WorldWideScience

Sample records for vessel steels tested

  1. Preliminary results of steel containment vessel model test

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T.; Komine, K.; Arai, S. [Nuclear Power Engineering Corp., Tokyo (Japan)] [and others

    1997-04-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.

  2. Preliminary results of steel containment vessel model test

    Energy Technology Data Exchange (ETDEWEB)

    Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States); Matsumoto, T.; Komine, K.; Arai, S. [Nuclear Power Engineering Corp., Tokyo (Japan); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)

    1998-04-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.

  3. Steel Containment Vessel Model Test: Results and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J.F.; Hashimote, T.; Hessheimer, M.F.; Luk, V.K.

    1999-03-01

    A high pressure test of the steel containment vessel (SCV) model was conducted on December 11-12, 1996 at Sandia National Laboratories, Albuquerque, NM, USA. The test model is a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of an improved Mark II boiling water reactor (BWR) containment. A concentric steel contact structure (CS), installed over the SCV model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. The SCV model and contact structure were instrumented with strain gages and displacement transducers to record the deformation behavior of the SCV model during the high pressure test. This paper summarizes the conduct and the results of the high pressure test and discusses the posttest metallurgical evaluation results on specimens removed from the SCV model.

  4. J-Integral characterization of the nozzle steels from intermediate test vessels IV-5 and IV-9

    Energy Technology Data Exchange (ETDEWEB)

    Auten, T.A.; Macdonald, B.D.; Scavone, D.W.; Bozik, D.

    1994-10-01

    Reported here are the results of elastic-plastic fracture toughness tests performed on low alloy steels from the nozzles of the intermediate test vessels IV-5 and IV-9 from the Heavy Steel Section Technology Program at Oak Ridge National Laboratory. These vessels had been given prototypic nozzle corner flaw tests prior to the development of the ASTM E-813 standard test procedure for J-integral testing. The objective of this work is to provide J-integral material test support for future elastic-plastic fracture mechanics analysis of the nozzles. J-integral tests at 88{degrees}C (190{degrees}F) of the IV-5 nozzle material produced stable ductile tearing. The tearing resistance data are expected to support analysis of the observed similar stable tearing response of the nozzle corner flaw. J-integral tests at 24{degrees}C (75{degrees}F) of the IV-9 nozzle produced elastic-plastic fracture instability preceded by stable tearing. A similar response was observed in the IV-9 nozzle corner flaw test. It will be a major and important challenge to develop a fracture mechanics rationale that reconciles these small specimen and nozzle corner flaw test results. These test results are being made available to allow their use by a wide variety of organizations in developing such a rationale, which would be a significant contribution to quantifying the flaw tolerance of reactor pressure vessels.

  5. Development of Mini-Compact Tension Test Method for Determining Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Validation of the mini compact tension specimen (mini-CT) geometry has been performed on previously well characterized Midland beltline Linde 80 (WF-70) weld in the unirradiated condition. It was shown that the fracture toughness transition temperature, To, measured by these Mini-CT specimens is almost the same as To value that was derived from various larger fracture toughness specimens. Moreover, an International collaborative program has been established to extend the assessment and validation efforts to irradiated Linde 80 weld metal. The program is underway and involves the Oak Ridge National Laboratory (ORNL), Central Research Institute for Electrical Power Industry (CRIEPI), and Electric Power Research Institute (EPRI). The irradiated Mini-CT specimens from broken halves of previously tested Charpy

  6. Creep of A508/533 Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  7. The Assessment and Validation of Mini-Compact Tension Test Specimen Geometry and Progress in Establishing Technique for Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Assessment and validation of mini-CT specimen geometry has been performed on previously well characterized HSST Plate 13B, an A533B class 1 steel. It was shown that the fracture toughness transition temperature measured by these Mini-CT specimens is within the range of To values that were derived from various large fracture toughness specimens. Moreover, the scatter of the fracture toughness values measured by Mini-CT specimens perfectly follows the Weibull distribution function providing additional proof for validation of this geometry for the Master Curve evaluation of rector pressure vessel steels. Moreover, the International collaborative program has been developed to extend the assessment and validation efforts to irradiated weld metal. The program is underway and involves ORNL, CRIEPI, and EPRI.

  8. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  9. Test of 6-in. -thick pressure vessels. Series 3: intermediate test vessel V-7. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.; Bryan, R.H.

    1976-08-01

    The test of intermediate test vessel V-7 was a crack-initiation fracture test of a 152-mm-thick (6-in.), 990-mm-OD (39-in.) vessel of ASTM A533, grade B, class 1 steel plate with a sharp outside surface flaw 457 mm (18 in.) long and about 135 mm (5.3 in.) deep. The vessel was heated to 91/sup 0/C (196/sup 0/F) and pressurized hydraulically until leakage through the flaw terminated the test at a peak pressure of 147 MPa (21,350 psi). Fracture toughness data obtained by testing precracked Charpy-V and compact-tension specimens machined from a prolongation of the cylindrical test shell were used in pretest analyses of the flawed vessel. The vessel, as expected, did not burst. Upon depressurization, the ruptured ligament closed so as to maintain static pressure without leakage at about 129 MPa (18,700 psi).

  10. Magnetic non-destructive evaluation of hardening of cold rolled reactor pressure vessel steel

    Science.gov (United States)

    Wang, Xuejiao; Qiang, Wenjiang; Shu, Guogang

    2017-08-01

    Non-destructive test (NDT) of reactor pressure vessel (RPV) steel is urgently required due to the life extension program of nuclear power plant. Here magnetic NDT of cold rolled RPV steel is studied. The strength, hardness and coercivity increase with the increasing deformation, and a good linear correlation between the increment of coercivity, hardness and yield strength is found, which may be helpful to develop magnetic NDT of degradation of RPV steel. It is also found that besides dislocation density, the distribution of dislocations may affect coercivity as well.

  11. Hydrogen Cracking and Stress Corrosion of Pressure Vessel Steel ASTM A543

    Science.gov (United States)

    AlShawaf, Ali Hamad

    The purpose of conducting this research is to develop fundamental understanding of the weldability of the modern Quenched and Tempered High Strength Low Alloy (Q&T HSLA) steel, regarding the cracking behavior and susceptibility to environmental cracking in the base metal and in the heat affected zone (HAZ) when welded. A number of leaking cracks developed in the girth welds of the pressure vessel after a short time of upgrading the material from plain carbon steel to Q&T HSLA steel. The new vessels were constructed to increase the production of the plant and also to save weight for the larger pressure vessel. The results of this research study will be used to identify safe welding procedure and design more weldable material. A standardized weldability test known as implant test was constructed and used to study the susceptibility of the Q&T HSLA steel to hydrogen cracking. The charged hydrogen content for each weld was recorded against the applied load during weldability testing. The lack of understanding in detail of the interaction between hydrogen and each HAZ subzone in implant testing led to the need of developing the test to obtain more data about the weldability. The HAZ subzones were produced using two techniques: standard furnace and GleebleRTM machine. These produced subzones were pre-charged with hydrogen to different levels of concentration. The hydrogen charging on the samples simulates prior exposure of the material to high humidity environment during welding process. Fractographical and microstructural characterization of the HAZ subzones were conducted using techniques such as SEM (Scanning Electron Microscopy). A modified implant test using the mechanical tensile machine was also used to observe the effects of the hydrogen on the cracking behavior of each HAZ subzone. All the experimental weldability works were simulated and validated using a commercial computational software, SYSWELD. The computational simulation of implant testing of Q&T HSLA

  12. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Kurihara, I.; Sasaki, T.; Koyama, Y.; Tanaka, Y. [The Japan Steel Works, Ltd. (Japan)

    1999-07-01

    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached limit of size from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength which brings reduction of pressure vessel thickness and weight. The Japan Steel Works, Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620MPa for steam generator (SG) pressure vessel, and has made confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness weldability including under clad cracking (UCC) sensitivity and metallurgical factors which influence on such material properties. (orig.)

  13. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. E-mail: koumei_suzuki@jsw.co.jp; Kurihara, I.; Sasaki, T.; Koyoma, Y.; Tanaka, Y

    2001-06-01

    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached a size limit from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength, which brings reduction of pressure vessel thickness and weight. The Japan Steel Works Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620 MPa for steam generator (SG) pressure vessel, and has performed confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness, weldability including under-clad cracking (UCC) sensitivity, as well as metallurgical factors which influence on such material properties.

  14. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

    Science.gov (United States)

    Pous-Romero, Hector; Bhadeshia, Harry K. D. H.

    2014-10-01

    A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

  15. Joining dissimilar stainless steels for pressure vessel components

    Science.gov (United States)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  16. Fatigue crack propagation in steels for reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Klesnil, M.; Lukas, P.; Kunz, L. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie); Troshchenko, V.T.; Pokrovskij, V.V.; Yasnij, P.V.; Skorenko, Y.S. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-01-01

    Fatigue crack propagation data were measured on 15Kh2NMFA steel of Czechoslovak and Soviet makes. The results obtained by two laboratories were compared with other available data regarding materials for pressure vessels of nuclear power plants. Crack propagation curves were measured at temperatures -60, 20 and 350 degC and the corresponding parameters of crack growth equation were found. Threshold values of stress intensity factor amplitude, Ksub(apz), and the influence of stress ratio R in the range of small crack rates were determined experimentally. Fractography revealed either transgranular or mixed transgranular and interaranular fracture modes depending on stress intensity amplitude Ksub(a) and the environment.

  17. IAEA international studies on irradiation embrittlement of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Brumovsky, M. [Nuclear Research Institute Rez plc (Czech Republic); Steele, L.E. [Chief Scientific Investigator of the Programme, Springfield, VA (United States)

    1997-02-01

    In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracture mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.

  18. Development of High Strength and High Toughness Steels for Reactor Vessel and Surgeline Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kim, M. C.; Yoon, J. H.; Kim, K. B.; Choi, K. J.; Cho, H. D.

    2010-07-15

    In addition to evaluating the effects of alloying elements, heat treatment conditions, weldability and neutron irradiation behavior were evaluated with 15 types of SA508 Gr.4N model alloys for reactor pressure vessel. The maximum yield strength of 630MPa were obtained by controlling chemical compositions and heat treatment conditions. Model alloys also showed excellent impact toughness and fracture toughness. The microstructure and mechanical properties of weld heat affected zone were evaluated by using simulated specimens and the effects of post weld heat treatment conditions were also investigated. Neutron irradiation behavior at high fluence level were characterized and then compared with commercial reactor pressure vessel steel. The value of transition temperature shift(TTS) was 22 .deg. C at 6.4x10{sup 19} n/cm{sup 2} which is similar to commercial RPV steel. However, its toughness after irradiation is much better than that of unirradiated commercial RPV steel due to the superior initial toughness. Leak-before-break(LBB) properties of type 316 stainless steel model alloys and their welds for surge line were evaluated as well as microstructure and mechanical properties. Tensile tests and J-R fracture resistance tests were carried out at RT and 316 .deg. C. The model alloys showed good tensile strength over standard value, except type 316L which has lower C/N. In the LBB safety analysis result, all of type 316 model alloys have higher allowable load than that of OPR1000 surge line

  19. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Additional survey requirements for steel-hull vessels...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42..., peaks, bilges, machinery spaces, and bunkers shall be examined to determine the condition of the framing...

  20. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  1. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    Science.gov (United States)

    Pickering, E. J.; Bhadeshia, H. K. D. H.

    2014-06-01

    This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.

  2. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, H.I.; Alers, G.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Materials Reliability Div.

    1998-03-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs.

  3. Effect of Silicon Content on Carbide Precipitation and Low-Temperature Toughness of Pressure Vessel Steels

    Science.gov (United States)

    Ruan, L. H.; Wu, K. M.; Qiu, J. A.; Shirzadi, A. A.; Rodionova, I. G.

    2017-05-01

    Cr - Mn - Mo - Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at - 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software.

  4. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Zhang, Wei [ORNL; Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the

  5. Thermal Embrittlement of Reactor Pressure Vessel Steel due to Aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Soo; Park, Duck Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Thermal SS sets are located above the nuclear core where a fast neutron flux is negligible and temperature is 320 .deg. C (as opposed to 290 .deg. C in locations of high-irradiated SS). These SS allow monitoring of continuous operation temperature exposure effect on mechanical characteristics of the steels. Although transgranular cleavage is the predominant mode of brittle fracture in RPV steels, solute (e.g. phosphorus) segregation to grain boundaries can result in another type of brittle fracture known as intergranular (grain boundary) fracture. Figures 1 a) and b) show examples of transgranular and intergranular (IG) fracture, respectively, as viewed in a scanning electron microscope. The investigators have interpreted the intergranular cracking occurs as a result of segregation of sulfur and/or phosphorus at grain boundary. The IG cracking is a kind of symptom of embrittlement. It is reported that the IG cracking occurs in inert (Ar) environment under slow strain rate test. 1. The lath grain size in SA508 RPV steel increases slightly due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 2. The decrease in toughness appeared 4-25% and the lattice contraction appeared to be +0.004% - -0.022% due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 3. The amount of decrease in Charpy impact energy due to thermal aging is correlated well with the magnitude of lattice contraction.

  6. Effects of Thermal Aging on Type 316H Stainless Steel for Reactor Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Hong, Seok Min; Lee, Bong Sang; Koo, Gyeong Hoi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Type 316H stainless steel is a prime candidate for reactor vessel material of sodium-cooled fast reactor (SFR) which has been developed as one of the Gen IV nuclear reactors in Korea. The reactor vessel steel will be exposed to higher temperature for an extended design life time. It is known that austenitic stainless steel such as Type 316H stainless steel shows excellent toughness and adequate strength at a moderate temperature. However, the previous researches reported the mechanical properties of Type 316H stainless weld would be deteriorated by the aging at the elevated temperature range.

  7. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  8. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  9. Steel erected at A-3 Test Stand

    Science.gov (United States)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  10. Current understanding on the neutron irradiation embrittlement of BWR reactor pressure vessel steels in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Nishiyama, T. [TEPCO (Japan); Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A. [CRIEPI (Japan); Ohta, T. [Japan Atomic Power Co. (Japan); Ishimaru, Y. [Chugoku EPCO (Japan); Yoneda, H. [Hokuriku EPCO (Japan); Lida, J. [Tohoku EPCO (Japan); Yuya, H. [Chubu EPCO (Japan)

    2011-07-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels has been of concern primarily for the pressurized water reactors (PWRs). After long operation experiences, we are now becoming aware of the situation that the neutron irradiation embrittlement is also of concern for some of the boiling water reactors (BWRs) particularly with Cu-containing RPV steels. The surveillance data of Cu-containing BWR RPV steels show relatively larger shift in ductile-to-brittle transition temperature of fracture toughness than predicted by the embrittlement correlation method developed in late eighties and early nineties. Accurate evaluation of the amount of embrittlement is now very important for long-term operation of BWRs. In this paper, we will describe the neutron irradiation embrittlement of BWR RPVs in Japan. Some of the materials that show relatively large transition temperature shifts are investigated to understand the causes of embrittlement using state-of-the-art microstructural characterization techniques. Furthermore, some archive materials of such RPVs are irradiated in a material testing reactor with high neutron flux to understand the effect of flux on transition temperature shifts and corresponding microstructural changes. Microstructural evolution under irradiation, solute clustering in particular could explain the differences in transition temperature shift of the analyzed specimens. Larger BWR RPVs, which have larger water gaps, receive less neutron irradiation and harmful impurities in steels such as copper are well controlled since 1980 so irradiation embrittlement in BWR vessels can now be considered a concern only in old and small plants. All the new information obtained through these activities was considered in the development of new embrittlement correlation that is now adopted in JEAC 4201- 2007 of Japan Electric Association

  11. Standard practice for examination of seamless, gas-filled, steel pressure vessels using angle beam ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes a contact angle-beam shear wave ultrasonic technique to detect and locate the circumferential position of longitudinally oriented discontinuities and to compare the amplitude of the indication from such discontinuities to that of a specified reference notch. This practice does not address examination of the vessel ends. The basic principles of contact angle-beam examination can be found in Practice E 587. Application to pipe and tubing, including the use of notches for standardization, is described in Practice E 213. 1.2 This practice is appropriate for the ultrasonic examination of cylindrical sections of gas-filled, seamless, steel pressure vessels such as those used for the storage and transportation of pressurized gasses. It is applicable to both isolated vessels and those in assemblies. 1.3 The practice is intended to be used following an Acoustic Emission (AE) examination of stacked seamless gaseous pressure vessels (with limited surface scanning area) described in Test Met...

  12. The influence of fire exposure on austenitic stainless steel for pressure vessel fitness-for-service assessment: Experimental research

    Science.gov (United States)

    Li, Bo; Shu, Wenhua; Zuo, Yantian

    2017-04-01

    The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.

  13. Mechanical spectroscopy of reactor-pressure-vessel steel embrittlement: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Ouytsel, K

    1998-08-01

    An enhanced surveillance strategy for testing the fracture toughness of reactor-pressure-vessel steel embrittlement is described. Microstructural investigation in support of damage modelling is an essential element in this enhanced strategy. Temperature-dependent experiments are very sensitive to differences in chemical composition and to effects of neutron irradiation as well as thermal ageing. Amplitude-dependent experiments can be related to tensile test results and correspond to a model for the yield stress. A full range of experiments were carried out on base and weld metal from the Doel-I-II power plants. The results have indicated that internal friction yields information which cannot always be detected by means of standard testing techniques. An inverted torsion pendulum for measuring internal friction has been constructed.

  14. Exploratory Study of Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chernobaeva, A.A., Kryukov, A.M., Nikolaev, Y.A., Korolev, Y.N. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)], Sokolov, M.A., Nanstad, R.K. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVS) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The working group agreed that each side would irradiate, anneal, reirradiate (if feasible), and test two materials of the other; so far, only charpy impact and tensile specimens have been included. Oak Ridge National Laboratory (ornl) conducted such a program (irradiation and annealing) with two weld metals representative of VVER-440 AND VVER-1000 RPVS, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation,annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) program plate 02 and Heavy-Section Steel Irradiation (HSSI) program weld 73w. The results for each material from each laboratory are compared with those from the other laboratory. the ORNL experiments with the VVER welds included irradiation to about 1 x 10 (exp 19) N/SQ CM ({gt}1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 X 10 (exp 19) N/SQ CM ({gt}1 MeV).

  15. DP 600 steel research of dynamic testing

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2015-01-01

    Full Text Available Dynamic tensile testing of sheet steels is becoming more important due to the need for more optimized vehicle crashworthiness analysis in the automotive industry. For generating data in dynamic conditions, was using different assay techniques. DP (dual phase steel is suitable for large complicated shape such as fenders, doors, bumpers and roofs. For experiments was used two testing method servo hydraulic and single bar method. Experiments were realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Microstructure and substructure in static and dynamic loading conditions was investigated.

  16. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-06-16

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10{sup 19} n/cm{sup 2} (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10{sup 19} n/cm{sup 2} (>l MeV). In both cases, irradiations were conducted at {approximately}290 C and annealing treatments were conducted

  17. Influence of fluence rate on radiation-induced mechanical property changes in reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R.; Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    This report describes a set of experiments undertaken using a 2 MW test reactor, the UBR, to qualify the significance of fluence rate to the extent of embrittlement produced in reactor pressure vessel steels at their service temperature. The test materials included two reference plates (A 302-B, A 533-B steel) and two submerged arc weld deposits (Linde 80, Linde 0091 welding fluxes). Charpy-V (C{sub v}), tension and 0.5T-CT compact specimens were employed for notch ductility, strength and fracture toughness (J-R curve) determinations, respectively. Target fluence rates were 8 {times} 10{sup 10}, 6 {times} 10{sup 11} and 9 {times} 10{sup 12} n/cm{sup 2} {minus}s{sup {minus}1}. Specimen fluences ranged from 0.5 to 3.8 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV. The data describe a fluence-rate effect which may extend to power reactor surveillance as well as test reactor facilities now in use. The dependence of embrittlement sensitivity on fluence rate appears to differ for plate and weld deposit materials. Relatively good agreement in fluence-rate effects definition was observed among the three test methods. 52 figs., 4 tabs.

  18. Test of 6-in. -thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks. [BWR and PWR

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-08-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88/sup 0/C (190/sup 0/F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25/sup 0/C (75/sup 0/F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted.

  19. Fatigue strength tests of layered steel

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available The work deals with original measurement of fatigue properties of formed layered steel material – damask steel. This is a material that exhibits a fine micro-structure as well as a regular composition of many material layers with complementary properties. The article experimentally verifies high-cycle fatigue properties of layered steel and evaluates them from the point of view of fatigue tests of conventional steel materials and a parallel application of a non-destructive – acoustic emission – testing. Finally, it discusses the influence of production on fatigue strength and the possibilities of using multi-layered steel materials in technological practice. A serious result of this pilot experiment is the fact documented no only by the fractographic observation, but mainly by the AE records that the fatigue service life of this material is high if it its not stressed by tension approximating the yield point Re. However, such stress is not common in practical use of tools made of damask steel and thus under common bending stress an exceptionally long service life of tools made of this type of material is demonstrable. The fact that damask steel behaves like a homogeneous material is mainly confirmed by the records of the AE signal at lower values of stress σa. When stressed by higher amplitudes of tension σa damask responds in AE records similarly to a laminate material that is stressed by bending.

  20. Correlation between radiation damage and magnetic properties in reactor vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, R.A., E-mail: kempf@cnea.gov.ar [División Caracterización, GCCN, CAC-CNEA (Argentina); Sacanell, J. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Milano, J. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Guerra Méndez, N. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Winkler, E.; Butera, A. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Troiani, H. [División Física de Metales, CAB-CNEA and Instituto Balseiro (UNCU), CONICET (Argentina); Saleta, M.E. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Fortis, A.M. [Departamento Estructura y Comportamiento. Gerencia Materiales-GAEN, CAC-CNEA (Argentina)

    2014-02-01

    Since reactor pressure vessel steels are ferromagnetic, provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between mechanical and magnetic properties and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275 °C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.

  1. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Potirniche, Gabriel [Univ. of Idaho, Moscow, ID (United States); Barlow, Fred D. [Univ. of Idaho, Moscow, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Rink, Karl [Univ. of Idaho, Moscow, ID (United States)

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  2. Development of heavy steel plate for Mayflower Resolution, special purpose vessel for erection of offshore wind towers

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, W.; Schroeter, F.

    2005-05-15

    Special problems necessitate special solutions. Installation vessels for the erection of offshore wind towers are subject to extremely demanding design and structural specifications. Such projects are made possible only by the use of high strength, fine grained structural steels possessing good toughness properties even at extremely low temperatures; in addition, such steels must also offer good workability. Such steel plate material exhibits mechanical properties greatly superior to those possessed by conventional shipbuilding plate. This article focuses on the material for such an installation vessel and the underlying steel development work performed at AG der Dillinger Huettenwerke. (author)

  3. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  4. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Chen, Zhongyi [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Material and Metallurgy; Kang, Xiaolan [Baotou Vocational and Technical College (China)

    2017-02-15

    SA508Gr4 is a newly developed high-strength steel for nuclear reactor pressure vessels. Its welding characteristics remain largely unexplored. In this work, the simulated heat affected zone continuous cooling transformation (SH-CCT) diagram of SA508Gr4 steel was constructed and the high-temperature cooling phase compositions and the properties of the heat affected zone (HAZ) were characterized using dilatometry and microscopic tests. The results show that the phase transformation in the HAZ was divided into bainite and martensite transformation stages. When 4.6 ≤ t{sub 8/5} (the HAZ cooling time from 800 C to 500 C) ≤ 15 s, lath-shaped martensite was fully developed, resulting in extensive hardening and cold cracking in the HAZ, while the cooling time required to form the bainite completely exceeds 1 200 s. Thus, to improve weld quality, preheating to 196 C or higher is recommended.

  5. Embrittlement recovery due to annealing of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, E.D.; Wright, J.E.; Nelson, E.E. [Modeling and Computing Services, Boulder, CO (United States); Odette, G.R.; Mader, E.V. [Univ. of California, Santa Barbara, CA (United States)

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  6. Appropriate welding conditions of temper bead weld repair for SQV2A pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, R.; Matsuda, F. [NDE Center, Japan Power Engineering and Inspection Corp. (Japan); Brziak, P. [Welding Research Inst. - Industrial Inst. of Slovak Republic (Slovakia); Lomozik, M. [Inst. of Welding (Poland)

    2004-07-01

    Temper bead welding technique is one of the most important repair welding methods for large structures for which it is difficult to perform the specified post weld heat treatment. In this study, appropriate temper bead welding conditions to improve the characteristics of heat affected zone (HAZ) are studied using pressure vessel steel SQV2A corresponding to ASTM A533 Type B Class 1. Thermal/mechanical simulator is employed to give specimens welding thermal cycles from single to quadruple cycle. Charpy absorbed energy and hardness of simulated CGHAZ by first cycle were degraded as compared with base metal. Improvability of these degradations by subsequent cycles is discussed and appropriate temper bead thermal cycles are clarified. When the peak temperature lower than Ac1 and near Ac1 in the second thermal cycle is applied to CGAHZ by first thermal cycle, the characteristics of CGHAZ improve enough. When the other peak temperatures (that is, higher than Ac1) in the second thermal cycle are applied to the CGHAZ, third or more thermal cycle temper bead process should be applied to improve the properties. Appropriate weld condition ranges are selected based on the above results. The validity of the selected ranges is verified by the temper bead welding test. (orig.)

  7. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  8. Magnetic Nondestructive Testing Techniques of Constructional Steel

    Directory of Open Access Journals (Sweden)

    Xiong Er-gang

    2016-01-01

    Full Text Available Steel is a kind of ferromagnetic material, which is extensively applied in such fields as buildings, bridges, railways, machines and lifeline engineering etc. Those engineering structures built of constructional steel will unavoidably experience some damages during their service lifetime, thus which will influence the distribution regularity of internal forces in structures, result in over-stresses, cause the local failure of structures, and even lead to collapse of the whole structure. Therefore, it is a pressing topic to study how to directly evaluate the real-time stressed states of structural members, damages and steel characteristics in present structural health monitoring and diagnosing fields. And the achievements of this research will be of theoretical significance and of application value of engineering. This paper summarizes varieties of new magnetic nondestructive testing techniques used in constructional steel, respectively investigates the testing principles, characteristics and application for the magnetic Barkhausen noise technique, magnetic acoustic emission technique, magnetic flux leakage technique, magnetic memory technique and magnetic absorption technique, and points out the problems present in the application of these new techniques to actual testing and the further research objective.

  9. EDS V26 Containment Vessel Explosive Qualification Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haroldsen, Brent L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stofleth, Jerome H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The objective of the test was to qualify the vessel for its intended use by subjecting it to a 1.25 times overtest. The criteria for success are that the measured strains do not exceed the calculated strains from the vessel analysis, there is no significant additional plastic strain on subsequent tests at the rated design load (shakedown), and there is no significant damage to the vessel and attached hardware that affect form, fit, or function. Testing of the V25 Vessel in 2011 established a precedent for testing V26 [2]. As with V25, two tests were performed to satisfy this objective. The first test used 9 pounds of Composition C-4 (11.25 lbs. TNT-equivalent), which is 125 percent of the design basis load. The second test used 7.2 pounds of Composition C-4 (9 lbs. TNT-equivalent) which is 100 percent of the design basis load. The first test provided the required overtest while the second test served to demonstrate shakedown and the absence of additional plastic deformation. Unlike the V25 vessel, which was mounted in a shipping cradle during testing, the V26 vessel was mounted on the EDS P2U3 trailer prior to testing. Visual inspections of the EDS vessel, surroundings, and diagnostics were completed before and after each test event. This visual inspection included analyzing the seals, fittings, and interior surfaces of the EDS vessel and documenting any abnormalities or damages. Photographs were used to visually document vessel conditions and findings before and after each test event.

  10. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  11. Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels, E 706 (IH)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide discusses test procedures that can be used in conjunction with, but not as alternatives to, those required by Practices E185 and E2215 for the surveillance of nuclear reactor vessels. The supplemental mechanical property tests outlined permit the acquisition of additional information on radiation-induced changes in fracture toughness, notch ductility, and yield strength properties of the reactor vessel steels. 1.2 This guide provides recommendations for the preparation of test specimens for irradiation, and identifies special precautions and requirements for reactor surveillance operations and postirradiation test planning. Guidance on data reduction and computational procedures is also given. Reference is made to other ASTM test methods for the physical conduct of specimen tests and for raw data acquisition.

  12. Characterisation of creep cavitation damage in a stainless steel pressure vessel using small angle neutron scattering

    CERN Document Server

    Bouchard, P J; Treimer, W

    2002-01-01

    Grain-boundary cavitation is the dominant failure mode associated with initiation of reheat cracking, which has been widely observed in austenitic stainless steel pressure vessels operating at temperatures within the creep range (>450 C). Small angle neutron scattering (SANS) experiments at the LLB PAXE instrument (Saclay) and the V12 double-crystal diffractometer of the HMI-BENSC facility (Berlin) are used to characterise cavitation damage (in the size range R=10-2000 nm) in a variety of creep specimens extracted from ex-service plant. Factors that affect the evolution of cavities and the cavity-size distribution are discussed. The results demonstrate that SANS techniques have the potential to quantify the development of creep damage in type-316H stainless steel, and thereby link microstructural damage with ductility-exhaustion models of reheat cracking. (orig.)

  13. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  14. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.W.; Han, L.Z.; Luo, X.M.; Liu, Q.D.; Gu, J.F., E-mail: gujf@sjtu.edu.cn

    2016-08-15

    The microstructure and mechanical properties of reactor pressure vessel (RPV) steel were investigated after tempering at different temperatures ranging from 580 to 700 °C for 5 h. With increasing tempering temperature, the impact toughness, which is qualified by Charpy V-notch total absorbed energy, initially increases from 142 to 252 J, and then decreases to 47 J, with a maximum value at 650 °C, while the ultimate tensile strength varies in exactly the opposite direction. Comparing the microstructure and fracture surfaces of different specimens, the variations in toughness and strength with the tempering temperature were generally attributed to the softening of the bainitic ferrite, the agminated Fe{sub 3}C carbides that resulted from decomposition of martensite/austenite (M/A) constituents, the precipitation of Mo{sub 2}C carbides, and the newly formed M/A constituents at the grain boundaries. Finally, the correlation between the impact toughness and the volume fraction of the M/A constituents was established, and the fracture mechanisms for the different tempering conditions are explained. - Highlights: • The dependence of the deterioration of impact toughness on tempering temperature has been analysed. • The instrumented Charpy V-notch impact test has been employed to study the fracture mechanism. • The influence of M/A constituents on different fracture mechanisms based on the hinge model has been demonstrated. • A correlation between the mechanical properties and the amount of M/A constituents has been established.

  15. Effect on property of HIC-Resistance of vessel steel of PWHT

    Science.gov (United States)

    Zhao, Xinyu; Zou, Yang; Qin, Liye; Lv, Yanchun

    2017-09-01

    Post-Welding Heat Treatment (PWHT) is usually taken after welding and joining of vessel steel, which effects the mechanical and Hydrogen Induced Cracking (HIC) resistance property of vessel plates. Simulating PWHT experiment was taken to research on the effect on mechanical property and HIC-resistance of PWHT of vessel plates. Some conclusions can be summarized as following. Comparing with the normalizing samples, the tensile strength of the samples after PWHT with holding time of 2h, 6h and 20h decreases by 27MPa, 44MPa and 47MPa. Ductile Brittle Transition Temperature (DBTT) of the normalizing samples was almost close to those of the samples after PWHT. But the impact energy of samples at 0°C increased with rise of PWHT holding time. And the hardness of samples decreases with rise of PWHT holding time. As shown in morphology structure, the precipitation of carbonide increases with the rise of holding time of PWHT, which decreases the strength and hardness of samples and raises the impact energy. But PWHT has a little effect on HIC-Resistance, which means PWHT don't deteriorate property of HIC-Resistance of vessel plates severely.

  16. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  17. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    OpenAIRE

    Yang, Zhi-Qiang; Liu, Zheng-Dong; HE Xi-kou; Liu, Ning

    2017-01-01

    The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak...

  18. Effect of heterogeneities on the thermoelectric power of pressure vessel steel; Effet des heterogeneites sur le pouvoir thermoelectrique de l'acier de cuve

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, L

    2006-12-15

    In service working conditions, the vessel of the Pressurized Water Reactors (PWR) undergoes an ageing due to irradiation. In order to follow the evolution of the mechanical characteristics of the steel in service, EDF launched a surveillance program which consists to carry out mechanical tests on samples aged in reactor. However, the results of these tests have the disadvantage to be affected by the presence of heterogeneities within the steel. Indeed, because of its manufacturing process, the steel contains segregated areas. Thus, EDF launched Thermoelectric Power Measurements (TEP) on the resilience samples of the surveillance program, to complete the mechanical tests and to help with their interpretation. However, these measurements are today difficult to analyse because they include at the same time the effect of the irradiation and the effect of the metallurgical heterogeneities. The aim of this work consisted in evaluating the effect of the heterogeneities on the TEP of the non-irradiated vessel steel. For that, a numerical model was developed which allows to calculate the TEP of a composite structure. We have shown that the model is pertinent to highlight the effect of the heterogeneities on the TEP of the vessel steel, which is considered like a 'matrix'/'segregation' composite. The model allowed us to put emphasis on the influence of different parameters on the TEP measurement. We have thus showed that the measurements conditions have an important effect on the obtained TEP value (influence of the applied pressure, the position of the sample on the device, the site of the metallurgical heterogeneities,...). (author)

  19. Effects of irradiation at lower temperature on the microstructure of Cr-Mo-V-alloyed reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, M.; Boehmert, J.; Gilles, R. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1998-10-01

    The microstructural damage process due to neutron irradiation [1] proceeds in two stages: - formation of displacement cascades - evolution of the microstructure by defect reactions. Continuing our systematic investigation about the microstructural changes of Russian reactor pressure vessel steel due to neutron irradiation the microstructure of two laboratory heats of the VVER 440-type reactor pressure vessel steel after irradiation at 60 C was studied by small angle neutron scattering (SANS). 60 C-irradiation differently changes the irradiation-induced microstructure in comparison with irradiation at reactor operation temperature and can, thus, provide new insights into the mechanisms of the irradiation damage. (orig.)

