manually brushed with the edge of a dissecting hook type Harmonic Scalpel (HS), and the thickness of the air bubble layer was measured to investigate the range to which the vibrations of the instrument reached. 2) The internal thoracic artery (ITA), radial artery (RA) and vein skeletonized were cut bluntly or brushed using HS ex vivo, and tissue damages were observed histologically. 3) The depth of thermal degeneration (TD) of residual stumps of ITAs skeletonized by HS using an output power level (level) of 2 and the quick touch method at the time of coronary arterial bypass grafting (CABG) were investigated histologically. 1) The mean thickness of the air bubble layers by single brushing was 3.7, 3.7 and 3.1 mm at level 4, 3 and 2, and no significant difference. When brushed 5 times, it was 6.9, 5.5 and 6.7 mm, respectively, showing marked increases compared with single brushing. 2) A: One side of the RA stump cut with a dissecting hook at level 2 was nicely occluded by a degenerated protein coagulum, but the contralateral had no coagulum. An ITA cut by a shear type blade at level 3 showed that both stumps were nicely occluded, but the vessel wall was introverted and fragmented. B: ITAs brushed 5 or 10 times at level 2 showed that TD occurred in tunica externa, the mean depth of 100 or 203 microm, and never exceeded the external elastic lamella. RAs brushed 10 times at level 2 and 3 showed that TD and air bubble generation occurred in the tunica externa, and the mean depth was 203 and 203 microm. However, TD exceeded the external lamella in some cases at level 3. Veins brushed 10 times at level 3 showed that TD spread to all layers. 3) The depth of TD in ITAs skeletonized clinically by HS was 400 to 530 microm, and apart from the

  8. Evaluation of acoustic emission signals during monitoring of thick-wall vessels operating at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, A.; Tsimogiannis, A. [Envirocoustics S.A., El. Venizelou 7 and Delfon, Athens (Greece)

    2004-07-01

    Acoustic Emission testing of thick wall vessels, operating at elevated temperatures is discussed and pattern recognition methodologies for AE data evaluation are presented. Two different types of testing procedures are addressed: Cool Down monitoring and semi-continuous periodic monitoring. In both types of tests, temperature variation is the driving force of AE as opposed to traditional AE testing where controlled pressure variation is used as AE stimulus. Representative examples of reactors cool down testing as well as in-process vessel monitoring are given. AE activity as a function of temperature and pressure variation is discussed. In addition to the real-time limited criteria application, unsupervised pattern recognition is applied as a post-processing tool for multidimensional sorting, noise discrimination, characterizing defects and/or damage. On the other hand, Supervised Pattern Recognition is used for data classification in repetitive critical tests, leading to an objective quantitative comparison between repeated tests. Results show that damage sustained by the equipment can be described by the plotting the cumulative energy of AE, from critical signal classes, versus temperature. Overall, the proposed methodology can reduce the complexity of AE tests in many cases leading to higher efficiency. The possibility for real time signals classification, during permanent AE installations and continuous monitoring is discussed. (orig.)

  9. Rupture Properties of Blood Vessel Walls Measured by Pressure-Imposed Test

    Science.gov (United States)

    Ohashi, Toshiro; Sugita, Syukei; Matsumoto, Takeo; Kumagai, Kiichiro; Akimoto, Hiroji; Tabayashi, Koichi; Sato, Masaaki

    It is expected to be clinically useful to know the mechanical properties of human aortic aneurysms in assessing the potential for aneurysm rupture. For this purpose, a newly designed experimental setup was fabricated to measure the rupture properties of blood vessel walls. A square specimen of porcine thoracic aortas is inflated by air pressure at a rate of 10mmHg/s (≈1.3MPa/s) until rupture occurs. Mean breaking stress was 1.8±0.4 MPa (mean±SD) for the specimens proximal to the heart and 2.3±0.8MPa for the distal specimens, which are not significantly different to those values obtained longitudinally from conventional tensile tests. Moreover, the local breaking stretch ratio in the longitudinal direction was significantly higher at the ruptured site (2.7±0.5) than at the unruptured site (2.2±0.4). This testing system for studying the rupture properties of aortic walls is expected to be applicable to aortic aneurysms. Experimental verification of the present technique for the homogeneous, isotropic material is also presented.

  10. Added Value of Vessel Wall Magnetic Resonance Imaging for Differentiation of Nonocclusive Intracranial Vasculopathies.

    Science.gov (United States)

    Mossa-Basha, Mahmud; Shibata, Dean K; Hallam, Danial K; de Havenon, Adam; Hippe, Daniel S; Becker, Kyra J; Tirschwell, David L; Hatsukami, Thomas; Balu, Niranjan; Yuan, Chun

    2017-11-01

    Our goal is to determine the added value of intracranial vessel wall magnetic resonance imaging (IVWI) in differentiating nonocclusive vasculopathies compared with luminal imaging alone. We retrospectively reviewed images from patients with both luminal and IVWI to identify cases with clinically defined intracranial vasculopathies: atherosclerosis (intracranial atherosclerotic disease), reversible cerebral vasoconstriction syndrome, and inflammatory vasculopathy. Two neuroradiologists blinded to clinical data reviewed the luminal imaging of defined luminal stenoses/irregularities and evaluated the pattern of involvement to make a presumed diagnosis with diagnostic confidence. Six weeks later, the 2 raters rereviewed the luminal imaging in addition to IVWI for the pattern of wall involvement, presence and pattern of postcontrast enhancement, and presumed diagnosis and confidence. Analysis was performed on per-lesion and per-patient bases. Thirty intracranial atherosclerotic disease, 12 inflammatory vasculopathies, and 12 reversible cerebral vasoconstriction syndrome patients with 201 lesions (90 intracranial atherosclerotic disease, 64 reversible cerebral vasoconstriction syndrome, and 47 inflammatory vasculopathy lesions) were included. For both per-lesion and per-patient analyses, there was significant diagnostic accuracy improvement with luminal imaging+IVWI when compared with luminal imaging alone (per-lesion: 88.8% versus 36.1%; Pimprove the differentiation of nonocclusive intracranial vasculopathies when combined with traditional luminal imaging modalities. © 2017 American Heart Association, Inc.

  11. Atherosclerotic changes of vessels caused by restriction of movement

    Science.gov (United States)

    Gvishiani, G. S.; Kobakhidze, N. G.; Mchedlishvili, M. G.; Dekanosidze, T. I.

    1980-01-01

    The effect of restriction of movement on the development of atheroscelerosis was studied in rabbits. Drastic restriction of movement for 20 and 30 days causes atherosclerotic alterations of the aorta and shifts in ECG which are characteristic of coronary atherosclerosis. At the same time, shortening of the duration of blood coagulation and an increase in the content of catecholamines and beta-lipoproteids occur.

  12. Effect of Heat Flux on Creep Stresses of Thick-Walled Cylindrical Pressure Vessels

    Directory of Open Access Journals (Sweden)

    Mosayeb Davoudi Kashkoli

    2014-06-01

    Full Text Available Assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical solution is presented for the calculation of time-dependent creep stresses and displacements of homogeneous thick-walled cylindrical pressure vessels. For the stress analysis in a homogeneous pressure vessel, having material creep behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state are needed. This corresponds to the solution of materials with linear elastic behavior. Therefore, using equations of equilibrium, stress-strain and strain-displacement, a differential equation for displacement is obtained and then the stresses at a time equal to zero are calculated. Using Norton’s law in the multi-axial form in conjunction with the above-mentioned equations in the rate form, the radial displacement rate is obtained and then the radial, circumferential and axial creep stress rates are calculated. When the stress rates are known, the stresses at any time are calculated iteratively. The analytical solution is obtained for the conditions of plane strain and plane stress. The thermal loading is as follows: inner surface is exposed to a uniform heat flux, and the outer surface is exposed to an airstream. The heat conduction equation for the one-dimensional problem in polar coordinates is used to obtain temperature distribution in the cylinder. The pressure, inner radius and outer radius are considered constant. Material properties are considered as constant. Following this, profiles are plotted for the radial displacements, radial stress, circumferential stress and axial stress as a function of radial direction and time.

  13. Numerical modeling of the pulse wave propagation in large blood vessels based on liquid and wall interaction

    Science.gov (United States)

    Rup, K.; Dróżdż, A.

    2014-08-01

    The purpose of this article is to develop a non-linear, one-dimensional model of pulse wave propagation in the arterial cardiovascular system. The model includes partial differential equations resulting from the balance of mass and momentum for the fluid-filled area and the balance equation for the area of the wall and vessels. The considered mathematical model of pulse wave propagation in the thoracic aorta section takes into account the viscous dissipation of fluid energy, realistic values of parameters describing the physicochemical properties of blood and vessel wall. Boundary and initial conditions contain the appropriate information obtained from in vivo measurements. As a result of the numerical solution of the mass and momentum balance equations for the blood and the equilibrium equation for the arterial wall area, time- dependent deformation, respective velocity profiles and blood pressure were determined.

  14. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model--comparison of gadofosveset and gadopentetate dimeglumine.

    Science.gov (United States)

    Lobbes, Marc B I; Miserus, Robbert-Jan J H M; Heeneman, Sylvia; Passos, Valeria Lima; Mutsaers, Peter H A; Debernardi, Nicola; Misselwitz, Bernd; Post, Mark; Daemen, Mat J A P; van Engelshoven, Jos M A; Leiner, Tim; Kooi, Marianne E

    2009-03-01

    To investigate the potential of gadofosveset for contrast material-enhanced magnetic resonance (MR) imaging of plaque in a rabbit model of atherosclerosis. All experiments were approved by the animal ethics committee. Thirty-one New Zealand White rabbits were included in one of four study groups: animals with atherosclerosis imaged with gadofosveset (n = 10) or gadopentetate dimeglumine (n = 7) and control animals imaged with gadofosveset (n = 7) or gadopentetate dimeglumine (n = 7). Aortic atherosclerosis was induced through endothelial denudation combined with a cholesterol-enriched diet. Control rabbits underwent a sham surgical procedure and received a regular diet. After 8 weeks, pre- and postcontrast T1-weighted MR images of the aortic vessel wall were acquired. Relative signal enhancement was determined with dedicated software. Statistical analysis was performed by using a generalized linear mixed model. Immunohistochemical staining with CD31 and albumin was used to assess microvessel density and the albumin content of the vascular wall. Group differences were analyzed by using a chi(2) test. Gadofosveset spatial distribution and content within the vessel wall were determined with proton-induced x-ray emission (PIXE) analysis. Postcontrast signal enhancement was significantly greater for atherosclerotic than for control animals imaged with gadofosveset (P = .022). Gadopentetate dimeglumine could not enable discrimination between normal and atherosclerotic vessel walls (P = .428). PIXE analysis showed higher amounts of gadopentetate dimeglumine than gadofosveset in both atherosclerotic and normal rabbit aortas. Immunohistochemical staining revealed the presence of albumin and increased microvessel density in the vascular walls of atherosclerotic rabbits. These results suggest that gadofosveset can be used to differentiate between atherosclerotic and normal rabbit vessel walls. http://radiology.rsnajnls.org/cgi/content/full/250/3/682/DC1. RSNA, 2009

  15. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G

    2001-09-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible.

  16. Preliminary electromagnetic, thermal and mechanical design for first wall and vacuum vessel of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Lucca, F., E-mail: Flavio.Lucca@LTCalcoli.it [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Bertolini, C. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Crescenzi, F.; Crisanti, F. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Di Gironimo, G. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Labate, C. [CREATE, Università di Napoli Parthenope, Via Acton 38, 80133 Napoli (Italy); Manzoni, M.; Marconi, M.; Pagani, I. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, G. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Renno, F. [CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Roccella, M. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Roccella, S. [C.R. ENEA Frascati – UT FUS, Via E. Fermi 45, IT-00044 Frascati, RM (Italy); Viganò, F. [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    The fusion advanced study torus (FAST), with its compact design, high toroidal field and plasma current, faces many of the problems met by ITER, and at the same time anticipates much of the DEMO relevant physics and technology. The conceptual design of the first wall (FW) and the vacuum vessel (VV) has been defined on the basis of FAST operative conditions and of “Snow Flakes” (SF) magnetic topology, which is also relevant for DEMO. The EM loads are one of the most critical load components for the FW and the VV during plasma disruptions and a first dimensioning of these components for such loads is mandatory. During this first phase of R&D activities the conceptual design of the FW and VV have been assessed estimating, by means of FE simulations, the EM loads due to a typical vertical disruption event (VDE) in FAST. EM loads were then transferred on a FE mechanical model of the FAST structures and the mechanical response of the FW and VV design for the analyzed VDE event was assessed. The results indicate that design criteria are not fully satisfied by the current drawing of the VV and FW components. The most critical regions have been individuated and the effect of some geometrical and material changes has been checked in order to improve the structure.

  17. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor.

    Science.gov (United States)

    Takebe, T; Kobayashi, S; Kan, H; Suzuki, H; Yabuki, Y; Mizuno, M; Adegawa, T; Yoshioka, T; Tanaka, J; Maegawa, J; Taniguchi, H

    2012-05-01

    Transplantation of bioengineered elastic cartilage is considered to be a promising approach for patients with craniofacial defects. We have previously shown that human ear perichondrium harbors a population of cartilage progenitor cells (CPCs). The aim of this study was to examine the use of a rotating wall vessel (RWV) bioreactor for CPCs to engineer 3-D elastic cartilage in vitro. Human CPCs isolated from ear perichondrium were expanded and differentiated into chondrocytes under 2-D culture conditions. Fully differentiated CPCs were seeded into recently developed pC-HAp/ChS (porous material consisted of collagen, hydroxyapatite, and chondroitinsulfate) scaffolds and 3-D cultivated utilizing a RWV bioreactor. 3-D engineered constructs appeared shiny with a yellowish, cartilage-like morphology. The shape of the molded scaffold was maintained after RWV cultivation. Hematoxylin and eosin staining showed engraftment of CPCs inside pC-HAp/ChS. Alcian blue and Elastica Van Gieson staining showed of proteoglycan and elastic fibers, which are unique extracellular matrices of elastic cartilage. Thus, human CPCs formed elastic cartilage-like tissue after 3-D cultivation in a RWV bioreactor. These techniques may assist future efforts to reconstruct complicate structures composed of elastic cartilage in vitro. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. "Choke" vessels between vascular territories of the abdominal wall: literature review and rare case of Leriche's syndrome.

    Science.gov (United States)

    Ye, Xuan; Rozen, Warren M; Alonso-Burgos, Alberto; Ashton, Mark W

    2012-11-01

    We undertook a review of the anatomical changes of "choke" vessels between the internal thoracic artery (ITA) and deep inferior epigastric artery (DIEA), as highlighted by a case of aortoiliac occlusive disease (Leriche's syndrome), and discuss the physiological concepts observed with regard to surgical delay procedures within the abdominal wall performed prior to abdominal cutaneous free flaps and coronary artery bypass grafting. Computed tomographic angiography (CTA) was undertaken on a patient with a rare case of Leriche's syndrome and a literature review of over 200 references on the anatomy, physiology and clinical uses of choke vessels in the abdominal wall was undertaken. The CTA demonstrated that in patients with Leriche's syndrome, there is a marked dilatation of all ITA-DIEA pathways and increased flow through choke vessels. If these changes can be surgically replicated in the form of a delay procedure for patients seeking to undergo autologous breast construction, this could improve the outcomes of abdominal cutaneous free flaps and coronary artery bypass grafting. We accordingly propose three surgical methods for augmenting blood flow to the abdominal wall: a) ligation of the DIEA; b) ligation of the distal ITA; and c) creation of an arterio-venous fistulae in the DIEA. Our review of the literature confirmed the viability of these propositions. The dilatation of choke vessels in response to increased haemodynamic stress may thus be utilised to enhance blood supply to tissues prior to transfer and can be achieved through simple and minimally invasive methods. Copyright © 2012 Wiley Periodicals, Inc.

  19. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding.

    Directory of Open Access Journals (Sweden)

    Jacqueline F Donoghue

    Full Text Available Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.

  20. Protein-Bound Uremic Toxins Stimulate Crosstalk between Leukocytes and Vessel Wall

    Science.gov (United States)

    Glorieux, Griet; Schepers, Eva; Cohen, Gerald; Gondouin, Bertrand; Van Landschoot, Maria; Eloot, Sunny; Rops, Angelique; Van de Voorde, Johan; De Vriese, An; van der Vlag, Johan; Brunet, Philippe; Van Biesen, Wim; Vanholder, Raymond

    2013-01-01

    Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels. PMID:24009240

  1. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  2. Neutron fluence at the reactor pressure vessel wall - a comparison of French and German procedures and strategies in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, N. [Institut de Radioprotection et de Surete Nucleaire, IRSN/DES/SECCA, 92 - Fontenay aux Roses (France); Jendrich, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2003-01-01

    While the neutrons within the core may take part in the chain reaction, those neutrons emitted from the core are basically lost for the energy production. This 'neutron leakage' represents a loss of fuel efficiency and causes neutron embrittlement of the reactor pressure vessel (RPV) wall. The latter raises safety concerns, needs to be monitored closely and may necessitate mitigating measures. There are different strategies to deal with these two undesirable effects: The neutron emission may be reduced to some extent all around the core or just at the 'hot spots' of RPV embrittlement by tailored core loading patterns. A higher absorption rate of neutrons may also be achieved by a larger water gap between the core and the RPV. In this paper the inter-relations between the distribution of neutron flux, core geometry, core loading strategy, RPV embrittlement and its surveillance are discussed at first. Then the different strategies followed by the German and French operators are described. Finally the conclusions will highlight the communalities and differences between these strategies as different approaches to the same problem of safety as well as economy. (authors)

  3. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor

    Science.gov (United States)

    Margolis, L. B.; Fitzgerald, W.; Glushakova, S.; Hatfill, S.; Amichay, N.; Baibakov, B.; Zimmerberg, J.

    1997-01-01

    The pathogenesis of HIV infection involves a complex interplay between both the infected and noninfected cells of human lymphoid tissue, the release of free viral particles, the de novo infection of cells, and the recirculatory trafficking of peripheral blood lymphocytes. To develop an in vitro model for studying these various aspects of HIV pathogenesis we have utilized blocks of surgically excised human tonsils and a rotating wall vessel (RWV) cell culture system. Here we show that (1) fragments of the surgically excised human lymphoid tissue remain viable and retain their gross cytoarchitecture for at least 3 weeks when cultured in the RWV system; (2) such lymphoid tissue gradually shows a loss of both T and B cells to the surrounding growth medium; however, this cellular migration is reversible as demonstrated by repopulation of the tissue by labeled cells from the growth medium; (3) this cellular migration may be partially or completely inhibited by embedding the blocks of lymphoid tissue in either a collagen or agarose gel matrix; these embedded tissue blocks retain most of the basic elements of a normal lymphoid cytoarchitecture; and (4) both embedded and nonembedded RWV-cultured blocks of human lymphoid tissue are capable of productive infection by HIV-1 of at least three various strains of different tropism and phenotype, as shown by an increase in both p24 antigen levels and free virus in the culture medium, and by the demonstration of HIV-1 RNA-positive cells inside the tissue identified by in situ hybridization. It is therefore reasonable to suggest that gel-embedded and nonembedded blocks of human lymphoid tissue, cocultured with a suspension of tonsillar lymphocytes in an RWV culture system, constitute a useful model for simulating normal lymphocyte recirculatory traffic and provide a new tool for testing the various aspects of HIV pathogenesis.

  4. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.

    Directory of Open Access Journals (Sweden)

    V Lai Nguyen

    Full Text Available PURPOSE: Increased microvascularization of the abdominal aortic aneurysm (AAA vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. MATERIALS AND METHODS: Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (K(trans , which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV. Further, the relationship between K(trans and AAA size was investigated. RESULTS: DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4 with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for K(trans based on the Patlak model (17% were significantly lower compared to the Tofts (37% and Extended Tofts model (42% (p<0.001. K(trans scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22% was comparable with the Tofts (ICC = 0.61, CV = 23% and Extended Tofts model (ICC = 0.76, CV = 22%. K(trans was positively correlated with maximal AAA diameter (Spearman's ρ = 0.38, p = 0.02 using the Patlak model. CONCLUSION: Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good K(trans scan-rescan reproducibility.

  5. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency

    NARCIS (Netherlands)

    Lemmens, R.; Maugeri, A.; Niessen, H.W.M.; Goris, A.; Tousseyn, T.; Demaerel, P.; Corveleyn, A.; Robberecht, W.; van der Knaap, M.S.; Thijs, V.N.; Zwijnenburg, P.J.G.

    2013-01-01

    Mutations in COL4A1 have been identified in families with hereditary small vessel disease of the brain presumably due to a dominant-negative mechanism. Here, we report on two novel mutations in COL4A1 in two families with porencephaly, intracerebral hemorrhage and severe white matter disease caused

  6. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke.

    Science.gov (United States)

    Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio

    2017-03-01

    Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.

  7. HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Pasquinelli Gianandrea

    2011-05-01

    Full Text Available Abstract Background HIV infection elicits the onset of a progressive immunodeficiency and also damages several other organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a target of HIV pathogenesis. This paper investigated the interaction between HIV-1 and vascular wall resident human mesenchymal stem cells (MSCs. Results MSCs were challenged with classical R5 and X4 HIV-1 laboratory strains demonstrating that these strains are able to enter and integrate their retro-transcribed proviral DNA in the host cell genome. Subsequent experiments indicated that HIV-1 strains and recombinant gp120 elicited a reliable increase in apoptosis in sub-confluent MSCs. Since vascular wall MSCs are multipotent cells that may be differentiated towards several cell lineages, we challenged HIV-1 strains and gp120 on MSCs differentiated to adipogenesis and endotheliogenesis. Our experiments showed that the adipogenesis is increased especially by upregulated PPARγ activity whereas the endothelial differentiation induced by VEGF treatment was impaired with a downregulation of endothelial markers such as vWF, Flt-1 and KDR expression. These viral effects in MSC survival and adipogenic or endothelial differentiation were tackled by CD4 blockade suggesting an important role of CD4/gp120 interaction in this context. Conclusions The HIV-related derangement of MSC survival and differentiation may suggest a direct role of HIV infection and gp120 in impaired vessel homeostasis and in genesis of vessel damage observed in HIV-infected patients.

  8. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency

    OpenAIRE

    Lemmens, Robin; Maugeri, Alessandra; Niessen, Hans W. M.; Goris, An; Tousseyn, Thomas; Demaerel, Philippe; Corveleyn, Anniek; Robberecht, Wim; van der Knaap, Marjo S.; Thijs, Vincent N.; Zwijnenburg, Petra J.G.

    2012-01-01

    Mutations in COL4A1 have been identified in families with hereditary small vessel disease of the brain presumably due to a dominant-negative mechanism. Here, we report on two novel mutations in COL4A1 in two families with porencephaly, intracerebral hemorrhage and severe white matter disease caused by haploinsufficiency. Two families with various clinical presentations of cerebral microangiopathy and autosomal dominant inheritance were examined. Clinical, neuroradiological and genetic investi...

  9. Transient Non-Newtonian Blood Flow under Magnetic Targeting Drug Delivery in an Aneurysm Blood Vessel with Porous Walls

    Science.gov (United States)

    Alimohamadi, Haleh; Imani, Mohsen

    2014-11-01

    The present investigation deals with numerical solution of blood flow patterns through an aneurysm artery under the applied magnetic field. Transient extended Navier-Stokes, Brinkman, continuity, and heat conduction equations govern this phenomenon and unsteady pulsatile inlet velocity varies by human heart-beating frequency. Our simulation demonstrates applying 105 magnetic field intensity (MnF) to recirculate flow and increase fluid flux and maximum blood temperature by 62.5x and 3.5%, respectively, in the aneurysm region. It is also shown that the vessel's wall porosity plays an important role in magnetic targeting of drug delivery performance, as this parameter can noticeably change maximum blood temperature and pressure.

  10. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoyi; Li, Dongye [Capital Medical University and Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Beijing (China); Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Zhao, Huilin [Shanghai Jiao Tong University, Department of Radiology, Renji Hospital, School of Medicine, Shanghai (China); Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Cui, Yuanyuan [PLA General Hospital, Department of Radiology, Beijing (China); Zhou, Zechen [Philips Research China, Healthcare Department, Beijing (China); Yuan, Chun [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); University of Washington, Department of Radiology, Seattle, WA (United States); Zhao, Xihai [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Beijing Institute for Brain Disorders, Center for Stroke, Beijing (China)

    2017-05-15

    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  11. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.

    Science.gov (United States)

    Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; Lovstakken, Lasse; Segers, Patrick

    2010-08-01

    Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. An in-house code ("TANGO") was developed to strongly couple the flow solver FLUENT and structural solver ABAQUS using an interface quasi-Newton technique. FIELD II was used to model realistic transducer and scan settings. The input to the FSI-US model is a scatterer phantom on which the US waves reflect, with the scatterer displacement derived from the FSI flow and displacement fields. The authors applied the simulation tool to a 3D straight tube, representative of the common carotid artery (length: 5 cm; and inner and outer radius: 3 and 4 mm). A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a noninvasively measured pressure waveform, was chosen and scaled to simulate three different degrees of arterial distension (1%, 4%, and 9%). The RF data from the FSI-US coupling were further processed for arterial wall and flow imaging. Using an available wall tracking algorithm, arterial distensibility was assessed. Using an autocorrelation estimator, blood velocity and shear

  12. Unusual causes of colonic wall thickening on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.R.; Markose, G.; Arends, M.J.; Ng, C.S.; Freeman, A.H

    2003-03-01

    Computed tomography (CT) appearances in 'colitis' are often non-specific, and include mural thickening and mesenteric fat stranding. In the western world, the majority of cases will have, or be subsequently diagnosed with, inflammatory bowel disease, pseudomembranous colitis or ischaemic colitis. However, other rare conditions may also produce these rather non-specific signs. We present a number of cases demonstrating colonic wall thickening on CT due to rarer diagnoses, which are correlated with the histopathological features. Some of these CT appearances have not been described previously in the literature.

  13. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    Science.gov (United States)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.

    2013-12-01

    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  14. Construction and characterisation of MRI coils for vessel wall imaging at 7 tesla

    OpenAIRE

    2014-01-01

    Atherosclerotic plaques in the bifurcation of the carotid artery vessels can pose a significant stroke risk from stenosis, thrombosis and emboli, or plaque rupture. However, the possibility of the latter depends on the structure of the plaque and its stability. So far, the assessment of such depositions, and the evaluation of the risk they pose, is not satisfactory with 3 Tesla black blood imaging. It is expected that the SNR increase at 7 Tesla, together with an appropriate and patient-safe ...

  15. Distribution and natural course of intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, Anja G. van der; Luijten, Peter R.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Brundel, Manon; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Utrecht (Netherlands); Visser, Fredy [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Philips Healthcare, Best (Netherlands)

    2015-06-01

    Previous studies using intracranial vessel wall MRI techniques showed that over 50 % of patients with ischemic stroke or TIA had one or more intracranial vessel wall lesions. In the current study, we assessed the preferential location of these lesions within the intracranial arterial tree and their potential changes over time in these patient groups. Forty-nine patients with ischemic stroke (n = 25) or TIA (n = 24) of the anterior cerebral circulation underwent 7.0 T MRI, including a T{sub 1}-weighted magnetization-preparation inversion recovery turbo-spin-echo (MPIR-TSE) sequence within one week and approximately one month after symptom onset. Intracranial vessel wall lesions were scored for multiple locations within the arterial tree and differences between one-week and one-month images. At baseline, 132 intracranial vessel wall lesions were found in 41 patients (84 %), located primarily in the anterior cerebral circulation (74 %), with a preferential location in the distal internal carotid artery and M1 and M2 segments of the middle cerebral artery. During follow-up, presence or enhancement patterns changed in 14 lesions (17 %). A large burden of intracranial vessel wall lesions was found in both the anterior and posterior cerebral circulation. Most lesions were found to be relatively stable, possibly indicating a more generalized atherosclerotic process. (orig.)

  16. Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changwu [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Qiao, Huiyu; He, Le [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Yuan, Chun [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, University of Washington, Seattle, WA (United States); Chen, Huijun; Zhang, Qiang; Li, Rui [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Wang, Wei; Du, Fang [Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Li, Cheng, E-mail: cjr.licheng@vip.163.com [Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing (China); Zhao, Xihai, E-mail: xihaizhao@tsinghua.edu.cn [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China)

    2016-11-15

    Purpose: To investigate the characteristics of plaque in the thoracic aorta using three dimensional multicontrast magnetic resonance imaging. Materials and methods: Elderly subjects (≥60 years) were recruited in this study. Thoracic aorta was imaged on a 3.0T MR scanner by acquiring multicontrast sequences. The plaque burden was evaluated by measuring lumen area, wall area, wall thickness, and normalized wall index. The presence or absence of plaque and intraplaque hemorrhage (IPH)/mural thrombus (MT) were identified. The characteristics of atherosclerosis among different thoracic aorta segments (AAO: ascending aorta; AOA: aortic arch, and DOA: descending aorta) were determined. Results: Of 66 recruited subjects (mean age 72.3 ± 6.2 years, 30 males), 55 (83.3%) had plaques in the thoracic aorta. The prevalence of plaque in AAO, AOA, and DAO was 5.4%, 72.7%, and 71.2%, respectively. In addition, 21.2% of subjects were found to have lesions with IPH/MT in the thoracic aorta. The prevalence of IPH/MT in segment of AAO, AOA and DAO was 0%, 13.6%, and 12.1%, respectively. The aortic wall showed the highest NWI in DAO (34.1% ± 4.8%), followed by AOA (31.2% ± 5%), and AAO (26.8% ± 3.3%) (p < 0.001). Conclusion: Three dimensional multicontrast MR imaging is capable of characterizing atherosclerotic plaques in the thoracic aorta. The findings of high prevalence of plaques and the presence of high risk plaques in the thoracic aorta suggest early screening for aortic vulnerable lesions in the elderly.

  17. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2017-12-05

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  18. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    Science.gov (United States)

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Detection of vessel wall calcifications in vertebral arteries using susceptibility weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Lisa C.; Boeker, Sarah M.; Bender, Yvonne Y.; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R. [Department of Radiology, Charite, Berlin (Germany); Liebig, Thomas [Department of Neuroradiology, Charite, Berlin (Germany)

    2017-09-15

    Calcification of the brain supplying arteries has been linked to an increased risk for cerebrovascular disease. The purpose of this study was to test the potential of susceptibility weighted MR imaging (SWMR) for the detection of vertebral artery calcifications, based on CT as a reference standard. Four hundred seventy-four patients, who had received head CT and 1.5 T MR scans with SWMR, including the distal vertebral artery, between January 2014 and December 2016, were retrospectively evaluated and 389 patients were included. Sensitivity and specificity for the detection of focal calcifications and intra- and interobserver agreement were calculated for SWMR and standard MRI, using CT as a standard of reference. The diameter of vertebral artery calcifications was used to assess correlations between imaging modalities. Furthermore, the degree of vessel stenosis was determined in 30 patients, who had received an additional angiography. On CT scans, 40 patients showed a total of 52 vertebral artery calcifications. While SWMR reached a sensitivity of 94% (95% CI 84-99%) and a specificity of 97% (95% CI 94-98%), standard MRI yielded a sensitivity of 33% (95% CI 20-46%), and a specificity of 93% (95% CI 90-96%). Linear regression analysis of size measurements confirmed a close correlation between SWMR and CT measurements (R {sup 2} = 0.74, p < 0.001). Compared to standard MRI (ICC = 0.52; CI 0.45-0.59), SWMR showed a higher interobserver agreement for calcification measurements (ICC = 0.84; CI 0.81-0.87). For detection of distal vertebral artery calcifications, SWMR demonstrates a performance comparable to CT and considerably higher than conventional MRI. (orig.)

  20. Overestimation of Susceptibility Vessel Sign: A Predictive Marker of Stroke Cause.

    Science.gov (United States)

    Zhang, Ruiting; Zhou, Ying; Liu, Chang; Zhang, Meixia; Yan, Shenqiang; Liebeskind, David S; Lou, Min

    2017-07-01

    The extent of blooming artifact may reflect the amount of paramagnetic material. We thus assessed the overestimation ratio of susceptibility vessel sign (SVS) on susceptibility-weighted imaging, defined as the extent of SVS width beyond the lumen and examined its value for predicting the stroke cause in acute ischemic stroke patients. We included consecutive acute ischemic stroke patients with proximal large artery occlusion who underwent both susceptibility-weighted imaging and time-of-flight magnetic resonance angiography within 8 hours poststroke onset. We calculated the length, width, and overestimation ratio of SVS on susceptibility-weighted imaging and then investigated their values for predicting the stroke cause, respectively. One-hundred eleven consecutive patients (72 female; mean age, 66.6±13.4 years) were enrolled, among whom 39 (35.1%) were diagnosed with cardiogenic embolism, 43 (38.7%) with large artery atherosclerosis, and 29 (26.1%) with undetermined cause. The presence, length, width, and overestimation ratio of SVS were all independently associated with the cause of cardiogenic embolism after adjusting for baseline National Institute of Health Stroke Scale and infarct volume. After excluded patients with undetermined cause, the sensitivity and specificity of overestimation ratio of SVS for cardiogenic embolism were 0.971 and 0.913; for the length of SVS, they were 0.629 and 0.739; for the width of SVS, they were 0.829 and 0.826, respectively. The overestimation ratio of SVS can predict cardiogenic embolism, with both high sensitivity and specificity, which can be helpful for the management of acute ischemic stroke patients in hyperacute stage. © 2017 American Heart Association, Inc.

