WorldWideScience

Sample records for vessel internal components

  1. General Description of the Mechanic Design of the Pressure Vessel and the Internal Mechanical Component of the CAREM Reactor

    International Nuclear Information System (INIS)

    Diez, F.; Horro, R.

    2000-01-01

    This paper presents a brief description of the CAREM reactor pressure vessel and its main internal mechanical components and summarizes the functional requirements and approaches applied for their design, together with a review of the normative applicable in each case

  2. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Searfass, Clifford T. [Structural Integrity Associates, Inc., State College, PA (United States); Malinowski, Owen M. [Structural Integrity Associates, Inc., State College, PA (United States); Van Velsor, Jason K. [Structural Integrity Associates, Inc., State College, PA (United States)

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and target vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.

  3. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The report addresses the reactor pressure vessel internals in BWRs. Maintaining the structural integrity of these reactor pressure vessel internals throughout NPP service life, in spite of several ageing mechanisms, is essential for plant safety

  4. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1119 documents ageing assessment and management practices for PWR Reactor Vessel Internals (RVIs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. irradiation assisted stress corrosion cracking (IASCC) of baffle-former bolts, which threatened the integrity of the vessel internals. In addition, concern of fretting wear of control rod guide tubes has been raised in Japan. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1119 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update relevant sections of the existing IAEA-TECDOC- 1119 in order to provide current ageing management guidance for PWR RVIs to all involved in the operation and regulation of PWRs and thus to help ensure PWR safety in IAEA Member States throughout their entire service life

  5. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals

    International Nuclear Information System (INIS)

    1999-10-01

    components addressed in the reports. This report addresses the pressurized water reactor vessel internals (taken as a single component). The IAEA acknowledges the work of all contributors to drafting and review of this report

  6. The TPX vacuum vessel and in-vessel components

    International Nuclear Information System (INIS)

    Heitzenroeder, P.; Bialek, J.; Ellis, R.; Kessel, C.; Liew, S.

    1994-01-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak with double-null diverters. TPX is designed for 1,000-second discharges with the capability of being upgraded to steady state operation. High neutron yields resulting from the long duration discharges require that special consideration be given to materials and maintainability. A unique feature of the TPX is the use of a low activation, titanium alloy vacuum vessel. Double-wall vessel construction is used since it offers an efficient solution for shielding, bakeout and cooling. Contained within the vacuum vessel are the passive coil system, Plasma Facing Components (PFCs), magnetic diagnostics, and the internal control coils. All PFCs utilize carbon-carbon composites for exposed surfaces

  7. Fatigue evaluation in reactor vessel components

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A. de J.

    1994-01-01

    This paper presents a sequence of increasing complexity forms of evaluating fatigue damage of nuclear pressure vessel components caused by cycling loadings. Examples are included in order to illustrate such procedures. (author)

  8. BWR vessel and internals project (BWRVIP)

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Dyle, R.L.

    1996-01-01

    Recent Boiling Water Reactor (BWR) inspections indicate that Intergranular Stress Corrosion Cracking (IGSCC) is a significant technical issue for some BWR internals. IN response, the Boiling Water Reactor Vessel and Internals Project (BWRVIP) was formed by an associated of domestic and international utilities which own and operate BWRs. The project is identifying or developing generic, cost-effective strategies for managing degradation of reactor internals from which each utility can select the alternative most appropriate for their plant. The Electric Power Research Institute manages the technical program, implementing the utility defined programs. The BWRVIP is organized into four technical tasks: Assessment, Inspection, Repair and Mitigation. An Integration task coordinates the work. The goal of the Assessment task is to develop methodologies for evaluation of vessel and internal components in support of decisions for operation, inspection, mitigation or repair. The goal of the Inspection task is to develop and assess effective and predictable inspection techniques which can be used to determine the condition of BWR vessel and internals that are potentially susceptible to service-related SCC degradation. The goal of the Repair task is to assure the availability of cost-effective repair/replacement alternatives. The goal of the Mitigation task is to develop and demonstrate countermeasures for SCC degradation. This paper summarizes the BWRVIP approach for addressing BWR internals SCC degradation and illustrates how utilities are utilizing BWRVIP products to successfully manage the effect of SCC on core shrouds

  9. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  10. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  11. Welding of structural components and vessels

    International Nuclear Information System (INIS)

    1989-01-01

    'Welding of structural components and vessels' was chosen as the guiding topic for the 17th special conference in Munich so that current problems of this important area of application for welding engineering could be discussed in detail. The following topics were in the focus of the discussions: developments in steel, steel production and steel processing, reports on the practical application of welding in the manufacture of containers and pipes, quality assurance, product liability, safety considerations regarding creep-stressed components, problems of welding in large structures. 7 of the total number of 12 contributions were recorded separately for the data base ENERGY. (orig./MM) [de

  12. ITER vacuum vessel, in vessel components and plasma facing materials

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Enoeda, M.; Federici, G.

    2007-01-01

    Design of the NB ports including duct liners under heat loads of the neutral beams has been developed. Design of the in-wall shielding has been developed in more details considering the supporting structure and the assembly method. The ferromagnetic inserts have previously not been installed in the outboard midplane region due to irregularity caused by the tangential ports for NB injection. Due to this configuration, the maximum ripple is relatively large (∝1 %) in a limited region of the plasma and the toroidal field flux lines fluctuate ∝10 mm in the FW region. To avoid these problems, additional ferromagnetic inserts are to be installed in the equatorial port region. Detailed studies were carried out on the ITER vacuum vessel to define appropriate codes and standards in the context of the ITER licensing in France. A set of draft documents regarding the ITER vacuum vessel structural code were prepared including an RCC-MR Addendum for the ITER VV with justified exceptions or modifications. The main deviation from the base Code is the extensive use of UT in lieu of radiography for the volumetric examination of all one-side access welds of the outer shell and field joint. The procurement allocation of blanket modules among 6 parties was fixed and the blanket module design has progressed in cooperation with parties. Fabrication of mock-ups for prequalification testing is under way and the tests will be performed in 2007-2008. Development of new beryllium materials is progressing in China and Russia. The ITER limiters will be installed in equatorial ports at two toroidal locations. The limiter plasma-facing surface protrudes ∝8 cm from the FW during the start-up and shutdown phase. In the new limiter concept, the limiters are retracted by ∝8 cm during the plasma flat top phase. This concept gives important advantages; (i) mitigation of the particle and heat loads due to disruptions, ELMs and blobs, (ii) improvement of the power coupling with the ICRH antenna

  13. 30 seismic analysis of FBR vessels: Coupling between components and vessels, fluid communications, imperfections

    International Nuclear Information System (INIS)

    Gantenbein, F.; Gibert, R.J.; Aita, S.; Durandet, E.

    1988-01-01

    The internal structures of a loop type breeder reactors such as SUPERPHENIX are composed of axisymmetrical shells separated by fluid volumes. Seismic analysis is usually performed by axisymmetric finite element model taking into account fluid structure interaction but the geometry is in fact 3D due to components, small communications between fluid volumes and imperfections in the vessels. The methods to take this 3D behaviour into account are based on Fourier decomposition of the motion and substructuration. They are briefly described in the following chapters. The influence of components and of small communications on a block reactor similar to SPX1 will also be presented. 15 refs, 20 figs

  14. Segmentation and packaging reactor vessels internals

    International Nuclear Information System (INIS)

    Boucau, Joseph

    2014-01-01

    Document available in abstract form only, full text follows: With more than 25 years of experience in the development of reactor vessel internals and reactor vessel segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since disposal cost is a key factor, it is important to plan and optimize waste segmentation and packaging. The choice of the optimum cutting technology is also important for a successful project implementation and depends on some specific constraints. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. The usual method is to start at the end of the process, by evaluating handling of the containers, the waste disposal requirements, what type and size of containers are available for the different disposal options, and working backwards to select a cutting method and finally the cut geometry required. The 3-D models can include intelligent data such as weight, center of gravity, curie content, etc, for each segmented piece, which is very useful when comparing various cutting, handling and packaging options. The detailed 3-D analyses and thorough characterization assessment can draw the attention to material potentially subject to clearance, either directly or after certain period of decay, to allow recycling and further disposal cost reduction. Westinghouse has developed a variety of special cutting and handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a successful reactor vessel internals

  15. EDF studies on PWR vessel internal loading

    International Nuclear Information System (INIS)

    Bellet, S.; Vallat, S.

    1998-01-01

    EDF has undertaken some mechanics and thermal-hydraulics studies with the objective of mastering plant phenomena today and in order to numerically predict the behaviour of vessel internals on units planned for the future. From some justifications already underway after in operation incidents (wear and drop time of RCCA rods, fuel deflection, adapter cracks, baffle bolt cracks) we intend to control reactor vessel flows and mechanical behaviour of internal structures. During normal operation, thermal-hydraulic is the main load of vessel internals. The current approach consists of acquiring the capacity to link different calculations, taking care that codes are qualified for physical phenomena and complex 3D geometries. For baffle assembly, a more simple model of this structure has been used to treat the physical phenomena linked to the LOCA transient. Results are encouraging mainly due to code capacity progression (resolution and models), which allows more and more complex physical phenomena to be treated, like turbulence flow and LOCA. (author)

  16. Development of design Criteria for ITER In-vessel Components

    International Nuclear Information System (INIS)

    Sannazzaro, G.; Barabash, V.; Kang, S.C.; Fernandez, E.; Kalinin, G.; Obushev, A.; Martínez, V.J.; Vázquez, I.; Fernández, F.; Guirao, J.

    2013-01-01

    Absrtract: The components located inside the ITER vacuum chamber (in-vessel components – IC), due to their specific nature and the environments they are exposed to (neutron radiation, high heat fluxes, electromagnetic forces, etc.), have specific design criteria which are, in this paper, referred as Structural Design Criteria for In-vessel Components (SDC-IC). The development of these criteria started in the very early phase of the ITER design and followed closely the criteria of the RCC-MR code. Specific rules to include the effect of neutron irradiation were implemented. In 2008 the need of an update of the SDC-IC was identified to add missing specifications, to implement improvements, to modernise rules including recent evolutions in international codes and regulations (i.e. PED). Collaboration was set up between ITER Organization (IO), European (EUDA) and Russian Federation (RFDA) Domestic Agencies to generate a new version of SDC-IC. A Peer Review Group (PRG) composed by members of the ITER Organization and all ITER Domestic Agencies and code experts was set-up to review the proposed modifications, to provide comments, contributions and recommendations

  17. Manufacturing technology development for vacuum vessel and plasma facing components

    International Nuclear Information System (INIS)

    Laitinen, Arttu; Liimatainen, Jari; Hallila, Pentti

    2005-01-01

    Vacuum vessel and plasma facing components of the ITER construction including shield modules and primary first wall panels have great impact on the production costs and reliability of the installation. From the manufacturing technology point of view, accuracy of shape, properties of the various austenitic stainless steel/austenitic stainless steel interfaces or CuCrZr/austenitic stainless steel interfaces as well as those of the base materials are crucial for technical reliability of the construction. The current approach in plasma facing components has been utilisation of solid-HIP technology and solid-powder-HIP technology. Due to the large size of especially shield modules shape, control of the internal cavities and cooling channels is extremely demanding. This requires strict control of the raw materials and manufacturing parameters

  18. Optimization of reactor pressure vessel internals segmentation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering

    2017-11-15

    One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.

  19. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  20. The BWR vessel and internals project - 2001 and beyond

    International Nuclear Information System (INIS)

    Wagoner, V.; Mulford, T.

    2001-01-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  1. The BWR vessel and internals project - 2001 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, V. [Carolina Power and Light, Progress Energy Building, NC (United States); Mulford, T. [Electric Power Research Institute, Palo Alto, CA (United States)

    2001-07-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  2. Improvement of retinal blood vessel detection using morphological component analysis.

    Science.gov (United States)

    Imani, Elaheh; Javidi, Malihe; Pourreza, Hamid-Reza

    2015-03-01

    Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions. To overcome this problem, a novel scheme for extracting retinal blood vessels based on morphological component analysis (MCA) algorithm is presented in this paper. MCA was developed based on sparse representation of signals. This algorithm assumes that each signal is a linear combination of several morphologically distinct components. In the proposed method, the MCA algorithm with appropriate transforms is adopted to separate vessels and lesions from each other. Afterwards, the Morlet Wavelet Transform is applied to enhance the retinal vessels. The final vessel map is obtained by adaptive thresholding. The performance of the proposed method is measured on the publicly available DRIVE and STARE datasets and compared with several state-of-the-art methods. An accuracy of 0.9523 and 0.9590 has been respectively achieved on the DRIVE and STARE datasets, which are not only greater than most methods, but are also superior to the second human observer's performance. The results show that the proposed method can achieve improved detection in abnormal retinal images and decrease false positive vessels in pathological regions compared to other methods. Also, the robustness of the method in the presence of noise is shown via experimental result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Integration of ITER in-vessel diagnostic components in the vacuum vessel

    International Nuclear Information System (INIS)

    Encheva, A.; Bertalot, L.; Macklin, B.; Vayakis, G.; Walker, C.

    2009-01-01

    The integration of ITER in-vessel diagnostic components is an important engineering activity. The positioning of the diagnostic components must correlate not only with their functional specifications but also with the design of the major parts of ITER torus, in particular the vacuum vessel, blanket modules, blanket manifolds, divertor, and port plugs, some of which are not yet finally designed. Moreover, the recently introduced Edge Localised Mode (ELM)/Vertical Stability (VS) coils mounted on the vacuum vessel inner wall call for not only more than a simple review of the engineering design settled down for several years now, but also for a change in the in-vessel distribution of the diagnostic components and their full impact has yet to be determined. Meanwhile, the procurement arrangement (a document defining roles and responsibilities of ITER Organization and Domestic Agency(s) (DAs) for each in-kind procurement including technical scope of work, quality assurance requirements, schedule, administrative matters) for the vacuum vessel must be finalized. These make the interface process even more challenging in terms of meeting the vacuum vessel (VV) procurement arrangement's deadline. The process of planning the installation of all the ITER diagnostics and integrating their installation into the ITER Integrated Project Schedule (IPS) is now underway. This paper covers the progress made recently on updating and issuing the interfaces of the in-vessel diagnostic components with the vacuum vessel, outlines the requirements for their attachment and summarises the installation sequence.

  4. ITER vacuum vessel design and electromagnetic analysis on in-vessel components

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.; Iizuka, T.

    1995-01-01

    Major functional requirements for the vacuum vessel are to provide the first safety barrier and to support electromagnetic loads due to plasma disruptions and vertical displacement events, and to withstand plausible accidents without losing confinement. A double wall structure concept has been developed for the vacuum vessel due to its beneficial characteristics from the viewpoints of structural integrity and electrical continuity. An electromagnetic analysis of the blanket modules and the vacuum vessel has been performed to investigate force distributions on in-vessel components. According to the vertical displacement events (VDE) scenario, which assumes a critical q-value of 1.5, the total downward vertical force, induced by coupling between the eddy current and external fields, is about 110 MN. We have performed a stress analysis for the vacuum vessel using the VDE disruption forces acting on the blankets, and a maximum stress intensity of 112 MPa was obtained in the vicinity of the lower support of the vessel. (orig.)

  5. Method for temporary shielding of reactor vessel internals

    International Nuclear Information System (INIS)

    Grimm, N.P.; Sejvar, J.

    1991-01-01

    This patent describes a method for shielding stored internals for reactor vessel annealing. It comprises removing nuclear fuel from the reactor vessel containment building; removing and storing upper and lower core internals under water in a refueling canal storage area; assembling a support structure in the refueling canal between the reactor vessel and the stored internals; introducing vertical shielding tanks individually through a hatch in the containment building and positioning each into the support structure; introducing horizontal shielding tanks individually through a hatch in the containment building and positioning each above the stored internals and vertical tanks; draining water from the refueling canal to the level of a flange of the reactor vessel; placing an annealing apparatus in the reactor vessel; pumping the remaining water from the reactor vessel; and annealing the reactor vessel

  6. Materials requirements for the ITER vacuum vessel and in-vessel components - approaching the construction phase

    International Nuclear Information System (INIS)

    Barabash, V.; Ioki, K.; Pick, M.; Girard, J.P.; Merola, M.

    2007-01-01

    Full text of publication follows: The ITER activities are fully devoted toward its construction. In accordance with the ITER integrated project schedule, the procurement specifications for the manufacturing of the Vacuum Vessel should be prepared by March 2008 and the procurement specifications for the in-vessel components (first wall/blanket, divertor) by 2009. To update the design, considering design and technology evolution, the ITER Design Review has been launched. Among the various topics being discussed are the important issues related to selection of materials, material procurement, and assessment of performance during operation. The main requirements related to materials for the vacuum vessel and the in-vessel components are summarized in the paper. The specific licensing requirements are to be followed for structural materials of pressure and nuclear pressure equipment components for construction of ITER. In addition, the procurements in ITER will be done mostly 'in-kind' and it is assumed that materials for these components will be produced by different Parties. However, in accordance with the regulatory requirements and quality requirements for operation, common specifications and the general rules to fulfill these requirements are to be adopted. For some ITER components (e.g. first wall, divertor high heat flux components), the ultimate qualification of the joining technologies (Be/Cu, SS/Cu, CFC/Cu, W/Cu) is under final evaluation. Successful accomplishment of the qualification program will allow to proceed with procurements of the components for ITER. The criteria for acceptance of these components and materials after manufacturing are described and the main results will be reported. Additional materials issues, which come from the on-going manufacturing R and D program, will be also described. Finally, further materials activity during the construction phase, needs for final qualification and acceptance of materials are discussed. (authors)

  7. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  8. Best practices for preparing vessel internals segmentation projects

    International Nuclear Information System (INIS)

    Boucau, Joseph; Segerud, Per; Sanchez, Moises

    2016-01-01

    Westinghouse has been involved in reactor internals segmentation activities in the U.S. and Europe for 30 years. Westinghouse completed in 2015 the segmentation of the reactor vessel and reactor vessel internals at the Jose Cabrera nuclear power plant in Spain and a similar project is on-going at Chooz A in France. For all reactor dismantling projects, it is essential that all activities are thoroughly planned and discussed up-front together with the customer. Detailed planning is crucial for achieving a successful project. One key activity in the preparation phase is the 'Segmentation and Packaging Plan' that documents the sequential steps required to segment, separate, and package each individual component, based on an activation analysis and component characterization study. Detailed procedures and specialized rigging equipment have to be developed to provide safeguards for preventing certain identified risks. The preparatory work can include some plant civil structure modifications for making the segmentation work easier and safer. Some original plant equipment is sometimes not suitable enough and need to be replaced. Before going to the site, testing and qualification are performed on full scale mock-ups in a specially designed pool for segmentation purposes. The mockup testing is an important step in order to verify the function of the equipment and minimize risk on site. This paper is describing the typical activities needed for preparing the reactor internals segmentation activities using under water mechanical cutting techniques. It provides experiences and lessons learned that Westinghouse has collected from its recent projects and that will be applied for the new awarded projects. (authors)

  9. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  10. Structural materials for ITER in-vessel component design

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Gauster, W. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Matera, R. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Tavassoli, A.-A.F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Rowcliffe, A. [Oak Ridge National Lab., TN (United States); Fabritsiev, S. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kawamura, H. [JAERI, IMTR Project, Ibaraki (Japan). Blanket Irradiation Lab.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m{sup 2} in the basic performance phase (BPP)) within a temperature range from 20 to 300 C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350 C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. (orig.).

  11. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  12. Analytical and experimental vibration analysis of BWR pressure vessel internals

    International Nuclear Information System (INIS)

    Krutzik, N.; Schad, O.

    1975-01-01

    This report attempts to evaluate the validity as well as quality of several analytical methods in the light of presently available experimental data for the internals of pressure vessels of boiling-water-reactor-types. The experimental checks were performed after the numerical analysis was completed and showed the accuracy of the numerical results. The analytical investigations were done by finite element programmes - 2-dimensional as well as 3-dimensional, where the effect of the mass distribution with parts of virtual masses on the dynamic response could be studied in depth. The experimental data were collected at various different plants and with different mass correlations. Besides evaluating the dynamic characteristics of the components, tests were also performed to evaluate the vibrations of the pressure vessel relative to the main structure. After analysing extensive recorded data much better understanding of the response under a variety of loading- and boundary conditions could be gained. The comparison of the results of analytical studies with the experimental results made a broad qualitative evaluation possible. (Auth.)

  13. Issues and strategies for DEMO in-vessel component integration

    International Nuclear Information System (INIS)

    Bachmann, C.; Arbeiter, F.; Boccaccini, L.V.; Coleman, M.; Federici, G.; Fischer, U.; Kemp, R.; Maviglia, F.; Mazzone, G.; Pereslavtsev, P.; Roccella, R.; Taylor, N.; Villari, R.; Villone, F.; Wenninger, R.; You, J.-H.

    2016-01-01

    In the frame of the EUROfusion Consortium activities were launched in 2014 to develop a concept of a DEMO reactor including a large R&D program and the integrated design of the tokamak systems. The integration of the in-vessel components (IVCs) must accommodate numerous constraints imposed by their operating environment, the requirements for precise alignment, high performance, reliability, and remote maintainability. This makes the development of any feasible design a major challenge. Although DEMO is defined to be a one-of-a-kind device there needs to be in addition to the development of the IVC design solutions a remarkable emphasis on the optimization of these solutions already at the conceptual level. Their design has a significant impact on the machine layout, complexity, and performance. This paper identifies design and technology limitations of IVCs, their consequences on the integration principles, and introduces strategies currently considered in the DEMO tokamak design approach.

  14. Locking mechanism for in-vessel components of tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, S.; Shimizu, K.; Koizumi, K.; Tada, E.

    1992-01-01

    The locking and unlocking mechanism for in-vessel replaceable components such as blanket modules, is one of the most critical issues of the tokamak fusion reactor, since the sufficient stiffness against the enormous electromagnetic loads and the easy replaceability are required. In this paper, the authors decide that a caulking cotter joint is worth initiating the R and D from veiwpoints of an effective use of space, a replaceability, a removability of nuclear heating, and a reliability. In this approach, the cotter driving (thrusting and plucking) mechanism is a critical technology. A flexible tube concept has been developed as the driving mechanism, where the stroke and driving force are obtained by a fat shape by the hydraulic pressure. The original normal tube is subjected to the working percentage of more than several hundreds percentage (from thickness of 1.2 mm to 0.2 mm) for plastically forming the flexible tube

  15. Issues and strategies for DEMO in-vessel component integration

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, C., E-mail: christian.bachmann@euro-fusion.org [EUROfusion PMU, Garching (Germany); Arbeiter, F.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Coleman, M.; Federici, G. [EUROfusion PMU, Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kemp, R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Maviglia, F. [EUROfusion PMU, Garching (Germany); Mazzone, G. [ENEA Dipartimento Fusione e Sicurezza Nucleare C. R. Frascati – via E. Fermi 45, 00044 Frascati, Roma (Italy); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Roccella, R. [ITER Organization, St. Paul Lez Durance (France); Taylor, N. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Villari, R. [ENEA Dipartimento Fusione e Sicurezza Nucleare C. R. Frascati – via E. Fermi 45, 00044 Frascati, Roma (Italy); Villone, F. [ENEA-CREATE Association, DIEI, Università di Cassino e del Lazio Meridiona (Italy); Wenninger, R. [EUROfusion PMU, Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany)

    2016-11-15

    In the frame of the EUROfusion Consortium activities were launched in 2014 to develop a concept of a DEMO reactor including a large R&D program and the integrated design of the tokamak systems. The integration of the in-vessel components (IVCs) must accommodate numerous constraints imposed by their operating environment, the requirements for precise alignment, high performance, reliability, and remote maintainability. This makes the development of any feasible design a major challenge. Although DEMO is defined to be a one-of-a-kind device there needs to be in addition to the development of the IVC design solutions a remarkable emphasis on the optimization of these solutions already at the conceptual level. Their design has a significant impact on the machine layout, complexity, and performance. This paper identifies design and technology limitations of IVCs, their consequences on the integration principles, and introduces strategies currently considered in the DEMO tokamak design approach.