  20. Weldability and toughness evaluation of pressure vessel quality steel using the shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Datta, R.; Mukerjee, D.; Mishra, S.

    1998-12-01

    The present study was carried out to assess the weldability properties of ASTM A 537 Cl. 1 pressure-vessel quality steel using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were conducted under different welding conditions to determine the cold cracking susceptibility of the steel. The static fatigue limit values determined for the implant test indicate adequate resistance to cold cracking even with unbaked electrodes. The ERC test, however, established the necessity to rebake the electrodes before use. Lamellar tearing tests carried out using full-thickness plates under three welding conditions showed no incidence of lamellar tearing upon visual examination, ultrasonic inspection, and four-section macroexamination. Lamellar tearing tests were repeated using machined plates, such that the central segregated band located at the midthickness of the plate corresponded to the heat-affected zone (HAZ) of the weld. Only in one (no rebake, heat input: 14.2 kj cm-1, weld restraint load: 42 kg mm-2) of the eight samples tested was lamellar tearing observed. This was probably accentuated due to the combined effects of the presence of localized pockets of a hard phase (bainite) and a high hydrogen level (unbaked electrodes) in the weld joint. Optimal welding conditions were formulated based on the above tests. The weld joint was subjected to extensive tests and found to exhibit excellent strength (tensile strength: 56.8 kg mm-2, or 557 MPa), and low temperature impact toughness (7.4 and 4.5 kg-m at-20 °C for weld metal, WM, and HAZ) properties. Crack tip opening displacement tests carried out for the WM and HAZ resulted in δm values 0.36 and 0.27 mm, respectively, which indicates adequate resistance to brittle fracture.

  1. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  2. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    Science.gov (United States)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  3. Hole expansion test of third generation steels

    Science.gov (United States)

    Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz

    2017-10-01

    The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.

  4. Characteristics of Modified 9Cr-1Mo Steel for Reactor Pressure Vessel of Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ryu, W. S.; Han, Chang Hee; Yoon, J. H.; Chang, Jong Hwa

    2004-11-15

    Many researches and developments have been progressed for the construction of VHTR by 2020 in Korea. Modified 9Cr-1Mo steel has been receiving attention for the application to the reactor pressure vessel material of VHTR. We collected and analyzed the research data for modified 9Cr-1Mo steel in order to understand the characteristics of modified 9Cr-1Mo steel. The modified 9Cr-1Mo steel is a modified alloy system similar to conventional 9Cr-1Mo grade ferritic steel. Modifications include additions of vanadium, niobium, and nitrogen, as well as lower carbon content. In this report, we summarized the change of microstructure and mechanical properties after tempering, thermal aging, and irradiation. Modified 9Cr-1Mo steel has high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. But the irradiation embrittlement behavior of modified 9Cr-1Mo steel should be evaluated and the evaluation methodology also should be developed. At the same time, the characteristics of weldment which is the weak part in pressure vessel should be evaluated.

  5. Study of a neutron irradiated reactor pressure vessel steel by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cammelli, S. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)], E-mail: sebastiano.cammelli@psi.ch; Degueldre, C.; Kuri, G.; Bertsch, J. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2008-11-15

    Reactor pressure vessel (RPV) reference steel samples submitted to neutron irradiations followed by thermal annealing were investigated by X-ray absorption fine structure (XAFS) spectroscopy. Several studies revealed that Cu and Ni impurities can form nanoclusters. In the unirradiated sample and in the only-irradiated sample no significant clustering is detected. In all irradiated and subsequently annealed samples increases of Cu and Ni atom densities are recorded around the absorber. Furthermore, the density of Cu and Ni atoms determined in the first and second shells around the absorber is found to be affected by the irradiation and annealing treatment. The comparison of the XAFS data at Cu and Ni K-edges shows that these elements reside in arrangements similar to bcc Fe. However, the local irradiation damage yields vacancy fractions which were determined from the analysis of XAFS data with a precision of {approx}5%.

  6. Development of High Strength Low Alloy Steel for Nuclear Reactor Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kim, M. C.; Yoon, J. H; Choi, K. J.; Kim, J. M.; Hong, J. H.

    2013-11-15

    SA508 Gr. 4N Ni-Cr-Mo low alloy steel has an improved strength and fracture toughness, compared to commercial low alloy steels such as SA508 Gr. 3 Mn-Mo-Ni low alloy steel. In this study, the microstructural observation and baseline test were carried out using SA508 Gr. 4N model alloy of 1 ton scale. Thermal embrittlement and neutron irradiation embrittlement behaviors of SA508 Gr. 4N model alloy were also evaluated. The yield strength of 540MPa, Charpy transition temperature, T{sub 41J} of -132 .deg. C, Reference temperature, T{sub 0} of -146 .deg. C, and RT{sub NDT} of -105 .deg. C were obtained from large scale SA508 Gr. 3 low alloy steel. Effect of alloy elements on thermal embrittlement was carefully evaluated and embrittlement mechanism was characterized using small scale model alloys with various alloy composition. Neutron irradiation behavior at high fluence level up to 1.5x10{sup 20} n/cm{sup 2} corresponding over 80 years operation of RPV were investigated using irradiated samples from research reactor 'HANARO'. The irradiation embrittlement behavior of SA508 Gr. 4N model alloy was similar to that of commercial RPV steel. However, after neutron irradiation up to 1.3x10{sup 20} n/cm{sup 2}, SA508 Gr. 4N model alloy shows lower transition temperature(T{sub 41J} = -63 .deg. C) than unirradiated commercial RPV steel because it has a superior initial toughness.

  7. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-02-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  8. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei, E-mail: wei.guo-2@manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Dong, Shiyun [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Guo, Wei; Francis, John A.; Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom)

    2015-02-11

    SA508 steels are typically used in civil nuclear reactors for critical components such as the reactor pressure vessel. Nuclear components are commonly joined using arc welding processes, but with design lives for prospective new build projects exceeding 60 years, new welding technologies are being sought. In this exploratory study, for the first time, autogenous laser welding was carried out on 6 mm thick SA508 Cl.3 steel sheets using a 16 kW fiber laser system operating at a power of 4 kW. The microstructure and mechanical properties (including microhardness, tensile strength, elongation, and Charpy impact toughness) were characterized and the microstructures were compared with those produced through arc welding. A three-dimensional transient model based on a moving volumetric heat source model was also developed to simulate the laser welding thermal cycles in order to estimate the cooling rates included by the process. Preliminary results suggest that the laser welding process can produce welds that are free of macroscopic defects, while the strength and toughness of the laser welded joint in this study matched the values that were obtained for the parent material in the as-welded condition.

  9. Effect of Macrosegregation on the Microstructure and Mechanical Properties of a Pressure-Vessel Steel

    Science.gov (United States)

    Yan, Guanghua; Han, Lizhan; Li, Chuanwei; Luo, Xiaomeng; Gu, Jianfeng

    2017-07-01

    Macrosegregation refers to the chemical segregation, which occurs quite commonly in the large forgings such as nuclear reactor pressure vessel. This work assesses the effect of macrosegregation and homogenization treatment on the mechanical properties of a pressure-vessel steel (SA508 Gr.3). It was found that the primary reason for the inhomogeneity of the microstructure was the segregation of Mn, Mo, and Ni. Martensite, and coarse upper bainite with M-A (martensite-austenite) islands have been obtained, respectively, in the positive and negative segregation zone during a simulated quenching process. During tempering, the carbon-rich M-A islands decomposed into a mixture of ferrite and numerous carbides which deteriorated the toughness of the material. The segregation has been substantially minimized by a homogenizing treatment. The results indicate that the material homogenized has a higher impact toughness than the material with segregation, due to the reduction in M-A island in the negative segregation zone. It can be concluded that the microstructure and mechanical properties have been improved remarkably by means of homogenization treatment.

  10. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  11. Low-Cost, Lightweight Pressure Vessel Proof Test

    Science.gov (United States)

    Chanez, Eric

    This experiment seeks to determine the burst strength of the low-cost, lightweight pressure vessel fabricated by the Suborbital Center of Excellence (SCE). Moreover, the test explores the effects of relatively large gage pressures on material strain for ‘pumpkin-shaped' pressure vessels. The SCE team used pressure transducers and analog gauges to measure the gage pressure while a video camera assembly recorded several gores in the shell for strain analysis. The team loaded the vessel in small intervals of pressure until the structure failed. Upon test completion, the pressure readings and video recordings were analyzed to determine the burst strength and material strain in the shell. The analysis yielded a burst pressure of 13.5 psi while the strain analysis reported in the shell. While the results of this proof test are encouraging, the structure's factor of safety must be increased for actual balloon flights. Furthermore, the pressure vessel prototype must be subjected to reliability tests to show the design can sustain gage pressures for the length of a balloon flight.

  12. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  13. Hydrogen Absorption Induced Slow Crack Growth in Austenitic Stainless Steels for Petrochemical Pressure Vessel Industries

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2011-05-01

    Full Text Available Type 304Land type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a necessary condition for hydrogen embrittlement in the austenitic phase.

  14. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  15. Effect of Heavy Ion Irradiation Dosage on the Hardness of SA508-IV Reactor Pressure Vessel Steel

    Directory of Open Access Journals (Sweden)

    Xue Bai

    2017-01-01

    Full Text Available Specimens of the SA508-IV reactor pressure vessel (RPV steel, containing 3.26 wt. % Ni and just 0.041 wt. % Cu, were irradiated at 290 °C to different displacement per atom (dpa with 3.5 MeV Fe ions (Fe2+. Microstructure observation and nano-indentation hardness measurements were carried out. The Continuous Stiffness Measurement (CSM of nano-indentation was used to obtain the indentation depth profile of nano-hardness. The curves showed a maximum nano-hardness and a plateau damage near the surface of the irradiated samples, attributed to different hardening mechanisms. The Nix-Gao model was employed to analyze the nano-indentation test results. It was found that the curves of nano-hardness versus the reciprocal of indentation depth are bilinear. The nano-hardness value corresponding to the inflection point of the bilinear curve may be used as a parameter to describe the ion irradiation effect. The obvious entanglement of the dislocations was observed in the 30 dpa sample. The maximum nano-hardness values show a good linear relationship with the square root of the dpa.

  16. Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Suzuki, M. [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2014-09-15

    The effects of thermal aging of stainless steel weld-overlay claddings of nuclear reactor pressure vessels on the microstructure and hardness of the claddings were investigated using atom probe tomography and nanoindentation testing. The claddings were aged at 400 °C for periods of 100–10,000 h. The fluctuation in Cr concentration in the δ-ferrite phase, which was caused by spinodal decomposition, progressed rapidly after aging for 100 h, and gradually for aging durations greater than 1000 h. On the other hand, NiSiMn clusters, initially formed after aging for less than 1000 h, had the highest number density after aging for 2000 h, and coarsened after aging for 10,000 h. The hardness of the δ-ferrite phase also increased rapidly for short period of aging, and saturated after aging for longer than 1000 h. This trend was similar to the observed Cr fluctuation concentration, but different from the trend seen in the formation of the NiSiMn clusters. These results strongly suggest that the primary factor responsible for the hardening of the δ-ferrite phase owing to thermal aging is Cr spinodal decomposition.

  17. Plastic deformation and fracture behaviour of 21/4 Cr-1 Mo pressure-vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, M.; Vlach, B.; Man, J.; Bilek, Z.

    1989-01-01

    During the heat treatment of steel plates and forgings of large thicknesses, microstructures with various volume fractions of ferrite appear. Plastic properties and fracture behaviour of these mixed microstructures are a function of ferrite content. The influence of ferrite content in the range from 0% to 54% in the bainitic-ferritic microstructure on mechanical properties and fracture behaviour of 21/4 Cr-1 Mo steel was examined. The yield stress was found to decrease linearly with the volume fraction of ferrite. The tensile strength was independent of ferrite content up to 25%, after which the tensile strength decreased. Using the Charpy test it has been found that the critical ferrite content-25%-exists in a mixed microstructure, at which the propagation and initiation transition temperatures attain the highest values. The fracture toughness tests gave the same results. Increasing the volume fraction of ferrite, the cleavage fracture toughness/temperature curves were shifted to higher temperatures. Simultaneously, the ductile-brittle fracture toughness transition temperature was raised reaching the highest value for the critical ferrite content. The fracture behaviour could be tentatively explained through the influence of ferrite volume fraction on both the cleavage fracture stress and the stress level at the crack tip.

  18. Investigation of the Effects of Submerged Arc Welding Process Parameters on the Mechanical Properties of Pressure Vessel Steel ASTM A283 Grade A

    Directory of Open Access Journals (Sweden)

    Prachya Peasura

    2017-01-01

    Full Text Available The pressure vessel steel is used in boilers and pressure vessel structure applications. This research studied the effects of submerged arc welding (SAW process parameters on the mechanical properties of this steel. The weld sample originated from ASTM A283 grade A sheet of 6.00-millimeter thickness. The welding sample was treated using SAW with the variation of three process factors. For the first factor, welding currents of 260, 270, and 280 amperes were investigated. The second factor assessed the travel speed, which was tested at both 10 and 11 millimeters/second. The third factor examined the voltage parameter, which was varied between 28 and 33 volts. Each welding condition was conducted randomly, and each condition was tested a total of three times, using full factorial design. The resulting materials were examined using tensile strength and hardness tests and were observed with optical microscopy (OM and scanning electron microscopy (SEM. The results showed that the welding current, voltage, and travel speed significantly affected the tensile strength and hardness (P value < 0.05. The optimum SAW parameters were 270 amperes, 33 volts, and 10 millimeters/second travel speed. High density and fine pearlite were discovered and resulted in increased material tensile strength and hardness.

  19. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  20. Design Assisted by Testing of Cold Formed Steel Trusses

    Directory of Open Access Journals (Sweden)

    Raul Zaharia

    2004-01-01

    Full Text Available The paper presents the experimental program developed in the Laboratory of Civil Engineering Faculty of the ”Politehnica” University of Timișoara, Romania, in order to establish the real behavior of bolted connections in cold formed steel trusses. First, the semi-rigid behavior of cold formed steel truss joints is demonstrated by means of test of typical T joints. A formula for the axial rigidity of single lap joint is determined, and, based on this formula, theoretical models are proposed for the rotational rigidity of cold formed steel truss bolted joints. In the third step of the experimental program, a cold formed steel truss is tested, in order to observe the structural behavior of joints and to validate the theoretical assumptions. A numerical analysis of the tested structure is also performed, and comparisons with the experimental results are given.

  1. Estimation of lower-bound K{sub Jc} on pressure vessel steels from invalid data

    Energy Technology Data Exchange (ETDEWEB)

    McCable, D.E.; Merkle, J.G.

    1996-10-01

    Statistical methods are currently being introduced into the transition temperature characterization of ferritic steels. Objective is to replace imprecise correlations between empirical impact test methods and universal K{sub Ic} or K{sub Ia} lower-bound curves with direct use of material-specific fracture mechanics data. This paper introduces a computational procedure that couples order statistics, weakest-link statistical theory, and a constraint model to arrive at estimates of lower-bound K{sub Jc} values. All of the above concepts have been used before to meet various objectives. In the present case, scheme is to make a best estimate of lower-bound fracture toughness when resource K{sub Jc} data are too few to use conventional statistical analyses. Utility of the procedure is of greatest value in the middle-to-high toughness part of the transition range where specimen constraint loss and elevated lower-bound toughness interfere with conventional statistical analysis methods.

  2. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Nourgaliev, R.R.; Dinh, T.N.; Karbojian, A. [Division of Nuclear Power Safety, Royal Institute of Technology, Drottning Kristinas Vaeg., Stockholm (Sweden)

    1999-07-01

    This paper describes the FOREVER (Failure Of REactor VEssel Retention) experimental program, which is currently underway at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS). The objectives of the FOREVER experiments are to obtain data and develop validated models (i) on the melt coolability process inside the vessel, in the presence of water (in particular, on the efficacy of the postulated gap cooling to preclude vessel failure); and (ii) on the lower head failure due to the creep process in the absence of water inside and/or outside the lower head. The paper presents the experimental results and analysis of the first FOREVER-C1 test. During this experiment, the 1/10th scale pressure vessel, heated to about 900degC and pressurized to 26 bars, was subjected to creep deformation in a non-stop 24-hours test. The vessel wall displacement data clearly shows different stages of the vessel deformation due to thermal expansion, elastic, plastic and creep processes. The maximum displacement was observed at the lowermost region of the vessel lower plenum. Information on the FOREVER-C1 measured thermal characteristics and analysis of the observed thermal and structural behavior is presented. The coupled nature of thermal and mechanical processes, as well as the effect of other system conditions (such as depressurization) on the melt pool and vessel temperature responses are analyzed. (author)

  3. Compatibility tests of steels in flowing liquid lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, F.; Benamati, G. E-mail: benamati@brasimone.enea.it; Fazio, C.; Rusanov, A

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10{sup -6} wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 {mu}m) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  4. Seismic proof test of a reinforced concrete containment vessel (RCCV)

    Energy Technology Data Exchange (ETDEWEB)

    Hirama, Toshihiko [Shimizu Corporation, Energy Engineering Division, Seavans South, No.2-3, Shibaura 1-chome, Minato-ku, Tokyo 105-8007 (Japan)]. E-mail: hirama@shimz.co.jp; Goto, Masashi [Toshiba Corporation Power Systems and Services Company (Japan); Hasegawa, Toshiyasu [Shimizu Corporation, Energy Engineering Division (Japan); Kanechika, Minoru [Kajima Corporation Nuclear Power Department (Japan); Kei, Takahiro [Takenaka Corporation Takenaka Research and Development Institute (Japan); Mieda, Tsutomu [Ishikawajima-Harima Heavy Industories Co. Ltd. (Japan); Abe, Hiroshi [Japan Nuclear Energy Safety Organization (Japan); Takiguchi, Katsuki [Tokyo Institute of Technology, Department of Mechanical and Environmental Informatics (Japan); Akiyama, Hiroshi [Nihon University, Faculty of Science and Technology (Japan)

    2005-06-01

    In Japan, the Nuclear Power Engineering Corporation (NUPEC), sponsored by the Ministry of Economy, Trade and Industry (METI), has been conducting a series of seismic reliability proving tests using full-scale or close to full-scale models to simulate actual important equipment that is critical for seismic safety of nuclear power plants. The tests are intended to validate the seismic design and reliability with a sufficient margin even under destructive earthquakes. A series of tests was carried out on a reinforced concrete containment vessel (RCCV) for advanced boiling water reactor (ABWR) from 1992 to 1999. A large-scale high-performance shaking table at Tadotsu Engineering Laboratory, the largest in the world, was used for this test. Part 1 reports the test model and the results of pressure and leak tests. Part 2 describes test procedures, input waves and the results of verification tests such as changes of stiffness, characteristic frequency and damping ratio, the failure of the model and the load deflection. Part 3 shows the seismic safety margin that was evaluated from the energy input during the failure test to a design basis earthquake. Part 4 reports simulation analysis results by a stick model with lumped masses.

  5. Mechanical properties of type 316L stainless steel welded joint for ITER vacuum vessel (1). Experiment of unirradiated welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takahashi, Hiroyuki; Koizumi, Kouichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In design activity of ITER, the vacuum vessel (VV) is ranked as one of the most important components in core reactor from the view point of first barrier to tritium release from the reactor. The VV of ITER is designed as double walled structure so that some parts of them are not qualified in the conventional design standards. So it is necessary to prepare the new design standards to be applied them. JAERI has executed the preparation activity of the new design standards and the technical data to support them. In this study, the results of metallographic observation and mechanical properties of unirradiated type 316L stainless steel welded joint were reported. (author)

  6. A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise

    Science.gov (United States)

    Park, Duck-Gun; Jeong, Hee-Tae; Hong, Jun-Hwa

    1999-04-01

    The radiation damage and thermal recovery characteristic of neutron irradiated SA508-3 reactor pressure vessel steel specimens have been investigated. Two recovery stages were identified from the results of hardness measurements during isochronal annealing and the mechanism responsible for the two stages was explained by using the results of Barkhausen noise measurement on the basis of the interaction between radiation induced defects and the magnetic domain wall. The coercivity was not changed by neutron irradiation, whereas the maximum magnetic induction increased. Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation and recovered with subsequent heat treatments.

  7. The effect of microstructural changes on magnetic barkhausen noise in Mn-Mo-Ni pressure vessel steel

    CERN Document Server

    Jeong, H T; Hong, J H; Ahn, Y S; Kim, G M

    1999-01-01

    The effect of microstructural changes on magnetic Barkhausen noise (BN) has been investigated in Mn-Mo-Ni pressure-vessel steel with various microstructures. The BN energy was strongly influenced by the microstructural features, such as the dislocation density, the residual stress, and the carbide morphology. The measured differences in BN signals are discussed on the basis of the domain wall dynamics associated with the microstructural states. The microstructures were observed by using atomic force microscopy(AFM), and the AFM results compared with the scanning electron microscopy observations.

  8. Recommendations for the shallow-crack fracture toughness testing task within the HSST (Heavy-Section Steel Technology) Program

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, T.J. (Oak Ridge National Lab., TN (USA))

    1990-09-01

    Recommendations for Heavy-Section Steel Technology Program's investigation into the influence of crack depth on the fracture toughness of a steel prototypic of those in a reactor pressure vessel are included in this report. The motivation for this investigation lies in the fact that probabilistic fracture mechanics evaluations show that shallow flaws play a dominant role in the likelihood of vessel failure, and shallow-flaw specimens have exhibited an elevated toughness compared with conventional deep-notch fracture toughness specimens. Accordingly, the actual margin of safety of vessels may be greater than that predicted using existing deep-notch fracture-toughness results. The primary goal of the shallow-crack project is to investigate the influence of crack depth on fracture toughness under conditions prototypic of a reactor vessel. A limited data base of fracture toughness values will be assembled using a beam specimen of prototypic reactor vessel material and with a depth of 100 mm (4 in.). This will permit comparison of fracture-toughness data from deep-cracked and shallow-crack specimens, and this will be done for several test temperatures. Fracture-toughness data will be expressed in terms of the stress-intensity factor and crack-tip-opening displacement. Results of this investigation are expected to improve the understanding of shallow-flaw behavior in pressure vessels, thereby providing more realistic information for application to the pressurized-thermal shock issues. 33 refs., 17 figs.

  9. Neutron radiation embrittlement studies in support of continued operation, and validation by sampling of Magnox reactor steel pressure vessels and components

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.B.; Bolton, C.J. [Magnox Electric plc, Berkeley Centre, Glos (United Kingdom)

    1997-02-01

    Magnox steel reactor pressure vessels differ significantly from US LWR vessels in terms of the type of steel used, as well as their operating environment (dose level, exposure temperature range, and neutron spectra). The large diameter ferritic steel vessels are constructed from C-Mn steel plates and forgings joined together with manual metal and submerged-arc welds which are stress-relieved. All Magnox vessels are now at least thirty years old and their continued operation is being vigorously pursued. Vessel surveillance and other programmes are summarized which support this objective. The current understanding of the roles of matrix irradiation damage, irradiation-enhanced copper impurity precipitation and intergranular embrittlement effects is described in so far as these influence the form of the embrittlement and hardening trend curves for each material. An update is given on the influence of high temperature exposure, and on the role of differing neutron spectra. Finally, the validation offered by the results of an initial vessel sampling exercise is summarized together with the objectives of a more extensive future sampling programme.

  10. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    Science.gov (United States)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  11. Specific Features of Structural-Phase State and Properties of Reactor Pressure Vessel Steel at Elevated Irradiation Temperature

    Directory of Open Access Journals (Sweden)

    E. A. Kuleshova

    2017-01-01

    Full Text Available This paper considers influence of elevated irradiation temperature on structure and properties of 15Kh2NMFAA reactor pressure vessel (RPV steel. The steel is investigated after accelerated irradiation at 300°C (operating temperature of VVER-1000-type RPV and 400°C supposed to be the operating temperature of advanced RPVs. Irradiation at 300°C leads to formation of radiation-induced precipitates and radiation defects-dislocation loops, while no carbide phase transformation is observed. Irradiation at a higher temperature (400°C neither causes formation of radiation-induced precipitates nor provides formation of dislocation loops, but it does increase the number density of the main initial hardening phase—of the carbonitrides. Increase of phosphorus concentration in grain boundaries is more pronounced for irradiation at 400°C as compared to irradiation at 300°C due to influence of thermally enhanced diffusion at a higher temperature. The structural-phase changes determine the changes of mechanical properties: at both irradiation temperatures irradiation embrittlement is mainly due to the hardening mechanism with some contribution of the nonhardening one for irradiation at 400°C. Lack of formation of radiation-induced precipitates at T = 400°C provides a small ΔTK shift (17°C. The obtained results demonstrate that the investigated 15Kh2NMFAA steel may be a promising material for advanced reactors with an elevated operating temperature.

  12. Fatigue tests results of blade steels with modified surface

    Science.gov (United States)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Lebedeva, A. I.

    2017-11-01

    The paper presents the results of metallographic studies and fatigue tests of blade steel 12kH13 and EI961samples with modified nearsurface layer. Fatigue tests and studies of the samples with the modified layer were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. The surface modification is found to increase the fatigue strength of blade steel up to 50%. Sample surface after modifications features a cell structure with the characteristic cell size ranging from 1÷2 μm to 4÷8 μm total thickness of the modified layer for steel samples 12kH13 and EI961 was about 40 μm.

  13. Mechanical properties of a modified 2 1/4 Cr-1 Mo steel for pressure vessel applications. [V-Ti-B-modified

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Swindeman, R.W.

    1983-12-01

    Tensile and creep properties were determined on a V-Ti-B-modified 2 1/4 Cr-1 Mo steel considered to be a candidate alloy for pressure vessel aplications for coal liquefaction. The modified 2 1/4 Cr-1 Mo steel had about 0.2% V added for improved elevated-temperature strength and 0.02% Ti for grain refinement. Boron was added to improve the hardenability, thus allowing thicker sections to be quenched and normalized to completely bainitic microstructures. Lower carbon and silicon concentrations were used (approx. 0.1% C and 0.02% Si) than in standard 2 1/4 Cr-1 Mo steel. The mechanical properties determined on the modified steel after a heat treatment typical for SA-387, grade 22, class 2, indicated high toughness and excellent elecated-temperature tensile and creep strength. The modified steel had substantially better stress-rupture properties than did a standard 2 1/4 Cr-1 Mo steel (both with bainitic microstructures) with equivalent tensile properties - especially at the lowest stresses and highest temperatures. The modified steel had toughness properties superior to those of the standard 2 1/4 Cr-1 Mo steel. Comparative transmission electron microscopy studies of the standard and modified 2 1/4 Cr-1 Mo steels indicated that the differences involve the carbide precipitates and the dislocation substructures present in the steels.

  14. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  15. Models for embrittlement recovery due to annealing of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, E.D.; Wright, J.E.; Nelson, E.E. [Modeling and Computing Services, Boulder, CO (United States); Odette, G.R.; Mader, E.V. [California Univ., Santa Barbara, CA (United States)

    1995-05-01

    The reactor pressure vessel (RPV) surrounding the core of a commercial nuclear power plant is subject to embrittlement due to exposure to high energy neutrons. The effects of irradiation embrittlement can be reduced by thermal annealing at temperatures higher than the normal operating conditions. However, a means of quantitatively assessing the effectiveness of annealing for embrittlement recovery is needed. The objective of this work was to analyze the pertinent data on this issue and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. Data were gathered from the Test Reactor Embrittlement Data Base and from various annealing reports. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Independent variables considered in the analysis included material chemistries, annealing time and temperature, irradiation time and temperature, fluence, and flux. To identify important variables and functional forms for predicting embrittlement recovery, advanced statistical techniques, including pattern recognition and transformation analysis, were applied together with current understanding of the mechanisms governing embrittlement and recovery. Models were calibrated using multivariable surface-fitting techniques. Several iterations of model calibration, evaluation with respect to mechanistic and statistical considerations, and comparison with the trends in hardness data produced correlation models for estimating Charpy upper shelf energy and transition temperature after irradiation and annealing. This work provides a clear demonstration that (1) microhardness recovery is generally a very good surrogate for shift recovery, and (2) there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  16. Ductile-Brittle Transition Behavior in Tempered Martensitic SA508 Gr. 4N Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Reactor pressure vessels (RPVs) operate under severe conditions of elevated temperature, high pressure, and irradiation. Therefore, a combination of sufficient strength, toughness, good weldability, and high irradiation resistance are required for RPV materials. SA508 Gr.4N low alloy steel, which has higher Ni and Cr contents than those of commercial RPV steel, Gr.3 steel, is considered as a candidate material due to its excellent mechanical properties from tempered martensitic microstructure. The ferritic steels such as Gr.3 and Gr.4N low alloy steels reveal a ductile-brittle transition and large scatters in the fracture toughness within a small temperature range. Recently, there are some observations of the steeper transition behavior in the tempered martensitic steels, such as Eurofer97 than the transition behavior of commercial RPV steels. It was also reported that the fracture toughness increased discontinuously when the phase fraction of the tempered martensite was over a critical fraction in the heat affected zones of SA508 Gr.3. Therefore, it may be necessary to evaluate the changes of transition behavior with a microstructure for the tempered martensitic SA508 Gr.4N low alloy steel. In this study, the fracture toughness for SA508 Gr.4N low alloy steels was evaluated from a view point of the temperature dependency with phase fraction of tempered martensite controlled by cooling rate. Additionally, a possible modification of the fracture toughness master curve was proposed and discussed

  17. Mechanical testing of anisotropy in ODS steel tubes

    Science.gov (United States)

    Špirit, Z.; Chocholoušek, M.; Šíma, M.

    2017-02-01

    Anisotropy of fuel claddings made from Fe-9Cr and Fe-14Cr ODS (oxide dispersion-strengthened) steel for Generation IV reactors with coolants based on liquid metals was examined. Basic mechanical tests were performed at temperatures of 30 °C, 500 °C and 625 °C on ODS steel thin-walled tubes. Tensile tests were performed in axial and tangential directions in a vacuum to avoid oxidation of the small specimens. A scanning electron microscope with a small in-situ tensile testing device was used to conduct the tests. The result of this paper describes the basic mechanical properties of thin-walled tubes as ultimate tensile strength, yield strength, tensile modulus, etc. depending on the direction of loading.

  18. Sound insulation and vibration tests for lightweight steel framing floors

    OpenAIRE

    Shi, Wanqing; Edfast, Fredrik; Ågren, Anders

    2000-01-01

    An experimental study of sound insulation and vibrations of lightweight steel framing floors due to different floor construction set up were performed. Floors with 3m, 5m and 7.2m span were tested. The impact and airborne sound insulation for 3m span floor were measured based on ISO 140 in lab condition. Vibration tests were carried out on all three different spans. The vibration transmission loss of the structure was determined from the surface vibration measurements. The fundamental natural...

  19. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    Science.gov (United States)

    Gerich, J. W.

    1985-11-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-ton concrete-shielding vault with the 2850-ton vacuum vessel system. To maintain a vacuum of 2 x 10 to the -8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 cu m) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system.

  20. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    Science.gov (United States)

    Sun, Mingyue; Hao, Luhan; Li, Shijian; Li, Dianzhong; Li, Yiyi

    2011-11-01

    Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  1. Master curve analysis of the SA508 Gr. 4N Ni-Mo-Cr low alloy steels for reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    Low alloy steels used as Reactor Pressure Vessels (RPVs) materials directly relate to the safety margin and the life span of reactors. Currently, SA508 Gr.3 low alloy steel is generally used for RPV material. But, for larger capacity and long-term durability of RPV, materials that have better properties including strength and toughness are needed. Therefore, tempered martensitic SA508 Gr.4N low alloy steel is considered as a candidate material due to excellent mechanical properties. The fracture toughness loss caused by irradiation embrittlement during reactor operation is one of the important issues for ferritic RPV steels, because the decrease of fracture toughness is directly related to the integrity of RPVs. One reliable and efficient concept to evaluate the fracture toughness of ferritic steels is master curve method. In ASTM E1921, it is clearly mentioned the universal shape of the median toughness-temperature curve for ferritic steels including tempered martensitic steels. However, currently, concerns have arisen regarding the appropriateness of the universal shape in ASTM for the tempered martensitic steels such as Eurofer97. Therefore, it may be necessary to assess the master curve applicability for the tempered martensitic SA508 Gr.4N low alloy steel. In this study, the fracture toughness behavior with temperature of the tempered martensitic SA508 Gr.4N low alloy steels was evaluated using the ASTM E1921 master curve method. And the results were compared with those of the bainitic SA508 Gr.3 low alloy steel. Furthermore, the way to define the fracture toughness behavior of Gr.4N steels well is discussed.

  2. Standard test method for electrochemical critical pitting temperature testing of stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT). 1.2 This test methods applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1). Note 1—Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1). See the research reports (Section 14). 1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel). 1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT...

  3. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  4. Performance and Certification Testing of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-03

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  5. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  6. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  7. Modeling of Late Blooming Phases and Precipitation Kinetics in Aging Reactor Pressure Vessel (RPV) Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner

    2013-09-01

    The principle work at the atomic scale is to develop a predictive quantitative model for the microstructure evolution of RPV steels under thermal aging and neutron radiation. We have developed an AKMC method for the precipitation kinetics in bcc-Fe, with Cu, Ni, Mn and Si being the alloying elements. In addition, we used MD simulations to provide input parameters (if not available in literature). MMC simulations were also carried out to explore the possible segregation/precipitation morphologies at the lattice defects. First we briefly describe each of the simulation algorithms, then will present our results.

  8. Irradiation embrittlement of reactor pressure vessel steel at very high neutron fluence

    Science.gov (United States)

    Kryukov, A.; Debarberis, L.; von Estorff, U.; Gillemot, F.; Oszvald, F.