  1. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency

    Science.gov (United States)

    Lemmens, Robin; Maugeri, Alessandra; Niessen, Hans W. M.; Goris, An; Tousseyn, Thomas; Demaerel, Philippe; Corveleyn, Anniek; Robberecht, Wim; van der Knaap, Marjo S.; Thijs, Vincent N.; Zwijnenburg, Petra J.G.

    2013-01-01

    Mutations in COL4A1 have been identified in families with hereditary small vessel disease of the brain presumably due to a dominant-negative mechanism. Here, we report on two novel mutations in COL4A1 in two families with porencephaly, intracerebral hemorrhage and severe white matter disease caused by haploinsufficiency. Two families with various clinical presentations of cerebral microangiopathy and autosomal dominant inheritance were examined. Clinical, neuroradiological and genetic investigations were performed. Electron microscopy of the skin was also performed. In one of the families, sequence analysis revealed a one base deletion, c.2085del, leading to a frameshift and a premature stopcodon, p.(Gly696fs). In the other family, a splice site mutation was identified, c.2194-1G>A, which most likely leads to skipping of an exon with a frameshift and premature termination as a result. In fibroblasts of affected individuals from both the families, nonsense-mediated decay (NMD) of the mutant COL4A1 messenger RNAs (mRNAs) and a clear reduction of COL4A1 protein expression were demonstrated, indicating haploinsufficiency of COL4A1. Moreover, thickening of the capillary basement membrane in the skin was documented, similar to reports in patients with COL4A1 missense mutations. These findings suggest haploinsufficiency, a different mechanism from the commonly assumed dominant-negative effect, for COL4A1 mutations as a cause of (antenatal) intracerebral hemorrhage and white matter disease. PMID:23065703

  2. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    Science.gov (United States)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  3. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

    Directory of Open Access Journals (Sweden)

    Jameson K. Gardner

    2016-11-01

    Full Text Available The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV bioreactor was designed by the National Aeronautics and Space Administration (NASA to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.

  4. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors

    Directory of Open Access Journals (Sweden)

    Tyler DiStefano

    2018-01-01

    Full Text Available Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25 reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.

  5. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology

    Science.gov (United States)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum

    2017-09-01

    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  6. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology

    Science.gov (United States)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum

    2017-10-01

    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  7. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  8. Differentiation of deep subcortical infarction using high-resolution vessel wall MR imaging of middle cerebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Choi, Byung Se; Jung, Cheol Kyu; Yoon, Yeon Hong; Sunwoo, Leonard; Kim, Jae Hyoung; Bae, Hee Joon [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2017-11-15

    To evaluate the utility of high-resolution vessel wall imaging (HR-VWI) of middle cerebral artery (MCA), and to compare HR-VWI findings between striatocapsular infarction (SC-I) and lenticulostriate infarction (LS-I). This retrospective study was approved by the Institutional Review Board, and informed consent was waived. From July 2009 to February 2012, 145 consecutive patients with deep subcortical infarctions (SC-I, n = 81; LS-I, n = 64) who underwent HR-VWI were included in this study. The degree of MCA stenosis and the characteristics of MCA plaque (presence, eccentricity, location, extent, T2-high signal intensity [T2-HSI], and plaque enhancement) were analyzed, and compared between SC-I and LS-I, using Fisher's exact test. Stenosis was more severe in SC-I than in LS-I (p = 0.040). MCA plaque was more frequent in SC-I than in LS-I (p = 0.028), having larger plaque extent (p = 0.001), more T2-HSI (p = 0.001), and more plaque enhancement (p = 0.002). The eccentricity and location of the plaque showed no significant difference between the two groups.Both SC-I and LS-I have similar HR-VWI findings of the MCA plaque, but SC-I had more frequent, larger plaques with greater T2-HSI and enhancement. This suggests that HR-VWI may have a promising role in assisting the differentiation of underlying pathophysiological mechanism between SC-I and LS-I.

  9. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea.

    Science.gov (United States)

    Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Liang, Jing-Nan; Li, Ming

    2014-07-15

    In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 μg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM). There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM). This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea.

  10. The Natural Product Citral Can Cause Significant Damage to the Hyphal Cell Walls of Magnaporthe grisea

    Directory of Open Access Journals (Sweden)

    Rong-Yu Li

    2014-07-01

    Full Text Available In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 μg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM. There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM. This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea.

  11. Point-of-care ultrasound detection of tracheal wall thickening caused by smoke inhalation.

    Science.gov (United States)

    Kameda, Toru; Fujita, Masato

    2014-01-01

    Smoke inhalation is the leading cause of death due to fires. When a patient presents with smoke inhalation, prompt assessment of the airway and breathing is necessary. Point-of-care ultrasonography (US) is used for the rapid assessment of critically ill or injured patients. We herein present a case report of a 54-year-old male who was transferred to the emergency department with shortness of breath, coughing, carbonaceous sputa, and rhinorrhea after inhaling smoke caused by a fire in his locked bedroom. He had no surface burns on the face and no edema or erosion in the oral cavity. He had hoarseness without stridor. His breath sounds were positive for expiratory wheezes. Laryngoscopy showed light edema and erosive findings on the supraglottic region. Bedside point-of-care US revealed hypoechoic thickening of the tracheal wall. The thickening was confirmed by a computed tomographic scan. The patient was carefully monitored with preparation for emergency airway management and was treated with supplemental oxygen and an aerosolized beta-2 adrenergic agonist in the intensive care unit. The symptoms were subsequently relieved, and reexamination by US after 2 days showed remission of the wall thickening. Point-of-care US may therefore be a useful modality for the rapid diagnosis and effective follow-up of tracheal wall thickening caused by smoke inhalation.

  12. [Injuries to blood vessels near the heart caused by central venous catheters].

    Science.gov (United States)

    Abram, J; Klocker, J; Innerhofer-Pompernigg, N; Mittermayr, M; Freund, M C; Gravenstein, N; Wenzel, V

    2016-11-01

    Injuries to blood vessels near the heart can quickly become life-threatening and include arterial injuries during central venous puncture, which can lead to hemorrhagic shock. We report 6 patients in whom injury to the subclavian artery and vein led to life-threatening complications. Central venous catheters are associated with a multitude of risks, such as venous thrombosis, air embolism, systemic or local infections, paresthesia, hemothorax, pneumothorax, and cervical hematoma, which are not always immediately discernible. The subclavian catheter is at a somewhat lower risk of catheter-associated sepsis and symptomatic venous thrombosis than approaches via the internal jugular and femoral veins. Indeed, access via the subclavian vein carries a substantial risk of pneumo- and hemothorax. Damage to the subclavian vein or artery can also occur during deliberate and inadvertent punctures and result in life-threatening complications. Therefore, careful consideration of the access route is required in relation to the patient and the clinical situation, to keep the incidence of complications as low as possible. For catheterization of the subclavian vein, puncture of the axillary vein in the infraclavicular fossa is a good alternative, because ultrasound imaging of the target vessel is easier than in the subclavian vein and the puncture can be performed much further from the lung.

  13. Breast arterial calcification and risk of carotid atherosclerosis: Focusing on the preferentially affected layer of the vessel wall

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Nahid, E-mail: nsedighi@sina.tums.ac.ir [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Radmard, Amir Reza, E-mail: radmard@ams.ac.ir [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Radmehr, Ali, E-mail: radmehr@sina.tums.ac.ir [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Hashemi, Pari, E-mail: phtums@yahoo.com [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Hajizadeh, Abdolmahmoud, E-mail: mroomezi@yahoo.com [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of); Taheri, Amir Pejman Hashemi, E-mail: hashemip@sina.tums.ac.ir [Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences. North Kargar Ave., Tehran 14114 (Iran, Islamic Republic of)

    2011-08-15

    Objective: To assess the relationship between breast arterial calcification (BAC) detected on screening mammography and atherosclerosis of carotid arteries considering the most likely involved layer of the arterial wall. Materials and methods: A total of 537 consecutive women who underwent screening mammography were enrolled in this study. Seventy-nine subjects having BAC, aged 46-75 years, and 125 age-matched controls from those without BAC were selected for ultrasound examination of carotid arteries assessing intima-media thickness (IMT) and plaque presence. Participants were divided into three groups of risk including, low-risk: IMT < 0.6 mm without plaque, medium-risk: 0.6 mm {<=} IMT {<=} 0.8 mm without plaque and high-risk: IMT > 0.8 mm and/or plaque. Risk factors for atherosclerosis were obtained from medical records for independent effects. Results: BAC was present in 14.7% of mammograms. According to multivariable logistic regression analyses, significant association was identified between the carotid atherosclerosis risk and presence of BAC. Compared to women with IMT < 0.6 mm, those with 0.6 mm {<=} IMT{<=} 0.8 mm and IMT > 0.8 mm had OR (95% CI) of 4.88 (1.47-16.16) and 23.36 (4.54-120.14), respectively. The OR (95% CI) for carotid plaque was 3.13 (1.3-7.57). There was no interaction between IMT category and plaque. Significant associations were also detected with postmenopausal duration (P = 0.02) and hypertension (P = 0.004). Conclusion: The risk of carotid atherosclerosis increases with the presence of BAC. Women with BAC are more likely to have thicker IMT than plaque, which could be attributed to the preferentially similar affected layer of media causing thick IMT rather than plaque.

  14. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    Science.gov (United States)

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  15. Prior blunt chest trauma may be a cause of single vessel coronary disease; hypothesis and review

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjær; Nielsen, PE; Sleight, P

    2006-01-01

    Prompted by a case where a patient (with no risk factors, and single vessel disease) developed angina pectoris after previous blunt chest trauma, we searched Medline for blunt chest trauma and myocardial ischaemia. We found 77 cases describing AMI after blunt chest trauma, but only one reporting...... angina pectoris. We focused on the age and sex distribution, type of trauma, the angiography findings and the time interval between the trauma and the angiography. The age distribution was atypical, compared to AMI in general; 82% of the patients with AMI after blunt chest trauma were less than 45 years......, which strongly suggested a causal relation between the trauma and subsequent occlusion. AMI should therefore be considered in patients suffering from chest pain after blunt chest trauma. Because traumatic AMI might often be the result of an intimal tear or dissection, thrombolytic therapy might worsen...

  16. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  17. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  18. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations ...

  19. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    Science.gov (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  20. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    Science.gov (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  1. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    Science.gov (United States)

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Huber, V., E-mail: V.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich (Germany); Huber, A.; Mertens, Ph.; Sergienko, G. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Price, M.; Silburn, S.; Zastrow, K.-D. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Drewelow, P. [MPI für Plasmaphysik, Greifswald (Germany); Wynn, A. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-11-15

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  3. {sup 18}F-fluoroethylcholine uptake in arterial vessel walls and cardiovascular risk factors. Correlation in a PET-CT study

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan; Rominger, A.; Cumming, P.; Bartenstein, P.; Hacker, M. [Technische Univ. Muenchen (TUM) (Germany). Dept. of Nuclear Medicine; Saam, T.; Nikolaou, K.; Reiser, M.F. [Univ. Muenchen (Germany). Inst. of Clinical Radiology; Wolpers, S. [Technische Univ. Muenchen (TUM) (Germany). Dept. of Nuclear Medicine; Univ. Muenchen (Germany). Inst. of Clinical Radiology

    2010-07-01

    Fluorine-labelled choline derivatives were recently suggested as agents for visualizing vulnerable atherosclerotic plaques. We therefore aimed to evaluate the association between {sup 18}F-fluorethylcholine (FEC) uptake in the wall of large arteries, where calcification was also measured, with the presence of cardiovascular risk factors and occurrence of prior cardiovascular events. Detailed clinical information, including common cardiovascular risk factors, was obtained retrospectively in 60 prostate cancer patients examined with whole-body FEC PET-CT. In each patient, we calculated the mean blood pool-corrected SUV, as well as the mean target-to-background ratio (TBR), in addition to the sum of calcified plaques (CP{sub sum}) from six major vessels: ascending and descending aorta, aortic arch, abdominal aorta, and both iliac arteries. As reported previously, the CP{sub sum} correlated significantly with cardiovascular risk factors, in contrast to mean SUV or TBR scores, which did not show any significance with the presence of cardiovascular risk factors. There was no correlation between CP{sub sum}, mean TBR or SUV, nor was there any significant association of CP{sub sum}, mean TBR or SUV with the prior occurrence of cardio- or cerebrovascular events. Contrary to a recent report, we found in our rather large cohort of elderly prostate cancer patients no significant association between FEC uptake in large vessels and atherosclerotic plaque burden, or the presence of cardiovascular risk factors. In line with prior reports on structural changes in vessels, increased calcified atherosclerotic plaque burden was strongly associated with the occurrence of common cardiovascular risk factors. (orig.)

  4. Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

  5. Whole-brain vessel wall MRI: A parameter tune-up solution to improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo.

    Science.gov (United States)

    Yang, Qi; Deng, Zixin; Bi, Xiaoming; Song, Shlee S; Schlick, Konrad H; Gonzalez, Nestor R; Li, Debiao; Fan, Zhaoyang

    2017-09-01

    To propose and evaluate a parameter tune-up solution to expedite a three-dimensional (3D) variable-flip-angle turbo spin-echo (TSE) sequence for whole-brain intracranial vessel wall (IVW) imaging. Elliptical k-space sampling and prolonged echo train length (ETL), were used to expedite a 3D variable-flip-angle TSE-based sequence. To compensate for the potential loss in vessel wall signal, optimal combination of prescribed T 2 and ETL was experimentally investigated on 22 healthy volunteers at 3 Tesla. The optimized protocol (7-8 min) was then compared with a previous protocol (reference protocol, 11-12 min) in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and wall delineation quality on a 4-point scale (0:poor; 3:excellent) in 10 healthy volunteers. A pilot study of five patients was performed and lesion delineation score was used to demonstrate the diagnostic quality. A protocol with ETL = 52 and prescribed T 2  = 170 ms was deemed an optimized one, which, compared with the reference protocol, provided significantly improved wall SNR (12.0 ± 1.3 versus 10.0 ± 1.1; P = 0.002), wall-lumen CNR (9.7 ± 1.2 versus 8.0 ± 0.9; P = 0.002), wall-CSF CNR (2.8 ± 1.0 versus 1.7 ± 1.0; P = 0.026), similar vessel wall sharpness at both inner (1.59 ± 0.18 versus 1.58 ± 0.14, P = 0.87) and outer (1.71 ± 0.25 versus 1.83 ± 0.30; P = 0.18) boundaries, and comparable vessel wall delineation score for individual segments (1.95-3; P > 0.06). In all patients, atherosclerotic plaques (10) or wall dissection (5) were identified with a delineation score of 3 or 2. A parameter tune-up solution can accelerate 3D variable-flip-angle TSE acquisitions, particularly allowed for expedited whole-brain IVW imaging with preserved wall delineation quality. 2. Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:751-757. © 2017 International Society for Magnetic

  6. Rectus Abdominis Muscle Malignant Fibrous Histiocytoma Causing a Large Abdominal Wall Defect: Reconstruction with Biological Mesh

    Directory of Open Access Journals (Sweden)

    Evangelos Falidas

    2014-01-01

    Full Text Available Malignant fibrous histiocytoma (MFH is a common soft tissue sarcoma usually involving limbs and retroperitoneum. MFH of the rectus abdominis muscle is extremely rare. Surgery in similar cases leads to large abdominal wall defects needing reconstruction. Biological and synthetic laminar absorbable prostheses are available for the repair of hernia defects in the abdominal wall. They share the important feature of being gradually degraded in the host, resulting the formation of a neotissue. We herein report the case of an 84-year-old man with MFH of the rectus abdominis muscle which was resected and the large abdominal wall defect was successfully repaired with a biological mesh.

  7. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  8. What are the residual stresses doing in our blood vessels?

    Science.gov (United States)

    Fung, Y C

    1991-01-01

    We show that the residual strain and stress in the blood vessels are not zero, and that the zero-stress state of a blood vessel consists of open-sector segments whose opening angles vary along the longitudinal axis of the vessel. When the homeostatic state of the blood vessel is changed, e.g., by a sudden hypertension, the opening angle will change. The time constant of the opening angle change is a few hours (e.g., in the pulmonary artery) or a few days (e.g., in the aorta). From a kinematic point of view, a change of opening angle is a bending of the blood vessel wall, which is caused by a nonuniformly distributed residual strain. From a mechanics point of view, changes of blood pressure and residual strain cause change of stress in the blood vessel wall. Correlating the stress with the change of residual strain yields a fundamental biological law relating the rate of growth or resorption of tissue with the stress in the tissue. Thus, residual stresses are related to the remodeling of the blood vessel wall. Our blood vessel remodels itself when stress changes. The stress-growth law provides a biomechanical foundation for tissue engineering.

  9. Lameness in a dog caused by thoracic wall invasion by a pulmonary neoplasm.

    Science.gov (United States)

    Munday, J S; Boston, S E; Owen, M C; French, A F; Aberdein, D

    2006-08-01

    A 12-year-old fox-terrier dog presented with forelimb lameness of 3-weeks duration. Ultrasonography revealed a mass within the thoracic wall and osteolysis of the left third rib. A squamous cell carcinoma was diagnosed by cytological examination of an ultrasound-guided fine needle aspirate of this mass. As a result of the diagnosis of neoplasia, the dog was euthanatized. Necropsy revealed a solitary expansile mass within the left cranial lung lobe, and a mass within the adjacent thoracic wall. Thickening of the pleura between the two masses was visible, although adhesions were not present. Histology of both masses revealed a well-differentiated squamous cell carcinoma. To the authors' knowledge, this is the first detailed description of direct invasion of the thoracic wall by a canine lung tumour.

  10. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    Science.gov (United States)

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In Vivo Clearance of Alpha-1 Acid Glycoprotein Is Influenced by the Extent of Its N-Linked Glycosylation and by Its Interaction with the Vessel Wall

    Directory of Open Access Journals (Sweden)

    Teresa R. McCurdy

    2012-01-01

    Full Text Available Alpha-1 acid glycoprotein (AGP is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP’s N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP, while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5Q eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.

  12. Morganella Morganii Causing Abscess Over the Anterior Chest Wall- A Case Report

    OpenAIRE

    D., Vijaya; JV, Sathish; MK, Yashaswini; S, Sulaiman

    2014-01-01

    A 17-year-old female college student presented with recurrent abscess over the anterior chest wall since one and half year. Morganella morganii was isolated from the aspirated pus. Patient was started on oral ciprofloxacin and the lesion resolved in two weeks.

  13. Probiotics protect the intestinal wall of morphological changes caused by malnutrition

    Directory of Open Access Journals (Sweden)

    JORGE F. DE AZEVEDO

    2014-09-01

    Full Text Available This study sought to morphometrically analyze the jejunal wall of protein-malnourished rats administered a probiotic supplement. The sample consisted of recently weaned Wistar rats (Rattus norvegicus distributed among four groups: animals given a commercial diet (G1, n = 4; animals given the same ration as G1 plus a probiotic supplement (G2, n = 4; animals given a 4% protein diet (G3, n = 4; and animals given the same ration as G3 plus a probiotic supplement (G4, n = 4. After 12 weeks, part of the jejunum was harvested and subjected to routine histological processing. Transverse sections with a thickness of 3 µm were stained with HE, and histochemical techniques were used to assay for glycoconjugates, including staining with periodic acid-Schiff (PAS + diastase, Alcian Blue (AB solution at pH 2.5, and Alcian Blue solution at pH 1.0. Morphometric analysis of the bowel wall showed that the probiotic culture used in this study induced hypertrophy of several layers of the jejunal wall in well-nourished animals and reduced the bowel wall atrophy usually observed in protein-malnourished animals. Neither malnutrition nor the use of probiotics altered the relationship between the number of goblet cells and the number of enterocytes.

  14. Selective inhibition of neutrophil activation by the subendothelial extracellular matrix: possible role in protection of the vessel wall during diapedesis.

    Science.gov (United States)

    Matzner, Y; Vlodavsky, I; Michaeli, R I; Eldor, A

    1990-08-01

    Mobilization of circulating neutrophils toward an inflamed area involves adherence of the cells to the vascular endothelium and subsequent penetration through the endothelial cell layer without causing significant damage. To investigate the nature of a possible protective mechanism, granulocytes were incubated with the extracellular matrix (ECM) produced by cultured endothelial cells and tested for release of enzymes, chemoattractants, and free oxygen radicals. In the absence of exogenously added stimuli, the neutrophils adhered to the ECM but there was no detectable release of lysozyme, chemotactic activity, or production of O2-. In contrast, the cells readily released a heparan sulfate-degrading endoglycosidase (heparanase) to an extent comparable with that released in contact with polystyrene surfaces. Neutrophils treated with the calcium ionophore A23187 or with the peptide FMLP produced O2- to a much lesser degree when incubated in contact with ECM-coated surfaces than did those incubated in contact with uncoated polystyrene culture dishes. The ECM itself was devoid of superoxide dismutase activity. Stimulation with opsonized zymosan was not inhibited by the ECM. Experiments with isolated constituents of the ECM revealed that fibronectin but not collagen type IV or laminin could partially inhibit O2- production by Ca2+ ionophore-stimulated neutrophils. Treatment of the ECM with proteolytic enzymes, but not with heparanase, abolished its inhibitory effect on neutrophil activation. These results indicate that the subendothelial basement membrane has the capacity to inhibit release of potentially noxious agents excluding heparanase, suggesting a preferential involvement of this enzyme in neutrophil diapedesis.

  15. Reaction wood – a key cause of variation in cell wall recalcitrance in willow

    Directory of Open Access Journals (Sweden)

    Brereton Nicholas JB

    2012-11-01

    Full Text Available Abstract Background The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp. variability of the reaction wood (RW response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. Results A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment when compared with the same genotype grown at a more sheltered site. Conclusions Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms. Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’ indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm biofuel crops and, with further work to dissect

  16. Reaction wood – a key cause of variation in cell wall recalcitrance in willow

    Science.gov (United States)

    2012-01-01

    Background The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. Results A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site. Conclusions Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW

  17. Reaction wood - a key cause of variation in cell wall recalcitrance in willow.

    Science.gov (United States)

    Brereton, Nicholas Jb; Ray, Michael J; Shield, Ian; Martin, Peter; Karp, Angela; Murphy, Richard J

    2012-11-22

    The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. A pot trial was designed to test if the 'RW response' varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site. Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a 'RW response') indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW variation, could provide novel targets for

  18. Analysis of Wall-Thinning Effects Caused by Power Uprates in the Secondary System of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo; Lee, Hyoseoung [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Piping and equipment are degraded by flow-accelerated corrosion (FAC) in nuclear power plants. FAC causes numerous problems and nuclear utilities maintain programs to control FAC. The key parameters influencing FAC are hydrodynamic conditions, water chemistry, and effect of materials. Recently, a nuclear utility has planned slight power uprates in Korea. Operating conditions need to be changed in the secondary system according to power uprates. This study analyzed the effect of wall-thinning caused by power uprates. The change of operation data in the secondary cycle is reviewed, and wall-thinning rates are analyzed in the main lines. As a result, two phase (mixture of water and steam) lines have a greater impact than a water line under power uprate conditions. Also, the quality of steam is the most important factor for FAC in two phase lines.

  19. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol

    Directory of Open Access Journals (Sweden)

    van der Vlugt Maureen J

    2011-02-01

    Full Text Available Abstract Background Cerebral small vessel disease (SVD is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML and the normal appearing white matter (NAWM. Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. Methods/Design The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. Discussion The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white

  20. Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins.

    Science.gov (United States)

    Sorenson, Andrew L; Sorenson, Robert L; Evans, David J

    2016-11-01

    To identify etiology of toxic anterior segment syndrome (TASS) after uneventful phacoemulsification. EyeMD Laser and Surgery Center, Oakland, California. Retrospective case series. Patient charts with TASS were reviewed. Reservoirs of 2 autoclaves associated with these cases were cultured for bacterial contamination. Cultures were performed on 23 other autoclave reservoirs at surgery centers in the local area. The main outcome measures were the incidence of TASS and prevalence of bacterial biofilm contamination of autoclave reservoirs. From 2010 to 2013, 11 935 consecutive cataract surgeries were performed at 1 center by multiple surgeons with no reported TASS. Between January 1, 2014, and January 15, 2015, 10 cases of TASS occurred out of 3003 cataract surgeries; these patients' charts were reviewed. Cultures of 2 Statim autoclave reservoir walls grew Bacillus species, Williamsia species, Mycobacterium mucogenicum, and Candida parapsilosis. Scanning electron microscopy of reservoir wall sections showed prominent biofilm. The 2 autoclaves were replaced in January 2015. Subsequently, 2875 cataract surgeries were performed with no reported TASS (P autoclaves were also contaminated with bacterial biofilms. Toxic anterior segment syndrome was strongly associated with bacterial biofilm contamination of autoclave reservoirs. An etiological mechanism might involve transport of heat-stable bacterial cell antigens in the steam with deposition on surgical instrumentation. Data suggest widespread prevalence of bacterial biofilms on fluid-reservoir walls, despite adherence to manufacturer guidelines for cleaning and maintenance. Prevention or elimination of autoclave fluid-reservoir biofilms might reduce the risk for postoperative TASS. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    Science.gov (United States)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  2. BIOASSAY VESSEL FAILURE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  3. Ultrasonic Measurement of Transient Change in Stress-Strain Property of Radial Arterial Wall Caused by Endothelium-Dependent Vasodilation

    Science.gov (United States)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    The endothelial dysfunction is considered to be an initial step of atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method for assessing the regional endothelial function and mechanical property of the arterial wall. There is a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization. For more sensitive and regional evaluation, we developed a method of measuring the change in the elasticity of the radial artery due to FMD. In this study, the transient change in the mechanical property of the arterial wall was further revealed by measuring the stress-strain relationship during each heartbeat. The minute change in the thickness (strain) of the radial arterial wall during a cardiac cycle was measured by the phased tracking method, together with the waveform of blood pressure which was continuously measured with a sphygmometer at the radial artery. The transient change in stress-strain relationship during a cardiac cycle was obtained from the measured changes in wall thickness and blood pressure to show the transient change in instantaneous viscoelasticity. From the in vivo experimental results, the stress-strain relationship shows the hysteresis loop. The slope of the loop decreased owing to FMD, which shows that the elastic modulus decreased, and the increasing area of the loop depends on the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  4. Immunological and inflammatory processes in systemic autoimmune disease may not only cause pericardium inflammation, but may also cause mitral valve deterioration and left ventricular wall thickening.

    Science.gov (United States)

    Sugiura, Atsushi; Funabashi, Nobusada; Ozawa, Koya; Kobayashi, Yoshio

    2016-07-15

    Systemic autoimmune disease (SAD) frequently affects the pericardium, and pathology is characterized by both immunological and inflammatory processes. We hypothesized that these processes simultaneously influence mitral-valve (MV) deterioration and left-ventricular (LV) wall thickening in SAD subjects. 101 SAD subjects were selected (76 female; 53±17years; systemic-lupus-erythematosus, 26%; vasculitis, 20%; scleroderma, 14%; polymyositis/dermatomyositis complex, 10%; mixed connective tissue disease, 11% and rheumatoid-arthritis, 2%). MV anterior-mitral-leaflet (AML) length, AML thickness index, AML doming height and LV mass index (LVMI) were measured using transthoracic-echocardiography (TTE) and the presence of MV calcification, MV sub-valvular thickening and pericardial effusion (PE) were estimated. AML thickness index was calculated as the ratio of AML thickness to aortic posterior wall thickness. The correlation between LVMI and ECG V1S+V5R voltage was used to assess the etiology of LV wall thickening. 19 subjects (19%) had significant PE. PE subjects had a significantly greater AML thickness index (1.55±0.48 vs. 1.14±0.32, P<0.001), AML doming height (1.26±1.54mm vs. 0.03±0.91mm, P<0.001), more frequent MV sub-valvular thickening (26% vs. 5%, P=0.003) and greater LVMI (104.7±34.6g/m2 vs. 80.6±21.0g/m2, P=0.002). Significant correlation was observed between LVMI and ECG V1S+V5R voltage in 79 subjects without PE (R=0.39, P<0.001). However, in 18 subjects with PE, no such correlation was observed (R=0.30, P=0.23). MV, MV sub-valvular deterioration and increased LVMI, unrelated to high voltage ECG criteria, were frequently detected in SAD subjects with PE. Immunological and inflammatory processes in SAD may not only cause pericardium inflammation, but may also cause MV deterioration and LV wall thickening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  6. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2016-12-01

    Full Text Available For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr. After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking, a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

  7. Postmortem CT morphometry of great vessels with regard to the cause of death for investigating terminal circulatory status in forensic autopsy.

    Science.gov (United States)

    Sogawa, Nozomi; Michiue, Tomomi; Ishikawa, Takaki; Inamori-Kawamoto, Osamu; Oritani, Shigeki; Maeda, Hitoshi

    2015-05-01

    Postmortem CT (PM-CT) is useful to investigate the viscera in situ before opening the body cavities at autopsy. The present study involved a virtual morphometric analysis of thoracic and abdominal great vessels with regard to the cause of death as a possible index of terminal circulatory status in forensic autopsy cases, using PM-CT data of forensic autopsy cases within 3 days postmortem (n = 93). Perimeters and cross-sectional areas of the aorta and vena cava depended on the age and/or gender of subjects; however, when the vessel flattening index (vFI) was calculated as the ratio of the cross-sectional area (a) to the estimated circle area having the same perimeter (l), using the formula vFI = 4πa/l(2), the vFI showed distinct differences among the causes of death without significant postmortem time dependence. The index was low for each vessel in fatal bleeding, while the vFI of the abdominal aorta and inferior vena cava was low in hyperthermia (heatstroke), but higher in drowning, hypothermia (cold exposure) and sudden cardiac death. These CT findings provide quantitative data as supplementary indicators to reinforce autopsy findings for interpreting terminal circulatory status.

  8. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.

    Science.gov (United States)

    Li, Lin; Benson, Craig H; Lawson, Elizabeth M

    2006-02-01

    A study was conducted to assess key factors to include when modeling porosity reductions caused by mineral fouling in permeable reactive barriers (PRBs) containing granular zero valent iron. The public domain codes MODFLOW and RT3D were used and a geochemical algorithm was developed for RT3D to simulate geochemical reactions occurring in PRBs. Results of simulations conducted with the model show that the largest porosity reductions occur between the entrance and mid-plane of the PRB as a result of precipitation of carbonate minerals and that smaller porosity reductions occur between the mid-plane and exit face due to precipitation of ferrous hydroxide. These findings are consistent with field and laboratory observations, as well as modeling predictions made by others. Parametric studies were conducted to identify the most important variables to include in a model evaluating porosity reduction. These studies showed that three minerals (CaCO3, FeCO3, and Fe(OH)2 (am)) account for more than 99% of the porosity reductions that were predicted. The porosity reduction is sensitive to influent concentrations of HCO3-, Ca2+, CO3(2-), and dissolved oxygen, the anaerobic iron corrosion rate, and the rates of CaCO3 and FeCO3 formation. The predictions also show that porosity reductions in PRBs can be spatially variable and mineral forming ions penetrate deeper into the PRB as a result of flow heterogeneities, which reflects the balance between the rate of mass transport and geochemical reaction rates. Level of aquifer heterogeneity and the contrast in hydraulic conductivity between the aquifer and PRB are the most important hydraulic variables affecting porosity reduction. Spatial continuity of aquifer hydraulic conductivity is less significant.

  9. Clinical characteristics of pulsatile tinnitus caused by sigmoid sinus diverticulum and wall dehiscence: a study of 54 patients.

    Science.gov (United States)

    Wang, Guo-Peng; Zeng, Rong; Liu, Zhao-Hui; Liang, Xi-Hong; Xian, Jun-Fang; Wang, Zhen-Chang; Gong, Shu-Sheng

    2014-01-01

    CT angiography (CTA) and digital subtraction angiography (DSA) are valuable tools in imaging work-ups for the diagnosis of sigmoid sinus diverticulum (SSD) and sigmoid sinus wall dehiscence (SSWD). The development of pulsatile tinnitus (PT) resulting from SSD and SSWD may be associated with the dominance of venous systems. Our goal was to evaluate the clinical characteristics of PT caused by SSD and SSWD. This was a retrospective chart review undertaken in a tertiary academic referral center. Fifty-four patients with PT due to SSD and SSWD were recruited. Hospital files of these patients were assessed. Data included medical history, physical examinations, auxiliary examinations, and radiographic findings of CTA and DSA. The study population comprised 51 females and 3 males. Most patients with PT caused by SSD and SSWD were middle-aged women. All had normal otoscopy results. Anomalies occurred in or adjacent to the region of the transverse-sigmoid sinus junction in 52 patients. Half of the patients (27/54) presented abnormal results of examination of blood lipids. There were 57.41% (31/54) cases with ipsilateral dominance of the venous system, 9.26% (5/54) cases with contralateral dominance, and 33.33% (18/54) cases with co-dominance of the venous system.