  16. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  17. Dynamic loads on reactor vessel components by low pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-01-01

    Starting from the conservation theorems for mass and impulses the code DRUWE has been developed enabling the calculation of dynamic loads of the reactor shell on the basis of simplified assumptions for the first period shortly after rupture. According to the RSK-guidelines it can be assumed that the whole weld size is opened within 15 msec. This time-dependent opening of the fractured plane can be taken into account in the computer program. The calculation is composed in a way that for a reactor shell devided into cross and angle sections the local, chronological pressure and strength curves, the total dynamic load as well as the moments acting on the fastenings of the reactor shell can be calculated. As input data only geometrical details concerning the concept of the pressure vessel and its components as well as the effective subcooling of the fluid are needed. By means of several parameters the program can be operated in a way that the results are available in form of listings or diagrams, respectively, but also as card pile for further examinations, e.g. strength analysis. (orig./RW) [de

  18. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  19. Radiology trainer. Torso, internal organs and vessels. 2. ed.

    International Nuclear Information System (INIS)

    Staebler, Axel; Erlt-Wagner, Birgit

    2013-01-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  20. Seismic Response Analysis of Assembled Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Je, Sang-Yun; Chang, Yoon-Suk; Kang, Sung-Sik

    2015-01-01

    RVIs (Reactor Vessel Internals) perform important safe-related functions such as upholding the nuclear fuel assembly as well as providing the coolant passage of the reactor core and supporting the control rod drive mechanism. Therefore, the components including RVIs have to be designed and constructed taking into account the structural integrity under various accident scenarios. The reliable seismic analysis is essentially demanded to maintain the safe-related functions of RVIs. In this study, a modal analysis was performed based on the previous researches to examine values of frequencies, mode shapes and participation factors. Subsequently, the structural integrity respecting to the earthquake was evaluated through a response spectrum analysis by using the output variables of modal analysis. In this study, the structural integrity of the assembled RVIs was carried out against the seismic event via the modal and response spectrum analyses. Even though 287MPa of the maximum stress value occurred at the connected region between UGS and CSA, which was lower than its allowable value. At present, fluid-structure interaction effects are being examined for further realistic simulation, which will be reported in the near future

  1. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 2. Comprehending the divertor structure

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Akiba, Masato; Saito, Masakatsu

    2006-01-01

    Divertor is given the largest heat load in the in-vessel components of fusion machine. The functions and conditions of divertor are stated from the point of view of thermal and structural dynamics. The way of thinking of structure design of divertor of JT-60 and the ITER (International Thermonuclear Experimental Reactor) is explained. As the conditions of divertor, the materials for large heat load, heat removal, pressure boundary, control of damage, and thermal stress/strain are considered. The divertor has to be changed periodically. The materials are required the heat removal function for high heat load. CuCrZr will be used to cooling tube and heat sink, and CFC materials for the surface. The cross section of ITER, a part of divertor, heat load of divertor and other components, the thermal conductivity of CFC and metal materials, conditions of cooling water for divertor of BWR, PWR and ITER, the thermal stress produced on rod, vertical target of ITER, structure of cooling tube, distribution of temperature and critical heart flux of inner wall of cooling tube, and fatigue clack of cooling tube are shown. (S.Y.)

  2. Sampling of reactor pressure vessel and core internals

    International Nuclear Information System (INIS)

    Oberhaeuser, Ralf

    2012-01-01

    Decommissioning and dismantling of nuclear power plants is a growing business as a huge number of plants built in the 1970's have now reached their lifetime. It is well known that dismantling a nuclear power plant means an extraordinary expense for the owner respectively operator. Beside the dismantling works for itself, the disposal of activated components and other nuclear waste is very expensive. What comes next is the fact that final disposal facilities are not available yet in most countries meaning a need for interim storage on-site in specially built facilities. It can be concluded that a special attention is paid on producing a minimal radioactive waste volume. For this, optimized dismantling and packaging concepts have to be developed. AREVA is proud of versatile experience in successfully dismantling nuclear components like core internals and reactor pressure vessel (RPV). The basis of a well-founded and optimized dismantling and packaging concept must always be the detailed knowledge of the radiological condition of the component to be and in the best case a 3D activation- model. For keeping the necessary sampling effort as small as possible, but simultaneously as efficient as possible, representative sampling positions are defined in advance by theoretical radiological examinations. For this, a detailed 3D-CAD-model of the components to be dismantled has proven very helpful and effective. Under these aspects a sampling of RPV and its components is necessary to verify the theoretically calculated radiological data. The obtained results of activation and contamination are taken into account for the optimized dismantling and packaging strategy. The precise 3D-activation-model will reduce the necessary number and type of final disposal containers as security factors are minimized leading to a lower shielding effort, too. Besides, components or even parts of components may be subject of release measurement. In the end, costs can be reduced. In this context

  3. Assessment and selection of materials for ITER in-vessel components

    Science.gov (United States)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  4. Vessel-related problems in severe accidents, International Research Projects

    International Nuclear Information System (INIS)

    Figueras, J. M.

    2000-01-01

    The paper describes those most relevant aspects of research programmes and projects, on the behavior of vessel during severe accidents with partial or total reactor core fusion, performed during the last twenty years or still on-going projects, by countries or international organizations in the nuclear community, presenting the most important technical aspects, in particular the results achieved, as well as the financial and organisational aspects. The paper concludes that, throughout a joint effort of the international nuclear community, in which Spain has been present via private and public organizations, actually exist a reasonable technical and experimental knowledge of the vessel in case of severe accidents, but still there are aspects not fully solved which are the basis for continuing some programmes and for proposal of new ones. (Author)

  5. Baffle-former arrangement for nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Machado, O.J.; Berringer, R.T.

    1978-01-01

    A baffle-former arrangement for the reactor vessel internals of a nuclear reactor is described. The arrangement includes positioning of formers at the same elevations as the fuel assembly grids, and positioning flow holes in the baffle plates directly beneath selected former grid elevations. The arrangement reduces detrimental cross flows, maintains proper core barrel and baffle temperatures, and alleviates the potential of overpressurization within the baffle-former assembly under assumed major accident conditions

  6. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    Energy Technology Data Exchange (ETDEWEB)

    Urbonavičius, E., E-mail: Egidijus.Urbonavicius@lei.lt; Povilaitis, M., E-mail: Mantas.Povilaitis@lei.lt; Kontautas, A., E-mail: Aurimas.Kontautas@lei.lt

    2015-11-15

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  7. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    International Nuclear Information System (INIS)

    Urbonavičius, E.; Povilaitis, M.; Kontautas, A.

    2015-01-01

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  8. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  9. Vessel network detection using contour evolution and color components

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge; Martins, Charles

    2011-06-22

    Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.

  10. Computing radiation dose to reactor pressure vessel and internals

    International Nuclear Information System (INIS)

    1996-01-01

    Within the next twenty years many of the nuclear reactors currently in service will reach their design lifetime. One of the key factors affecting decisions on license extensions will be the ability to confidently predict the integrity of the reactor pressure vessel and core structural components which have been subjected to many years of cumulative radiation exposure. This report gives an overview of the most recent scientific literature and current methodologies for computational dosimetry in the OECD/NEA Member countries. Discussion is extended to consider some related issues of materials science, such as the metals, and limitations of the models in current use. Proposals are made for further work. (author)

  11. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  12. Design standard issues for ITER in-vessel components

    International Nuclear Information System (INIS)

    Majumdar, S.

    1994-01-01

    Unique requirements that must be addressed by a structural design code for the ITER have been summarized. Existing codes such as ASME Section III, or the French RCC-MR were developed primarily for fission reactor out-of-core components and are not directly applicable to the ITER. They may be used either as a guide for developing a design code for the ITER or as interim standards. However, new rules will be needed for handling the irradiation-induced embrittlement problems faced by the ITER blanket components. Design standards developed in the past for the design of fission reactor core components in the United States can be used as guides in this area

  13. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  14. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: chuanfei.li@ipp.mpg.de; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-10-15

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements.

  15. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    International Nuclear Information System (INIS)

    Li, C.; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-01-01

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements

  16. Overview and status of ITER internal components

    International Nuclear Information System (INIS)

    Merola, Mario; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-01-01

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine

  17. Overview and status of ITER internal components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-10-15

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine.

  18. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  19. Design evolution and integration of the ITER in-vessel components

    International Nuclear Information System (INIS)

    Martin, A.; Calcagno, B.; Chappuis, Ph.; Daly, E.; Dellopoulos, G.; Furmanek, A.; Gicquel, S.; Heitzenroeder, P.; Jiming, Chen; Kalish, M.; Kim, D.-H.; Khomiakov, S.; Labusov, A.; Loarte, A.; Loughlin, M.; Merola, M.; Mitteau, R.; Polunovski, E.; Raffray, R.; Sadakov, S.

    2013-01-01

    Highlights: ► The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. ► A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. ► The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. ► The blanket manifold system has been redesigned to improve leak detection and localisation. ► The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. -- Abstract: The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. The blanket manifold system has been redesigned to improve leak detection and localisation. The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. This paper describes the status of the redesign of the in-vessel components and the associated integration issues

  20. Regulatory Assessment Technologies for Aging of Reactor Vessel Internals

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo; Park, Jeong Soon; Ko, Hanok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In order to develop the audit calculation system, it is required to develop crack evaluation, seismic analysis and thermal-hydraulic analysis techniques for RVIs so that integrity of RVIs under the aging environment can be evaluated and be assured. In addition, regulatory requirements including safety review and inspection guides should be developed in order to assure the quality and uniformity of safety reviews and inspections regarding aging assessment and management of RVIs. Since Reactor Vessel Internals (RVIs) are installed within the reactor pressure vessel and surround the fuel assemblies, some of them are exposed to the environment such as high neutron irradiation, high temperature and reactor coolant flow. Those environmental factors can cause damage to RVIs including cracks, loss of material, fatigue, loss of fracture toughness and change of dimension as the operation time of nuclear power plants (NPPs) increases. For long-term operation more than 40 years, aging management of RVIs is important. The final objectives of this study are to establish the audit calculation system for RVIs and to develop regulatory requirements for aging assessment and management of RVIs considering their operating conditions, materials, and possible aging mechanisms.

  1. GCR dismantling: corrosion of vessel internals during decay storage

    International Nuclear Information System (INIS)

    Gras, J.M.

    1991-06-01

    Gas-cooled reactor decommissioning confronts EDF with the problem of the corrosion resistance of vessel internals over a decay storage period fixed at 50 years. The layer of magnetite previously formed in the C0 2 should protect structural steelwork from atmospheric corrosion. In any case, estimated steel corrosion after 50 years may be put at below or equal to 0.1 mm and the corresponding swelling induced by corrosion products at 0.2 mm. There should be no risk of hydrogen embrittlement or stress corrosion cracking of threaded fasteners. Corrosion tests aimed at providing further insight into the effects of the magnetite layer and a program for the surveillance of post-decommissioning structural corrosion should nevertheless be envisaged

  2. Computer system for International Reactor Pressure Vessel Materials Database support

    International Nuclear Information System (INIS)

    Arutyunjan, R.; Kabalevsky, S.; Kiselev, V.; Serov, A.

    1997-01-01

    This report presents description of the computer tools for support of International Reactor Pressure Vessel Materials Database developed at IAEA. Work was focused on raw, qualified, processed materials data, search, retrieval, analysis, presentation and export possibilities of data. Developed software has the following main functions: provides software tools for querying and search of any type of data in the database; provides the capability to update the existing information in the database; provides the capability to present and print selected data; provides the possibility of export on yearly basis the run-time IRPVMDB with raw, qualified and processed materials data to Database members; provides the capability to export any selected sets of raw, qualified, processed materials data

  3. Alignment of in-vessel components by metrology defined adaptive machining

    International Nuclear Information System (INIS)

    Wilson, David; Bernard, Nathanaël; Mariani, Antony

    2015-01-01

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  4. Alignment of in-vessel components by metrology defined adaptive machining

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David [ITER Organization, Route de Vinon sur Verdon, CS90 046, St Paul-lez-Durance (France); Bernard, Nathanaël [G2Métric, Launaguet 31140 (France); Mariani, Antony [Spatial Alignment Ltd., Witney (United Kingdom)

    2015-10-15

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  5. Resource allocation planning with international components

    Science.gov (United States)

    Burke, Gene; Durham, Ralph; Leppla, Frank; Porter, David

    1993-01-01

    Dumas, Briggs, Reid and Smith (1989) describe the need for identifying mutually acceptable methodologies for developing standard agreements for the exchange of tracking time or facility use among international components. One possible starting point is the current process used at the Jet Propulsion Laboratory (JPL) in planning the use of tracking resources. While there is a significant promise of better resource utilization by international cooperative agreements, there is a serious challenge to provide convenient user participation given the separate project and network locations. Coordination among users and facility providers will require a more decentralized communication process and a wider variety of automated planning tools to help users find potential exchanges. This paper provides a framework in which international cooperation in the utilization of ground based space communication systems can be facilitated.

  6. Load bearing capacities and elastic-plastic behavior of reactor vessel internals

    International Nuclear Information System (INIS)

    Watanabe, Keita; Nagase, Ryuichi

    2017-01-01

    Radial Support Keys (RSKs) are installed at the bottom of Reactor Vessel Internal (RVI) of Pressurized Water Reactor (PWR) and fit into Core Support Lugs of Reactor Pressure Vessel (RPV). This structure provides reactor core horizontal support and transmits the loads between RVI and RPV. RSK is one of the critical parts of RVI from the view point of earthquake-proof safety. In order to assure the structural integrity of Nuclear Reactor in case of massive earthquake, load bearing capacities of RSK are confirmed by static loading tests with reduced-scale mockups. In addition, collapse loads of actual components calculated by Limit Analyses are conservative enough compared to the load bearing capacities confirmed by the test. Thus, the methodology to calculate collapse load by Limit Analysis is applicable to evaluation of structural integrity for RSK. (author)

  7. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, K. H.; Woo, H. K.; Im, K. H.; Cho, S. Y.; Kim, J. B.

    2000-01-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10 -6 ∼10 -7 Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses

  8. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Chungnam National University Graduate School, Taejeon (Korea); Im, K.H.; Cho, S.Y. [Korea Basic Science Institute, Taejeon (Korea); Kim, J.B. [Hyundai Heavy Industries Co., Ltd. (Korea); Woo, H.K. [Chungnam National University, Taejeon (Korea)

    2000-11-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6} {approx} 10{sup -7} Pa, to produce clean plasma with low impurity containments. for this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 deg.C, 350 deg.C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses. (author). 9 refs., 11 figs., 1 tab.

  9. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  10. Age-related degradation of boiling water reactor vessel internals

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1992-01-01

    Researchers at the Idaho National Engineering Laboratory performed an assessment of the aging of the reactor internals in boiling water reactors (BWRs), and identified the unresolved technical issues related to the degradation of these components. The overall life-limiting mechanism is intergranular stress corrosion cracking (IGSCC). Irradiation-assisted stress corrosion cracking, fatigue, and thermal aging embrittlement are other potential degradation mechanisms. Several failures in BWR internals have been caused by a combination of factors such as environment, high residual or preload stresses, and flow-induced vibration. The ASME Code Section XI in-service inspection requirements are insufficient for detecting aging-related degradation at many locations in reactor internals. Many of the potential locations for IGSCC or fatigue are not accessible for inspection. (orig.)

  11. Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review

    International Nuclear Information System (INIS)

    Lund, A.L.

    1997-11-01

    In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path

  12. Technical meeting on materials for in-vessel components of ITER

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.

    2000-01-01

    The Technical meeting on materials for in-vessel components of ITER was held at the ITER Joint Work Site in Garching from 31 January to 4 February. The main objectives of the meetings were: 1. to summarize the requirements, 2. to review new data, 3. to discuss in detail the R and D program and to discuss the material assessment report

  13. Lifetime assessment on PWR reactor vessel internals in Korea

    International Nuclear Information System (INIS)

    Jung, Sung-Gyu; Jin, Tae-Eun; Jeong, Ill-Seok

    2002-01-01

    In order to extend the operating time of the Kori Unit 1 reactor internals, a comprehensive review of the potential ageing problems and a safety assessment have been performed. As the plant ages, reactor internal components which are subject to various ageing mechanism should be identified and evaluated based on the systematic technical procedure. In this respect, technical procedure for lifetime evaluation had been developed and applied to reactor internals. This paper describes a overall assessment and ageing management procedure and evaluation results for reactor internals. Also this paper suggests the optimal ageing management programs to maintain the integrity of reactor internals beyond design life based on the evaluation results. A review of all known potential ageing mechanisms was performed for each of the reactor internal subcomponents. From these results, 8 ageing mechanisms such as void swelling, irradiation and thermal embrittlement, fatigue, stress corrosion cracking, IASCC, stress relaxation, and wear for the reactor internal components were expected to be of major concerns during the current or extended plant life. In this study, 8 ageing mechanisms were identified for lifetime evaluation. For these ageing mechanisms, lifetime assessment was performed. As a result of this evaluation, it is expected that core barrel will exceed the IASCC threshold value during 40 operating years, and baffle/former and baffle former bolts will exceed the threshold value for void swelling, irradiation embrittlement, IASCC, stress relaxation during 40 operating years. However, for all other reactor internals subcomponents, thermal embrittlement, fatigue, SCC, and wear were identified as nonsignificant. As a result of lifetime evaluations, 4 ageing mechanisms were established to be plausible for 3 subcomponents. These results are shown. The existing ageing management programs (AMPs) for Kori Unit 1, such as ISI, water chemistry control, rod drop time testing etc., were

  14. Inspection and repair of reactor pressure vessel (RPV) internals

    International Nuclear Information System (INIS)

    Bohmann, W.; Poetz, F.; Nicolai, M.

    1996-01-01

    The past 10 years of operation of light water reactors were characterized by intensive inspection- and repair work on vital components. For boiling water reactors (BWR) it was typical to totally replace the piping system and for pressurized water reactors (PWR) it was the step to complete steam generator (SG) replacement - besides the development of increasingly diligent inspection and repair methods for SG tubes. It can be expected that in the 10 years to come the development of inspection- and repair methods will be aimed mainly at the core internals of BWR's as well as PWR's. Our prediction is that before the end of this decade a first complete replacement of these components will be performed. Already to date a broad range of techniques are available which enable the utilities to carry out inspections and repair of components of core internals in a relatively short time and acceptable expenses. Using examples such as Fuel Alignment Pin Inspection and Replacement, Baffle Former Bolt Inspection and Replacement, Core Barrel Former Bolt Inspection which are typical for PWR's we will in the following describe the existing methods, their development and - last but not least - their successful utilization. What is going to happen in the future? Ageing of the operating plants will continue, thus requesting the plant operators as well as the service companies to work on advanced technologies to fulfill the needs of the industry. (author)

  15. Visual inspection of vessel internals; Visuelle Inspektion von Kerneinbauten

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, G. [Siemens AG KWU, Erlangen (Germany)

    1999-08-01

    Visual inspection has matured to a qualified testing method and has become a standard method for inspection of reactor pressure vessels. Until today, all known defects in RPV internals have been detected by visual inspection. The codes KTA 3204 and DIN 25435-4 describe the framework conditions and requirements for visual inspections, which should be adhered to to the most possible extent. Visual inspections are carried by now at all RPV internals, also at those where access is difficult and limited. The inspection robot SUSI is applied in most cases. The camera and manipulator technology meanwhile has been upgraded to a standard performance quality allowing reliable, fast and easy visual inspection. The personnel is trained accordingly, so as to keep abreast with enhancements. Qualification of the inspection system has been simplified and standardised to a large extent. (orig/CB) [Deutsch] Die Sichtpruefung ist zu einem qualifizierten Pruefverfahren gereift und hat bei der Inspektion der RDB-Einbauten einen festen Platz eingenommen. Bisher wurden alle bekannten Schaeden an den RDB-Einbauten bei der Sichtpruefung festgestellt. In der KTA 3204 und der DIN 25435-4 sind die Rahmenbedingungen und Anforderungen an die Sichtpruefung beschrieben, die es gilt, weitestgehend einzuhalten. Mittlerweile werden an allen RDB-Einbauten, auch an den nur bedingt zugaenglichen, Sichtpruefungen vorgenommen. Dabei hat das Inspektionsfahrzeug SUSI inzwischen den breitesten Raum eingenommen. Die Entwicklung der Kamera- und Manipulatortechnik hat inzwischen einen Stand erreicht, der eine sichere, schnelle und einfache Sichtpruefung zulaesst. Das Pruefpersonal wird laufend fuer die Sichtpruefung geschult und qualifiziert. Die Qualifizierung des Inspektionssystems wurde weitestgehend vereinfacht und standardisiert. (orig.)

  16. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K.I.; Kim, B.S.; Kim, D.H. [Korea Atomic Energy Research Inst., Thermal Hydraulic Safety Research, Taejon (Korea, Republic of)

    2001-07-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  17. Effect of the in- and ex-vessel dual cooling on the retention of an internally heated melt pool in a hemispherical vessel

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, B.S.; Kim, D.H.