    2012-03-01

    For the prediction of radiation embrittlement of RPV materials beyond the NPP design time the analysis of research data and extended surveillance data up to a fluence ˜23 × 1020 cm-2 (E > 0.5 MeV) has been carried out. The experimental data used for the analysis are extracted from the International Database of RPV materials. Key irradiation embrittlement mechanisms, direct matrix damage, precipitation and element segregation have been considered. The essential part of the analysis concerns the assessment of irradiation embrittlement of WWER-440 steel irradiated with very high neutron fluence. The analysis of several surveillance sets irradiated at a fluence up to 23 × 1020 cm-2 (E > 0.5 MeV) has been performed. The effect of the main influencing chemical elements phosphorus and copper has been verified up to a fluence of 4.6 × 1020 cm-2 (E > 0.5 MeV). The data are indicating good radiation stability, in terms of the Charpy transition temperature shift and yield strength increase for steels with relatively low concentrations of copper and phosphorus. The linear dependence between ΔTk and ΔRp0.2 can be an evidence of strengthening mechanisms of irradiation embrittlement and absence of non-hardening embrittlement even at very high neutron fluence.

  9. Performance Evaluation Tests of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Martinez-Frias, J; Espinoza-Loza, F

    2002-03-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  10. Effect of proof testing on the flaw growth characteristics of 304 stainless steel. [crack propagation in welded joints

    Science.gov (United States)

    Finger, R. W.

    1974-01-01

    The effects of proof overload frequency and magnitude on the cyclic crack growth rates of 304 stainless steel weldments were investigated. The welding procedure employed was typical of those used on over-the-road cryogenic vessels. Tests were conducted at room temperature with an overload ratio of 1.50 to determine the effect of overload frequency. Effect of overload magnitude was determined from tests where a room temperature overload was applied between blocks of 1000 cycles applied at 78 K (-320 F). The cyclic stress level used in all tests was typical of the nominal membrane stress generally encountered in full scale vessels. Test results indicate that judicious selection of proof overload frequency and magnitude can reduce crack growth rates for cyclic stress levels.

  11. A study on material degradation in SB 410 carbon steel plates for boilers and other pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Baek, U. B.; Park, J. S. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Nam, K. W.; Kim, H. Y. [Korea Energy Management Corp., Yongin (Korea, Republic of)

    2005-07-01

    In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been studied. In this research, SB410 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SB410 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and 179 .deg. C and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.

  12. Analysis of the master curve approach on the fracture toughness properties of SA508 Gr.4N Ni-Mo-Cr low alloy steels for reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hyoung, E-mail: shirimp@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Min-Chul; Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-06-15

    This study aims at assessing the fracture toughness behavior of tempered martensitic Ni-Mo-Cr low alloy steels for reactor pressure vessels in a transition temperature region using a master curve approach. The fracture toughness tests for model alloys with various chemical compositions were carried out following ASTM E1921-08. The microstructures, tensile properties, and Charpy impact toughness were also evaluated. Alloying elements such as Ni, Cr, and Mo affected the mechanical properties of alloys from changes in the phase fraction and precipitation behavior. In the fracture toughness test results, the data sets showed a deviation from the median curve and a smaller scatter than that of the prediction of the ASTM standard, especially in the lower transition region. The exponential parameter of the master curve equation was adjusted by an exponential fitting to data sets for expressing well the temperature dependency of the fracture toughness. The adjusted parameter provided good agreement for data distribution and the independence of T{sub 0} from test temperatures through an overall temperature range in contrast with the results from the standard master curve.

  13. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  14. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels; Evaluacion de los defectos inducidos por la radiacion neutronica en los aceros de vasijas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.

    1978-07-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs.

  15. Small Punch Creep Test in a 316 Austenitic Stainless Steel

    Science.gov (United States)

    Saucedo-Muñoz, Maribel L.; Komazaki, Ken-Icbi; Ortiz-Mariscal, Arturo; Lopez-Hirata, Victor M.

    The small punch creep test was used to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C and loads from 199 to 512 N using a creep tester with a specimen size of 10 x 10 x 0.3 mm under an argon atmosphere. The small punch creep curves shows the three stages found in the creep curves of the conventional uniaxial test. The time to rupture decreases as the testing temperature and load increase. The secondary stage is also reduced with the increase in test load. An intergranular ductile fracture mode was observed at a testing temperature of 700 °C, while intergranular brittle mode at 650 °C which is associated with the absence of abundant precipitation at 650 °C.

  16. Estimation Of Blood Vessels Functional State By Means Of Analysis Of Temperature Reaction On Occlusive Test

    Directory of Open Access Journals (Sweden)

    A.P. Rytik

    2009-12-01

    Full Text Available Temperature reaction of distant phalanges in the case of the occlusive test has been registered. It has been revealed that the temperature reaction on the occlusive test for the group of patients with disturbances of vessel tone regulation differs from the reaction of norm group. Possible influence of vessel regulation state and volumetric blood supply on the skin temperature dynamics has been estimated. Diagnostic ability of the temperature occlusive test has been investigated

  17. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  18. Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2014-06-01

    The microstructures and the hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation at a dose of 7.2 × 10{sup 19} n cm{sup −2} (E > 1 MeV) and a flux of 1.1 × 10{sup 13} n cm{sup −2} s{sup −1} at 290 °C were investigated by atom probe tomography and by a nanoindentation technique. To isolate the effects of the neutron irradiation, we compared the results of the measurements of the neutron-irradiated samples with those from a sample aged at 300 °C for a duration equivalent to that of the irradiation. The Cr concentration fluctuation was enhanced in the δ-ferrite phase of the irradiated sample. In addition, enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening in the δ-ferrite phase occurred due to both irradiation and aging; however, the hardening of the irradiated sample was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

  19. Evaluation of Thermodynamic Stable Phase and Microstructure of SA508 Gr.4N Model Alloys for Reactor Pressure Vessel Steel with Variation of Alloying Elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mim Chul; Lee, B. S

    2009-12-15

    In order to increase the strength and the fracture toughness of RPV(reactor pressure vessel) steels, an effective way is the change of material specification from Mn-Mo-Ni low alloy steel(SA508 Gr.3) into Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on microstructural characteristics in Ni-Mo-Cr low alloy steel. The changes in stable phase of SA508 Gr.4N low alloy steel with alloying elements were evaluated using a thermodynamic calculation by ThermoCalc software, and then compared with its microstructural observation results. From the calculation of Ni-Mo-Cr low alloy steels, ferrite formation temperature were decreased with increasing Ni and Mn contents due to austenite stabilization effect. Consequently, in the microscopic observation, the microstructure became finer with increasing Ni and Mn contents. However, they does not affects the carbide phase such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3}. When the content of Cr is decreased, carbide phases became unstable and carbide coarsening is observed. With increase of Mo content, M{sub 2}C phase become stable instead of M{sub 7}C{sub 3} and it also observed in the TEM.

  20. Manganese steel in impact wear testing; Manganhartstahl in Stossverschleisstest

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, B.; Hemmann, U.; Deters, L. [Magdeburg Univ. (Germany). Inst. fuer Maschinenkonstruktion

    2000-12-01

    Beating arms in impact crushers show high wear. In order to simulate the process of the mainly occuring impact wear, experimental investigations with a special test device were carried out. With this 11 different charges of manganese steel differing in their chemical composition were tested. The different chemical composition of the charges led to different results concerning the wear resistance. A significant interrelationship between wear resistance and macro-hardness of the charges of the manganese steel could be detected. With a faster rotor speed a considerable increase of wear could be determined as well. Microscopical investigations on worn test pieces exhibit a typical embedding of small particles of concrete into the metal matrix. (orig.) [German] Die Schlagleisten in Prallbrechern unterliegen einen hohen Verschleiss. Um den Prozess des hauptsaechlich auftretenden Stossverschleisses zu simulieren, wurden Modelluntersuchungen mit einer speziellen Pruefeinrichtung durchgefuehrt. Dabei konnten 11 verschiedene Chargen von Manganhartstahl, die sich im wesentlichen in ihrer chemischen Zusammensetzung unterschieden, untersucht werden. Die unterschiedliche chemische Zusammensetzung der einzelnen Chargen fuehrte zu unterschiedlichen Ergebnissen hinsichtlich der Verschleissbestaendigkeit der einzelnen Modellschlagleisten. Hierbei ist ein signifikanter Zusammenhang zwischen der Verschleissbestaendigkeit und der Makrohaerte der Manganhartstaehle zu erkennen. Die Umfangsgeschwindigkeit des Rotors der Pruefeinrichtung beeinflusst ebenfalls das Verschleissverhalten, und zwar fuehrte eine hoehere Umfangsgeschwindigkeit zu hoeherem Verschleiss. Mikroskopische Untersuchungen an geschaedigten Probekoerpern zeigten ein Einbetten von kleinsten Partikeln aus Beton im oberflaechennahen Stoffbereich der Metallmatrix. (orig.)

  1. On the role of sulfur on the dissolution of pressure vessel steels at the tip of a propagating crack in PWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Combrade, P.; Foucault, M. (UNIREC 42- Firminy (FR)); Marcus, P. (Ecole Nationale Superieure de Chimie 75 - Paris (FR)); Slama, G. (Societe Franco-Americaine de Constructions Atomiques (Framatome), 92 - Courbevoie (FR))

    1990-03-01

    Different aspects of the effect of sulfur on the dissolution and film repair on pressure vessel steel exposed to PWR environment at 300{sup 0}C were examined. A monolayer of sulfur adsorbed on a bare surface was shown to inhibit the nucleation of a magnetite film. The comparison of this result with dissolution measurements performed by using CERT under controlled potential lead to the assumption that mechanical rupture steps are involved in the environmental effect on the crack propagation rate. 27 refs.

  2. Impact Tensile Testing of Stainless Steels at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  3. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schinke, B.; Malmberg, T.

    1987-03-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10/sup -3/ s/sup -1/) agree favourably with previous measurements but at high rates (50 s/sup -1/) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured

  4. Annealing for plant life management: hardness, tensile and Charpy toughness properties of irradiated, annealed and re-irradiated mock-up low alloy nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, Philip; Cripps, Robin (Paul Scherrer Inst. (PSI), Villigen (Switzerland))

    1994-01-01

    Hardness, tensile and Charpy properties of an irradiated (I) and irradiated-annealed-reirradiated (IAR) mock-up pressure vessel steel are presented. Spectrum tailored pressurized light water reactor (PWR) irradiation at 290[sup o]C by fast neutrons up to nominal fluences of 5 x 10[sup 19]/cm[sup 2] (E [>=] 1 MeV) in a swimming pool type reactor caused the hardness, tensile yield stress and tensile strength to increase. Embrittlement also occurred as indicated by Charpy toughness tests. The optimum annealing heat treatment for the main program was determined using isochronal and isothermal runs on the material and measuring the Vickers microhardness. The response to an intermediate annealing treatment (460[sup o]C for 18 h), when 50% of the target fluence has been reached and then irradiating to the required end fluence (IAR condition) was then monitored further by Charpy and tensile mechanical properties. Annealing was beneficial in mitigating overall hardening or embrittlement effects. The rate of re-embrittlement after annealing and re-irradiating was no faster than when no annealing had been performed. Annealing temperatures below 440[sup o]C were indicated as requiring relatively long times, i.e. [>=] 168 h to achieve some reduction in radiation induced hardness for example. (Author).

  5. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70.

    Science.gov (United States)

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is YTS = -285.521 + 15.706X1 + 2.514X2 - 0.004X1(2) - 0.001X2(2) - 0.029X1X2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld.

  6. Assessment of Negligible Creep, Off-Normal Welding and Heat Treatment of Gr91 Steel for Nuclear Reactor Pressure Vessel Application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Terry, Totemeier [Idaho National Laboratory (INL)

    2006-10-01

    Two different topics of Grade 91 steel are investigated for Gen IV nuclear reactor pressure vessel application. On the first topic, negligible creep of Grade 91 is investigated with the motivation to design the reactor pressure vessel in negligible creep regime and eliminate costly surveillance programs during the reactor operation. Available negligible creep criteria and creep strain laws are reviewed, and new data needs are evaluated. It is concluded that modifications of the existing criteria and laws, together with their associated parameters, are needed before they can be reliably applied to Grade 91 for negligible creep prediction and reactor pressure vessel design. On the second topic, effects of off-normal welding and heat treatment on creep behavior of Grade 91 are studied with the motivation to better define the control over the parameters in welding and heat treatment procedures. The study is focused on off-normal austenitizing temperatures and improper cooling after welding but prior to post-weld heat treatment.

  7. Pendulum support of the W7-X plasma vessel: Design, tests, manufacturing, assembly, critical aspects, status

    Energy Technology Data Exchange (ETDEWEB)

    Missal, B., E-mail: bernd.missal@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Leher, F.; Schiller, T. [MAN Diesel and Turbo SE, Werftstraße 17, 94469 Deggendorf (Germany); Friedrich, P. [Universität Rostock, FB Maschinenbau und Schiffstechnik, Albert-Einsteins-Straße 2, 18051 Rostock (Germany); Capriccioli, A. [ENEA Frascati, Fusion Technology Unit, Frascati (Italy)

    2014-10-15

    Highlights: • Plasma vessel support has to allow vertical adjustment and horizontal passive movement. • Planar sliding tables with PTFE do not fulfill all requirements. • Pendulums can fulfill all requirements. • Geometry and material of spherical bearings had to be optimized in calculations and tests. • Optimized pendulums were manufactured and assembled. - Abstract: The superconducting helical advanced stellarator Wendelstein 7-X (W7-X) is under construction at the Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald, Germany. The three dimensional shape of plasma will be generated by 50 non-planar magnetic coils. The plasma vessel geometry follows exactly this three dimensional shape of plasma. To ensure the superconductivity of coils a cryo vacuum has to be generated. Therefore the coils and their support structure are enclosed within the outer vessel. Plasma vessel, coil structures and outer vessel have to be supported separately. This paper will describe the vertical supports of plasma vessel which have to fulfill two special requirements, vertical adjustability and horizontal mobility. These two tasks will be carried out by plasma vessel supports (PVS) with hydraulic cylinders, special sliding tables during assembly and pendulum supports during operating phase. The paper will give an overview of design, calculation, tests, fabrication, assembly, critical aspects and status of PVS.

  8. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...... of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive...

  9. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    Science.gov (United States)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  10. Lap-joint testing of precoated steel materials

    Directory of Open Access Journals (Sweden)

    Chico, B.

    2003-12-01

    Full Text Available In industry, particularly in the building construction, lap-joint technology for precoated steel sheet materials has undergone rapid development. However, standars for lap-joint testing are lacking. This work analyses the behaviour of four precoated steel materials commonly used in the building industry: 55 % Al-Zn and hot dip galvanized, painted and unpainted. Two-year atmospheric exposure tests have been carried out in Madrid and Avilés (Spain, complemented by accelerated weathering tests in climatic cabinets. The latter have consisted of two salt fog/humidity/drying cycles: VDA cycle 621-415 and the "CENIM cycle", which has been designed to adequately simulate the behaviour of materials in this type of joints.

    En la industria en general y, particularmente, en la industria de la construcción, las tecnologías sobre uniones solapadas han experimentado un rápido desarrollo. Sin embargo, no son abundantes los ensayos para este tipo de uniones. Este trabajo analiza el comportamiento de cuatro materiales de acero pre-recubierto comúnmente usados en la industria de la construcción: 55 % Al-Zn y galvanizado por inmersión en caliente, con recubrimiento orgánico y sin él. Se han realizado ensayos de exposición natural durante dos años en las atmósferas de Madrid y Avilés (España, complementados con ensayos de envejecimiento acelerado en cámaras climáticas. En estos últimos se han ensayado dos ciclos de proyección niebla salina/humedad/secado: ciclo VDA 621-415 y un ciclo desarrollado en el CENIM diseñado.

  11. Results of long-term field tests of protective earthing device for vessel electric systems

    Directory of Open Access Journals (Sweden)

    Blaginin V.A.

    2015-03-01

    Full Text Available The results of prolonged natural tests of protective neutral earthing device for controlling the fire and electrical safety of vessel electric systems have been shown. The use of such devices provides safe single-phase fault currents and reducing arc overvoltage during the long-term operation of a ship. The results of long-term monitoring of the device operation as part of the existing vessel electric power system have confirmed its effectiveness

  12. Induced martensitic transformation during tensile test in nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rivas, L. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); University of Kaiserslautern, Materials Testing, Gottlieb - Daimler - Str., 67663 Kaiserslautern (Germany); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kuntz, Matthias [Robert Bosch GmbH, Materials and Processing Dept, P.O. Box 300240, Stuttgart (Germany); Sourmail, Thomas [Asco Industries CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, F.G. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2016-04-26

    Retained austenite in nanostructured bainite is able to undergo mechanically induced martensitic transformation. However, the link between transformation and deformation mechanisms involved makes difficult the understanding of the process. In this work, a model has been developed to assess the effect of the external stress itself on the martensite phase transformation. In addition, after a detailed initial microstructural characterization, the martensite fraction evolution during tensile deformation has been obtained by means of X-ray diffraction analyses after interrupted tensile tests in several nanostructured bainitic steels. Experimental results have been compared to the outputs of the model, as a reference. They suggests that stress partitioning between phases upon tensile deformation is promoted by isothermal transformation at lower temperatures.

  13. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  14. J-R Fracture Resistance of SA533 Gr.B-Cl.1 Steel for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji-Hyun; Hong, Seokmin; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A rolled plate might show different mechanical behaviors from a forging, even though they contain same chemical compositions. Furthermore, it is known that the fracture behavior of a rolled plate is very sensitive to material orientation comparing to a forging. In this study, the J-R fracture resistances of SA533 Gr.B-Cl.1 plate were measured at reactor operating temperature and the material orientation sensitivity was discussed. The decrease of fracture resistance of this kind of low alloy steel at an elevated temperature is known as the effect of dynamic strain aging (DSA). It was attributed to that the carbides and grains elongated to primary rolling direction, so that the aspect ratio of carbides and grains in the specimen with T-L orientation is larger. Generally, the hard second phase could take a roll of trigger point of unstable fracture. It is needed that the fracture surfaces of the tested specimens to be examined profoundly.

  15. Numerical study of the Notch Location of the Impact Test Specimens on the HAZ of SA516 Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yun Chan; Kim, Dong Wook; Lee, Young Seog [Chungang Univ., Seoul (Korea, Republic of); Hong, Jae Keun; Park, Ji Hong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    Experimental and numerical studies were performed to examine the effects of notch position on the failure behavior and energy absorption when the Charpy V-notch impact test is made at 1 .deg. C. For this purpose, carbon steel plate (SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW (Shielded Metal-Arc Welding) method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well to examine the reproducibility of test results. The FE analysis takes into account the heterogeneous mechanical properties with complex microstructures in HAZ. Results reveal that the absorbed energies during impact test depend significantly on the notch position.

  16. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  17. The anchors of steel wire ropes, testing methods and their results

    Directory of Open Access Journals (Sweden)

    J. Krešák

    2012-10-01

    Full Text Available The present paper introduces an application of the acoustic and thermographic method in the defectoscopic testing of immobile steel wire ropes at the most critical point, the anchor. First measurements and their results by these new defectoscopic methods are shown. In defectoscopic tests at the anchor, the widely used magnetic method gives unreliable results, and therefore presents a problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enable increased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  18. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  19. Experimental Tests Concerning the Behaviour of the Steel-Concrete Composite Joints

    Directory of Open Access Journals (Sweden)

    Daniel Dan

    2006-01-01

    Full Text Available The design of the building structures situated in a seismic area deals with some spe¬cial provisions in order to satisfy the design concept for earthquake loads. Thus, some inelastic deformations must be concentrated in predefined zones for seismic energy dissi¬pation. Therefore, it is important to evaluate correctly the load bearing capacity of each basic structural element, such as beams, columns and joints too. At the "Politehnica" University of Timisoara, it was developed an experimental test program for a specific steel and composite (steel-concrete joint. Two load hypotheses were considered in order to simulate the permanent loads and the horizontal (seismic loads, respectively, acting on the structure and the corresponding joints. Two series of joints were tested in laboratory for monotonous and cyclic behavior. Both the steel and the steel-concrete joints were studied. A comparative study between the steel and the steel-concrete composite joints is presented.

  20. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-09-01

    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  1. The changes of the structural, magnetic, and mechanical properties in a reactor pressure vessel steel neutron-irradiated at 70 .deg. C

    CERN Document Server

    Park, D G; Jang, K S; Jung, M M; Kim, G M

    1999-01-01

    The irradiation embrittlement of reactor-pressure-vessel steel has been one of the main safety concerns in nuclear power plants. In the present study, an SA508-3 RPV steel was irradiated by neutrons with various fluences up to 10 sup 1 sup 8 n/cm sup 2 (E>=1MeV) at a temperature of approximately 70 .deg. C. The irradiation responses of the structural, the magnetic, and the mechanical properties of the steel were investigated by means of X-ray diffraction, Moessbauer spectroscopy, magnetic Barkhausen noise, and micro-Vickers hardness measurements. The transitions of all of these parameters occurred above a neutron does of 10 sup 1 sup 6 n/cm sup 2. The results of the X-ray and the Moessbauer experiments revealed that neutron irradiation led to the possibility of partial amorphization in the investigated RPV steel. The changes of the physical and the mechanical properties were discussed in terms of irradiation-induced cascade damage of crystalline materials.

  2. Main results of study on the interaction between the corium melt and steel in the VVER-1000 reactor vessel during a severe accident performed under the MASCA project

    Science.gov (United States)

    Asmolov, V. G.; Zagryazkin, V. N.; Tsurikov, D. F.; Vishnevsky, V. Yu.; D'Yakov, Ye. K.; Kotov, A. Yu.; Repnikov, V. M.

    2010-12-01

    The interactions that take place in the corium melt in the reactor vessel in the case of a severe accident at a nuclear power plant were investigated in accordance with the MASCA international program. Results of the interaction between the oxide melt and iron (steel), partition of the main components [U, Zr, Fe (stainless steel)] between the oxide and the metal phases of the melt, partition of low-volatile simulators of fission products between the phases of the stratified core melt pool, and impact of the oxidizing atmosphere on the melt stratification are presented. The results obtained were used for prediction of thermodynamic properties of the melts belonging to the U-Zr-Fe-O system.

  3. The role of water chemistry for environmentally assisted cracking in low-alloy reactor pressure vessel and piping steels under boiling reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2005-07-01

    The environmentally assisted initiation and propagation of cracks in structural materials is one of the most important degradation and ageing mechanisms in light water reactors (LWR) and may seriously affect plant availability and economics. In the first part of this paper a short general introduction on environmentally assisted cracking (EAC) and its significance for LWR is given. Then the important role of water chemistry control in reducing the EAC risk in LWR is illustrated by current research results about the effect of chloride transients and hydrogen water chemistry on the EAC crack growth behaviour of low-alloy reactor pressure vessel and piping steels under boiling water reactor conditions. (author)

  4. Hydrogen embrittlement of duplex steel tested using slow strain rate test

    Directory of Open Access Journals (Sweden)

    P. Vaňova

    2014-04-01

    Full Text Available This paper is dealing with hydrogen embrittlement of austenitic-ferritic 2205 duplex steel using the slow strain rate test (SSRT. The original material was subjected to heat treatment under 700 °C during 5 hours and following aircooling with the aim of provoking sigma phase precipitation and embrittlement of the material. The samples of both states were electrolytic saturation with hydrogen in 0,1N solution of sulfuric acid (H2SO4 with addition KSCN during 24 hours. The hydrogen embrittlement appeared on fracture surfaces of tested tensile bars as a quasi-cleavage damage on their perimeter. From the established depth of hydrogen charging the diffusion coefficient of hydrogen in duplex steel with ferritic-austenitic structure and with the structure containing the sigma phase as well were estimated.

  5. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  6. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  7. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.

    2009-01-01

    0/90 WR GFRP and 0/90 UD CFRP laminates and steel. The focus here is on CFRP/steel joint due to availability of test data. The thickness of the outer adherend varies from 3 mm to 6 mm. Shear overlaps of 25-200mm were considered. The overall objectives are (i) to assess the quality of the standard...

  8. Simulation of Laboratory Tests of Steel Arch Support

    Science.gov (United States)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel; Pacześniowski, Krzysztof

    2017-03-01

    The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.

  9. The technology of testing the safety of steel wire ropes

    Science.gov (United States)

    Zhang, Xiaochun; Hu, Caiwen

    2005-12-01

    To estimate the security of steel wire rope, the broken wire condition, the capability of the rope to bear weight and the state of stress balance of each wire in the steel wire rope were investigated. The wavelet translation method was applied to analyze the signals of magnetic field leakage from the steel wire rope. The result of the time-frequency analysis of the signals can be used to make certain of he position and the amount of the broken wire. Using the static surveillance method as a basis, a dynamic surveillance method was designed to detect the stress balance of the steel wire rope. This technology makes it possible to check the stress condition of each wire on line. It can be concluded that a wavelet translation analysis and the dynamic surveillance technique are effective methods to detect on line and real-time the broken wire and the stress balance of multistrand wire ropes.

  10. Vessel grounding in entrance channels: case studies and physical model tests

    CSIR Research Space (South Africa)

    Tulsi, K

    2014-05-01

    Full Text Available off the channel slope and back into the entrance channel. The tests were conducted at the Coastal & Hydraulics Laboratory, of the CSIR in Stellenbosch, South Africa. Simulated vessel grounding was modelled in a hydraulic basin at a scale of 1:100. Over...

  11. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  12. Analysis of the micro-structural damages by neutronic irradiation of the steel of reactor vessels of the nuclear power plant of Laguna Verde. Characterization of the design steel; Analisis de los danos micro-estructurales por irradiacion neutronica del acero de la vasija de los reactores de la Central Nuclear de Laguna Verde. Caracterizacion del acero de diseno

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel y Rodriguez, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Av. Luis Enrique Erro s/n, Unidad Profesional Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.m [ININ, Direccion de Investigacion Cientifica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    The vessel of a nuclear reactor is one of the safety barriers more important in the design, construction and operation of the reactor. If the vessel results affected to the grade of to have fracture and/or cracks it is very probable the conclusion of their useful life in order to guarantee the nuclear safety and the radiological protection of the exposure occupational personnel, of the public and the environment avoiding the exposition to radioactive sources. The materials of the vessel of a nuclear reactor are exposed continually to the neutronic irradiation that generates the same nuclear reactor. The neutrons that impact to the vessel have the sufficient energy to penetrate certain depth in function of the energy of the incident neutron until reaching the repose or to be absorbed by some nucleus. In the course of their penetration, the neutrons interact with the nuclei, atoms, molecules and with the same crystalline nets of the vessel material producing vacuums, interstitial, precipitate and segregations among other defects that can modify the mechanical properties of the steel. The steel A533-B is the material with which is manufactured the vessel of the nuclear reactors of nuclear power plant of Laguna Verde, is an alloy that, among other components, it contains atoms of Ni that if they are segregated by the neutrons impact this would favor to the cracking of the same vessel. This work is part of an investigation to analyze the micro-structural damages of the reactor vessels of the nuclear power plant of Laguna Verde due to the neutronic irradiation which is exposed in a continuous way. We will show the characterization of the design steel of the vessel, what offers a comprehension about their chemical composition, the superficial topography and the crystalline nets of the steel A533-B. It will also allow analyze the existence of precipitates, segregates, the type of crystalline net and the distances inter-plains of the design steel of the vessel. (Author)

  13. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K{sub Ic}n K{sub Id} temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K{sub Ia} degradation. Finally, the CVN-tensile load-temperature diagram

  14. Comparison on Mechanical Properties of SA508 Gr.3 Cl.1, Cl.2, and Gr.4N Low Alloy Steels for Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Park, Sang-Gyu; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, microstructure and mechanical properties of SA508 Gr.3 Cl. 1, Cl.2, and Gr.4N low alloy steels are characterized to compare their properties. To evaluate the fracture toughness in the transition region, the master curve method according to ASTM E1921 was adopted in the cleavage transition region. Tensile tests and Charpy impact tests were also performed to evaluate the mechanical properties, and a microstructural investigation was carried out. The microstructure and mechanical properties of SA508 Gr.3 Cl.1, Cl2 and Gr.4N low alloy steels were characterized.. The predominant microstructure of SA508 Gr.4N model alloy is tempered martensite, while SA508 Gr.3 Cl.1 and Cl.2 steels show a typical tempered upper bainitic structure. SA508 Gr. 4N model alloy shows the best strength and transition behavior among the three SA508 steels. SA508 Gr.3 Cl.2 steel also has quite good strength, but there is a loss of toughness.

  15. The 5th surveillance testing for Kori unit 1 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed primarily by Korea Atomic Energy Research Institute and Westinhouse corporation partially involved in testing and calculation data evaluation in order to obtain reliable test result. Fast neutron fluences for capsule V, T, S, R and P were 5.087E+18, 1.115E+19, 1.228E+19, 2.988E+19, and 3.938E+19n/cm2, respectively. The bias factor, the ratio of calculation/measurement, was 0.940 for the 1st through 5th testing and the calculational uncertainty, 7% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.9846E+19n/cm{sup 2} based on the end of 17th fuel cycle and it was predicted that the fluences of vessel inside surface at 24, 32, 40 and 48EFPY would reach 3.0593E+19, 4.0695E+19, 5.0797E+19 and 6.0900E+19n/cm{sup 2} based on the current calculation. PTS analysis for Kori unit 1 showed that 27.93EFPY was the threshold value for 300 deg F requirement. 71 refs., 33 figs., 52 tabs. (Author)

  16. Test method research on weakening interface strength of steel - concrete under cyclic loading

    Science.gov (United States)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  17. Development of a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets

    OpenAIRE

    Rethmeier, Michael; Suwala, Hubert

    2014-01-01

    In this study a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets was investigated. The development of a suitable test procedure is based on the External-Loaded Hot Crack Test (PVC-Test). The test modification for resistance spot welding contains a constant tensile force load. The test method for determining the cracking susceptibility was experimentally verified for a high strength steel, a transformation induced plasticity steel (TR...

  18. Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel

    Science.gov (United States)

    2008-04-01

    3800 Torsion machine on AISI 304L and HSLA-65 steels to simulate the friction stir welding of these materials. A photograph of the experimental setup...strain rate levels = 420 flow stress values provided in the dataset for DEFORM 3D. Because of lack of data as well as some inconsistencies between

  19. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  20. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  1. Implementation of 3D-Imaging technique for visual testing in a nuclear reactor pressure vessel

    OpenAIRE

    Tanco, André

    2014-01-01

    This master thesis has been performed by request of Dekra Industrial AB. Dekra Industrial AB is a Swedish subsidiary company of the German company Dekra and works for example with safety inspections within the nuclear power industry. The inspections performed by the company are often non-destructive testing (NDT) such as visual inspections of nuclear reactor pressure vessels. The inspection methods used today are considered to be further developed and there is a strong demand of improving the...

  2. Corrosion Testing of Stainless Steel Fuel Cell Hardware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D

  3. Optimization and testing results of Zr-bearing ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  4. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    Science.gov (United States)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  5. Test and Analysis on Peeling and Cracking on Surface of 45 Steel Shafts

    Science.gov (United States)

    Li, Xinghui

    2017-10-01

    Aiming at the peeling and cracking appear on the surface of a 45 steel shaft after surface quenching and grinding, we’ve conducted chemical composition analysis, hardness test and metallographic microstructure analysis for the cracked shaft sample. The results shows that the main reason for the peeling and cracking of 45 steel shafts is the stress generated due to the uneven structures produced on the surface during quenching and tempering after forging and surface quenching.

  6. Micro alloyed steel weldability and sensibility testing on the lamellar cracks appearance

    Directory of Open Access Journals (Sweden)

    S. Stojadinović

    2011-07-01

    Full Text Available In this work are given the testing results of mechanical properties welded joints and microstructure of micro alloyed steel as well as its sensitivity to lamellar cracks appearance. The obtained results show that steel has good resistance to lamellar cracks appearance and with an appropriate wire choice for welding, a good combination of mechanical properties could be obtained at room (ambience temperatures as well as at low temperatures.

  7. Fibre Laser Welding of HY-80 Steel: Procedure Development and Testing

    Science.gov (United States)

    2010-09-01

    fusion zone, but also weld procedural developments required to minimize porosity. Future plans: Tungsten inert gas ( TIG ) weld repaired threads are...Canada Fibre Laser Welding of HY-80 Steel Proceedure Development and Testing Christopher Bayley DLP Neil Aucoin DLP Xinjin Cao NRC IAR AMTC Technical...Memorandum DRDC Atlantic TM 2009-187 September 2010 This page intentionally left blank. Fibre Laser Welding of HY-80 Steel Procedure

  8. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Gillemot, F. [Centre for Energy Research of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Hernández-Mayoral, M.; Serrano, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Török, G. [Wigner Research Center for Physics of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Ulbricht, A.; Altstadt, E. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2015-06-15

    Highlights: • TEM and SANS were applied to estimate mean size and number density of loops, nanovoids and Cu-rich clusters. • A three-feature dispersed-barrier hardening model was applied to estimate the yield stress increase. • The values and errors of the dimensionless obstacle strength were estimated in a consistent way. • Nanovoids are stronger obstacles for dislocation glide than dislocation loops, loops are stronger than Cu-rich clusters. • For reactor-relevant conditions, Cu-rich clusters contribute most to hardening due to their high number density. - Abstract: Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  9. A Review of the Application of Rate Theory to Simulate Vacancy Cluster Formation and Interstitial Defect Formation in Reactor Pressure Vessel Steel

    Directory of Open Access Journals (Sweden)

    Fallon Laliberte

    2015-10-01

    Full Text Available The beltline region of the reactor pressure vessel (RPV is subject to an extreme radiation, temperature, and pressure environment over several decades of operation; therefore it is necessary to understand the mechanisms through which radiation damage occurs and how it affects the mechanical and chemical properties of the RPV steel. Chemical rate theory is a mean field rate theory simulation model which applies chemistry to the evaluation of irradiation-induced embrittlement. It presents one method of analysis that may be coupled to other distinct methods, in order to analyze defect formation, ultimately providing useful information on strength, ductility, toughness and dimensional stability changes for effects such as embrittlement, reduction in ductility and toughness, void swelling, hardening, irradiation creep, stress corrosion cracking, etc. over time as materials are subjected to reactor operational irradiation. This paper serves as a brief review of rate theory fundamentals and presents several examples of research that exemplify the application and importance of rate theory in examining the effects of radiation damage on RPV steel.