  10. An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall.

    Science.gov (United States)

    Chun, Youngjae; Kealey, Colin P; Levi, Daniel S; Rigberg, David A; Chen, Yanfei; Tillman, Bryan W; Mohanchandra, K P; Shayan, Mahdis; Carman, Gregory P

    2017-03-01

    Sputter-deposited thin film nitinol constructs with various micropatterns were fabricated to evaluate their effect on the vessel wall in vivo when used as a covering for commercially available stents. Thin film nitinol constructs were used to cover stents and deployed in non-diseased swine arteries. Swine were sacrificed after approximately four weeks and the thin film nitinol-covered stents were removed for histopathologic evaluation. Histopathology revealed differences in neointimal thickness that correlated with the thin film nitinol micropattern. Devices covered with thin film nitinol with a lateral × vertical length = 20 × 40 µm diamond pattern had minimal neointimal growth with well-organized cell architecture and little evidence of ongoing inflammation. Devices covered with thin film nitinol with smaller fenestrations exhibited a relatively thick neointimal layer with inflammation and larger fenestrations showed migration of inflammatory and smooth muscle cells through the micro fenestrations. This "proof-of-concept" study suggests that there may be an ideal thin film nitinol porosity and pore geometry to encourage endothelialization and incorporation of the device into the vessel wall. Future work will be needed to determine the optimal pore size and geometry to minimize neointimal proliferation and in-stent stenosis.

  11. Influence of cerebral blood vessel movements on the position of perivascular synapses

    Science.gov (United States)

    DeFelipe, Javier

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396

  12. Fluid-structure interaction analysis on the effect of vessel wall hypertrophy and stiffness on the blood flow in carotid artery bifurcation

    Science.gov (United States)

    Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul

    2012-11-01

    The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).

  13. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  14. Gene silencing of barley P23k involved in secondary wall formation causes abnormal tiller formation and intercalary elongation

    OpenAIRE

    Oikawa, Ai; Nagai, Kazuya; Kato, Kiyoaki; Kidou, Shin-ichiro; 加藤, 清明

    2009-01-01

    P23k is a monocot-unique protein that is highly expressed in barley. Our previous loss-of-function studies in barley leaves indicated that P23k, localized to tissues where cell wall polysaccharides accumulate, might contribute to secondary wall formation in the leaf. However, the P23k loss-of-function analysis was limited to the leaf, which is a vegetative organ. Considering the involvement of P23k in secondary wall formation, a dramatically altered phenotype is expected in the stem of P23k g...

  15. Effects of High-sugar and High-fat Diet on Fat Deposition and Blood Vessel Wall on Sprague Dawley Rats Liver

    Directory of Open Access Journals (Sweden)

    Vera Citra Setiawan Hoei

    2013-11-01

    Full Text Available People nowadays tend to consume more fast food and sweetened beverages. These foods usually contain high amount sugar and fat that have effects on the body including liver.This study was conducted to explore the effects of extensive intake of sugar and fat on blood glucose and  cholesterol level as well as changes in liver. Research was conducted with experimental method using 20 Sprague Dawley rats which were divided into 4 groups; 2 controls and 2 treatments. Rats were given 5 ml sugar or lard alternatively every 2 consecutive days for 1-month and 2-month respectively. Data was retrieved include blood glucose and cholesterol level, fatty liver percentage and blood vessel thickening after intervention through HE staining. The results showed that both 1-month and 2-month intervention group has significant increase in blood glucose and cholesterol level. However, the enhancement of fatty liver percentage and number of thickened blood vessels (p<0.05 were only foundsignificant (p<0.05 in 1-month intervention group.  We concluded that high intake of sugar and fat within 1-monthintervention have significant effects on the rat body including liver. Nevertheless, it was not found significant in 2-months intervention. Further studies are still needed to analyze this incongruent result.Key words: high-sugar diet, high-fat diet, fatty liver, atherosclerosis 

  16. Nonculprit Plaque Characteristics in Patients With Acute Coronary Syndrome Caused by Plaque Erosion vs Plaque Rupture: A 3-Vessel Optical Coherence Tomography Study.

    Science.gov (United States)

    Sugiyama, Tomoyo; Yamamoto, Erika; Bryniarski, Krzysztof; Xing, Lei; Lee, Hang; Isobe, Mitsuaki; Libby, Peter; Jang, Ik-Kyung

    2018-02-07

    Patients with culprit plaque rupture are known to have pancoronary plaque vulnerability. However, the characteristics of nonculprit plaques in patients with acute coronary syndromes caused by plaque erosion are unknown. To investigate the nonculprit plaque phenotype in patients with acute coronary syndrome according to culprit plaque pathology (erosion vs rupture) by 3-vessel optical coherence tomography imaging. In this observational cohort study, between August 2010 and May 2014, 82 patients with ACS who underwent preintervention optical coherence tomography imaging of all 3 major epicardial coronary arteries were enrolled at the Massachusetts General Hospital Optical Coherence Tomography Registry database. Analysis of the data was conducted between November 2016 and July 2017. Patients were classified into 2 groups based on the culprit lesion pathology: 17 patients with culprit plaque erosion and 34 patients with culprit plaque rupture. Thirty-one patients with the absence of culprit rupture or erosion were excluded from further analysis. Preintervention 3-vessel optical coherence tomography imaging. Plaque characteristics at the culprit and nonculprit lesions evaluated by optical coherence tomography. In 51 patients (37 men; mean age, 58.7 years), the characteristics of 51 culprit plaques and 216 nonculprit plaques were analyzed. In patients with culprit erosion, the mean (SD) number of nonculprit plaques per patient was smaller (3.4 [1.9] in erosion vs 4.7 [2.1] in rupture, P = .05). Patient-based analysis showed that none of 17 patients with culprit plaque erosion had nonculprit plaque rupture, whereas 26% of the patients (9 of 34) with culprit plaque rupture had nonculprit plaque rupture (P = .02). Plaque-based analysis showed that, compared with the culprit rupture group (n = 158), the culprit erosion group (n = 58) had lower prevalence of plaque rupture (0% vs 8%; P erosion had a smaller number of nonculprit plaques and the lower levels

  17. Airway wall thickness of allergic asthma caused by weed pollen or house dust mite assessed by computed tomography.

    Science.gov (United States)

    Liu, Liping; Li, Guangrun; Sun, Yuemei; Li, Jian; Tang, Ningbo; Dong, Liang

    2015-03-01

    Little was known about Airway wall thickness of asthma patients with different allergen allergy. So we explored the possible difference of Airway wall thickness of asthma patients mono-sensitized to weed pollen or HDM using high-resolution computed tomography. 85 severe asthma patients were divided into weed pollen group and HDM group according to relevant allergen. 20 healthy donors served as controls. Airway wall area, percentage wall area and luminal area at the trunk of the apical bronchus of the right upper lobe were quantified using HRCT and compared. The values of pulmonary function were assessed as well. There were differences between HDM group and weed pollen group in WA/BSA,WA% and FEF25-75% pred, and no significant difference in FEV1%pred, FEV1/FVC and LA/BSA. In weed pollen group, WA/BSA was observed to correlate with the duration of rhinitis, whereas in HDM group, WA/BSA and LA/BSA was observed to correlate with the duration of asthma. In weed pollen group, FEV1/FVC showed a weak but significant negative correlation with WA%, but in HDM group FEV1/FVC showed a significant positive correlation with WA% and a statistical negative correlation with LA/BSA. FEV1/FVC and FEF25-75% pred were higher and WA/BSA and LA/BSA were lower in healthy control group than asthma group. FEV1%pred and WA% was no significant difference between asthma patients and healthy subjects. There are differences between HDM mono-sensitized subjects and weed pollen mono-sensitized subjects, not only in airway wall thickness, but also small airway obstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Simulation of the electromagnetic wall response to plasma wall-touching kink and vertical modes with application to ITER

    Science.gov (United States)

    Atanasiu, Calin; Zakharov, Leonid; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika

    2017-10-01

    Realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls are necessary to understand plasma disruptions in tokamak. In large tokamaks like ITER, the wall-touching kink modes cause large sideway forces on the vacuum vessel determined by the sharing of asymmetric electric current between the plasma and the wall. Our model covers both eddy currents, excited inductively by vertical modes, and source/sink currents due to current sharing between the plasma and the thin conducting wall. The developed finite element approach calculates the electromagnetic wall response to perturbation of magnetic fields and to current sharing between the plasma and the wall. The current density entering/exiting the wall surface from the plasma and the time derivative of the magnetic vector potential of the plasma are the input values. The magnetic field and the vector potential from the wall currents are returned as output. Our model has been checked against analytical examples of a multiply-connected domain of a real ITER wall.

  19. [The application of ultrasonography to estimate blood vessel injury of upper limbs sustaining electric burns].

    Science.gov (United States)

    Chai, Jia-ke; Li, Li-gen; Chen, Yue-xiu; Hu, Xiao-juan; Yang, Yong-ming

    2003-12-01

    To explore a new method in estimating extent and degree of arterial injury in upper limbs sustaining high tension electric burns. Eighteen patients (twenty-four upper limbs) with high tension electricity injury were admitted from December 1998 to September 2002, The damaged limbs consisted of four parts: wrist wound part, 5 cm, 10 cm, 15 cm parts around wrist wound, where the radial and ulnar arteries were detected using B ultrasound and color WP Doppler examination. The changes of endangium, vessel diameter, thickness of the vessel wall and volume of blood flow were recorded respectively. The parameters of normal radial and ulnar arteries were also determined as normal control. B ultrasound and color WP Doppler examination showed that the endangium in radial and ulnar arteries become coarse, edema or exfoliation. The vessel wall was thicker than that of the normal control and the thickness was heterogeneity. The vessel wall could be necrosis in severe patient and the vessel cavity was stricture or beaded. Thrombosis or occlusion could occur at the site of severe injury area in vessel. The decrease in volume of blood flow was observed. The condition of the radial and ulnar arteries become well apart from 10 - 15 cm of wrist wound. The ultrasonography can be used to detect the changes in endangium, diameter, thickness of the vessel wall, blood flow volume in injury blood vessel caused by electric burn injury. It is helpful in judging the degree and extent of injury vessel and could be a safe, non-invasive diagnostic method and is worth popularizing.

  20. Extrinsic tracheal compression caused by scoliosis of the thoracic spine and chest wall degormity: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Kyong min Sarah; Lee, Bae Young; Kim, Hyeon Sook; Song, Kyung Sup; Kang, Hyeon Hul; Lee, Sang Haak; Moon, Hwa Sik [St. Paul' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2014-05-15

    Extrinsic airway compression due to chest wall deformity is not commonly observed. Although this condition can be diagnosed more easily with the help of multidetector CT, the standard treatment method has not yet been definitely established. We report a case of an eighteen-year-old male who suffered from severe extrinsic tracheal compression due to scoliosis and straightening of the thoracic spine, confirmed on CT and bronchoscopy. The patient underwent successful placement of tracheal stent but later died of bleeding from the tracheostomy site probably due to tracheo-brachiocephalic artery fistula. We describe the CT and bronchoscopic findings of extrinsic airway compression due to chest wall deformity as well as the optimal treatment method, and discuss the possible explanation for bleeding in the patient along with review of the literature.

  1. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    by the research vessels RV Gaveshani and ORV Sagar Kanya are reported. The work carried out by the three charted ships is also recorded. A short note on cruise plans for the study of ferromanganese nodules is added...

  2. Lymphatic vessels: an emerging actor in atherosclerotic plaque development.

    Science.gov (United States)

    Kutkut, Issa; Meens, Merlijn J; McKee, Thomas A; Bochaton-Piallat, Marie-Luce; Kwak, Brenda R

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease of large- to medium-sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field. PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. Current knowledge about lymphatic vessels in the arterial wall came from studies that examined the presence and location of such vessels in human atherosclerotic plaque specimens, as well as in a variety of arteries in animal models for atherosclerosis (e.g. rabbits, dogs, rats and mice). Generally, three experimental approaches have been used to investigate the functional role of plaque-associated lymphatic vessels; experimental lymphostasis was used to investigate lymphatic drainage of the arterial wall, and more recently, studies with genetic interventions and/or surgical transplantation have been performed. Lymphatic vessels seem to be mostly present in the adventitial layer of the arterial walls of animals and humans. They are involved in reverse cholesterol transport from atherosclerotic lesions, and arteries with a dense lymphatic network seem naturally protected against atherosclerosis. Lymphangiogenesis is a process that is an important part of the inflammatory loop in atherosclerosis. However, how augmenting or impeding the distribution of lymphatic vessels impacts disease progression remains to be investigated in future studies. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Enhancing supply vessel safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    A supply-vessel bridge installation consists of a navigating bridge and a control position aft, from which operators control the ship when close to rigs or platforms, and operate winches and other loading equipment. The international Convention for Safety of I Ale at Sea (SOLAS) does not regulate the layout, so design varies to a large degree, often causing an imperfect working environment. As for other types of ships, more than half the offshore service vessel accidents at sea are caused by bridge system failures. A majority can be traced back to technical design, and operational errors. The research and development project NAUT-OSV is a response to the offshore industry's safety concerns. Analysis of 24 incidents involving contact or collision between supply vessels and offshore installations owned or operated by Norwegian companies indicated that failures in the bridge system were often the cause.

  4. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    Science.gov (United States)

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling.

    Science.gov (United States)

    Ozen, Gulsev; Daci, Armond; Norel, Xavier; Topal, Gokce

    2015-11-05

    Obesity is one of the major risk factors for the development of cardiovascular diseases. It is characterized by excessive or abnormal accumulation of adipose tissue, including depots which surround the blood vessels named perivascular adipose tissue (PVAT). PVAT plays endocrine and paracrine roles by producing large numbers of metabolically vasoactive adipokines. The present review outlines our current understanding of the beneficial roles of PVAT in vascular tone and remodeling in healthy subjects supported by clinical studies, highlighting different factors or mechanisms that could mediate protective effects of PVAT on vascular function. Most studies in humans show that adiponectin is the best candidate for the advantageous effect of PVAT. However, in pathological conditions especially obesity-related cardiovascular diseases, the beneficial effects of PVAT on vascular functions are impaired and transform into detrimental roles. This change is defined as PVAT dysfunction. In the current review, the contribution of PVAT dysfunction to obesity-related cardiovascular diseases has been discussed with a focus on possible mechanisms including an imbalance between beneficial and detrimental adipokines (commonly described as decreased levels of adiponectin and increased levels of leptin or tumor necrosis factor-alpha (TNFα)), increased quantity of adipose tissue, inflammation, cell proliferation and endothelial dysfunction. Finally, novel pharmacotherapeutic targets for the treatment of cardiovascular and metabolic disorders are addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  7. The causes of milk deposit formation on the walls of the heat exchangers during the heat treatment of milk

    Directory of Open Access Journals (Sweden)

    Bojan Matijević

    2006-03-01

    Full Text Available The results of research on finding the causes and preventing the formation of milk deposit are described in this paper.During the heat treatment of milk, an unwanted phenomenon occurs; the formation of milk deposit on heating surfaces of heat exchangers. This phenomenon causes the decrease of heat transfer coefficient as well as the pressure drop, it restricts the flow of milk, and causes additional production costs and increases production loss.The formation of milk deposit is a result of complex processes caused by thermal treatment of proteins and mineral substances in milk. Factors which cause milk deposit are: pH - value, the amount of proteins and mineral substances in milk, dissolved gases in milk, characteristics of heating surface, the difference in temperatures of milk and heating surfaces, and the regime of milk circulation. The chemical composition of milk can not be influenced, but the standards of heat treatment in order to minimise this phenomenon can, and that is precisely the topic of the latest researches.

  8. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  9. Vessel wall reactions to endovascular stent implantation

    NARCIS (Netherlands)

    H.M.M. van Beusekom (Heleen)

    1993-01-01

    textabstractIn order to gain insight in the effects of stenting, we studied the process of wound healing and the short- and long-term effect of these permanently present foreign bodies. Both thrombogenic and less thrombogenic metals were evaluated with respect to thrombogenicity and tissue response.

  10. Endoluminal compression clip : full-thickness resection of the mesenteric bowel wall in a porcine model

    NARCIS (Netherlands)

    Kopelman, Yael; Siersema, Peter D.; Nir, Yael; Szold, Amir; Bapaye, Amol; Segol, Ori; Willenz, Ehud P.; Lelcuk, Shlomo; Geller, Alexander; Kopelman, Doron

    2009-01-01

    Background: Performing a full-thickness intestinal wall resection Of a sessile polyp located on the mesenteric side with a compression clip may lead to compression of mesenteric vessels. The application of such a clip may therefore cause a compromised blood supply in the particular bowel segment,

  11. Blood flow reprograms lymphatic vessels to blood vessels.

    Science.gov (United States)

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S; Lu, MinMin; Stachelek, Stan J; Srinivasan, Sathish; Guo, Lili; Vicente, Andres; Vincente, Andres; Mericko, Patricia; Levy, Robert J; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L

    2012-06-01

    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.

  12. Vessel segmentation in screening mammograms

    Science.gov (United States)

    Mordang, J. J.; Karssemeijer, N.

    2015-03-01

    Blood vessels are a major cause of false positives in computer aided detection systems for the detection of breast cancer. Therefore, the purpose of this study is to construct a framework for the segmentation of blood vessels in screening mammograms. The proposed framework is based on supervised learning using a cascade classifier. This cascade classifier consists of several stages where in each stage a GentleBoost classifier is trained on Haar-like features. A total of 30 cases were included in this study. In each image, vessel pixels were annotated by selecting pixels on the centerline of the vessel, control samples were taken by annotating a region without any visible vascular structures. This resulted in a total of 31,000 pixels marked as vascular and over 4 million control pixels. After training, the classifier assigns a vesselness likelihood to the pixels. The proposed framework was compared to three other vessel enhancing methods, i) a vesselness filter, ii) a gaussian derivative filter, and iii) a tubeness filter. The methods were compared in terms of area under the receiver operating characteristics curves, the Az values. The Az value of the cascade approach is 0:85. This is superior to the vesselness, Gaussian, and tubeness methods, with Az values of 0:77, 0:81, and 0:78, respectively. From these results, it can be concluded that our proposed framework is a promising method for the detection of vessels in screening mammograms.

  13. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.

    Science.gov (United States)

    Connolly, Adam J; Vigmond, Edward; Bishop, Martin J

    2017-01-01

    Virtual electrodes formed by field stimulation during defibrillation of cardiac tissue play an important role in eliciting activations. It has been suggested that the coronary vasculature is an important source of virtual electrodes, especially during low-energy defibrillation. This work aims to further the understanding of how virtual electrodes from the coronary vasculature influence defibrillation outcomes. Using the bidomain model, we investigated how field stimulation elicited activations from virtual electrodes around idealized intramural blood vessels. Strength-interval curves, which quantify the stimulus strength required to elicit wavefront propagation from the vessels at different states of tissue refractoriness, were computed for each idealized geometry. Make excitations occurred at late diastolic intervals, originating from regions of depolarization around the vessel. Break excitations occurred at early diastolic intervals, whereby the vessels were able to excite surrounding refractory tissue due to the local restoration of excitability by virtual electrode-induced hyperpolarizations. Overall, strength-interval curves had similar morphologies and underlying excitation mechanisms compared with previous experimental and numerical unipolar stimulation studies of cardiac tissue. Including the presence of the vessel wall increased the field strength required for make excitations but decreased the field strength required for break excitations, and the field strength at which break excitations occurred was generally greater than 5 V/cm. Finally, in a more realistic ventricular slice geometry, the proximity of virtual electrodes around subepicardial vessels was seen to cause break excitations in the form of propagating unstable wavelets to the subepicardial layer. Representing the blood vessel wall microstructure in computational bidomain models of defibrillation is recommended as it significantly alters the electrophysiological response of the vessel to

  14. 15d-prostaglandin J2 reduces multiple organ failure caused by wall-fragment of Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Dugo, Laura; Collin, Marika; Cuzzocrea, Salvatore; Thiemermann, Christoph

    2004-09-13

    Septic shock is still the major cause of death in surgical intensive care units. Both gram-positive (G+) and gram-negative (G-) bacteria have been isolated in the blood of a large portion of septic patients, and these polymicrobial infections often have a higher mortality than infections due to a single organism. Cell wall fragments from G+ and G- bacteria synergise to cause shock and multiple organ dysfunction in vivo (G+/G- shock). Male Wistar rats were anaesthetised and received a coadministration of wall fragments from G+ and G- bacteria, Staphilococcus aureus (S. aureus) peptidoglycan [0.3 mg/kg, intravenously (i.v.)] and Escherichia coli (E. coli) lipopolysaccharide (1 mg/kg, i.v.) or vehicle (saline, 1 ml/kg, i.v.). G+/G- shock for 6 h resulted in an increase in serum levels of creatinine (indicator of renal dysfunction), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (gamma-GT), bilirubin (markers for hepatic injury and dysfunction) and creatine kinase (CK, an indicator of neuromuscular, skeletal muscle or cardiac injury). Pretreatment of rats with the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist 15d-prostaglandin J2 (0.3 mg/kg, i.v., 30 min prior to G+/G-) reduced the multiple organ injury/dysfunction caused by coadministration of peptidoglycan+lipopolysaccharide. The selective PPAR-gamma antagonist GW9662 (2-Chloro-5-nitrobenzanilide) (1 mg/kg, i.v., given 45 min prior to G+/G-) abolished the protective effects of 15d-prostaglandin J2. 15d- prostaglandin J2 did not affect the biphasic fall in blood pressure or the increase in heart rate caused by administration of peptidoglycan+lipopolysaccharide. The mechanism(s) of the protective effect of this cyclopentenone prostaglandin are-at least in part-PPAR-gamma dependent, as the protection afforded by 15d-prostaglandin J2 was reduced by the PPAR-gamma antagonist GW9662. We propose that 15d-prostaglandin J2 or other ligands for PPAR

  15. Gender-Specific Differences in All-Cause Mortality Between Incomplete and Complete Revascularization in Patients With ST-Elevation Myocardial Infarction and Multi-Vessel Coronary Artery Disease.

    Science.gov (United States)

    Dimitriu-Leen, Aukelien C; Hermans, Maaike P J; van Rosendael, Alexander R; van Zwet, Erik W; van der Hoeven, Bas L; Bax, Jeroen J; Scholte, Arthur J H A

    2017-12-11

    The best revascularization strategy (complete vs incomplete revascularization) in patients with ST-elevation myocardial infarction (STEMI) is still debated. The interaction between gender and revascularization strategy in patients with STEMI on all-cause mortality is uncertain. The aim of the present study was to evaluate gender-specific difference in all-cause mortality between incomplete and complete revascularization in patients with STEMI and multi-vessel coronary artery disease. The study population consisted of 375 men and 115 women with a first STEMI and multi-vessel coronary artery disease without cardiogenic shock at admission or left main stenosis. The 30-day and 5-year all-cause mortality was examined in patients categorized according to gender and revascularization strategy (incomplete and complete revascularization). Within the first 30 days, men and women with incomplete revascularization were associated with higher mortality rates compared with men with complete revascularization. However, the gender-strategy interaction variable was not independently associated with 30-day mortality after STEMI when corrected for baseline characteristics and angiographic features. Within the survivors of the first 30 days, men with incomplete revascularization (compared with men with complete revascularization) were independently associated with all-cause mortality during 5 years of follow-up (hazard ratios 3.07, 95% confidence interval 1.24;7.61, p = 0.016). In contrast, women with incomplete revascularization were not independently associated with 5-year all-cause mortality (hazard ratios 0.60, 95% confidence interval 0.14;2.51, p = 0.48). In conclusion, no gender-strategy differences occurred in all-cause mortality within 30 days after STEMI. However, in the survivors of the first 30 days, incomplete revascularization in men was independently associated with all-cause mortality during 5-year follow-up, but this was not the case in women. Copyright © 2017

  16. Modeling the microclimate inside a vessel in in vitro culture : vessel ...

    African Journals Online (AJOL)

    Numerical simulations show that variations in vessel internal humidity was sensitive to transfer coefficient, climatic conditions within the growth chamber, evaporation and condensation of water vapor on the walls of the vessel. The variations in water vapor pressure deficits (VPD) (low during the nyctiperiod and high during ...

  17. Large vessel vasculitides

    OpenAIRE

    Morović-Vergles, Jadranka; Pukšić, Silva; Gudelj Gračanin, Ana

    2013-01-01

    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in y...

  18. Effect of gravitation stress and hypokinesia on blood vessels of the testicle

    Science.gov (United States)

    Palazhchenko, E. F.

    1979-01-01

    Rabbits were exposed to single maximum endurable stresses of cranio-caudal direction, hypokinesia for periods of one to eight weeks, and hypokinesia followed by gravitation stresses. The stresses caused dilatation of vessels, greater sinuosity, and occasional ruptures of the walls and extravasation. The greater part of the capillaries were dilated; the greatest part constricted. In hypokinesia there was an increasing atrophy of the testes. Significant results are reported.

  19. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep

    Science.gov (United States)

    Seedorf, Gregory J.; Brown, Alicia; Roe, Gates; O'Meara, Meghan C.; Gien, Jason; Tang, Jen-Ruey; Abman, Steven H.

    2011-01-01

    Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P IUGR fetuses. Pulmonary vessel density was decreased 44% (P IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% (P IUGR PAECs by 29% at baseline (P IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR. PMID:21873446

  20. Collapsible Cryogenic Storage Vessel Project

    Science.gov (United States)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  1. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    Science.gov (United States)

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  2. Nuclear reactor construction with bottom supported reactor vessel

    Science.gov (United States)

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  3. Vessel Operator System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  4. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  5. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  6. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  7. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  8. Load capacity of a thick-walled cylinder with a radial hole

    Energy Technology Data Exchange (ETDEWEB)

    Laczek, S.; Rys, J. [Institute of Machine Design, Cracow University of Technology, Al. Jana Pawla II 37, 31 864 Krakow (Poland); Zielinski, A.P., E-mail: apz@mech.pk.edu.p [Institute of Machine Design, Cracow University of Technology, Al. Jana Pawla II 37, 31 864 Krakow (Poland)

    2010-08-15

    The paper deals with elastic-plastic analysis of the stress-strain state in the vicinity of a hole in a thick-walled cylindrical pressure vessel. The investigations have been inspired by the phenomenon of ductile fracture observed in a high-pressure reactor. Using finite element calculations, different failure criteria are proposed to aid design and control of high-pressure vessels with piping attachments. They are compared with suggestions of American (ASME) and European (EN) standards. A simple shakedown analysis of the structure is also presented. The local stress distribution near the hole results in a specific failure of the vessel. A plastic zone appears in the vicinity of the internal cylinder surface and propagates along the hole side. The vessel unloading can cause local reverse plasticity, which leads to plastic shakedown in the small zone and then to progressive ductile fracture in this zone. This is dangerous for the whole structure.

  9. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel

    Science.gov (United States)

    Swaminathan, T. N.; Mukundakrishnan, K.; Ayyaswamy, P. S.; Eckmann, D. M.

    2009-01-01

    We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The hematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effect is taken into account. Bubble motion cause temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness. PMID:20305744

  10. Hereditary cerebral small vessel disease and stroke

    DEFF Research Database (Denmark)

    Søndergaard, Christian Baastrup; Nielsen, Jørgen Erik; Hansen, Christine Krarup

    2017-01-01

    Cerebral small vessel disease is considered hereditary in about 5% of patients and is characterized by lacunar infarcts and white matter hyperintensities on MRI. Several monogenic hereditary diseases causing cerebral small vessel disease and stroke have been identified. The purpose of this system...

  11. Cutaneous Small Vessel Vasculitis Accompanied by Pustulosis Palmaris et Plantaris

    Directory of Open Access Journals (Sweden)

    Motoko Kosaka

    2012-03-01

    Full Text Available We present the case of a 64-year-old woman who has suffered from pustulosis palmaris et plantaris for 10 years. At the first examination, many erythematous lesions with purpura, blood crusts, and blisters were present in the lower legs and dorsum of the feet. Painful swelling in the sternal region and dorsal pain were also noted. Elevation of the CRP and myogenic enzyme levels, and liver and renal dysfunctions were noted on blood testing. Histopathologically, leukocytoclastic vasculitis was noted in small blood vessels in the whole dermal layers, and deposition of IgM and C3 in the vascular wall was detected by the direct immunofluorescence techniques. Based on these findings, cutaneous small vessel vasculitis was diagnosed. Because the patient complained of a toothache during the clinical course, an X-ray examination was performed. On pantomography, a radicular cyst and apical periodontitis were noted. The tooth symptoms changed with exacerbation and remission of the skin symptoms. These findings indicate that odontogenic infection is very likely to be a cause of cutaneous small vessel vasculitis in a manner similar to pustulosis palmaris et plantaris.

  12. On-line monitoring and analysis of reactor vessel integrity

    Energy Technology Data Exchange (ETDEWEB)

    Ackerson, D.S.; Impink, A.J. Jr.; Balkey, K.R.; Andreychek, T.S.

    1989-01-31

    A method is described for on-line monitoring and analysis of nuclear reactor pressure vessel integrity in a unit in which reactor coolant is circulated along the inner wall of the pressure vessel, the method comprising the steps of: generating on an on-line basis, temperature signals representative of the temperature of the reactor coolant circulating along the inner wall of the pressure vessel; generating on an on-line basis, a pressure signal representative of the reactor coolant pressure; generating a signal representative of fast neutron fluence to which the reactor pressure vessel has been subjected; generating as a function of the fluence signal a visual representation of the actual real time reference nil-ductibility transition temperature (RT/sub ndt/) across the entire pressure vessel wall thickness at a preselected critical location in the wall; generating as a function of transients in the reactor coolant temperature and pressur signals, a visual representation of the real time required RT/sub ndt/, across the entire pressure vessel wall thickness at the selected critical location, the required RT/sub ndt/ being the RT/sub ndt/ that would be required in the pressure vessel wall for flaw initiation to occur as a result of stresses set-up by the transients; and superimposing the visual representations of the real-time actual and required RT/sub ndt's/ for flaw initiation across the entire pressure vessel wall thickness for the selected critical location to generate a visual representation of the difference in value between the actual and required RT/sub ndt/ presented as an RT/sub ndt/ margin.

  13. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis.

    Science.gov (United States)

    Auriel, Eitan; Csiba, Laszlo; Berenyi, Ervin; Varkonyi, Ildiko; Mehes, Gabor; Kardos, Laszlo; Karni, Arnon; Bornstein, Natan M

    2012-06-01

    Leukoaraiosis refers to an age-related, abnormal appearance of the brain white matter on neuroimaging. The association between leukoaraiosis and cerebrovascular disease suggests that ischemia may be an important contributing factor; however, the pathogenesis of the condition remains controversial. We hypothesized that physical abnormalities of blood vessels might be culpable and compared the external and internal measurements of blood vessel walls between brains that demonstrated leukoaraiosis on imaging and normal control brains. Fourteen brains of individuals who had been diagnosed as having severe leukoaraiosis and five non-leukoaraiosis control brains were studied. Arterial cross-sections were evaluated by length measurements with an image analysis device. Arterial wall thickness and the ratio of the outer and inner diameters of the vessel were measured. We measured a total of 108 vessels in the leukoaraiosis group and 95 vessels in the control group. The vessel walls of the leukoaraiosis patients were an average of 5.5 µm thicker than the walls of control vessels of the same inside diameter (P = 0.0000, 95% CI 3.01-8.08) and an average of 2.3 µm thicker than walls of control vessels of the same outside diameter (P = 0.016, 95% CI 0.48-4.17). Our data provide evidence that leukoaraiosis is associated with vessel wall thickening in an additive fashion and indicate that structural vascular abnormalities are associated with leukoaraiosis. © 2011 Japanese Society of Neuropathology.

  14. Guam Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Guam. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  15. Florida Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Florida. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  16. Vessel Arrival Info - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Arrival Info is a spreadsheet that gets filled out during the initial stage of the debriefing process by the debriefer. It contains vessel name, trip...

  17. ALICE HMPID Radiator Vessel

    CERN Multimedia

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  18. [Large vessel vasculitides].

    Science.gov (United States)

    Morović-Vergles, Jadranka; Puksić, Silva; Gracanin, Ana Gudelj

    2013-01-01

    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in young ages. Although all large arteries can be affected, the aorta, subclavian and carotid arteries are most commonly involved. The most common symptoms included upper extremity claudication, hypertension, pain over the carotid arteries (carotidynia), dizziness and visual disturbances. Early diagnosis and treatment has improved the outcome in patients with TA.