    2001-01-01

    A concept of in-vessel melt retention (IVMR) by in-vessel reflooding and/or reactor cavity flooding has been considered as one of severe accident management strategies and intensive researches to be performed worldwide. This paper provides some results of analytical investigations on the effect of both in- / ex-vessel cooling on the retention of an internally heated molten pool confined in a hemispherical vessel and the related thermal behavior of the vessel wall. For the present analysis, a scale-down reactor vessel for the KSNP reactor design of 1000 MWe (a large dry PWR) is utilized for a reactor vessel. Aluminum oxide melt simulant is also utilized for a real corium pool. An internal power density in the molten pool is determined by a simple scaling analysis that equates the heat flux on the the scale-down vessel wall to that estimated from KSNP. Well-known temperature-dependent boiling heat transfer curves are applied to the in- and ex-vessel cooling boundaries and radiative heat transfer has been only considered in the case of dry in-vessel. MELTPOOL, which is a computational fluid dynamics (CFD) code developed at KAERI, is applied to obtain the time-varying heat flux distribution from a molten pool and the vessel wall temperature distributions with angular positions along the vessel wall. In order to gain further insights on the effectiveness of in- and ex-vessel dual cooling on the in-vessel corium retention, four different boundary conditions has been considered: no water inside the vessel without ex-vessel cooling, water inside the vessel without ex-vessel cooling, no water inside the vessel with ex-vessel cooling, and water inside the vessel with ex-vessel cooling. (authors)

  18. Lining up device for the internal structures of a nuclear reactor vessel

    International Nuclear Information System (INIS)

    Silverblatt, B.L.

    1977-01-01

    The invention concerns a nuclear reactor of the type with a vessel, a vessel head carried at the top of this vessel by a core cylinder comprising a flange internally supported by the vessel, and an upper support structure supported between the core cylinder flange and the vessel head to align laterally the head, vessel, flange and support structure. A bottom key device is provided for lining up the flange, support structure and vessel, and an upper key device for laterally lining up support structure and the vessel head and for maintaining this alignment when they are removed simultaneously from the core cylinder and vessel. When re-assembling the reactor, the top support structure and the vessel head are lowered simultaneously so that an opening in the top alignment structure engages in the upper extension of the bottom alignment structure. A plurality of alignment stuctures may be utilised round the circumference of the reactor vessel. The disposition of the invention also facilitates the removal of the core cylinder from the reactor vessel. In this way, the alignment on re-assembly is ensured by the re-entry of the bottom extension under the flange of the core cylinder with the groove or keyway of the reactor vessel [fr

  19. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  20. A simple in-vessel/FW component viewing system for SST-1

    International Nuclear Information System (INIS)

    Santra, Prosenjit; Biswas, Prabal; Vasava, Kirit R.; Jaiswal, Snehal; Parekh, Tejas; Chauhan, Pradeep; Patel, Hiteshkumar; Pradhan, Subrata

    2015-01-01

    A simple compact system is being proposed for in-situ visual inspection of around 3800 First Wall (FW) graphite (armour) tiles in the vacuum vessel of SST-1 tokamak. The 2 DOF, manual driven system (permanently stationed inside vacuum vessel behind outer passive stabilizer) at top and bottom mid-plane locations consist of a rack and pinion mechanism operating a arm with a CCD camera/LED mounted on it, moving over a cam profile to cover approximately 1/8 th of the toroidal span of the vacuum vessel both at interior top/bottom locations with in the FW modules. The camera and LED light should withstand the ultrahigh vacuum conditions, prolonged baking temperatures of around 200°C along with high electromagnetic forces inside the vessel. This system can be operated remotely in-between shots from outside the VV through a linear motion feed through providing linear moment to a rack and pinion mechanism connected to the arm. This mechanism provides a better viewing of the inside FW components and vessel wall surface of tokamak with simple engineering and operational effort. Any information can be acquired from system regarding damages to FWC due to interaction with plasma as well as damage of other support structures inside VV. In comparison to more complicated and complex inspection system used in other tokamaks, this mechanism can be used for frequent in vessel visual inspection, which limits the system to be small, simple, occupying less space and custom made. This system is cheap with a minimum time for realization of the concept. The paper will present the conceptual and engineering design aspect of the in-viewing system, CAD images, its advantages and limitations, camera and LED details, data acquisition and the present status of realization of the project. (author)

  1. Development of advanced design features for KNGR reactor vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new.

  2. Development of advanced design features for KNGR reactor vessel and internals

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new

  3. Feedback from Westinghouse experience on segmentation of reactor vessel internals - 59013

    International Nuclear Information System (INIS)

    Kreitman, Paul J.; Boucau, Joseph; Segerud, Per; Fallstroem, Stefan

    2012-01-01

    With more than 25 years of experience in the development of reactor vessel internals segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. Building on tooling concepts and cutting methodologies developed decades ago for the successful removal of nuclear fuel from the damaged Three Mile Island Unit 2 reactor (TMI-2), Westinghouse has continuously improved its approach to internals segmentation and packaging by incorporating lessons learned and best practices into each successive project. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive water-jet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Westinghouse has applied its technology to all types of reactors covering Pressurized Water Reactors (PWR's), Boiling Water Reactors (BWR's), Gas Cooled Reactors (GCR's) and sodium reactors. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since space is almost always a limiting factor it is therefore important to plan and optimize the available room in the segmentation areas. The choice of the optimum cutting technology is important for a successful project implementation and depends on some specific constraints like disposal costs, project schedule, available areas or safety. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. Westinghouse has also developed a variety of special handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a

  4. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  5. Guiding device for a manipulator mast for internal inspection of a reactor pressure vessel

    International Nuclear Information System (INIS)

    Seifert, W.; Schlueter, H.

    1977-01-01

    A remote-controlled supporting device centering a manipulator mast is described which is mounted and operated above a reactor pressure vessel under water in such a way that rotations and vertical movements necessary for the internal inspection of the pressure vessel remain possible. (RW) [de

  6. International feedback experience on the cutting of reactor internal components

    International Nuclear Information System (INIS)

    Boucau, J.

    2014-01-01

    Westinghouse capitalizes more than 30 years of experience in the cutting of internal components of reactor and their packaging in view of their storage. Westinghouse has developed and validated different methods for cutting: plasma torch cutting, high pressure abrasive water jet cutting, electric discharge cutting and mechanical cutting. A long feedback experience has enabled Westinghouse to list the pros and cons of each cutting technology. The plasma torch cutting is fast but rises dosimetry concerns linked to the control of the cuttings and the clarity of water. Abrasive water jet cutting requires the installation of costly safety devices and of an equipment for filtering water but this technology allows accurate cuttings in hard-to-reach zones. Mechanical cutting is the most favourable technology in terms of wastes generation and of the clarity of water but the cutting speed is low. (A.C.)

  7. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  8. Design, Analysis and R&D of the EAST In-Vessel Components

    Science.gov (United States)

    Yao, Damao; Bao, Liman; Li, Jiangang; Song, Yuntao; Chen, Wenge; Du, Shijun; Hu, Qingsheng; Wei, Jing; Xie, Han; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Chen, Junling; Mao, Xinqiao; Wang, Shengming; Zhu, Ning; Weng, Peide; Wan, Yuanxi

    2008-06-01

    In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 °C. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.

  9. Experience in dismantling and packaging of pressure vessel and core internals

    International Nuclear Information System (INIS)

    Pillokat, Peter; Bruhn, Jan Hendrik

    2011-01-01

    Nuclear Company AREVA is proud to look back on versatile experience in successfully dismantling nuclear components. After performing several minor dismantling projects and studies for nuclear power plants, AREVA completed the order for dismantling of all remaining Reactor Pressure Vessel internals at German Boiling Water Reactor Wuergassen NPP in October '08. During the onsite activities about 121 tons of steel were successfully cut and packed under water into 200l- drums, as the dismantling was performed partly in situ and partly in an underwater working tank. AREVA deployed a variety of different cutting techniques such as band sawing, milling, nibbling, compass sawing and water jet cutting throughout this project. After successfully finishing this task, AREVA dismantled the cylindrical part of the Wuergassen Pressure Vessel. During this project approximately 320 tons of steel were cut and packaged for final disposal, as dismantling was mainly performed by on air use of water jet cutting with vacuum suction of abrasive and kerfs material. The main clue during this assignment was the logistic challenge to handle and convey cut pieces from the pressure vessel to the packing area. For this, an elevator was installed to transport cut segments into the turbine hall, where a special housing was built for final storage conditioning. At the beginning of 2007, another complex dismantling project of great importance was acquired by AREVA. The contract included dismantling and conditioning for final storage of the complete RPV Internals of the German Pressurized Water Reactor Stade NPP. Very similar cutting techniques turned out to be the proper policy to cope this task. On-site activities took place in up to 5 separate working areas including areas for post segmentation and packaging to perform optimized parallel activities. All together about 85 tons of Core Internals were successfully dismantled at Stade NPP until September '09. To accomplish the best possible on

  10. An overview of reactor vessel internals segmentation for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    Litka, T.J.

    1994-01-01

    Several nuclear plants have undergone reactor vessel (RV) internals segmentation as part of or in preparation for decommissioning the plant. In addition, several other nuclear facilities are planning for similar work efforts. The primary technology used for segmentation of RV internals, whether in-air or underwater is Plasma Arc Cutting (PAC). Metal Disintegration Machining (MDM) is also used for difficult to make cuts. PAC and MDM are deployed by various means including Long Handled Tools (LHTs), fixtures, tracks, and multi-axis manipulators. These enable remote cutting due to the radiation and/or underwater environment. A Boiling Water Reactor (BWR), a Pressurized Water Reactor (PWR), and a High Temperature Gas Reactor (HTGR) have had their internals removed and segmented using PAC and MDM. The cutting technology used for each component, location of cut, cut geometry and environment had to be determined well before the actual cutting operations. This allowed for the design, fabrication, and testing of the delivery systems. The technologies, selection process, and methodology for RV internals segmentation will be discussed in this paper

  11. VDE/disruption EM analysis for ITER in-vessel components

    International Nuclear Information System (INIS)

    Miki, N.; Ioki, K.; Ilio, F.; Kodama, T.; Chiocchio, S.; Williamson, D.; Roccella, M.; Barabaschi, P.; Sayer, R.S.

    1998-01-01

    This paper summarises the results of EM analyses for ITER in-vessel components, such as blanket modules, backplate and divertor modules. In the ITER design the following two disruption scenarios are taken into account: centered or radial disruption, and vertical displacement event (VDE). Eddy currents and forces due to plasma disruption were calculated using the 3D shell element code EDDYCUFF and the 3D solid element code EMAS. The plasma motion and current decay used in the EM analysis was supplied by 2-D axisymmetric plasma equilibrium codes, TSC and MAXFEA. (authors)

  12. Outlines of guidelines for the inspection and evaluation of reactor vessel internals

    International Nuclear Information System (INIS)

    Seki, Hiroaki; Kobayashi, Hiroyuki; Nakano, Morihito; Murai, Soutarou; Nomoto, Toshiharu

    2014-01-01

    'The guideline committee for the inspection and evaluation of Reactor Vessel Internals' of JANSI (Japan Nuclear Safety Institute) has been developing many guidelines based on principle which the conservative methodology, and covered both individual inspection method of reactor internals and application of repair methods for reactor internals. In this paper, some aspects of the JANSI-VIP-03 (Guidelines for the inspection and evaluation of Reactor Vessel Internals, revised Dec.2013) which is summary document of the committee activity, are introduced. (author)

  13. Westinghouse experience in using mechanical cutting for reactor vessel internals segmentation

    International Nuclear Information System (INIS)

    Boucau, Joseph; Fallstroem, Stefan; Segerud, Per; Kreitman, Paul J.

    2010-01-01

    Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques. Mechanical cutting has been used by Westinghouse since 1999 for both PWRs and BWRs and its process has been continuously improved over the years. Detailed planning is essential to a successful project, and typically a 'Segmentation and Packaging Plan' is prepared to document the effort. The usual method is to start at the end of the process, by evaluating the waste disposal requirements imposed by the waste disposal agency, what type and size of containers are available for the different disposal options, and working backwards to select the best cutting tools and finally the cut geometry required. These plans are made utilizing advanced 3-D CAD software to model the process. Another area where the modelling has proven invaluable is in determining the logistics of component placement and movement in the reactor cavity, which is typically very congested when all the internals are out of the reactor vessel in various stages of segmentation. The main objective of the segmentation and packaging plan is to determine the strategy for separating the highly activated components from the less activated material, so that they can be disposed of in the most cost effective manner. Usually, highly activated components cannot be shipped off-site, so they must be packaged such that they can be dry stored with the spent fuel in an Independent Spent Fuel Storage Installation (ISFSI). Less activated components can be shipped to an off-site disposal site depending on space availability. Several of the

  14. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  15. Structural integrity and management of aging in internal components of BWR reactors

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    2004-01-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  16. Development of glia and blood vessels in the internal capsule of rats.

    Science.gov (United States)

    Earle, K L; Mitrofanis, J

    1998-02-01

    We have explored two aspects of internal capsule development that have not been described previously, namely, the development of glia and of blood vessels. To these ends, we used antibodies to glial fibrillary acidic protein (GFAP) and to vimentin (to identify astrocytes and to radial glia) and Griffonia simplicifolia (lectin; to identify microglia and blood vessels). Further, we made intracardiac injections of Evans Blue to examine the permeability of this dye in the vessels of the internal capsule during neonatal development. Our results show that large numbers of radial glia, astrocytes and microglia are not labelled with these markers in the white matter of the internal capsule until about birth; very few are labelled earlier, during the critical stages of corticofugal and corticopetal axonal ingrowth (E15-E20). The large glial labelling in the internal capsule at birth is accompanied by a dense vascular innervation of the capsule; as with the glia, very few labelled patent vessels are seen earlier. After intracardiac injections of Evans Blue, we find that the blood vessels of the internal capsule are not particularly permeable to Evans Blue. At each age examined (P0, P5, P15), blood vessels are outlined very clearly and there is no diffuse haze of fluorescence within the extracellular space, which is indicative of a leaky vessel. There are three striking differences between the glial environment of the internal capsule and that of the adjacent thalamus. First, the internal capsule is never rich with radial glial fibres (vimentin- and GFAP-immunoreactive) during development (except at P0), whereas the thalamus has many radial fibres from very early development (E15-E17). Second, astrocytes (vimentin- and GFAP-immunoreactive) first become apparent in the internal capsule (E20-P0) well before they do in the thalamus (P15). Third, the internal capsule houses a large transient population of amoeboid microglia (P0-P22), whereas the thalamus does not; only ramified

  17. Contribution of materials investigations and operating experience of reactor vessel internals to PWRs' safety, performance and reliability

    International Nuclear Information System (INIS)

    Lemaire, E.; Monteil, N.; Jardin, N.; Doll, M.

    2015-01-01

    The Reactor Pressure Vessel Internals (RVI) include all the components inside the pressure vessel, except the nuclear fuel, the rod cluster assemblies and the instrumentation. The RVI consist of bolted and welded structures that are divided into two sub-assemblies: the upper internals which are removed at every refueling outage and the lower internals which are systematically removed for inspection at every 10-year outage. The main functions of the RVI are to position the core, to support it, and to provide a coolant flow by channeling the fluid. Moreover, the lower internals contribute to a neutron protection of the reactor pressure vessel by absorbing most of the neutron flux from the core. Depending on their location and material composition, the RVI components can face different ageing phenomena, that are actual or potential (such as wear, fatigue, stress corrosion cracking, irradiation assisted stress corrosion cracking, hardening and loss of ductility due to neutron irradiation, irradiation creep and irradiation swelling). EDF has developed a strategy for managing ageing and demonstrating the capacity of the RVI to perform their design functions over 40 years of operation. This overall approach is periodically revisited to take into account the most recent knowledge obtained from the following main topics: Safety Analyses, Research-Development programs, In-Service Inspection (ISI) results, Maintenance programs and Metallurgical Examinations. Based on continuous improvements in those fields, the goal of this paper is to present the way that materials investigations and operating experience obtained on RVI are managed by EDF to improve RVI safety, performance and reliability. It is shown that a perspective of 60 years of operation of RVI components is supported by large Research-Development efforts combined with field experience. (authors)

  18. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  19. Real-time protection of in-vessel components in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A.; Drube, R.; Lunt, T.; Marne, P. de

    2011-01-01

    A video real time safety system (VRT) for protection of in-vessel components was fully implemented in the machine control system (CODAC) from the 2007 experimental campaign on. The VRT is based on video cameras in contrast to infrared systems. The visible wavelength range has a smaller measurement range but is a factor 5-10 less sensitive against changes of the transmission of the optical system and the target emissivity compared to infrared systems. Up to 12 analog video channels with multiple regions of interest (ROI) are processed and monitored on each video stream. At present two safety algorithms, to detect the fraction of overheating in a ROI and hot spot detection, respectively, are implemented. The integral algorithm is preferentially used for probe or limiter protection, the hot spot algorithm for divertor protection. The VRT system is realized with ReadHawk real time operating system on a multi core Linux computer.

  20. Real-time protection of in-vessel components in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A., E-mail: albrecht.herrmann@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Drube, R.; Lunt, T.; Marne, P. de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2011-10-15

    A video real time safety system (VRT) for protection of in-vessel components was fully implemented in the machine control system (CODAC) from the 2007 experimental campaign on. The VRT is based on video cameras in contrast to infrared systems. The visible wavelength range has a smaller measurement range but is a factor 5-10 less sensitive against changes of the transmission of the optical system and the target emissivity compared to infrared systems. Up to 12 analog video channels with multiple regions of interest (ROI) are processed and monitored on each video stream. At present two safety algorithms, to detect the fraction of overheating in a ROI and hot spot detection, respectively, are implemented. The integral algorithm is preferentially used for probe or limiter protection, the hot spot algorithm for divertor protection. The VRT system is realized with ReadHawk real time operating system on a multi core Linux computer.

  1. AIS as key component in modern vessel traffic management and information systems

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, W. [DaimlerChrysler Aerospace AG (DASA), Ulm (Germany)

    1999-07-01

    The objective of this paper is to provide information in respect to universal shipborne identification system (UAIS) as main sensor in various vessel traffic applications. The presented paper will give general information concerning AIS functionality and the standardisation process. Based on experience from recent projects and various IALA working group activities, a typical future VTMIS architectures is also presented being based on AIS as key sensor. The required key performance of AIS associated with the HW components will be described. The results from European technology study Indris are presented and discussed. Finally, a summary and conclusion from the presented material will complete the technical paper. The elaboration of this presentation has been carried out as a joint task between Mr. Andre van Berg, MDS Suedafrika und Mr. Walter Lamers, DASA Ulm. (orig.)

  2. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  3. Sampling of Reactor Pressure Vessel and Core Internals

    International Nuclear Information System (INIS)

    Oberhaeuser, R.

    2011-01-01

    Decommissioning and dismantling of nuclear power plants is a growing business, as a huge number of plants built in the 1970s have now reached their lifetime. It is well known that dismantling a nuclear power plant means an extraordinary expense for the owner respectively operator. Besides the dismantling works, the disposal of activated components and other nuclear waste is very expensive. Moreover, the fact that, in most countries, final disposal facilities are not available yet implies the need for interim storage on-site in specially built facilities. It can be concluded that a special attention is paid on producing a minimal radioactive waste volume. For this, optimized dismantling and packaging concepts have to be developed. The challenge is a fair balance between the obtainment of optimized packing and on the other side the fulfillment of stringent regulations set by the authorities and the storage requirements. The basis of a well-founded, optimized dismantling and packaging concept must always be the detailed knowledge of the radiological condition of the component to be dismantled. In the best case a 3- dimensional activation model contributes to this basis.

  4. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  5. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  6. BETHSY 9.1b Test Calculation with TRACE Using 3D Vessel Component

    International Nuclear Information System (INIS)

    Berar, O.; Prosek, A.

    2012-01-01

    Recently, several advanced multidimensional computational tools for simulating reactor system behaviour during real and hypothetical transient scenarios were developed. One of such advanced, best-estimate reactor systems codes is TRAC/RELAP Advanced Computational Engine (TRACE), developed by the U.S. Nuclear Regulatory Commission. The advanced TRACE comes with a graphical user interface called SNAP (Symbolic Nuclear Analysis Package). It is intended for pre- and post-processing, running codes, RELAP5 to TRACE input deck conversion, input deck database generation etc. The TRACE code is still not fully development and it will have all the capabilities of RELAP5. The purpose of the present study was therefore to assess the 3D capability of the TRACE on BETHSY 9.1b test. The TRACE input deck was semi-converted (using SNAP and manual corrections) from the RELAP5 input deck. The 3D fluid dynamics within reactor vessel was modelled and compared to 1D fluid dynamics. The 3D calculation was compared both to TRACE 1D calculation and RELAP5 calculation. Namely, the geometry used in TRACE is basically the same, what gives very good basis for the comparison of the codes. The only exception is 3D reactor vessel model in case of TRACE 3D calculation. The TRACE V5.0 Patch 1 and RELAP5/MOD3.3 Patch 4 were used for calculations. The BETHSY 9.1b test (International Standard Problem no. 27 or ISP-27) was 5.08 cm equivalent diameter cold leg break without high pressure safety injection and with delayed ultimate procedure. BETHSY facility was a 3-loop replica of a 900 MWe FRAMATOME pressurized water reactor. For better presentation of the calculated physical phenomena and processes, an animation model using SNAP was developed. In general, the TRACE 3D code calculation is in good agreement with the BETHSY 9.1b test. The TRACE 3D calculation results are as good as or better than the RELAP5 calculated results. Also, the TRACE 3D calculation is not significantly different from TRACE 1D

  7. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  8. A study on detection of internal defects of pressure vessel by digital shearography

    International Nuclear Information System (INIS)

    Kang, Young Jun; Park, Sung Tae; Lee, Hae Moo; Nam, Seung Hun

    1999-01-01

    Pipelines in power plants, nuclear facilities and chemical industries are often affected by corrosion effects. The inspection of internal defects of these pipelines is important to guarantee safe operational condition. Conventional NDT methods have been taken relatively much time, money, and manpower because of performing as the method of contact with objects to be inspected. Digital shearography is a laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time measurement. Therefore it is a good method to use for detecting internal defects. In this paper, the experiment was performed with some pressure vessels which has different internal cracks. We detected internal cracks of the pressure vessels at a real time and evaluated qualitatively these results. We also performed qualitative measurement of shearo fringe by using phase shifting method.

  9. 46 CFR 27.205 - What are the requirements for internal communication systems on towing vessels?

    Science.gov (United States)

    2010-10-01

    ... systems on towing vessels? 27.205 Section 27.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... fitted with a communication system between the engine room and the operating station that— (1) Consists... required to have internal communication systems. (c) When the operating-station's engine controls and the...

  10. Influence of prolonged service of steam turbines on the properties of materials of rotor and vessel components

    International Nuclear Information System (INIS)

    Anfimov, V.M.; Artamonov, V.V.; Chizhik, T.A.