  10. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    Energy Technology Data Exchange (ETDEWEB)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  11. Finite element analysis to estimate burst pressure of mild steel pressure vessel using Ramberg–Osgood model

    OpenAIRE

    Deolia, Puneet; Firoz A. Shaikh

    2016-01-01

    Burst pressure is the pressure at which vessel burst/crack and internal fluid leaks. An accurate prediction of burst pressure is necessary in chemical, medical and aviation industry. Burst pressure is a design safety limit, which should not be exceeded. If this pressure is exceeded it may lead to the mechanical breach and permanent loss of pressure containment. So burst pressure calculation is necessary for all the critical applications. To numerically calculate burst pressure material curve ...

  12. Corrosion Testing of Carbon Steel in Acid Cleaning Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.J.

    2002-12-06

    High level waste is stored in carbon steel tanks at the Savannah River Site (SRS). The site is currently in the process of waste removal from, and ultimately closure of, these tanks. One of the most time consuming steps in the waste removal process is cleaning the sludge heel from the bottom of the tanks to an acceptable residual quantity. The sludge consists primarily of metal oxides that formed after waste from the canyons was neutralized with sodium hydroxide. Since the canyon waste was originally a nitric acid solution, this acid is a prime candidate for sludge heel dissolution.

  13. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  14. Compression test of cold-formedsteel perforated profile with steel sheathing

    Directory of Open Access Journals (Sweden)

    Shamanin Aleksandr Yur’evich

    2015-05-01

    Full Text Available The subject of this paper is the stability and strength of cold-formed and perforated steel sigma-section columns with steel sheathing of different thickness. Ceilings with and without steel sheathing of different thickness are tested to failure in compression on a laboratory machine, which was based on a manual hydraulic jack. Series of 4 experiments with full-scale walls (2.5 m height were carried out. Also, for examination of the role of boundary conditions, the sheet in a ceiling is either left free or connected to base with screws.In civil engineering there are many experiments and methodologies for calculating the strength and buckling of ceiling with the sheathing of various materials, such as oriented strand board and gypsum board. However, for producing superstructures of ships the materials with high plastic properties and strength characteristics are required. For example steel possesses such properties. It was the main reason for conducting a series of experiments and studying the behavior of cold-formed steel columns with steel sheathing. During the experiments the deformation of the cross-section of three equally spaced cross sections was determined, as well as the axial deformation of the central column in the ceiling with steel sheathing.The test results showed the influence of the thickness of sheathing and boundary condition of a sheet on the strength and buckling of ceiling. According to the results of the tests it is necessary to evaluate the impact of the sheathing made of different materials and if necessary to carry out further tests.

  15. Evaluation of dynamic fracture toughness for Yong Gwang unit 5 reactor pressure vessel materials (Baseline Tests)

    Energy Technology Data Exchange (ETDEWEB)

    Chi Se Hwan; Kim, Joo Hag; Hong, Jun Hwa; Kwon, Sun Chil; Lee, Bong Sang [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The dynamic fracture toughness (K{sub d}) of intermediate shell and its weld in SA 508 CI. 3 Yong Gwang 5 reactor pressure vessel was determined and evaluated. Precracked thirty six Charpy specimens were tested by using an instrumented impact tester. The purpose of present work is to evaluate and confirm the un-irradiated dynamic fracture toughness and to provide pre-irradiation baseline data for future evaluation on dynamic fracture toughness change during operation. 18 refs., 5 figs., 5 tabs. (Author)

  16. Analysis of five-point bending test for multilayer surfacing system on orthotropic steel bridge

    NARCIS (Netherlands)

    Li, J.; Scarpas, A.; Tzimiris, G.; Kasbergen, C.; Hofman, R.; Voskuilen, J.

    2013-01-01

    The French five-point bending test (5PBT) provides a laboratory scale test that allows studying the fatigue resistance of surfacing systems on orthotropic steel deck bridges (OSDB). The surfacing structure for OSDB in the Netherlands consists mostly of multilayer system: top porous asphalt layer,

  17. Corrosion testing of Type 304L stainless steel for waste tank applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.J.; Mickalonis, J.I.

    1991-12-31

    AISI Type 304L stainless steel will be the material of construction for hazardous waste storage tanks. The corrosion behavior of 304L was characterized in simulated waste solutions using potentiodynamic polarization, electrochemical impedance spectroscopy and long term immersion tests. The results were correlated to assess the use of corrosion characteristics determined by electrochemical techniques for predicting long term corrosion behavior. The corrosion behaviors of Type A537 carbon steel and Incoloy 825 were also evaluated. A good correlation was found between the results from the electrochemical techniques and the immersion tests.

  18. EMS-45 Tool Steels Hardenability Experiment using Jominy ASTM A255 Test Method

    Directory of Open Access Journals (Sweden)

    Syamsul Hadi

    2013-04-01

    Full Text Available Hardenability of steels is an important way to determine heat treatment and material properties that produce component products. Jominy test is one of the method to know hardenability of steels. The Jominy ASTM A255 in used as a method for carriying out and this reseach. Parameter such as austenite temperature, holding time, cooling rate and then the results is dedicated by the prediction result, with Non Linear Numerical Equation Method. Based on test, it’s known, increasing austenite temperature, longer holding time and high cooling rate, will increase hardenability of steels. The different between the results and the prediction result done by Sonh Yue-Peng[15], Matja equation[14] and Zehtab equation[10], about 5 % -10 %. The data obtained from this experiment can be used to determine the appropriated heat treatment in order to get the desired mechanical properties, as well as to avoid distortion.

  19. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  20. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    Science.gov (United States)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  1. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    Science.gov (United States)

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The accuracy of groundwater-level tapes was investigated by developing a tape calibration method and device and testing the accuracy of a sample of groundwater-level tapes with the calibration method and device. The sample of tapes included in-service U.S. Geological Survey (USGS) Water Science Center steel and electric groundwater-level tapes.

  2. Finite element analysis to estimate burst pressure of mild steel pressure vessel using Ramberg–Osgood model

    Directory of Open Access Journals (Sweden)

    Puneet Deolia

    2016-09-01

    Full Text Available Burst pressure is the pressure at which vessel burst/crack and internal fluid leaks. An accurate prediction of burst pressure is necessary in chemical, medical and aviation industry. Burst pressure is a design safety limit, which should not be exceeded. If this pressure is exceeded it may lead to the mechanical breach and permanent loss of pressure containment. So burst pressure calculation is necessary for all the critical applications. To numerically calculate burst pressure material curve is essential. There are various material models which are used to define material curve, amongst them Ramberg–Osgood is very popular. Ramberg–Osgood accurately capture material curve in strain hardening region. This approach is applicable for different material grades. In this paper a finite element method is used to predict burst pressure using Ramberg–Osgood equation. These results are then compared with results obtained from elasto-plastic curve and true stress strain curve. Results obtained by finite element analysis are validated with experimental data which is considered from open literature.

  3. Utilization of ISO 6892:2009 testing standard for determining tensile properties of TM380 mild steel

    CSIR Research Space (South Africa)

    Shoke, L

    2013-04-01

    Full Text Available mild steel. To achieve this objective, we reviewed the ISO 6892:2009 tensile testing standard along with reported good practice guidelines. Tensile tests were conducted on a dog-bone shaped TM380 mild steel specimen with strain gauges attached on either...

  4. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  5. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  6. Investigation of pitting resistance in ultra clean IQ-Steel vs commonly used conventional steel; 158Q vs 16MnCr5 : Back-to-back pitting tests

    OpenAIRE

    Bergseth, Ellen; Sosa, Mario; Andersson, Martin; Olofsson, Ulf

    2015-01-01

    KTH Machine Design has conducted pitting tests on gears made out of two different types of steel in a standard back-to-back pitting test rig (FZG). The tested gears were produced from Ovako’s IQ-Steel in grade 158Q and compared to the behaviour of a reference steel, commonly used conventional steel in grade 16MnCr5 (reference steel, RS). The test method is a mechanical test procedure generally used to determine the pitting load capacity of gear transmission lubricants, but in this study the p...

  7. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Science.gov (United States)

    Raj, Baldev; Jayakumar, T.

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  8. Software implementation and hardware acceleration of retinal vessel segmentation for diabetic retinopathy screening tests.

    Science.gov (United States)

    Cavinato, L; Fidone, I; Bacis, M; Del Sozzo, E; Durelli, G C; Santambrogio, M D

    2017-07-01

    Screening tests are an effective tool for the diagnosis and prevention of several diseases. Unfortunately, in order to produce an early diagnosis, the huge number of collected samples has to be processed faster than before. In particular this issue concerns image processing procedures, as they require a high computational complexity, which is not satisfied by modern software architectures. To this end, Field Programmable Gate Arrays (FPGAs) can be used to accelerate partially or entirely the computation. In this work, we demonstrate that the use of FPGAs is suitable for biomedical application, by proposing a case of study concerning the implementation of a vessels segmentation algorithm. The experimental results, computed on DRIVE and STARE databases, show remarkable improvements in terms of both execution time and power efficiency (6X and 5.7X respectively) compared to the software implementation. On the other hand, the proposed hardware approach outperforms literature works (3X speedup) without affecting the overall accuracy and sensitivity measures.

  9. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  10. Test to Determine Margin-to-Failure for Hy-100 Steel with Undermatched Welds

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This test program was undertaken to determine the flaw tolerance and to quantify the strength margin-to-failure of high yield strength steel fillet welded specimens. The tests demonstrate adequate margin-to-failure for HY-100 specimens fabricated with matched welding systems. In the use of high yield (HY) steel materials in designs required to accommodate rapidly applied dynamic loads, the concern was raised where the possibility of decreased flaw tolerance and premature failure by unstable ductile tearing could limit their use. Tests were developed and conducted to demonstrate adequate margin-to-failure in HY-100 fillet and partial penetration welded structures. In addition, inelastic analytical predictions were performed to assess the accuracy of such predictive tools compared to actual test data. Results showed that adequate margin-to-failure exists when using matched welding systems.

  11. Development of an Accelerated Hydrogen Embrittlement Test for Manganese Phosphated Steels

    Science.gov (United States)

    2011-05-01

    Manganese Phosphated Steels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory Vigilante 5d. PROJECT NUMBER 5e...accelerated hydrogen embrittlement test for quality assurance/quality control of manganese phosphated components are discussed. Various incremental...existing 200 hour sustained load test for manganese phosphate and is proposed to be available as an option for future quality assurance/quality control

  12. Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Directory of Open Access Journals (Sweden)

    Gopa Chakraborty

    2016-12-01

    Full Text Available DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines. Welding electrodes conforming to SFA 5.5 AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process. In the present study, susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test. Implant tests were conducted using this electrode at two different levels of diffusible hydrogen, measured using gas chromatography technique. It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal. In implant tests, specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal. The good resistance of this steel and the welding consumable, even with high levels of diffusible hydrogen, is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone. Hence, this study shows that, in the absence of a susceptible microstructure, hydrogen assisted cracking is unlikely to occur even if hydrogen level is high. It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode, hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

  13. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    Energy Technology Data Exchange (ETDEWEB)

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E. [Army Armament RD and E Center, Watervliet, NY (United States). Benet Labs.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  14. Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  16. Non-Destructive Testing of Steel Fibre Reinforced Concrete

    Science.gov (United States)

    Corbett, D.; Tronca, G.

    2017-09-01

    For standard reinforced concrete, there are several non-destructive test (NDT) methods available for measuring the concrete cover and for locating subsurface objects and defects. Whether or not these methods may also be applied to fibre reinforced concrete has been the subject of a recent study. The results and a recommendation for the most suitable technology for use with fibre reinforced concrete is the topic of this paper.

  17. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  18. Fireside corrosion and steamside oxidation of 9-12% Cr martensitic steels exposed for long term testing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Rasmussen, F.

    2009-01-01

    To obtain long term corrosion and steam oxidation data for the 9-12%Cr ferritic steels, test tube sections have been exposed in Amager 3 and Avedore 1 coal fired power plants in Denmark (formerly run by ENERGI E2). Thus direct comparisons can be made for T91 and T92 for the 9% Cr steels and X20Cr...

  19. Continuous steel production and apparatus

    Science.gov (United States)

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  20. Rupture Properties of Blood Vessel Walls Measured by Pressure-Imposed Test

    Science.gov (United States)

    Ohashi, Toshiro; Sugita, Syukei; Matsumoto, Takeo; Kumagai, Kiichiro; Akimoto, Hiroji; Tabayashi, Koichi; Sato, Masaaki

    It is expected to be clinically useful to know the mechanical properties of human aortic aneurysms in assessing the potential for aneurysm rupture. For this purpose, a newly designed experimental setup was fabricated to measure the rupture properties of blood vessel walls. A square specimen of porcine thoracic aortas is inflated by air pressure at a rate of 10mmHg/s (≈1.3MPa/s) until rupture occurs. Mean breaking stress was 1.8±0.4 MPa (mean±SD) for the specimens proximal to the heart and 2.3±0.8MPa for the distal specimens, which are not significantly different to those values obtained longitudinally from conventional tensile tests. Moreover, the local breaking stretch ratio in the longitudinal direction was significantly higher at the ruptured site (2.7±0.5) than at the unruptured site (2.2±0.4). This testing system for studying the rupture properties of aortic walls is expected to be applicable to aortic aneurysms. Experimental verification of the present technique for the homogeneous, isotropic material is also presented.

  1. The Load Capacity Model and Experimental Tests of a New Yielding Steel Prop

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2017-01-01

    Full Text Available As the mining depth increases year by year, the deformation and failure of deep roadway become more and more serious, and new support equipment with high supporting force and yieldable character is quite necessary for mining safety. In this research, a new yielding steel prop with high stable load capacity was introduced, which features sustaining large deformation in the field. Based on principle stress method and elastic-plastic theory, a mathematical model of load capacity was proposed for the new prop. The results show that the stable load capacity of the prop increases linearly with the increase of the effective number of the steel balls. Meanwhile, the stable load capacity of the prop increases initially and decreases afterwards with the increase of the radius of the steel ball. Under the fixed radius of the steel ball, the stable load capacity will increase with the decrease of the gap between the inner tube and the outer tube. The stable load capacity of the prop calculated using the theoretical model quantitatively agrees with that of the experimental tests, with only an error within 5%.

  2. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  3. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  4. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  5. Study on the correlation of toughness with chemical composition and tensile test results in microalloyed API pipeline steels

    Directory of Open Access Journals (Sweden)

    Pouraliakbar H.

    2015-01-01

    Full Text Available In this investigation, an artificial neural network model with feed forward topology and back propagation algorithm was developed to predict the toughness (area underneath of stress-strain curve of high strength low alloy steels. The inputs of the neural network included the weight percentage of 15 alloying elements and the tensile test results such as yield strength, ultimate tensile strength and elongation. Developing the model, 118 different steels from API X52 to X70 grades were used. The developed model was validated with 26 other steels from the data set that were not used for the model development. Additionally, the model was also employed to predict the toughness of 26 newly tested steels. The predicted values were in very good agreement with the measured ones indicating that the developed model was very accurate and had the great ability for predicting the toughness of pipeline steels.

  6. Tribological tests of steel on polyamide 66, polyamide 46 type surface contacts

    Directory of Open Access Journals (Sweden)

    Papuc Radu

    2017-01-01

    Full Text Available Improving the efficiency of mechanical transmissions is made, mostly, by finding new materials characterized through antifriction properties, specific reduced mass, wear resistance and by keeping the mechanical properties at high working temperatures (until 220 ̊C. The paper presents the experimental tests for the surface type contacts between a steel made pin and different types of polyamides; finally there are presented the processing of the experimental data.

  7. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  8. Corrosion-free precast prestressed concrete piles made with stainless steel reinforcement : construction, test and evaluation.

    Science.gov (United States)

    2015-03-01

    The use of duplex high-strength stainless steel (HSSS) grade 2205 prestressing strand and : austenitic stainless steel (SS) grade 304 spiral wire reinforcement is proposed as a replacement of : conventional prestressing steel, in order to provide a 1...

  9. Germ cells may survive clipping and division of the spermatic vessels in surgery for intra-abdominal testes

    DEFF Research Database (Denmark)

    Thorup, J M; Cortes, Dina; Visfeldt, J

    1999-01-01

    Laparoscopy is a well described modality that provides an accurate visual diagnosis upon which further management of intra-abdominal testes may be based. Laparoscopic ligation of spermatic vessels as stage 1 of the procedure is a natural extension of laparoscopy. A staged approach provides adequate...

  10. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl− and High SOx Environmen

    Directory of Open Access Journals (Sweden)

    Toshiyasu Nishimura

    2017-02-01

    Full Text Available Exposure tests were performed on low alloy steels in high Cl− and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy and Raman Spectroscopy. In the exposure test site, the concentrations of Cl− and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe showed higher corrosion resistance as compared to the carbon steel (SM, and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl− and high SOx environment.

  11. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl− and High SOx Environment

    Science.gov (United States)

    Nishimura, Toshiyasu

    2017-01-01

    Exposure tests were performed on low alloy steels in high Cl− and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy) and Raman Spectroscopy. In the exposure test site, the concentrations of Cl− and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe) showed higher corrosion resistance as compared to the carbon steel (SM), and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl− and high SOx environment. PMID:28772560

  12. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl- and High SOx Environmen.

    Science.gov (United States)

    Nishimura, Toshiyasu

    2017-02-17

    Exposure tests were performed on low alloy steels in high Cl- and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy) and Raman Spectroscopy. In the exposure test site, the concentrations of Cl- and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe) showed higher corrosion resistance as compared to the carbon steel (SM), and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl- and high SOx environment.

  13. Confinement Vessel Assay System: Design and Implementation Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-18

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  14. Test Data on Intumescent Fire Protection for Structural Steel Sections in Thailand

    Directory of Open Access Journals (Sweden)

    Thanyawat Pothisiri

    2012-04-01

    Full Text Available Current fire safety regulations in Thailand require that primary structural steel components of buildings be protected to achieve a minimum of 3-hour fire-resistance rating. For steel roof structures, 1-hour or 2-hour fire-resistance ratings may be specified depending on the number of stories. The verification methods of fire-resistance ratings set forth in the regulations are ISO 834 and ASTM E119 standards. The current trend of fire protection system for steel structures is intumescent paint due to aesthetical reasons. However, the fire-resistance ratings attained by proprietary intumescent systems currently available in the market are inconclusive. It is therefore the aim of this paper to provide an insight of the fire-resistance ratings of different intumescent products based on the data collected from the fire tests conducted by the Fire Safety Research Center of Chulalongkorn University during the period of 2009 - 2011. A statistical analysis was also conducted to compare the test data with the fire-resistance ratings specified in the current fire safety regulations.

  15. Industrial test of a 6-m long bearing steel ingot by electroslag remelting withdrawing process

    Directory of Open Access Journals (Sweden)

    Xi-min Zang

    2015-05-01

    Full Text Available In this study, the key technologies of a 6-m long bearing steel ingot produced by electroslag remelting withdrawing (ESRW process, including bifilar mode supply, slag system development, and design of mold, were studied based on the laboratory research achievements. The 6-m long ingot of bearing steel GGr15 with a cross-section of 300 mm × 340 mm was produced using the ESRW process with a bifilar mode and a multi-taper T-mold in a plant. The testing results show that the melting rate using the ESRW bifilar mode technology is three times faster than traditional electroslag remelting (ESR, and the power consumption is only 1,320 kWh per ton steel. Through testing for the chemical composition, macrostructure and inclusions of remelted ingot, it can be concluded that the ESRW bifilar mode technology not only retains the characteristics of traditional ESR, but also improves the production efficiency and reduces the cost compared to traditional ESR.

  16. BIOASSAY VESSEL FAILURE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  17. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  18. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.

    Science.gov (United States)

    Gołebiowski, B; Swiatnicki, W A; Gaspérini, M

    2010-03-01

    Microstructural changes occurring during fatigue tests of austenitic-ferritic duplex stainless steel (DSS) in air and in hydrogen-generating environment have been investigated. Hydrogen charging of steel samples during fatigue crack growth (FCG) tests was performed by cathodic polarization of specimens in 0.1M H(2)SO(4) aqueous solution. Microstructural investigations of specimens after FCG tests were carried out using transmission electron microscopy to reveal the density and arrangement of dislocations formed near crack tip. To determine the way of crack propagation in the microstructure, electron backscatter diffraction investigations were performed on fatigue-tested samples in both kinds of environment. To reveal hydrogen-induced phase transformations the atomic force microscopy was used. The above investigations allowed us to define the character of fatigue crack propagation and microstructural changes near the crack tip. It was found that crack propagation after fatigue tests in air is accompanied with plastic deformation; a high density of dislocations is observed at large distance from the crack. After fatigue tests performed during hydrogen charging the deformed zone containing high density of dislocations is narrow compared to that after fatigue tests in air. It means that hydrogenation leads to brittle character of fatigue crack propagation. In air, fatigue cracks propagate mostly transgranularly, whereas in hydrogen-generating environment the cracks have mixed transgranular/interfacial character.

  19. Pretest Round Robin Analysis of 1:4-Scale Prestressed Concrete Containment Vessel Model

    Energy Technology Data Exchange (ETDEWEB)

    HESSHEIMER,MICHAEL F.; LUK,VINCENT K.; KLAMERUS,ERIC W.; SHIBATA,S.; MITSUGI,S.; COSTELLO,J.F.

    2000-12-18

    The purpose of the program is to investigate the response of representative scale models of nuclear containment to pressure loading beyond the design basis accident and to compare analytical predictions to measured behavior. This objective is accomplished by conducting static, pneumatic overpressurization tests of scale models at ambient temperature. This research program consists of testing two scale models: a steel containment vessel (SCV) model (tested in 1996) and a prestressed concrete containment vessel (PCCV) model, which is the subject of this paper.

  20. Hot cell examination on the surveillance capsule of SA 533 cl. 1 reactor pressure vessel (1st test report)

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong Sun; Jung, Y. H.; Yoo, B. O.; Baik, S. J.; Oh, W. H.; Soong, W. S.; Hong, K. P

    2000-08-01

    The post-irradiated examinations such as impact test, tensile test, composition analysis and etc. were conducted to monitor and to evaluate the radiation-induced changes, so called radiation embrittlement, in the mechanical properties of ferritic materials. Those data should be applied to confirm safety as well as reliability of reactor pressure vessel. The scopes and contents of hot cell examination on the surveillance capsule are as follows; - Capsule transportation, cutting, dismantling and classification - Shim block and Dosimeter cutting and dismantling - Impact test - Tensile test - Composition analysis by EPMA - SEM observation on the fractured surface - Hardness test - Radwaste treatment.

  1. Biaxial fatigue tests of notched specimens for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    G. Beretta

    2016-07-01

    Full Text Available High cycle fatigue tests were conducted for stainless steel AISI 304L. The geometry was a thin walled tube with a passing through hole. The tests were axial, torsional and in-phase axial-torsional, all of them under load control with R = −1. The S-N curves were constructed following the ASTM E739 standard and the fatigues limits were calculated following the method of maximum likelihood proposed by Bettinelli. The crack direction along the surface was analysed, with especial attention to the crack initiation zones. The notch fatigue limits for different hole diameters were compared with the predictions done with a microstructural fracture mechanics model.

  2. Cavitation Erosion Tests Performed by Indirect Vibratory Method on Stainless Steel Welded Samples with Hardened Surface

    Directory of Open Access Journals (Sweden)

    Marian-Dumitru Nedeloni

    2012-09-01

    Full Text Available The paper presents the results of cavitation erosion tests performed on two types of samples. The materials of the samples are frequently used for manufacturing and repairs of the hydro turbines components submitted to cavitation. The first sample was made by welding of an austenitic stainless steel on austenito-feritic base material. The second sample was made similarly with the first but with a martensitic base material. After the welding processes, on both samples was applied a hardening treatment by surface peening. The cavitation erosion tests were performed on vibratory equipment using the indirect method with stationary specimen. The results show a good cavitation erosion resistance on both samples.

  3. Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium

    Science.gov (United States)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.

    1976-01-01

    X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.

  4. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  5. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  6. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  7. Integrated geophysical measurements on a test site for detection of buried steel drums

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-04-01

    Full Text Available Geophysical methods are increasingly used to detect and locate illegal waste disposal and buried toxic steel drums. This study describes the results of a test carried out in clayey-sandy ground where 12 empty steel drums had previously been buried at 4-5 m below ground level. This test was carried out with three geophysical methods for steel-drum detection: a magnetometric survey, electrical resistivity tomography with different arrays, and a multifrequency frequency-domain electromagnetic induction survey. The data show that as partially expected, the magnetometric and electromagnetic induction surveys detected the actual steel drums buried in the subsurface, while the electrical resistivity tomography mainly detected the changes in some of the physical properties of the terrain connected with the digging operations, rather than the actual presence of the steel drums.

  1. In situ micro-tensile testing on proton beam-irradiated stainless steel

    Science.gov (United States)

    Vo, H. T.; Reichardt, A.; Frazer, D.; Bailey, N.; Chou, P.; Hosemann, P.

    2017-09-01

    Small-scale mechanical testing techniques are currently being explored and developed for engineering applications. In particular, micro-tensile testing can add tremendous value, since the entire stress-strain curve, including the strain to failure, can be measured directly. In this work, 304 stainless steel specimens irradiated with 2 MeV protons to 10 dpa (full-cascade setting in the Stopping and Range of Ions in Matter, SRIM, software) at 360 °C was evaluated using micro-tensile testing. It was found that even on the micron scale, the measured strain corresponds well with macroscopic expectations. In addition, a new approach to analyzing sudden slip events is presented.

  2. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  3. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  4. Analysis of the performance of the Westinghouse reactor vessel level indicating system for tests at semiscale. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.; Miller, G.N.

    1982-10-01

    The Westinghouse Reactor Vessel Level Indicating System (RVLIS), a differential pressure level measurement system, was tested at SEMISCALE. This report contains the analyses of these tests and the conclusions of these analyses. The tests performed included small break and intermediate break tests. Also, frequency response and natural circulation tests were run and analyzed. The RVLIS always indicated a level less than the two phase froth level. The RVLIS output in early small break tests indicated a level 200 cm greater than actual collapsed liquid level. This discrepancy was caused by structural differences between SEMISCALE and a Westinghouse reactor. Once modifications were made so that SEMISCALE better simulated a Westinghouse PWR, the maximum difference between RVLIS and SEMISCALE instrumentation was 30 cm or 3% which is less than the stated uncertainty of the Westinghouse RVLIS.

  5. DIC-aided biaxial fatigue tests of a 304L steel

    Science.gov (United States)

    Poncelet, M.; Barbier, G.; Raka, B.; Courtin, S.; Desmorat, R.; Le-Roux, J. C.; Vincent, L.

    2010-06-01

    Several biaxial fatigue tests are conducted up to 106 cycles at room temperature in the context of a collaboration LMT-Cachan / EDF / AREVA / SNECMA / CEA. Malteses cross specimens of 304L steel, designed to initiate crack in the bulk, are loaded by a triaxial testing machine. A Digital Image Correlation technique is used to measure strain during loading and detect crack initiation early. A special optical assembly and a stroboscopic sampling method are set up in this purpose. Several types of loadings are performed: equibiaxial with a loading ratio R = 0.1, equibiaxial with loading ratio R = -1, pseudo uniaxial (cyclic loading at R= 0.1 in one direction and constant loading in the other). First results are commented.

  6. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  7. DIC-aided biaxial fatigue tests of a 304L steel

    Directory of Open Access Journals (Sweden)

    Le-Roux J.C.

    2010-06-01

    Full Text Available Several biaxial fatigue tests are conducted up to 106 cycles at room temperature in the context of a collaboration LMT-Cachan / EDF / AREVA / SNECMA / CEA. Malteses cross specimens of 304L steel, designed to initiate crack in the bulk, are loaded by a triaxial testing machine. A Digital Image Correlation technique is used to measure strain during loading and detect crack initiation early. A special optical assembly and a stroboscopic sampling method are set up in this purpose. Several types of loadings are performed: equibiaxial with a loading ratio R = 0.1, equibiaxial with loading ratio R = –1, pseudo uniaxial (cyclic loading at R= 0.1 in one direction and constant loading in the other. First results are commented.

  8. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  9. Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails

    Directory of Open Access Journals (Sweden)

    Jeonghwa Seo

    2016-09-01

    Full Text Available The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was 4.65° at the designed speed, but the spray rails at optimum location reduced trim by 0.97°. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.

  10. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  11. A study on rate sensitivity of elasto-plastic fracture toughness of TRIP steel evaluated by a small punch test

    Directory of Open Access Journals (Sweden)

    Shi L.

    2012-08-01

    Full Text Available TRIP steel indicates an excellent characteristic in energy absorption because of its high ductility and strength by strain-induced martensitic transformation (SIMT. Recently, some shock absorption members are being used for automotive industries. For good fuel consumption of the automobile, it would realize the weight reduction without decaying performance if TRIP steel can be applied to those members. It can be considered that the fracture toughness is an important factor to evaluate the performance. To evaluate fracture toughness locally at any point of a product of those members, small punch testing method is quite effective. In the present study, first, an impact small punch testing apparatus is established. In addition, elasto-plastic fracture toughness of TRIP steel under impact loading and its rate sensitivity tested at various deflection rates are challenged to evaluate.

  12. Mechanical Behavior of DP980 High Strength Steel Under Dynamic Tensile Tests

    Directory of Open Access Journals (Sweden)

    TIAN Wen-yang

    2017-03-01

    Full Text Available The mechanical behavior and fracture modes of DP980 high strength steels were studied by comparing the results of dynamic tensile tests at strain rates from 10-3s-1 to 103s-1. The results show that the strength of DP980 steel remains almost unchanged and the plasticity decreases by 7.5% as the strain rate increasing from quasi-static(10-3s-1 to 100s-1. When the strain rate increases from 100s-1 to 103s-1, the strength keeps increasing, while the plasticity increases by 14% at the strain rate ranging from 100s-1 to 102s-1, but then follows by a decrease of 24.7% in the range of 102s-1 to 103s-1. The strain rate sensitivity coefficient m increases with the increasing of the strain rate. During the plastic deformation, the multiplication reinforcement of dislocation and the motion resistance due to the acceleration of dislocation in ferrite matrix are the main reasons for the strength enhancement. The plastic deformation concentrates in the ferrite, and the microvoids and cracks propagate along the martensite-ferrite interface. In the thickness direction of specimen, the macrographs of fracture are "V" shape cups when strain rate is lower than 101s-1, but the pure sheer shape with 45° to the tensile direction when strain rate is over 101s-1.

  13. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  14. Experimental investigation of in-vessel mixing phenomena in a VVER-1000 scaled test facility during unsteady asymmetric transients

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, A. [EC JRC, (JRC F.5) PO Box 2, 1755 ZG Petten (Netherlands); Moretti, F.; Melideo, D. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa (UNIPI) 2, via Diotisalvi, 56100 Pisa (Italy); Del Nevo, A., E-mail: delnevo@hotmail.com [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa (UNIPI) 2, via Diotisalvi, 56100 Pisa (Italy); D' Auria, F. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa (UNIPI) 2, via Diotisalvi, 56100 Pisa (Italy); Hoehne, T. [Forschungszentrum Dresden-Rossendorf (FZD), P.O.B. 51 01 19, D-01314 Dresden (Germany); Lisenkov, E. [FSUE OKB Gidropress, Ordshonikidize 21, RU-142103 Podolsk, Moscow district (Russian Federation); Gallori, D. [AREVA NP SAS, Tour AREVA - 92084 Paris, La Defense Cedex (France)

    2011-08-15

    Highlights: > Five mixing experiments in a scaled model of a VVER-1000 are described and discussed. > In-vessel mixing investigations of the coolant properties distribution at the core inlet. > These tests brought an improvement to existing experimental database for TH code validation. - Abstract: In-vessel turbulent mixing phenomena affect the time and space distribution of coolant properties (e.g., boron concentration and temperature) at the core inlet which impacts consequently the neutron kinetics response. For reactor safety evaluation purposes and to characterize these phenomena it is necessary to set and validate appropriate numerical modelling tools to improve the current conservative predictions. With such purpose, an experimental campaign was carried out by OKB Gidropress, in the framework of the European Commission Project 'TACIS R2.02/02 - Development of safety analysis capabilities for VVER-1000 transients involving spatial variations of coolant properties (temperature or boron concentration) at core inlet'. The experiments were conducted on a scaled facility representing the primary system of a VVER-1000 including a detailed model of the Reactor Pressure Vessel with its internals. The simulated transients involved perturbations of coolant properties distribution providing a wide validation matrix. The main achievements of the set of experiments featuring transient asymmetric pump behaviour are presented in this paper. The potential of the obtained experimental database for the validation of thermal fluid dynamics numerical simulation tools is also discussed and the role of computational fluid dynamics in supporting the experimental data analysis is highlighted.

  15. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X.

  16. Evaluation of strain-rate sensitivity of ion-irradiated austenitic steel using strain-rate jump nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Hamaguchi, Dai; Ando, Masami; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2016-11-01

    Highlights: • We examined strain-rate jump nanoindentation on ion-irradiated stainless steel. • We observed irradiation hardening of the ion-irradiated stainless steel. • We found that strain-rate sensitivity parameter was slightly decreased after the ion-irradiation. - Abstract: The present study investigated strain-rate sensitivity (SRS) of a single crystal Fe–15Cr–20Ni austenitic steel before and after 10.5 MeV Fe{sup 3+} ion-irradiation up to 10 dpa at 300 °C using a strain-rate jump (SRJ) nanoindentation test. It was found that the SRJ nanoindentation test is suitable for evaluating the SRS at strain-rates from 0.001 to 0.2 s{sup −1}. Indentation size effect was observed for depth dependence of nanoindentation hardness but not the SRS. The ion-irradiation increased the hardness at the shallow depth region but decreased the SRS slightly.