  19. The effects of DL-3-n-butylphthalide in patients with vascular cognitive impairment without dementia caused by subcortical ischemic small vessel disease: A multicentre, randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Jia, Jianping; Wei, Cuibai; Liang, Junhua; Zhou, Aihong; Zuo, Xiumei; Song, Haiqing; Wu, Liyong; Chen, Xiaochun; Chen, Shengdi; Zhang, Junjian; Wu, Jiang; Wang, Kai; Chu, Lan; Peng, Dantao; Lv, Peiyuan; Guo, Hongzhi; Niu, Xiaoyuan; Chen, Yingzhu; Dong, Wanli; Han, Xiujie; Fang, Boyan; Peng, Mao; Li, Dan; Jia, Qian; Huang, Liyuan

    2016-02-01

    Vascular cognitive impairment without dementia is very common among the aged and tends to progress to dementia, but there have been no proper large-scale intervention trials dedicated to it. Vascular cognitive impairment without dementia caused by subcortical ischemic small vessel disease (hereinafter, subcortical Vascular cognitive impairment without dementia) represents a relatively homogeneous disease process and is a suitable target for therapeutic trials investigating Vascular cognitive impairment without dementia. Preclinical trials showed that dl-3-n-butylphthalide (NBP) is effective for cognitive impairment of vascular origin. In this randomized, double-blind, placebo-controlled trial, we enrolled patients aged 50-70 years who had a diagnosis of subcortical Vascular cognitive impairment without dementia at 15 academic medical centers in China. Inclusion criteria included a clinical dementia rating ≥0.5 on at least one domain and global score ≤0.5; a mini-mental state examination score ≥20 (primary school) or ≥24 (junior school or above); and brain magnetic resonance imaging consistent with subcortical ischemic small vessel disease. Patients were randomly assigned to NBP 200 mg three times daily or matched placebo (1:1) for 24 weeks according to a computer-generated randomization protocol. All patients and study personnel were masked to treatment assignment. Primary outcome measures were the changes in Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) and clinician's interview-based impression of change plus caregiver input (CIBIC-plus) after 24 weeks. All patients were monitored for adverse events (AEs). Outcome measures were analyzed for both the intention-to-treat (ITT) population and the per protocol population. This study enrolled 281 patients. NBP showed greater effects than placebo on ADAS-cog (NBP change -2.46 vs. placebo -1.39; P = .03; ITT) and CIBIC-plus (80 [57.1%] vs. 59 [42.1%] patients improved; P = .01; ITT

  20. [Bladder injury by penetration of artificial vessel graft].

    Science.gov (United States)

    Wada, Naoki; Tamaki, Gaku; Kura, Tatsuhiko; Saga, Yuji; Kakizaki, Hidehiro

    2009-01-01

    Iatrogenic bladder injury by artificial vessel graft is extremely rare and only 3 cases have been reported. Herein, we report a case of bladder injury by penetration of artificial vessel graft. An 80-year-old male underwent a femoro-femoral crossover bypass surgery for arteriosclerosis obliterans in our hospital. Postoperatively he complained of urinary incontinence and was referred to the urology department. Ultrasonography for evaluating microscopic hematuria revealed a high echoic linear structure in the bladder and subsequent cystoscopy found an artificial vessel graft penetrating bladder wall. Vascular surgeons reconstructed femoro-femoral bypass and we removed the artificial vessel graft and repaired the injured bladder wall. This is the fourth case of bladder penetrating injury by artificial vessel graft and we summarize the reported cases.

  1. Behavior of platelets stained by 5,6-CF-encapsulated PEGylated liposomes after laser irradiation of vessel wall: an in-vivo model for studying site-selective delivery of diagnostic or therapeutic agents

    Science.gov (United States)

    Mordon, Serge R.; Begu, Sylvie; Buys, Bruno; Tourne-Peteilh, Corine; Devoisselle, Jean-Marie

    2001-05-01

    Vascular endothelium serves as an extensive interface between circulating blood and various tissues and organs of the body. As such, it offers an accessible target for blood-borne pharmacological and genetic manipulations that can mediate both local and systemic effects. Thus, targeting of liposomes to activated vascular endothelial cells may provide a strategy for site-selective delivery in the vascular system with broad therapeutic applicability. This study aimed to evaluate an intravital fluorescence imaging technique to visualize in-situ and in real-time the activation of platelets after staining by 5,6-CF- encapsulated PEGylated liposomes injected intravenously. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. The skin micro circulation was observed with an intravital microscope (using x25 and x40 magnification) fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for play-back analysis with a digital video cassette recorder. An inflammatory response was induced by an Argon laser emitting at 514.5nm. The 80micrometers laser beam was focused on a vessel and its position was controlled with the microscope imaging system, it was possible to see individual platelets flowing in blood vessels. As liposomes were labeled with a fluorescent probe which was hydrophilic (located in the aqueous phase), the fluorescence of platelets was due only to the uptake of liposomes. After laser irradiation, platelets activation at sites of vascular injury was obtained. Tethering, translocation of some platelets inside the irradiated zone were clearly seen. At last, detachment and extravasation of platelets were observed. A perivascular fluorescence confirmed that platelets migrated across the basal lamina into the dermal connective tissue. In conclusion, staining of

  2. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    Science.gov (United States)

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  4. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  5. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.

    Directory of Open Access Journals (Sweden)

    Roeland M H Merks

    2008-09-01

    Full Text Available Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels organize into a vessel network (vasculogenesis, or by sprouting or splitting of existing blood vessels (angiogenesis. Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

  6. NDE and Stress Monitoring on Composite Overwrapped Pressure Vessels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage caused by composite overwrapped pressure vessels (COPVs) failure can be catastrophic. Thus, monitoring condition and stress in the composite overwrap,...

  7. Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae.

    Science.gov (United States)

    Mizutani, Osamu; Shiina, Matsuko; Yoshimi, Akira; Sano, Motoaki; Watanabe, Takeshi; Yamagata, Youhei; Nakajima, Tasuku; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes β-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the β-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of β-1,3-glucan polymerization.

  8. Maury Journals - German Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  9. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-01-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains. PMID:19270075

  10. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    Energy Technology Data Exchange (ETDEWEB)

    Cannell, Gary L. [Fluor Enterprises, Inc.; Huth, Ralph J. [CH2MHill Plateau Remediation Company; Hallum, Randall T. [Fluor Government Group

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  11. PRESSURE-RESISTANT VESSEL

    NARCIS (Netherlands)

    Beukers, A.; De Jong, T.

    1997-01-01

    Abstract of WO 9717570 (A1) The invention is directed to a wheel-shaped pressure-resistant vessel for gaseous, liquid or liquefied material having a substantially rigid shape, said vessel comprising a substantially continuous shell of a fiber-reinforced resin having a central opening, an inner

  12. Reaction of turbulence at the edge and in the center of the plasma column to pulsed impurity injection caused by the sputtering of the wall coating in L-2M stellarator

    Science.gov (United States)

    Batanov, G. M.; Berezhetskii, M. S.; Borzosekov, V. D.; Vasilkov, D. G.; Vafin, I. Yu.; Grebenshchikov, S. E.; Grishina, I. A.; Kolik, L. V.; Konchekov, E. M.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Malakhov, D. V.; Meshcheryakov, A. I.; Petrov, A. E.; Sarksian, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.; Kharchevskii, A. A.; Kholnov, Yu. V.; Shchepetov, S. V.

    2017-08-01

    Impurity injection into plasma caused by the sputtering of the wall coating in the L-2M stellarator during auxiliary electron cyclotron resonance heating leads to a change in the level of plasma density fluctuations with frequencies above 0.25 MHz: suppression of long-wavelength ( k ⊥ = 2 cm-1) density fluctuations in the edge plasma, intensification of short-wavelength ( k ⊥ = 30 cm-1) and long-wavelength ( k ⊥ = 1 cm-1) fluctuations at the midradius of the plasma column, and intensification of short-wavelength fluctuations ( k ⊥ = 20 cm-1) in the plasma center (including the gyroresonance region). At the same time, the level of fluctuations with frequencies below 0.25 MHz remains unchanged. In the edge plasma, a decrease in the plasma potential and suppression of its fluctuations is observed during impurity injection, which also causes an increase in MHD activity.

  13. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation.

    NARCIS (Netherlands)

    Bottai, D.; di Luca, M.; Majlessi, L.; Frigui, W.; Simeone, R.; Sayes, F.; Bitter, W.; Brennan, M.J.; Leclerc, C.; Batoni, G.; Campa, M.; Brosch, R.; Esin, S.

    2012-01-01

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the

  14. Containment vessel drain system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  15. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  16. Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease.

    Science.gov (United States)

    Randolph, Gwendalyn J; Bala, Shashi; Rahier, Jean-François; Johnson, Michael W; Wang, Peter L; Nalbantoglu, ILKe; Dubuquoy, Laurent; Chau, Amélie; Pariente, Benjamin; Kartheuser, Alex; Zinselmeyer, Bernd H; Colombel, Jean-Frederic

    2016-12-01

    Early pathological descriptions of Crohn disease (CD) argued for a potential defect in lymph transport; however, this concept has not been thoroughly investigated. In mice, poor healing in response to infection-induced tissue damage can cause hyperpermeable lymphatic collecting vessels in mesenteric adipose tissue that impair antigen and immune cell access to mesenteric lymph nodes (LNs), which normally sustain appropriate immunity. To investigate whether analogous changes might occur in human intestinal disease, we established a three-dimensional imaging approach to characterize the lymphatic vasculature in mesenteric tissue from controls or patients with CD. In CD specimens, B-cell-rich aggregates resembling tertiary lymphoid organs (TLOs) impinged on lymphatic collecting vessels that enter and exit LNs. In areas of creeping fat, which characterizes inflammation-affected areas of the bowel in CD, we observed B cells and apparent innate lymphoid cells that had invaded the lymphatic vessel wall, suggesting these cells may be mediators of lymphatic remodeling. Although TLOs have been described in many chronic inflammatory states, their anatomical relationship to preestablished LNs has never been revealed. Our data indicate that, at least in the CD-affected mesentery, TLOs are positioned along collecting lymphatic vessels in a manner expected to affect delivery of lymph to LNs. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Cholinergic innervation of human mesenteric lymphatic vessels.

    Science.gov (United States)

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  18. Vessel discoloration detection in malarial retinopathy

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.

    2016-03-01

    Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.

  19. To observe the intensity of the inflammatory reaction caused by neonatal urine and meconium on the intestinal wall of rats in order to understand etiology of intestinal damage in gastroschisis

    Directory of Open Access Journals (Sweden)

    Devdas S Samala

    2014-01-01

    Full Text Available Objectives: The aim of this experimental study was to observe the intensity of the inflammatory reaction caused by neonatal urine and meconium on the intestinal wall of rats to better understand etiology of intestinal damage in gastroschisis. Materials and Methods: A total of 24 adult Wistar rats were used as experimental models to simulate the effect of exposed bowel in cases of gastroschisis. The peritoneal cavity of the rats was injected with substances which constitute human amniotic fluid to study the effect on the bowel. Sterile urine and meconium were obtained from newborn humans. The rats were divided into four groups according to the material to be injected. In Group I (Control group 3 mL of distilled water was injected, in Group II (Urine group 3 mL of neonatal urine was injected, in Group III (Meconium group 5% meconium suspension was injected, while in Group IV, a combination of 5% meconium suspension and urine was injected. A total of 3mL solution was injected into the right inferior quadrant twice a day for 5 days. The animals were sacrificed on the 6 th day by a high dose of thiopentone sodium. A segment of small bowel specimen was excised, fixed in paraffin, and stained with hematoxylin-eosin for microscopic analysis for determination of the degree of inflammatory reaction in the intestinal wall. All pathology specimens were studied by the same pathologist. Results: The maximum bowel damage was seen in Group II (Urine group in the form of serositis, severe enteritis, parietal necrosis, and peeling. A lesser degree of damage was observed in Group III (Meconium group as mild enteritis (mild lymphoid hyperplasia. The least damage was seen in Group IV (Combination of meconium and urine and Group I (Control group. Conclusion: The intraabdominal injection of neonatal human urine produces significant inflammatory reactions in the intestinal wall of rats.

  20. Wall Art

    Science.gov (United States)

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  1. [Polyurethane vessels for microvascular surgical training to reduce animal use].

    Science.gov (United States)

    Meier, Sonja A; Lang, Axel; Beer, Gertrude M

    2004-01-01

    Systematic training of the manual skills is inevitable in learning microsurgery. Generally, first exercises are done on two-dimensional models, then the training continues on animals. With the growing ethical awareness, the obligation to protect animals and the stricter animal protection laws, realistic three-dimensional models have become necessary for training of microsurgery. However, the available alternatives all have certain disadvantages. We tested vessels made of polyurethane for microvascular surgical training and compared them to the available three-dimensional synthetic alternatives. Rose-coloured (arteries) or blue (veins), opaque vessels with a minimal wall thickness of 0.12 mm and a minimal internal diameter of 1 mm are used. To mimic the surgical access and the depth of the operative field, the vessels can be embedded in a synthetic box with or without a cap. The completed anastomosis is checked by injection of a coloured fluid. The consistency and the variable relation of the thickness of the wall to the internal diameter very closely reflect the biological situation. Even training on very fragile venous walls is possible in all manners. After completion of anastomosis the vessels can be opened longitudinally to check the patency of the anastomotic site. The described polyurethane vessels are very suitable for microsurgical training as a useful step between the two-dimensional model and the animal. The number of animals required for microsurgical training can clearly be reduced by the use of such synthetic polyurethane vessels.

  2. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. 2011 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  4. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  5. 2013 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  6. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  7. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  9. Cheboygan Vessel Base

    Data.gov (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  10. Maury Journals - US Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  11. 2011 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  12. 2011 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  13. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  14. Coastal Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  15. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  16. Correlations of coronary plaque wall thickness with wall pressure and wall pressure gradient: a representative case study

    Directory of Open Access Journals (Sweden)

    Liu Biyue

    2012-07-01

    Full Text Available Abstract Background There are two major hemodynamic stresses imposed at the blood arterial wall interface by flowing blood: the wall shear stress (WSS acting tangentially to the wall, and the wall pressure (WP acting normally to the wall. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation, while the impact of blood pressure on plaque progression has been under-studied. Method The correlations of wall thickness (WT with wall pressure (WP, blood pressure on the lumen wall and spatial wall pressure gradient (WPG in a human atherosclerotic right coronary artery were studied. The pulsatile blood flow was simulated using a three dimensional mathematical model. The blood was treated as an incompressible viscous non-Newtonian fluid. The geometry of the artery was re-constructed using an in vivo intravascular ultrasound (IVUS 44-slice dataset obtained from a patient with consent obtained. The WT, the WP and the WPG were averaged on each slice, respectively, and Pearson correlation analysis was performed on slice averaged base. Each slice was then divided into 8 segments and averaged vessel WT, WP and WPG were collected from all 352 segments for correlation analysis. Each slice was also divided into 2 segments (inner semi-wall of bend and outer semi-wall of bend and the correlation analysis was performed on the 88 segments. Results Under mean pressure, the Pearson coefficient for correlation between WT and WP was r = − 0.52 (p  Conclusions Results from this representative case report indicated that plaque wall thickness correlated negatively with wall pressure (r = −0.81 by slice and positively with wall pressure gradient (r = 0.45. The slice averaged WT has a strong linear relationship with the slice averaged WP. Large-scale patient studies are needed to further confirm our findings.

  17. Studies on in-vessel debris coolability in ALPHA program

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  18. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    Science.gov (United States)

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  19. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    NARCIS (Netherlands)

    Banerjee, S.; Vasu, P.; von Hellermann, M.; Jaspers, R. J. E.

    2010-01-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is,

  20. Wall Layers

    Science.gov (United States)

    1992-01-14

    Sydney, Australia. December 6, 1990. Lumley, J. L. A dynamical-systems-theory approach to the wall region. Environmental Engineering Laboratory, CSIRO...Nonlinear Science. Holmes, P. Editor in Chief, Nonlinear Scinece Today. Holmes, P. Reviewer for Physica D, J. Sound Vib., J. Phys., Q. Appl. Math, Phys...Spring, 1994; Organizing committee member. Holmes, P. Editorial Board Member: Archive for Rational Mechanics and Analysis; Journal of Nonlinear Scinece

  1. CLIMBING WALL

    CERN Multimedia

    1999-01-01

    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  2. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  3. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija

    2017-01-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. PMID:28851707

  4. Risk Assessment for Fishing Vessels at Fishing Grounds

    Directory of Open Access Journals (Sweden)

    Sergey Moyseenko

    2015-09-01

    Full Text Available Safety and efficiency of fishing fleet activity depend largely on the quality of management decisions. Cause-and-effect relationships of accidents involving fishing vessels were identified by means of an analysis of emergencies and fishing incidents. The suggested method of risks calculation is based on the use of statistical methods, fuzzy sets/expert estimations method and the probability theory. The following most common tasks are presented and solved: - there is an impact of two or more independent negative factors/events on the vessel such as failure of a sonar, a vessel operator error, another vessel operator error. - a transport vessel carries out loading and unloading of fishing vessels under different environmental conditions. The value of the risk of an emergency incident is determined. - the fishing vessel navigation performs under various meteorological conditions. A priori probability of incident-free operation is calculated according to expert estimations.

  5. To detect anomalies in diaphragm walls

    NARCIS (Netherlands)

    Spruit, R.

    2015-01-01

    Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil

  6. Efeitos da infecção crônica por Toxoplasma gondii sobre a parede intestinal de gatos domésticos The effects of the infection caused by Toxoplasma gondii on the cat duodenal wall

    Directory of Open Access Journals (Sweden)

    Juliana Maria da Silva

    2010-03-01

    Full Text Available O objetivo deste trabalho foi analisar os efeitos da infecção causada pelo Toxoplasma gondii sobre a parede do duodeno de gatos. Foram utilizados seis gatos (Felis catus, com cerca de três meses de vida, distribuídos aleatoriamente em Grupo controle (G1; n = 3 e Grupo infectado (G2; n = 3. Os animais do G2 receberam, por via oral, 200 cistos teciduais da cepa ME49 (tipo II do T. gondii. Após 40 dias, os animais foram submetidos à eutanásia, laparotomia e retirada do duodeno, que foi fixado em solução de Bouin e submetido à rotina histológica para obtenção de cortes transversais de 3 µm. Os cortes foram corados com Hematoxilina-Eosina (HE, Azan, Ácido Periódico de Schiff (PAS, Alcian-Blue e Tricrômio de Mallory. Realizou-se uma avaliação qualitativa da parede intestinal e medidas comparativas entre os dois grupos, com relação: à espessura da túnica mucosa, túnica muscular, parede total, altura dos vilos, profundidade das criptas e altura dos enterócitos e seus núcleos. As células caliciformes, os linfócitos intraepiteliais e as células de Paneth foram quantificados. Os resultados mostraram que a infecção levou à atrofia da túnica mucosa, túnica muscular e parede intestinal do duodeno de gatos do G2 (p This paper analyzes the effects of the infection caused by Toxoplasma gondii on the cat duodenal wall. Six cats (Felis catus with 3-month-old were randomly divided into Control Group (G1; n = 3 and Infected Group (G2; n = 3. The animals from G2 received orarilly 200 T. gondii tissye cysts of ME49-strain (type II. After 40 days, the animals were submitted to euthanasia, laparotomy and had their duodenum removed, fixed in Bouin solution and submitted to histological routine obtaining 3 µm transverse cuts. The cuts were stained with Hematoxylin-Eosin (HE, Azan, Periodic acid - Schiff (PAS, Alcian-Blue, and Mallory trichrome. Qualitative assessment of the intestine wall as well as comparative measurements with respect

  7. Structural Alterations of the Glomerular Wall And Vessels in Early ...

    African Journals Online (AJOL)

    The second group of 20 (the experimental group) was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, two months, and four months. Five rats at two months of age with hyperglycemia were treated with insulin for eight weeks. Renal tissues were ...

  8. Microsurgical Training using Reusable Human Vessels from Discarded Tissues in Lymph Node Dissection

    Directory of Open Access Journals (Sweden)

    Naohiro Ishii

    2016-11-01

    Full Text Available The use of human vessels at the beginning of microsurgery training is highly recommended. But vessels with the appropriate length for training are not often obtained. Whether these vessels may be reused for training has not been reported. Accordingly, we harvested vessels from discarded tissues in lymph node dissection and demonstrated that vascular anastomosis training using the same human vessels several times is possible by placing the vessels in a freezer and defrosting them with hot water. Vascular walls can be stored for microsurgical training until about 4 years after harvest, as shown in the gross appearance and histologic findings of our preserved vessels. We recommend the technique presented here for the longterm reuse of human vessels for microsurgery training that closely resembles real procedures.

  9. Multiple large vessel aneurysmal formation in HIV-infected patients

    African Journals Online (AJOL)

    2017-11-14

    Nov 14, 2017 ... HIV proteins are noted within these lymphocytes, but the exact significance of this abnormality is yet to be defined. Transmural necrosis of the vessel wall occurs because of the probable ischemia and results in weakness and aneurysmal formation. The exact pathogenesis is still unknown. Theories such as ...

  10. Optimal Branching Structure of Fluidic Networks with Permeable Walls

    Directory of Open Access Journals (Sweden)

    Vinicius R. Pepe

    2017-01-01

    Full Text Available Biological and engineering studies of Hess-Murray’s law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray’s law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e., breaking the symmetry of the flow distribution may occur in this symmetrical dichotomous system. To derive expressions for the optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of vessels is only conforming to Hess-Murray’s law optimum as long as they have impervious walls. Findings also indicate that the optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes. Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the assembly of vessels.

  11. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  12. Network of endocardial vessels.

    Science.gov (United States)

    Lee, Byung-Cheon; Kim, Hong Bae; Sung, Baeckkyoung; Kim, Ki Woo; Sohn, Jamin; Son, Boram; Chang, Byung-Joon; Soh, Kwang-Sup

    2011-01-01

    Although there have been reports on threadlike structures inside the heart, they have received little attention. We aimed to develop a method for observing such structures and to reveal their ultrastructures. An in situ staining method, which uses a series of procedures of 0.2-0.4% trypan blue spraying and washing, was applied to observe threadlike structures on the surfaces of endocardia. The threadlike structures were isolated and observed by using confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Networks of endocardial vessels (20 μm in thickness) with expansions (40-100 μm in diameter) were visualized; they were movable on the endocardium of the bovine atrium and ventricle. CLSM showed that (1) rod-shaped nuclei were aligned along the longitudinal direction of the endocardial vessel and (2) there were many cells inside the expansion. TEM on the endocardial vessel revealed that (1) there existed multiple lumens (1-7 μm in diameter) and (2) the extracellular matrices mostly consisted of collagen fibers, which were aligned along the longitudinal direction of the endocardial vessel or were locally organized in reticular structures. We investigated the endocardial circulatory system in bovine cardiac chambers and its ultrastructures, such as nucleic distributions, microlumens, and collagenous extracellular matrices. Copyright © 2011 S. Karger AG, Basel.

  13. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  14. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Nourgaliev, R.R.; Dinh, T.N.; Karbojian, A. [Division of Nuclear Power Safety, Royal Institute of Technology, Drottning Kristinas Vaeg., Stockholm (Sweden)

    1999-07-01

    This paper describes the FOREVER (Failure Of REactor VEssel Retention) experimental program, which is currently underway at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS). The objectives of the FOREVER experiments are to obtain data and develop validated models (i) on the melt coolability process inside the vessel, in the presence of water (in particular, on the efficacy of the postulated gap cooling to preclude vessel failure); and (ii) on the lower head failure due to the creep process in the absence of water inside and/or outside the lower head. The paper presents the experimental results and analysis of the first FOREVER-C1 test. During this experiment, the 1/10th scale pressure vessel, heated to about 900degC and pressurized to 26 bars, was subjected to creep deformation in a non-stop 24-hours test. The vessel wall displacement data clearly shows different stages of the vessel deformation due to thermal expansion, elastic, plastic and creep processes. The maximum displacement was observed at the lowermost region of the vessel lower plenum. Information on the FOREVER-C1 measured thermal characteristics and analysis of the observed thermal and structural behavior is presented. The coupled nature of thermal and mechanical processes, as well as the effect of other system conditions (such as depressurization) on the melt pool and vessel temperature responses are analyzed. (author)

  15. Acute traumatic abdominal wall hernia

    OpenAIRE

    Hartog, Dennis; Tuinebreijer, Wim; Oprel, Pim; Patka, Peter

    2011-01-01

    textabstractAlthough blunt abdominal trauma is frequent, traumatic abdominal wall hernias (TAWH) are rare. We describe a large TAWH with associated intra-abdominal lesions that were caused by high-energy trauma. The diagnosis was missed by clinical examination but was subsequently revealed by a computed tomography (CT) scan. Repair consisted of an open anatomical reconstruction of the abdominal wall layers with reinforcement by an intraperitoneal composite mesh. The patient recovered well and...

  16. Blood vessel segmentation in magnetic resonance angiography imagery

    Science.gov (United States)

    Kozaitis, S. P.; Chandramohan, R.

    2011-06-01

    Small blood vessels may be difficult to detect in magnetic resonance angiography due to the lack of blood flow caused by disease or injury. Our method, which uses a block-matching denoising approach to segment blood vessels, works well in the presence of noise. We examined extended regions of an image to determine whether they contained blood vessels by fitting a Gaussian mixture model to a region's histogram. Then, dissimilar regions were denoised separately. This approach was beneficial in low-contrast settings. It can be used to detect higher-order blood vessels that may be difficult to detect under normal conditions.

  17. The subpetrous carotid wall hematoma. A sign of spontaneous dissection of the internal carotid artery on non-enhanced computed tomography. A retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Jensen-Kondering, U. [Univ. Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Radiology and Neuroradiology; Univ. Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurology; Huhndorf, M.; Madjidyar, J.; Jansen, O. [Univ. Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Radiology and Neuroradiology

    2015-03-15

    Spontaneous dissection of the internal carotid artery (CAD) is an increasingly recognized cause for stroke especially in young and middle-aged patients. We hypothesized that non-enhanced cranial computed tomography (NECCT) can visualize the subpetrous carotid wall hematoma and thus enable identification of patients with CAD. We retrospectively reviewed patients with confirmed CAD (n=21) and a control group with ischemic symptoms but without CAD (n=42) who received NECCT at admission. Two independent neuroradiologists rated the presence and shape of SPH, density and diameter of the subpetrous internal carotid artery. Additionally, we correlated the shape of the subpetrous carotid wall hematoma with the grade of stenosis on subsequent angiographic imaging. The subpetrous carotid wall hematoma was present in 14 of 21 patients (Cohen's k = 0.67). Mean diameter was 6.95 ± 1.05 mm in dissected vessels and 5.71 ± 1.52 mm in the contralateral vessel (p<0.05). Mean difference in vessel density was 15.05 ± 8.01 HU (p<0.01). Median grade of stenosis was significantly higher in patients with a full moon- shaped (n=11) than crescent-shaped (n=3) subpetrous carotid wall hematoma (21% vs. 80%, p<0.05). Two-thirds of patients with CAD were correctly identified on NECCT. The extracranial carotid artery should be evaluated in patients with symptoms of cerebral ischemia.

  18. Bone marrow blood vessels: normal and neoplastic niche

    Directory of Open Access Journals (Sweden)

    Saeid Shahrabi

    2016-11-01

    Full Text Available Blood vessels are among the most important factors in the transport of materials such as nutrients and oxygen. This study will review the role of blood vessels in normal bone marrow hematopoiesis as well as pathological conditions like leukemia and metastasis. Relevant literature was identified by a Pubmed search (1992-2016 of English-language papers using the terms bone marrow, leukemia, metastasis, and vessel. Given that blood vessels are conduits for the transfer of nutrients, they create a favorable situation for cancer cells and cause their growth and development. On the other hand, blood vessels protect leukemia cells against chemotherapy drugs. Finally, it may be concluded that the vessels are an important factor in the development of malignant diseases.

  19. Caudate haemorrhage caused by pseudoaneurysm of accessory middle cerebral artery.

    Science.gov (United States)

    Teramoto, Shinichiro; Tokugawa, Joji; Nakao, Yasuaki; Yamamoto, Takuji

    2015-12-30

    A 68-year-old man experienced a right caudate haemorrhage with intraventricular haemorrhage. Although a subarachnoid haemorrhage was not shown clearly, our investigation demonstrated an aneurysm-like vascular pouch located in the anomalous vessel arising from the A2 segment of the right anterior cerebral artery. Rupture of the vascular pouch was considered to be the cause of the caudate haemorrhage. Neck clipping was performed. In intraoperative observation, the anomalous vessel was diagnosed as a right accessory middle cerebral artery. Histopathology of the saccular wall showed only an adventitia and a fibrin layer, indicating a pseudoaneurysm. We routinely perform detailed vascular evaluation for any cerebrovascular disease. A meticulous vascular survey makes it possible to obtain valuable clues in cases such as caudate haemorrhage due to pseudoaneurysm of the accessory middle cerebral artery, leading to prevention of rebleeding. 2015 BMJ Publishing Group Ltd.

  20. Arteriosclerosis and vascular calcification: causes, clinical assessment and therapy.

    Science.gov (United States)

    Tölle, Markus; Reshetnik, Alexander; Schuchardt, Mirjam; Höhne, Matthias; van der Giet, Markus

    2015-09-01

    Arteriosclerosis is a pathological, structural (media vascular calcification) and physiological (modified vascular smooth vessel cells; increased arterial stiffness) alteration of the vessel wall. Through improved assessment methods (functional and imaging), it has become a well-known phenomenon in recent decades. However, its clinical importance was underestimated until recently. Currently available English-speaking data about conditions/diseases associated with arteriosclerosis, its clinical sequels, available diagnostic procedures and therapeutic modalities were reviewed and summarized. In recent decades, emerging data have brought about a better understanding of causes and consequences of arteriosclerosis and highlight its growing clinical impact. Although arteriosclerosis showed an independent clinical impact on cardiovascular morbidity and mortality, especially in patients with chronic kidney disease/end-stage renal disease (CKD/ESRD) and diabetes mellitus, convincing clinical therapy concepts are not available until now. The establishment of novel therapeutic strategies derived from basic research is strongly needed. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  1. Hawaii Abandoned Vessel Inventory, Kauai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Kauai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  2. CNMI Abandoned Vessel Inventory, Tinian

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Tinian. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  3. Puerto Rico Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Puerto Rico. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  4. American Samoa Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for American Samoa. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  5. Hawaii Abandoned Vessel Inventory, Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Oahu, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  6. Hawaii Abandoned Vessel Inventory, Molokai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Molokai, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  7. CNMI Abandoned Vessel Inventory, Rota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Rota. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  8. Hawaii Abandoned Vessel Inventory, Lanai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Lanai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  9. For-Hire Vessel Directory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Directory is maintained as the sample frame for the For-Hire Survey. I contains data on for-hire vessels on the Atlantic and Gulf coasts. Data include...

  10. CNMI Abandoned Vessel Inventory, Saipan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Saipan. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  11. Hawaii Abandoned Vessel Inventory, Maui

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Maui. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  12. Vessels in Transit - Web Tool

    Data.gov (United States)

    Department of Transportation — A web tool that provides real-time information on vessels transiting the Saint Lawrence Seaway. Visitors may sort by order of turn, vessel name, or last location in...

  13. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse.

    Science.gov (United States)

    Kerjaschki, Dontscho; Bago-Horvath, Zsuzsanna; Rudas, Margaretha; Sexl, Veronika; Schneckenleithner, Christine; Wolbank, Susanne; Bartel, Gregor; Krieger, Sigurd; Kalt, Romana; Hantusch, Brigitte; Keller, Thomas; Nagy-Bojarszky, Katalin; Huttary, Nicole; Raab, Ingrid; Lackner, Karin; Krautgasser, Katharina; Schachner, Helga; Kaserer, Klaus; Rezar, Sandra; Madlener, Sybille; Vonach, Caroline; Davidovits, Agnes; Nosaka, Hitonari; Hämmerle, Monika; Viola, Katharina; Dolznig, Helmut; Schreiber, Martin; Nader, Alexander; Mikulits, Wolfgang; Gnant, Michael; Hirakawa, Satoshi; Detmar, Michael; Alitalo, Kari; Nijman, Sebastian; Offner, Felix; Maier, Thorsten J; Steinhilber, Dieter; Krupitza, Georg

    2011-05-01

    In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.

  14. Pressure vessel design manual

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.R.

    1987-01-01

    The first section of the book covers types of loadings, failures, and stress theories, and how they apply to pressure vessels. The book delineates the procedures for designing typical components as well as those for designing large openings in cylindrical shells, ring girders, davits, platforms, bins and elevated tanks. The techniques for designing conical transitions, cone-cylinder intersections, intermediate heads, flat heads, and spherically dished covers are also described. The book covers the design of vessel supports subject to wind and seismic loads and one section is devoted to the five major ways of analyzing loads on shells and heads. Each procedure is detailed enough to size all welds, bolts, and plate thicknesses and to determine actual stresses.