    1984-01-01

    The structure and mechanical properties of steam turbine elements of 25Kh1MF, 25Kh1M1FA (rotors), 15Kh1M1FL (vessel components) steels have been investigated both in initial state and after 200 000 h operation. The structure stability and phase composition of rotor steels providing conservation of heat resistance at a required level was established. Examination of vessel components showed a decrease in the yield strength by 15-20% and durability - by 10% as compared to initial ones. The conclusion on a possible prolongation of the steam turbine service life to 200 000 h is drawn. The nominal service life equals 100 000 h

  11. Design and development of in-vessel viewing periscope for ITER (International Thermonuclear Experimental Reactor)

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Ito, Akira; Shibanuma, Kiyoshi; Tada, Eisuke

    1999-02-01

    An in-vessel viewing system is essential not only to detect and locate damage of components exposed to plasma, but also to monitor and assist in-vessel maintenance operation. In ITER, the in-vessel viewing system must be capable of operating at high temperature (200degC), under intense gamma radiation (30 kGy/h) and high vacuum or 1 bar inert gas. A periscope-type in-vessel viewing system has been chosen as a reference of the ITER in-vessel viewing system due to its wide viewing capability and durability for sever environments. According to the ITER research and development program, a full-scale radiation hard periscope with a length of 15 m has been successfully developed by the Japan Home Team. The performance tests have been shown sufficient capability at high temperature up to 250degC and radiation resistance over 100 MGy. This report describes the design and R and D results of the ITER in-vessel viewing periscope based on the development of 15-m-length radiation hard periscope. (author)

  12. Design and issues of the ITER in-vessel components: ITER Joint central team and home teams

    International Nuclear Information System (INIS)

    Parker, R.R.

    1998-01-01

    This paper surveys the status of the design of the in-vessel components for ITER, in particular the major components, namely the vacuum vessel, blanket and first wall, and divertor, and the interface of selected ancillary systems such as those used for RF heating and current drive, and for diagnostics. The vacuum vessel is a double-walled structure constructed from two toroidal shells joined by ribs. The space between the skins is filled with shield plates directly cooled by water. The structural material is 316 LN IG (ITER grade). Toroidal supports joining the vessel midplane ports with the TF structure limit possible differential toroidal displacements, as might occur due to seismic or vertical displacement events (VDEs). A variety of load conditions corresponding to normal and off-normal loads have been considered and in all cases peak vessel stresses are within allowables. The blanket system consists of approximately 700 modules, each weighing ∝4 t. The integrated first wall consists of a beryllium-tiled copper mat bonded to the water-cooled SS shield block. The copper mat functions as a heat sink and has imbedded in it an array of SS tubes providing water cooling. The modules are mechanically attached to a toroidal backplate. Loads due to centered disruptions are reacted via hoop stress in the backplate, whereas net vertical and horizontal loads such as those arising from VDEs are transferred through the backplate and divertor supports to the vessel. (orig.)

  13. Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors

    International Nuclear Information System (INIS)

    Love, E.F.; Pauley, K.A.; Reid, B.D.

    1995-09-01

    This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy's Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste

  14. Structural analysis of vacuum vessel and blanket support system for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Kitamura, Kazunori; Koizumi, Kouichi; Takatsu, Hideyuki; Tada, Eisuke; Shimane, Hideo.

    1996-11-01

    Structural analyses of vacuum vessel and blanket support system have been performed to examine their integrated structural behavior under the design loads and to assess their structural feasibility, with two kinds of three-dimensional (3-D) FEM models; a detailed model with 18deg sector region to investigate the detailed mechanical behaviors of the blanket and vessel components under the several symmetric loads, and a 180deg torus model with relatively coarser meshes to assess the structural responses under the asymmetric VDE load. The analytical results obtained by both models were also compared for the several symmetric loads to check the equivalent mechanical stiffness of the 180deg torus model. As the results, most of the vessel and blanket components have sufficient mechanical integrities with the stress level below the allowable limit of the materials, while the lower parts of inboard/outboard back plate need to be reinforced by increasing the thickness and/or mounting a toroidal ring support at the lower edge of the back plate. Two types of eigenvalue analyses were also conducted with the 180deg torus model to investigate natural frequencies of the vessel torus support system and to assess the mechanical integrity of the elastic stability under the asymmetric VDE load. Analytical results show that the mechanical stiffness of the vessel gravity support should be higher in the view point of a seismic response, and that those of the blanket support structures should also be increased for the buckling strength against the VDE vertical force. (author)

  15. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  16. 50 CFR 216.46 - U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation Program. 216.46 Section 216.46 Wildlife and Fisheries....46 U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation...

  17. Comparison between 3D eddy current patterns in tokamak in-vessel components generated by disruptions

    International Nuclear Information System (INIS)

    Sakellaris, J.; Crutzen, Y.

    1996-01-01

    During plasma disruption events in Tokamaks, a large amount of magnetic energy is associated to the transfer of plasma current into eddy currents in the passive structures. In the ITER program two design concepts have been proposed. One approach (ITER CDA design) is based on copper stabilization loops (i.e., twin loops) attached to box-shaped blanket segments, electrically and mechanically separated along the toroidal direction. For another design concept (ITER EDA design) based on lower plasma elongation there is no need for specific stabilization loops. The passive stabilization is obtained by toroidally continuous components (i.e., the plasma facing wall of the blanket segments allows a continuity along the toroidal direction). Consequently, toroidal currents flow, when electromagnetic transients occur. Electromagnetic loads appear in the blanket structures in case of plasma disruptions and/or vertical displacement events either for the ITER CDA design concept or for the ITER EDA design concept. In this paper the influence of the in-vessel design configuration concepts--insulated segments or electrically continuous structures--in terms of magnetic shielding and electric insulation on the magnitude and the flow pattern of the eddy currents is investigated. This investigation will allow a performance evaluation of the two proposed design concepts

  18. Electromagnetic and structural analyses of the vacuum vessel and plasma facing components for EAST

    International Nuclear Information System (INIS)

    Xu, Weiwei; Liu, Xufeng; Song, Yuntao; Li, Jun; Lu, Mingxuan

    2013-01-01

    Highlights: • The electromagnetic and structural responses of VV and PFCs for EAST are analyzed. • A detailed finite element model of the VV including PFCs is established. • The two most dangerous scenarios, major disruptions and downward VDEs are considered. • The distribution patterns of eddy currents, EMFs and torques on PFCs are analyzed. -- Abstract: During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices

  19. Analysis of irradiation creep and the structural integrity of fusion in-vessel components

    International Nuclear Information System (INIS)

    Karditsas, Panayiotis J.

    2000-01-01

    This paper presents a brief review of the irradiation creep mechanism, analyses of the effect on the performance and behaviour of fusion in-vessel components, and discusses procedures for the estimation of in-service time (or lifetime) of components under combined creep-fatigue. The irradiation creep models and proposed theories are examined and analysed to produce a creep law relevant to fusion conditions. The necessary material data, constitutive equations and other parameters needed for estimation of in-service time from the combination of creep and fatigue damage are identified. Wherever possible, design curves are proposed for stress and strain. Time dependent non-linear elastoplastic example calculations are performed, for a typical first wall structure under power plant loading conditions, assuming austenitic and martensitic steel as structural materials, including material irradiation creep. The results of calculations for the stress and strain history of the first wall are used together with the proposed cumulative damage expressions derived in this study to estimate the in-service time, including the effects of stress relaxation due to creep, reduction of ductility (or fracture strain) and helium-to-displacement-damage ratio. The calculations give a displacement damage of ∼70 dpa for the 316 austenitic steel and ∼110-130 dpa for the martensitic steel. Provided there are no power transients, for a design strain of 0.5%, the in-service time is estimated to be ∼3 years for the 316 steel case (at 2.2 MW/m 2 wall load) and the high wall loading martensitic steel (5.0 MW/m 2 case), and ∼5.3 years for the martensitic steel at lower wall load (2.2 MW/m 2 case). The difficulty in defending these results lies in the uncertainty arising from the limited database and experience of the material properties, especially the creep constitutive law, when exposed to fusion environments

  20. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  1. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  2. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  3. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    The TEMP-STRESS FEM represents an axisymmetric simulation of the reinforced concrete vessel to internal pressurization. The information shows the global deformation, the state of strain/stress within the containment vessel with respect to the imposed pressures. Thus, the location and progress of concrete cracking, the stretching of the liner and the reinforcing bars and final failure are indicated through the entire loading range. Equilibrium of the entire system is assured at definite loading increments. With the progress of concrete cracking, the resisting load is continuously transferred to the reinforcing bars and the liner. Thus, after the tensile strength is exceeded and the concrete stress is set to zero, the internal pressures are entirely resisted by the liner and the reserve strength of the reinforcing bars. The reinforcing bars are mechanically connected to each other by splices, the ultimate strength of which is less than that of the rebars themselves. The corresponding strain at this limiting stress is lower than the ultimate strain of the liner. Therefore, the specified ultimate strength of the splices limits the pressurization of the vessel. Furthermore, once any of the splices fail, then load is transferred to the adjacent members, causing their failure and general failure of the vessel. (orig./HP)

  4. A basic study on the ITER tritium storage vessel design and components

    International Nuclear Information System (INIS)

    Chung, H. S.; Ahn, D. H.; Kim, K. R.; Yim, S. P.; Paek, S. W.; Lee, M. S.; Lee, S. H.; Shim, M. H.

    2006-01-01

    The ZrCo getter beds are built of a primary vessel which contains the ZrCo powder mixed with Cu spheres of less than one mm diameter and of a secondary outer vessel. The purpose of the secondary outer vessel is to capture permeated or leaked tritium and to present a good thermal insulation when properly evacuated. A third volume, a helium filled loop, is installed in the primary volume to remove the decay heat and is used to perform tritium accountancy measurements

  5. Experimental and theoretical investigation on the depressurization of a vessel with internals

    International Nuclear Information System (INIS)

    Vigni, P.; Oriolo, F.; Rosa, U.

    1978-01-01

    This paper is about some blow-down experiments performed at the Scalbatraio Center of the University of Pisa. The blow-down tests have been made to investigate the depressurization of a vessel with internal structures, reproducing the geometry of a BWR. The experimental data have been compared with calculations performed by the RELAP program, in order to evaluate the scaling effects related to their application to large scale units. (author)

  6. Wear plates control rod guide tubes top internal reactor vessel C. N. VANDELLOS II

    International Nuclear Information System (INIS)

    2010-01-01

    The guide tubes for control rods forming part of the upper internals of the reactor vessel, its function is to guide the control rod to permit its insertion in the reactor core. These guide tubes are suspended from the upper support plate which are fixed by bolts and extending to the upper core plate which is fastened by clamping bolts (split pin) to prevent lateral displacement of the guide tubes, while allowing axial expansion.

  7. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  8. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  9. Process and apparatus for adjusting a new upper reactor internals in a reactor vessel of a PWR

    International Nuclear Information System (INIS)

    Frizot, A.; Cadaureille, G.; Lalere, C.; Machuron, J.Y.

    1987-01-01

    On the new upper reactor internals is mounted devices for alignment and clearances, before introducing in the reactor vessel. After introducing alignment and clearances are measured. Adjustment pieces are provided for optimum clearances and alignment and fixed after removal from vessel. Decontamination is made by using water jets prior to fitting recess parts [fr

  10. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  11. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  12. International Cooperation for the Dismantling of Chooz A Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Grenouillet, J.J.; Posivak, E.

    2009-01-01

    Chooz A is the first PWR that is being decommissioned in France. The main issue that is conditioning the success of the project is the Reactor Pressure Vessel (RPV) and Reactor Vessel Internals (RVI) segmentation. Whereas Chooz A is the first and unique RPV and RVI being dismantled in France, there are many similar experiences available in the world. Thus the project team was eager to cooperate with other teams facing or being faced with the same issue. A cooperation programme was established in two separate ways: - Benefiting from experience feedback from completed RPV and RVI dismantling projects, - Looking for synergy with future RPV dismantling projects for activities such as segmentation tools design, qualification and manufacturing for example. This paper describes the implementation of this programme and how the outcome of the cooperation was used for the implementation of Chooz-A RPV and RVI segmentation project. It shows also the limits of such a cooperation. (authors)

  13. Complete resection of locally advanced ovarian carcinoma fixed to the pelvic sidewall and involving external and internal iliac vessels.

    Science.gov (United States)

    Nishikimi, Kyoko; Tate, Shinichi; Matsuoka, Ayumu; Shozu, Makio

    2017-08-01

    Locally advanced ovarian carcinomas may be fixed to the pelvic sidewall, and although these often involve the internal iliac vessels, they rarely involve the external iliac vessels. Such tumors are mostly considered inoperable. We present a surgical technique for complete resection of locally advanced ovarian carcinoma fixed to the pelvic sidewall and involving external and internal iliac vessels. A 69-year-old woman presented with ovarian carcinoma fixed to the right pelvic sidewall, which involved the right external and internal iliac arteries and veins and the right lower ureter, rectum, and vagina. We cut the external iliac artery and vein at the bifurcation and at the inguinal ligament to resect the external artery and vein. Then, we reconstructed the arterial and venous supplies of the right external artery and vein with grafts. After creating a wide space immediately inside of the sacral plexus to allow the tumor fixed to pelvic sidewall with the internal iliac vessels to move medially, we performed total internal iliac vessel resection. We achieved complete en bloc tumor resection with the right external and internal artery and vein, right ureter, vagina, and rectum adhering to the tumor. There were no intra- or postoperative complications, such as bleeding, graft occlusion, infection, or limb edema. Exfoliation from the sacral plexus and total resection with external and internal iliac vessels enables complete resection of the tumor fixed to the pelvic sidewall. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Remote maintenance of in-vessel components in Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Loesser, G.D.; Heitzenroeder, P.; Kungl, D.; Dylla, H.F.; Cerdan, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) will generate a total of 3 x 10 21 neutrons during its planned D-T operational period. A maintenance manipulator has been designed and tested to minimize personnel radiation during in-vessel maintenance activities. Its functions include visual inspection, first-wall tile replacement, cleaning, diagnostics calibrations and leak detection. To meet these objectives, the TFTR maintenance manipulator is required to be operable in the TFTR high vacuum environment, typically -8 torr, ( -6 Pa). Geometrically, the manipulator must extend 180 0 in either direction around the torus to assure complete coverage of the vessel first-wall. The manipulator consists of a movable carriage, and movable articulated link sections which are driven by electrical actuators. The boom has vertical load capacity of 455 kg and lateral load capacity of 46 kg. The boom can either be fitted with a general inspection arm or dextrous slave arms. The general inspection arm is designed to hold the leak detector and an inspection camera; it is capable of rotation along two axes and has a linkage system which permits motion normal to the vacuum vessel wall. All systems except the dextrous slave arms are operable in a vacuum. (author)

  15. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  16. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  17. DSTAR: A comprehensive tokamak resistive disruption model for vacuum vessel components

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jardin, S.C.

    1987-01-01

    A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces than can occur during major tokamak plasma disruptions. A disruption analysis has been performed for the TFCX fusion device. The limiters and inboard first wall were assumed to be clad with beryllium. Disruption simulations were performed with and without these structures present, to determine their electromagnetic influence. The results with structure show that the ablated wall material is transported poloidally, as well as radially, in the plasma causing the outermost regions of the plasma to cool. The plasma moves downward and deforms while maintaining contact with the lower limiter. This motion maintains the peak impurity radiant source directly above the exposed surface. For the disruption simulation without the vacuum vessel included, the plasma moves radially along the lower limiter until it contacts the inboard wall, causing ablation of this surface as well. The conclusion is drawn that disruption simulations that do not include both the thermal and electromagnetic response of the vaccum vessel will not result in an accurate prediction. (orig.)

  18. Principal component approach in variance component estimation for international sire evaluation

    Directory of Open Access Journals (Sweden)

    Jakobsen Jette

    2011-05-01

    Full Text Available Abstract Background The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model. Methods This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC and the so-called bottom-up REML approach (bottom-up PC, in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (covariance matrix. Results Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (covariance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in

  19. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    International Nuclear Information System (INIS)

    Roberts, R.E.; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-01-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  20. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  1. To the application of TV and optical equipment for in-service inspection of reactor vessel and primary circuit component materials

    International Nuclear Information System (INIS)

    Afonin, Eh.M.; Bachelis, I.M.; Tokarev, E.A.; Yastrebov, V.E.

    1985-01-01

    Some problems of application of TV and optical equipment for inspection of reactor vessel and primary circuit component materials are considered taking the most widespread WWER-440 type reactor as an example. The most advanrageous objects of the inspection and typical zones of equipment arrangement are shown. Methods and peculiarities of the inspection with the use of TV and optical equipment are presented. Recommendations on rational application of the equipment for the inspection of WWER-440 reactor vessel components are given

  2. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  3. Method for the radiographic examination of the walls or components of an essentially closed vessel, and also the provision of means for the application of the method

    International Nuclear Information System (INIS)

    1978-01-01

    Method for the radiographic examination of the wall ports or supporting components of an essentially closed vessel, whereby one brings to the side of the vessel walls or supports under examination a radiation source and, to the opposite side, a radiation sensitive film, the film being irradiated by the source and thereafter developed, characterised in that one introduces into the inside of the vessel a hollow tube at a unique distance from the wall or support component, at least one end of the hollow tube being fed out and in which the hollow tube, during the period of the examination, the irradiation source or an irradiation sensitive film is introduced. (G.C.)

  4. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  5. Remote inspection system for components installed inside a primary containment vessel of a boiling water reactor

    International Nuclear Information System (INIS)

    Shimizu, Katsutoshi; Kawai, Katsumi; Ito, Takahiko; Hashimoto, Yuji; Tomizawa, Fumio.

    1983-01-01

    A remote operation type monitoring system was developed to always enable the watching of the condition of the main equipment installed in the containment vessels of BWRs. It comprises four inspection vehicles suspended by a monorail and pulled with trolley chain, coaxial cables for signal transmission and power supply, and control system. On the inspection vehicles, a television camera, a thermometer, a microphone and a radiation dose rate meter are installed. The performance of the system was confirmed at 60 deg C for several months. Thereafter, the field test was carried out in the Tokai No. 2 Power Station, Japan Atomic Power Co., from December, 1980, to September, 1981. By the continuous monitoring and grasp of operational condition, the preventive maintenance and the improvement of the rate of operation can be expected. Also it is desirable in view of the reduction of radiation exposure of operators. The mechanization of and the labor saving in inspection and maintenance works is necessary because skilled workers will be short. The design and the composition of the system and its tests are reported. (Kako, I.)

  6. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  7. A comparison between plaque-based and vessel-based measurement for plaque component using volumetric intravascular ultrasound radiofrequency data analysis.

    Science.gov (United States)

    Shin, Eun-Seok; Garcia-Garcia, Hector M; Garg, Scot; Serruys, Patrick W

    2011-04-01

    Although percent plaque components on plaque-based measurement have been used traditionally in previous studies, the impact of vessel-based measurement for percent plaque components have yet to be studied. The purpose of this study was therefore to correlate percent plaque components derived by plaque- and vessel-based measurement using intravascular ultrasound virtual histology (IVUS-VH). The patient cohort comprised of 206 patients with de novo coronary artery lesions who were imaged with IVUS-VH. Age ranged from 35 to 88 years old, and 124 patients were male. Whole pullback analysis was used to calculate plaque volume, vessel volume, and absolute and percent volumes of fibrous, fibrofatty, necrotic core, and dense calcium. The plaque and vessel volumes were well correlated (r = 0.893, P measurement was also highly correlated with vessel-based measurement. Therefore, the percent plaque component volume calculated by vessel volume could be used instead of the conventional percent plaque component volume calculated by plaque volume.

  8. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY14 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    Laboratory corrosion testing of candidate alloys—including Zr-4 and Zr-2.5Nb representing the target solution vessel, and 316L, 2304, 304L, and 17-4 PH stainless steels representing process piping and balance-of-plant components—was performed in support of the proposed SHINE process to produce 99Mo from low-enriched uranium. The test solutions used depleted uranyl sulfate in various concentrations and incorporated a range of temperatures, excess sulfuric acid concentrations, nitric acid additions (to simulate radiolysis product generation), and iodine additions. Testing involved static immersion of coupons in solution and in the vapor above the solution, and was extended to include planned-interval tests to examine details associated with stainless steel corrosion in environments containing iodine species. A large number of galvanic tests featuring couples between a stainless steel and a zirconium-based alloy were performed, and limited vibratory horn testing was incorporated to explore potential erosion/corrosion features of compatibility. In all cases, corrosion of the zirconium alloys was observed to be minimal, with corrosion rates based on weight loss calculated to be less than 0.1 mil/year with no change in surface roughness. The resulting passive film appeared to be ZrO2 with variations in thickness that influence apparent coloration (toward light brown for thicker films). Galvanic coupling with various stainless steels in selected exposures had no discernable effect on appearance, surface roughness, or corrosion rate. Erosion/corrosion behavior was the same for zirconium alloys in uranyl sulfate solutions and in sodium sulfate solutions adjusted to a similar pH, suggesting there was no negative effect of uranium resulting from fluid dynamic conditions aggressive to the passive film. Corrosion of the candidate stainless steels was similarly modest across the entire range of exposures. However, some sensitivity to corrosion of the stainless steels was

  9. Intercrystalline internal adsorption in systems with limiting solubility of components

    International Nuclear Information System (INIS)

    Krysova, S.K.; Stepanova, V.A.; Mozgovoj, M.V.

    1979-01-01

    The decrease of the excessive energy of the intercrystalline boundary of ion by additions of transitional elements having unlimited solubility in iron has been studied. The data obtained agree with the results of an earlier work based on materials of a less higher initial purity. For the systems studied (Fe-V, Fe-Cr, Fe-Mn, Fe-Ni) the degree of the intercrystalline interval adsorption is independent of either the annealing temperature or the cooling method. This corresponds to the notion of the relationship between the intercrystalline internal adsorption and the cubic solubility of the addition in a given solvent. For pure ion, a weak temperature dependence of the excessive energy of the intercrystalline boundries was found in the lower section of the examined temperature range. The constants of cumulative recrystallization of the alloys studied in α-phase show a stepwise dependence upon the atomic number of the solute component, what indicates the relationship between the cumulative recrystallization and the intercrystalline internal adsorption. A monotonous decrease of the constant of cumulative recrystallization is observed for the same alloys in α-phase, on both sides of iron

  10. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  11. Review of the International Atomic Energy Agency International database on reactor pressure vessel materials and US Nuclear Regulatory Commission/Oak Ridge National Laboratory embrittlement data base

    International Nuclear Information System (INIS)

    Wang, J.A.; Kam, F.B.K.