  17. Testing of Carbon Fiber Composite Overwrapped Pressure Vessel Stress-Rupture Lifetime

    Science.gov (United States)

    Grimes-Ledesma, Lorie; Phoenix, S. Leigh; Beeson, Harold; Yoder, Tommy; Greene, Nathaniel

    2006-01-01

    This paper contains summaries of testing procedures and analysis of stress rupture life testing for two stress rupture test programs, one for Kevlar COPVs performed at Lawrence Livermore National Laboratory, and the other a joint study between NASA JSC White Sands Test Facility and the Jet Propulsion Laboratory. These will be discussed in detail including test setup and issues encountered during testing. Lessons learned from testing in these two programs will be discussed.

  18. Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests

    Directory of Open Access Journals (Sweden)

    Haigang Xiao

    2017-11-01

    Full Text Available The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer.

  19. Testing of Ni-plated ferritic steel interconnect in SOFC stacks

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dinesen, A.R.; Korcakova, L.

    2006-01-01

    heating to 1,030 °C. During this time, 20–70 μm thick surface layers of austenitic steel were formed, which were covered by a 1–4 μm chromia layer on the anode side and by a layer of mixed Cr-Fe-Ni-spinels over a 1–4 μm chromia layer on the cathode side. The microstructure and composition...... of the protective scale on the cathode side was susceptible to pitting-type corrosion patterns, which may limit the life expectancy to less than 2,000 hours for the 200 μm thick interconnect tested. The initial area-specific resistances (ASR) at the interconnect/cathode current collector interface...

  20. Deducing material quality in cast and hot-forged steels by new bending test

    Science.gov (United States)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  1. Different types of cracking of P91 steel weld joints after long-term creep tests

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Chvostova, E. (SKODA VYZKUM s.r.o., Plzen (Czech Republic))

    2010-05-15

    This paper deals with creep testing and microstructural investigation of trial weld joints prepared of wrought and cast 9Cr-1Mo-V steels using GTAW & SMAW method. Creep testing was carried out at temperature range from 525 degC to 625 degC, the longest time to rupture of 45 811 hrs was achieved. The creep strengths of weld joints for 100 000 hrs were calculated. Different types of cracking were observed in dependency on conditions of creep test and the type of weld joint. Type 1 and Type 2 fractures occurred at high applied stress at relatively low temperatures in the tube weld joint and also in two speciments of the cast plate weld joint after creep test at the lowest temperature and the highest temperature. All other fractures were of the Type 4. Causes of different fracture location in tested weld joints were elucidated on the base of substructure evolution in individual zones - the weld metal, the heat affected zone and the base material. Two processes occur simultaneously, which result in the creep damage: (i) softening of solid solution as a result of Laves phase precipitation and (ii) formation and coalescence of cavities in the soft fine grained parts of heat affected zone. (orig.)

  2. Effect of Mn on hardenability of 25CrMo axle steel by an improved end-quench test

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2012-11-01

    Full Text Available With the sixth large-scale railway speed-up, the quality of the axles is essential to the safety of the locomotive. According to the high-speed axle technical standard for the control of alloy elements in axle steel, optimization experiments of 25CrMo steel composition were performed by vacuum inductive melting. In order to study the hardenability of high-speed rail axles, an improved end-quench test was put forward. The advantage is that it enables the heat to transfer along the axial direction, thus avoiding edge effects. The hardenability of 25CrMo axle steels with Mn content of 0.60wt.% and 0.80wt.% was investigated mainly by means of optical microscopy and hardness tests. The experimental results indicate that the Mn has a pronounced effect on the hardenability of the steel. With an increase in Mn content from 0.60wt.% and 0.80wt.%, the hardenability of 25CrMo axle steel increases and the hard microstructure is maintained at an increasing distance from the quenched end. From the surface of the water quenched end to the center of the sample, the microstructure is martensite, martensite with bainite, and bainite.

  3. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  4. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    Science.gov (United States)

    2014-02-01

    solidification cracking in steels and stainless steels. He has also undertaken extensive work on improving the weld zone toughness of high strength steels...plate rolling direction (Figure 1). These weld beads are composed of hard facing material that is inherently brittle and, under blast loading, act as a...connected to a NI 9213 Module with 16 channels and 24 Bit thermocouple inputs from National Instruments ( NI ). The NI module was then connected to the NI

  5. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  6. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel; Tratamientos termicos en un acero convencional para reproducir la microestructura de un acero grado nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rosalio G, M.

    2014-07-01

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  7. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels; RPV-1: un premier reacteur virtuel pour simuler les effets d'irradiation dans les aciers de cuve des reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, St

    2005-01-15

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  8. Results of crack-arrest tests on irradiated a 508 class 3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, S.K.; Milella, P.P.; Pini, M.A.

    1998-02-01

    Ten crack-arrest toughness values for irradiated specimens of A 508 class 3 forging steel have been obtained. The tests were performed according to the American Society for Testing and Materials (ASTM) Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K{sub la} of Ferritic Steels, E 1221-88. None of these values are strictly valid in all five ASTM E 1221-88 validity criteria. However, they are useful when compared to unirradiated crack-arrest specimen toughness values since they show the small (averaging approximately 10{degrees}C) shifts in the mean and lower-bound crack-arrest toughness curves. This confirms that a low copper content in ASTM A 508 class 3 forging material can be expected to result in small shifts of the transition toughness curve. The shifts due to neutron irradiation of the lower bound and mean toughness curves are approximately the same as the Charpy V-notch (CVN) 41-J temperature shift. The nine crack-arrest specimens were irradiated at temperatures varying from 243 to 280{degrees}C, and to a fluence varying from 1.7 to 2.7 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV). The test results were normalized to reference values that correspond to those of CVN specimens irradiated at 284{degrees}C to a fluence of 3.2 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) in the same capsule as the crack-arrest specimens. This adjustment resulted in a shift to lower temperatures of all the data, and in particular moved two data points that appeared to lie close to or lower than the American Society of Mechanical Engineers K{sub la} curve to positions that seemed more reasonable with respect to the remaining data. A special fixture was designed, fabricated, and successfully used in the testing. For reasons explained in the text, special blocks to receive the Oak Ridge National Laboratory clip gage were designed, and greater-than-standard crack-mouth opening displacements measured were accounted for. 24 refs., 13 figs., 12 tabs.

  9. Small specimen test technology of fracture toughness in structural material F82H steel for fusion nuclear reactors

    OpenAIRE

    若井 栄一; 大塚 英男; 松川 真吾; 安堂 正己; 實川 資朗

    2006-01-01

    Small specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTT has been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources, and it is very useful for the reduction of waste materials produced in nuclear engineering. In this study new bend test machines have been developed to obtain fracture behaviors of F82H steel for very small bend specimens of p...

  10. Tensile and Fatigue Behavior of ASS304 for Cold Stretching Pressure Vessels at Cryogenic Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon Seok [The 5th R and D Institute, Agency for Defense Development, Daejeon (Korea, Republic of); Kim, Jae Hoon; Na, Seong Hyun [Chungnam National Univ., Daejon (Korea, Republic of); Lee, Youn Hyung [Korean Gas Safety Corporation, Chungju (Korea, Republic of); Kim, Sung Hun [Daechang Solution Co. Ltd, Busan (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korean Gas Corporation, R and D Division, Ansan (Korea, Republic of)

    2016-05-15

    Cold stretching(CS) pressure vessels from ASS304 (austenitic stainless steel 304) are used for the transportation and storage of liquefied natural gas(LNG). CS pressure vessels are manufactured by pressurizing the finished vessels to a specific pressure to produce the required stress σk. After CS, there is some degree of plastic deformation. Therefore, CS vessels have a higher strength and lighter weight compared to conventional vessels. In this study, we investigate the tensile and fatigue behavior of ASS304 sampled by CS pressure vessels in accordance with the ASME code at cryogenic temperature. From the fatigue test results, we show S-N curves using a statistical method recommended by JSEM-S002. We carried out the fractography of fractured specimens using scanning electron microscopy (SEM)

  11. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  12. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    Science.gov (United States)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-01-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x-t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  13. Characterization of Case Hardened AISI 4130 Steel Using Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Gukendran R.

    2017-09-01

    Full Text Available Casting is the manufacturing process of pouring the hot liquiduos state metal in to the mold cavity and then allowed it to solidify to obtain the final casting. There are many defects are found in the casting components during the inspection. Some defects are tolerated while others are required to repair. Otherwise the casting component is to be eliminated due to the poor quality level. The aim of the non-destructive inspection is to determine, the flaws, discontinuities on the material, and characteristics of the material. Based on the results by non-destructive evaluation the personnel take the decision on the material object is to be accepted or not as per the criteria. In this paper the hardness attribute of the case hardened AISI 4130 steel samples are studied using Vickers Hardness test. Then the hardness property is correlated with the Eddy Current Testing method. According to the acceptance criterion the suitability of the material is analyzed for the corresponding application or not. In this paper Eddy Current Testing response is analyzed for the AISI 4130 samples to determine the mechanical properties of the material. The main objective of the paper is to investigate the effect of the hardness property of the casting material during various case depth obtained via case hardening process. This technique is effective and best practice for the heat treatment shop floors. By this technique the results are investigated based on the cracks and microstructure of the casting material.

  14. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  15. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  16. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  17. ITER Vacuum Vessel design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Jun, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector -25, Gandhinagar 382025 (India); Preble, J.; Reich, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2012-08-15

    After implementing a few design modifications (referred to as the 'Modified Reference Design') in 2009, the Vacuum Vessel (VV) design had been stabilized. The VV design is being finalized, including interface components such as support rails and feedthroughs for the in-vessel coils. It is necessary to make adjustments to the locations of the blanket supports and manifolds to accommodate design modifications to the in-vessel coils. The VV support design is also being finalized considering a structural simplification. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. The detailed layout of ferritic steel plates and borated steel plates was optimized based on the toroidal field ripple analysis. A dynamic test on the inter-modular key to support the blanket modules was performed to measure the dynamic amplification factor (DAF). An R and D program has started to select and qualify the welding and cutting processes for the port flange lip seal. The ITER VV material 316 L(N) IG was already qualified and the Modified Reference Design was approved by the Agreed Notified Body (ANB) in accordance with the Nuclear Pressure Equipment Order procedure.

  18. Long-term creep testing and microstructure evaluation of P91 steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Kanta, V. [SKODA VYZKUM s.r.o., Plzen (Czech Republic)

    2007-06-15

    Trial weld joints were made from wrought and cast modified 9Cr-lMo-V steel using GTAW and SMAW methods. Creep testing was carried out at temperature range from 525 deg C to 625 deg C and stresses from 50 to 240 MPa. Time to rupture of welds made from tube segments and cast plates reached almost 30 000 hours and 20 000 hours respectively. Creep strength was evaluated according the Larson-Miller parametric equation and microstructure was investigated using both light and electron microscopy. Creep rupture strength of both weld joints tested at temperatures below 600 deg C falls into the {+-}20% scatter band of the creep rupture strength of the parent material. At 600 deg C and 625 deg C the creep strength dropped by 27% and 30% for the plate weld and the tube weld respectively. All ruptures occurred in fine grain and intercritically reheated heat affected zones either in the parent material or in the weld metal. Observation of thin foils prepared from selected regions of the weld joints revealed differences in precipitation processes and the structure recovery causing decrease of dislocation density in some regions. Fine ferritic grains with low density of fine carbonitride precipitate occurred in critical localities. Soft grains were deformed and cavities at grain boundaries initiated the crack propagation. (orig.)

  19. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Keith M.; Stoker, Gerald C.

    1999-07-20

    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements.

  20. Full-scale locomotive dynamic crash testing and correlations : locomotive consist colliding with steel coil truck at grade crossing (test 3).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...

  1. Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers a laboratory procedure for conducting an electrochemical reactivation (EPR) test on AISI Type 304 and 304L (UNS No. S30400 and S30403, respectively) stainless steels. This test method can provide a nondestructive means of quantifying the degree of sensitization in these steels (1, 2, 3). This test method has found wide acceptance in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior (see Terminology G15). The EPR technique has been successfully used to evaluate other stainless steels and nickel base alloys (4), but the test conditions and evaluation criteria used were modified in each case from those cited in this test method. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this...

  2. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Hashim, S.; Berggreen, Christian; Tsouvalis, N.

    2011-01-01

    This paper describes experimental and numerical techniques to study the structural design of double lap shear joints that are based on thick-adherend steel/steel and steel/composite, with epoxy adhesive. A standard practical fabrication method was used to produce specimens of various dimensions...... the importance of modelling the composite layers adjacent to the adhesive bondline in order to account for the critical local stresses. The FEA results also showed that overall shear stress distributions can be used to characterise joint failure. The paper presents the experimental and numerical details with key...

  3. Behavior of underclad cracks in reactor pressure vessels - evaluation of mechanical analyses with tests on cladded mock-ups; Comportement des defauts sous revetement dans les cuves REP - evaluation des methodes d`analyse a partir d`essais de maquettes revetues

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D.; Rousselier, G.; Bethmont, M.

    1993-12-31

    Innocuity of underclad flaws in the reactor pressure vessels must be demonstrated in the French safety analyses, particularly in the case of a severe transient at the end of the pressure vessel lifetime, because of the radiation embrittlement of the vessel material. Safety analyses are usually performed with elastic and elasto-plastic analyses taking into account the effect of the stainless steel cladding. EDF has started a program including experiments on large size cladded specimens and their interpretations. The purpose of this program is to evaluate the different methods of fracture analysis used in safety studies. Several specimens made of ferritic steel A508 C1 3 with stainless steel cladding, containing small artificial defects, are loaded in four-point bending. Experiments are performed at very low temperature to simulate radiation embrittlement and to obtain crack instability by cleavage fracture. Three tests have been performed on mock-ups containing a small underclad crack (with depth about 5 mn) and a fourth test has been performed on one mock-up with a larger crack (depth about 13 mn). In each case, crack instability occurred by cleavage fracture in the base metal, without crack arrest, at a temperature of about - 170 deg C. Each test is interpreted using linear elastic analysis and elastic-plastic analysis by two-dimensional finite element computations. The fracture are conservatively predicted: the stress intensity factors deduced from the computations (K{sub cp} or K{sub j}) are always greater than the base metal toughness. The comparison between the elastic analyses (including two plasticity corrections) and the elastic-plastic analyses shows that the elastic analyses are often conservative. The beneficial effect of the cladding in the analyses is also shown : the analyses are too conservative if the cladding effects is not taken into account. (authors). 9 figs., 6 tabs., 10 refs.

  4. Nonlinear Modelling, Design, and Test of Steel Blast-Resistant Doors

    Directory of Open Access Journals (Sweden)

    V. A. Salomoni

    2013-01-01

    Full Text Available The nonlinear dynamic response for steel blast-resistant doors is here described, referring to an innovative experience at both national and international level requiring an ad hoc design and specific numerical simulations. The elements capability to sustain thermal loads due to fire hazards is additionally accounted for. The study has been conducted to define and characterize the nonlinear behaviour of a large number of doors, with the objective of sustaining dynamic loads from explosive hazards of fixed magnitude, as well as variable design and clearing times. The local overcome of the material strength limit (with correspondent plastic response and possible formation of plastic hinges has been critically discussed. Numerical models have allowed for refining first design sketches and subsequently understanding the real thermomechanical behaviour for the investigated elements. Some experimental tests have been additionally performed, verifying the correctness of the already available numerical results, validating the adopted procedures, and correspondingly guaranteeing the doors' structural efficiency even under dynamic loads higher than design ones.

  5. Weldability examination of ASTM A 240 S41500 martensitic stainless steel by thermal cycles simulation testings

    Directory of Open Access Journals (Sweden)

    Alberto Velázquez-del Rosario

    2015-07-01

    Full Text Available The weldability assets of ASTM A 240 S41500 (ASTM A 240/A 240M martensitic stainless steel are presented through the study of the effects of single and double thermal weld cycles on mechanical properties and microstructure of base metal (BM and the artificial heat affected zone (HAZ created by thermal weld simulations. For single cycles, separate peak temperatures of 1000 ºC/12 s and 1350 ºC/12 s (cooling times: 12 s in both cases were evaluated, whilst two combinations of peak temperatures: (1350 ºC/5 s + 1000 ºC/5 s ºC and (1350 ºC/12 s + 1000 ºC/12 s ºC (cooling times: 5 s and 12 s, were applied for double cycles. Post weld heat treatment (PWHT with short and long holding times were applied and Vickers hardness, impact toughness and metallographic examinations were used in order to assess mechanical and metallographic properties in the as-simulated (no heat treated and postweld heat treated conditions. Best properties of the welded joint for double thermal weld cycles with long holding times were reached, which reveals the good weldability and applicability of the tested material in post weld heat treated conditions.

  6. A bias assessment for in-situ ultrasonic hardness testing of steel fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Ratiu, M.D.; Moisidis, N.T. [CALCET Co., San Leandro, CA (United States)

    1996-12-31

    The problem of sub-standard and/or mismarked installed fasteners has received broad attention in quality control standard and largely discussed in technical publications and in public press. The Industrial Fastener Institute (IFI, 1988) released a detailed documented inspection program to ensure the delivery and the usage of appropriate fasteners, imposing mandatory traceability of the manufacturer marking and quality certification reports. For the billions of the existing installed bolts without reliable lot identification and/or quality certification, IFI recommends in-situ control using non-destructive testing and/or hardness measurements with portable testers. The ultrasonic indentation hardness (HU) with the Krautkramer portable tester--operating on the ultrasonic contact impedance method described by Kleesattel (Jankowski D.M., 1990)--is one of the more frequent equipment used in the in-situ control of steel products and machine elements. The advantages of the ultrasonic tester--low weight, direct hardness reading, easy to operate--have determined to be included also for the in-situ control of installed fasteners. However, the bias of this method was not analyzed; the practiced calibration of standard blocks is not conclusive for the comparison of the in-situ measured hardness with the standard reference value obtained using laboratory Rockwell hardness (HR) tester. The purpose of this paper is to point out the specific consistent/systematic differences between HU results and the reference standard HR, which defines the ruggedness and the bias of the ultrasonic method.

  7. Mechanical Properties of High-Mn Austenitic Steel Tested under Static and Dynamic Conditions

    Directory of Open Access Journals (Sweden)

    Dobrzański L. A.

    2016-06-01

    Full Text Available The purpose of the paper is to investigate X73MnSiAlNbTi25-1-3 high manganese austenitic steel containing 0.73% C to determine structural mechanisms decisive for increasing a reserve of cold deformation energy of such steel. The influence of a strain rate on the structure of the investigated steels and on the structural mechanisms decisive for their properties was analysed. Specialist research instrumentation was used for this purpose such as Scanning Transmission Microscopy (including EBSD examinations, conventional and high-resolution transmission electron microscopy together with diffraction examinations and metallographic examinations. It was found that the principal cause of an increased reserve of cold deformation energy of the investigated steels in dynamic conditions is the activation of mechanical twinning in the mutually intersecting systems in austenite grains and annealing twins, which are densifying when a cold deformation rate is growing, thereby confirming the basic mechanism of TWIP (TWinning Induced Plasticity.

  8. The application of miniature disc testing for the assessment of creep damage in CrMoV rotor steel

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.D.; Stratford, G.C. [University of Wales, Swansea (United Kingdom); Shaw, N.; Spink, G. [National Power plc (United Kingdom); Metcalfe, H. [Siemens Power Generation (United Kingdom)

    1998-12-31

    A range of critical experiments has been performed studying the creep and fracture behaviour of a typical CrMoV rotor steel. Initially, uniaxial tests were carried out to provide material with a predetermined level of creep damage. Then, miniature disc tests were undertaken under accelerated conditions in a similar manner to procedures used for post-exposure uniaxial testing of service components. Data analysis demonstrates that the miniature tests accurately reflect the damage present so that this approach can be used to support run/repair/replace decisions. (orig.) 8 refs.

  9. Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

  10. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Tan, Ting [ORNL; Jiang, Hao [ORNL; Zhang, Wei [ORNL; Feng, Zhili [ORNL

    2012-10-01

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  11. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  12. Computational evaluation of the constraint loss on the fracture toughness of reactor pressure vessel steels; Evaluacion computacional del efecto de la perdida de constriccion en la tenacidad de fractura de la vasija de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Serrano Garcia, M.

    2007-07-01

    The Master Curve approach is included on the ASME Code through some Code Cases to assess the reactor pressure vessel integrity. However, the margin definition to be added is not defined as is the margin to be added when the Master Curve reference temperature T{sub 0} is obtained by testing pre-cracked Charpy specimens. The reason is that the T{sub 0} value obtained with this specimen geometry is less conservative than the value obtained by testing compact tension specimens possible due to a loss of constraint. The two parameter fracture mechanics, considered as an extension of the classical fracture mechanics, coupled to a micromechanical fracture models is a valuable tool to assess the effect of constraint loss on fracture toughness. The definition of a parameter able to connect the fracture toughens value to the constraint level on the crack tip will allow to quantify margin to be added to the T{sub 0} value when this value is obtained testing the pre-cracked Charpy specimens included in the surveillance capsule of the reactor pressure vessel. The Nuclear Regulatory Commission (NRC) define on the To value obtained by testing compact tension specimens and ben specimens (as pre-cracked Charpy are) bias. the NRC do not approved any of the direct applications of the Master Curve the reactor pressure vessel integrity assessment until this bias will be quantified in a reliable way. the inclusion of the bias on the integrity assessment is done through a margin to be added. In this thesis the bias is demonstrated an quantified empirical and numerically and a generic value is suggested for reactor pressure vessel materials, so that it can be used as a margin to be added to the T{sub 0} value obtained by testing the Charpy specimens included in the surveillance capsules. (Author) 111 ref.

  13. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  14. Guide for Recommended Practices to Perform Crack Tip Opening Displacement Tests in High Strength Low Alloy Steels

    Directory of Open Access Journals (Sweden)

    Julián A. Ávila

    Full Text Available Abstract: Fracture mechanics approach is important for all mechanical and civil projects that might involve cracks in metallic materials, and especially for those using welding as a structural joining process. This methodology can enhance not only the design but also the service life of the structures being constructed. This paper includes detailed consideration of several practical issues related to the experimental procedures to assess the fracture toughness in high strength low alloy steels (HSLA using the crack tip opening displacement (CTOD parameter, specifically pipeline steels for oil and gas transportation. These considerations are important for engineers who are new in the field, or for those looking for guidelines performing different procedures during the experimentation, which usually are difficult to understand from the conventional standards. We discuss on topics including geometry selection, number of replicate tests, fatigue precracking, test procedure selection and realization, reports of results and other aspects.

  15. J-R fracture characteristics of ferritic steels for RPVs and RCS piping of nuclear power plants

    Science.gov (United States)

    Yoon, Ji-Hyun; Lee, Bong-Sang; Hong, Jun-Hwa

    2001-10-01

    J-R fracture resistance tests have been performed on 3 heats of SA508-Gr.3 nuclear reactor pressure vessel (RPV) steel as well as 2 heats of SA516-Gr.70 and a heat of SA508-Gr.1a steels for nuclear reactor coolant system (RCS) piping. For the latter two steels, dynamic in addition to static J-R fracture resistances were investigated. From the test results of the SA508-Gr.3 steels, the J-R fracture resistance was superior in the following order: Si-killing steel, modified VCD steel and VCD steel. Microstructural analyses were carried out to correlate J-R fracture resistances with microstructural characteristics. According to the test results for SA508-Gr.1a and SA516-Gr.70 steels, all of the tested steels showed steep drops in fracture resistance at certain temperature and loading rate combinations. One heat of SA516-Gr.70 steel was very sensitive to dynamic strain aging and its fracture resistance was significantly low. It was concluded that microstructural and chemical factors affect the J-R fracture and DSA characteristics of SA516-Gr.70 steels.

  16. Effect of Normalizing Temperature on Fracture Characteristic of Tensile and Impact Tested Creep Strength-Enhanced Ferritic P92 Steel

    Science.gov (United States)

    Saini, N.; Pandey, C.; Mahapatra, M. M.

    2017-11-01

    The high-temperature Cr-Mo creep strength-enhanced ferritic (CSEF) steels are mainly used in nuclear and thermal power plants. In the present investigation, a systematic study on fracture surface morphologies of tensile and impact tested specimens and mechanical properties of cast and forged (C&F) P92 steel was performed for various heat treatment conditions. The heat treatment was carried out in normalizing temperature range of 950-1150 °C and then tempered to a fixed tempering temperature of 760 °C. The effect of varying normalizing temperatures before and after tempering on microstructure evolution, tensile properties, Vicker's hardness and Charpy toughness was studied. The normalizing temperature before and after tempering was having a noticeable effect on mechanical properties of as-received P92 steel. The fracture surface of impact and tensile tested samples was also studied for various normalizing temperatures with or without tempering. Fracture surface morphology was affected by the presence of secondary phase carbide particles. The fraction area of cleavage facets on the tensile fracture surface was found to be increased with an increase in the normalizing temperature. The fractured tensile specimens were characterized by transgranular ductile dimples, tear ridges and transgranular cleavage facets for various heat treatments. The fracture mode of impact tested samples was more complex. It showed both quasi-cleavage facets and ductile dimple tearing for various normalizing temperatures.

  17. Effect of Normalizing Temperature on Fracture Characteristic of Tensile and Impact Tested Creep Strength-Enhanced Ferritic P92 Steel

    Science.gov (United States)

    Saini, N.; Pandey, C.; Mahapatra, M. M.

    2017-10-01

    The high-temperature Cr-Mo creep strength-enhanced ferritic (CSEF) steels are mainly used in nuclear and thermal power plants. In the present investigation, a systematic study on fracture surface morphologies of tensile and impact tested specimens and mechanical properties of cast and forged (C&F) P92 steel was performed for various heat treatment conditions. The heat treatment was carried out in normalizing temperature range of 950-1150 °C and then tempered to a fixed tempering temperature of 760 °C. The effect of varying normalizing temperatures before and after tempering on microstructure evolution, tensile properties, Vicker's hardness and Charpy toughness was studied. The normalizing temperature before and after tempering was having a noticeable effect on mechanical properties of as-received P92 steel. The fracture surface of impact and tensile tested samples was also studied for various normalizing temperatures with or without tempering. Fracture surface morphology was affected by the presence of secondary phase carbide particles. The fraction area of cleavage facets on the tensile fracture surface was found to be increased with an increase in the normalizing temperature. The fractured tensile specimens were characterized by transgranular ductile dimples, tear ridges and transgranular cleavage facets for various heat treatments. The fracture mode of impact tested samples was more complex. It showed both quasi-cleavage facets and ductile dimple tearing for various normalizing temperatures.

  18. Application of Small Punch Test Method in Studies of the 14MoV63 Steel Before and After Revitalisation

    Directory of Open Access Journals (Sweden)

    Kłaput J.

    2015-04-01

    Full Text Available The paper presents the results of studies of the chromium-molybdenum-vanadium steel designed for operation at elevated temperatures. The material was examined after long-term operation and after the revitalising heat treatment. Studies were performed by conventional methods and small punch test. Curves of ductile-brittle transition were plotted from the Charpy V-notch impact tests and were next compared with the curves of sudden loss of ductility obtained in the small punch test. Additionally, for the material before and after revitalisation, the values of temperatures Tpk and Tnuc were calculated using the method of inflection point.

  19. Uranyl-Fluoride (235U) Solutions in Spherical Stainless Steel Vessels with Reflectors of Be, Ch2 and Be-Ch2 Composites, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Heinrichs, D

    2002-04-08

    A series of criticality studies were performed at the Lawrence Livermore National Laboratory in the late 1950's using aqueous solutions of {sup 233}U in the form of UO{sub 2}F{sub 2} stabilized with 0.3% by weight of HF. These experiments were assigned the program name Falstaff. The {sup 233}U concentration in these experiments ranged from 0.13 to 0.87 kg/l. Eight type 347 stainless steel spheres ranging in inner radius from 7.87 to 12.45 cm were available for use as containers for the solutions. The scope of this evaluation is limited to the experiments involving the four lowest concentrations of uranyl-fluoride solution with 0.45, 0.37, 0.24 and 0.13 kg ({sup 233}U)/l. Reflectors of beryllium, polyethylene and beryllium-polyethylene composites were used. Thirty-one configurations are evaluated and accepted as criticality-safety benchmark models. Fission rate data calculated by the evaluator (see Appendix B) show that twenty-six of these configurations have over 50% of the fissions occurring in the thermal energy range and these configurations are therefore classified as ''THERMAL''. Five of the configurations have less than 50% of the fissions occurring in any of the fast, intermediate or thermal energy range and therefore are classified as ''MIXED''.

  20. Analysis of the Long-Term Corrosion Behavior of X80 Pipeline Steel in Acidic Red Soil Using Electrical Resistance Test Technique

    Directory of Open Access Journals (Sweden)

    Shuaixing Wang

    2015-01-01

    Full Text Available The long-term corrosion rate of X80 steel in an acidic red soil was monitored in situ by using a precise electrical resistance (ER test system. The corrosion characteristics of X80 steel were examined via SEM, EDS, and XRD. The results indicated that the corrosion rate determined from ER test was very similar to that obtained from the mass loss test. The ER test technique made it possible to predict the long-term corrosion rate of steel in soil in situ. The corrosion rate of X80 steel in acidic red soil was about 0.0902 mm/a at 38 weeks, but the corrosion rate was dropped to 0.0226 mm/a after 5 years. The final corrosion product layer was composed mainly of FeOOH, γ-Fe2O3, and FeCO3.

  1. Performance testing of the AST-50O model of district heating network heat exchanger with 08Cr14 steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A.A.; Borisov, V.P.; Grebennikov, V.N.; Dolinin, E.L.; Krutikov, P.G.; Shishkunov, V.A.; Stogov, V.I.

    1984-02-01

    Test results of network heat exchanger model of a nuclear boiler plant AST-500 with a tube part of 08Kh14MF ferritic-martensitic steel are presented. The model presents a one-through counterflow water-water heat-exchanger. The model was connected to the district heating network where it operated for 5000 hr at pH=7.3 and at the temperature 70-90 deg C. Rolled joints ''tube-tube sheet'' did not have traces of contact corrosion, gradual corrosion of 08Kh14MF steel did not exceed 0 003 mm/year, which ensured normal working capacity of heat-exchanger equipment for the planned 30 years.

  2. Deformation behavior around grain boundaries for SCC propagation in hardened low-carbon austenitic stainless steel by micro hardness test

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, N.; Hayakawa, M. [National Inst. for Materials Science (NIMS), Ibaraki (Japan); Tsukada, T; Kaji, Y.; Miwa, Y. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan); Ando, M.; Nakata, K. [Japan Nuclear Energy Safety Organization (JNES), Tokyo (Japan)

    2007-07-01

    Stress corrosion cracking (SCC) was found in shroud and PLR piping made of low-carbon austenitic stainless steels in Japanese BWR plants. The intergranular type (IG) SCC propagated in hardened heat affected zones (HAZ) around welds. Strength behavior and local plastic deformation for a low-carbon austenitic stainless steel 316L, rolled at the reductions in area of 10, 30% at room temperature to simulate the hardened HAZ, were measured by a micro-hardness test machine and observed by atomic force microscopy (AFM), respectively. The tensile deformation at yield point (0.2% plastic strain) had given to the work-hardened 316L to simulate the plastic zone at the crack tip. It is suggested that one of the IGSCC propagation mechanism for 316L was related with the intergranular strength behavior and local plastic deformation around grain boundaries. (author)

  3. Influence of stress concentrator shape and testing temperature on impact bending fracture of 17Mn1Si pipe steel

    Science.gov (United States)

    Panin, S. V.; Vlasov, I. V.; Maruschak, P. O.; Moiseenko, D. D.; Berto, F.; Vinogradov, A.

    2017-12-01

    The influence of the notch shape on the impact fracture of 17Mn1Si steel is investigated at different temperatures, with the focus placed on the low temperature behavior. An approach towards fracture characterization has been suggested based on the description of elastic-plastic deformation of impact loaded specimens on the stage of crack initiation and growth at ambient and lower temperatures. The analysis of the impact loading diagrams and fracture energy values for the 17Mn1Si pipe steel reveals the fracture mechanisms depending on the notch shape. It has been found that the testing temperature reduction plays a decisive role in plastic strain localization followed by dynamic fracture of the specimens with differently shaped notches.

  4. A micro-mechanical analysis and an experimental characterisation of the behavior and the damaging processes of a 16MND5 pressure vessel steel at low temperature; Etude micromecanique et caracterisation experimentale du comportement et de l'endommagement de l'acier de cuve 16MND5 a basses temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pesci, R

    2004-06-15

    As part of an important experimental and numerical research program launched by Electricite De France on the 16MND5 pressure vessel steel, sequenced and in-situ tensile tests are realized at low temperatures [-196 C;-60 C]. They enable to associate the observation of specimens, the complete cartography of which has been made with a scanning electron microscope (damaging processes, initiation and propagation of microcracks), with the stress states determined by X-ray diffraction, in order to establish relevant criteria. All these measurements enable to supply a two-scale polycrystalline modeling of behavior and damage (Mori-Tanaka/self-consistent) which is developed concurrently with the experimental characterization. This model proves to be a very efficient one, since it correctly reproduces the influence of temperature experimentally defined: the stress state in ferrite remains less important than in bainite (the difference never exceeds 150 MPa), whereas it is much higher in cementite. The heterogeneity of strains and stresses for each crystallographic orientation is well rendered; so is cleavage fracture normal to the {l_brace}100{r_brace} planes in ferrite (planes identified by electron back scattered diffraction during an in-situ tensile test at -150 C), which occurs sooner when temperature decreases, for a constant stress of about 700 MPa in this phase. (author)

  5. Gamma radiography of refractory-lined vessels and components

    Energy Technology Data Exchange (ETDEWEB)

    Lapinski, N. P.