  15. New research vessels

    Science.gov (United States)

    1984-04-01

    Two “new” ocean-going research vessels operated by the Scripps Institution of Oceanography and the National Science Foundation (NSF) will soon begin full-time scientific duties off the coast of California and in the Antarctic, respectively. The 37.5-m Scripps vessel, named Robert Gordon Sprout in honor of the ex-president of the University of California, replaces the smaller ship Ellen B. Scripps, which had served the institution since 1965. The new ship is a slightly modified Gulf Coast workboat. Under the name of Midnight Alaskan, it had been used for high-resolution geophysical surveys in American and Latin American waters by such firms as Arco Oil & Gas, Exxon, Pennzoil, and Racal-Decca before its purchase by Scripps from a Lousiana chartering firm last summer.

  16. Very Versatile Vessel

    Science.gov (United States)

    2009-09-01

    data. This source provides information on aluminum hydrofoil vessels without the added weight of foil structures. The composite armor around the...seating compartment. The sides should also limit wave splash on the deck. The freeboard should contribute reserve buoyancy , increasing large-angle and...Resistance, Powering, and Propulsion Savitsky’s Method Since model testing data or other reliable performance data was unavailable for the proposed

  17. Deaths Related to Vessel Injuries in Extremities

    Directory of Open Access Journals (Sweden)

    Nursel Türkmen

    2003-12-01

    Full Text Available Lethal or non-lethal extremity injuries are often seen in medico-legal practice. In this study, we planned to investigate medico-legal properties of deaths related to vessel injuries in extremities. In forensic autopsies performed in Bursa, we examined total 4242 autopsy reports between 1996-2003 in included 40 (0,94% cases of deaths caused by vessel injuries in extremities. 90% of cases were male with median age 35.87 (17-66. Stabbing device account for 60% of injuries. Most frequent injuries were in femoral artery and branches. In 82.5% of cases, homicide was the origin of death. In 30% of cases, mean 159.33 mg/dl alcohol blood concentration was detected. In the scene investigation reports, 47.5% of documented incidents were outdoor and 47.5% of the cases died in the scene. As a conclusion, it is observed that alcoholic males of middle age are the risk group for vascular injuries in extremities. In the deaths related to isolated vessel injuries in extremities, the detection of injured vessel, localisation and number of total and lethal wounds would offer a solution for the evil intent; and as in the other violent death cases autopsy is required in the deaths due to vessel injuries in extremities. Key words: Vascular injuries, Extremity, Forensic autopsy.

  18. Confinement Vessel Assay System: Design and Implementation Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-18

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  19. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  20. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  1. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  2. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  3. ITER Vacuum Vessel design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Jun, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector -25, Gandhinagar 382025 (India); Preble, J.; Reich, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2012-08-15

    After implementing a few design modifications (referred to as the 'Modified Reference Design') in 2009, the Vacuum Vessel (VV) design had been stabilized. The VV design is being finalized, including interface components such as support rails and feedthroughs for the in-vessel coils. It is necessary to make adjustments to the locations of the blanket supports and manifolds to accommodate design modifications to the in-vessel coils. The VV support design is also being finalized considering a structural simplification. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. The detailed layout of ferritic steel plates and borated steel plates was optimized based on the toroidal field ripple analysis. A dynamic test on the inter-modular key to support the blanket modules was performed to measure the dynamic amplification factor (DAF). An R and D program has started to select and qualify the welding and cutting processes for the port flange lip seal. The ITER VV material 316 L(N) IG was already qualified and the Modified Reference Design was approved by the Agreed Notified Body (ANB) in accordance with the Nuclear Pressure Equipment Order procedure.

  4. Transport of divalent cations: cation exchange capacity of intact xylem vessels.

    Science.gov (United States)

    Van de Geijn, S C; Petit, C M

    1979-12-01

    The cation exchange capacity of the intact xylem vessels in cut shoots of papyrus (Cyperus papyrus spec.) has been determined. The cation exchange capacity is independent of the cation concentration in the transpiration stream, and is equal for Ca and Co. The high value of the cation exchange capacity (0.6 to 1 x 10(-7) equivalents per square centimeter vessel wall surface) leads to the hypothesis that the porous structure of the vessel wall, and not only the inner vessel wall surface, acts as a cation exchanger.Differences between anion ([(32)P]phosphate, [(45)Ca]EDTA(2-), [(115)Cd(m)]-EDTA(2-)), and cation ([(45)Ca](2+), [(115)Cd(m)](2+)) movement are explained in terms of transport with the transpiration flux or by exchange reactions. The competition between exchange sites and natural or synthetic ligands for the divalent cations is discussed.

  5. Hereditary cerebral small vessel disease and stroke.

    Science.gov (United States)

    Søndergaard, Christian Baastrup; Nielsen, Jørgen Erik; Hansen, Christine Krarup; Christensen, Hanne

    2017-04-01

    Cerebral small vessel disease is considered hereditary in about 5% of patients and is characterized by lacunar infarcts and white matter hyperintensities on MRI. Several monogenic hereditary diseases causing cerebral small vessel disease and stroke have been identified. The purpose of this systematic review is to provide a guide for determining when to consider molecular genetic testing in patients presenting with small vessel disease and stroke. CADASIL, CARASIL, collagen type IV mutations (including PADMAL), retinal vasculopathy with cerebral leukodystrophy, Fabry disease, hereditary cerebral hemorrhage with amyloidosis, and forkhead box C1 mutations are described in terms of genetics, pathology, clinical manifestation, imaging, and diagnosis. These monogenic disorders are often characterized by early-age stroke, but also by migraine, mood disturbances, vascular dementia and often gait disturbances. Some also present with extra-cerebral manifestations such as microangiopathy of the eyes and kidneys. Many present with clinically recognizable syndromes. Investigations include a thorough family medical history, medical history, neurological examination, neuroimaging, often supplemented by specific examinations e.g of the of vision, retinal changes, as well as kidney and heart function. However molecular genetic analysis is the final gold standard of diagnosis. There are increasing numbers of reports on new monogenic syndromes causing cerebral small vessel disease. Genetic counseling is important. Enzyme replacement therapy is possible in Fabry disease, but treatment options remain overall very limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  7. Vessel Traffic Services.

    Science.gov (United States)

    1982-12-01

    Yorker" articles titled Silent Spring by Rachel Carson in 1963 produced a unifying effect, "the sort of rallying point of the movement to protect the...6232, 92d Cong., 1st. sess., 1971, p. 2. 15. Carson , Rachel L. , The Sea Around Us, New York: Oxford Univesity Press, 195-, p. IV. 16. U.S., Congress...Government Printing Office, 1974. 63. Buhler, L. and Geiger, J., Vessel Traffic Data Extraction MethodoloqX, Silver Spring , Maryland, O6erFae-tns

  8. Vanishing corneal vessels

    Science.gov (United States)

    Nicholson, Luke; Chana, Rupinder

    2013-01-01

    We wish to highlight the importance of acknowledging the accompanying effects of topical phenylephrine drops on the eye other than its intended mydriasis. We reported a case of a 92-year-old woman with a corneal graft who was noted to have superficial corneal vascularisation which was not documented previously. After the instillation of topical tropicamide 1% and phenylephrine 2.5%, for funduscopy, the corneal vascularisation was not visible. When reassessed on another visit, tropicamide had no effect on the vessels and only phenylephrine did. We wish to highlight that when reviewing patients in cornea clinics, instilling phenylephrine prior to being seen may mask important corneal vascularisation. PMID:24121816

  9. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    Science.gov (United States)

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  10. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    Directory of Open Access Journals (Sweden)

    Yoshitaro Akiyama

    Full Text Available The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and

  11. EFFECT OF 2,6-DICHLOROBENZONITRILE (DCB ON SECONDARY WALL DEPOSITION AND LIGNIFICATION IN THE STEM OF HIBISCUS CANNABINUS L.

    Directory of Open Access Journals (Sweden)

    PRAMOD Sivan

    2013-12-01

    Full Text Available Light and electron microscopic studies were carried out on the secondary xylem of actively growing shoots of Hibiscus cannabinus treated with cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB. Treatment with 20µM DCB induced differentiation of xylem fibres with thin secondary walls and parenchyma cells with abnormal wall thickening and lignification. At concentration above 50 µM resulted in the disappearance of cambial zone, inhibition of secondary wall deposition, lignification of primary walls, deformed vessel walls and dispersed lignin distribution in secondary walls. Transmission electron microscopic study revealed the initiation and formation of large intercellular spaces between the walls of differentiating xylem elements. Abnormal pattern of wall deposition and inhomogeneous lignin distribution was evident in fibres and vessel. The length and width of both fibres and vessel elements were reduced significantly even with lower concentrations of DCB.

  12. Customizable engineered blood vessels using 3D printed inserts.

    Science.gov (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T

    2016-04-15

    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function.

    Science.gov (United States)

    Carlisle, Rachel E; Werner, Kaitlyn E; Yum, Victoria; Lu, Chao; Tat, Victor; Memon, Muzammil; No, Yejin; Ask, Kjetil; Dickhout, Jeffrey G

    2016-08-01

    Our purpose was to determine if endoplasmic reticulum stress inhibition lowers blood pressure (BP) in hypertension by correcting vascular dysfunction. The spontaneously hypertensive rat (SHR) was used as a model of human essential hypertension with its normotensive control, the Wistar Kyoto rat. Animals were subjected to endoplasmic reticulum stress inhibition with 4-phenylbutyric acid (4-PBA; 1 g/kg per day, orally) for 5 weeks from 12 weeks of age. BP was measured weekly noninvasively and at endpoint with carotid arterial cannulation. Small mesenteric arteries were removed for vascular studies. Function was assessed with a Mulvany-Halpern style myograph, and structure was assessed by measurement of medial-to-lumen ratio in perfusion fixed vessels as well as three-dimensional confocal reconstruction of vessel wall components. Endoplasmic reticulum stress was assessed by quantitative real time-PCR and western blotting; oxidative stress was assessed by 3-nitrotyrosine and dihydroethidium staining. 4-PBA significantly lowered BP in SHR (vehicle 206.1 ± 4.3 vs. 4-PBA 178.9 ± 3.1, systolic) but not Wistar Kyoto. 4-PBA diminished contractility and augmented endothelial-dependent vasodilation in SHR small mesenteric arteries, as well as reducing media-to-lumen ratio. 4-PBA significantly reduced endoplasmic reticulum stress in SHR resistance vessels. Normotensive resistance vessels, treated with the endoplasmic reticulum stress-inducing agent, tunicamycin, show decreased endothelial-dependent vasodilation; this was improved with 4-PBA treatment. 3-Nitrotyrosine and dihydroethidium staining indicated that endoplasmic reticulum stress leads to reactive oxygen species generation resolvable by 4-PBA treatment. Endoplasmic reticulum stress caused endothelial-mediated vascular dysfunction contributing to elevated BP in the SHR model of human essential hypertension.

  14. 46 CFR 289.2 - Vessels included.

    Science.gov (United States)

    2010-10-01

    ... CONSTRUCTION-DIFFERENTIAL SUBSIDY VESSELS, OPERATING-DIFFERENTIAL SUBSIDY VESSELS AND OF VESSELS SOLD OR ADJUSTED UNDER THE MERCHANT SHIP SALES ACT 1946 § 289.2 Vessels included. Vessels subject to the provisions of this part are: (a) All vessels which may in the future be constructed or sold with construction...

  15. The combined impact of mechanical factors on the wall stress of the human ascending aorta - a finite elements study.

    Science.gov (United States)

    Plonek, Tomasz; Zak, Malgorzata; Burzynska, Karolina; Rylski, Bartosz; Gozdzik, Anna; Kustrzycki, Wojciech; Beyersdorf, Friedhelm; Jasinski, Marek; Filipiak, Jaroslaw

    2017-12-20

    Biomechanical factors influence stress in the aortic wall. The aim of this study was to assess how the diameter and shape of the vessel, blood pressure and longitudinal systolic aortic stretching (SAS) caused by the contraction of the myocardium influence stress in the aortic wall. Three computational models of the non-dilated aorta and aneurysms of the ascending aorta and aortic root were created. Then, finite elements analyses were carried out. The models were subjected to blood pressure (120 mmHg and 160 mmHg) and longitudinal systolic aortic stretching (0 mm, 5 mm, 10 mm and 15 mm). The influence of wall elasticity was examined too. Blood pressure had a smaller impact on the stress than the SAS. An increase in blood pressure from120 mmHg to 160 mmHg increased the peak wall stress (PWS) on average by 0.1 MPa in all models. A 5 mm SAS caused a 0.1–0. 2 MPa increase in PWS in all the models. The increase in PWS caused by a 10mm and 15mmSAS was 0.2 MPa and 0. 4 MPa in the non-dilated aorta, 0.2–0.3 MPa and 0.3–0.5 MPa in the aneurysm of the ascending aorta, and 0.1–0.2 MPa and 0.2–0.3 MPa in the aortic root aneurysm model, respectively. The loss of elasticity of the aneurysmal wall resulted in an increase of PWS by 0.1–0.2 MPa. Aortic geometry, wall stiffness, blood pressure and SAS have an impact on PWS. However, SAS had the biggest impact on wall stress. The results of this study may be useful in future patient-specific computational models used to assess the risk of aortic complications.

  16. Heat-pipes-based first wall

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Khripunov, V. [Russian Research Center `Kurchatov Institute`, Nuclear Fusion Institute, Kurchatov Square, Moscow 123182 (Russian Federation); Antipenkov, A. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Ulianov, A. [State Enterprise `Krasnaya Zvezda`, Electrolytny pr-d., 1a, Moscow 115230 (Russian Federation)

    1995-03-01

    Feasibilities of heat pipes application for the heat transfer out of plasma facing components in test and power fusion reactors are discussed. Based on the space technology and practice the ``hot`` ITER first wall with liquid metal and water heat pipes are proposed in two options: heat-pipes and vapor-chamber options. Other high heat loading in-vessel elements such as divertor target and limiter can be provided by effective and reliable heat pipe cooling systems. (orig.).

  17. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    Science.gov (United States)

    Jansen, Steven; Gortan, Emmanuelle; Lens, Frederic; Lo Gullo, Maria Assunta; Salleo, Sebastiano; Scholz, Alexander; Stein, Anke; Trifilò, Patrizia; Nardini, Andrea

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the 'ionic effect' was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six Lauraceae species. • A positive correlation was found between ionic effect and vessel grouping parameters, especially the portion of vessel walls in contact with neighbouring vessels. Species with intervessel contact fraction (F(C)) values 0.1 exhibited a response between 10% and 32%. The ionic effect increased linearly with the mean fraction of the total vessel wall area occupied by intervessel pits as well as with the intervessel contact length. However, no significant correlation occurred between the ionic effect and total intervessel pit membrane area per vessel, vessel diameter, vessel length, vessel wall area, and intervessel pit membrane thickness. • Quantitative vessel and pit characters are suggested to contribute to interspecific variation of the ionic effect, whereas chemical properties of intervessel pit membranes are likely to play an additional role. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  18. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.

    Science.gov (United States)

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen

    2017-07-01

    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Through-wall sampling of the Trawsfynydd RPV

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-06-01

    Four large, highly irradiated through-wall weld samples are to be removed from the Trawsfynydd Magnox reactor pressure vessel. The reactor was shut down in 1993 after 28 years of operation. The samples will be tested to investigate the integrity of steel pressure vessels. The choice of specialised tooling for the operation and its deployment are discussed. A Ultra High Power Pressure Water Jet cutting method has been selected to meet the demanding remote robotic requirements. (UK).

  20. Cells, walls, and endless forms.

    Science.gov (United States)

    Monniaux, Marie; Hay, Angela

    2016-12-01

    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Domain walls riding the wave.

    Energy Technology Data Exchange (ETDEWEB)

    Karapetrov, G.; Novosad, V.; Materials Science Division

    2010-11-01

    ferromagnetic wire is the preferred method, as it combines manipulation and readout of the domain-wall state. The electrons that take part in the process of readout and manipulation of the domain-wall structure in the nanowire do so through the so-called spin transfer torque: When spin-polarized electrons in the ferromagnet nanowire pass through the domain wall they experience a nonuniform magnetization, and they try to align their spins with the local magnetic moments. The force that the electrons experience has a reaction force counterpart that 'pushes' the local magnetic moments, resulting in movement of the domain wall in the direction of the electron flow through the spin-transfer torque. The forces between the electrons and the local magnetic moments in the ferromagnet also create additional electrical resistance for the electrons passing through the domain wall. By measuring resistance across a segment of the nanowire, one determines if a domain wall is present; i.e., one can read the stored information. The interaction of the spin-polarized electrons with the domain wall in the ferromagnetic nanowire is not very efficient. Even for materials achieving high polarization of the free electrons, it is very difficult to move the magnetic domain wall. Several factors contribute to this problem, with imperfections of the ferromagnetic nanowire that cause domain-wall pinning being the dominant one. Permalloy nanowires, one of the best candidates for domain-wall-based memory and logic devices, require current densities of the order of 10{sup 8} A/cm{sup 2} in order to move a domain wall from a pinning well. Considering that this current has to pass through a relatively long wire, it is not very difficult to imagine that most of the energy will go to Joule heating. The efficiency of the process - the ratio of the energy converted to domain-wall motion to the total energy consumed - is comparable to that of an incandescent light bulb converting electricity to light. A

  2. Acute traumatic abdominal wall hernia

    NARCIS (Netherlands)

    D. den Hartog (Dennis); W.E. Tuinebreijer (Wim); P.P. Oprel (Pim); P. Patka (Peter)

    2011-01-01

    textabstractAlthough blunt abdominal trauma is frequent, traumatic abdominal wall hernias (TAWH) are rare. We describe a large TAWH with associated intra-abdominal lesions that were caused by high-energy trauma. The diagnosis was missed by clinical examination but was subsequently revealed by a

  3. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  4. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  5. Investigation of Air-Liquid Interface Rings in Buffer Preparation Vessels: the Role of Slip Agents.

    Science.gov (United States)

    Shi, Ting; Ding, Wei; Kessler, Donald W; De Mas, Nuria; Weaver, Douglas G; Pathirana, Charles; Martin, Russell D; Mackin, Nancy A; Casati, Michael; Miller, Scott A; Pla, Itzcoatl A

    2016-01-01

    Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. Those rings were resistant to regular cleaning-in-place procedures but could be removed by manual means. To investigate the root cause of this issue, multiple analytical techniques, including liquid chromatography with tandem mass spectrometry detection (LC-MS/MS), high-resolution accurate mass liquid chromatography with mass spectrometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy have been employed to characterize the chemical composition of air-liquid interface rings. The main component of air-liquid interface rings was determined to be slip agents, and the origin of the slip agents can be traced back to their presence on raw material packaging liners. Slip agents are commonly used in plastic industry as additives to reduce the coefficient of friction during the manufacturing process of thin films. To mitigate this air-liquid interface ring issue, an alternate liner with low slip agent was identified and implemented with minimal additional cost. We have also proactively tested the packaging liners of other raw materials currently used in our downstream buffer preparation to ensure slip agent levels are appropriate. Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. To investigate the root cause of this issue, multiple analytical techniques have been employed to characterize the chemical composition of air-liquid interface rings. The main components of air-liquid interface rings were determined to be slip agents, which are common additives used in the manufacturing process of thin films. The origin of the slip agents can be traced back to their presence on certain raw material packaging liners. To mitigate this air-liquid interface ring

  6. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-12-20

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.

  7. Numerical model study of radio frequency vessel sealing thermodynamics

    Science.gov (United States)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  8. Summary of Reported Whale-Vessel Collisions in Alaskan Waters

    Directory of Open Access Journals (Sweden)

    Janet L. Neilson

    2012-01-01

    Full Text Available Here we summarize 108 reported whale-vessel collisions in Alaska from 1978–2011, of which 25 are known to have resulted in the whale's death. We found 89 definite and 19 possible/probable strikes based on standard criteria we created for this study. Most strikes involved humpback whales (86% with six other species documented. Small vessel strikes were most common (<15 m, 60%, but medium (15–79 m, 27% and large (≥80 m, 13% vessels also struck whales. Among the 25 mortalities, vessel length was known in seven cases (190–294 m and vessel speed was known in three cases (12–19 kn. In 36 cases, human injury or property damage resulted from the collision, and at least 15 people were thrown into the water. In 15 cases humpback whales struck anchored or drifting vessels, suggesting the whales did not detect the vessels. Documenting collisions in Alaska will remain challenging due to remoteness and resource limitations. For a better understanding of the factors contributing to lethal collisions, we recommend (1 systematic documentation of collisions, including vessel size and speed; (2 greater efforts to necropsy stranded whales; (3 using experienced teams focused on determining cause of death; (4 using standard criteria for validating collision reports, such as those presented in this paper.

  9. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies

    Science.gov (United States)

    Cilip, Christopher M.; Rosenbury, Sarah B.; Giglio, Nicholas; Hutchens, Thomas C.; Schweinsberger, Gino R.; Kerr, Duane; Latimer, Cassandra; Nau, William H.; Fried, Nathaniel M.

    2013-05-01

    Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578±154, 530±171, and 426±174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0±0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).

  10. The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liang Yun; Zhu Hui; Friedman, Morton H [Department of Biomedical Engineering, Duke University, Durham, NC (United States)], E-mail: mhfriedm@duke.edu

    2009-09-21

    Atherosclerotic plaque rupture is the leading cause of mortality in cardiovascular disease. Intravascular ultrasound (IVUS) imaging is a powerful clinical technique that provides real-time cross-sectional images of the arterial wall and atherosclerotic plaques. However, it does not provide sufficient information about the histological composition of plaques to characterize their vulnerability. Arterial wall strain measurements may provide insights into plaque composition and vulnerability, complementing the information directly available in the IVUS echogram. We have developed a method to measure the transverse arterial wall strain tensor in response to luminal pressure change, by registering IVUS images acquired at different pressures. This method has been validated by using IVUS images with simulated motion and IVUS images of a vessel phantom. In this study, we further evaluate the method by assessing the correspondence of the calculated strain distribution and the histological composition of atherosclerotic coronary arteries from Sinclair miniature pigs following 12 months of a high fat diet. The images were acquired in situ using a clinical IVUS system and under computer-controlled pressurization. After image acquisition, the artery segments were fixed for histology to identify plaque components. The strain distributions were aligned with the corresponding histological sections. The stiffness of various components of the lesion, inferred from the wall strain distribution, was consistent with the tissue composition seen in the histological cross-sections. These findings suggest that strain measurements from IVUS are promising for assessing plaque vulnerability.

  11. The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis

    Science.gov (United States)

    Liang, Yun; Zhu, Hui; Friedman, Morton H.

    2009-09-01

    Atherosclerotic plaque rupture is the leading cause of mortality in cardiovascular disease. Intravascular ultrasound (IVUS) imaging is a powerful clinical technique that provides real-time cross-sectional images of the arterial wall and atherosclerotic plaques. However, it does not provide sufficient information about the histological composition of plaques to characterize their vulnerability. Arterial wall strain measurements may provide insights into plaque composition and vulnerability, complementing the information directly available in the IVUS echogram. We have developed a method to measure the transverse arterial wall strain tensor in response to luminal pressure change, by registering IVUS images acquired at different pressures. This method has been validated by using IVUS images with simulated motion and IVUS images of a vessel phantom. In this study, we further evaluate the method by assessing the correspondence of the calculated strain distribution and the histological composition of atherosclerotic coronary arteries from Sinclair miniature pigs following 12 months of a high fat diet. The images were acquired in situ using a clinical IVUS system and under computer-controlled pressurization. After image acquisition, the artery segments were fixed for histology to identify plaque components. The strain distributions were aligned with the corresponding histological sections. The stiffness of various components of the lesion, inferred from the wall strain distribution, was consistent with the tissue composition seen in the histological cross-sections. These findings suggest that strain measurements from IVUS are promising for assessing plaque vulnerability.

  12. Analysis and Visualization of Nerve Vessel Contacts for Neurovascular Decompression

    Science.gov (United States)

    Süßmuth, Jochen; Piazza, Alexander; Enders, Frank; Naraghi, Ramin; Greiner, Günther; Hastreiter, Peter

    Neurovascular compression syndromes are caused by a pathological contact between cranial nerves and vascular structures at the surface of the brainstem. Aiming at improved pre-operative analysis of the target structures, we propose calculating distance fields to provide quantitative information of the important nerve-vessel contacts. Furthermore, we suggest reconstructing polygonal models for the nerves and vessels. Color-coding with the respective distance information is used for enhanced visualization. Overall, our new strategy contributes to a significantly improved clinical understanding.

  13. The extended abdominal wall flap for transplantation.

    Science.gov (United States)

    Hollenbeck, S T; Senghaas, A; Turley, R; Ravindra, K V; Zenn, M R; Levin, L S; Erdmann, D

    2011-06-01

    Patients with extensive loss of the abdominal wall tissue have few options for restoring the abdominal cavity. Composite tissue allotransplantation has been used for limited abdominal wall reconstruction in the setting of visceral transplantation, yet replacement of the entire abdominal wall has not been described. The purpose of this study was to determine the maximal abdominal skin surface available through an external iliac/femoral cuff-based pedicle. Five human cadaveric abdominal walls were injected with methylene blue to analyze skin perfusion based on either the deep inferior epigastric artery (DIEA; n = 5) or a cuff of external iliac/femoral artery (n = 5) containing the deep circumflex iliac, deep inferior epigastric, and superficial inferior epigastric, and superficial circumflex iliac arteries. Abdominal wall flaps were taken full thickness from the costal margin to the midaxillary line and down to the pubic tubercle and proximal thigh. In all specimens, the deep inferior epigastric, deep circumflex iliac, superficial inferior epigastric, and superficial circumflex iliac arteries were found to originate within a 4-cm cuff of the external iliac/femoral artery. Abdominal wall flaps injected through a unilateral external iliac/femoral segment had a significantly greater degree of total flap perfusion than those injected through the DIEA alone (76.5% ± 4% vs 57.2% ± 5%; Student t test, P DIEA vessel alone. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Innovative Composite Wall System for Sheathing Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Robert L. [Oak Ridge National Lab., TN (United States); Cavallo, James [Argonne National Lab., IL (United States)

    1997-09-25

    Existing Housing - Much of the older multifamily housing stock in the United States includes units in structures with uninsulated masonry walls. Included in this stock are two- and three-story walk-up apartments, larger apartment complexes, and public housing (both high- rise and townhouse). This older multifamily housing has seen years of heavy use that may have left the plaster wall marred or damaged. Long- term building settlement or movement may have cracked the plaster, sometimes severely. Moisture from invented kitchens and baths may have caused condensation on uninsulated exterior walls. At best this condensation has left stains on the paint or wallpaper. At worst it has supported mold and mildew growth, fouling the air and creating unhealthy living conditions. Deteriorating plaster and flaking paint also result from wet walls. The presence of flaking, lead-based paint in older (pre-1978) housing is a major public health concern. Children can suffer permanent mental handicaps and psychological disorders if they are subjected to elevated levels of lead, while adults can suffer hypertension and other maladies. Studies have found that, in some urban communities with older housing stocks, over 35% of children tested have elevated blood lead levels (Hastings, et al.: 1997). Nationally, nearly 22% of black, non-hispanic children living in pre-1946 housing were found to have elevated levels of lead in their blood (MWWR Article: February 21,1997). The deterioration of many of these walls is to the point that lead can freely enter the living space.

  15. Identification Of Damages Of Tribological Associations In Crankshaft And Piston Systems Of Two-Stroke Internal Combustion Engines Used As Main Propulsion In Sea-Going Vessels And Proposal Of Probabilistic Description Of Loads As Causes Of These Damages

    Directory of Open Access Journals (Sweden)

    Girtler Jerzy

    2015-04-01

    Full Text Available The article discusses damages of essential tribological associations in crankshaft and piston systems of large power two-stroke engines used as main engines, which take place during transport tasks performed by those ships. Difficulties are named which make preventing those damages impossible, despite the fact that the technical state of engines of this type is identified with the aid of complex diagnostic systems making use of advanced computer technology. It is demonstrated that one of causes of the damages is the lack of research activities oriented on recognising random properties of the loads leading to those damages. A proposal is made for the loads acting at a given time t on tribological associations in crankshaft and piston systems of internal combustion engines used as main engines to be considered as random variables Qt. At the same time the loads examined within a given time interval tr ≤ t ≤ tz would be considered stochastic processes {Q(t: t ≥ 0}. Essential properties of the loads of the abovementioned tribological associations are named and explained by formulating hypotheses which need empirical verification. Interval estimation is proposed for estimating the expected value E(Qt of the load Qt acting at time t. A relation is indicated between the mechanical load and the thermal load acting on tribological associations in the ship main engine crankshaft and piston system. A suggestion is formulated that a stochastic form of the relation between these types of load is to be searched for, rather than statistic relation, and a proposal is made to measure the intensity (strength of the stochastic relation using the Czuprow’s convergence coefficient.

  16. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  17. Novel Method to Detect Corneal Lymphatic Vessels In Vivo by Intrastromal Injection of Fluorescein.

    Science.gov (United States)

    Le, Viet Nhat Hung; Hou, Yanhong; Horstmann, Jens; Bock, Felix; Cursiefen, Claus

    2017-11-09

    Corneal lymphatic vessels are clinically invisible because of their thin walls and clear lymph fluid. There is no easy and established method for in vivo imaging of corneal lymphatic vessels so far. In this study, we present a novel approach to visualize corneal lymphatic vessels in vivo by injecting intrastromal fluorescein sodium. Six- to eight-week-old female BALB/c mice were used in the mouse model of suture-induced corneal neovascularization. Two weeks after the suture placement, fluorescein sodium was injected intrastromally. The fluorescein, taken up by the presumed lymphatic vessels, was then tracked using a clinically used Spectralis HRA + OCT device. Immunohistochemistry staining with specific lymphatic marker LYVE-1 and pan-endothelial marker CD31 was used to confirm the indirect lymphangiography findings. By injecting fluorescein intrastromally, both corneal blood and lymphatic vessels were detected. While the lymphatic vessels were visible as bright vessel-like structures using HRA, the blood vessels appeared as dark networks. Fluorescein-labeled lymphatic vessels were colocalized with LYVE-1 in immunohistochemically stained sections of the same specimen. Corneal lymphatic vessels can be easily imaged in vivo in the murine model using intrastromal fluorescein injection.

  18. Fast blood-flow simulation for large arterial trees containing thousands of vessels.

    Science.gov (United States)

    Muller, Alexandre; Clarke, Richard; Ho, Harvey

    2017-02-01

    Blood flow modelling has previously been successfully carried out in arterial trees to study pulse wave propagation using nonlinear or linear flow solvers. However, the number of vessels used in the simulations seldom grows over a few hundred. The aim of this work is to present a computationally efficient solver coupled with highly detailed arterial trees containing thousands of vessels. The core of the solver is based on a modified transmission line method, which exploits the analogy between electrical current in finite-length conductors and blood flow in vessels. The viscoelastic behaviour of the arterial-wall is taken into account using a complex elastic modulus. The flow is solved vessel by vessel in the frequency domain and the calculated output pressure is then used as an input boundary condition for daughter vessels. The computational results yield pulsatile blood pressure and flow rate for every segment in the tree. This solver is coupled with large arterial trees generated from a three-dimensional constrained constructive optimisation algorithm. The tree contains thousands of blood vessels with radii spanning ~1 mm in the root artery to ~30 μm in leaf vessels. The computation takes seconds to complete for a vasculature of 2048 vessels and less than 2 min for a vasculature of 4096 vessels on a desktop computer.

  19. TMI-2 reactor vessel head removal

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1985-09-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

  20. TMI-2 reactor vessel head removal

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1984-12-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

  1. Stroke caused by a myxoma stenosing the common carotid artery.

    Science.gov (United States)

    Cortés-Vicente, Elena; Delgado-Mederos, Raquel; Bellmunt, Sergi; Borras, Xavier F; Gómez-Ansón, Beatriz; Bagué, Silvia; Camps-Renom, Pol; Martí-Fàbregas, Joan

    2015-04-01

    We report a case of stroke due to stenosis caused by a myxoma in the common carotid artery with no evidence of a cardiac origin. Only 1 such case has been reported previously in the literature. A previously healthy 37-year-old woman presented with repeated episodes of acute focal deficits together with motor, sensory, and language symptoms typical of left internal carotid territory involvement. Brain magnetic resonance imaging showed acute and subacute ischemic lesions in the territory of the left middle cerebral artery and border zone infarcts (middle cerebral artery with anterior and posterior cerebral arteries). Magnetic resonance angiography showed a filling defect in the distal portion of the left common carotid artery causing stenosis over 70%. Transesophageal echocardiography showed no embolic sources. Blood tests ruled out a prothrombotic state. The image was initially interpreted as a possible subacute thrombus and anticoagulation was started. No changes were observed in the follow-up carotid ultrasound examination after 12 days of treatment. A gelatinous mass was removed during carotid surgery. No subjacent lesion was observed in the vessel wall. Pathology examination showed a spindle cell fibromyxoid tissue with fibrinoid material typical of myxoma. We hypothesize that the myxoma originated in the vessel, or alternatively, that a cardiac myxoma embolized without leaving a residual cardiac tumor. Although exceptional, myxoma should be added to the list of unusual causes of carotid artery stenosis causing stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. 50 CFR 648.8 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Vessel identification. 648.8 Section 648.8... identification. (a) Vessel name and official number. Each fishing vessel subject to this part and over 25 ft (7.6... or ocean quahog vessels licensed under New Jersey law may use the appropriate vessel identification...