    1998-02-01

    The International Atomic Energy Agency (IAEA) has supported neutron radiation effects information exchange through meetings and conferences since the mid-1960s. Through an International Working Group on Reliability of Reactor Pressure Components, information exchange and research activities were fostered through the Coordinated Research Program (CRP) sponsored by the IAEA. The final CRP meeting was held in November 1993, where it was recommended that the IAEA coordinate the development of an International Database on Reactor Pressure Vessel Material (IDRPVM) as the first step in generating an International Database on Aging Management. The purpose of this study was to provide special technical assistance to the NRC in monitoring and evaluating the IAEA activities in developing the IAEA IDRPVM, and to compare the IDRPVM with the Nuclear Regulatory Commission (NRC) - Oak Ridge National Laboratory (ORNL) Power Reactor Embrittlement Data Base (PR-EDB) and provide recommendations for improving the PR-EDB. A first test version of the IDRPVM was distributed at the First Meeting of Liaison Officers to the IAEA IDRPVM, in November 1996. No power reactor surveillance data were included in this version; the testing data were mainly from CRP Phase III data. Therefore, because of insufficient data and a lack of power reactor surveillance data received from the IAEA IDRPVM, the comparison is made based only on the structure of the IDRPVM. In general, the IDRPVM and the EDB have very similar data structure and data format. One anticipates that because the IDRPVM data will be collected from so many different sources, quality assurance of the data will be a difficult task. The consistency of experimental test results will be an important issue. A very wide spectrum of material characteristics of RPV steels and irradiation environments exists among the various countries. Hence the development of embrittlement prediction models will be a formidable task. 4 refs., 2 figs., 4 tabs

  12. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  13. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  14. Evaluation Methodology for Void Swelling Susceptibility of APR1400 Reactor Vessel Internals for U.S. NRC Design Certification

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyeong Do; Lee, Do Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The APR1400 RVI (Reactor Vessel Internals) operates in harsh conditions, such as long term exposure to neutron irradiation, high temperatures, reactor coolant environment, and other operating loads. Therefore, even though the RVI components are mainly made of austenitic stainless steel which is well known to have good mechanical and corrosion-resistive properties, these operating conditions. The aging is characterized by a chromium depletion along grain boundaries of austenitic stainless steel, a decrease in ductility and fracture toughness of the steel, an increase in yield and ultimate strength of the steel, and a potential volume change due to void formation in the steel. For these reasons, under certain conditions of stress, temperature, and level of irradiation, the void swelling which is one of the challenging degradation mechanisms affecting the integrity of the RVI may appear at specific locations of the RVI, especially due to high neutron fluence and high temperature under localized gamma heating and low velocity of coolant flow. To assess the effects of operating neutron fluences, temperatures and stresses on the material properties changes and the susceptibility to the void swelling, the evaluation methodology of the APR1400 RVI components for U.S. NRC Design Certification was suggested in this paper. The approach to the evaluation is summarized as follows: 1. RVI component list of the APR1400 is collected. 2. Initial screening to determine the evaluation scope is completed using the design values of fluences. 3. Functionality assessments (radiation transport analysis, CFD analysis, structural analysis) are sequentially performed. 4. Susceptibility to the void swelling is identified through ANSYS/USERMAT module. KHNP believes that the proposed methodology which is based on the EPRI works for operating reactors is the best way to evaluate the void swelling for new reactors such as the APR1400.

  15. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.

    2004-01-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR

  16. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.; Fero, A.; Snyder, M.

    2004-01-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR

  17. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    Science.gov (United States)

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  18. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  19. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  20. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  1. Radiology trainer. Torso, internal organs and vessels. 2. ed.; Radiologie-Trainer. Koerperstamm, innere Organe und Gefaesse

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, Axel [Orthopaedische Klinik Harlaching, Muenchen (Germany). Radiologische Praxis; Erlt-Wagner, Birgit (eds.) [Klinikum der Universitaet Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-11-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  2. Assessment and Management of ageing of major nuclear power plant components important to safety: PWR pressure vessels

    International Nuclear Information System (INIS)

    1999-10-01

    ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The NPP component addressed in the present publication is the PWR pressure vessel

  3. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  4. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  5. Quench of molten aluminum oxide associated with in-vessel debris retention by RPV internal water

    International Nuclear Information System (INIS)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi; Park, Hyun Sun; Kudo, Tamotsu; Yang, Yanhua; Sugimoto, Jun

    1999-01-01

    In-vessel debris coolability experiments were performed in ALPHA program at JAERI. Molten aluminum oxide (Al 2 O 3 ) was poured into a pool of water in a lower head experimental vessel. Post-test observation and measurement using an ultrasonic technique indicated the formation of the interfacial gap between the solidified Al 2 O 3 and the vessel wall. Thermal responses of the vessel wall implied that the interfacial gap acted initially as a thermal resistance and water subsequently penetrated into the interfacial gap. The maximum heat flux at the inner surface of the vessel facing to the solidified Al 2 O 3 was roughly evaluated to be ranged from 320 kW/m 2 to 600 kW/m 2 . A post-test analysis was conducted with CAMP code. The influence of the interfacial gap on thermal behavior of Al 2 O 3 and the vessel wall was examined. (authors)

  6. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. This report addresses the reactor pressure vessel (RPV) in BWRs. Maintaining the structural integrity of this RPV throughout NPP service life in spite of several ageing mechanisms is essential for plant safety

  7. Design criteria for high-temperature-affected, metallic and ceramic components, and for the prestressed concrete reactor pressure vessel of future HTR systems. Final report. Vol. 1-4

    International Nuclear Information System (INIS)

    1988-08-01

    This work in five separate volumes reports on the elaboration of basic data for the formulation of design criteria for HTR components and is arranged into the four following subject areas : (1) safety-specific limiting conditions; (2) metallic components; (3) prestressed concrete reactor pressure vessels; (4) graphitic reactor internals. Under item 2, the mechanical and physical characteristics of the materials X20CrMoV 12 1, X10NiCrAlTi 32 20, and NiCr23Co12Mo are examined up to temperatures of 950deg C. Stress-strain rate laws are elaborated for description of the inelastic deformation behavior. The representation of the subject area reactor pressure vessels deals with four main topics: Prestressed concrete support structure, liner, vessel closures, thermal protection system. Quality-assurance classes are defined under item 4 for graphitic components and load levels for load categories. The material evaluation is discussed in detail (e.g. manufacturing monitoring from the raw material to the graphitization and manufacturing testing up to the acceptance test). In addition, the corrosion behavior and irradiation behavior of graphite is examined and rules for computation of stresses in irradiated and unirradiated graphitic components are elaborated. (MM) [de

  8. Loads on reactor pressure vessel internals induced by low-pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-02-01

    Departing from the conservation theorems for mass and impulse the computer code DRUWE has been developed which allows to calculate loads on the core shell with simplifying assumptions for the first period just after the rupture has opened. It can be supposed that the whole rupture cross section is set free within 15 msec. The calculation progresses in a way that for a core shell the local, timely pressure- and load development, respectively, the total dynamic load as well as the moments acting on the fixing of the core shell, can be calculated. The required input data are merely geometric data on the concept of the pressure vessel and its components as well as the effective subcooling of the fluid. By means of some parameters the programm development can be controlled in a way that the results are available in form of listings or diagrams, respectively, as well as in form of card decks for following investigations, e.g. solidity calculations. (orig./RW) [de

  9. An investigation of major influences on the seismic response of APR1400 reactor vessel internals - 15145

    International Nuclear Information System (INIS)

    Byun, Y.J.; Kim, J.G.; Sung, K.K.; Lee, D.H.

    2015-01-01

    This paper deals with 3 topics concerning the APR1400 reactor vessel internals (RVI) seismic analysis: nonlinear problems, approaches to account for uncertainties of seismic model, and dynamic responses to various seismic excitations. First, the noticeable nonlinear characteristics of the RVI seismic model are discussed, and the modeling methods for properly simulating the nonlinear behaviors of RVI under seismic loads are presented. By applying these methods to the seismic model, the seismic analysis can correctly predict the dynamic response of RVI. Next, two approaches to account for the uncertainties of seismic model are evaluated: the time history broadening method, and the sensitivity analysis based on NUREG-0800, Section 4.2, Appendix A. From the evaluation results, it is confirmed that the time history broadening method employed in the seismic analysis of APR1400 RVI sufficiently accounts for the uncertainty of seismic model. Finally, the response characteristics of APR1400 RVI to various seismic excitations are investigated. The seismic excitations corresponding to various soil profiles, including the effects of cracked and un-cracked concrete stiffness on the reactor containment building structure, are used as forcing functions. From this study, the effects of various site conditions on the dynamic response of APR1400 RVI are identified. As a result, the enveloped seismic responses obtained from this study will contribute to the development of RVI seismic design that covers a wide range of potential site conditions. (authors)

  10. Decreased hyperintense vessels on FLAIR images after endovascular recanalization of symptomatic internal carotid artery occlusion

    International Nuclear Information System (INIS)

    Liu Wenhua; Yin Qin; Yao Lingling; Zhu Shuanggen; Xu Gelin; Zhang Renliang; Ke Kaifu; Liu Xinfeng

    2012-01-01

    Background and purpose: Hyperintense vessels (HV) on fluid-attenuated inversion recovery (FLAIR) images were assumed to be explained by slow antegrade or retrograde leptomeningeal collateral flow related to extracranial or intracranial artery steno-occlusion. The aim of this study was to investigate the effect of recanalization after endovascular therapy of symptomatic internal carotid artery (ICA) occlusion on the presence of HV. Methods: Eleven patients with symptomatic ICA occlusion were retrospectively enrolled. Changes in the HV on FLAIR images were examined in affected hemisphere of each patient after successful treatment with endovascular recanalization (angioplasty, n = 3; stent-assisted angioplasty, n = 8). The relationship between postoperative changes in the HV and Thrombolysis In Cerebral Ischemia (TICI) scale (I-III) was assessed. Results: After operation, HV of the 11 affected hemispheres were showed to be decreased (n = 3) or disappeared (n = 8) in treated side. The median interval between pre- and postoperative MRI examinations was 97.0 h (range, from 69. to 48.7 h). Of the 8 patients with disappeared HV, 7 achieved high TICI grade flow (III) and 1 had relatively low TICI grade flow (IIc) in treated side. However, all the 3 patients with decreased HV were found to be relatively low TICI grade flow (IIc). Conclusion: Our data indicate that endovascular recanalization of ICA occlusion was effective for decreasing HV. Postoperative decrease in HV can be considered as a marker for hemodynamic improvement.

  11. The numerical simulation of the WWER-440/V-213 reactor pressure vessel internals response to maximum hypothetical large break loss of coolant accident

    International Nuclear Information System (INIS)

    Hermansky, P.; Krajcovic, M.

    2012-01-01

    The reactor internals are designed to ensure cooling of the fuel, to ensure the movement of emergency control assemblies under all operating conditions including accidents and facilitate removal of the fuel and of the internals following an accident This paper presents results of the numerical simulation of the WWER-440/V213 reactor vessel internals dynamic response to maximum hypothetical Large-Break Loss of Coolant Accident. The purpose of this analysis is to determine the reactor vessel internals response due to rapid depressurization and to prove no such deformations occur in the reactor vessel internals which would prevent timely and proper activation of the emergency control assemblies. (Authors)

  12. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  13. Investigation of the design of a metal-lined fully wrapped composite vessel under high internal pressure

    Science.gov (United States)

    Kalaycıoğlu, Barış; Husnu Dirikolu, M.

    2010-09-01

    In this study, a Type III composite pressure vessel (ISO 11439:2000) loaded with high internal pressure is investigated in terms of the effect of the orientation of the element coordinate system while simulating the continuous variation of the fibre angle, the effect of symmetric and non-symmetric composite wall stacking sequences, and lastly, a stacking sequence evaluation for reducing the cylindrical section-end cap transition region stress concentration. The research was performed using an Ansys® model with 2.9 l volume, 6061 T6 aluminium liner/Kevlar® 49-Epoxy vessel material, and a service internal pressure loading of 22 MPa. The results show that symmetric stacking sequences give higher burst pressures by up to 15%. Stacking sequence evaluations provided a further 7% pressure-carrying capacity as well as reduced stress concentration in the transition region. Finally, the Type III vessel under consideration provides a 45% lighter construction as compared with an all metal (Type I) vessel.

  14. Aging Management Strategy and Requirements of Pressurized Water Reactor Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun Seog; Oh, Sung Jin; Won, Se Yol; Jeong, Sun Mi [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The demonstration that the effects of degradation in the components of PWR internals are adequately managed is essential for maintaining a healthy fleet and ensuring the continued functionality of the reactor internals. It is also very important to determine when and where irradiation susceptibility may occur for the continued operation. This paper introduces the aging management strategies and requirements for PWR internals components and discusses effects of irradiation aging results from the functionality assessments based on the categorization of internal components. This paper introduces aging management strategies and requirements for PWR internals components. The aging management requirements for PWR internals are specified in four final component groups, which are Primary, Expansion, Existing Program and No Additional Measures. Among these groups, Primary groups include any restriction on general applicability, degradation mechanism, forward link to any Expansion components, examination method, initial examination and frequency, and examination coverage and accessibility. Expansion groups are backward link to the Primary component.

  15. Design improvements and R and D achievements for VV and in-vessel components towards ITER construction

    International Nuclear Information System (INIS)

    Ioki, K.; Barabaschi, P.; Barabash, V.

    2003-01-01

    During the preparation of the procurement specifications for long lead-time items, several detailed vacuum vessel (VV) design improvements are being pursued, such as elimination of the inboard triangular support, adding a separate interspace between inner and outer shells for independent leak detection of field joints, and revising the VV support system to gain a more comfortable structural performance margin. Improvements to the blanket design are also under investigation, an inter-modular key instead of two prismatic keys and a co-axial inlet outlet cooling connection instead of two parallel pipes. One of the most important achievements in the VV R and D has been demonstration of the necessary assembly tolerances. Further development of cutting, welding and nondestructive tests (NDT) for the VV has been continued, and thermal and hydraulic tests have been performed to simulate the VV cooling conditions. In FW/blanket and divertor, full-scale prototypical mock-ups of the FW panel, the blanket shield block, and the divertor components, have been successfully fabricated. These results make us confident in the validity of our design and give us possibilities of alternate fabrication methods. (author)

  16. Design improvements and R and D achievements for VV and In-vessel components towards ITER construction

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Barabaschi, P.; Barabash, V.

    2003-01-01

    There have been several detailed vacuum vessel (VV) design improvements, such as elimination of the inboard triangular support, separate interspace between inner and outer shells for independent leak detection of field joints and revised VV support system to gain a more comfortable margin in the structural performance. The blanket design has been updated; an inter-modular key instead of two prismatic keys and a co-axial inlet-outlet cooling connection instead of two parallel pipes. One of the most important achievements in the VV R and D has been demonstration of the necessary assembly tolerances. Further development of cutting, welding and non destructive tests (NDT) for the VV has been continued, and thermal and hydraulic tests have been performed to simulate the VV cooling conditions. With regard to the R and D for the FW/blanket and divertor, full-scale prototypical mock-ups of the FW panel, the blanket shield block and the divertor components have been successfully fabricated. These results make us confident in the validity of our design and give us possibilities of alternate fabrication methods. (author)

  17. An efficient modeling of fine air-gaps in tokamak in-vessel components for electromagnetic analyses

    International Nuclear Information System (INIS)

    Oh, Dong Keun; Pak, Sunil; Jhang, Hogun

    2012-01-01

    Highlights: ► A simple and efficient modeling technique is introduced to avoid undesirable massive air mesh which is usually encountered at the modeling of fine structures in tokamak in-vessel component. ► This modeling method is based on the decoupled nodes at the boundary element mocking the air gaps. ► We demonstrated the viability and efficacy, comparing this method with brute force modeling of air-gaps and effective resistivity approximation instead of detail modeling. ► Application of the method to the ITER machine was successfully carried out without sacrificing computational resources and speed. - Abstract: A simple and efficient modeling technique is presented for a proper analysis of complicated eddy current flows in conducting structures with fine air gaps. It is based on the idea of replacing a slit with the decoupled boundary of finite elements. The viability and efficacy of the technique is demonstrated in a simple problem. Application of the method to electromagnetic load analyses during plasma disruptions in ITER has been successfully carried out without sacrificing computational resources and speed. This shows the proposed method is applicable to a practical system with complicated geometrical structures.

  18. In vivo and in vitro methods to study platelet adhesion to the components of the vessel wall

    International Nuclear Information System (INIS)

    Cazenave, J.-P.

    1979-01-01

    The methods that are used to measure platelet adhesion can be divided in five groups: methods that use an aggregometer to measure platelet adhesion to collagen in the presence of EDTA; methods that use binding of radiolabeled collagen, affinity chromatography, or gel filtration; the morphometric method of Baumgartner that measures platelet interaction with the subendothelium of an aorta exposed to flow in an annular perfusion chamber; the quantitative isotopic measurement of platelet adhesion to collagen-coated surfaces and to subendothelium with the rotating probe device of Cazenave; and in vivo platelet adhesion to the subendothelium measured by the morphometric method or with platelets radiolabeled with 51 Cr or 111 In. With these methods it has been possible to study the factors (Ca 2+ ; VIII: von Willebrand factor; hemodynamic factors: red cells, shear rate; components of the vessel wall) governing platelet adhesion to subendothelium and to collagen. It has also been possible to screen and study drugs inhibiting platelet adhesion, which is the first step in the formation of a thrombus at the site of vascular injury [fr

  19. Assessment and management of ageing of major nuclear power plant components important to safety: PWR pressure vessels. 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1120 documented ageing assessment and management practices for pressurized water reactor (PWR) reactor pressure vessels (RPVs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. primary water stress corrosion cracking (PWSCC) of Alloy 600 control rod drive mechanism (CRDM) penetrations and boric acid corrosion/wastage of RPV heads, which threatened the integrity of the RPV heads. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1120 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update IAEA-TECDOC-1120 in order to provide current ageing management guidance for PWR RPVs to all involved in the operation and regulation of PWRs and thus to help ensure PWR RPV integrity in IAEA Member States throughout their entire service life

  20. International pressure vessels and piping codes and standards. Volume 2: Current perspectives; PVP-Volume 313-2

    International Nuclear Information System (INIS)

    Rao, K.R.; Asada, Yasuhide; Adams, T.M.

    1995-01-01

    The topics in this volume include: (1) Recent or imminent changes to Section 3 design sections; (2) Select perspectives of ASME Codes -- Section 3; (3) Select perspectives of Boiler and Pressure Vessel Codes -- an international outlook; (4) Select perspectives of Boiler and Pressure Vessel Codes -- ASME Code Sections 3, 8 and 11; (5) Codes and Standards Perspectives for Analysis; (6) Selected design perspectives on flow-accelerated corrosion and pressure vessel design and qualification; (7) Select Codes and Standards perspectives for design and operability; (8) Codes and Standards perspectives for operability; (9) What's new in the ASME Boiler and Pressure Vessel Code?; (10) A look at ongoing activities of ASME Sections 2 and 3; (11) A look at current activities of ASME Section 11; (12) A look at current activities of ASME Codes and Standards; (13) Simplified design methodology and design allowable stresses -- 1 and 2; (14) Introduction to Power Boilers, Section 1 of the ASME Code -- Part 1 and 2. Separate abstracts were prepared for most of the individual papers

  1. Structural integrity and management of aging in internal components of BWR reactors; Integridad estructural y manejo del envejecimiento en componentes internos de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C.R. [Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera Mexico, Toluca Salazar Edo. de Mexico (Mexico)]. E-mail: craj@nuclear.inin.mx

    2004-07-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  2. ITER vacuum vessel fabrication plan and cost study (D 68) for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    1995-01-01

    ITER Task No. 8, Vacuum Vessel Fabrication Plan and Cost Study (D68), was initiated to assess ITER vacuum vessel fabrication, assembly, and cost. The industrial team of Raytheon Engineers ampersand Constructors and Chicago Bridge ampersand Iron (Raytheon/CB ampersand I) reviewed the current vessel basis and prepared a manufacturing plan, assembly plan, and cost estimate commensurate with the present design. The guidance for the Raytheon/CB ampersand I assessment activities was prepared by the ITER Garching Work Site. This guidance provided in the form of work descriptions, sketches, drawings, and costing guidelines for each of the presently identified vacuum vessel Work Breakdown Structure (WBS) elements was compiled in ITER Garching Joint Work Site Memo (Draft No. 9 - G 15 MD 01 94-17-05 W 1). A copy of this document is provided as Appendix 1 to this report. Additional information and clarifications required for the Raytheon/CB ampersand I assessments were coordinated through the US Home Team (USHT) and its technical representative. Design details considered essential to the Task 8 assessments but not available from the ITER Joint Central Team (JCT) were generated by Raytheon/CB ampersand I and documented accordingly

  3. An international survey of in-service inspection experience with prestressed concrete pressure vessels and containments for nuclear reactors

    International Nuclear Information System (INIS)

    1982-04-01

    An international survey is presented of experience obtained from the in-service surveillance of prestressed concrete pressure vessels and containments for nuclear reactors. Some information on other prestressed concrete structures is also given. Experience has been gained during the working life of such structures in Western Europe and the USA over the years since 1967. For each country a summary is given of the nuclear programme, national standards and Codes of Practice, and the detailed in-service inspection programme. Reports are then given of the actual experience obtained from the inspection programme and the methods of measurement, examination and reporting employed in each country. A comprehensive bibliography of over 100 references is included. The appendices contain information on nuclear power stations which are operating, under construction or planned worldwide and which employ either prestressed concrete pressure vessels or containments. (U.K.)

  4. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  5. Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure

    International Nuclear Information System (INIS)

    Roche, R.L.; Alix, M.

    1980-05-01

    Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design

  6. Frequency and Magnitude Analysis of the Macro-instability Related Component of the Tangential Force Affecting Radial Baffles in a Stirred Vessel

    Directory of Open Access Journals (Sweden)

    P. Hasal

    2002-01-01

    Full Text Available Experimental data obtained by measuring the tangential component of force affecting radial baffles in a flat-bottomed cylindrical mixing vessel stirred with pitched blade impellers is analysed. The maximum mean tangential force is detected at the vessel bottom. The mean force value increases somewhat with decreasing impeller off-bottom clearance and is noticeably affected by the number of impeller blades. Spectral analysis of the experimental data clearly demonstrated the presence of its macro-instability (MI related low-frequency component embedded in the total force at all values of impeller Reynolds number. The dimensionless frequency of the occurrence of the MI force component is independent of stirring speed, position along the baffle, number of impeller blades and liquid viscosity. Its mean value is about 0.074. The relative magnitude (QMI of the MI-related component of the total force is evaluated by a combination of proper orthogonal decomposition (POD and spectral analysis. Relative magnitude QMI was analysed in dependence on the frequency of the impeller revolution, the axial position of the measuring point in the vessel, the number of impeller blades, the impeller off-bottom clearance, and liquid viscosity. Higher values of QMI are observed at higher impeller off-bottom clearance height and (generally QMI decreases slightly with increasing impeller speed. The QMI value decreases in the direction from vessel bottom to liquid level. No evident difference was observed between 4 blade and 6 blade impellers. Liquid viscosity has only a marginal impact on the QMI value.

  7. Design improvements and R and D achievements for VV and in-vessel components towards ITER construction and implications for the R and D programme

    International Nuclear Information System (INIS)

    Ioki, K.

    2002-01-01

    Procurement specifications are now being finalised for ITER components whose construction is lengthy, yet which are needed early, such as the vacuum vessel. Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same as reported at the last conference, there have been several detailed design improvements resulting from efforts to raise reliability, to improve better maintainability and to save money. One of the most important achievements in the VV R and D is demonstration of the necessary assembly tolerances. Further development of advanced methods of cutting, welding and NDT for the VV have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R and D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated. This paper reviews the recent progress in the design as procurement nears. (author)

  8. Remote handling and robotic inspections of Palo Verde reactor vessel internals

    International Nuclear Information System (INIS)

    Ryder, W.