    1978-08-01

    Materials used in coal-conversion systems are exposed to high pressure, high temperature, corrosive and erosive gases, and liquids containing particulate matter. These severe environments necessitate an assessment of the integrity of components to prevent premature failures. Gamma radiography was evaluated as a viable technique for testing such components in the laboratory or after operation in situ. Penetrameters (image-quality indicators) were developed for refractory-lined vessels and transfer lines, and exposure times for various combinations of refractory-steel thicknesses were determined. Radiography with /sup 60/Co was performed on gasifier vessels, combustor vessels, and critical transfer lines in existing pilot plants using the experience gained through laboratory experiments. The results show that gamma radiography is a practical and effective method to detect critical conditions in coal-conversion system components. 18 figures, 3 tables.

  6. Standard method of macroetch testing steel bars, billets, blooms, and forgings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 Macroetching, which is the etching of specimens for macrostructural examination at low magnifications, is a frequently used technique for evaluating steel products such as bars, billets, blooms, and forgings. 1.2 Included in this method is a procedure for rating steel specimens by a graded series of photographs showing the incidence of certain conditions. The method is limited in application to bars, billets, blooms, and forgings of carbon and low alloy steels. 1.3 A number of different etching reagents may be used depending upon the type of examination to be made. Steels react differently to etching reagents because of variations in chemical composition, method of manufacture, heat treatment and many other variables. Establishment of general standards for acceptance or rejection for all conditions is impractical as some conditions must be considered relative to the part in which it occurs. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is ...

  7. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.

    2009-01-01

    This paper aims to provide a guide on the design and fabrication of thick adherend double lap shear joints (DLS), often referred to as butt connections/joints in ship structures including patch repair. The specimens consist of 10mm steel inner adherend and various outer adherend materials includi...

  8. Testing and modelling of new tribo-systems for industrial sheet forming of stainless steels

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Friis, Kasper Storgaard; Bay, Niels

    2011-01-01

    Sheet metal forming of stainless steels is known to be tribologically demanding. To ensure satisfactory production without pick-up and galling, lubrication with environmentally hazardous chlorinated paraffin oil is normally required and in the most severe cases combined with ceramic tool coatings...

  9. An ultrasonic non-destructive testing method for the measurement of weld width in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-10-01

    In order to inspect welding defects of the laser welding of stainless steel, the piezoelectric bimorph focusing method is presented, the non-destructive testing system is setup. The cutting part of the laser weld sample is used to measure the welding width by metallography and the non-destructive testing system. The results show that the welding width is unevenly distributed, the relation between the ultrasonic signal amplitude and metallography is showed a good linearity, which means the ultrasonic signal amplitude can be used to measure the welding width.

  10. Final Report for the 1st Surveillance Test of the Reactor Pressure Vessel Material (Capsule 2) of Ulchin Nuclear Power Plant Unit 4

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai (and others)

    2007-04-15

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 1st surveillance testing was performed completely by Korea Atomic Energy Research Institute at Daejon after the capsule was transported from Ulchin site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Ulchin Unit 4 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsule 2 is 4.306E+18n/cm{sup 2}. The bias factor, the ratio of calculation/measurement, was 0.918 for the 1st testing and the calculational uncertainty,7.0% satisfied the requirement of USNRC Reg.Guide 1.190, 20%. The best estimated neutron fluence for reactor vessel inside surface was 3.615E+18n/cm{sup 2} based on the end of 6th fuel cycle and it was predicted that the fluences of vessel inside surface at 16 and 32EFPY would reach 8.478E+18 and 1.673E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Ulchin Unit 4 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life.

  11. Final Report for the 1st Surveillance Test of the Reactor Pressure Vessel Material (CAPSULE 2) of Ulchin Nuclear Power Plant Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai (and others)

    2006-12-15

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 1st surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejon after the capsule was transported from Ulchin site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Ulchin unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsule 2 is 4.674E 18n/cm{sup 2}. The bias factor, the ratio of calculation/measurement, was 0.920 for the 1st testing and the calculational uncertainty,7.0% satisfied the requirement of USNRC Reg.Guide 1.190, 20%. The best estimated neutron fluence for reactor vessel inside surface was 3.913E 18n/cm{sup 2} based on the end of 6th fuel cycle and it was predicted that the fluences of vessel inside surface at 16 and 32EFPY would reach 9.249E 18 and 1.834E 19n/cm{sup 2} based on the current calculation. The result through this analysis for Ulchin unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life.

  12. Creep strength of N9 and N10 material (steel)

    Energy Technology Data Exchange (ETDEWEB)

    1943-02-17

    This letter was a response to the receipt of tables of information from the materials-testing laboratory at Ludwigshafen. The tables dealt with various properties of N9 and N10 steels for production of high-pressure hydrogenation vessels. The letter expressed questions about some of the information, especially about the methods of tempering the test steels and about certain figures for contraction of N9. The letter gave Leuna's values for creep strength (long-time rupture strength) after 20,000 hours of operation as 11 to 15 kg/mm/sup 2/ for N9 versus 26 to 30 kg/mm/sup 2/ for N10, and said that similar relationships existed in values for continuous creep strength (fatigue strength for an infinite time) between the steels. It had generally been Leuna's experience in high-temperature ruptures of pipes, though, that long before brittleness and contraction had set in very much, the physical action of hydrogen on the steel had led to ruptures. Because of this hydrogen activity, it was the aim of current work to increase the stability of N10 against hydrogen. One reason for the effort was to avoid being forced to rely on austenitic steels alone for the future development of the best steels for pressure vessels, since the resulting large demands on chromium and manganese might not always be able to be supplied. It was known that stability against hydrogen could be increased by addition of titanium to the steel, but it was not known to what extent creep strength in a hydrogen atmosphere could be improved thereby. Addition of titanium could also allow a corresponding reduction in the usage of vanadium or tungsten. Further discussions with steel suppliers were recommended.

  13. Microstructure variation and local plastic response of chrome molybdenum alloy steel after quasi rolling contact fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Lechun, E-mail: lechunxie@yahoo.com [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Qinghua [School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065 (China); Wen, Yan [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Wang, Liqiang; Lu, Weijie [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2016-04-06

    This work presented the microstructure variation and local plastic response of chrome molybdenum alloy steel under quasi rolling contact fatigue (quasi-RCF) testing. The quasi-RCF testing means using the similar method of actual RCF to introduce obviously local plastic deformation and microstructure variation on surface layers of materials. After quasi-RCF testing, the microstructure were observed using optical microscope and scanning electron microscope (SEM) from both the top surface and cross section. Based on microstructure analysis, the deformation volume of materials after quasi-RCF testing were calculated. The local plastic response was demonstrated by the unique local strain-stress curve and strain hardening exponent obtained via experimental measurements and simulation prediction. One hand, the increase in the hardness of plastic zones due to quasi-RCF testing was measured by a Vickers indenter. The other hand, based on the virgin hardness and elastic modulus, some possible local stress-strain curves were obtained. Then according to the possible local stress-strain curves, finite element analysis was introduced to predict the increased hardness. Comparing the increased hardness obtained by experiments and prediction, the unique local strain-stress curve and strain hardening exponent of chrome molybdenum alloy steel were determined. All results were discussed in detail.

  14. A Fixture for Compressive Tests of Thin Sheet Metal Between Lubricated Steel Guides

    Science.gov (United States)

    1946-04-01

    figure, The width of the paok was reduced about 1/64 inch by light cuts with a surface grinden apd the paok was turned . NACA TN No. 1022 5 ● over and was...RESULTSOFCOMPRESSIVET STSOF0.054-INCH1025CARBONSTEELSHEET, ~NSVE&E SPECIWZNS peoimen number CIT CF6T C21T C22T KindOf testor lateral support Paok -do-- Steel

  15. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    by the research vessels RV Gaveshani and ORV Sagar Kanya are reported. The work carried out by the three charted ships is also recorded. A short note on cruise plans for the study of ferromanganese nodules is added...

  16. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  17. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    Science.gov (United States)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  18. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    Science.gov (United States)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  19. Determining the shear fracture properties of HIP joints of reduced-activation ferritic/martensitic steel by a torsion test

    Science.gov (United States)

    Nozawa, Takashi; Noh, Sanghoon; Tanigawa, Hiroyasu

    2012-08-01

    Hot isostatic pressing (HIP) is a key technology used to fabricate a first wall with cooling channels for the fusion blanket system utilizing a reduced-activation ferritic/martensitic steel. To qualify the HIPped components, small specimen test techniques are beneficial not only to evaluate the thin-wall cooling channels containing the HIP joint but also to use in neutron irradiation studies. This study aims to develop the torsion test method with special emphasis on providing a reasonable and comprehensive method to determine interfacial shear properties of HIP joints during the torsional fracture process. Torsion test results identified that the torsion process shows yield of the base metal followed by non-elastic deformation due to work hardening of the base metal. By considering this work hardening issue, we propose a reasonable and realistic solution to determine the torsional yield shear stress and the ultimate torsional shear strength of the HIPped interface. Finally, a representative torsion fracture process was identified.

  20. Modeling steady-state thermal defectoscopy of steel solids using two side testing

    Directory of Open Access Journals (Sweden)

    Anđelković Boban R.

    2016-01-01

    Full Text Available In this paper, performing the thermal defectoscopy of a steel solid body by applying the thermovision camera, finite element method and method of filtering experimental data is proposed and implemented. Defect thickness, depth and size are analysed by defined temperature reference levels and simplified methodology. The thermal image processing is based on the proposed method. The applicability of this method can be confirmed by comparing analysis of obtained results with already known methods. The conducted experiment indicates that contactless method is efficient in the defects detection of thin non-complex prismatic parts.

  1. The choice of the optimal technology for processing pipe steels by analyzing the stages of the fracture process in impact tests

    Science.gov (United States)

    Derevyagina, Lyudmila S.; Gordienko, Antonina I.; Vlasov, Ilya V.

    2017-12-01

    The fracture toughness and cold resistance of low-carbon steels 10Mn2VNbAl and 12GBA subjected to different thermomechanical processing have been studied. It is shown that the helical rolling of 10Mn2VNbAl steel significantly improves its low-temperature fracture characteristics and reduces the ductile-brittle transition temperature from -32°C for the initial state to the temperature range below -55°C. As a result of warm rolling, the impact toughness KCV of 12GBA steel at room temperature increased 2.8 times. The test temperature reduction leads to a sharp decrease in the KCV values, with the ductile-brittle transition temperature maintained at the level of the initial state of the steel.

  2. Influence of operation factors on brittle fracture initiation and critical local normal stress in SE(B) type specimens of VVER reactor pressure vessel steels

    Science.gov (United States)

    Kuleshova, E. A.; Erak, A. D.; Kiselev, A. S.; Bubyakin, S. A.; Bandura, A. P.

    2015-12-01

    A complex of mechanical tests and fractographic studies of VVER-1000 RPV SE(B) type surveillance specimens was carried out: the brittle fracture origins were revealed (non-metallic inclusions and structural boundaries) and the correlation between fracture toughness parameters (CTOD) and fracture surface parameters (CID) was established. A computational and experimental method of the critical local normal stress determination for different origin types was developed. The values of the critical local normal stress for the structural boundary origin type both for base and weld metal after thermal exposure and neutron irradiation are lower than that for initial state due to the lower cohesive strength of grain boundaries as a result of phosphorus segregation.

  3. Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel

    Directory of Open Access Journals (Sweden)

    Victor Geantă

    2017-11-01

    Full Text Available High entropy alloys (HEA are metallic materials obtained from a mixture of at least five atomic-scale chemical elements. They are characterized by high mechanical strength, good thermal stability and hardenability. AlCrFeCoNi alloys have high compression strength and tensile strength values of 2004 MPa, respectively 1250 MPa and elongation of about 32.7%. These materials can be used to create HEA-steel type composite structures which resist to dynamic deformation during high speed impacts. The paper presents four different composite structures made from a combination of HEA and carbon steel plates, using different joining processes. The numerical simulation of the impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. For analyzing each constructive variant, three virtual shootings were designed, using a 7.62 × 39 mm cal. incendiary armor-piercing bullet and different impact velocities. The best ballistic behavior was provided by the composite structures obtained by welding and brazing that have good continuity and rigidity. The other composite structures, which do not have good surface adhesion, show high fragmentation risk, because the rear plate can fragment on the axis of shooting due to the combination between the shock waves and the reflected ones. The order of materials in the composite structure has a very important role in decreasing the impact energy.

  4. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  5. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO

    Science.gov (United States)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-10-01

    EUROFER weldability is investigated in support of the European TBM manufacturing. Electron beam, hybrid, laser and NGTIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel. It is shown that the most promising processes are laser, electron beam and hybrid welding, depending on the section size and accessibility. They produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The FZ are typically composed of martensite laths, with small grain sizes. In the HAZ, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. A one step PWHT (750 °C/3 h) is successfully applied to joints restoring good material performance. Distortion levels, with and without PWHT, are controlled through adaptation of manufacturing steps and clamping devices, obtaining levels not exceeding 120 μm (+/-60 μm) on a full "one cell mock-up".

  6. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Mitelea, Ion; Utu, Ion Dragos; Urlan, Sorin Dumitru; Karancsi, Olimpiu [Politehnica Univ. Timisoara (Romania). Faculty of Mechanical Engineering

    2017-08-01

    Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

  7. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Yonggwang nuclear power plant unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-02-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.762E+18, 1.5391E+19, 3.5119E+19, and 4.2610E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.899 for the 1st through 4th testing and the calculational uncertainty, 12.3% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.357E+19 n/cm{sup 2} based on the end of 11th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.525E+19, 4.337E+19, 5.148E+19 and 5.960E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 42 tabs. (Author)

  8. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Younggwang nuclear power plant unit1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Yonggwang site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 1 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.555E+18, 1.662E+19, 3.358E+19, and 4.521E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.859 for the 1st through 4th testing and the calculational uncertainty, 11.80% satisfied the requirement of USNRC Reg.Guide 1.190, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.551E+19 n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.929E+19, 4.880E+19, 5.831E+19 and 6.782E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 1 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 4 refs., 41 figs., 35 tabs. (Author)

  9. Reactor pressure boundary material; the modeling for the prediction of the welding characteristics of SA508-cl.3 pressure vessel steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Uhm, Sang Ho; Seo, Young Dae; Moon, Younk Ju; Kim, Bum Joo; Shim, Min Hyo [Hanyang University, Seoul (Korea)

    2002-03-01

    A metallurgical model for predicting the welding characteristics such as final microstructure and mechanical properties of HAZ was established and various kinetic parameters which was necessary to the model were measured and formulated through isothermal grain growth and isothermal transformation experiments. This model consisted of two sub-models; Grain growth model and Transformation model. Grain growth model was developed to calculate the thermal cycle from heat input and the change of austenite grain size which occurred during heating cycle. Transformation model described the phase transition behavior and predicted the final mechanical properties determined by structure-property relationships. The isothermal kinetics of grain growth and dissolution of precipitates were respectively described by well-known equation, dD/dt = M( {delta}F{sub e}ff ){sup m} and Whelan's analytical model. Isothermal transformation kinetics was expressed by Avrami equation. The reliabilities of each model were evaluated by HAZ microstructural simulation tests. It was found the both models were in good agreement. The applicability of this model was discussed by illustrating the results of the model. 129 refs., 81 figs., 11 tabs. (Author)

  10. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  11. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  12. Flexible GMR Sensor Array for Magnetic Flux Leakage Testing of Steel Track Ropes

    Directory of Open Access Journals (Sweden)

    W. Sharatchandra Singh

    2012-01-01

    Full Text Available This paper presents design and development of a flexible GMR sensor array for nondestructive detection of service-induced defects on the outer surface of 64 mm diameter steel track rope. The number of GMR elements and their locations within saddle-type magnetizing coils are optimized using a three dimensional finite element model. The performance of the sensor array has been evaluated by measuring the axial component of leakage flux from localized flaw (LF and loss of metallic cross-sectional area (LMA type defects introduced on the track rope. Studies reveal that the GMR sensor array can reliably detect both LF and LMA type defects in the track rope. The sensor array has a fast detection speed along the length of the track rope and does not require circumferential scanning. It is also possible to image defects using the array sensor for obtaining their spatial information.

  13. Application of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system

    Directory of Open Access Journals (Sweden)

    Farnoosh Basaligheh

    2015-12-01

    Full Text Available One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropriate probability distribution function of spacing of steel sets is essential. In the present paper, the distances between steel sets are collected from an under-construction tunnel and the collected data is used to suggest a proper Probability Distribution Function (PDF for the spacing of steel sets. The tunnel has two different excavation sections. In this regard, different distribution functions were investigated and three common tests of goodness of fit were used for evaluation of each function for each excavation section. Results from all three methods indicate that the Wakeby distribution function can be suggested as the proper PDF for spacing between the steel sets. It is also noted that, although the probability distribution function for two different tunnel sections is the same, the parameters of PDF for the individual sections are different from each other.

  14. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M.

    1966-03-15

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO

  15. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  16. PERFORMANCE OF STEEL FIBER REINFORCED CONCRETE – COMPARABILITY OF TESTS ACCORDING TO DAFSTB-GUIDELINE "STAHLFASERBETON" AND EN 14651

    Directory of Open Access Journals (Sweden)

    Steffen Anders

    2016-12-01

    Full Text Available For the determination of the performance of steel-fiber reinforced concrete (SFRC, the post-peak flexural strengths are used. In different national and European standards, different test-setups are defined, resulting in double efforts for testing for the manufacturers. In addition, the German national guideline "Stahlfaserbeton (DAfStb" on SFRC is well established European-wide, but the test standard is specifically national, demanding a four-point-bending tests using unnotched beams. Contrarily, the European standard EN 14651 as well as the Model Code 2010 demand three-point bending tests using notched specimens. Applying the national guideline is obligatory in Germany for structural use of SFRC. Therefore, it is essential to standardize the performance evaluation of SFRC based on commonly applied international guidelines. In the following, an approach is presented especially dealing with the problem of random occurrence of cracks in the four-point-bending tests. It is shown, that neglecting the point of crack can systematically under-estimate the performance of SFRC especially at deformations.

  17. A feasibility study on different NDT techniques used for testing bond quality in cold roll bonded Al-Sn alloy/steel bimetal strips

    Directory of Open Access Journals (Sweden)

    Tallafuss Philipp Johannes

    2017-01-01

    Full Text Available This paper presents non-destructive testing (NDT results for the detection of bond defects in aluminium-tin (Al-Sn alloy/steel bimetal strips. Among all types of bimetal strip that are used in the automotive industry for plain journal engine bearings, Al-Sn alloys cold roll bonded (CRB onto steel backing is the most common type. The difficulty to evaluate the metallurgical bond between the two dissimilar metals is a major industrial concern, which comprises the risk that bearings fail in the field. Considering the harsh performance requirements, 100% online non-destructive testing would be desirable to significantly reduce the business risk. Nowadays bimetal strip manufacturers still rely on destructive testing through different peel-off tests. This work offers the results from four independent NDT studies, using active thermography, shearography, ultrasound and guided wave electromagnetic acoustic transducers (EMATs and samples with different artificially implanted defects, to explore the feasibility to qualitatively indicate the occurrence of bond defects. A destructive peel off test was used to correlate the NDT results with known bond quality. The studies were done under laboratory conditions, and in case of ultrasound also online under production conditions. During the ultrasound online test, the requirements that a NDT technique has to fulfil for online inspection of Al-Sn alloy/steel bimetal strip were established. For active thermography, shearography and guided wave EMAT techniques, it was theoretically analysed, if the laboratory test results could be transferred to testing under production conditions. As a result, guided waves using EMATs, among the four tested methods, are best suited for online inspection of Al-Sn alloy/steel bimetal strip. This research was carried out in collaboration with MAHLE Engine Systems UK Ltd., an Al-Sn alloy/steel bimetal strip manufacturer for the automotive industry.

  18. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    CERN Document Server

    Hasegawa, M; Suzuki, M; Tang, Z; Yubuta, K

    2003-01-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) ...

  19. Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests

    Directory of Open Access Journals (Sweden)

    Crâştiu Ion

    2017-01-01

    Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.

  20. Research on multi-parameter monitoring of steel frame shaking-table test using smartphone

    Science.gov (United States)

    Han, Ruicong; Loh, Kenneth J.; Zhao, Xuefeng; Yu, Yan

    2017-04-01

    The numerical simulation promises an effective method to assess seismic damage of high-rise structure. But it's difficult to determine the input parameters and the simulation results are not completely consistent with the real condition. A more direct approach to evaluate the seismic damage is the structural health monitoring (SHM), which is one complex set of various kinds of sensors, devices and software, and always needs professionals. SHM system has achieved great development over recent years, especially on bridge structures. However it's not so popular on high-rise building due to its difficult implementation. Developing a low-cost and convenient monitoring technique will be helpful for the safety maintenance of high-rise building. Smartphones, which embedded with sensors, network transmission, data storage and processing system, are evolving towards crowdsourcing. The popularity of smartphones presents opportunities for implementation of portable SHM system on buildings. In this paper, multi-parameter monitoring of a three-story steel frame on shaking table under earthquake excitations was conducted with smartphone, and the comparison between smartphone and traditional sensors was provided. First, the monitoring applications on iOS platform, Orion-CC and D-viewer, were introduced. Then the experimental details were presented, including three-story frame model, sensors placement, viscous dampers and so on. Last, the acceleration and displacement time-history curves of smartphone and traditional sensors are provided and compared to prove the feasibility of the monitoring on frame under earthquake excitations by smartphone.

  1. Computational hydrodynamic comparison of a mini vessel and a USP 2 dissolution testing system to predict the dynamic operating conditions for similarity of dissolution performance.

    Science.gov (United States)

    Wang, Bing; Bredael, Gerard; Armenante, Piero M

    2018-01-16

    The hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet. A CFD-based mass transfer model was also developed. When plotted against strain rate, the predicted tablet-liquid mass transfer coefficient was found to be independent of the system where it was obtained, implying that a tablet would dissolve at the same rate in both systems provided that the concentration gradient between the tablet surface and the bulk is the same, the tablet surface area per unit liquid volume is identical, and the two systems are operated at the appropriate agitation speeds specified in this work. The results of this work will help dissolution scientists operate mini vessels so as to predict the dissolution profiles in the USP 2, especially during the early stages of drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Recertification of the air and methane storage vessels at the Langley 8-foot high-temperature structures tunnel

    Science.gov (United States)

    Hudson, C. M.; Girouard, R. L.; Young, C. P., Jr.; Petley, D. H.; Hudson, J. L., Jr.; Hudgins, J. L.

    1977-01-01

    This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed.

  3. Stainless steel reinforcement as a replacement for epoxy coated steel in bridge decks : final report.

    Science.gov (United States)

    2013-08-01

    The corrosion resistance of 2304 stainless steel reinforcement and stainless steel clad reinforcement was compared to conventional and epoxy-coated reinforcement (ECR). 2304 stainless steel was tested in both the as-received condition (dark mottled f...

  4. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  5. Gigacycle Fatigue Properties of Hydrogen-Charged JIS-SCM440 Low-Alloy Steel Under Ultrasonic Fatigue Testing

    Science.gov (United States)

    Furuya, Yoshiyuki; Hirukawa, Hisashi; Hayakawa, Masao

    2010-09-01

    Gigacycle fatigue tests were conducted on hydrogen-charged low-alloy steel. In this study, high- and low-strength specimens were prepared to investigate the effects of hydrogen on internal and surface fractures, respectively. The fatigue tests were conducted mainly by ultrasonic fatigue testing at 20 kHz and additionally by conventional servohydraulic fatigue testing at 50 Hz. All high-strength specimens revealed internal fractures. The fatigue strength of the hydrogen-charged specimens was much lower than that of the uncharged specimens. In the low-strength specimens, the uncharged specimens revealed surface fractures in the short-life regions in addition to internal fractures in the long-life regions. However, the hydrogen-charged specimens revealed internal fractures only that were combined with a much lower fatigue strength. The difference in fracture surfaces was small between the hydrogen-charged and the uncharged specimens, whereas the optically dark areas of the hydrogen-charged specimens seemed smaller than those of the uncharged specimens.

  6. Report of discussions on test melts of N10 steel with addition of titanium and other changes

    Energy Technology Data Exchange (ETDEWEB)

    Class, J.

    1943-03-22

    This memorandum detailed several conversations held on the general topic of changes in the composition of N10 steel, since its performance in high-pressure, high-temperature apparatus did not seem to be completely adequate because of its susceptibility to hydrogen attack and subsequent bursting. Among other things was discussed the question of whether it would be helpful to add titanium to the steel, in particular to allow a reduction in the use of the very scarce metals molybdenum and tungsten. After experiments at various steel works, most of the steel companies seemed to be of the opinion that current metallurgical and tempering techniques on an industrial scale were not quite adequate to handle the problems of introducing titanium, such as the tendency of the melt to scorify (turn to slag) and other difficulties in annealing and obtaining desired toughness in the steel. On the other hand, the author and most of the steel companies agreed that it was worthwhile to try changing the composition of N10 without adding titanium. The steel works had had difficulties with the high vanadium content of N10, with the necessary air-tempering, and with high annealing temperatures. The report mentioned several possible compositions for N10-like alloys. One which seemed to the steel companies to be worth experimenting with for hairpin tubes in preheaters was an austenite chromium--manganese steel.

  7. Cold weld cracking susceptibility of high strength low alloyed (HSLA steel NIONIKRAL 70

    Directory of Open Access Journals (Sweden)

    A. S. Tawengi

    2014-10-01

    Full Text Available In view of the importance of high strength low alloy (HSLA steels, particularly for critical applications such as offshore plat forms, pipeline and pressure vessels, this paper reports on an investigation of how to weld this type of steel without cold cracking. Using manual metal arc welding process and Tekken test (Y - Grove test has been carried out both to observe the cold cracking phenome non, and to investigate the influencing factors, such as preheating temperature and energy input, as well as electrode strength and diameter. How ever the results of the experiments show that there is a risk of cold cracking.

  8. Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release.

    Science.gov (United States)

    Summer, Burkhard; Fink, Ulrich; Zeller, Richard; Rueff, Franziska; Maier, Sonja; Roider, Gabriele; Thomas, Peter

    2007-07-01

    Nickel, chromium, and cobalt released from stainless steel and CoCrMo alloys have been postulated to trigger hypersensitivity reactions. The objective of this study was to assess the ion release from a CoCrMo alloy and stainless steel in vitro and the cutaneous reactivity to it by patch test. 52 metal-allergic patients and 48 non-allergic controls were patch tested to stainless steel and CoCrMo discs. In addition, using atomic absorption spectrometry, the release of nickel, cobalt, and chromium from both materials was assessed upon 2-day exposure to distilled water, artificial sweat (AS), and cell culture medium. There was low nickel ion release from stainless steel (0.3-0.46 microg/cm(2)/2 days) and CoCrMo discs (up to 0.33 microg/cm(2)/2 days) into the different elution media. Chromium release from the 2 materials was also very low (0.06-0.38 microg/cm(2)/2 days from stainless steel and 0.52-1.36 microg/cm(2)/2 days from CoCrMo alloy). In contrast, AS led to abundant cobalt release (maximally 18.94 microg/cm(2)/2 days) from the CoCrMo discs, with concomitant eczematous reaction upon patch testing: 0 of the 52 metal-allergic patients reacted to stainless steel discs and 5 of the 52 patients to CoCrMo discs (all 5 patients were cobalt allergic and 3 also nickel and chromium allergic). None of the controls reacted to the discs. Apart from nickel being a focus of allergological research, our results point to the possibly underestimated association of cobalt release and potential hyperreactivity to CoCrMo alloy.

  9. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  10. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  11. Prognosis of STEMI Patients with Multi-Vessel Disease Undergoing Culprit-Only PCI without Significant Residual Ischemia on Non-Invasive Stress Testing.

    Directory of Open Access Journals (Sweden)

    Adaya Weissler-Snir

    Full Text Available In about 50-80% of ST-segment elevation myocardial infarction (STEMI patients there is significant atherosclerotic disease in other coronary arteries in addition to the culprit vessel. There is substantial controversy as to the optimal revascularization approach in these patients. We sought to compare the outcomes of STEMI patients with multi-vessel disease (MVD treated with culprit-only primary percutaneous coronary intervention (PPCI without significant ischemia on subsequent non-invasive testing, to those of STEMI patients with single-vessel disease (SVD.Between 2001-2010, 1,540 consecutive patients treated with primary PCI for STEMI were prospectively observed and entered into a comprehensive clinical database. The primary end point was a composite of major adverse cardiac events (MACE, consisting of mortality, re-infarction and revascularization within 1 and 3 years following PPCI (excluding events occurring during the first 30 days. Patients with cardiogenic shock were excluded. The study included 720 patients with SVD and 185 patients with MVD who underwent culprit-only PPCI and had no residual ischemia on subsequent non-invasive stress testing. Patients with MVD were older, more likely to have hypertension or previous MI and less likely to be smokers and present with anterior MI than patients with SVD. One and 3-year MACE rates were similar between the groups. On cox proportional-hazards regression MVD without residual ischemia was not independently associated with MACE and its components.STEMI patients with MVD treated with culprit only-PCI without significant residual ischemia on non-invasive stress testing appear to have similar prognosis to STEMI patients with SVD.

  12. Prognosis of STEMI Patients with Multi-Vessel Disease Undergoing Culprit-Only PCI without Significant Residual Ischemia on Non-Invasive Stress Testing.

    Science.gov (United States)

    Weissler-Snir, Adaya; Gurevitz, Chen; Assali, Abid; Vaknin-Assa, Hana; Bental, Tamir; Lador, Adi; Yavin, Hagai; Perl, Leor; Kornowski, Ran; Lev, Eli

    2015-01-01

    In about 50-80% of ST-segment elevation myocardial infarction (STEMI) patients there is significant atherosclerotic disease in other coronary arteries in addition to the culprit vessel. There is substantial controversy as to the optimal revascularization approach in these patients. We sought to compare the outcomes of STEMI patients with multi-vessel disease (MVD) treated with culprit-only primary percutaneous coronary intervention (PPCI) without significant ischemia on subsequent non-invasive testing, to those of STEMI patients with single-vessel disease (SVD). Between 2001-2010, 1,540 consecutive patients treated with primary PCI for STEMI were prospectively observed and entered into a comprehensive clinical database. The primary end point was a composite of major adverse cardiac events (MACE), consisting of mortality, re-infarction and revascularization within 1 and 3 years following PPCI (excluding events occurring during the first 30 days). Patients with cardiogenic shock were excluded. The study included 720 patients with SVD and 185 patients with MVD who underwent culprit-only PPCI and had no residual ischemia on subsequent non-invasive stress testing. Patients with MVD were older, more likely to have hypertension or previous MI and less likely to be smokers and present with anterior MI than patients with SVD. One and 3-year MACE rates were similar between the groups. On cox proportional-hazards regression MVD without residual ischemia was not independently associated with MACE and its components. STEMI patients with MVD treated with culprit only-PCI without significant residual ischemia on non-invasive stress testing appear to have similar prognosis to STEMI patients with SVD.

  13. A-3 steel work completed

    Science.gov (United States)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  14. Fracture toughness and the master curve for modified 9Cr-1Mo steel

    Science.gov (United States)

    Yoon, Ji-Hyun; Yoon, Eui-Pak

    2006-12-01

    Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.

  15. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 °C after 2000 h

    Science.gov (United States)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2002-02-01

    Corrosion tests were carried out on austenitic AISI 316L and 1.4970 steels and on MANET steel up to 2000 h of exposure to flowing (up to 2 m/s) Pb/Bi. The concentration of oxygen in the liquid alloy was controlled at 10 -6 wt%. Specimens consisted of tube and rod sections in original state and after alloying of Al into the surface. After 2000 h of exposure at 420 and 550 °C the specimen surfaces were covered with an intact oxide layer which provided a good protection against corrosion attack of the liquid Pb/Bi alloy. After the same time corrosion attack at 600 °C was severe at the original AISI 316L steel specimens. The alloyed specimens containing FeAl on the surface of the alloyed layer still maintained an intact oxide layer with good corrosion protection up to 600 °C.

  16. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    Science.gov (United States)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  17. Intergranular Corrosion of Low Cr Ferritic Stainless Steel 429 Evaluated by the Optimized Double Loop Electrochemical Potentiokinetic Reactivation Test

    Directory of Open Access Journals (Sweden)

    Xiao-lei Li

    2015-01-01

    Full Text Available Intergranular corrosion (IGC of Nb-Ti stabilized ferritic stainless steel (FSS 429 was investigated using the double loop electrochemical potentiokinetic reactivation (DL-EPR test combined with the microstructure observation. The results indicated that the optimized DL-EPR test condition for FSS 429 was the solution of 0.5 M H2SO4 + 0.0001 M KSCN with a scanning rate of 100 mV/min at 30°C. Based on this condition, the specimens aging at 400–700°C for different duration were tested and a time-temperature-sensitization (TTS curve for FSS 429 was obtained, which reveals the sensitization nose was located around 550°C. The critical Ir/Ia value was determined to be about 3% above which IGC occurred. After aging treatment, Cr depletion zone was detected using energy dispersive spectroscopy (EDS, most possibly due to Cr segregation around intergranular TiC and NbC.

  18. Test report of the melt spreading tests ECOKATS-V1 and ECOKATS-1. CONTRACT FIKS-CT1999-00003 - EX-VESSEL CORE MELT STABILIZATION RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Alsmeyer, H.; Cron, T.; Foit, J.J.; Messemer, G.; Schmidt-Stiefel, S.; Haefner, W. [Becker Technologies, Eschborn (Germany); Kriscio, H.