  3. Scanning electron microscopy of the dorsal vessel of Panstrongylus megistus (Burmeister, 1835 (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Nadir Francisca Sant'Anna Nogueira

    1991-03-01

    Full Text Available In this study we analyzed the microanatomy of the dorsal vessel of the triatomine Panstrongylus megistus. The organ is a tuble anatomically divided into an anterior aorta anad a posterior heart, connected to the body wall through 8 pairs of alary muscles. The heart is divided in 3 chambers by means of 2 pairs of cardiac valves. a pair of ostia can be observed in the lateral wall of each chamber. A bundle of nerve fibers was found outside the organ, running dorsally along its major axis. A group of longitudinal muscular fibers was found in the ventral portion of the vessel. The vessel was found to be lined both internally and externally by pericardial cells covered by a thin laminar membrane. Inseide the vessel the pericardial cells were disposed in layers and on the outside they formed clusters or rows.

  4. The role of the carotid sinus in the reduction of arterial wall stresses due to head movements--potential implications for cervical artery dissection.

    Science.gov (United States)

    Callaghan, F M; Soellinger, M; Baumgartner, R W; Poulikakos, D; Boesiger, P; Kurtcuoglu, V

    2009-04-16

    Spontaneous dissection of the cervical internal carotid artery (sICAD) is a major cause of stroke in young adults. A tear in the inner part of the vessel wall triggers sICAD as it allows the blood to enter the wall and develop a transmural hematoma. The etiology of the tear is unknown but many patients with sICAD report an initiating trivial trauma. We thus hypothesised that the site of the tear might correspond with the location of maximal stress in the carotid wall. Carotid artery geometries segmented from magnetic resonance images of a healthy subject at different static head positions were used to define a path of motion and deformation of the right cervical internal carotid artery (ICA). Maximum head rotation to the left and rotation to the left combined with hyperextension of the neck were investigated using a structural finite element model. A role of the carotid sinus as a geometrically compliant feature accommodating extension of the artery is shown. At the extreme range of the movements, the geometrical compliance of the carotid sinus is limited and significant stress concentrations appear just distal to the sinus with peak stresses at the internal wall on the posterior side of the vessel following maximum head rotation and on the anteromedial portion of the vessel wall following rotation and hyperextension. Clinically, the location of sICAD initiation is 10-30 mm distal to the origin of the cervical ICA, which corresponds with the peak stress locations observed in the model, thus supporting trivial trauma from natural head movements as a possible initiating factor in sICAD.

  5. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    Science.gov (United States)

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  6. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  7. Southeast Region Headboat Survey-Vessel list/Vessel Directory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of vessels that have been on the SRHS through time, their owners/operators, marinas/docks and their contact information. This assists in...

  8. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    Science.gov (United States)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  9. Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues.

    Science.gov (United States)

    Pal, Sarit; Meininger, Cynthia J; Gashev, Anatoliy A

    2017-05-03

    This review provides a comprehensive summary of research on aging-associated alterations in lymphatic vessels and mast cells in perilymphatic tissues. Aging alters structure (by increasing the size of zones with low muscle cell investiture), ultrastructure (through loss of the glycocalyx), and proteome composition with a concomitant increase in permeability of aged lymphatic vessels. The contractile function of aged lymphatic vessels is depleted with the abolished role of nitric oxide and an increased role of lymphatic-born histamine in flow-dependent regulation of lymphatic phasic contractions and tone. In addition, aging induces oxidative stress in lymphatic vessels and facilitates the spread of pathogens from these vessels into perilymphatic tissues. Aging causes the basal activation of perilymphatic mast cells, which, in turn, restricts recruitment/activation of immune cells in perilymphatic tissues. This aging-associated basal activation of mast cells limits proper functioning of the mast cell/histamine/NF-κB axis that is essential for the regulation of lymphatic vessel transport and barrier functions as well as for both the interaction and trafficking of immune cells near and within lymphatic collecting vessels. Cumulatively, these changes play important roles in the pathogenesis of alterations in inflammation and immunity associated with aging.

  10. Charged Domain Walls

    OpenAIRE

    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.

    2003-01-01

    In this paper we investigate Charged Domain Walls (CDW's), topological defects that acquire surface charge density $Q$ induced by fermion states localized on the walls. The presence of an electric and magnetic field on the walls is also discussed. We find a relation in which the value of the surface charge density $Q$ is connected with the existence of such topological defects.

  11. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Broadhead, B.L. [Oak Ridge National Lab., TN (United States); Suzuki, M.; Kohsaka, A. [Japan Atomic Energy Research Institute, Tokai (Japan)

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  12. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    Science.gov (United States)

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  13. Wall conditioning and particle control in Extrap T2

    Science.gov (United States)

    Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.

    1997-02-01

    The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.

  14. Feeling Wall Tension in an Interactive Demonstration of Laplace's Law

    Science.gov (United States)

    Letic, Milorad

    2012-01-01

    Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…

  15. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  16. 2013 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. SC/OQ Vessel Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data tables holding information for the Surf Clam/Ocean Quahog vessel and dealer/processor logbooks (negative and positive), as well as individual tag information...

  18. 2011 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. 2011 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. 2013 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  1. 2011 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. Integrin binding: Sticking around vessels

    Science.gov (United States)

    Blatchley, Michael R.; Gerecht, Sharon

    2017-09-01

    A study demonstrates that controlled integrin binding on a biomaterial was capable of promoting vascular cell sprouting and formation of a non-leaky blood vessel network in a healthy and diseased state.

  3. Transposition of the great vessels

    Science.gov (United States)

    ... vessel called the ductus arteriosus open, allowing some mixing of the 2 blood circulations. A procedure using ... they are not already immune. Eating well, avoiding alcohol, and controlling diabetes both before and during pregnancy ...

  4. 2013 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  5. Vessel Permit System Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  6. 2011 Tug Towing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  7. Caribbean PR Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels fishing in Puerto Rico. The catch and effort data for the entire trip are...

  8. Coastal Discard Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data on the type and amount of marine resources that are discarded or interacted with by vessels that are selected to report to the Southeast...

  9. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain.

    Science.gov (United States)

    Yamamoto, Y; Craggs, L; Baumann, M; Kalimo, H; Kalaria, R N

    2011-02-01

    Advances in molecular genetics have enabled identification of several monogenic conditions involving small vessels predisposing to ischaemic and haemorrhagic strokes and diffuse white matter disease. With emphasis on cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), we review the molecular pathogenesis of recently characterized disorders including cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), retinal vasculopathy with cerebral leukodystrophy (RVCL) and the Collagen type IV, alpha 1 (COL4A1)-related disorders. CADASIL remains the most common hereditary small vessel disease (SVD) caused by >190 different mutations in the NOTCH3 gene, which encodes a cell-signalling receptor. Mutant NOTCH3 instigates degeneration of vascular smooth muscle cells in small arteries and arterioles leading to recurrent lacunar infarcts. Mutations in the serine protease HTRA1 gene are associated with CARASIL. Aberrant HTRA1 activity results in increased transforming growth factor-β signalling provoking multiple actions including vascular fibrosis and extracellular matrix synthesis. The RVCL disorders characterized by profound retinopathy are associated with mutations in TREX1, which encodes an abundant 3'-5' DNA-specific exonuclease. TREX1 mutations lead to detrimental gain-of-function or insufficient quantities of enzyme. The COL4A1-related disorders are highly variable comprising four major phenotypes with overlapping systemic and central nervous system features including SVD with cerebral haemorrhages in children and adults. Mutant COL4A1 likely disrupts the extracellular matrix resulting in fragile vessel walls. The hereditary SVDs albeit with variable phenotypes demonstrate how effects of different defective genes converge to produce the characteristic arteriopathy and microvascular disintegration leading to vascular cognitive impairment. © 2011 The Authors. Neuropathology and

  10. Nuclear reactor pressure vessel support system

    Science.gov (United States)

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  11. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß

    2016-01-01

    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  12. Prosopomorphic vessels from Moesia Superior

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana

    2008-01-01

    Full Text Available The prosopomorphic vessels from Moesia Superior had the form of beakers varying in outline but similar in size. They were wheel-thrown, mould-made or manufactured by using a combination of wheel-throwing and mould-made appliqués. Given that face vessels are considerably scarcer than other kinds of pottery, more than fifty finds from Moesia Superior make an enviable collection. In this and other provinces face vessels have been recovered from military camps, civilian settlements and necropolises, which suggests that they served more than one purpose. It is generally accepted that the faces-masks gave a protective role to the vessels, be it to protect the deceased or the family, their house and possessions. More than forty of all known finds from Moesia Superior come from Viminacium, a half of that number from necropolises. Although tangible evidence is lacking, there must have been several local workshops producing face vessels. The number and technological characteristics of the discovered vessels suggest that one of the workshops is likely to have been at Viminacium, an important pottery-making centre in the second and third centuries.

  13. The composition of collagen in the aneurysm wall of men and women

    NARCIS (Netherlands)

    Villard, C.; Eriksson, P.; Hanemaaijer, R.; Lindeman, J.H.; Hultgren, R.

    2017-01-01

    Background. Loss of vessel wall integrity by degradation is essential for the development of abdominal aortic aneurysm (AAA) and ultimately its rupture. The observed greater rupture rate in women with AAA might be related to gender differences in the biomechanical properties of the aneurysm wall.

  14. Probabilistic Structural Integrity Analysis of Boiling Water Reactor Pressure Vessel under Low Temperature Overpressure Event

    Directory of Open Access Journals (Sweden)

    Hsoung-Wei Chou

    2015-01-01

    Full Text Available The probabilistic structural integrity of a Taiwan domestic boiling water reactor pressure vessel has been evaluated by the probabilistic fracture mechanics analysis. First, the analysis model was built for the beltline region of the reactor pressure vessel considering the plant specific data. Meanwhile, the flaw models which comprehensively simulate all kinds of preexisting flaws along the vessel wall were employed here. The low temperature overpressure transient which has been concluded to be the severest accident for a boiling water reactor pressure vessel was considered as the loading condition. It is indicated that the fracture mostly happens near the fusion-line area of axial welds but with negligible failure risk. The calculated results indicate that the domestic reactor pressure vessel has sufficient structural integrity until doubling of the present end-of-license operation.

  15. Simulation of liquid dynamics in a cryogenic mobile vessels

    Directory of Open Access Journals (Sweden)

    E. Lisowski

    2010-07-01

    Full Text Available Technical gases becomes liquid in extremely low temperature ranging minus 200 °C and very high pressure what makes that transportationdevices have to perform very strict requirement. Presented paper shows selected aspect of simulation of liquefied gas sloshing in aspect of requirements that mobile vessels have to fulfill. Mobile vessel which is the object of simulation is a two shell tank with vacuum and layer insulation between shells adapted to 20 ft container. It is assigned for see, railway and road transport and have to follow all of requirements for such transportation systems. Requirements for such tank are enclosed in standard ISO 1496-3 which deals with freight containers and standard EN13530-2 that describes vacuum, cryogenic vessels. The standards EN13530-2 defines that vessels which are to be filled equal or less than 80% should be fitted with surge plates to provide vessel stability and limit dynamic loads. Additionally surge plates area has tobe at least 70% of cross section of the vessel and volume between surge plates shall be not higher than 7.5 m3. Structure of the vessel as well as the surge plate should resist of longitudinal acceleration of 2g. Additionally surge plates shall resists stresses caused by pressure distributed across the area of surge plate and the pressure shall be calculated as mass of liquid between plates and acceleration 2g. In this paper is presented way of simulation of dynamic behavior of liquefied Argon on vessel structure. A numerical methods likeComputational Fluid Dynamics (CFD and Finite Element Analysis (FEA were used for this purpose. Combination of both tools allowedto get pick value of dynamic pressure that arising during acceleration of 2g, which was assumed is 0.2 s and investigate resistance of vessel and container structure. Presented approach is called Fluid – Structure Interaction simulation. In CFD simulation was used Ansys CFX code, while for FEA calculations Pro/Mechanica package.

  16. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  17. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Directory of Open Access Journals (Sweden)

    Vinayak S Joshi

    Full Text Available The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  18. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  19. 50 CFR 697.8 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 697.8 Section 697.8 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION....8 Vessel identification. (a) Vessel name and official number. Each fishing vessel issued a limited...

  20. Shock-induced collapse of a bubble inside a deformable vessel

    Science.gov (United States)

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  1. Mechanosensing in developing lymphatic vessels.

    Science.gov (United States)

    Planas-Paz, Lara; Lammert, Eckhard

    2014-01-01

    The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.

  2. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  3. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  4. 19 CFR 4.5 - Government vessels.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Government vessels. 4.5 Section 4.5 Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES Arrival and Entry of Vessels § 4.5 Government vessels. (a) No... that is the property of, the U.S. Department of Defense (DoD) will be treated as a Government vessel...

  5. Characterization of atherosclerotic plaque of carotid arteries with histopathological correlation: Vascular wall MR imaging vs. color Doppler ultrasonography (US)

    National Research Council Canada - National Science Library

    Watanabe, Yuji; Nagayama, Masako; Suga, Tsuyoshi; Yoshida, Kazumichi; Yamagata, Sen; Okumura, Akira; Amoh, Yoshiki; Nakashita, Satoru; Van Cauteren, Marc; Dodo, Yoshihiro

    2008-01-01

    To investigate whether the vessel wall MRI of carotid arteries would differentiate at-risk soft plaque from solid fibrous plaque by identifying liquid components more accurately than color Doppler ultrasonography (US...

  6. Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.

  7. [Pulmonary blood vessels in goats].

    Science.gov (United States)

    Roos, H; Hegner, K; Vollmerhaus, B

    1999-05-01

    The blood vessels in the lung of the goat, which until now have received little attention, are described in detail for the first time. With regard to the segments of the lung, blood vessels are bronchovascular units in the lobi craniales, lobus medius and lobus accessorius, but bronchoartery units in the lobi caudales. We investigated the types of branches of the Aa. pulmonales dextra et sinistra, the inter- and intraspecific principles of the outlet of the pulmonary veins and the importance of bronchopulmonary segmentation of the lungs.

  8. Characteristics of blood vessels forming “sausages-on-a-string” patterns during hypertension

    Science.gov (United States)

    Ravnsborg Beierholm, Ulrik; Christian Brings Jacobsen, Jens; Holstein-Rathlou, Niels-Henrik; Alstrøm, Preben

    2007-03-01

    A phenomenon of alternate constrictions and dilatations in blood vessels has been studied for over 50 years. Recently, a theory has been presented involving a Rayleigh type instability. We analyze the model in terms of the lengths of the deformations in relation to the wall thickness, blood pressure and stress. Analytical and numerical results obtained are consistent with experimental data.

  9. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels

    Science.gov (United States)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon

    2012-03-01

    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  10. Environmental Implications of Maritime Vessel Intensification in Arctic Waters

    Science.gov (United States)

    Stevenson, T. C.; Banis, D.; Sheard, W.

    2016-12-01

    In 2016, the Arctic experienced some of the warmest monthly temperatures on record. Record high temperatures in the Arctic continue to cause rapid sea ice declines, opening new areas of ocean to commercial exploitation and transportation and causing significant reductions in critical sea ice habitats used by iconic species. Elevated maritime vessel traffic in the Arctic is projected to increase black carbon emissions, encourage the spread of invasive species, increase mammal strikes, intensify conflict with smaller subsistence boats, and heighten oil spill risks. The Arctic Council, an intergovernmental organization concerned with sustainable development and environmental protection, is working with member countries, indigenous participants and other groups on developing networks of marine protected areas within ecologically or biologically important areas. To help inform that process, we analyzed vessel traffic and marine protected area coverage occurring within ecologically or biologically significant areas in the circumpolar Arctic. Our preliminary findings suggest vessel traffic within ecologically or biologically significant areas were highest around Iceland, Norway, Russia and United States but differed by vessel type. The density of fishing vessels occurring within ecologically or biologically important areas were highest near Norway, Iceland, Faroe Islands, parts of Greenland and United States, whereas vessels carrying liquefied natural gas and oil were concentrated near Norway and Russia. The percentage of area covered by marine protected areas within ecologically or biologically significant areas was low, with the exception of places like Wrangel Island, Svalbard, and areas around Greenland. These findings are important because it illustrates ecologically or biologically significant areas in the Arctic are vulnerable to projected vessel traffic intensification and the level of protection afforded by marine protected areas is relatively low.

  11. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    Energy Technology Data Exchange (ETDEWEB)

    Urbonavičius, E., E-mail: Egidijus.Urbonavicius@lei.lt; Povilaitis, M., E-mail: Mantas.Povilaitis@lei.lt; Kontautas, A., E-mail: Aurimas.Kontautas@lei.lt

    2015-11-15

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  12. Disruption of rich club organisation in cerebral small vessel disease

    NARCIS (Netherlands)

    Tuladhar, Anil M.; Lawrence, Andrew; Norris, David G.; Barrick, Thomas R.; Markus, Hugh S.; de Leeuw, Frank-Erik

    2017-01-01

    Cerebral small vessel disease (SVD) is an important cause of vascular cognitive impairment. Recent studies have demonstrated that structural connectivity of brain networks in SVD is disrupted. However, little is known about the extent and location of the reduced connectivity in SVD. Here they

  13. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  14. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  15. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...

  16. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  17. Invasion of lymphatic vessels into the eye after open globe injuries.

    Science.gov (United States)

    Wessel, Julia M; Hofmann-Rummelt, Carmen; Kruse, Friedrich E; Cursiefen, Claus; Heindl, Ludwig M

    2012-06-20

    We analyzed whether lymphatic vessels can be detected in eyes enucleated after an open globe injury. The presence of lymphatic vessels was analyzed immunohistochemically using podoplanin as a specific lymphatic endothelial marker in 21 globes that had been enucleated after open globe injury. The localization of pathologic lymphatic vessels (within the eye wall or inside the eye) was correlated with the mechanism of trauma, anatomic site of perforation or rupture, and time interval between trauma and enucleation. Pathologic lymphatic vessels were detected in 15 of 21 eyes (71%) enucleated after an open globe injury. In 5 globes (24%) they were found within the eye, located in retrocorneal membranes, underneath the sclera, and adjacent to uveal tissue (ciliary body, iris). No significant association was observed between the presence of pathologic lymphatic vessels and the mechanism of trauma (P = 0.598), anatomic site of perforation or rupture (P = 0.303), and time interval between trauma and enucleation (P = 0.145). The human eye can be invaded secondarily by lymphatic vessels if the eye wall is opened by trauma. This mechanism could be important for wound healing, immunologic defense against intruding microorganisms, and autoimmune reactions against intraocular antigens.

  18. Compressibility measurements of gases using externally heated pressure vessels.

    Science.gov (United States)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  19. Commercial Passenger Fishing Vessel Fishery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the logbook data from U.S.A. Commercial Passenger Fishing Vessels (CPFV) fishing in the U.S.A. EEZ and in waters off of Baja California, from...

  20. Pressure vessel and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  1. BPC 157 and blood vessels.

    Science.gov (United States)

    Seiwerth, Sven; Brcic, Luka; Vuletic, Lovorka Batelja; Kolenc, Danijela; Aralica, Gorana; Misic, Marija; Zenko, Anita; Drmic, Domagoj; Rucman, Rudolf; Sikiric, Predrag

    2014-01-01

    This review focuses on the described effects of BPC 157 on blood vessels after different types of damage, and elucidate by investigating different aspects of vascular response to injury (endothelium damage, clotting, thrombosis, vasoconstriction, vasodilatation, vasculoneogenesis and edema formation) especially in connection to the healing processes. In this respect, BPC 157 was concluded to be the most potent angiomodulatory agent, acting through different vasoactive pathways and systems (e.g. NO, VEGF, FAK) and leading to optimization of the vascular response followed, as it has to be expected, by optimization of the healing process. Formation of new blood vessels involves two main, partly overlapping mechanisms, angiogenesis and vasculogenesis. The additional mechanism of arteriogenesis is involved in the formation of collaterals. In conjunction with blood vessel function, we at least have to consider leakage of fluid/proteins/plasma, resulting in edema/exudate formation as well as thrombogenesis. Blood vessels are also strongly involved in tumor biology. In this aspect, we have neoangiogenesis resulting in pathological vascularization, vascular invasion resulting in release of metastatic cells and the phenomenon of homing resulting in formation of secondary tumors--metastases.

  2. The determinants of fishing vessel accident severity.

    Science.gov (United States)

    Jin, Di

    2014-05-01

    The study examines the determinants of fishing vessel accident severity in the Northeastern United States using vessel accident data from the U.S. Coast Guard for 2001-2008. Vessel damage and crew injury severity equations were estimated separately utilizing the ordered probit model. The results suggest that fishing vessel accident severity is significantly affected by several types of accidents. Vessel damage severity is positively associated with loss of stability, sinking, daytime wind speed, vessel age, and distance to shore. Vessel damage severity is negatively associated with vessel size and daytime sea level pressure. Crew injury severity is also positively related to the loss of vessel stability and sinking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Disruption of Vessel-Spanning Bubbles with Sloped Fins in Flat-Bottom and 2:1 Elliptical-Bottom Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Buchmiller, William C.; Jenks, Jeromy WJ; Chun, Jaehun; Russell, Renee L.; Schmidt, Andrew J.; Mastor, Michael M.

    2010-09-22

    Radioactive sludge was generated in the K-East Basin and K-West Basin fuel storage pools at the Hanford Site while irradiated uranium metal fuel elements from the N Reactor were being stored and packaged. The fuel has been removed from the K Basins, and currently, the sludge resides in the KW Basin in large underwater Engineered Containers. The first phase to the Sludge Treatment Project being led by CH2MHILL Plateau Remediation Company (CHPRC) is to retrieve and load the sludge into sludge transport and storage containers (STSCs) and transport the sludge to T Plant for interim storage. The STSCs will be stored inside T Plant cells that are equipped with secondary containment and leak-detection systems. The sludge is composed of a variety of particulate materials and water, including a fraction of reactive uranium metal particles that are a source of hydrogen gas. If a situation occurs where the reactive uranium metal particles settle out at the bottom of a container, previous studies have shown that a vessel-spanning gas layer above the uranium metal particles can develop and can push the overlying layer of sludge upward. The major concern, in addition to the general concern associated with the retention and release of a flammable gas such as hydrogen, is that if a vessel-spanning bubble (VSB) forms in an STSC, it may drive the overlying sludge material to the vents at the top of the container. Then it may be released from the container into the cell’s secondary containment system at T Plant. A previous study demonstrated that sloped walls on vessels, both cylindrical coned-shaped vessels and rectangular vessels with rounded ends, provided an effective approach for disrupting a VSB by creating a release path for gas as a VSB began to rise. Based on the success of sloped-wall vessels, a similar concept is investigated here where a sloped fin is placed inside the vessel to create a release path for gas. A key potential advantage of using a sloped fin compared to a

  4. Maritime Training Serbian Autonomous Vessel Protection Detachment

    Directory of Open Access Journals (Sweden)

    Šoškić Svetislav D.

    2014-06-01

    Full Text Available The crisis in Somalia has caused appearance of piracy at sea in the Gulf of Aden and the Western Indian Ocean. Somali pirates have become a threat to economic security of the world because almost 30 percent of world oil and 20 percent of global trade passes through the Gulf of Aden. Solving the problem of piracy in this part of the world have included international organizations, institutions, military alliances and the states, acting in accordance with international law and UN Security Council resolutions. The European Union will demonstrate the application of a comprehensive approach to solving the problem of piracy at sea and the crisis in Somalia conducting naval operation — EU NAVFOR Atalanta and operation EUTM under the Common Security and Defense Policy. The paper discusses approaches to solving the problem of piracy in the Gulf of Aden and the crisis in Somalia. Also, the paper points to the complexity of the crisis in Somalia and dilemmas correctness principles that are applied to solve the problem piracy at sea. One of goals is protections of vessels of the World Food Programme (WFP delivering food aid to displaced persons in Somalia. Republic of Serbia joined in this mission and trained and sent one a autonomous team in this military operation for protection WFP. This paper consist the problem of modern piracy, particularly in the area of the Horn of Africa became a real threat for the safety of maritime ships and educational process of Serbian Autonomous vessel protection detachment. Serbian Military Academy adopted and developed educational a training program against piracy applying all the provisions and recommendations of the IMO conventions and IMO model courses for Serbian Autonomous vessel protection detachment.

  5. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63... BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s) and vessel(s) are interchangeable or synonymous words, and include every description of watercraft...

  6. 76 FR 33161 - Installation and Use of Engine Cut-off Switches on Recreational Vessels

    Science.gov (United States)

    2011-06-08

    ... Security FR Federal Register NBSAC National Boating Safety Advisory Council NMMA National Marine... caused by persons being struck by a recreational vessel or a propeller. Under 46 U.S.C. Chapter 43... appropriate course of action to address the recreational vessel and propeller strike-related casualty issue...

  7. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  8. Sonographic assessment of splanchnic arteries and the bowel wall

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.F. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)], E-mail: Christoph.dietrich@ckbm.de; Jedrzejczyk, M.; Ignee, A. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)

    2007-11-15

    The intestinal wall can be visualized using high resolution transabdominal ultrasound. The normal intestinal wall thickness in the terminal ileum, cecum, and right and left colon is <2 mm when examined with graded compression. It is important to appreciate that a contracted intestinal segment can be misinterpreted as a thickened wall. Vascularisation can be mainly displayed in the second hyperechoic layer (submucosal layer) as well as vessels penetrating the muscularis propria. Imaging of the gastrointestinal wall is dependent on the experience of the examiner as well dependent on the equipment used. Acute or chronic inflammation of the intestinal wall is accompanied by increased perfusion of the mesentery, which can be displayed non-quantitatively with colour duplex. In contrast, ischemia is characterised by hypoperfusion of the mesenteric arteries and the bowel wall. The most promising sonographic approach in assessing splanchnic arteries and the bowel wall is combining the analysis of superior and inferior mesenteric inflow by pulsed Doppler scanning (systolic and diastolic velocities, resistance index) with the end-organ vascularity by colour Doppler imaging diminishing the influence of examination technique only displaying bowel wall vascularity. Colour Doppler imaging has been described as helpful in a variety of gastrointestinal disorders, particularly in patients with Crohn's disease, celiac disease, mesenteric artery stenosis and other ischemic gastrointestinal diseases, graft versus host disease and hemorrhagic segmental colitis.

  9. Aqueous Solution Vessel Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  10. Vessel tree extraction using locally optimal paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; van Ginneken, Bram; de Bruijne, Marleen

    2010-01-01

    This paper proposes a method to extract vessel trees by continually extending detected branches with locally optimal paths. Our approach uses a cost function from a multi scale vessel enhancement filter. Optimal paths are selected based on rules that take into account the geometric characteristics...... of the vessel tree. Experiments were performed on 10 low dose chest CT scans for which the pulmonary vessel trees were extracted. The proposed method is shown to extract a better connected vessel tree and extract more of the small peripheral vessels in comparison to applying a threshold on the output...

  11. Electrically conductive containment vessel for molten aluminum

    Science.gov (United States)

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  12. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.

    Science.gov (United States)

    Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C

    2015-08-01

    Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  14. Extrapleural Inner Thoracic Wall Lesions: Multidetector CT Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Kim, Young Tong; Jou, Sung Shik [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of)

    2010-06-15

    The extrapleural space is external to the parietal pleura in the thorax. The structures within and adjacent to this region include the fat pad, endothoracic fascia, intercostal muscles, connective tissue, nerves, vessels, and ribs. Further, the space is divided into the inner and outer thoracic wall by the innermost intercostal muscle. Extrapleural lesions in the inner thoracic wall are classified as air-containing lesions, fat-containing lesions, and soft tissue-containing lesions according on their main component. Air-containing lesions include extrapleural air from direct chest trauma and extrapleural extension from pneumomediastinum. Prominent extrapleural fat is seen in decreased lung volume conditions, and can also be seen in normal individuals. Soft tissue-containing lesions include extrapleural extensions from a pleural or chest wall infection as well as tumors and extrapleural hematoma. We classify extrapleural lesions in the inner thoracic wall and illustrate their imaging findings

  15. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells.

    Science.gov (United States)

    Dimakopoulos, Yannis; Kelesidis, George; Tsouka, Sophia; Georgiou, Georgios C; Tsamopoulos, John

    2015-01-01

    In microcirculation, the non-Newtonian behavior of blood and the complexity of the microvessel network are responsible for the high flow resistance and the large reduction of the blood pressure. Red blood cell aggregation along with inward radial migration are two significant mechanisms determining the former. Yet, their impact on hemodynamics in non-straight vessels is not well understood. In this study, the steady state blood flow in stenotic rigid vessels is examined, employing a sophisticated non-homogeneous constitutive law. The effect of red blood cells migration on the hydrodynamics is quantified and the constitutive model's accuracy is evaluated. A numerical algorithm based on the two-dimensional mixed finite element method and the EVSS/SUPG technique for a stable discretization of the mass and momentum conservation equations in addition to the constitutive model is employed. The numerical simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness for slow flow conditions. This causes the reduction of the drag force and the increase of the pressure gradient as the constriction ratio decreases. Viscoelastic effects in blood flow were found to be responsible for steeper decreases of tube and discharge hematocrits as decreasing function of constriction ratio.

  16. Human and fishing vessel losses in sea accidents in the UK fishing industry from 1948 to 2008.

    Science.gov (United States)

    Roberts, Stephen E; Jaremin, Bogdan; Marlow, Peter B

    2010-01-01

    To investigate long-term trends in mortality rates for accidents to fishing vessels in the UK fishing industry from 1948 to 2008; to investigate the circumstances and causes of these fishing vessel accidents and trends in fishing vessel losses. Examination of paper death inquiry files, death registers, marine accident investigative files, annual casualty and death returns. Of 1039 fatalities from accidents to UK fishing vessels from 1948 to 2008, most (65%) resulted from vessels that foundered (or capsized or disappeared), followed by vessels grounding (21%), collisions (7%), and fires and explosions (5%). There was a significant increase over time of 1.04% per year in the overall fishing vessel loss rate and for vessels that foundered (5.19%), a reduction for vessels grounding (1.13%), but no trends for collisions or fires and explosions. Regarding mortality, there was a significant reduction over time for grounding (1.44%) and a non-significant reduction for vessel accidents overall, but no trends for other types of vessel accident. Mortality was highest during the winter months (for foundering and grounding), during night time (for grounding, fires and explosions), and afternoons (foundering and collisions). Since 1976, most fatalities from collisions (83%) occurred in the English Channel and North Sea, while 49% from grounding occurred off the west coast of Scotland. The mortality rate from fishing vessel casualties in UK fishing is still very high. Fatalities in recent years have often been linked to fishing vessels that are unstable, overloaded, and unseaworthy.

  17. Causes and Solutions of the Trampoline Effect.

    Science.gov (United States)

    Miwa, Masamiki; Ota, Noboru; Ando, Chiyono; Miyazaki, Yukio

    2015-01-01

    A trampoline effect may occur mainly when a buttonhole tract and the vessel flap fail to form a straight line. Certain findings, however, suggest another cause is when the vessel flap is too small. The frequency of the trampoline effect, for example, is lower when a buttonhole tract is created by multiple punctures of the arteriovenous fistula (AVF) vessel than when it is done by one-time puncture of the vessel. Lower frequency of the trampoline effect with multiple punctures of the AVF vessel may be due to enlargement of the initial puncture hole on the vessel every time the vessel is punctured with a sharp needle. Even if aiming at exactly the same point on the AVF vessel every time, the actual puncture point shifts slightly at every puncture, which potentially results in enlargement of the initial hole on the AVF vessel. Moreover, in some patients, continued use of a buttonhole tract for an extended period of time increases the frequency of the trampoline effect. In such cases, reduction of the incidence of the trampoline effect can be achieved by one buttonhole cannulation using a new dull needle with sharp side edges that is used to enlarge the vessel flap. Such single buttonhole cannulation may suggest that the increased frequency of the trampoline effect also potentially occurs in association with gradually diminishing flap size. As a final observation, dull needle insertion into a vessel flap in the reverse direction has been more smoothly achieved than insertion into a vessel flap in the conventional direction. A vessel flap in the reverse direction can be adopted clinically. © 2015 S. Karger AG, Basel.