    1998-01-01

    Remote visual examinations and handling evolutions in high radiation field environments have required the use of radiation tolerant video systems. These systems involve significant expense and potentially require large envelope deployment structures. Recent events at Palo Verde including Upper Guide Structure damage and Reactor Vessel In-Service Inspections have provided opportunities for research, design and utilization of alternative approaches. Most significant of these, utilization of CCD modules with high magnification capabilities, have produced higher quality viewing, reduced maintenance expenditures, and rapid deployment intervals. (orig.) [de

  9. International workshop on WWER-440 reactor pressure vessel embrittlement and annealing. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Workshop was essentially to discuss the WWER 440 model 230 reactor pressure vessel integrity in terms of the measures already taken, current activities and future plans. The meeting was arranged in two parts, namely, the Scientific programme followed by the consideration, review and revision of the IAEA Consultancy report on RPV Embrittlement and Annealing. This particular report covers the first part of the meeting i.e., the Scientific Programme, in the form of proceedings of the meeting, while the re-drafted Consultancy report will be issued later. The meeting was attended by sixty-six representatives from thirteen countries. Refs, figs and tabs

  10. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  11. Study of impact of the AP1000{sup Registered-Sign} reactor vessel upper internals design on fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yiban; Conner, Michael; Yuan Kun; Dzodzo, Milorad B.; Karoutas, Zeses; Beltz, Steven A.; Ray, Sumit; Bissett, Teresa A. [Westinghouse Electric Company, Cranberry Township, PA 16066 (United States); Chieng, Ching-Chang, E-mail: cchieng@ess.nthu.edu.tw [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Kao, Min-Tsung; Wu, Chung-Yun [National Tsing Hua University, Hsinchu 30043, Taiwan (China)

    2012-11-15

    One aspect of the AP1000{sup Registered-Sign} reactor design is the reduction in the number of major components and simplification in manufacturing. One design change relative to current Westinghouse reactors of similar size is the reduction in the number of reactor vessel outlet nozzles/hot legs leaving the upper plenum from three to two. With regard to fuel performance, this design difference creates a different flow field in the AP1000 reactor vessel upper plenum (the region above the core). The flow exiting core and entering the upper plenum must turn 90 Degree-Sign , flow laterally through the upper plenum around support structures, and exit through one of the two outlet nozzles. While the flow in the top of the core is mostly axial, there is some lateral flow component as the core flow reacts to the flow field and pressure distribution in the upper plenum. The pressure distribution in the upper plenum varies laterally depending upon various factors including the proximity to the outlet nozzles. To determine how the lateral flow in the top of the AP1000 core compares to current Westinghouse reactors, a computational fluid dynamics (CFD) model of the flow in the upper portion of the AP1000 reactor vessel including the top region of the core, the upper plenum, the reactor vessel outlet nozzles, and a portion of the hot legs was created. Due to geometric symmetry, the computational domain was reduced to a quarter (from the top view) that includes Vulgar-Fraction-One-Quarter of the top of the core, Vulgar-Fraction-One-Quarter of the upper plenum, and Vulgar-Fraction-One-Half of an outlet nozzle. Results from this model include predicted velocity fields and pressure distributions throughout the model domain. The flow patterns inside and around guide tubes clearly demonstrate the influence of lateral flow due to the presence of the outlet nozzles. From these results, comparisons of AP1000 flow versus current Westinghouse plants were performed. Field performance

  12. Four whole-istic aspects of schistosome granuloma biology: fractal arrangement, internal regulation, autopoietic component and closure

    Directory of Open Access Journals (Sweden)

    HL Lenzi

    2006-10-01

    Full Text Available This paper centers on some whole-istic organizational and functional aspects of hepatic Schistosoma mansoni granuloma, which is an extremely complex system. First, it structurally develops a collagenic topology, originated bidirectionally from an inward and outward assembly of growth units. Inward growth appears to be originated from myofibroblasts derived from small portal vessel around intravascular entrapped eggs, while outward growth arises from hepatic stellate cells. The auto-assembly of the growth units defines the three-dimensional scaffold of the schistosome granulomas. The granuloma surface irregularity and its border presented fractal dimension equal to 1.58. Second, it is internally regulated by intricate networks of immuneneuroendocrine stimuli orchestrated by leptin and leptin receptors, substance P and Vasoactive intestinal peptide. Third, it can reach the population of ± 40,000 cells and presents an autopoietic component evidenced by internal proliferation (Ki-67+ Cells, and by expression of c-Kit+ Cells, leptin and leptin receptor (Ob-R, granulocyte-colony stimulating factor (G-CSF-R, and erythropoietin (Epo-R receptors. Fourth, the granulomas cells are intimately connected by pan-cadherins, occludin and connexin-43, building a state of closing (granuloma closure. In conclusion, the granuloma is characterized by transitory stages in such a way that its organized structure emerges as a global property which is greater than the sum of actions of its individual cells and extracellular matrix components.

  13. Structural criteria for extreme dynamic internal pressure loadings of vessels and closure heads

    International Nuclear Information System (INIS)

    Bitner, J.L.

    1985-01-01

    The criteria protect against tensile plastic instability and local ductile rupture failure modes. To minimize the number of critical areas that may need more rigorous analytical methods, a screening criterion for limiting the membrane, bending and local stresses is defined. The stresses for this criterion are calculated from either simple and economical elastic dynamic or equivalent static methods. For the critical areas that remain, a strain-based criterion for strains derived from dynamic, inelastic methods is given. To assure that the criteria are properly applied, guidelines are outlined for controlling methods for deriving stresses and strains, for selecting appropriate material properties and for addressing specific dominating parameters that affect the validity of the analysis. The application of the criteria to a complex liquid metal fast breeder reactor vessel and closure head and the subsequent experimental verification of the results by several scale model experiments are summarized. (orig./HP)

  14. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  15. A Study on Components of Internal Control-Based Administrative System in Secondary Schools

    Science.gov (United States)

    Montri, Paitoon; Sirisuth, Chaiyuth; Lammana, Preeda

    2015-01-01

    The aim of this study was to study the components of the internal control-based administrative system in secondary schools, and make a Confirmatory Factor Analysis (CFA) to confirm the goodness of fit of empirical data and component model that resulted from the CFA. The study consisted of three steps: 1) studying of principles, ideas, and theories…

  16. Maury Journals - German Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  17. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Shimizu, Katsusuke; Shibui, Masanao; Koizumi, Koichi; Kanamori, Naokazu; Nishio, Satoshi; Sasaki, Takashi; Tada, Eisuke

    1992-09-01

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  18. Pressure vessel failure at high internal pressure; Untersuchungen zum Versagen des Reaktordruckbehaelters unter hohem Innendruck

    Energy Technology Data Exchange (ETDEWEB)

    Laemmer, H.; Ritter, B.

    1995-08-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also `hot spots`. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  19. FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Entin Hartini

    2016-06-01

    Full Text Available ABSTRACT FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE. The reactor pressure vessel (RPV is a pressure boundary in the PWR type reactor which serves to confine radioactive material during chain reaction process. The integrity of the RPV must be guaranteed either  in a normal operation or accident conditions. In analyzing the integrity of RPV, especially related to the crack behavior which can introduce break to the reactor pressure vessel, a fracture mechanic approach should be taken for this assessment. The uncertainty of input used in the assessment, such as mechanical properties and physical environment, becomes a reason that the assessment is not sufficient if it is perfomed only by deterministic approach. Therefore, the uncertainty approach should be applied. The aim of this study is to analize the uncertainty of fracture mechanics calculations in evaluating the reliability of PWR`s reactor pressure vessel. Random character of input quantity was generated using probabilistic principles and theories. Fracture mechanics analysis is solved by Finite Element Method (FEM with  MSC MARC software, while uncertainty input analysis is done based on probability density function with Latin Hypercube Sampling (LHS using python script. The output of MSC MARC is a J-integral value, which is converted into stress intensity factor for evaluating the reliability of RPV’s 2D. From the result of the calculation, it can be concluded that the SIF from  probabilistic method, reached the limit value of  fracture toughness earlier than SIF from  deterministic method.  The SIF generated by the probabilistic method is 105.240 MPa m0.5. Meanwhile, the SIF generated by deterministic method is 100.876 MPa m0.5. Keywords: Uncertainty analysis, fracture mechanics, LHS, FEM, reactor pressure vessels   ABSTRAK ANALISIS KETIDAKPASTIAN FRACTURE MECHANIC PADA EVALUASI KEANDALAN

  20. Subaquatic, pressure vessels and LPG storage spheres internal inspection; Inspecao interna de esfera utilizando mergulho como acesso

    Energy Technology Data Exchange (ETDEWEB)

    Filgueira Filho, Rafael; Monteiro, Ayres [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Minimizing shut-down costs is a widespread target in the oil and gas industry. The use of new inspection techniques is one of the ways for that. This work presents a new procedure for internal inspections in pressure vessels by the non destructive testing - NDT, ACFM, using industrial diving techniques. As a pioneer experience, this method was applied in the inspection of the internal parts of the LPG sphere tank 5101 at PETROBRAS Transporte S.A. - TRANSPETRO, in Jequie's Terminal, in the state of Bahia, in december, 2003. This new method allows the reduction of indirect costs related to operational unavailability of the equipment, by the reduction of the shut-down time in approximately 50%, when compared to the demanded shut down time, when using scaffolds for accessing the internal parts. Despite of direct costs are still higher with the new methodology, this paper demonstrates the economical feasibility of this new method, based on the savings obtained with the fastest return of the equipment to operation. (author)

  1. Computer-generated vibratory signatures for EDF PWR reactor vessel internals

    International Nuclear Information System (INIS)

    Trenty, A.; Lefevre, F.; Garreau, D.

    1992-07-01

    This paper presents a device for generation of characteristic signatures for normal or faulty vibrations on EDF PWR internal structures. The objective is to test the efficiency of methods for diagnosing faults in these structures. With this device, it is possible to build an entire PSD in several phases: choice of a general basic shape, localized addition of several kinds of background noise, generation of peaks of variable shapes, adjustment of local or global amplifications... It also offers the possibility of distorting real PSDs acquired from the reactor: shifting frequency or modifying peak shape, eliminating or adding existing shapes or shapes to be created, smoothing curves... One example is given of simulated loss of function in a hold-down spring on a computer-generated PSD of ex-core neutron noise. The device is now being used to test the potential of neural networks in recognizing faults on internal structures

  2. Petrous internal carotid aneurysm causing epistaxis: Balloon embolization with preservation of the parent vessel

    Energy Technology Data Exchange (ETDEWEB)

    Willinsky, R.; Lasjaunias, P.; Pruvost, P.; Boucherat, M.

    1987-11-01

    A patient with severe, recurrent posterior epistaxis was shown at angiography to have an aneurysm of the petrous portion of the internal carotid artery (ICA). Since childhood, she had had pain related to eustachian tube blockage by the aneurysm. An endovascular balloon embolization of the aneurysm was successful with preservation of the parent artery. The treatment resulted in resolution of the symptoms. The report confirms the usefulness of an angiographic protocol in evaluating vascular problems.

  3. Petrous internal carotid aneurysm causing epistaxis: Balloon embolization with preservation of the parent vessel

    International Nuclear Information System (INIS)

    Willinsky, R.; Lasjaunias, P.; Pruvost, P.

    1987-01-01

    A patient with severe, recurrent posterior epistaxis was shown at angiography to have an aneurysm of the petrous portion of the internal carotid artery (ICA). Since childhood, she had had pain related to eustachian tube blockage by the aneurysm. An endovascular balloon embolization of the aneurysm was successful with preservation of the parent artery. The treatment resulted in resolution of the symptoms. The report confirms the usefulness of an angiographic protocol in evaluating vascular problems. (orig.)

  4. Stress concentration factors for an internally pressurized circular vessel containing a radial U-notch

    International Nuclear Information System (INIS)

    Carvalho, E.A. de

    2005-01-01

    This paper evaluates the stress concentration factors for an internally pressurized cylinder containing a radial U-notch along its length. This work studies the cases where the external to internal radius ratio (Ψ) is equal to 1.26, 1.52, 2.00, and 3.00 and the notch radius to internal radius ratio (Φ) is fixed and equal to 0.026. The U-notch depth varies from 0.1 to 0.6 of the wall thickness. Results are also presented for a fixed size semi-circular notch. Hoop stresses at the external wall are presented, showing regions where the stress matches the nominal one and the favourable places to install strain sensors. The finite element method is used to determine the stress concentration factors (K t ) for the above described situations and for a special case where a varying semi-circular notch is present with Ψ=3.00. This notch depth varies from 0.013 to 0.3 of the wall thickness. It is pointed out that even relatively small notches introduce large stress concentrations and disrupt the hoop stress distribution all over the cross section. Results are also compared to an example found in the literature for semi-circular notches and K t curves for both cases present the same shape

  5. Path Analysis of Acculturative Stress Components and Their Relationship with Depression Among International Students in China.

    Science.gov (United States)

    Liu, Yang; Chen, Xinguang; Li, Shiyue; Yu, Bin; Wang, Yan; Yan, Hong

    2016-12-01

    Acculturative stress prevents international students from adapting to the host culture, increasing their risk for depression. International students in China are a growing and at-risk population for acculturative stress and depression. With data from the International Student Health and Behaviour Survey (Yu et al., ) in China, seven acculturative stress components were detected in a previous study (Yu et al., ), including a central component (self-confidence), three distal components (value conflict, identity threat and rejection) and three proximal components (poor cultural competence, opportunity deprivation and homesickness). The current study extended the previous study to investigate the relationship between these components and depression with data also from International Student Health and Behaviour Survey. Participants were 567 students (59% male, 40.4% African, mean age = 22.75, SD = 4.11) recruited in Wuhan, China. The sample scored high on the Acculturative Stress Scale for International Students (M = 92.81, SD = 23.93) and Center for Epidemiologic Studies Short Depression Scale (M = 0.97, SD = 0.53). Acculturative stress was positively associated with depression; the association between the three distal stress components and depression was fully mediated through self-confidence, while the three proximal components had a direct effect and a self-confidence-mediated indirect effect. These findings extended the value of the previous study, highlighted the central role of self-confidence in understanding acculturative stress and depression and provided new data supporting more effective counselling for international students in China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    Prediction of the response of the Sandia National laboratory 1/6-scale reinforced concrete containment model test was obtained by Argonne National Laboratory (ANL) employing a computer program developed by ANL. The test model was internally pressurized to failure. The two-dimensional code TEMP-STRESS [1-5] has been developed at ANL for stress analysis of plane and axisymmetric 2-D reinforced structures under various thermal conditions. The program is applicable to a wide variety of nonlinear problems, and is utilized in the present study. The comparison of these pretest computations with test data on the containment model should be a good indication of the state of the code

  7. Analysis of the fluid-structure dynamic interaction of reactor pressure vessel internals during blowdown

    International Nuclear Information System (INIS)

    Schlechtendahl, E.G.; Krieg, R.; Schumann, U.

    1977-01-01

    The loadings on reactor internal structures (in particular the core barrel) induced during a PWR-blowdown must not result in excessive stresses and strains. The deformations are strongly influenced by the coupling of fluid and structure dynamics and it is necessary, therefore, to develop and apply new coupled analysis tools. In this paper a survey is given over work currently in progress in the Nuclear Research Center Karlsruhe and the Los Alamos Scientific Laboratory which aim towards 'best estimate codes'. The new methods will be verified by means of the HDR-blowdown tests and other experiments. The results of several scoping calculations are presented and illustrated by movie films. (orig.) [de

  8. Modernization of Cross Section Library for VVER-1000 Type Reactors Internals and Pressure Vessel Dosimetry

    Directory of Open Access Journals (Sweden)

    Voloschenko Andrey

    2016-01-01

    Full Text Available The broad-group library BGL1000_B7 for neutron and gamma transport calculations in VVER-1000 internals, RPV and shielding was carried out on a base of fine-group library v7-200n47g from SCALE-6 system. The comparison of the library BGL1000_B7 with the library v7-200n47g and the library BGL1000 (the latter is using for VVER-1000 calculations is demonstrated on several calculation and experimental tests.

  9. Pressure vessel design codes: A review of their applicability to HTGR components at temperatures above 800 deg C

    International Nuclear Information System (INIS)

    Hughes, P.T.; Over, H.H.; Bieniussa, K.

    1984-01-01

    The governments of USA and Federal Republic of Germany have approved of cooperation between the two countries in an endeavour to establish structural design code for gas reactor components intended to operate at temperatures exceeding 800 deg C. The basis of existing codes and their applicability to gas reactor component design are reviewed in this paper. This review has raised a number of important questions as to the direct applicability of the present codes. The status of US and FRG cooperative efforts to obtain answers to these questions are presented

  10. Inspection, evaluation and maintenance guidelines for reactor vessel internals in JAPAN

    International Nuclear Information System (INIS)

    Sakashita, Akihiro; Goto, Tomoya; Hirano, Shinro; Dozaki, Koji

    2010-01-01

    Inspection and Evaluation Guidelines for reactor internals has been taken into the Rules on Fitness-for–Service for Nuclear Power Plants of The Japan Society of Mechanical Engineers. It is a base of the maintenance plan of each Nuclear Power Plant. A plant maintenance methodology will have more importance to maintain the plant safety and stable plant operation. This paper introduces the systematization of the maintenance such as repair, replacement, preventive maintenance in these guidelines. Maintenance methodologies are classified follows. Repair: methodology to reinforce degraded parts by some methods or prevent progress of degradation of without replacement of the existing structure when the degradation of structure is actualized. Replacement: methodology to replace the existing structure with new one when the degradation of structure is actualized. Preventive maintenance : methodology to mitigate the damaged condition. When the maintenance methodologies are implemented in the actual plant, we have to consider the feedback of the inspection program and plant life management. (author)

  11. Comparison of implant component fractures in external and internal type: A 12-year retrospective study.

    Science.gov (United States)

    Yi, Yuseung; Koak, Jai-Young; Kim, Seong-Kyun; Lee, Shin-Jae; Heo, Seong-Joo

    2018-04-01

    The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

  12. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  13. Analysis of overflow-induced sloshing in an elestic-wall vessel using physical component BFC method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.; Kondo, S. [Univ. of Tokyo (Japan); Takizawa, A. [Toyko Electric Power Company, Yokohama (Japan)

    1995-09-01

    Newly developed {open_quotes}physical component boundary fitted coordinate (PCBFC) method{close_quotes} is applied to the fluid-structure interaction problems. The applicability was verified through several benchmark problems. Then, 2D experiment on overflow-induced fluid-structure interaction instability was simulated. The computation showed occurrence scope of instability essentially the same as that obtained by experiment. By computations with modified initial and boundary conditions, several basic factors for the occurrence of this instability were obtained.

  14. Reactor pressure vessel and reactor coolant circuit cast duplex stainless steel components contribution of the expertise for life management studies

    International Nuclear Information System (INIS)

    Bezdikian, Georges

    2006-09-01

    The life management of French Nuclear Power Plants is a major stake from an economic and a technical point of view considering the aging management assessment of the key components of the plant. The actual life evaluation is the result of prediction of life assessment from important program of expertise for the 3-loop PWR and 4-loop PWR plants in operation. To optimize the strategic policy in order to achieve the best possible performance and to prepare the technical and economical choice and decision, the paper presents the association of life management strategy and the program of expertise considering: - the identification of degradation for different components and prediction criteria proposed; - the large database from cast reactor coolant and component removed from nuclear power plants and expertise studies to confirm the prediction; - the life evaluation of RPV with radiation surveillance program based on the expertise of irradiation capsules, it is particularly shown how the expertise is in the center of the strategic choice. The French utility has organized the life management of nuclear plant as a function of several programs of expertise of knowledge on the long term experience feedback and the maintenance program for life. This paper shows updated on RPV and reactor coolant equipment activities engaged by utility on: - periodic maintenance and volume of expertise; - Alternative maintenance actions; - Large volume of expertise and how are managed these results to predict the aging management. (author)

  15. Simulation of the removal of NET internal components with dynamic modeling software

    International Nuclear Information System (INIS)

    Becquet, M.; Crutzen, Y.R.; Farfaletti-Casali, F.

    1989-01-01

    The replacement of the internal plasma-facing components (first-wall and blanket segments) for maintenance or at the end of their lifetime is an important aspect of the design of the next European torus (NET) and of the remote handling procedures. The first phase of development of the design software tool INVDYN (inverse dynamics) is presented, which will allow optimization of the movements of the internal segments during replacement, taking into account inertial effects and structural deformations. A first analysis of the removal of one NET internal segment provides, for a defined trajectory, the required generalized forces that must be applied on the crane system

  16. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    OpenAIRE

    KO, DO-YOUNG; KIM, KYU-HYUNG

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful prepa...

  17. MRP-227 Reactor vessel internals inspection planning and initial results at the Oconee nuclear station unit 2

    International Nuclear Information System (INIS)

    Davidsaver, S.B.; Fyfitch, S.; Whitaker, D.E.; Doss, R.L.

    2015-01-01

    The U.S. PWR industry has pro-actively developed generic inspection requirements and standards for reactor vessel (RV) internals. The Electric Power Research Institute (EPRI) Pressurized Water Reactor (PWR) Materials Reliability Program (MRP) has issued MRP-227-A and MRP-228 with mandatory and needed requirements based on the Nuclear Energy Institute (NEI) document NEI 03-08. The inspection and evaluation guidelines contained in MRP-227-A consider eight age-related degradation mechanisms: stress corrosion cracking (SCC), irradiation-assisted stress corrosion cracking (IASCC), wear, fatigue, thermal aging embrittlement, irradiation embrittlement, void swelling and irradiation growth, and thermal and irradiation-enhanced stress relaxation or irradiation-enhanced creep. This paper will discuss the decision planning efforts required for implementing the MRP-227-A and MRP-228 requirements and the results of these initial inspections at the Oconee Nuclear power station (ONS) units. Duke Energy and AREVA overcame a significant technology and NDE challenge by successfully completing the first-of-a-kind MRP-227-A scope requirements at ONS-1 in one outage below the estimated dose and with zero safety issues or events. This performance was repeated at ONS-2 a year later. The remote NDE tooling and processes developed to examine the MRP-227-A scope for ONS-1 and ONS-2 are transferable to other PWRs

  18. Understanding recovery: changes in the relationships of the International Classification of Functioning (ICF) components over time.