    2004-11-01

    As one of the major tasks of the ECOSTAR project, two large-scale experiments on oxidic melt spreading were performed. The experimental conditions were selected to represent low flow rate of oxidic melt, released with low overheat, so that stop of the spreading process may occur during ongoing melt release, and spreading would be incomplete. Besides the basic experimental information on spreading of large melt masses under low flow conditions, the experiments were designed to be used for the final validation of spreading codes. After completion of the validation process, the computer programs would be able to predict with sufficient accuracy the spreading process in case of an accident, which is expected to occur under less critical conditions than the actual experiment. The report describes also the selection and characterization of the multi-component oxide melt, which simulates the ex-vessel oxide corium melt in an anticipated reactor accident. The melt was generated by a modified exothermic thermite reaction, and poured to the spreading surfaces under controlled conditions. To improve the information about the rheological behaviour of the selected oxide melt, a pre-test ECOKATS-V1 was performed in which the oxide melt was spread in a 1-d flow channel. Together with qualified spreading calculations, this experiment allowed for estimation of the initial viscosity of the melt and characterization of the rheological behaviour in the freezing range. Furthermore, significant information about the nature of the 1-d spreading process during onset of solidification as well as growth and failure of a front crust was gained. The large scale 2-d spreading experiment ECOKATS-1 was performed on a concrete surface, 4 m long and 3 m wide. 547 kg of oxide melt were released to the spreading surface during a period of 85 s. The melt and the spreading conditions were selected to represent the situation for which the melt stopped during the phase of melt inflow (incomplete

  19. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... “Rules for Building and Classing Steel Vessels”, 1981. ...

  20. Experimental investigation of multilayer surfacing system on orthotropic steel bridge with the five-point bending test

    NARCIS (Netherlands)

    Tzimiris, G.; Liu, X.; Scarpas, A.; Li, J.; Hofman, R.; Voskuilen, J.

    Due to lightweight and flexibility, orthotropic steel deck bridges become popular the last decades but several problems were reported in relation to asphalt surfacing materials such as rutting, cracking, loss of bond between the surfacing system and steel deck. In the Netherlands a surfacing

  1. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    Energy Technology Data Exchange (ETDEWEB)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  2. Simulative Testing of Friction and Lubrication in Cold Forging of Steel and Aluminum

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Aida, Tetsuo

    2012-01-01

    A new, simulative test of friction and lubrication in cold forging is developed by the authors. The test is based on a backward can extrusion process in which the workpiece rotates relatively to the conical punch. An analytical model is presented determining the friction stress from the measured ...

  3. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    Science.gov (United States)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  4. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.

  5. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    Science.gov (United States)

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  6. Structural analysis and intergranular corrosion tests of AISI 316L steel

    National Research Council Canada - National Science Library

    STONAWSKÁ, Z; SVOBODA, M; SOZAŃSKA, M; KŘÍSTKOVÁ, M; SOJKA, J; DAGBERT, C; HYSPECKÁ, L

    2006-01-01

    ... (650 °C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries...

  7. Interpretation of toughness tests performed on A533, grade B steel in the transition regime. Modelling and numerical analysis; Interpretation des essais de tenacite de l`acier A533, grade B dans le domaine de la transition fragile-ductile. Simulation numerique et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Eripret, C.

    1994-01-01

    Modelling the fracture behaviour of pressure vessel steels is of major importance for related structural integrity assessments. It is essential to understand how the micromechanisms control the transition between ductile and brittle fracture for predicting geometry effects on transition temperature. To meet this goal, a model has been developed at EDF/R and DD in the framework of local approach to fracture. Its experimental validation has been achieved by analysing toughness tests performed by AEA Technology for a pressure vessel steel in the transition regime. This large data base has evidenced the specimen thickness effects on toughness properties of the material, as well as influence of prior ductile crack growth. Predictions of the model have been compared with experiments, which shows that the transition curve K{sub 1C} = f (T) can be drawn from model predictions and compared with the RCCM or ASME design curve. Substantial safety margins have been exhibited. They are greater for thin specimens (10 mm) than for thicker specimens (230 mm). However, the transition curve in the upper transition region is still underestimated by the model (for temperatures higher than RTNDT + 50 deg C). Improvement should be made to account for important plasticity development and significant crack growth. (author). 30 figs., 10 tabs., 12 refs.

  8. Keeping control when cutting through a reactor vessel

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    UK Robotics` Advanced Teleoperation Controller (ATC) is a key component of one of the most extensive remote handling operations currently being undertaken - the removal of 165 mm diameter, 90 mm thick samples of carbon-manganese steel from the base of the Trawsfyndd reactor pressure vessel. These will then be used to assess the material properties of the vessel welds. (author).

  9. Service-cycle component-feature specimen TMF testing of steam turbine rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljevic, M.; Holdsworth, S.R. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Mazza, E. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland); Grossmann, P.; Ripamonti, L. [ALSTOM Power (Switzerland) Ltd., Baden (Switzerland)

    2010-07-01

    This paper reviews the methodology adopted in a Swiss Research Collaboration to devise a component-feature representative specimen geometry and the TMF cycle parameters necessary to closely simulate arduous steam turbine operating duty. Implementation of these service-like experimental conditions provides a practical indication of the effectiveness of deformation and crack initiation endurance predictions. Comprehensive post test inspection provides evidence to demonstrate the physical realism of the laboratory simulations in terms of the creep-fatigue damage generated during the benchmark tests. Mechanical response results and physical damage observations are presented and their practical implications discussed for the example of a 2%CrMoNiWV rotor service cycle. (orig.)

  10. Protection of reinforcement steel corrosion by phenylphosphonic acid pre-treatment PART II: Tests in mortar medium

    OpenAIRE

    Etteyeb, Naceur; Dhouibi, L.; Takenouti, Hisasi; Triki, E.

    2016-01-01

    International audience; A pre-treatment of steel reinforcement in mortar by a 72 h immersion in 0.1 M phenyl-phosphonic acid(C6H5P(O)(OH)2; PPA) was investigated. Then effectiveness of this procedure for protection against thecorrosion of steel bars embedded in pre- or post-addition of sodium chloride mortar was evaluated byelectrochemical impedance spectroscopy, visual inspection, SEM, and EDS analyses.The results showed that for non-treated steel reinforcement, the charge transfer resistanc...

  11. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  12. Evaluation of the Temper embrittlement in SA508 Gr. 4N Low Alloy Steel with Ni, Cr Contents Variation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is well known that SA508 Gr.4N low alloy steel has an improved fracture toughness and strength, compared to commercial low alloy steels such as SA508 Gr.3 and SA533B which have less than 1% Ni. Higher strength and fracture toughness of low alloy steels could be achieved by Ni and Cr addition. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature of a reactor pressure vessel is more than 300 .deg. C and it operates for over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires phase stability in the high temperature range including temper embrittlement resistance. Although temper brittlement has not been reported in SA508 Gr.4N low alloy steel, the evaluation of the temper embrittlement phenomena on SA508 Gr.4N is required for an RPV application. In a previous study, we have concluded that additional Ni and Cr could change the microstructures of SA508 Gr.4N low alloy steel, and changed microstructure may affect the susceptibility of temper embrittlement in SA508 Gr.4N. In this study, we have performed a Charpy impact test of SA508 Gr.4N low alloy steel with changing alloying element contents such as Ni and Cr. The mechanical properties of these low alloy steels after a long-term heat treatment(450 .deg. C, 2000hr) are also evaluated. Then, the fracture modes of each impact specimens are examined and grain boundary segregation is analyzed by AES. The precipitation behaviors of the low alloy steels are observed by SEM.

  13. Study on the Segregation Behavior in SA508 Gr. 4N Low Alloy Steel with Mn Contents Variation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    It is generally known that SA508 Gr.4N low alloy steel has an improved fracture toughness and strength, compared to commercial low alloy steels such as SA508 Gr.3 and SA533B which have lower than 1% Ni. Higher strength and fracture toughness of low alloy steels could be achieved by adding the Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature of a reactor pressure vessel is more than 300 .deg. C and it operates for over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a phase stability in the high temperature range including temper embrittlement resistance. Although no temper embrittlement has been reported in SA508 Gr.4N low alloy steel, we need to evaluate the temper embrittlement phenomena on SA508 Gr.4N for an RPV application. In a previous study, we have concluded that additional Mn may accelerate the temper embrittlement effect in SA508 Gr.4N low alloy steel. So we need to examine the reason why Mn changes the susceptibility to temper embrittlement in SA508 Gr.4N. In this study, we have performed a Charpy impact test of SA508 Gr.4N low alloy steel at varing Mn contents. The mechanical properties of these low alloy steels after a long-term heat treatment(450 .deg. C, 2000hr) are evaluated. Then, the images of the fracture surfaces are observed and a grain boundary segregation is analyzed by AES and SIMS. We also analyze the grain boundary structures of the low alloy steels with EBSD.

  14. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  15. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    Science.gov (United States)

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  16. Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Tao; Chen, Peng [The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Guan, Kaishu, E-mail: guankaishu@ecust.edu.cn [The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2013-01-20

    In this study, the small punch test (SPT) was conducted to evaluate the stress corrosion cracking (SCC) susceptibility of stainless steel (SS) 304L with surface nanocrystallization (SNC) in 1 mol/L NaCl+0.5 mol/L HCl aq. The surface mechanical attrition treatment (SMAT) was applied to realize the SNC. The mechanical property and micro-structural evolutions of SS 304L induced by SMAT were investigated through optical microscope (OM), X-ray diffraction (XRD), micro-Vickers hardness and transmission electron microscopy (TEM). The grain size on the surface of the material was reduced to 30-100 nm. The SPT was conducted in both ambient air and corrosive solution. The results were investigated by OM and scanning electron microscopy (SEM), showing that in ambient air, the specimen with 30 min SMAT performed a higher yield strength and lower ductility than the solution annealed (SA) counterpart. The SS 304L without SMAT presented a transgranular SCC (TGSCC) mode in chloride solution. In contrast, the SNC 304L SS showed a higher SCC susceptibility with a typical intergranular SCC (IGSCC).

  17. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.

  18. Development of hydrophobized alginate hydrogels for the vessel-simulating flow-through cell and their usage for biorelevant drug-eluting stent testing.

    Science.gov (United States)

    Semmling, Beatrice; Nagel, Stefan; Sternberg, Katrin; Weitschies, Werner; Seidlitz, Anne

    2013-09-01

    The vessel-simulating flow-through cell (vFTC) has been used to examine release and distribution from drug-eluting stents in an in vitro model adapted to the stent placement in vivo. The aim of this study was to examine the effect of the admixture of different hydrophobic additives to the vessel wall simulating hydrogel compartment on release and distribution from model substance-coated stents. Four alginate-based gel formulations containing reversed-phase column microparticles LiChroprep® RP-18 or medium-chain triglycerides in form of preprocessed oil-in-water emulsions Lipofundin® MCT in different concentrations were successfully developed. Alginate and modified gels were characterized regarding the distribution coefficient for the fluorescent model substances, fluorescein and triamterene, and release as well as distribution of model substances from coated stents were investigated in the vFTC. Distribution coefficients for the hydrophobic model substance triamterene and the hydrophobized gel formulations were up to four times higher than for the reference gel. However, comparison of the obtained release profiles yielded no major differences in dissolution and distribution behavior for both fluorescent model substances (fluorescein, triamterene). Comparison of the test results with mathematically modeled data acquired using finite element methods demonstrated a good agreement between modeled data and experimental results indicating that gel hydrophobicity will only influence release in cases of fast releasing stent coatings.

  19. COD removal by flotation and nitrogen removal tests at Rautaruuki Steel's coking plant

    Energy Technology Data Exchange (ETDEWEB)

    Lerssi, P.; Piirainen, I. [Rautaruukki Steeli, Raahe (Finland)

    2000-07-01

    The activated sludge process has been in operation since 1987 and no changes were made in 1992 when the production of coking plant was doubled. 97% ammonium and 85% COD removal efficiencies have been achieved. The flotation unit has been tested to purify the outflow of the wastewater treatment. By the flotation it is possible to increase a COD removal efficiency of the plant above 90% and decrease a discharge under 100g COD/ton coal. According to the pilot studies the nitrogen removal stage can be supplemented to the existing basins. The main changes were made in the pumping system. 1 ref., 10 figs., 1 tab.

  20. Super long-term creep tests of advanced HP and IP rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Tchizhik, A.A. [The Polzunov Central Boiler and Turbine Institute, Department the Fatigue Life of Materials for Power Plans Equipment, St. Petersburg (Russian Federation)

    1998-12-31

    A creep model has been developed for predicting the long-term creep behavior, in excess of 200,000 h for advanced materials.The new creep theory is based on a continuum microdamage model and is used to calculate the fields of stress and strain and wedge and cavities damage in critical components of steam and gas turbines. The application of this new model increases the reliability and service life of modern turbines. The accuracy of the model to predict long - term creep behavior, creep ductility was verified using the data bank of super long-term creep tests of advanced materials. (orig.) 12 refs.

  1. Investigation of the deformation of in-vessel components of a nuclear fusion experiment using optical strain sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vorpahl, Christian Georg

    2013-05-03

    A fibre-optic, EM-insensitive measurement for the deformation of in-vessel components has successfully been installed and operated at the nuclear fusion experiment ASDEX Upgrade. The sensors were tested for their neutron tolerance and vacuum compatibility. Installation was done by copper-steel laser beam welding. Measurements of in-service oscillations due to all three existing types of load cases show good agreement with theory and simulations. A fatigue lifetime assessment was performed.

  2. Investigation for deformation of ion-irradiated RPV steel using nanoindentation hardness test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon; Kim, In Sub [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2003-10-01

    To evaluate deformation depending on depth under ion irradiation, nanoindentation test was applied to heavy ion-irradiated SA508 CL.3 RPVSs. The specimens were irradiated with 8MeV Fe{sup +4} ions to 0.15dpa and 1.5dpa at below 60 .deg. C. The derivative of the load-depth ratio, d(L/D)/dD, was estimated the depth dependent formation of plastic and elastic deformation in the irradiated specimens. In ion-irradiated SA508 CL.3 RPVS, the peak of deformation was observed at about 20nm from the surface, but the one of radiation damage was appeared at 1500nm from the surface when TRIM98 was simulated damage depth profile. In order to study the effect of deformation depth under ion irradiation rate, we evaluated nanoindentation hardness test. The hardness was larger for the irradiated than for the non-irradiated, and also larger for 1.5dpa than for 0.15dpa one.

  3. Generation and Retention of Helium and Hydrogen in Austenitic Steels Irradiated in a Variety of LWR and Test Reactor Spectral Environments

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Francis A.; Oliver, Brian M.; Greenwood, Lawrence R.; Edwards, Danny J.; Bruemmer, Stephen M.; Grossbeck, Martin L.

    2002-03-31

    In fission and fusion reactor environments stainless steels generate significant amounts of helium and hydrogen by transmutation. The primary sources of helium are boron and nickel, interacting with both fast and especially thermal neutrons. Hydrogen arises primarily from fast neutron reactions, but is also introduced into steels at often much higher levels by other environmental processes. Although essentially all of the helium is retained in the steel, it is commonly assumed that most of the hydrogen is not retained. It now appears that under some circumstances, significant levels of hydrogen can be retained, especially when helium-nucleated cavities become a significant part of the microstructure. A variety of stainless steel specimens have been examined from various test reactors, PWRs and BWRs. These specimens were exposed to a wide range of neutron spectra with different thermal/fast neutron ratios. Pure nickel and pure iron have also been examined. It is shown that all major features of the retention of helium and hydrogen can be explained in terms of the composition, thermal/fast neutron ratio and the presence or absence of helium-nucleated cavities. In some cases, the hydrogen retention is very large and can exceed that generated by transmutation, with the additional hydrogen arising from either environmental sources and/or previously unidentified radioisotope sources that may come into operation at high neutron exposures.

  4. Very Versatile Vessel

    Science.gov (United States)

    2009-09-01

    data. This source provides information on aluminum hydrofoil vessels without the added weight of foil structures. The composite armor around the...seating compartment. The sides should also limit wave splash on the deck. The freeboard should contribute reserve buoyancy , increasing large-angle and...Resistance, Powering, and Propulsion Savitsky’s Method Since model testing data or other reliable performance data was unavailable for the proposed

  5. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomáš, I., E-mail: tomas@fzu.cz [Institute of Physics ASCR, Na Slovance 2, Prague 18221 (Czech Republic); Vértesy, G. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science, Konkoly Thege Miklós út 29-33, H-1121 Budapest (Hungary); Pirfo Barroso, S. [KFKI Atomic Energy Research Institute, Konkoly Thege Miklós út 29-33, H-1121 Budapest (Hungary); The Open University, Walton Hall, MK92BS Milton Keynes (United Kingdom); Kobayashi, S. [Department of Materials Science and Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan)

    2013-12-15

    Highlights: • Results of 4 NDT methods on highly irradiated steel are normalized and compared. • Two of the methods (MAT and HV) correlate well with DBTT. • Magnetic Adaptive Testing gives the most sensitive and the best correlated results. • Measurements and sample shapes for an NDT surveillance program are suggested. - Abstract: Results of three magnetic nondestructive methods, Magnetic Barkhausen Emission (MBE), magnetic minor loops Power Scaling Laws (PSL) and Magnetic Adaptive Testing (MAT), and of one reference mechanical measurement, Vickers Hardness (HV), applied on the same series of neutron heavily irradiated nuclear reactor pressure vessel steel materials, were normalized and presented here for the purpose of their straightforward quantitative mutual comparison. It is uncommon to carry out different round-robin testing on irradiated materials, and if not answering all open questions, the comparison alone justifies this paper. The assessment methods were all based on ferromagnetism, although each of them used a different aspect of it. The presented comparison yielded a justified recommendation of the most reliable nondestructive method for indication of the reactor steel irradiation hardening and embrittlement effects. The A533 type B Class 1 steel (JRQ), and the base (15Kh2MFA) and welding (10KhMFT) steels for the WWER 440-type Russian reactors were used for the investigations. The samples were irradiated by high-energy neutrons (>1 MeV) with up to 11.9 × 10{sup 19} n/cm{sup 2} fluences. From all the applied measurements, the results of MAT produced the most satisfactory correlation with independently measured ductile-brittle-transition temperature (DBTT) values of the steel. The other two magnetic methods showed a weaker correlation with DBTT, but some other aspects and information could be assessed by them. As MAT and MBE were sensitive to uncontrolled fluctuation of surface quality of the steel, contact-less ways of testing and more

  6. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  7. In-situ Micro-tensile Testing of Additive Manufactured Maraging Steels in the SEM: Influence of Build Orientation, Thickness and Roughness on the Resulting Mechanical Properties

    OpenAIRE

    Surreddi, Kumar Babu; Oikonomou, Christos; Karlsson, Patrik; Olsson, Mikael; Pejryd, Lars

    2017-01-01

    Selective laser melting (SLM) is frequently used additive manufacturing technique capable of producing various complex parts including thin-wall sections. However the surface roughness is a limiting factor in thin sections produced by SLM process when strength is the main criterion. In this study, the influence of build orientation, thickness and roughness on the resulting mechanical properties of as-built test samples was investigated. Various thin sheets of EN 1.2709 maraging steel built in...

  8. Principles and Application of Magnetic Rubber Testing for Crack Detection in High-Strength Steel Components: II. Residual-Field Inspection

    Science.gov (United States)

    2014-12-01

    ABSTRACT Since its introduction in the 1970s, magnetic rubber testing ( MRT ) has been used successfully to inspect critical high-strength steel...aerospace components for surface-breaking fatigue cracks. In the residual-field variant of MRT , inspections are performed following the application...geometries, residual-field MRT is capable of reliable detection of cracks as small as 0.43 mm (0.017 inch) in surface length. However, for other conditions

  9. Principles and Application of Magnetic Rubber Testing for Crack Detection in High-Strength Steel Components: I. Active-Field Inspection

    Science.gov (United States)

    2014-12-01

    ABSTRACT Magnetic rubber testing ( MRT ) is a sensitive non-destructive inspection technique, capable of detecting cracks as small as 0.5 mm (0.020...inch) in length with high reliability. Since its introduction in the 1970s, MRT has been successfully used to inspect high-strength steel aerospace...components for surface-breaking fatigue cracks. However, despite its widespread use and apparent simplicity, the underpinning science of MRT is not

  10. Vessel Operator System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  11. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Linjun, Xie, E-mail: linjunx@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Guohong, Xue; Ming, Zhang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2016-08-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k{sub f} of the HDS is obtained. So, the

  12. Effects of alloying element contents on the toughness and transition behavior in the SA508 Gr. 4N Ni-Mo-Cr low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Low alloy steels used as materials for reactor pressure vessels (RPVs) determine the safety and the life span of reactors. Currently, SA508 Gr.3 low alloy steel is generally used for RPV materials. But, for larger capacity and long-term durability of the next generation RPVs, materials that have much better properties are needed, such as strength, toughness and irradiation resistance. SA508 Gr.4N low alloy steel shows good mechanical properties due to high Ni and Cr contents in comparison with the currently used reactor pressure vessel steels. Materials for RPVs suffer a decrease of toughness due to an embrittlement of the materials by neutron irradiation, especially in ferritic steels. This toughness loss causes an increase in the transition temperature, and then a brittle fracture could occur. Therefore, for an integrity assessment of low alloy steels as RPVs, an accurate evaluation of the transition behavior is needed, such as fracture and impact toughness. In this study, the toughness and transition behavior of SA 508 Gr.4N low alloy steels, which have different Ni, Cr and Mo, were evaluated in the transition region. And the applicability of the test results for Master-Curve method was assessed. Additionally, differences between influences of alloying elements contents on Charpy impact toughness and fracture toughness were discussed in terms of microstructural features.

  13. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  14. The effect of stress relieving treatment on mechanical properties and microstructure of different welding areas of A517 steel

    Science.gov (United States)

    Sharifi, Hassan; Raisi, Solyman; Tayebi, Morteza

    2017-12-01

    Quench and temper steels are classified as low alloy steels. In these types of steel, post-weld heat treatment is used to obtain high toughness, elevated strength and better corrosion resistance in addition to decline residual stress and hydrogen cracking for high pressure vessel applications. In this study, welding mechanical properties were characterized by hardness measurements, tensile and impact tests. Additionally, optical microscopy and scanning electron microscopy (SEM) was carried out in order to characterize the microstructure and the fracture analysis of A517 steel before and after the post-weld heat treatment. Residual stress examinations were employed to confirm the data reliability. Results showed no changes in the weld zone microstructures. The residual stress measurements revealed the highest and the lowest residual stresses in non-treated samples and heat treated samples in 560 °C, respectively. On the other side, hardness and ultimate tensile strength of the specimens was decreased after heat treatment.

  15. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    Science.gov (United States)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  16. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature

    OpenAIRE

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2015-01-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from ?196??C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN) https://odin.jrc.ec.europa.eu . The data pres...

  17. The Effect Of Strain Rate On The Mechanical Properties And Microstructure Of The High-Mn Steel After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2015-06-01

    Full Text Available The paper presents results of dynamic tensile investigations of high-manganese Fe – 20 wt.% Mn – 3 wt.% Al – 3 wt.% Si – 0.2 wt.% steel. The research was carried out on a flywheel machine, which enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. It was found that the studied steel was characterized by very good mechanical properties. Strength of the tested materials was determined in the static tensile test and dynamic deformation test, while its hardness was measured with the Vickers hardness test method. The surface of fractures that were created in the areas where the sample was torn were analyzed. These fractures indicate the presence of transcrystalline ductile fractures. Fractographic tests were performed with the use of a scanning electron microscope. The structure was analyzed by light optical microscopy. Substructure studies revealed occurrence of mechanical twinning induced by high strain rates. A detailed analysis of the structure was performed with the use of a transmission scanning electron microscope STEM.

  18. Hygro-Thermo-Mechanical Analysis of a Reactor Vessel

    Directory of Open Access Journals (Sweden)

    Jaroslav Kruis

    2012-01-01

    Full Text Available Determining the durability of a reactor vessel requires a hygro-thermo-mechanical analysis of the vessel throughout its service life. Damage, prestress losses, distribution of heat and moisture and some other quantities are needed for a durability assessment. A coupled analysis was performed on a two-level model because of the huge demands on computer hardware. This paper deals with a hygro-thermo-mechanical analysis of a reactor vessel made of prestressed concrete with a steel inner liner. The reactor vessel is located in Temelín, Czech Republic.

  19. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  20. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, Sam [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT test results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.

  1. Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading

    OpenAIRE

    CORET, Michel; Calloch, Sylvain; Combescure, Alain

    2002-01-01

    International audience; This paper is concerned with the experimental behaviour of a 16MND5 steel (french vessel steel) under complex loading. A particular attention is paid to plasticity induced by phase transformation. We present an experimental set-up to apply thermo-mechanical loads under tension-torsion. This apparatus enables us to reach temperature of 1200 °C at a maximum heating rate of 60 °C/s and a high cooling rate of −30 °C/s. A series of tests is performed in order to show the ru...

  2. Effects of temperature and neutron irradiation on dynamic bearing capacity of structural steels. Part II. Effect of neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Buchar, J.; Sykora, M.; Bilek, Z. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)

    1980-01-01

    The capacity of structural steels to resist pulsed loads constitutes an important factor in ensuring nuclear power plant components safety. Irradiation hardening and embrittlement are important in connection with the safety of reactor pressure vessels. Experimental testing of a group of weldable structural steels utilizing the Hopkinson Split Bar Technique was performed to investigate the dynamic bearing capacity (dbc) of these materials in the irradiated conditions. It is shown that dbc increases at least three times in the elastic regime after a neutron dose of 5x10/sup 19/ cm/sup -2/. The influence of annealing time (concentration of radiation defects) on materials recovery is demonstrated.

  3. Basic mechanical properties of layered steels

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available This article deals with identifying attributes of layered steel materials (damask steel with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a packet consisting of 17 layers (9 layers of tool steel 19 133 (ČSN with the thickness of 6 mm and 8 layers 80NiCr11 steel in the form of saw bands with the thickness of 1.2 mm. The packet was cut into 8 parts, folded 3 times and forged together, which provided damask steel with 136 layers. The resulting steel bars were used to make semi-finished products with the approximate dimensions of the test specimens. For evaluation of mechanical properties were applied the following tests: tensile test, Charpy impact test, hardness and microhardness measurementsThe results of tests proved that the properties of damask steel are dependent not only on the direction led impact quality forge weld layers and content iof nhomogeneities in the place of discord, but also on the quenching and tempering temperature, resp. on the choice of quenching bath, which determine the final structure of steel and the resulting hardness, respectively microhardness.

  4. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  5. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  6. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  7. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  8. Associations between the Brief Memory and Executive Test (BMET), Activities of Daily Living, and Quality of Life in Patients with Cerebral Small Vessel Disease.

    Science.gov (United States)

    Hollocks, Matthew J; Brookes, Rebecca; Morris, Robin G; Markus, Hugh S

    2016-05-01

    In addition to neuropsychological difficulties, patients with cerebral small vessel disease (SVD) can have reduced activities of daily living and a poorer quality of life compared to healthy adults. The Brief Memory and Executive Test (BMET), is a cognitive screening tool designed to be sensitive to the neuropsychological profile of patients with SVD. While the BMET is sensitive to the cognitive consequences of SVD, it is unclear how well scores on this measure relate to functional outcomes. The aims of this study are to investigate the relationship between scores on the BMET and functional outcomes (activities of daily living and quality of life) in SVD, and to compare this with other commonly used cognitive screening tools. This study included 184 participants with SVD (mean age=63.2; SD=9.9) and 299 healthy controls (mean age=62.4; SD=13.8) who were tested using the BMET, Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Stroke Specific - Quality of Life Scale (SS-QoL), Geriatric Depression Scale (GDS), and measures of both instrumental activities of daily living (IADL) and basic activities of daily living (BADL). After controlling for covariates the scores on the BMET, but not the MoCA or MMSE, were significantly related to poorer IADL and quality of life in the SVD group. In addition to the BMET scores, symptoms of depression were found to be significant associated with functional outcome. These results support the clinical utility of using of the BMET, in combination with a standardized depression questionnaire, during the early assessment of patients with SVD.

  9. Radiation effects on reactor pressure vessel supports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  10. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR; Analisis de la evolucion microestructural del dano por irradiacion neutronica en la vasija de presion de un reactor nuclear de potencia BWR

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel y R, M.

    2012-07-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  11. Business Intelligence for Strategic Steel Constructions Sourcing

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2010-01-01

    markets, government support for industry and stability of government}, to source steel constructions strategically. I undertook this project as a consultation for JB Contractors A/S {JBC} now referred to as Strongstaal A/S. JBC builds on its core competences in steel constructions, forgings, pressure...... vessels, welding, machining, heat treatment, corrosive treatment and quality control. It uses these core competencies to manufacture heavy duty, labour-intensive welded and machine processed steel structures in Eastern Europe. It has many years of sound project management experience and has enjoyed great...

  12. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  13. Guam Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Guam. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  14. Florida Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Florida. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  15. Vessel Arrival Info - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Arrival Info is a spreadsheet that gets filled out during the initial stage of the debriefing process by the debriefer. It contains vessel name, trip...

  16. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature

    Directory of Open Access Journals (Sweden)

    Matthias Bruchhausen

    2016-12-01

    Full Text Available Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from −196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT. Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article “On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel” (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015 [1].

  17. Effects of hard chrome and MoN-coated stainless steel on wear behaviour and tool life model under two-body abrasion wear testing

    Directory of Open Access Journals (Sweden)

    P. Srisattayakul

    2017-01-01

    Full Text Available The objectives of this study were to investigate the effect of the electroplated hard chrome (HC and the MoNcoated AISI 316 stainless steel coatings on weight loss under two-body abrasion wear testing and to predict the tool life of both materials used as a fishing net-weaving machine component, namely the hook. Both materials were used to carry out the wear experiments under two-body abrasion behavior. These specimens were wear tested with the in-house wear testing apparatus base on ASTM: G133-05 standard. The Taylor’s equation was used to formulate the tool life model whereas the Monte Carlo simulation was used to predict the tool life of the machine part. The results showed that the MoN-HC exhibited higher wear resistance than that of the HC.

  18. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  19. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  20. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  1. RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Víctor Martínez-Martínez

    2017-09-01

    Full Text Available This article proposes a Radial Basis Function Artificial Neural Network (RBF-ANN to classify tempered steel cams as correctly or incorrectly treated pieces by using multi-frequency nondestructive eddy current testing. Impedances at five frequencies between 10 kHz and 300 kHz were employed to perform the binary sorting. The ANalysis Of VAriance (ANOVA test was employed to check the significance of the differences between the impedance samples for the two classification groups. Afterwards, eleven classifiers were implemented and compared with one RBF-ANN classifier: ten linear discriminant analysis classifiers and one Euclidean distance classifier. When employing the proposed RBF-ANN, the best performance was achieved with a precision of 95% and an area under the Receiver Operating Characteristic (ROC curve of 0.98. The obtained results suggest RBF-ANN classifiers processing multi-frequency impedance data could be employed to classify tempered steel DIN 100Cr6 cams with a better performance than other classical classifiers.

  2. ALICE HMPID Radiator Vessel

    CERN Multimedia

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  3. Numerical modelling of Charpy-V notch test by local approach to fracture. Application to an A508 steel in the ductile-brittle transition range; Modelisation de l'essai Charpy par l'approche locale de la rupture. Application au cas de l'acier 16MND5 dans le domaine de transition

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, B

    2001-07-15

    Ferritic steels present a transition of the rupture mode which goes progressively of a brittle rupture (cleavage) to a ductile rupture when the temperature increases. The following of the difference of the transition temperature of the PWR vessel steel by the establishment of toughness curves makes of the Charpy test an integrating part of the monitoring of the French PWR reactors. In spite of the advantages which are adapted to it in particular its cost, the Charpy test does not allow to obtain directly a variable which characterizes a crack propagation resistance as for instance the toughness used for qualifying the mechanical integrity of a structure. This work deals with the establishment of the through impact strength-toughness in the transition range of the vessel steel: 16MND5 from a non-empirical approach based on the local approach of the rupture. The brittle rupture is described by the Beremin model (1983), which allows to describe the dispersion inherent in this rupture mode. The description of the brittle fissure is carried out by the GTN model (1984) and by the Rousselier model (1986). This last model has been modified in order to obtain a realistic description of the brittle damage in the case of fast solicitations and of local heating. The method proposed to determine the parameters of the damage models depends only of tests on notched specimens and of the inclusion data of the material. The behaviour is described by an original formulation parametrized in temperature which allows to describe all the tests carried out in this study. Before using this methodology, an experimental study of the behaviour and of the rupture modes of the steel 16MND5 has been carried out. From the toughness tests carried out in quasi-static and dynamical conditions, it has been revealed that this steel does not present important unwedging of its toughness curve due to the velocity effect. In the transition range, local heating of about 150 C have been measured in the root

  4. Consideration on buckling and plastic breakdown strength characteristics of a steel plate with surface layers of ultra fine grain microstructure (SUF); Hyoso chosairyu koban no zakutsu sosei hokai kyodo tokusei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Yao, T.; Yajima, H.; Miyamoto, H.; Morita, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Ogihara, Y.; Ishikawa, T. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-01

    Buckling and plastic breakdown strength characteristics of a structure fabricated by using new steel plates with surface layer made into ultra fine grain structure were analyzed and discussed by using a belt plate buckling and plasticity test and the finite element method. The tested steel plate has a thickness of 25 mm, and was fabricated for ocean vessel use, with surface layers on both sides of about 1/6 of the whole thickness having been made an ultra fine grain structure. As a result of a belt steel buckling and plasticity test on a steel plate with surface ratio of 29%, both of the initial yield stress and the buckling stress were found increased by about 4 to 10% as compared with a steel plate having surface ratio of 0%. An analysis by using the finite element method was made on square steel plates with a length of 80 cm, a width of 100 cm, and thicknesses of 12 mm and 24 mm. A result was obtained that, in the case of surface layer ratio of 33%, both of the initial yield stress and the maximum load withstanding force were higher by 5 to 16% than the case of surface ratio of 0%. Similar rise in strength was shown also in bend preventing plates which are basic constituting members of a vessel. 6 refs., 10 figs., 2 tabs.