  18. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    Science.gov (United States)

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  19. Young capillary vessels rejuvenate aged pancreatic islets

    Science.gov (United States)

    Almaça, Joana; Molina, Judith; Arrojo e Drigo, Rafael; Abdulreda, Midhat H.; Jeon, Won Bae; Berggren, Per-Olof; Caicedo, Alejandro; Nam, Hong Gil

    2014-01-01

    Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature. PMID:25404292

  20. Detecting Vessels Carrying Migrants Using Machine Learning

    Science.gov (United States)

    Sfyridis, A.; Cheng, T.; Vespe, M.

    2017-10-01

    Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  1. DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING

    Directory of Open Access Journals (Sweden)

    A. Sfyridis

    2017-10-01

    Full Text Available Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  2. Insulated Pressure Vessels for Vehicular Hydrogen Storage: Analysis and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-26

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  3. Performance and Certification Testing of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-03

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  4. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  5. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  6. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis.

    Science.gov (United States)

    Tammela, Tuomas; Saaristo, Anne; Holopainen, Tanja; Ylä-Herttuala, Seppo; Andersson, Leif C; Virolainen, Susanna; Immonen, Ilkka; Alitalo, Kari

    2011-02-09

    The dissemination of tumor cells to sites far from the primary tumor (metastasis) is the principal cause of death in cancer patients. Tumor-associated lymphatic vessels are a key conduit for metastatic tumor cells, which typically first colonize the lymph nodes. Although the primary tumor and affected lymph nodes can be removed during surgery, tumor cells inside lymphatic vessels are left behind. Here, we show that in-transit tumor cells inside lymphatic vessels in mice bearing mouse melanomas or human lung tumors give rise to metastases. Using photodynamic therapy with the benzoporphyrin derivative verteporfin, we selectively destroyed lymphatic vessels in mice and pigs. Destruction of tumor-associated lymphatic vessels also eradicated intralymphatic tumor cells and prevented metastasis of mouse melanoma cells and subsequent relapse. Photodynamic therapy, when combined with anti-lymphangiogenic therapy, prevented further tumor invasion of lymphatic vessels. These findings highlight the potential of targeting in-transit tumor cells in patients.

  7. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...... is reduced. To investigate the possibilities, full-size wall elements with wooden cladding and different cavity design, type of cladding and type of wind barrier were exposed to natural climate on the outside and to a humid indoor climate on the inside. During the exposure period parts of the vapour barrier...

  8. Atherosclerosis of coronary blood vessels - local or systemic inflamation?

    Science.gov (United States)

    Pejkov, Hristo; Kedev, Sasko; Panov, Saso; Srbinovska-Kostovska, Elizabeta; Lang, Irene

    2013-01-01

    The presence of atherosclerotic lesions in the blood vessels is a predisposition for the development and occurrence of acute ischaemic attacks. Bigger atherosclerotic lesions in the coronary blood vessels cause lumen occlusion, which is a cause of acute myocardial infarction. Endothelial dysfunction is defined as an ability of the endothelium to produce vasorelaxing nitric oxide (NO), or deregulation of the other vasoactive substances, such as angiotensin II and endothelin [13]. This definition describes endothelial dysfunction as an improper vasomotor constriction of the vessel, that leads to lumen occlusion of the already existing atherosclerotic lesions. According to the modern model, the development of atherosclerotic plaque and inappropriate endothelial NO production have a synergistic role in patho-physiological and molecular processes in the blood vessels [14]. Lesions in the coronary arteries are deposits of huge quantities of foamy cells and fibrous plaques. The thin fibrous plaques are 10-20% of the total plaque population and are the cause of 80-90% of clinical cases due to their ability to rupture [48]. According to all the results from published studies by far, it has been pointed out that the plaque stability, not the absolute size influences the rupture potential. Elucidating the risk factors that may modify in the atherogenesis and the consequent atherothrombic effect is the first step to this goal.

  9. The parasitic cell wall of Coccidioides immitis.

    Science.gov (United States)

    Cole, G T; Hung, C Y

    2001-01-01

    Coccidioides immitis is a human respiratory pathogen characterized by a parasitic cycle that is unique among fungi that cause systemic mycoses. Biochemical, molecular and immunological studies of the cell wall of C. immitis have focused on three distinct events of parasitic cell differentiation: isotropic growth, segmentation and endosporulation. Current investigations of each developmental phase in vitro include the identification, expression analysis, and disruption of synthase and hydrolase genes that are suspected to have key roles in morphogenesis. Temporal expression of families of beta-glucosidase and chitinase genes are of particular interest because their products may participate in wall modification during both isotropic growth and endosporulation and, thereby, represent potential molecular targets for novel antifungal drugs. Furthermore, our immunological studies of these and other isolated parasitic cell-wall components have resulted in the identification of antigens with demonstrated impact on host response to coccidioidal infection. C. immitis has proved to be an excellent model for fungal cell-wall research.

  10. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions

    Directory of Open Access Journals (Sweden)

    Huang Xu

    2011-01-01

    Full Text Available Abstract We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs. We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties.

  11. AFSC/FMA/Vessel Assessment Logging

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vessels fishing trawl gear, vessels fishing hook-and-line and pot gear that are also greater than 57.5 feet overall, and shoreside and floating processing facilities...

  12. Hawaii Abandoned Vessel Inventory, Hawaii Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Hawaii Island. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  13. US Virgin Islands Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for US Virgin Islands. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of...

  14. Hawaii Abandoned Vessel Inventory, Midway Island, NWHI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Midway Island, NWHI. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of...

  15. Hawaii Abandoned Vessel Inventory, Kure, NWHI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Kure, NWHI. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  16. Actemra Approved for Certain Blood Vessel Inflammation

    Science.gov (United States)

    ... 165836.html Actemra Approved for Certain Blood Vessel Inflammation Drug will treat adults with a condition called ... to treat adults with giant cell arteritis, an inflammation of the blood vessels (vasculitis). In a media ...

  17. Hawaii Abandoned Vessel Inventory, Maro Reef, NWHI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Maro Reef, NWHI. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  18. PCs and networking for oceanographic research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.; Vithayathil, G.

    This paper, first describes briefly the evolution of data acquisition techniques and different system implementation, on board research vessels. A data acquisition system being developed for a coastal research vessel is then described which is based...

  19. Hawaii Abandoned Vessel Inventory, Lisianski Island, NWHI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Lisianski Island, NWHI. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction...

  20. Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility

    Science.gov (United States)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2012-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.

  1. Anterior vaginal wall repair

    Science.gov (United States)

    ... may have you: Learn pelvic floor muscle exercises ( Kegel exercises ) Use estrogen cream in your vagina Try ... repair; Urinary incontinence - vaginal wall repair Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...

  2. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  3. Running Safety of Trains under Vessel-Bridge Collision

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available To optimize the sensor placement of the health monitoring system, the dynamic behavior of the train-bridge system subjected to vessel-collision should be studied in detail firstly. This study thus focuses on the characteristics of a train-bridge system under vessel-bridge collision. The process of the vessel-bridge collision is simulated numerically with a reliable finite element model (FEM. The dynamic responses of a single car and a train crossing a cable-stayed bridge are calculated. It is shown that the collision causes significant increase of the train’s lateral acceleration, lateral wheelset force, wheel unloading rate, and derailment coefficient. The effect of the collision on the train’s vertical acceleration is much smaller. In addition, parametric studies with various train’s positions, ship tonnage, and train speed are performed. If the train is closer to the vessel-bridge collision position or the ship tonnage is larger, the train will be more dangerous. There is a relatively high probability of running danger at a low speed, resulting from longer stay of the train on the bridge. The train’s position, the ship tonnage, and the train speed must be considered when determining the most adverse conditions for the trains running on bridges under vessel-bridge collision.

  4. Purification of Mouse Brain Vessels.

    Science.gov (United States)

    Boulay, Anne-Cécile; Saubaméa, Bruno; Declèves, Xavier; Cohen-Salmon, Martine

    2015-11-10

    In the brain, most of the vascular system consists of a selective barrier, the blood-brain barrier (BBB) that regulates the exchange of molecules and immune cells between the brain and the blood. Moreover, the huge neuronal metabolic demand requires a moment-to-moment regulation of blood flow. Notably, abnormalities of these regulations are etiological hallmarks of most brain pathologies; including glioblastoma, stroke, edema, epilepsy, degenerative diseases (ex: Parkinson's disease, Alzheimer's disease), brain tumors, as well as inflammatory conditions such as multiple sclerosis, meningitis and sepsis-induced brain dysfunctions. Thus, understanding the signaling events modulating the cerebrovascular physiology is a major challenge. Much insight into the cellular and molecular properties of the various cell types that compose the cerebrovascular system can be gained from primary culture or cell sorting from freshly dissociated brain tissue. However, properties such as cell polarity, morphology and intercellular relationships are not maintained in such preparations. The protocol that we describe here is designed to purify brain vessel fragments, whilst maintaining structural integrity. We show that isolated vessels consist of endothelial cells sealed by tight junctions that are surrounded by a continuous basal lamina. Pericytes, smooth muscle cells as well as the perivascular astrocyte endfeet membranes remain attached to the endothelial layer. Finally, we describe how to perform immunostaining experiments on purified brain vessels.

  5. 50 CFR 660.305 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 660.305 Section 660.305 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Fisheries § 660.305 Vessel identification. (a) Display. The operator of a vessel that is over 25 ft (7.6 m...

  6. 50 CFR 660.704 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 660.704 Section 660.704 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... § 660.704 Vessel identification. (a) General. This section only applies to commercial fishing vessels...

  7. 50 CFR 660.504 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 660.504 Section 660.504 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... § 660.504 Vessel identification. (a) Official number. Each fishing vessel subject to this subpart must...

  8. 50 CFR 665.16 - Vessel identification.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Vessel identification. 665.16 Section 665... identification. (a) Applicability. Each fishing vessel subject to this part, except those identified in paragraph (e) of this section, must be marked for identification purposes, as follows: (1) A vessel that is...

  9. Effect of monosodium glutamate on retinal vessel development and permeability in rats.

    Science.gov (United States)

    Bellhorn, R W; Lipman, D A; Confino, J; Burns, M S

    1981-08-01

    Monosodium glutamate (MSG) administered to neonatal rats on postnatal days 1 to 10 caused a generalized degeneration of the inner retinal layers. MSG administered only on postnatal days 8, 9, 10, and/or 11 caused a retinopathy limited to more peripheral retinal areas corresponding to currently existing regions of immature retinal vessels. Ink-injected retinal vessel studies showed a delay in development of the retinal vessel network but no alterations in vessel patency. Fluorescence microscopic examination of freeze-dried tissues revealed to abnormalities of the blood-retinal barriers to sodium fluorescein. We conclude, as demonstrated by these methods, that MSG retards development of the retinal vessels but does not affect development of the blood-retinal barriers. The retinotoxic effect of MSG apparently results from a mechanism(s) other than a breakdown of the blood-retinal barrier.

  10. Analysis of Blood Flow in a Partially Blocked Bifurcated Blood Vessel

    Science.gov (United States)

    Abdul-Razzak, Hayder; Elkassabgi, Yousri; Punati, Pavan K.; Nasser, Naseer

    2009-09-01

    Coronary artery disease is a major cause of death in the United States. It is the narrowing of the lumens of the coronary blood vessel by a gradual build-up of fatty material, atheroma, which leads to the heart muscle not receiving enough blood. This my ocardial ischemia can cause angina, a heart attack, heart failure as well as sudden cardiac death [9]. In this project a solid model of bifurcated blood vessel with an asymmetric stenosis is developed using GAMBIT and imported into FLUENT for analysis. In FLUENT, pressure and velocity distributions in the blood vessel are studied under different conditions, where the size and position of the blockage in the blood vessel are varied. The location and size of the blockage in the blood vessel are correlated with the pressures and velocities distributions. Results show that such correlation may be used to predict the size and location of the blockage.

  11. A continuum damage analysis of hydrogen attack in a 2.25Cr-1Mo pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Burg, M.W.D. van der; Giessen, E. van der [Technische Univ. Delft (Netherlands). Dept. of Mechanical Engineering; Tvergaard, V. [Danmarks Tekniske Hoejskole, Lyngby (Denmark). Dept. of Solid Mechanics

    1998-01-30

    A micromechanically based continuum damage model is presented to analyze the stress, temperature and hydrogen pressure dependent material degradation process termed hydrogen attack, inside a pressure vessel. Hydrogen attack (HA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow, while remote tensile stresses can significantly enhance the cavitation rate. The damage model gives the strain-rate and damage rate as a function of the temperature, hydrogen pressure and applied stresses. The model is applied to study HA in a vessel wall, where nonuniform distributions lf hydrogen pressure, temperature and stresses result in a nonuniform damage distribution over the vessel wall. Stresses inside the vessel wall first tend to accelerate and later decelerate the cavitation rate significantly. Numerical studies for different material parameters and different stress conditions demonstrate the HA process inside a vessel in time. Also, the lifetime of the pressure vessel is determined. The analyses underline that the general applicability of the Nelson curve is questionable. (orig.) 30 refs.

  12. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  13. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-06-06

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  14. Arterial Wall Properties and Womersley Flow in Fabry Disease

    Directory of Open Access Journals (Sweden)

    Dimitriadis Emilios

    2002-01-01

    Full Text Available Abstract Background Fabry disease is an X-linked recessive lysosomal storage disease resulting in the cellular accumulation of globotriaosylceramide particularly globotriaosylceramide. The disease is characterized by a dilated vasculopathy with arterial ectasia in muscular arteries and arterioles. Previous venous plethysomographic studies suggest enhanced endothelium-dependent vasodilation in Fabry disease indicating a functional abnormality of resistance vessels. Methods We examined the mechanical properties of the radial artery in Fabry disease, a typical fibro-muscular artery. Eight control subjects and seven patients with Fabry disease had a right brachial arterial line placed allowing real time recording of intra-arterial blood pressure. Real time B-mode ultrasound recordings of the right radial artery were obtained simultaneously allowing calculation of the vessel wall internal and external diameter, the incremental Young's modulus and arterial wall thickness. By simultaneously measurement of the distal index finger-pulse oximetry the pulse wave speed was calculated. From the wave speed and the internal radial artery diameter the volume flow was calculated by Womersley analysis following truncation of the late diastolic phase. Results No significant difference was found between Fabry patients and controls for internal or external arterial diameters, the incremental Young's modulus, the arterial wall thickness, the pulse wave speed and the basal radial artery blood flow. Further, no significant difference was found for the radial artery blood flow in response to intra-arterial acetylcholine or sodium nitroprusside. Both drugs however, elevated the mean arterial flow. Conclusions The current study suggests that no structural or mechanical abnormality exists in the vessel wall of fibro-muscular arteries in Fabry disease. This may indicate that a functional abnormality downstream to the conductance vessels is the dominant feature in

  15. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides

    Science.gov (United States)

    2011-01-01

    Background Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion The low

  16. Vacuum-assisted closure for defects of the abdominal wall.

    Science.gov (United States)

    DeFranzo, Anthony J; Pitzer, Keith; Molnar, Joseph A; Marks, Malcolm W; Chang, Michael C; Miller, Preston R; Letton, Robert W; Argenta, Louis C

    2008-03-01

    Reconstruction of the abdominal wall poses a problem common to many surgical specialties. Abdominal wall defects may be caused by trauma and/or prior surgery, with dehiscence or infection. Several options to repair the structural integrity of the abdominal wall exist, including primary closure, flaps, mesh, and skin grafts. Complications of these procedures include recurrent infection of the abdominal wall, infection of mesh, dehiscence, flap death, and poor skin graft take. Risk factors predisposing to these complications include tissue edema, preoperative tissue infection, and patient debilitation, with poor wound healing potential. Ideally, reconstruction should be performed on a nonedematous, clean tissue bed with bacterial levels less than 10 bacteria/cm in a well-nourished patient. Vacuum-assisted closure was used in a series of patients in an attempt to prepare the abdominal wall for reconstruction and reduce the risk of complications. Charts were reviewed for 100 patients who underwent abdominal wall reconstruction after vacuum-assisted closure therapy. Their wound cause, reconstruction technique, complications, and number of days on the vacuum-assisted closure device are reported. The ability of vacuum-assisted closure to reduce edema, increase blood flow, potentially decrease bacterial colonization, and reduce wound size greatly facilitated abdominal wall reconstruction. The vacuum-assisted closure device served as a temporary dressing with which to control dehiscence and to maintain abdominal wall integrity when bowel wall edema prevented abdominal closure. Vacuum-assisted closure therapy frequently shortened time to abdominal wall reconstruction and simplified the method of reconstruction.

  17. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls.

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Juzenas, Kevin

    2017-04-01

    Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Thermocouple installation in thin-walled tubes

    Science.gov (United States)

    Curren, A. N.; Wycoff, K. C.

    1970-01-01

    Brazing process attaches thermocouples to slot in type-347 stainless steel tube flush around its circumference. Electrolytic flashing with gold enhances brazing process. This installation procedure does not significantly change calibration of thermocouples used and does not cause major wear spots in the thin-walled devices.

  19. Structure and mechanics of starfish body wall.

    Science.gov (United States)

    O'Neill, P

    1989-11-01

    The structure of the dorsal body wall of the starfish Echinaster spinulosus was studied using polarized light microscopy of frozen tissues, scanning electron microscopy and histology. The collagen fibres of the body wall form a three-dimensional orthogonal web. Voids in the web contain ossicles and papulae. The orthogonal web delivers dimensional stability but allows shear necessary for ray torsion. The ossicles and fibres interact to load the fibres in tension and the ossicles in compression. Strain rates of the dorsal body wall were measured on live animals during typical movements. Uniaxial tension tests of the body wall yielded Young's moduli of 267 MPa (longitudinal), 249 MPa (transverse) and 353 MPa (bias); curves were essentially linear. The body wall was approximately linearly viscoelastic and showed hysteresis at 0.01 Hz. Stress relaxation over five decades of time (in seconds) yielded relaxation spectra with peaks in relaxation time at 2.96-3.35, depending on test direction. Stress relaxation caused the connective tissue to soften. The surface of fractured stress-relaxed tissue revealed wispy, dissociated fibril tufts, whereas unrelaxed fractures produced blunt-ended fibre bundles. Neural control was necessary for body wall integrity.

  20. Abdominal wall endometriosis. An overlooked diagnosis.

    Science.gov (United States)

    Khammash, Muhammad R; Omari, Abdel K; Gasaimeh, Ghazi R; Bani-Hani, Kamal E

    2003-05-01

    To study the incidence of abdominal wall endometriosis after cesarean section and its presentation to the general surgeon. Fourteen patients were treated for abdominal wall endometriosis during the period June 1997 to May 2002 at Princess Basma Teaching Hospital and King Abdulla University Hospital, Irbid, Jordan. The patient's files were reviewed to see their way and time of presentation after cesarean section, provisional diagnosis made and operative procedures performed. Symptoms suggestive of and investigations carried out to detect pelvic endometriosis were also looked for and recorded. Fourteen patients were treated within 5 years; all had painful scar-related mass. The pain was exacerbating during menstruation in 5. The clinical diagnosis was stitch granuloma in 3; incisional hernia in 3, abdominal wall tumor in 3 and abdominal wall endometrioma in 5 patients. The mean time for the mass to be noticed by the patient was 2 years. They were treated with wide local excision. Histopathological examination proved the diagnosis of abdominal wall endometriosis. None had evidence of pelvic endometriosis and none of them had recurrence. The incidence of the disease is around 0.2% of the cesarean sections performed during the same period. The treating physician should keep in mind abdominal wall endometriosis as a possible cause of post cesarean section scar-related masses.

  1. Electroweak bubble wall speed limit

    Science.gov (United States)

    Bödeker, Dietrich; Moore, Guy D.

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can "run away," that is, achieve extreme ultrarelativistic velocities γ ~ 1014. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ~ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  2. Effects of ligation of lateral intermuscular septum perforating vessels on blood supply to the femur.

    Science.gov (United States)

    Grob, K; Manestar, M; Lang, A; Ackland, T; Gilbey, H; Kuster, M S

    2015-12-01

    With a subvastus approach to the femur, the vessels that perforate the lateral intermuscular septum (LISP-vessels) must be ligated. The effect on the blood supply to the femur remains unclear. The purpose of the current study was to investigate the effect of ligation of the LISP-Vessels on the blood supply and to examine the anatomy of the LISP-vessels and the anastomoses around the femur. In six human cadavers the LISP vessels were ligated by a lateral subvastus approach on one side. The contralateral side served as control group. After bilateral injection of different coloured silicon dyes into the lateral and medial circumflex femoral artery (green), deep femoral artery (red) and the superficial femoral artery (blue) dissection was performed bilaterally. The arterial perfusion on both sides was compared and the anatomy of the LISP vessels studied. The medullary perfusion of the femur was not altered by the ligation of the LISP vessels. It did also not lead to a decrease in periosteal vessel filling. The LISP vessels were shown to be a part of a complex and rich anastomotic network and play an important role in the perfusion of the femur and quadriceps muscle group. The ligature could be compensated for by this anastomotic network. Branches to the periosteum separate from the LISP vessels immediately after perforating the lateral intermuscular septum. The linea aspera turned out to be an important area for the femoral blood supply. Exposure of the femur through a lateral subvastus approach with ligation of LISP vessels causes a certain degree of soft tissue trauma. However, by using a gentle surgical technique the periostal perfusion of the femur can be preserved by a potent anastomotic network after ligation of the LISP vessels if they are not ligated to close to the lateral intermuscular septum and the linea aspera is not unnecessarily exposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Label-Free In Vivo Imaging of Corneal Lymphatic Vessels Using Microscopic Optical Coherence Tomography.

    Science.gov (United States)

    Horstmann, Jens; Schulz-Hildebrandt, Hinnerk; Bock, Felix; Siebelmann, Sebastian; Lankenau, Eva; Hüttmann, Gereon; Steven, Philipp; Cursiefen, Claus

    2017-11-01

    Corneal neovascularization, in particular lymphangiogenesis, is a limiting factor in corneal transplant survival. Novel treatment approaches focus on (selective) inhibition and regression of lymphatic vessels. Imaging clinically invisible corneal lymphatic vessels is a prerequisite for these strategies. Using a murine model, this study investigates whether corneal lymphatic vessels can be imaged using microscopic optical coherence tomography (mOCT). Corneal neovascularization was induced by intrastromal placement of 11.0 nylon sutures in one eye of BALB/c mice. After 2 weeks, cross-sectional images and volumes of the corneas with a 0.5 mm lateral and axial field of view were acquired using a custom-built mOCT system enabling a resolution of 1 μm at a B-scan rate of 165/s. Three of the six animals received an additional intrastromal injection of India ink 24 hours before the measurement to stain the corneal lymphatic system in vivo. Immunohistochemistry using CD31 and LYVE-1 was used to validate the mOCT findings. Using mOCT, lymphatic vessels were visible as dark vessel-like structures with the lumen lacking a hyperreflective wall and mostly lacking cells. However, individual, slowly moving particles, which most likely are immune cells, occasionally could be observed inside the lumen. In lymphatic vessels of ink-stained corneas, hyperreflection and shadowing underneath was observed. Ink-filled lymphatic vessels were colocalized in consecutive corneal flat mounts of the same specimen. Corneal lymphatic vessels can be imaged using mOCT. This novel approach opens new options for noninvasive clinical imaging of corneal lymphatic vessels for diagnostic and therapeutic indications.

  4. Postinfarction left ventricular free wall rupture repaired successfully.

    Science.gov (United States)

    Tireli, Emin; Kalko, Yusuf; Kafali, Eylül; Basaran, Murat

    2002-09-01

    Left ventricular free wall rupture is a well-recognized complication of myocardial infarction and a frequent cause of death. A 49-year-old man was successfully treated for a left ventricular free wall rupture that occurred on the third day after an anterior myocardial infarction. Concomitant myocardial revascularization was performed.

  5. Pediatric ureteropelvic junction obstruction: can magnetic resonance urography identify crossing vessels?

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Kushal R.; Kraft, Kate H.; Ivancic, Vesna; Smith, Ethan A.; Dillman, Jonathan R. [Section of Pediatric Radiology, Mott Children' s Hospital, Department of Radiology, University of Michigan Health System, Ann Arbor, MI (United States); Hammer, Matthew R. [University of Texas Southwestern, Department of Radiology, Dallas, TX (United States)

    2015-11-15

    MR Urography (MRU) is an increasingly used imaging modality for the evaluation of pediatric genitourinary obstruction. To determine whether pediatric MR urography (MRU) reliably detects crossing vessels in the setting of suspected ureteropelvic junction (UPJ) obstruction. The clinical significance of these vessels was also evaluated. We identified pediatric patients diagnosed with UPJ obstruction by MRU between May 2009 and June 2014. MRU studies were evaluated by two pediatric radiologists for the presence or absence of crossing vessels. Ancillary imaging findings such as laterality, parenchymal thinning/scarring, trapped fluid in the proximal ureter, and presence of renal parenchymal edema were also evaluated. Imaging findings were compared to surgical findings. We used the Mann-Whitney U test to compare continuous data and the Fisher exact test to compare proportions. Twenty-four of 25 (96%) UPJ obstructions identified by MRU were surgically confirmed. MRU identified crossing vessels in 10 of these cases, with 9 cases confirmed intraoperatively (κ = 0.92 [95% CI: 0.75, 1.0]). Crossing vessels were determined to be the primary cause of UPJ obstruction in 7/9 children intraoperatively, while in two children the vessels were deemed incidental and noncontributory to the urinary tract obstruction. There was no significant difference in age or the proportions of ancillary findings when comparing children without and with obstructing vessels. MRU allows detection of crossing vessels in pediatric UPJ obstruction. Although these vessels are the primary cause of obstruction in some children, they are incidental and non-contributory in others. Our study failed to convincingly identify any significant predictors (e.g., age or presence of renal parenchymal edema) that indicate when a crossing vessel is the primary cause of obstruction. (orig.)

  6. Microfluidic strategy to investigate dynamics of small blood vessel function

    Science.gov (United States)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  7. Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis

    Science.gov (United States)

    Little, Peter J; Ballinger, Mandy L; Osman, Narin

    2007-01-01

    Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors—hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL) binding are the length and sulfation pattern on the glycosaminoglycan (GAG) chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis. PMID:17583182

  8. [Ischemic disorders of the large intestinal wall. Ischemic colitis and rectitis secondary to intrinsic vascular disorders].

    Science.gov (United States)

    Saegesser, F; Roenspies, U; Robinson, J W

    1980-05-31

    Ischaemic diseases of the large intestinal wall is a characteristic syndrome caused by vascular insufficiency of varying degrees. The ischaemia results from haemodynamic disturbances and often arises in spite of the patency of the vessels. The mucosa of the intestine is the tissue layer that is most vulnerable to ischaemia. Ischaemia of the colon occurs in the presence of a microbial flora that is often highly pathogenic, and hence the lesions rapidly become infected. For this reason the inflammatory features of the disease tend to conceal its vascular origin and ischaemic colitis has often been confused with other infectious, inflammatory, ulcero-haemorrhagic disorders of the large intestine. Although the syndrome may occur in any patient, it is much more common in elderly subjects with a history of arteriesclerosis and cardiac disease. Two main varieties can be identified, depending on the extent of the vascular insufficiency. In the first, the lesion may heal spontaneously or evolve towards fibrous strictures of the colonic wall; in the second, gangrenous necrosis of the colon or rectum may develope, the clinical picture of which has more in common with an "acute abdomen' than with ulcerative disease of the colon.

  9. Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis.

    Science.gov (United States)

    Little, Peter J; Ballinger, Mandy L; Osman, Narin

    2007-01-01

    Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors--hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL) binding are the length and sulfation pattern on the glycosaminoglycan (GAG) chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis.

  10. Human Hendra virus infection causes acute and relapsing encephalitis.

    Science.gov (United States)

    Wong, K T; Robertson, T; Ong, B B; Chong, J W; Yaiw, K C; Wang, L F; Ansford, A J; Tannenberg, A

    2009-06-01

    To study the pathology of two cases of human Hendra virus infection, one with no clinical encephalitis and one with relapsing encephalitis. Autopsy tissues were investigated by light microscopy, immunohistochemistry and in situ hybridization. In the patient with acute pulmonary syndrome but not clinical acute encephalitis, vasculitis was found in the brain, lung, heart and kidney. Occasionally, viral antigens were demonstrated in vascular walls but multinucleated endothelial syncytia were absent. In the lung, there was severe inflammation, necrosis and viral antigens in type II pneumocytes and macrophages. The rare kidney glomerulus showed inflammation and viral antigens in capillary walls and podocytes. Discrete necrotic/vacuolar plaques in the brain parenchyma were associated with antigens and viral RNA. Brain inflammation was mild although CD68(+) microglia/macrophages were significantly increased. Cytoplasmic viral inclusions and antigens and viral RNA in neurones and ependyma suggested viral replication. In the case of relapsing encephalitis, there was severe widespread meningoencephalitis characterized by neuronal loss, macrophages and other inflammatory cells, reactive blood vessels and perivascular cuffing. Antigens and viral RNA were mainly found in neurones. Vasculitis was absent in all the tissues examined. The case of acute Hendra virus infection demonstrated evidence of systemic infection and acute encephalitis. The case of relapsing Hendra virus encephalitis showed no signs of extraneural infection but in the brain, extensive inflammation and infected neurones were observed. Hendra virus can cause acute and relapsing encephalitis and the findings suggest that the pathology and pathogenesis are similar to Nipah virus infection.

  11. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation

    Directory of Open Access Journals (Sweden)

    Pinheiro Cleber

    2008-07-01

    Full Text Available Abstract Background One of the current shortcomings of radiofrequency (RF tumor ablation is its limited performance in regions close to large blood vessels, resulting in high recurrence rates at these locations. Computer models have been used to determine tissue temperatures during tumor ablation procedures. To simulate large vessels, either constant wall temperature or constant convective heat transfer coefficient (h have been assumed at the vessel surface to simulate convection. However, the actual distribution of the temperature on the vessel wall is non-uniform and time-varying, and this feature makes the convective coefficient variable. Methods This paper presents a realistic time-varying model in which h is a function of the temperature distribution at the vessel wall. The finite-element method (FEM was employed in order to model RF hepatic ablation. Two geometrical configurations were investigated. The RF electrode was placed at distances of 1 and 5 mm from a large vessel (10 mm diameter. Results When the ablation procedure takes longer than 1–2 min, the attained coagulation zone obtained with both time-varying h and constant h does not differ significantly. However, for short duration ablation (5–10 s and when the electrode is 1 mm away from the vessel, the use of constant h can lead to errors as high as 20% in the estimation of the coagulation zone. Conclusion For tumor ablation procedures typically lasting at least 5 min, this study shows that modeling the heat sink effect of large vessels by applying constant h as a boundary condition will yield precise results while reducing computational complexity. However, for other thermal therapies with shorter treatment using a time-varying h may be necessary.

  12. Handlebar Hernia: A Rare Type of Abdominal Wall Hernia

    Directory of Open Access Journals (Sweden)

    Rooh-Allah Yegane

    2010-10-01

    Full Text Available Traumatic abdominal wall hernias are a type of acquired hernia secondary to blunt trauma Caused, by direct trauma from handlebar like objects. This rare hernia is named ‘Handlebar hernia'. We report a case of such hernia without any significant intra-abdominal injury. The abdominal wall defect was repaired in layers by Jones technique. Postoperative course was uneventful. The authors recommend clinical suspicion for traumatic hernia in all patients with traumatic abdominal wall injury. Definitive treatment includes surgical exploration with primary repair of all tissue layers of the abdominal wall.

  13. Handlebar Hernia: A Rare Type of Abdominal Wall Hernia

    Directory of Open Access Journals (Sweden)

    Rooh-Allah Yegane

    2010-09-01

    Full Text Available "nTraumatic abdominal wall hernias are a type of acquired hernia secondary to blunt trauma Caused, by direct trauma from handlebar like objects. This rare hernia is named ‘Handlebar hernia'. We report a case of such hernia without any significant intra-abdominal injury. The abdominal wall defect was repaired in layers by Jones technique. Postoperative course was uneventful. The authors recommend clinical suspicion for traumatic hernia in all patients with traumatic abdominal wall injury. Definitive treatment includes surgical exploration with primary repair of all tissue layers of the abdominal wall.

  14. Migraine aura pathophysiology: the role of blood vessels and microembolisation

    OpenAIRE

    Dalkara, Turgay; Nozari, Ala; Moskowitz, Michael A

    2010-01-01

    Migraine attacks with auras are sometimes associated with underlying hereditary or acquired cerebrovascular disorders. A unifying pathophysiological explanation linking migraine to these conditions has been diffcult to identify. On the basis of genetic and epidemiological evidence, we suggest that changes in blood vessels, hypoperfusion disorders, and microembolisation can cause neurovascular dysfunction and evoke cortical spreading depression, an event that is widely thought to underlie aura...