    Science.gov (United States)

    Davis, A M; Perruccio, A V; Ibrahim, S; Hogg-Johnson, S; Wong, R; Badley, E M

    2012-12-01

    The International Classification of Functioning, Disability and Health framework describes human functioning through body structure and function, activity and participation in the context of a person's social and physical environment. This work tested the temporal relationships of these components. Our hypotheses were: 1) there would be associations among physical impairment, activity limitations and participation restrictions within time; 2) prior status of a component would be associated with future status; 3) prior status of one component would influence status of a second component (e.g. prior activity limitations would be associated with current participation restrictions); and, 4) the magnitude of the within time relationships of the components would vary over time. Participants from Canada with primary hip or knee joint replacement (n = 931), an intervention with predictable improvement in pain and disability, completed standardized outcome measures pre-surgery and five times in the first year post-surgery. These included physical impairment (pain), activity limitations and participation restrictions. ICF component relationships were evaluated cross-sectionally and longitudinally using path analysis adjusting for age, sex, BMI, hip vs. knee, low back pain and mood. All component scores improved significantly over time. The path coefficients supported the hypotheses in that both within and across time, physical impairment was associated with activity limitation and activity limitation was associated with participation restriction; prior status and change in a component were associated with current status in another component; and, the magnitude of the path coefficients varied over time with stronger associations among components to three months post surgery than later in recovery with the exception of the association between impairment and participation restrictions which was of similar magnitude at all times. This work enhances understanding of the

  19. Computed tomography angiographic study of internal mammary perforators and their use as recipient vessels for free tissue transfer in breast reconstruction

    Directory of Open Access Journals (Sweden)

    Aditya V Kanoi

    2017-01-01

    Full Text Available Context: The internal mammary artery perforator vessels (IMPV as a recipient in free flap breast reconstruction offer advantages over the more commonly used thoracodorsal vessels and the internal mammary vessels (IMV. Aims: This study was designed to assess the anatomical consistency of the IMPV and the suitability of these vessels for use as recipients in free flap breast reconstruction. Patients and Methods: Data from ten randomly selected female patients who did not have any chest wall or breast pathology but had undergone a computed tomography angiography (CTA for unrelated diagnostic reasons from April 2013 to October 2013 were analysed. Retrospective data of seven patients who had undergone mastectomy for breast cancer and had been primarily reconstructed with a deep inferior epigastric artery perforator free flap transfer using the IMPV as recipient vessels were studied. Results: The CTA findings showed that the internal mammary perforator was consistently present in all cases bilaterally. In all cases, the dominant perforator arose from the upper four intercostal spaces (ICS with the majority (55% arising from the 2nd ICS. The mean distance of the perforators from the sternal border at the level of pectoralis muscle surface on the right side was 1.86 cm (range: 0.9–2.5 cm with a mode value of 1.9 cm. On the left side, a mean of 1.77 cm (range: 1.5–2.1 cm and a mode value of 1.7 cm were observed. Mean perforator artery diameters on the right and left sides were 2.2 mm and 2.4 mm, respectively. Conclusions: Though the internal mammary perforators are anatomically consistent, their use as recipients in free tissue transfer for breast reconstruction eventually rests on multiple variables.

  20. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  1. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  2. FFTF and CRBRP reactor vessels

    International Nuclear Information System (INIS)

    Morgan, R.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) reactor vessel and the Clinch River Breeder Reactor Plant (CRBRP) reactor vessel each serve to enclose a fast spectrum reactor core, contain the sodium coolant, and provide support and positioning for the closure head and internal structure. Each vessel is located in its reactor cavity and is protected by a guard vessel which would ensure continued decay heat removal capability should a major system leak develop. Although the two plants have significantly different thermal power ratings, 400 megawatts for FFTF and 975 megawatts for CRBRP, the two reactor vessels are comparable in size, the CRBRP vessel being approximately 28% longer than the FFTF vessel. The FFTF vessel diameter was controlled by the space required for the three individual In-Vessel Handling Machines and Instrument Trees. Utilization of the triple rotating plug scheme for CRBRP refueling enables packaging of the larger CRBRP core in a vessel the same diameter as the FFTF vessel

  3. Cerebral White Matter Hypoperfusion Increases with Small-Vessel Disease Burden. Data From the Third International Stroke Trial.

    Science.gov (United States)

    Arba, Francesco; Mair, Grant; Carpenter, Trevor; Sakka, Eleni; Sandercock, Peter A G; Lindley, Richard I; Inzitari, Domenico; Wardlaw, Joanna M

    2017-07-01

    Leukoaraiosis is associated with impaired cerebral perfusion, but the effect of individual and combined small-vessel disease (SVD) features on white matter perfusion is unclear. We studied patients recruited with perfusion imaging in the Third International Stroke Trial. We rated individual SVD features (leukoaraiosis, lacunes) and brain atrophy on baseline plain computed tomography or magnetic resonance imaging. Separately, we assessed white matter at the level of the lateral ventricles in the cerebral hemisphere contralateral to the stroke for visible areas of hypoperfusion (present or absent) on 4 time-based perfusion imaging parameters. We examined associations between SVD features (individually and summed) and presence of hypoperfusion using logistic regression adjusted for age, sex, baseline National Institutes of Health Stroke Scale, hypertension, and diabetes. A total of 115 patients with median (interquartile range) age of 81 (72-86) years, 78 (52%) of which were male, had complete perfusion data. Hypoperfusion was most frequent on mean transit time (MTT; 63 patients, 55%) and least frequent on time to maximum flow (19 patients, 17%). The SVD score showed stronger independent associations with hypoperfusion (e.g., MTT, odds ratio [OR] = 2.80; 95% confidence interval [CI] = 1.56-5.03) than individual SVD markers (e.g., white matter hypoattenuation score, MTT, OR = 1.49, 95% CI = 1.09-2.04). Baseline blood pressure did not differ by presence or absence of hypoperfusion or across strata of SVD score. Presence of white matter hypoperfusion increased with SVD summed score. The SVD summed score was associated with hypoperfusion more consistently than individual SVD features, providing validity to the SVD score concept. Increasing SVD burden indicates worse perfusion in the white matter. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures

    OpenAIRE

    Kofroň, Jan; Tumova, Jana

    2017-01-01

    These are the proceedings of the 14th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on April 22, 2017 in Uppsala (Sweden) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'17). The aim of the FESCA workshop is to bring together junior researchers from formal methods, software engineering, and industry interested in the development and application of formal modelling ...

  5. Proceedings 10th International Workshop on Formal Engineering Approaches to Software Components and Architectures

    OpenAIRE

    Buhnova, Barbora; Happe, Lucia; Kofroň, Jan

    2013-01-01

    These are the proceedings of the 10th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on March 23, 2013 in Rome (Italy) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'13). The aim of the FESCA workshop is to bring together both young and senior researchers from formal methods, software engineering, and industry interested in the development and application of formal...

  6. Development and application of a welding procedure for remote repair of Magnox reactor internal components

    International Nuclear Information System (INIS)

    Morgan-Warren, E.J.

    1988-01-01

    This paper summarises the development and application of an all-welding repair method for reinforcing magnox reactor internal components. The development was dominated by the necessity for remote operation and the environmental constraints, in particular the oxide covering on the steel reactor structure. The choice of welding process is described, together with the development of the procedure for remote operation. The quality assurance procedure, including the verification of the technique and monitoring of the repair operation, is discussed. (author)

  7. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  8. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  9. Proceedings of the 3rd international conference on heat exchangers, boilers and pressure vessels (HEB-97). Vol.1 (Research Papers)

    International Nuclear Information System (INIS)

    1997-04-01

    This conference was held on 5-6 Apr 1997 in Alexandria. the specialists discussed heat exchangers, boilers and pressure vessels. more than 200 papers were presented in the meetings. it contains of data, figures and tables

  10. Proceedings of the 3rd international conference on heat exchangers, boilers and pressure vessels (HEB-97). Vol.1 (Research Papers)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This conference was held on 5-6 Apr 1997 in Alexandria. the specialists discussed heat exchangers, boilers and pressure vessels. more than 200 papers were presented in the meetings. it contains of data, figures and tables.

  11. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for estimation stress intensity factor. Surface crack on ICM housing for penetration in reactor vessel

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  12. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Science.gov (United States)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  13. Maury Journals - US Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  14. Final report on the reactor pressure vessel pressurized-thermal-shock. International comparative assessment study (RPV PTS ICAS)

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.

    1999-10-01

    A summary of the recently completed International Comparative Assessment Study of Pressurized-Thermal-Shock in Reactor Pressure Vessels (RPV PTS ICAS) is presented here to record the results in actual and comparative fashions. Within the DFM task, where account was taken of material properties and boundary conditions, reasonable agreement was obtained in linear-elastic and elastic-plastic analysis results. Linear elastic analyses and J-estimation schemes were shown to provide conservative estimates of peak crack driving force when compared with those obtained using complex three-dimensional (3D) finite element analyses. Predictions of RT NDT generally showed less scatter than that observed in crack driving force calculations due to the fracture toughness curve used for fracture assessment in the transition temperature region. Observed scatter in some analytical results could be traced mainly to a misinterpretation of the thermal expansion coefficient data given for the cladding and base metal. Also, differences in some results could be due to a quality assurance problem related to procedures for approximating the loading data given in the Problem Statement. For the PFM task, linear-elastic solutions were again shown to be conservative with respect to elastic-plastic solutions (by a factor of 2 to 4). Scatter in solutions obtained using the same computer code was generally attributable to differences in input parameters, e.g. standard deviations for the initial value of RT NDT , as well as for nickel and copper content. In the THM task, while there was a high degree of scatter during the early part of the transient, reasonable agreement in results was obtained during the latter part of the transient. Generally, the scatter was due to differences in analytical approaches used by participants, which included correlation-based engineering methods, system codes and three-dimensional computational fluids dynamics codes. Some of the models used to simulate condensation

  15. Tempest in a vessel

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-01-01

    As the ASN made some statements about anomalies of carbon content in the EPR vessel bottom and top, the author recalls and comments some technical issues to better understand the information published on this topic. He notably addresses the role of the vessel, briefly indicates its operating conditions, shape and structure, and mechanical components for the top, its material and mechanical properties, and test samples used to assess mechanical properties. He also comments the phenomenon of radio-induced embrittlement, the vessel manufacturing process, and evokes the applicable regulations. He quotes and comments statements made by the ASN and Areva which evoke further assessments of the concerned components

  16. Interaction effects between internal governance mechanisms on the components of initial returns during the IPO

    Directory of Open Access Journals (Sweden)

    Mediha Mezhoud

    2012-12-01

    Full Text Available Our work provides an analysis of the interaction effects between internal governance mechanisms on the components of initial returns during the listing period. The application of multivariate regressions on a sample of 110 IPO French companies during 2005-2010, has allowed us to conclude that the different interactions between these mechanisms significantly influence the level of under / overpricing. Indeed, the positive relationship between internal governance mechanisms and overpricing reflects a substitutability relationship. In contrast, the complementarity effect comes from the negative relationship characterizing the combination of governance mechanisms and the underpricing. Thus, the interactions effects between institutional ownership, board structure and under / overpricing are not conforming to the existence of a complementarity or substitutability relationship between these variables given the absence of a significant combination between these variables

  17. Proceedings of the 4th International Workshop on Tritium Effects in Plasma Facing Components

    International Nuclear Information System (INIS)

    Causey, R. A.

    1999-01-01

    The 4th International Workshop on Tritium Effects in Plasma Facing Components was held in Santa Fe, New Mexico on May 14-15, 1998. This workshop occurs every two years, and has previously been held in Livermore/California, Nagoya/Japan, and the JRC-Ispra Site in Italy. The purpose of the workshop is to gather researchers involved in the topic of tritium migration, retention, and recycling in materials used to line magnetic fusion reactor walls and provide a forum for presentation and discussions in this area. This document provides an overall summary of the workshop, the workshop agenda, a summary of the presentations, and a list of attendees

  18. Irradiated stainless steel material constitutive model for use in the performance evaluation of PWR pressure vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J.Y.; Dunham, R.S. [ANATECH (United States); Demma, A. [Electric Power Research Institute - EPRI (United States)

    2011-07-01

    Demonstration of component functionality requires analytical simulations of reactor internals behavior. Towards that aim, EPRI has undertaken the development of irradiated material constitutive model and damage criteria for use in global and local finite-element based functionality analysis methodology. The constitutive behavioral regimes of irradiated stainless steel types 316 and 304 materials included in the model consist of: elastic-plastic material response considering irradiation hardening of the stress-strain curve, irradiation creep, stress relaxation, and void swelling. IASCC and degradation of ductility with irradiation are the primary damage mechanisms considered in the model. The material behavior model development consists of two parts: the first part is a user-material subroutine that can interface with a general-purpose finite element computer program to adapt it to the special-purpose of functionality analysis of reactor internals. The second part is a user utility in the form of Excel Spread sheets that permit users to extract a given property, e.g. the elastic-plastic stress-strain curve, creep curve, or void-swelling curve, as function of the relevant independent variables. The development of the model takes full advantage of the significant work that has been undertaken within EPRI's Material Reliability Program (MRP) to improve the knowledge of the material properties of irradiated stainless steels. Data from EPRI's MRP database have been utilized to develop equations that characterize the yield strength, ultimate tensile strength, uniform elongation, total elongation, reduction in area, void swelling and irradiation creep of stainless steels in a PWR environment. It is noted that, while the development of the model's equations has been statistically faithful to the material database, approximations were introduced in the model to ensure appropriate conservatism in the model's application consistently with accepted

  19. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  20. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    The role of the research vessels as a tool for marine research and exploration is very important. Technical requirements of a suitable vessel and the laboratories needed on board are discussed. The history and the research work carried out...

  1. Influence of localized plasticity on Stress Corrosion Cracking of austenitic stainless steel. Application to IASCC of internals reactor core vessels

    International Nuclear Information System (INIS)

    Cisse, Sarata

    2012-01-01

    The surface conditions of the 316L screw connecting vessel internals of the primary circuit of PWR (pressurized water reactor) corresponds to a grinding condition. These screws are affected by the IASCC (Irradiation Assisted Stress Corrosion Cracking). Initiation of cracking depends on the surface condition but also on the external oxidation and interactions of oxide layer with the deformation bands. The first objective of this study is to point the influence of surface condition on the growth kinetic of oxide layer, and the surface reactivity of 304, 316 stainless steel grade exposed to PWR primary water at 340 C. The second objective is to determine influence of strain localization on the SCC of austenitic stainless steels in PWR primary water. Indeed, the microstructure of irradiated 304, 316 grades correspond to a localized deformation in deformation bands free of radiation defects. In order to reproduce that microstructure without conducting irradiations, low cycle fatigue tests at controlled stain amplitude are implemented for the model material of the study (A286 austenitic stainless steel hardened by the precipitation of phase γ'Ni3(Ti, Al)). During the mechanical cycling (after the first hardening cycles), the precipitates are dissolved in slip bands leading to the localization of the deformation. Once the right experimental conditions in low cycle fatigue obtained (for localized microstructure), interactions oxidation / deformation bands are studied by oxidizing pre deformed samples containing deformation bands and non deformed samples. The tensile tests at a slow strain rate of 8 x 10 -8 /s are also carried out on pre deformed samples and undeformed samples. The results showed that surface treatment induces microstructural modifications of the metal just under the oxide layer, leading to slower growth kinetics of the oxide layer. However, surface treatment accelerates development of oxides penetrations in metal under the oxide layer. As example, for

  2. Tumor Blood Vessel Dynamics

    Science.gov (United States)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  3. THE ANALYSIS OF FOREIGN-VESSEL SINKING AS AN EFFORT BY THE GOVERNMENT OF INDONESIA TO COMBAT IUU FISHING PURSUANT TO INTERNATIONAL LAW

    Directory of Open Access Journals (Sweden)

    Kristiyanto - Kristiyanto

    2015-12-01

    Full Text Available As an archipelagic state, Indonesia possesses some of the most abundant fishery resources in the world. Geographically, Indonesia’s strategic location makes it a challenge, and it is a shared responsibility for all citizens to preserve and conserve these resources. The strategic location and rich biological as well as non-biological marine resources automatically attract foreign vessels to carry out IUU fishing activities, particularly in the area of ZEEI (Indonesian Exclusive Economic Zone. The Government of Indonesia has taken various preventive measures to combat IUU fishing practices through bilateral cooperations and various laws. In addition, the Government has also taken some repressive efforts by burning and sinking foreign vessels. In this study, the researcher will analyze the governmental action pursuant to international law and examine the extent to which the sinking of the ship is effective from the perspective of international law. This study will be conducted using normative and juridical approach by reviewing and analyzing various national and international legal instruments related to IUU fishing. We hope that this study will be able to deliver theoretical and practical benefits for students and other researchers who are interested in the issue of IUU fishing practices.   Keywords : IUU fishing, marine resources, archipelagic state.

  4. 33 CFR 82.3 - Pushing vessel and vessel being pushed: Composite unit.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pushing vessel and vessel being... HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.3 Pushing vessel and vessel being pushed: Composite unit. Rule 24(b) of the 72 COLREGS states that when a pushing vessel and a...

  5. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  6. PFMC-16. 16th international conference on plasma-facing materials and components for fusion applications. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The performances of fusion devices and of future fusion power plants strongly depend on the plasma-facing materials and components. Resistance to heat and particle loads, compatibility in plasma operations, thermo-mechanical properties, as well as the response to neutron irradiation are critical parameters which need to be understood and tailored from atomistic to component levels. The 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues.

  7. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  8. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  9. Evaluation of internal boiler components and gases using a high-temperature infrared (IR) lens

    Science.gov (United States)

    Hammaker, Robert G.; Colsher, Richard J.; Miles, Jonathan J.; Madding, Robert P.

    1996-03-01

    Fuel accounts for an average of seventy percent of the yearly operational and maintenance costs of all the fossil stations in the United States. This amounts to 30 billion dollars spent for fuel each year. In addition, federal and state environmental codes have been enforcing stricter regulations that demand cleaner environments, such as the reduction of nitrogen oxides (NOx), which are a by-product of the fossil fuel flame. If the burn of the flame inside a boiler could be optimized, the usage of fuel and the amounts of pollution produced would be significantly reduced, and many of the common boiler tube failures can be avoided. This would result in a major dollar savings to the utility industry, and would provide a cleaner environment. Accomplishing these goals will require a major effort from the designers and operators that manufacture, operate, and maintain the fossil stations. Over the past few years re-designed burners have been installed in many boilers to help control the temperatures and shape of the flame for better performance and NOx reduction. However, the measurement of the processes and components inside the furnace, that could assist in determining the desired conditions, can at times be very difficult due to the hostile hot environment. In an attempt to resolve these problems, the EPRI M&D Center and a core group of EPRI member utilities have undertaken a two-year project with various optical manufacturers, IR manufacturers, and IR specialists, to fully develop an optical lens that will withstand the high furnace temperatures. The purpose of the lens is to explore the possibilities of making accurate high temperature measurements of the furnace processes and components in an ever-changing harsh environment. This paper provides an introduction to EPRI's internal boiler investigation using an IR high temperature lens (HTL). The paper describes the objectives, approach, benefits, and project progress.

  10. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  11. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  12. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation

    Science.gov (United States)

    Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry

    2018-04-01

    The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.

  13. The International Standards for Solar Thermal Collectors and Components as a Medium of Quality Assurance

    International Nuclear Information System (INIS)

    Alkishriwi, Nouri; Schorn, Christian A.; Theis, Danjana

    2014-01-01

    Within this publication a detailed overview about the national and international solal't1lel1nai standards is made. The various tests are described and a cross reference list for comparing the different standards is given. Moreover a certification model is presented and the advantage of third party assessment is carried out. The requirement for a solar thermal test laboratory to conduct independent third party assessment by means of an ISO/IEC17065 accreditation is given. Finally the concept of a quality system for solar thermal markets is explained and major advantages are outlined. Solar thermal systems and their components are described in various national and international standards. In Europe the standard EN12975 defines the regulations and requirements for solar thermal collectors. The standard EN12976 is established for the evaluation of factory made solar thermal systems. The EN12977 is the state of the art standard for the evaluation of custom build systems. Nowadays in Libya the standard ISO9806 for solar collectors and the standard ISO9459 for domestic water heating systems define the regulations and requirements for solar thermal collectors and systems. In the meanwhile, empowered Center for Renewable Energy and Energy Efficiency Certification Body is under construction. This body is working now to set the minimum requirements of the testing facilities of solar thermal systems. The international standard for collector testing is the ISO9806 and the standard ISO9459 Part 2, 4, 5 for domestic water heating systems. Within the year 2013 a revision of the ISO9806 will be published and, for the first time, a consistent harmonized standard for the main solar thermal markets will be set in force. Besides the various standards for solar thermal products a meaningful element for the quality assurance and the customer protection is third party certification. Third party certification involves an independent assessment, declaring that specified requirements

  14. Completion of the fabrication and assembly of the internal parts and pressure vessel of the LABGENE reactor

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos

    2005-01-01

    The Navy's Technological Center in Sao Paulo (CTMSP) has successfully concluded in 2005 the final assembly of the internals of the Laboratory of Energy Generation's Reactor (LABGENE). This structure together with the fuel elements and the control rods drives mechanisms are part of a PWR type Nuclear Reactor. (author)

  15. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.

    Science.gov (United States)

    Gallagher, Kevin P

    2005-10-01

    Although there is a burgeoning literature on the effects of international trade on the environment, relatively little work has been done on where trade most directly effects the environment: the transportation sector. This article shows how international trade is affecting air pollution emissions in the United States' shipping sector. Recent work has shown that cargo ships have been long overlooked regarding their contribution to air pollution. Indeed, ship emissions have recently been deemed "the last unregulated source of traditional air pollutants". Air pollution from ships has a number of significant local, national, and global environmental effects. Building on past studies, we examine the economic costs of this increasing and unregulated form of environmental damage. We find that total emissions from ships are largely increasing due to the increase in foreign commerce (or international trade). The economic costs of SO2 pollution range from dollars 697 million to dollars 3.9 billion during the period examined, or dollars 77 to dollars 435 million on an annual basis. The bulk of the cost is from foreign commerce, where the annual costs average to dollars 42 to dollars 241 million. For NOx emissions the costs are dollars 3.7 billion over the entire period or dollars 412 million per year. Because foreign trade is driving the growth in US shipping, we also estimate the effect of the Uruguay Round on emissions. Separating out the effects of global trade agreements reveals that the trade agreement-led emissions amounted to dollars 96 to dollars 542 million for SO2 between 1993 and 2001, or dollars 10 to dollars 60 million per year. For NOx they were dollars 745 million for the whole period or dollars 82 million per year. Without adequate policy responses, we predict that these trends and costs will continue into the future.

  16. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  17. A system for the thermal insulation of a pre-stressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    This invention concerns the thermal insulation of a pre-stressed concrete vessel for a pressurised water nuclear reactor, this vessel being fitted internally with a leak-proof metal lining. Two rings are placed at the lower and upper parts of the vessel respectively. The upper ring is closed with a cover. These rings differ in diameter, are fitted with a metal insulating and mark the limits of a chamber between the vaporisable fluid and the internal wall of the vessel. This chamber is filled with a fluid in the liquid phase up to the liquid/vapor interface level of the fluid and with a gas above that level, the covering of the rings forming a cold fluid liquid seal. Each ring is supported by the vessel. Leak-proof components take up the radial expansion of the rings [fr

  18. Design of A Vibration and Stress Measurement System for an Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program

    International Nuclear Information System (INIS)

    Ko, Doyoung; Kim, Kyuhyung

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea

  19. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    DO-YOUNG KO

    2013-04-01

    Full Text Available In accordance with the US Nuclear Regulatory Commission (US NRC, Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP has been developed for an Advanced Power Reactor 1400 (APR1400. The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment. Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea.