  5. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY14 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    Laboratory corrosion testing of candidate alloys—including Zr-4 and Zr-2.5Nb representing the target solution vessel, and 316L, 2304, 304L, and 17-4 PH stainless steels representing process piping and balance-of-plant components—was performed in support of the proposed SHINE process to produce 99Mo from low-enriched uranium. The test solutions used depleted uranyl sulfate in various concentrations and incorporated a range of temperatures, excess sulfuric acid concentrations, nitric acid additions (to simulate radiolysis product generation), and iodine additions. Testing involved static immersion of coupons in solution and in the vapor above the solution, and was extended to include planned-interval tests to examine details associated with stainless steel corrosion in environments containing iodine species. A large number of galvanic tests featuring couples between a stainless steel and a zirconium-based alloy were performed, and limited vibratory horn testing was incorporated to explore potential erosion/corrosion features of compatibility. In all cases, corrosion of the zirconium alloys was observed to be minimal, with corrosion rates based on weight loss calculated to be less than 0.1 mil/year with no change in surface roughness. The resulting passive film appeared to be ZrO2 with variations in thickness that influence apparent coloration (toward light brown for thicker films). Galvanic coupling with various stainless steels in selected exposures had no discernable effect on appearance, surface roughness, or corrosion rate. Erosion/corrosion behavior was the same for zirconium alloys in uranyl sulfate solutions and in sodium sulfate solutions adjusted to a similar pH, suggesting there was no negative effect of uranium resulting from fluid dynamic conditions aggressive to the passive film. Corrosion of the candidate stainless steels was similarly modest across the entire range of exposures. However, some sensitivity to corrosion of the stainless steels was

  6. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  7. Laboratory Studies of Technological Strength of Heat-Resistant Steels 15H1N1F Using the Small Sample Tests with Artificial Cooling

    Directory of Open Access Journals (Sweden)

    V. S. Drizhov

    2015-01-01

    Full Text Available The aim of the work is to develop a technique to research a damage of the welded structures from thermostable steels under reiterated heating.Damage of welded structures under reiterated heating depends on numerous processes, proceeding both in welding and under reiterated heating. This circumstance makes it necessary to analyze the reasons and conditions of emerging damage on the basis of numerous statistical materials. This problem can be solved only if simple and effective research methods are used to conduct tests.The paper uses theoretical and experimental methods of research. Theoretical researches are based on the calculation analysis of proceeding internal welding stresses in the welded structures from thermostable steels. For analysis the calculation method of solving a problem was applied taking into account heterogeneity of phase dilatation in different zones of the welded structure.Experimental researches were conducted on the small welded samples in conditions of isothermal relaxation of stresses. Using the artificial heat sink, when welding is a feature of these researches. These welding conditions allowed us to reproduce thermal cycles of welding on small samples, taking place in welding of the thick-walled welded units. Experimental researches of metal damage nature of the welded structures under reiterated heating were conducted on the welded samples, which were welded both by non-consumable electrode and by consumable one. In analysis the influence of stress concentrator on emerging damage was also taken into account.As a result of research a technique has been offered to study damage of welded structures under reiterated heating on the small samples used for tests.The metallography analysis of the metal damage nature of welded structures at small sample tests confirmed damage identity at tests and in practice during heat treatment of weldments from thermostable steels.The conducted experimental analysis of emerging damage

  8. Computer simulation of quenched and tempered steel properties

    OpenAIRE

    B. Smoljan; D. Iljkić; Novak, H.

    2011-01-01

    Purpose: The algorithm of estimation of mechanical properties based on steel hardness has been established.Design/methodology/approach: Numerical modelling of hardness distribution in as-quenched steel specimen was performed by involving the results of simple experimental test, i.e., Jominy-test. Hardness of quenched and tempered steel has been expressed as function of maximal hardness of actual steel and hardness of actual steel with 50% of martensite in microstructure, according to the time...

  9. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests

    Directory of Open Access Journals (Sweden)

    XU Jun

    2017-08-01

    Full Text Available Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT. Good agreement is observed for predicting results performed by current method and traditional method.

  10. Standard test method for determining effects of chemical admixtures on corrosion of embedded steel reinforcement in concrete exposed to chloride environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures in a chloride environment. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Iron and steel foundries manual emissions testing of cupola baghouse at Waupaca Foundry in Tell City, Indiana: Volume 1 -- Report text and appendices A and B. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, F.; Scheffel, D.F.

    1999-06-01

    The US Environmental Protection Agency (EPA) Emission Standards Division (ESD) is investigating iron and steel foundries to identify and quantify hazardous air pollutants (HAPs) emitted from cupolas; electric arc furnaces; and pouring, cooling and shakedown operations of sand mold casting processes. The Waupaca Foundry, located in Tell City, Indiana, uses a baghouse and was the subject of this test program. Testing at the Waupaca Foundry was conducted by two EMAD contractors to address the following ESD requirements: (1) characterize HAP emissions from cupolas that are controlled by baghouses; (2) characterize uncontrolled HAP emissions from pouring, cooling, and shakeout (PCS) processes; (3) determine baghouse performance in controlling HAP emissions from cupolas; and (4) identify surrogates for estimating HAP emissions from the subject foundry processes.

  12. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  13. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    Science.gov (United States)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  14. Helical computed tomography of the aortoiliac vessels: optimization of the scan delay using the test bolus method; TC helicoidal del sector vascular aortoiliaco: optimacion del retraso en la adquisicion mediante el metodo del bolo de prueba

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion, L.; Marti-Bonmati, L.; Aliaga, R.; Delgado, F.; Igual, A. [Hospital Universitario Dr. Peset. Valencia (Spain)

    2001-07-01

    To optimize the length of the scan delay in helical computed tomography (CT) studies of the aortoiliac vessels using the test bolus method. We studied 90 consecutive patients referred to us for examination of the aortoiliac vessels. The time it took for the contrast to reach the aorta (rise time) was calculated in each patient in agreement with a previously defined protocol involving the use of a test bolus and applying different scan delays. The attenuation values were measured in three portions of abdominal aorta in all the patients. The uptake in the different portions for each delay time were compared by ANOVA and the Studen-Newman-Keuls test with the significance level set at p<0.05. The main rise time was 22.3 seconds (range: 13 to 40 seconds). The mean uptake for the proximal, central and distal portions of aorta 231, 260 and 254 UH in the groups with a delay of 5 seconds over the rise time; 2,75, 287 and 287 IH for delays of 10 seconds; and 266, 259 and 276 UH for delays of 15 seconds, respectively. The application of the test bolus method to optimize uptake in the aortoiliac vessels results in a high degree of enhancement. A delay of 10 seconds over the rise time produced the greatest degree of vascular opacification, which was homogeneous throughout the entire abdominal aorta. (Author) 23 refs.

  15. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Doquet, V., E-mail: doquet@lms.polytechnique.fr [Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-08-30

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  16. Modular scaffolding for assembling the inside of an LNG vessel

    Energy Technology Data Exchange (ETDEWEB)

    Lienhard, R.W.

    1977-11-15

    A new scaffolding arrangement developed by Swiss Fabricating Inc., Pittsburgh, for finishing the inside of LNG vessels offers greater mobility and outrigger adjustability than conventional scaffolding and need not be specially constructed for each job. The scaffolding provides relatively large and open horizontal work areas without cross-bracing or tie rods. The structural steel base is supported from the bottom of the vessel by adjustable screw-jack supports. Adjustable outriggers can be extended to come close to the vessel's sides.

  17. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    Science.gov (United States)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  18. Effect of the radiation in the reference temperature T{sub 0} in ferritic steel; Efecto de la radiacion en la temperatura de referencia T{sub 0} en acero ferritico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva O, A.; Gachuz M, M.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The present work studies the effect that produces the irradiation in ferritic steels (AISI 8620) on the reference temperature (T{sub 0}) that characterizes the tenacity to the fractures (K{sub JC}) of these materials obtaining this way a characteristic curve (Master Curve) of this steel. The approach of the 'Master curve' is based on the Astm E-1921. Following this standard the methodology of a sub size settled down in Charpy type test tubes. Due to this type of steels is used mainly in pressure vessels of the reactor in Nuclear Power plants, the fracture tenacity gives the rule at the moment for the verification of structural integrity of the pressure vessel of the reactor. (Author)

  19. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  20. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jae Young [Pukyong National University, Busan (Korea, Republic of)

    2010-05-15

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  1. Design and analysis of multicavity prestressed concrete reactor vessels. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Goodpasture, D.W.; Burdette, E.G.; Callahan, J.P.

    1977-01-01

    During the past 25 years, a rather rapid evolution has taken place in the design and use of prestressed concrete reactor vessels (PCRVs). Initially the concrete vessel served as a one-to-one replacement for its steel counterpart. This was followed by the development of the integral design which led eventually to the more recent multicavity vessel concept. Although this evolution has seen problems in construction and operation, a state-of-the-art review which was recently conducted by the Oak Ridge National Laboratory indicated that the PCRV has proven to be a satisfactory and inherently safe type of vessel for containment of gas-cooled reactors from a purely functional standpoint. However, functionalism is not the only consideration in a demanding and highly competitive industry. A summary is presented of the important considerations in the design and analysis of multicavity PCRVs together with overall conclusions concerning the state of the art of these vessels.

  2. Collapsible Cryogenic Storage Vessel Project

    Science.gov (United States)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  3. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  4. Quantification of the brittle-ductile failure behavior of reactor steels by means of the small punch tests and micromechanical damage models; Quantifizierung des sproed-duktilen Versagensverhaltens von Reaktorstaehlen mit Hilfe des Small-Punch-Tests und mikromechanischer Schaedigungsmodelle

    Energy Technology Data Exchange (ETDEWEB)

    Linse, Thomas

    2013-02-25

    This work comprises the development and implementation of a non-local ductile damage model, the application of methods for the identification of material parameters from experimental data as well as the calculation of fracture mechanics parameters in the brittle-ductile transition zone through numerical simulations of fracture mechanical tests using the identified parameters. The developed non-local ductile damage model is based on the Gurson-Tvergaard- Needleman model (GTN). The pathological mesh sensitivity of the GTN model is eliminated by introducing an additional length parameter by means of an implicit gradient formulation. To solve the coupled field problem, the non-local damage model is implemented in a finite element program in the form of a userdefined element. Force-displacement-curves of the small punch test (SPT), a miniaturised test, are evaluated for the determination of material parameters. Given the modest material requirements for the preparation of the required samples remnants of Charpy-specimens are reused. Two ferritic reactor steels, both irradiated and unirradiated, are examined. The experiments cover the full brittle-ductile transition region of the steels. Following the concept of the Local Approach, fracture toughness values are determined by numerical calculation of the stress and deformation state in fracture mechanics specimen only. Here, the yield curves and damage parameters previously determined from the SPT are used. The calculated fracture toughness values are compared with experimental results.

  5. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    . Developing a Hegelian inspired historical-sociological approach this paper however argues that national and transnational societies emerged simultaneously and in a co-evolutionary and mutually supportive fashion. In most European settings national societies did not become the central horizon of individuals...... of the European steel industry....

  6. Maury Journals - German Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  7. Experimental Tests on Steel Plate-to-Plate Splices Bonded by C-FRPS Laminas with and without Wrapping

    Directory of Open Access Journals (Sweden)

    Mario D’Aniello

    2016-02-01

    Full Text Available The results of an experimental investigation carried out on steel splices bonded by (Carbon-Fiber–Reinforced Polymers C-FRPs are presented in this paper. The main aim of the study is to examine the influence of different parameters on the type of failure and on the ductility of splices. Different configurations of the specimens were considered, including butt and lapped joints using different arrangements for end anchorage of the bonded C-FRP laminas, such as (i external bonding; and (ii anchored jacketing with C-FRP sheets transversally wrapped to the longitudinal axis of the joints. The results in terms of failure modes and response curves are described and discussed, highlighting the potentiality of these types of bonded connections for metal structures. In particular, experimental results showed that (i the failure modes exhibited by both butt and lapped wrapped splices were substantially similar; (ii the wrapped anchoring is beneficial in order to achieve large deformations prior to failure, thus allowing a satisfactory ductility, even though a more timely installation process is necessary.

  8. Gating techniques for ultrasonic thickness testing using flaw detectors

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, P., E-mail: paul@hollowayndt.com [Holloway NDT & Engineering Inc., Georgetown, Ontario (Canada)

    2016-05-15

    The purpose of this article is to provide guidance on settings and methods, in particular the careful use of gating, to ensure accuracy of thickness testing on corroded steel and other metallic components. Specific applications include boiler tubes, tank floors, piping and vessels where the testing is performed from the OD or top surfaces, inspecting for metal loss due to corrosion on the opposite side. (author)

  9. Normalizing treatment influence on the forged steel SAE 8620 fracture properties

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Vida Gomes

    2005-03-01

    Full Text Available In a PWR nuclear power plant, the reactor pressure vessel (RPV contains the fuel assemblies and reactor vessels internals and keeps the coolant at high temperature and high pressure during normal operation. The RPV integrity must be assured all along its useful life to protect the general public against a significant radiation liberation damage. One of the critical issues relative to the VPR structural integrity refers to the pressurized thermal shock (PTS accident evaluation. To better understand the effects of this kind of event, a PTS experiment has been planned using an RPV prototype. The RPV material fracture behavior characterization in the ductile-brittle transition region represents one of the most important aspects of the structural assessment process of RPV's under PTS. This work presents the results of fracture toughness tests carried out to characterize the RPV prototype material behavior. The test data includes Charpy energy curves, T0 reference temperatures for definition of master curves, and fracture surfaces observed in electronic microscope. The results are given for the vessel steel in the "as received" and normalized conditions. This way, the influence of the normalizing treatment on the fracture properties of the steel could be evaluated.

  10. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  11. PRESSURE-RESISTANT VESSEL

    NARCIS (Netherlands)

    Beukers, A.; De Jong, T.

    1997-01-01

    Abstract of WO 9717570 (A1) The invention is directed to a wheel-shaped pressure-resistant vessel for gaseous, liquid or liquefied material having a substantially rigid shape, said vessel comprising a substantially continuous shell of a fiber-reinforced resin having a central opening, an inner

  12. Clinical study on the value of combining neuropsychological tests with auditory event-related potential P300 for cognitive assessment in elderly patients with cerebral small vessel disease

    Directory of Open Access Journals (Sweden)

    Xiao-ling ZHAO

    2016-11-01

    Full Text Available Objective To investigate the value of combining neuropsychological tests with auditory event-related potential (ERP P300 for cognitive assessment in elderly patients with cerebral small vessel disease (cSVD.  Methods A total of 183 elderly patients with cSVD were enrolled in this study. They were divided into 3 groups according to brain MRI: lacunar infarct (LACI group (N = 62, white matter hyperintensity (WMH group (N = 60 and LACI + WMH group (N = 61. A total of 50 brain MRI normal persons were selected as control group. Montreal Cognitive Assessment (MoCA, Chinese version was used to evaluate the cognitive function, and the amplitude and latency of P300 were measured in each group.  Results Compared with control group, the MoCA total score in LACI, WMH and LACI + WMH groups were significantly lower (P = 0.042, 0.015, 0.000, and the score in LACI + WMH group was significantly lower than that in LACI and WMH groups (P = 0.001, 0.042. In the eight cognitive domains of MoCA scale, the visual space and executive function (P = 0.006, 0.041, 0.035, delayed memory (P = 0.006, 0.012, 0.048, language (P = 0.001, 0.032, 0.047 and calculation (P = 0.009, 0.001, 0.003 in LACI + WMH group were significantly lower than those in control, LACI and WMH groups. The delayed memory in LACI group was significantly lower than that in control group (P = 0.037. The delayed memory (P = 0.005 and language (P = 0.047 in WMH group were significantly lower than those in control group. Compared with control group, the amplitudes of P300 (P = 0.025, 0.033, 0.000 in LACI, WMH and LACI + WMH groups were significantly decreased, and the latencies (P = 0.018, 0.000, 0.000 were significantly prolonged. The amplitude of P300 in LACI + WMH group was significantly lower than that in LACI and WMH groups (P = 0.041, 0.018, and the latency was significantly prolonged (P = 0.000, 0.022.  Conclusions Elderly patients of cSVD all suffer from different degrees of cognitive impairment

  13. The sensitivity of approved Ninhydrin and Biuret tests in the assessment of protein contamination on surgical steel as an aid to prevent iatrogenic prion transmission.

    Science.gov (United States)

    Lipscomb, I P; Pinchin, H E; Collin, R; Harris, K; Keevil, C W

    2006-11-01

    Regulations recommend the routine application of biochemical tests, such as the Ninhydrin or Biuret tests, to confirm the efficacy of hospital sterile service department (SSD) washer-disinfector cycles in removing proteinaceous material, particularly with respect to prions. The effectiveness of these methods relies on both the effective sampling of the instruments and the sensitivity of the tests employed. Two commercially available contamination assessment tests were evaluated for their sensitivity to ME7 brain homogenate on surgical-grade stainless steel surfaces. Controls were visualized by the application of episcopic differential interference contrast/Epi-fluorecence microscopy (EDIC/EF) combined with the sensitive fluorescent reagent, SYPRO Ruby, which has been shown previously to rapidly visualize and assess low levels of contamination on medical devices. The Ninhydrin test displayed a minimum level of detection observed by 75% of volunteers (MLD(75)) of 9.25 microg [95% confidence interval (95% CI) 8.6-10.0 microg]. The Biuret test provided better sensitivity, with a MLD(75) of 6.7 microg (95% CI 5.4-8.2 microg). However, much lower concentrations of proteinaceous soiling (pg) were visualized using the EDIC/EF microscopy method. From these findings, it is clear that these approved colorimetric tests of cleaning are relatively insensitive. This investigation demonstrates how large amounts (up to 6.5 microg) of proteinaceous brain contamination could remain undetected and the instruments deemed clean using such methods. The application of more sensitive cleanliness evaluation methods should be applied to reduce the risk of iatrogenic transmission of prion disease in 'high-risk' instruments such as neurosurgical devices.

  14. Containment vessel drain system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  15. Research and development of weathering resistant bridge steel of Shougang

    Science.gov (United States)

    Yang, Yongda; Wang, Yanfeng; Huang, Leqing; Di, Guobiao; Ma, Changwen; Ma, Qingshen

    2017-09-01

    To introduce the composition design and mechanical properties and microstructure of the weathering bridge steel which would be used for bridge of Guanting reservoir. We adopt cyclic immersion corrosion test to study corrosion resistance difference of weathering bridge steel and common bridge steel. At the same corrosion time, the weight loss and corrosion rate of weathering bridge steel are lower than the common bridge steel's. Testing phase composition of rust layer by X-ray diffraction, two kinds of test steel's rust layer is mainly composed of Goethite and Fe3O4 and Fe2O3. At the same corrosion time, the percentage composition of goethite in rust layer of weathering bridge steel are significantly higher than common bridge steel's, the higher goethite content is, the compacter rust layer structure is. The compact rust layer would prevent the water and air passing the rust layer, and then preventing the further corrosion reaction, improving the corrosion resistance performance of weathering bridge steel.

  16. Investigation of impulsively loaded pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Cornwell, R.; Hanner, D.; Leichter, H.; Mohr, P.

    1963-10-15

    Explosion containment vessels for containing from 2,000 to 3,000 five ton nuclear explosions are considered. Analysis methods appear adequate and lowest weights using the most advanced materials available in the next five years are projected.None of these materials can be fabricated today and all require extensive development. Present material technology limits the choice of materials and defines the weight. The addition of safety factors and fixtures (nozzles, etc.) will add to this weight considerably, and may well radically alter the vessel response. Improvements in the strength weight ratios of metals and glasses over those considered in this report do not appear reasonable at this time. Winding schemes to utilize the high strength of steel wires and somehow maintain a reasonable thickness appear to offer the most promise. A `ductile` beryllium would of course offer vast improvement, but no indications that this is being developed have appeared and all presently known beryllium is much too brittle.

  17. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Ito, H.; Shibasaki, K. [NKK Corp., Tokyo (Japan); Mizuta, A.; Sugimoto, H. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  18. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  19. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  20. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Alaie, A, E-mail: amir_alaie@yahoo.com [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei Rad, S [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Kadkhodapour, J [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Jafari, M [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Asadi Asadabad, M [Materials Research School, Isfahan (Iran, Islamic Republic of); Schmauder, S [Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany)

    2015-06-25

    The phenomenon of strain localization is considered the most effective cause of failure in dual phase steels. In the present study, we have performed in-situ tensile tests to investigate the strain localization in ferrite phase. In order to quantify the level of microscopic deformation, an image processing code was used and the the strain map was subsequently superimposed onto the scanning electron microscopy (SEM) image obtained from the in-situ test. The SEM image that was captured during the in-situ tensile test was further used in a finite element dislocation density model, based on which the similarities and differences between the experimental and simulation results were discussed. The amount of localized deformation in the ferrite phase was found to be much higher in the regions between martensite islands. A parametric study was then performed to gain deeper insights on the effect of martensite grain size on the strain localization of the neighboring ferrite. Furthermore, using the experimental results, the localization of strain inside the high deformational fields before the final failure was discussed.

  1. Nondestructive testing of defective ASTM A 514 steel on the I-275 Combs-Hehl twin bridges over the Ohio River in Campbell County, Kentucky.

    Science.gov (United States)

    2010-03-01

    Three defective ASTM A 514 steel splice plates were discovered on the I-275 Combs-Hehl twin bridges over the Ohio River. A follow-on in-depth field inspection of 1,356 A 514 steel plates on the bridges revealed 14 additional defective gusset and spli...

  2. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    Science.gov (United States)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-08-01

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  3. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hyoung, E-mail: shirimp@kaist.ac.k [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Min-Chul; Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-08-15

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T{sub 0} determination for the tempered martensitic SA508 Gr.4N steels.

  4. Cleavage Fracture Toughness of SA508 Gr.4N High Strength Low Alloy Steel with Different Phase Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Kim, Min Chul; Choi, Kwon Jae; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Materials for reactor pressure vessel (RPV) are required to have good mechanical properties to endure the severe operating conditions inside the reactor. Various researches have focused on improving mechanical properties by the controlling the heat treatment process of commercial SA508 Gr.3 RPV steel. Some studies for identifying new material with high strength and toughness for larger capacity and longer lifetime of reactor are being performed. SA508 Gr.4N low alloy steel may be a promising RPV material due to its excellent mechanical properties from its tempered martensitic microstructure. Recently, some research showed that F/M steel composed of the tempered martensite has a steeper temperature dependency of the fracture toughness than the master curve expression. We have also focused on the steep transition properties of tempered martensitic SA508 Gr.4N steel in previous research. However, it has not yet confirmed that the transition behavior including temperature dependency with tempered martensite fraction. This investigation aims to evaluate the relationship between cleavage fracture toughness and tempered martensite fraction for SA508 Gr.4N low alloy steel. For this purpose, the model alloys were prepared by controlling the cooling rate from the austenitization temperature. The cleavage fracture toughness was characterized in transition temperature region by 3-point bending tests. Based on the test results and a stress distribution near crack tip calculated in FE analysis, the relationship between the carbide size distributions and the transition properties are analyzed

  5. Fatigue crack initiation in carbon and low-alloy steels in light water reactor environments : mechanism and prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.

    1998-01-27

    Section 111 of the ASME Boiler and Pressure Vessel Code specifies fatigue design curves for structural materials. The effects of reactor coolant environments are not explicitly addressed by the Code design curves. Recent test data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of carbon and low-alloy steels. Under certain loading and environmental conditions, fatigue lives of test specimens may be shorter than those in air by a factor of {approx}70. The crack initiation and crack growth characteristics of carbon and low-alloy steels in LWR environments are presented. Decreases in fatigue life of these steels in high-dissolved-oxygen water are caused primarily by the effect of environment on growth of short cracks < 100 {micro}m in depth. The material and loading parameters that influence fatigue life in LWR environments are defined. Fatigue life is decreased significantly when five conditions are satisfied simultaneously, viz., applied strain range, service temperature, dissolved oxygen in water, and S content in steel are above a threshold level, and loading strain rate is below a threshold value. Statistical models have been developed for estimating the fatigue life of these steels in LWR environments. The significance of the effect of environment on the current Code design curve is evaluated.

  6. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  7. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-02-01

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring the effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type 304L

  8. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  9. Background and methods for a reliable test for hydrogen cracking of super-martensitic stainless steel flow-lines

    Energy Technology Data Exchange (ETDEWEB)

    Stroe, Mioara [Materials Science and Electrochemistry Dept., Free University of Brussels, U.L.B., Av. F.D. Roosevelt 50, CP 194/03, Brussels (Belgium)]|[CEBELCOR, Av. Paul Heger, grille 2, 1000, Brussels (Belgium); Delplancke, Jean-Luc [Materials Science and Electrochemistry Dept., Free University of Brussels, U.L.B., Av. F.D. Roosevelt 50, CP 194/03, Brussels (Belgium); Pourbaix, Antoine [CEBELCOR, Av. Paul Heger, grille 2, 1000, Brussels (Belgium)

    2004-07-01

    The most recent models proposed for hydrogen embrittlement (HE) suggest that there is a strong interaction between hydrogen in the material and dislocation's movement. Parameters like hydrogen content and hydrogen localisation in the material, load mode and plastic deformation are important for HE. A representative test to determine the susceptibility to should take into account these parameters. The solubility of hydrogen and its diffusion coefficient were determined by permeation tests. Extraction of hydrogen at different temperatures identified the types of hydrogen traps. Nano-indentation tests gave an insight of the modification of mechanical properties at the nano scale, in the presence of hydrogen. Constant load tests (CL) and slow strain rate tests (SSRT) were performed on samples under cathodic charging and on pre-charged samples. The results obtained until now by CL and SSRT suggest that dynamic deformation is very important for the susceptibility to HE. (authors)

  10. Modelling Steel Behaviour

    OpenAIRE

    Anderberg, Yngve

    1986-01-01

    When modelling material mechanical behaviour, an analytical description is required of the relationship between stresses and strains. A computer oriented mechanical behaviour model for steel is described. The model is based on the fact that the deformation process at transient high temperature conditions can be desribed by three strain components which are separately found in different steady state tests. It is shown that a behaviour model based on steady state data satisfactorily predicts be...

  11. Tension stiffening of steel-fiber-reinforced concrete

    Directory of Open Access Journals (Sweden)

    Luiz Álvaro Oliveira Júnior

    2016-08-01

    Full Text Available In this paper, the mechanical behavior of steel-fiber-reinforced concrete was investigated to analyze the influence of steel fibers on tension stiffening. Using tension tests, the tension stiffening coefficient was evaluated through the load versus strain responses obtained from strain gages fixed to reinforcement steels. Moreover, an empirical model is proposed to estimate the tension stiffening coefficient of steel-fiber-reinforced concrete from reinforcement strains. From the test results, it was verified that the addition of steel fibers to concrete reduced the reinforcement steel strains and the crack width and increased the stiffness of cracked concrete, mainly in concretes reinforced with highvolumesof fibers.

  12. Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part I - Annealing

    Directory of Open Access Journals (Sweden)

    Tarpani José R.

    2002-01-01

    Full Text Available A nuclear reactor pressure vessel steel was submitted to different annealing heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested with subsequent metallographic and fractographic characterization. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical behavior of the microstructures in both quasi-static (J-R curve and dynamic (Charpy impact loading regimes. A well defined relationship was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy for very most of the microstructures.

  13. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  14. Correlation between damage detection and observed damage for a full-scale four-story steel building during the collapse test

    Science.gov (United States)

    Mei, Liu; Mita, Akira

    2011-04-01

    A full-scale four-story steel building was tested on the shaking table of the E-defense project on September, 2007. During the shaking table tests, the building was damaged progressively through various levels of seismic excitations, and finally collapsed on the first floor. To evaluate the modal parameters, low-amplitude white noise excitations were applied to the building and the response of the building was measured at various levels of damage due to the seismic excitations. The subspace identification method is then applied to identify the modal parameters of the building based on the measured data. This paper focuses on detecting damage of this building based on changes in identified modal parameters. A finite element model updating strategy is applied to identify (detect, localize and quantify) the damage in the building at each damage state considered. The residuals used in the updating procedure are based on the identified natural frequencies and mode shapes for the first two X direction and Y direction vibration modes of the building. At last the correlation between the damage detection results and the actual damage observed in the building is carefully examined. They do not exactly coincide but the concentration regions of damage are highly consistent with each other.

  15. Dutch supplier rewarded for manufacture of the two vacuum vessels for the ATLAS end-cap toroids

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS collaboration has presented an award for outstanding supplier performance to Dutch firm Schelde Exotech. Based on a design by Rutherford Appleton Laboratory, UK, Schelde Exotech manufactured under a NIKHEF contract the two 500 m3 large vacuum vessels for the cryostats of the ATLAS end-cap toroids. These 11-metre diameter castellated aluminium vessels with stainless-steel bore tube are essentially made up of 40-mm-thick plates for the shells, 75-mm-thick plates for the endplates, and 150-mm-thick bars for the flanges. Because of transport constraints, the vessels were made in halves, temporarily sealed and vacuum tested at the works, then transported to CERN for final assembly and acceptance tests. Both vessels were vacuum-tight and the meticulous and clean way of working ensured that a high vacuum was obtained within a few days of pumping. The delivery to CERN was completed in July 2002. Representatives of Schelde Exotech are seen here receiving their award in the ATLAS assembly hall. In the backgro...

  16. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  17. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J. L. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Jo, H. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Tirawat, R. [National Renewable Energy Laboratory, Concentrating Solar Power Group, Golden, Colorado; Blomstrand, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Sridharan, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin

    2017-08-31

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughened via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.

  18. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. 2011 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  1. 2013 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  4. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  5. Cheboygan Vessel Base

    Data.gov (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  6. Maury Journals - US Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  7. 2011 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. 2011 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  9. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  10. Coastal Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  11. Correlation between standard Charpy and sub-size Charpy test results of selected steels in upper shelf region

    Science.gov (United States)

    Konopík, P.; Džugan, J.; Bucki, T.; Rzepa, S.; Rund, M.; Procházka, R.

    2017-02-01

    Absorbed energy obtained from impact Charpy tests is one of the most important values in many applications, for example in residual lifetime assessment of components in service. Minimal absorbed energy is often the value crucial for extending components service life, e.g. turbines, boilers and steam lines. Using a portable electric discharge sampling equipment (EDSE), it is possible to sample experimental material non-destructively and subsequently produce mini-Charpy specimens. This paper presents a new approach in correlation from sub-size to standard Charpy test results.

  12. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  13. Standard test method for determining plane-strain crack-arrest fracture toughness, kIa, of ferritic steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method employs a side-grooved, crack-line-wedge-loaded specimen to obtain a rapid run-arrest segment of flat-tensile separation with a nearly straight crack front. This test method provides a static analysis determination of the stress intensity factor at a short time after crack arrest. The estimate is denoted Ka. When certain size requirements are met, the test result provides an estimate, termed KIa, of the plane-strain crack-arrest toughness of the material. 1.2 The specimen size requirements, discussed later, provide for in-plane dimensions large enough to allow the specimen to be modeled by linear elastic analysis. For conditions of plane-strain, a minimum specimen thickness is also required. Both requirements depend upon the crack arrest toughness and the yield strength of the material. A range of specimen sizes may therefore be needed, as specified in this test method. 1.3 If the specimen does not exhibit rapid crack propagation and arrest, Ka cannot be determined. 1.4 The values stat...

  14. Microstructural analysis of 800H steel exposed at test operation in HTHL by using FIB-SEM and HRTEM techniques

    Science.gov (United States)

    Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav

    2017-09-01

    To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.

  15. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  16. Coil Opener and Down Ender Operator (iron & steel) 7-88.305; Conveyor Man (iron & steel) 7-88.300; Cooling Conveyor Operator (iron & steel) 7-88.241; Tester Conveyor Operator (iron & steel) 7-88.241; Thread Entry Conveyor Operator (iron & steel) 7-88.241; Yard Transfer Conveyor Operator (iron & steel) 7-88.241--Technical Report on Standardization of the General Aptitude Test Battery.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  17. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, C.; Frund, J.M. [EDF, Moret sur Loing (France). Direction des Etudes et Recherches; Pineau, A. [Ecole des Mines de Paris, Evry (France). Centre des Materiaux

    1999-04-09

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made.

  18. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  19. Flexible Foot Test Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, C.H.; /Fermilab

    1987-04-27

    A test model of the flexible foot support was constructed early in the design stages to check its reactions to applied loads. The prototype was made of SS 304 and contained four vertical plates as opposed to the fourteen Inconel 718 plates which comprise the actual structure. Due to the fact that the prototype was built before the design of the support was finalized, the plate dimensions are different from those of the actual proposed design (i.e. model plate thickness is approximately one-half that of the actual plates). See DWG. 3740.210-MC-222376 for assembly details of the test model and DWG. 3740.210-MB-222377 for plate dimensions. This stanchion will be required to not only support the load of the inner vessel of the cryostat and its contents, but it must also allow for the movement of the vessel due to thermal contraction. Assuming that each vertical plate acts as a column, then the following formula from the Manual of Steel Construction (American Institute of Steel Construction, Inc., Eigth edition, 1980) can be applied to determine whether or not such columns undergoing simultaneous axial compression and transverse loading are considered safe for the given loading. The first term is representative of the axially compressive stress, and the second term, the bending stress. If the actual compressive stress is greater than 15% of the allowable compressive stress, then there are additional considerations which must be accounted for in the bending stress term.

  20. Hardness depth profiling in steel by photothermal testing; Erfassung von Haertetiefe und Haerteprofil in Eisenwerkstoffen mit photothermischen Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Walther, H.G.; Lan, T.T.N. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Optik und Quantenelektronik

    1998-05-01

    The experimentally verified connection between microhardness and local thermal conductivity enables the photothermal hardness depth profiling. This can be done by estimating the thermal conductivity depth profile from frequency dependent radiometric measurements. The accuracy of the retrieval depends strongly on signal-to-noise ratio. According to the underlying theoretical model the generation of plane thermal waves probing the material under test is required. A numerical inversion technique is presented to approximate the thermal conductivity profile by a set of linear slopes. Measurements are performed at case and laser hardened specimen to verify the feasibility of photothermal hardness depth profiling. (orig.) 17 refs.