  15. An unusual case of fatal transection of femoral vessels

    Directory of Open Access Journals (Sweden)

    Y.P. Raghavendra Babu

    2016-09-01

    Full Text Available Penetrating injuries to the chest and abdomen are commonly reported in the literature. In most cases the causative agent would be a sharp knife or a metallic object. Rarely penetrating injuries can be caused by relatively blunt objects like an iron rod, pencil, glass fragments, etc. Here we report a case of accidental penetrating injury of the left groin by a glass fragment resulting in fatal transection of femoral vessels.

  16. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall

    Science.gov (United States)

    Suslov, Sergey A.; Ooi, Andrew; Manasseh, Richard

    2012-06-01

    The nonlinear dynamic behavior of microscopic bubbles near a rigid wall is investigated. Oscillations are driven by the ultrasonic pressure field that arises in various biomedical applications such as ultrasound imaging or targeted drug delivery. It is known that, when bubbles approach a blood-vessel wall, their linear dynamic response is modified. This modification may be very useful for real-time detection of bubbles that have found targets; in future therapeutic technologies, it may be useful for controlled release of medical agents encapsulating microbubbles. In this paper, the nonlinear response of microbubbles near a wall is studied. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of a rigid wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium, and a bubble near a rigid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period-tripling and -quadrupling transition. The parametric bifurcation maps are obtained as functions of nondimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field, and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses. Thus, a

  17. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    Science.gov (United States)

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    Science.gov (United States)

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  19. Neuroradiologic Characteristics of Primary Angiitis of the Central Nervous System According to the Affected Vessel Size.

    Science.gov (United States)

    Thaler, Christian; Kaufmann-Bühler, Ann-Katrin; Gansukh, Tserenchunt; Gansukh, Amarjargal; Schuster, Simon; Bachmann, Henrike; Thomalla, Götz; Magnus, Tim; Matschke, Jakob; Fiehler, Jens; Siemonsen, Susanne

    2017-09-05

    Magnetic resonance imaging (MRI) has an important impact in diagnosing primary angiitis of the central nervous system (PACNS). However, neuroradiologic findings may vary immensely, making an easy and definite diagnosis challenging. In this retrospective, single center study, we analyzed neuroradiologic findings of patients with PACNS diagnosed at our hospital between 2009 and 2014. Furthermore, we classified patients according to the affected vessel size and compared imaging characteristics between the subgroups. Thirty-three patients were included (mean age 43 [±15.3] years, 17 females) in this study. Patients with positive angiographic findings were classified as either medium or large vessel PACNS and presented more ischemic lesions (p < 0.001) and vessel wall enhancement (p = 0.017) compared to patients with small vessel PACNS. No significant differences were detected for the distribution of contrast-enhancing lesions (parenchymal or leptomeningeal), hemorrhages, or lesions with mass effect. Twenty-five patients underwent brain biopsy. Patients with medium or large vessel PACNS were less likely to have positive biopsy results. It is essential to differentiate between small and medium/large vessel PACNS since results in MRI, digital subtraction angiography and brain biopsy may differ immensely. Since image quality of MR scanners improves gradually and brain biopsy may often be nonspecific or negative, our results emphasize the importance of MRI/MRA in the diagnosis process of PACNS.

  20. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems.

    Science.gov (United States)

    Brodersen, Craig R; Knipfer, Thorsten; McElrone, Andrew J

    2018-01-01

    Embolism removal is critical for restoring hydraulic pathways in some plants, as residual gas bubbles should expand when vessels are reconnected to the transpiration stream. Much of our understanding of embolism removal remains theoretical as a consequence of the lack of in vivo images of the process at high magnification. Here, we used in vivo X-ray micro-computed tomography (microCT) to visualize the final stages of xylem refilling in grapevine (Vitis vinifera) paired with scanning electron microscopy. Before refilling, vessel walls were covered with a surface film, but vessel perforation plate openings and intervessel pits were filled with air. Bubbles were removed from intervessel pits first, followed by bubbles within perforation plates, which hold the last volumes of air which eventually dissolve. Perforation plates were dimorphic, with more steeply angled scalariform plates in narrow diameter vessels, compared with the simple perforation plates in older secondary xylem, which may favor rapid refilling and compartmentalization of embolisms that occur in small vessels, while promoting high hydraulic conductivity in large vessels. Our study provides direct visual evidence of the spatial and temporal dynamics of the final stages of embolism removal. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump.

    Science.gov (United States)

    von der Weid, Pierre-Yves; Rehal, Sonia; Dyrda, Peter; Lee, Stewart; Mathias, Ryan; Rahman, Mozibur; Roizes, Simon; Imtiaz, Mohammad S

    2012-06-01

    Lymphatic vessels serve as a route by which interstitial fluid, protein and other macromolecules are returned to the blood circulation and immune cells and antigens gain access to lymph nodes. Lymph flow is an active process promoted by rhythmical contraction-relaxation events occurring in the collecting lymphatic vessels. This lymphatic pumping is an intrinsic property of the lymphatic muscles in the vessel wall and consequent to action potentials. Compromised lymphatic pumping may affect lymph and immune cell transport, an action which could be particularly detrimental during inflammation. Importantly, many inflammatory mediators alter lymphatic pumping. Vasoactive intestinal peptide (VIP) is a neuro- and immuno-modulator thought to be released by nerve terminals and immune cells in close proximity to lymphatic vessels. We demonstrated the presence of the peptide in lymphatic vessels and in the lymph and examined the effects of VIP on mesenteric collecting lymphatic vessels of the guinea pig using pharmacological bioassays, intracellular microelectrode electrophysiology, immunofluorescence and quantitative real-time PCR. We showed that VIP alters lymphatic pumping by decreasing the frequency of lymphatic contractions and hyperpolarizing the lymphatic muscle membrane potential in a concentration-dependent manner. Our data further suggest that these effects are mainly mediated by stimulation of the VIP receptor VPAC2 located on the lymphatic muscle and the downstream involvement of protein kinase A (PKA) and ATP-sensitive K⁺ (KATP) channels. Inhibition of lymphatic pumping by VIP may compromise lymph drainage, oedema resolution and immune cell trafficking to the draining lymph nodes.

  2. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  3. A scaling and experimental approach for investigating in-vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.E. [Fauske & Associates, Inc., Burr Ridge, IL (United States)

    1997-02-01

    The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks in the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.

  4. WITHDRAWN: The extended abdominal wall flap for transplantation.

    Science.gov (United States)

    Hollenbeck, S T; Senghaas, A; Turley, R; Ravindra, K V; Zenn, M R; Levin, L S; Erdmann, D

    2011-11-01

    Patients with extensive loss of abdominal wall tissue have few options for restoring the abdominal cavity. Composite tissue allotransplantation has been used for limited abdominal wall reconstruction in the setting of visceral transplantation, yet replacement of the entire abdominal wall has not been described. The purpose of this study was to determine the maximal abdominal skin surface available through an external iliac/femoral cuff-based pedicle. Five human cadaver abdominal walls were injected with methylene blue to analyze skin perfusion based on either the deep inferior epigastric artery (DIEA; n = 5) or a cuff of external iliac/femoral artery (n = 5) containing the deep circumflex iliac, deep inferior epigastric, superficial inferior epigastric, and the superficial circumflex iliac arteries. Abdominal wall flaps were taken full thickness from the costal margin to the mid-axial line and down to the pubic tubercle and proximal thigh. In all specimens, the deep inferior epigastric, deep circumflex iliac, superficial inferior epigastric, and the superficial circumflex iliac arteries were found to originate within a 4-cm cuff of the external iliac/femoral artery. Abdominal wall flaps injected through a unilateral external iliac/femoral segment had a significantly greater degree of total flap perfusion than those injected through the DIEA alone (76.5 +/- 4% versus 57.2 +/- 5%; Student t test, P DIEA vessel alone. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Exponential Stabilization of an Underactuated Surface Vessel

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    1997-07-01

    Full Text Available The paper shows that a large class of underactuated vehicles cannot be asymptotically stabilized by either continuous or discontinuous state feedback. Furthermore, stabilization of an underactuated surface vessel is considered. Controllability properties of the surface vessels is presented, and a continuous periodic time-varying feedback law is proposed. It is shown that this feedback law exponentially stabilizes the surface vessel to the origin, and this is illustrated by simulations.

  6. Reliability Considerations for Composite Overwrapped Pressure Vessels on Spacecraft

    Science.gov (United States)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Grimes-Ledesma, Lorie; Phoenix, S. L.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used to store gases under high pressure onboard spacecraft. These are used for a variety of purposes such as propelling liquid fuel etc, Kevlar, glass, Carbon and other more recent fibers have all been in use to overwrap the vessels. COPVs usually have a thin metallic liner with the primary purpose of containing the gases and prevent any leakage. The liner is overwrapped with filament wound composite such as Kevlar, Carbon or Glass fiber. Although the liner is required to perform in the leak before break mode making the failure a relatively benign mode, the overwrap can fail catastrophically under sustained load due to stress rupture. It is this failure mode that is of major concern as the stored energy of such vessels is often great enough ta cause loss of crew and vehicle. The present paper addresses some of the reliability concerns associated specifically with Kevlar Composite Overwrapped Pressure Vessels. The primary focus of the paper is on how reliability of COPV's are established for the purpose of deciding in general their flight worthiness and continued use. Analytical models based on existing design data will be presented showing how to achieve the required reliability metric to the end of a specific period of performance. Uncertainties in the design parameters and how they affect reliability and confidence intervals will be addressed as well. Some trade studies showing how reliability changes with time during a program period will be presented.

  7. Development of a dynamic in vitro model of a stented blood vessel to evaluate the effects of stent strut material selection and surface coating on smooth muscle cell response

    Science.gov (United States)

    Winn, Bradley Huegh

    Cardiovascular disease is the leading cause of mortality in The United States and Europe, accounting for approximately half of all deaths. The most common form of cardiovascular disease is atherosclerosis, which is characterized by the formation of fatty atheromatous plaques that can grow to occlude the vessel lumen, thus causing ischemia distal to the occlusion. This is commonly treated using balloon angioplasty, which is usually done in conjunction with the deployment of a stent. Stent deployment helps hold the vessel open following the local injury caused by balloon inflation and prevents elastic recoil and subsequent negative remodeling. Stenting has been shown to significantly reduce restenosis rates from approximately 20-50% without a stent to about 10-30% with stent deployment. However, restenosis still remains the main cause of long-term stent failure. In basic terms, a balloon angioplasty procedure is a forceful displacement of an atherosclerotic lesion serving to widen the vessel lumen to increase blood flow. This procedure causes stretching of the vessel wall, tears in the atherosclerotic plaques, and general damage to the vessel in turn signaling a complex cascade of thrombosis, inflammation, intimal thickening, and vascular remodeling. Stent deployment also further complicates the immunological response by triggering a foreign body response from the implantation of a biomaterial into the body. When performing an angioplasty procedure, particularly in conjunction with stent deployment, a certain degree of vascular injury is inevitable. However, the initial injury can be further complicated by the body's local reaction to the implanted biomaterial, the severity of which can ultimately dictate the degree of restenosis and subsequently affect procedural success. The proliferative response of VSMCs to the various afore mentioned stimuli results in the formation of often copious amounts of neointimal tissue, generally known as intimal hyperplasia. The

  8. Multiscale FEM modeling of vascular tone: from membrane currents to vessel mechanics.

    Science.gov (United States)

    Kapela, Adam; Tsoukias, Nikolaos Michael

    2011-12-01

    Regulation of vascular tone is a complex process that remains poorly understood. Here, we present our recent efforts for the development of physiologically realistic models of arterial segments for the analysis of vasoreactivity in health and disease. Multiscale modeling integrates intracellular and cell membrane components into whole-cell models of calcium and membrane potential dynamics. Single-cell models of vascular cells are combined into a multicellular model of the vascular wall, and vessel wall biomechanics are integrated with calcium dynamics in the smooth muscle layer. At each scale, continuum models using finite element method can account for spatial heterogeneity in calcium signaling and for nonuniform deformations of a vessel segment. The outlined approach can be used to investigate cellular mechanisms underlying altered vasoreactivity in hypertension.

  9. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  10. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  11. Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation.

    Science.gov (United States)

    Javidi, Malihe; Pourreza, Hamid-Reza; Harati, Ahad

    2017-02-01

    Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed. The proposed system yields a strong representation which contains the semantic concept of the image. To extract blood vessel, two separate dictionaries, for vessel and non-vessel, capable of providing reconstructive and discriminative information of the retinal image are learned. In the test step, an unseen retinal image is divided into overlapping patches and classified to vessel and non-vessel patches. Then, a voting scheme is applied to generate the binary vessel map. The proposed vessel segmentation method can achieve the accuracy of 95% and a sensitivity of 75% in the same range of specificity 97% on two public datasets. The results show that the proposed method can achieve comparable results to existing methods and decrease false positive vessels in abnormal retinal images with pathological regions. Microaneurysm (MA) is the earliest sign of DR that appears as a small red dot on the surface of the retina. Despite several attempts to develop automated MA detection systems, it is still a challenging problem. In this paper, a method for MA detection, which is similar to our vessel segmentation approach, is proposed. In our method, a candidate detection algorithm based on the Morlet wavelet is applied to identify all possible MA candidates. In the next step, two discriminative dictionaries with the ability to distinguish MA from non-MA object are learned. These dictionaries are then used to classify the detected candidate objects. The evaluations indicate that the proposed MA detection method achieves higher average sensitivity about 2

  12. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata.

    Science.gov (United States)

    Schmitz, Nele; Verheyden, Anouk; Beeckman, Hans; Kairo, James Gitundu; Koedam, Nico

    2006-12-01

    Although mangroves have been extensively studied, little is known about their ecological wood anatomy. This investigation examined the potential use of vessel density as a proxy for soil water salinity in the mangrove species Rhizophora mucronata (Rhizophoraceae) from Kenya. In a time-standardized approach, 50 wood discs from trees growing in six salinity categories were investigated. Vessel densities, and tangential and radial diameters of rainy and dry season wood of one distinct year, at three positions on the stem discs, were measured. A repeated-measures ANOVA with the prevailing salinity was performed. Vessel density showed a significant increase with salinity, supporting its use as a prospective measure of salinity. Interestingly, the negative salinity response of the radial diameter of vessels was less striking, and tangential diameter was constant under the varying environmental conditions. An effect of age or growth rate or the presence of vessel dimorphism could be excluded as the cause of the absence of any ecological trend. The clear trend in vessel density with salinity, together with the absence of a growth rate and age effect, validates the potential of vessel density as an environmental proxy. However, it can only be used as a relative measure of salinity given that other environmental variables such as inundation frequency have an additional influence on vessel density. With view to a reliable, absolute proxy, future research should focus on finding wood anatomical features correlated exclusively with soil water salinity or inundation frequency. The plasticity in vessel density with differing salinity suggests a role in the establishment of a safe water transport system. To confirm this hypothesis, the role of inter-vessel pits, their relationship to the rather constant vessel diameter and the underlying physiology and cell biology needs to be examined.

  13. A simple design for microwave assisted digestion vessel with low reagent consumption suitable for food and environmental samples

    Science.gov (United States)

    Gholami, Mehrdad; Behkami, Shima; Zain, Sharifuddin Md.; Bakirdere, Sezgin

    2016-11-01

    The objective of this work is to prepare a cost-effective, low reagent consumption and high performance polytetrafluoroethylene (PTFE) vessel that is capable to work in domestic microwave for digesting food and environmental samples. The designed vessel has a relatively thicker wall compared to that of commercial vessels. In this design, eight vessels are placed in an acrylonitrile butadiene styrene (ABS) holder to keep them safe and stable. This vessel needs only 2.0 mL of HNO3 and 1.0 mL H2O2 to digest 100 mg of biological sample. The performance of this design is then evaluated with an ICP-MS instrument in the analysis of the several NIST standard reference material of milk 1849a, rice flour 1568b, spinach leave 1570a and Peach Leaves 1547 in a domestic microwave oven with inverter technology. Outstanding agreement to (SRM) values are observed by using the suggested power to time microwave program, which simulates the reflux action occurring in this closed vessel. Taking into account the high cost of commercial microwave vessels and the volume of chemicals needed for various experiments (8-10 mL), this simple vessel is cost effective and suitable for digesting food and environmental samples.

  14. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  15. Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels

    OpenAIRE

    Titus PETRILA; Balazs ALBERT

    2012-01-01

    We are proposing a non-Newtonian, Cross type rheological model for the blood flow, under the conditions of an unsteady flow regime connected with the rhythmic pumping of the blood by the heart. We admit the incompressibility and homogeneity of the blood while its flow is laminar and the exterior body forces are neglected. We take also into account the viscoelastic behavior of the vessel walls. The mathematical equations and the appropriate boundary conditions are considered in cylindrical (ax...

  16. Facial ulcerations due to Acinetobacter baumannii: Vessel thrombosis with bacterial mycelia

    Directory of Open Access Journals (Sweden)

    Dong Ming Li

    2014-01-01

    Full Text Available A 14-year-old girl presented with a 2-week history of progressive facial ulcerations that did not respond to cephalexin and topical dexamethasone. Biopsy on the ulcer showed rod-shaped bacteria and actinomycetes-like mycelia in the vessel walls and within thrombi. Tissue culture yielded Acinetobacter baumannii, which was resistant to cephalexin. A favourite outcome was achieved with minocycline treatment. This is the first case report of A. baumannii-related vasculitis.

  17. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  18. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  19. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps.

    Science.gov (United States)

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Heaps, C L; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2015-03-01

    Lymphangions, the segments of lymphatic vessels between two adjacent lymphatic valves, actively pump lymph. Acute changes in transmural pressure and lymph flow have profound effects on lymphatic pump function in vitro. Chronic changes in pressure and flow in vivo have also been reported to lead to significant changes in lymphangion function. Because changes in pressure and flow are both cause and effect of adaptive processes, characterizing adaptation requires a more fundamental analysis of lymphatic muscle properties. Therefore, the purpose of the present work was to use an intact lymphangion isovolumetric preparation to evaluate changes in mesenteric lymphatic muscle mechanical properties and the intracellular Ca(2+) in response to sustained mesenteric venous hypertension. Bovine mesenteric veins were surgically occluded to create mesenteric venous hypertension. Postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 6) and sham surgery (Sham; n = 6) animals were isolated and evaluated 3 days after the surgery. Spontaneously contracting MVH vessels generated end-systolic active tension and end-diastolic active tension lower than the Sham vessels. Furthermore, steady-state active tension and intracellular Ca(2+) concentration levels in response to KCl stimulation were also significantly lower in MVH vessels compared with those of the Sham vessels. There was no significant difference in passive tension in lymphatic vessels from the two groups. Taken together, these results suggest that following 3 days of mesenteric venous hypertension, postnodal mesenteric lymphatic vessels adapt to become weaker pumps with decreased cytosolic Ca(2+) concentration. Copyright © 2015 the American Physiological Society.

  20. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  1. Depletion interactions caused by polydisperse, hard platelets

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.|info:eu-repo/dai/nl/323052517; Lang, P.R.

    2011-01-01

    We investigate depletion interactions near a wall caused by polydisperse silica-coated gibbsite platelets, using total internal reflection fluorescence microscopy (TIRF) to characterize the sphere–wall interaction potential. As no theoretical model for polydisperse platelets exists, we extend a

  2. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  3. Partial domain wall partition functions

    National Research Council Canada - National Science Library

    Foda, O; Wheeler, M

    2012-01-01

    We consider six-vertex model configurations on an (n × N) lattice, n ≤ N, that satisfy a variation on domain wall boundary conditions that we define and call partial domain wall boundary conditions...

  4. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  5. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  6. Vessel classification method based on vessel behavior in the port of Rotterdam

    NARCIS (Netherlands)

    Zhou, Y.; Daamen, W.; Vellinga, T.; Hoogendoorn, S.P.

    2015-01-01

    AIS (Automatic Identification System) data have proven to be a valuable source to investigate vessel behavior. The analysis of AIS data provides a possibility to recognize vessel behavior patterns in a waterway area. Furthermore, AIS data can be used to classify vessel behavior into several

  7. A computational algorithm addressing how vessel length might depend on vessel diameter

    Science.gov (United States)

    Jing Cai; Shuoxin Zhang; Melvin T. Tyree

    2010-01-01

    The objective of this method paper was to examine a computational algorithm that may reveal how vessel length might depend on vessel diameter within any given stem or species. The computational method requires the assumption that vessels remain approximately constant in diameter over their entire length. When this method is applied to three species or hybrids in the...

  8. 76 FR 59660 - Proposed Information Collection; Comment Request; Permitting, Vessel Identification, and Vessel...

    Science.gov (United States)

    2011-09-27

    ...; Permitting, Vessel Identification, and Vessel Monitoring System Requirements for the Commercial Bottomfish... compliance with federal identification requirements and carry and maintain a satellite- based vessel monitoring system (VMS). This collection of information is needed for permit issuance, to identify actual or...

  9. Hoof wall defects: chronic hoof wall separations and hoof wall cracks.

    Science.gov (United States)

    Moyer, William

    2003-08-01

    Hoof wall defects in horses are common occurrences, and, fortunately, many of those detected present little or no danger to the individual horse. Those defects that are either presently a problem or have a great likelihood of being a problem do often require specialized consideration. Horse shoeing and farriery are ancient practices; over the years, a multitude of methods, theories, and management schemes have been proposed. It is unfortunate to note that few studies are available to provide an accurate incidence rate, a better understanding of the various causes, and, lastly, a comparative appreciation of the possible modes of treatment and management. This discussion reflects the thinking and experience of the author and, as such, should be read and viewed with an open and critical mind set.

  10. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  11. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  12. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  13. Spontaneous Hemoperitoneum in Pregnancy from a Ruptured Superficial Uterine Vessel

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Wu

    2007-03-01

    Full Text Available A 31-year-old multipara woman pregnant at gestational age 32+ weeks with twins encountered hemoperitoneum resulting from superficial uterine vessel rupture during tocolytic course. The initial presentations were unspecific and sonographic examination was negative. Later the aggravated symptoms led to an impression of abruptio placentae and emergent cesarean section was performed. A superficial venous bleeder was located on the posterior uterine wall and the internal bleeding was up to 3 L. Maternal and fetal outcome were good. Hemoperitoneum during pregnancy is rare but life-threatening to both mother and fetus, and it mimics placenta abruption in many ways. However, by careful investigations with cardiotocogram and bedside echo, they are quite distinguishable. Aggressive fluid replacement and immediate surgical intervention after rapid diagnosis provides the best prognosis.

  14. 15 CFR 970.205 - Vessel safety.

    Science.gov (United States)

    2010-01-01

    ... following: (1) That any foreign flag vessel whose flag state is party to the International Convention for Safety of Life at Sea, 1974 (SOLAS 74) possesses current valid SOLAS 74 certificates; (2) That any foreign flag vessel whose flag state is not party to SOLAS 74 but is party to the International Convention...

  15. Assessing Vessel Traffic Service Operator Situation Awareness

    NARCIS (Netherlands)

    Wiersma, J.W.F.

    2010-01-01

    This thesis describes my study of situation awareness assessment of Vessel Traffic Service (VTS) operators. VTS operators are the traffic controllers on the water. They are responsible for a safe and efficient handling of vessel traffic. They monitor traffic, provide information on request and

  16. 33 CFR 401.67 - Explosive vessels.

    Science.gov (United States)

    2010-07-01

    ... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel carrying explosives, either Government or commercial, as defined in the Dangerous Cargo Act of the United States and in the International Maritime Dangerous Goods Code, Class 1, Divisions 1.1 to 1.5 inclusive...

  17. Analyzing Vessel Behavior Using Process Mining

    NARCIS (Netherlands)

    Maggi, F.M.; Mooij, A.J.; Aalst, W.M.P. van der

    2013-01-01

    In the maritime domain, electronic sensors such as AIS receivers and radars collect large amounts of data about the vessels in a certain geographical area. We investigate the use of process mining techniques for analyzing the behavior of the vessels based on these data. In the context of maritime

  18. 78 FR 39649 - Passenger Vessels Accessibility Guidelines

    Science.gov (United States)

    2013-07-02

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1196 RIN 3014-AA11 Passenger Vessels Accessibility... Tuesday, June 25, 2013, make the following correction: PART 1196--PASSENGER VESSELS ACCESSIBILITY... ``Figure V703.7.2.1 International Symbol of Accessibility'' and are added to read as set forth below...

  19. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2014-04-15

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  20. Domain walls on the brane

    NARCIS (Netherlands)

    Bergshoeff, E; van der Schaar, JP; Papadopoulos, G

    1998-01-01

    We show that all branes admit worldvolume domain wall solutions. We find one class of solutions for which the tension of the brane changes discontinuously along the domain wall. These solutions are not supersymmetric. We argue that there is another class of domain wall solutions which is

  1. Build an Interactive Word Wall

    Science.gov (United States)

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  2. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  3. Indoor climbing walls in Prague

    OpenAIRE

    Schwarzová, Veronika

    2012-01-01

    This work presents the indoor climbing walls in climbing centers for the public in Prague. It creates an overview of qualitative and quantitative characteristics of indoor climbing walls in Prague. Thesis allowing ordinary users and the general public interested in climbing easier selection of the appropriate climbing wall according on their level, the safety requirements, background, but also the place of residence.

  4. Pulmonary vein and atrial wall pathology in human total anomalous pulmonary venous connection

    NARCIS (Netherlands)

    Douglas, Yvonne L.; Jongbloed, Monique R. M.; den Hartog, Wietske C. E.; Bartelings, Margot M.; Bogers, Ad J. J. C.; Ebels, Tjark; DeRuiter, Marco C.; Gittenberger-de Groot, Adriana C.

    2009-01-01

    Background: Normally, the inside of the left atrial (LA) body and pulmonary veins (PVs) is lined by vessel wall tissue covered by myocardium. In total anomalous pulmonary venous connection (TAPVC), no connection of the PVs with the LA body exists. These veins have an increased incidence of PV

  5. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir V

    2008-01-01

    development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...... synchronization also requires a high-conductance pathway that provides strong coupling between the cells....

  6. Cell wall biology: perspectives from cell wall imaging.

    Science.gov (United States)

    Lee, Kieran J D; Marcus, Susan E; Knox, J Paul

    2011-03-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  7. Streaming Induced by Ultrasonic Vibration in a Water Vessel

    Science.gov (United States)

    Nomura, Shinfuku; Murakami, Koichi; Sasaki, Yuuichi

    2000-06-01

    The flow pattern induced by ultrasonic vibration in a water vessel is investigated experimentally using several liquids. In tap water, vortex streaming of cavitation bubbles around the pressure node of a standing wave occurred because of the large number of cavitation bubbles generated by the ultrasonic vibration. Acoustic streaming of the Rayleigh type caused by cavitation bubble streaming is also induced in tap water. In a glycerin aqueous solution of 30%, Eckart streaming, which flowed upward from the vibrator, occurred due to the dissipation of ultrasonic energy caused by viscosity. On the other hand, in degassed water, streaming is hardly generated at all since a uniform and stable standing wave is formed in the water vessel. The velocity of the acoustic streaming generated in the water vessel by 27.8 kHz vibration is 1 to 6 mm/s. The cavitation bubble streaming in tap water is completely independent of normal Rayleigh or Eckart streaming. This bubble streaming is considerably faster than previous streaming.

  8. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    Science.gov (United States)

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  9. Left ventricular wall stress compendium.

    Science.gov (United States)

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  10. Reactor pressure vessel. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, B.J.; Hackett, E.M.; Lee, A.D. [and others

    1996-10-01

    This report describes the issues raised as a result of the staffs review of Generic Letter (GL) 92-01, Revision 1, responses and plant-specific reactor pressure vessel (RPV) assessments and the actions taken or work in progress to address these issues. In addition, the report describes actions taken by the staff and the nuclear industry to develop a thermal annealing process for use at U.S. commercial nuclear power plants. This process is intended to be used as a means of mitigating the effects of neutron radiation on the fracture toughness of RPV materials. The Nuclear Regulatory Commission (NRC) issued GL 92-01, Revision 1, Supplement 1, to obtain information needed to assess compliance with regulatory requirements and licensee commitments regarding RPV integrity. GL 92-01, Revision 1, Supplement 1, was issued as a result of generic issues that were raised in the NRC staff`s reviews of licensee responses to GL 92-01, Revision 1, and plant-specific RPV evaluations. In particular, an integrated review of all data submitted in response to GL 92-01, Revision 1, indicated that licensees may not have considered all relevant data in their RPV assessments. This report is representative of submittals to and evaluations by the staff as of September 30, 1996. An update of this report will be issued at a later date.

  11. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  12. Functional electronic inversion layers at ferroelectric domain walls.

    Science.gov (United States)

    Mundy, J A; Schaab, J; Kumagai, Y; Cano, A; Stengel, M; Krug, I P; Gottlob, D M; Dog Anay, H; Holtz, M E; Held, R; Yan, Z; Bourret, E; Schneider, C M; Schlom, D G; Muller, D A; Ramesh, R; Spaldin, N A; Meier, D

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO 3 . We relate the transition to the formation-and eventual activation-of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  13. 46 CFR 535.312 - Vessel charter party-exemption.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Vessel charter party-exemption. 535.312 Section 535.312... Vessel charter party-exemption. (a) For purposes of this section, vessel charter party shall mean a... operational limitations, if any) under which the vessel will be employed. (b) Vessel charter parties, as...

  14. Optics based signal processing methods for intraoperative blood vessel detection and quantification in real time (Conference Presentation)

    Science.gov (United States)

    Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.

    2016-03-01

    Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.

  15. Conceptual design of the handling and storage system of the spent target vessel for neutron scattering facility 2

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Kaminaga, Masanori; Sasaki, Shinobu; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-01-01

    In designing the neutron scattering facility, a spent target vessel should be replaced with remote handling devices in order to protect radioactive exposure, since it would be highly activated through the high energy neutron irradiation caused by the spallation reaction between mercury of the target material and the MW-class proton beam. In the storage of the spent target vessel, it is necessary to consider decay heat of the target vessel and mercury contamination caused by vaporization of the residual mercury in the vessel. A conceptual design has been carried out to establish basic concept and to clarify its specification of main equipments on handling and storage systems for the spent target vessel. This report presents the basic concept and a system plot plan based on latest design works of remote handling devices such as a spent target vessel storage cask and a target vessel exchange trolley, which aim at reasonability and simplification. In addition, storage systems for the spent moderator vessel, the spent proton beam window and the spent reflector vessel are also investigated based on the plot plan. (author)

  16. Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. We applied a 2D-FLASH retrospective-gated CINE MRI

  17. Moisture Conditions in Passive House Wall Constructions

    OpenAIRE

    Gullbrekken, Lars; Geving, Stig; Time, Berit; Andresen, Inger

    2015-01-01

    Buildings for the future, i.e zero emission buildings and passive houses, will need well insulated building envelopes, which includes increased insulation thicknesses for roof, wall and floor constructions. Increased insulation thicknesses may cause an increase in moisture levels and thereby increased risk of mold growth. There is need for increased knowledge about moisture levels in wood constructions of well insulated houses, to ensure robust and moisture safe solutions. Monitoring of w...

  18. Moisture Conditions in Passive House Wall Constructions

    OpenAIRE

    Gullbrekken, Lars; Geving, Stig; Time, Berit; Andresen, Inger

    2015-01-01

    - Buildings for the future, i.e zero emission buildings and passive houses, will need well insulated building envelopes, which includes increased insulation thicknesses for roof, wall and floor constructions. Increased insulation thicknesses may cause an increase in moisture levels and thereby increased risk of mold growth. There is need for increased knowledge about moisture levels in wood constructions of well insulated houses, to ensure robust and moisture safe solutions.

  19. Development of helium electron cyclotron wall conditioning on TCV

    Science.gov (United States)

    Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team

    2018-02-01

    JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T  =  1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.

  20. Radical resection of giant chondrosarcoma of the anterior chest wall

    Directory of Open Access Journals (Sweden)

    Stanić Vojkan

    2008-01-01

    Full Text Available Background. Chondrosarcomas represent approximately 30% of primary malignant bone tumors, the most frequent of which is on anterior thoracic wall. Case report. We presented a case of 50-year-old man suffering from a slowgrowing, painless giant chondrosarcoma of the anterior chest wall. A wide resection was performed to excise the tumor including attached skin, right breast, ribs, sternum, soft tissues and parietal pleura. Mediastinum was not affected by the tumor. After resecting a 26 × 20 × 22 cm segment, the chest wall defect was reconstructed with a Marlex mesh and extensive latissimus dorsi myocutaneous flap pedicled on the right thoracodorsal vessels. Histopatology diagnosis was chondrosarcoma G 2−3. The mechanics of ventilation was not altered and respiratory function was normal from the immediate postoperative period. Three years after the operation postoperative results showed no local recurrence and excellent functional and aesthetic results were evident. Respiratory function remained unaltered. Conclusion. According to the results it can be concluded that the use of Marlex mash and myocutaneous flap is good method for stabilization of the chest wall and enough to avoid paradoxical respiratory movements in managing giant chondrosarcoma of the anterior chest wall.