  20. Performance Comparison between Optical Fiber Type ESPI and Bulk Type ESPI for the Internal Defect in Pressure Vessel

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Kang, Young June; Hong, Kyung Min; Lee, Jae Hoon; Choi, Nak Jung

    2012-01-01

    An optical defect detection method using ESPI(electronic speckle pattern interferometry) is proposed. ESPI is widely used as a non-contact measurement system which show deformation and phase map in real time. ESPI can be divided as the in-plane, out-of-plane and shearography by operation principle and target object and also divided with bulk type and optic fiber type by the optic configurations. This paper is focused on optic fiber type out-of-plane ESPI, which has the following advantages: (1) low cost: (2) reduction of the unreliable factors generated by separated optic components: (3) simplification of the optic configuration: (4) great reduction of volume: (5) flexibility, to be easily designed into different structures to adapt to inaccessible environments such as pipeline cavity and so on

  1. Current meter components and other data from XCP casts from VARIOUS SMALL VESSELS and other platforms from the North Atlantic Ocean as part of the OCEAN DUMPING and other projects from 01 December 1990 to 01 June 1991 (NODC Accession 9300076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components and other data were collected from XCP casts from VARIOUS SMALL VESSELS and other platforms in the North Atlantic Ocean. Data were collected...

  2. Surgical dissection of the internal carotid artery under flow control by proximal vessel clamping reduces embolic infarcts during carotid endarterectomy.

    Science.gov (United States)

    Yoshida, Kazumichi; Kurosaki, Yoshitaka; Funaki, Takeshi; Kikuchi, Takayuki; Ishii, Akira; Takahashi, Jun C; Takagi, Yasushi; Yamagata, Sen; Miyamoto, Susumu

    2014-01-01

    To evaluate the efficacy of flow control of the internal carotid artery (ICA) by the clamping of the common carotid artery, external carotid artery, and superior thyroid artery during surgical ICA dissection to reduce ischemic complications after carotid endarterectomy (CEA). Sixty-seven patients (59 men; age, 70.5 ± 6.2 years) who underwent CEA by the same surgeon were retrospectively studied. Both conventional CEA (n = 29) and flow-control CEA (n = 38) were performed with the patient under general anesthesia and with the use of somatosensory-evoked potential and near-infrared spectroscopy monitoring as a guide for selective shunting. The number of new postoperative infarcts was assessed with preoperative and postoperative diffusion-weighted images (DWIs) obtained within 3 days of surgery. In addition to surgical technique, the effects of the following factors on new infarcts also were examined: age, side of ICA stenosis, high-grade stenosis, symptoms, and application of shunting. New postoperative DWI lesions were observed in 7 of 67 patients (10.4%), and none of them was symptomatic. With respect to operative technique, the incidence rate of DWI spots was significantly lower in the flow-control group (2.6%) than in the conventional group (20.7%), odds ratio: 0.069; 95% confidence interval: 0.006-0.779; P = 0.031). On multiple logistic regression analysis, age, side of ICA stenosis, high-grade stenosis, symptoms, and the use of internal shunting did not have significant effects on new postoperative DWI lesions, whereas technique did have an effect. The proximal flow-control technique for CEA helps avoid embolic complications during surgical ICA dissection. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Seismic proving test of PWR reactor containment vessel

    International Nuclear Information System (INIS)

    Akiyama, H.; Yoshikawa, T.; Tokumaru, Y.

    1987-01-01

    The seismic reliability proving tests of nuclear power plant facilities are carried out by Nuclear Power Engineering Test Center (NUPEC), using the large-scale, high-performance vibration of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry (MITI). In 1982, the seismic reliability proving test of PWR containment vessel started using the test component of reduced scale 1/3.7 and the test component proved to have structural soundness against earthquakes. Subsequently, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. Whereupon, the seismic analysis and evaluation on the actual containment vessel were performed by these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed

  4. Aging of reactor vessels in LWR type reactors

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.

    2004-01-01

    Most of the degradation mechanisms of nuclear components were not included on the design so they have to be treated a posteriori, and that imply a loss of capacity. In this paper the state of the art on the reactor pressure vessel neutron embrittlement and on the irradiation assisted stress corrosion cracking that affects internal components, are explained. Special attention is devoted on the influence of the neutron fluence on IASCC process, on the material alterations promoted by irradiation and their consequences on the susceptibility to this phenomenon. Regarding the reactor pressure vessel degradation, this paper discuss the application of the Master Curve on the structural integrity evaluation of the vessel. Other aspects related to further developments are also mentioned and the importance of a good materials ageing management on the operation of the plant is pointed out. (Author) 12 refs

  5. Introduction [to tenth anniversary report of the International Cooperative Group on Cyclic Crack Growth in pressure vessel steels

    International Nuclear Information System (INIS)

    Tomkins, B.

    1989-01-01

    The formation and development of the International Cooperative Group on Cyclic Crack Growth Rate (ICCGR) is outlined. By 1976, it had become apparent that the number of variables that affected the cyclic crack growth rate in reactor water was large and that the rate of data generation was very slow, because it was the low frequency regime that was of major practical importance. A clear need was recognised for a forum to exchange ideas and data, but most important of all to explore collaborative testing to minimise duplication and achieve economies. It was from the outset recognised as a complex and therefore very expensive materials testing area. In response to this situation, it was agreed to set up a group which was formally chartered as the ICCGR in 1978. What had begun as a sharing of views rapidly became an active collaborative group concerned to resolve three issues: 1. development of a consistent method for data reduction; 2. the practice of consistent testing methods; 3. a physical understanding of the underlying mechanisms involved in the process. Three Task Groups were eventually formed to address these issues; Test Methods, Mechanisms, Data Collection and Evaluation. (author)

  6. Proceedings of the international conference on irradiation behaviour of metallic materials for fast reactor core components

    International Nuclear Information System (INIS)

    Poirier, J.; Dupouy, J.M.

    Radiation effects on metals or alloys used in fast reactor core components are examined in the papers presented at this conference, the accent being put on swelling and irradiation creep of steels and nickel alloys

  7. Factors behind international relocation and changes in production geography in the European automobile components industry

    OpenAIRE

    Jesús F. Lampón; Santiago Lago-Peñas

    2013-01-01

    This article analyses business strategies in the automobile sector to determine the key factors behind production relocation processes in automobile components suppliers. These factors help explain changes in production geography in the sector not only in terms of location advantages but also from a perspective of corporate strategies and decision-making mechanisms within firms. The results obtained from an empirical study in Spain during the period 2001-2008 show how the components sector h...

  8. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  9. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    International Nuclear Information System (INIS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-01-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength

  10. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  11. PFMC14. 14th international conference on plasma-facing materials and components for fusion applications. Book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The performance of fusion devices and of a future fusion power plant critically depends on the plasma facing materials and components. Resistance to local heat and particle loads, thermo-mechanical properties, as well as the response to neutron damage of the selected materials are critical parameters which need to be understood and tailored from atomistic to component levels. The 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues. Among the topics of the joint conference recent developments and research results in the following fields are addressed: - Tungsten and tungsten alloys - Low-Z materials - Mixed materials - Erosion, redeposition and fuel retention - Materials under extreme thermal loads - Technology and testing of plasma-facing components - Neutron effects in plasma-facing materials - Advanced characterization of materials and components. Selected international speakers present overview lectures and treat detailed aspects of the given topics. Contributed papers to the subjects of the meeting are solicited for oral and poster presentations.

  12. Non-gated vessel wall imaging of the internal carotid artery using radial scanning and fast spin echo sequence. Evaluation of vessel signal intensity by flow rate at 3.0 tesla

    International Nuclear Information System (INIS)

    Nakamura, Manami; Makabe, Takeshi; Ichikawa, Masaki; Hatakeyama, Ryohei; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Vessel wall imaging using radial scanning does not use a blood flow suppression pulse with gated acquisition. It has been proposed that there may not be a flow void effect if the flow rate is slow; however, this has yet to be empirically tested. To clarify the relationship between the signal intensity of the vessel lumen and the blood flow rate in a flow phantom, we investigated the usefulness of vessel wall imaging at 3.0 tesla (T). We measured the signal intensity while changing the flow rate in the flow phantom. Radial scanning at 1.5 T showed sufficient flow voids at above medium flow rates. There was no significant difference in lumen signal intensity at the carotid artery flow rate. The signal intensity of the vessel lumen decreased sufficiently using the radial scan method at 3.0 T. We thus obtained sufficient flow void effects at the carotid artery flow rate. We conclude this technique to be useful for evaluating plaque if high contrast can be maintained for fixed tissue (such as plaque) and the vessel lumen. (author)

  13. Aging of metal components in US nuclear reactors

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Strosnider, J.R.

    1998-01-01

    This paper presents an overview of the aging of metal components in U.S. Light Water Reactors. The types of degradation being experienced in components such as the pressure vessel, piping, reactor internals, and steam generators, and the programs being implemented to manage the degradation are discussed. (author)

  14. LOFT reactor vessel 290/sup 0/ downcomer stalk instrument penetration flange stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Finicle, D.P.

    1978-06-06

    The LOFT Reactor Vessel 290/sup 0/ Downcomer Stalk Instrument Penetration Flange Stress Analysis has been completed using normal operational and blowdown loading. A linear elastic analysis was completed using simplified hand analysis techniques. The analysis was in accordance with the 1977 ASME Boiler and Pressure Vessel Code, Section III, for a Class 1 component. Loading included internal pressure, bolt preload, and thermal gradients due to normal operating and blowdown.

  15. Latest feedback from a major reactor vessel dismantling project

    International Nuclear Information System (INIS)

    Boucau, J.; Segerud, P.; Sanchez, M.; Garcia, R.

    2015-01-01

    Westinghouse performed two large segmentation projects in 2010-2013 and then 2013-2015 at the Jose Cabrera nuclear power plant in Spain. The power plant is located in Almonacid de Zorita, 43 miles east of Madrid, Spain and was in operation between 1968 and 2006. This paper will describe the sequential steps required to prepare, segment, separate, and package the individual component segments using under water mechanical techniques. The paper will also include experiences and lessons learned that Westinghouse has collected from the activities performed during the reactor vessel and vessel internals segmentation projects. (authors)

  16. Ninth regular meeting of the International Working Group on Reliability of Reactor Pressure Components, Vienna, 18-20 October 1988

    International Nuclear Information System (INIS)

    1990-04-01

    The 9th regular meeting of the International Working Group on Reliability of Pressure Components took place from 18-20 October 1988 at the Agency's Headquarters. The meeting was attended by 25 representatives from 19 Member States and International Organizations. The agenda of the meeting included overviews of the national activities in the field of pressure retaining components of PWRs, review of the past IWGRRPC activities and updating of the working plan for years 1989-1992. A great deal of attention was paid to the involvement of the IWGRRPC in the Agency's programme on nuclear power plant ageing and life extension. Members of the IWGRRPC reviewed the long term plan of the activities and proposed a provisional list and scope of the IAEA Specialists' Meetings planned for the period 1989-1992. Seventeen papers were presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  18. Seventh regular meeting of the International Working Group on Reliability of Reactor Pressure Components, Vienna, 3-5 September 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The seventh regular meeting of the IAEA International Working Group on Reliability of Reactor Pressure Components was held at the Agency's Headquarters in Vienna from 3 to 5 September 1985. The representatives of Member States and of the Commission of the European Communities reported the status of the research programmes in this field (12 presentations). A separate abstract was prepared for each of the presentations

  19. Interaction of horophile impurities in multi-component alloy during their internal adsorption

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Darovskikh, E.G.; Zhuravlev, B.F.; AN Ukrainskoj SSR, Donetsk. Fiziko-Tekhnicheskij Inst.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1975-01-01

    The X-ray spectral analysis was used to investigate into the phenomenon of intercrystalline internal adsorption of different elements present in a multicomponent Nb-base alloy. The samples to be investigated underwent various kinds of heat treatments within the temperature range of 800 to 1800 deg C with different hold-up periods during heating and with different cooling rate. The annealing was performed in a high temperature vacuum furnace. The surface enrichment of the intercrystalline fractures was evaluated from the ratio of the element characteristic line intensity on the X-ray spectrograms of the fractures and sections. The studies have shown, that along with a possible intercrystalline internal adsorption of different impurities, the cases occur when one of the impurities is more readily adsorbed, while suppressing or preventing the adsorption of other elememts. The ''exchange'' of competing impurities proceeds by way of diffusion and is temperature dependent. The intercrystalline internal adsorption of chromium occurs within the temperature range of 1800 to 1500 deg C. Zr exhibits a noticeable intercrystalline internal adsorption at 800 deg C, whereas at 1100 deg and above there exists practically no intercrystalline internal adsorption of Zr. The intercrystalline internal adsorption of W and Mn occurs at about 1800 deg C, that of Mo at 1500 deg C. An evident enrichment of the fracture surfaces with Cu takes place during heating at 1100 deg within 200 hrs after quenching or slow cooling from 1800 deg C. Zirconium not only occupies the places of a possible adsorption in the structure of intercrystalline joints, getting vacant due to Cr adsorption (at 800 deg), but replaces its competitors actively at this temperature

  20. Development of in-vessel neutron flux monitor equipped with microfission chambers to withstand the extreme ITER environment

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp; Takeda, Keigo; Itami, Kiyoshi

    2016-11-01

    Highlights: • The in-vessel components of MFC system must withstand the extreme ITER environment. • To verify this, the thermal cycle test and the vibration tests were conducted. • Both tests were conducted under much severer conditions than ITER environment. • Soundness verification tests after the tests indicated that no problemswere found. • It is shown that the in-vessel component is sufficiently robust ITER environment. - Abstract: Via thermal cycling and vibration tests, this study aims to demonstrate that the in-vessel components of the microfission chamber (MFC) system can withstand the extreme International Thermonuclear Experimental Reactor (ITER) environment. In thermal cycle tests, the signal cable of the device was bent into a smaller radius and it was given more bends than those in its actual configuration within ITER. A faster rate of temperature change than that under the typical ITER baking scenario was then imposed on in-vessel components. For the vibration tests, strong 10 G vibrational accelerations with frequencies ranging from 30 Hz to 2000 Hz were imposed to the detector and the connector of the in-vessel components to simulate various types of electromagnetic events. Soundness verification tests of the in-vessel components conducted after thermal cycling and vibration testing indicated that problems related to the signal transmission cable functioning were not found. Thus, it was demonstrated that the in-vessel components of the MFC can withstand the extreme environment within ITER.

  1. Semi-automatic ultrasonic inspection of PWR upper internal immersed components

    International Nuclear Information System (INIS)

    Dombret, P.; Coquette, A.; Cermak, J.; Verspeelt, D.

    1985-01-01

    The present paper describes the characteristics of a semi-automatic ultrasonic inspection system. Components inspected are the so-called flexures, small pins located at the upper part of control rod tube-guide, some of which happened to broke in a few Westinghouse type PWR's. Inspection results and other system capabilities are also mentioned

  2. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    Science.gov (United States)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  3. Internal flood analysis at Fermi 2 using a component-based frequency calculation approach

    International Nuclear Information System (INIS)

    Lin, J.C.; Hou, Y.M.; Ramirez, J.V.; Page, E.M.

    2004-01-01

    An analysis to identify potential accident sequences involving internal floods at Fermi Unit 2 was completed to fulfill the individual plant examination requirements. Floods can be significant core damage scenarios if they cause an initiating event and a common mode failure of critical systems. (author)

  4. Containment vessel

    International Nuclear Information System (INIS)

    Zbirohowski-Koscia, K.F.; Roberts, A.C.

    1980-01-01

    A concrete containment vessel for nuclear reactors is disclosed that is spherical and that has prestressing tendons disposed in first, second and third sets, the tendons of each set being all substantially concentric and centred around a respective one of the three orthogonal axes of the sphere; the tendons of the first set being anchored at each end at a first anchor rib running around a circumference of the vessel, the tendons of the second set being anchored at each end at a second anchor rib running around a circumference of the sphere and disposed at 90 0 to the first rib, and the tendons of the third set being anchored some to the first rib and the remainder to the second rib. (author)

  5. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  6. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  7. Subtype-specific, bi-component inhibition of SK channels by low internal pH

    DEFF Research Database (Denmark)

    Peitersen, Torben; Jespersen, Thomas; Jorgensen, Nanna K

    2006-01-01

    The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6...

  8. Vessel eddy current characteristics in SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Subrata; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Dhongde, Jasraj; Masand, Harish

    2016-11-15

    Highlights: • Eddy current distribution in the SST-1 vacuum vessel. • Circuit model analysis of eddy current. • A comparison of the field lines with and without the plasma column in identical conditions. • The influence of eddy current in magnetic NULL dynamics. - Abstract: Eddy current distribution in the vacuum vessel of the Steady state superconducting (SST-1) tokamak has been determined from the experimental data obtained using an array of internal voltage loops (flux loop) installed inside the vacuum vessel. A simple circuit model has been employed. The model takes into account the geometric and constructional features of SST-1 vacuum vessel. SST-1 vacuum vessel is a modified ‘D’ shaped vessel having major axis of 1.285 m and minor axis of 0.81 m and has been manufactured from non-magnetic stainless steel. The Plasma facing components installed inside the vacuum vessel are graphite blocks mounted on Copper Chromium Zirconium (CuCrZr) heat sink plates on inconel supports. During discharge of the central solenoid, eddy currents get generated in the vacuum vessel and passive supports on it. These eddy currents influence the early magnetic NULL dynamics and plasma break-down and start-up characteristics. The computed results obtained from the model have been benchmarked against experimental data obtained in large number of SST-1 plasma shots. The results are in good agreement. Once bench marked, the calculated eddy current based on flux loop signal and circuit equation model has been extended to the reconstruction of the overall B- field contours of SST-1 tokamak in the vessel region. A comparison of the field lines with and without the plasma column in identical conditions of the central solenoid and equilibrium field profiles has also been done with an aim to quantify the diagnostics responses in vacuum shots.

  9. Multi-purpose deployer for ITER in-vessel maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang-Hwan, E-mail: Chang-Hwan.CHOI@iter.org [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Tesini, Alessandro; Subramanian, Rajendran [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Rolfe, Alan; Mills, Simon; Scott, Robin; Froud, Tim; Haist, Bernhard; McCarron, Eddie [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, OXON (United Kingdom)

    2015-10-15

    Highlights: • ITER RH system called as the multi-purpose deployer (MPD) is introduced. • The MPD performs dust and tritium inventory control, in-service inspection. • The MPD performs leak localization, in-vessel diagnostics maintenance. • The MPD has nine degrees of freedom with a payload capacity up to 2 tons. - Abstract: The multi-purpose deployer (MPD) is a general purpose in-vessel remote handling (RH) system in the ITER RH system. The MPD provides the means for deployment and handling of in-vessel tools or components inside the vacuum vessel (VV) for dust and tritium inventory control, in-service inspection, leak localization, and in-vessel diagnostics. It also supports the operation of blanket first wall maintenance and neutral beam duct liner module maintenance operations. This paper describes the concept design of the MPD. The MPD is a cask based system, i.e. it stays in the hot cell building during the machine operation, and is deployed to the VV using the cask system for the in-vessel operations. The main part of the MPD is the articulated transporter which provides transportation and positioning of the in-vessel tools or components. The articulated transporter has nine degrees of freedom with a payload capacity up to 2 tons. The articulated transporter can cover the whole internal surface of the VV by switching between the four equatorial RH ports. Additionally it can use two non-RH equatorial ports to transfer large tools or components. A concept for in-cask tool exchange is developed which minimizes the cask transportation by allowing the MPD to stay in the VV during the tool exchange.

  10. A review of the internal components of the second generation of Swedish BWRs in perspective of their importance for the total safety. A diploma work in reactor technology

    International Nuclear Information System (INIS)

    Appelgren, S.; Eriksson, Stefan

    1999-03-01

    An investigation has been done of the second generation of Swedish BWRs, Barsebaeck 1 and 2, and Oskarshamn 2, concerning the vessel internals and theirs significance for the reactor safety. The purpose with this pilot study has been to produce a support for the course of action and to be a source of information for more detailed analyses of the vessel internals. A number of accident scenarios have been depicted and discussed regarding how they might occur and what the consequences might be. It is postulated that they start on account of some vessel internals failing. To be able to develop these scenarios it was necessary to collect and go through a relative large number of analyses and calculations. These have consisted of design conditions, calculation of stress and damage reports. In design conditions are included the maximum loads that a component expect to be subjected to in the course of different postulated averages. The design conditions are the input to the calculation of stress. The damage reports treat and analyse the damages that the internals have been exposed to during the years. For each scenario that has been treated, a judgement has been done about why or why not it is probable to happen. The authors do not claim to have made a probability study along the lines that are commonly accepted. The internal parts that have been the subject for the study are the core head, the feed water spargers, the steam dryers, the core shroud and the core shroud support. Below are the results with argumentations and recommendations. Core head: the core head has the behaviour that contribute most to the complexity of the scenarios. Initiators of this kind of scenarios are postulated weaknesses in the extensions of the bolts fastening the shroud head to the core shroud. A collapse of the extensions of the bolts fastening the shroud head to the core shroud will have a great impact on the reactor safety. Very likely it would lead to absent core cooling and absent

  11. Associations among the Five Components within COSO Internal Control-Integrated Framework as the Underpinning of Quality Corporate Governance

    Directory of Open Access Journals (Sweden)

    Kirsten Rae

    2017-03-01

    Full Text Available This paper examines the associations among COSO components and how they affect the monitoring function of organisations. Five components of an effective internal control system are described using the framework designed by COSO (1992 and have been selected because they have been identified as underpinning quality corporate governance. Structural equation modelling (SEM was used first to run confirmatory factor analysis to determine the measurement models for the five COSO components. The COSO report (1992 described the internal control framework as a multidirectional iterative and situational (contingent process. The primary structural model was designed to reflect the one-way directional associations in the model described and shown in Exhibit 1 within the COSO report (1992. SEM analyses were conducted to test the hypotheses. Additional secondary SEM analyses were undertaken to investigate the reciprocal associations suggested in the COSO report (1992. Findings from the primary SEM analysis provide partial support for associations among the COSO components and enhanced monitoring quality that leads to good corporate governance. The results show that control environment is associated with three dimensions of information and communication (information accuracy, information openness, communication and learning. Additionally, two dimensions of information and communication (communication and learning and information feedback flow were found to be associated with risk assessment. An indirect association is supported by the results between control environment and risk assessment through the associations among three dimensions of information and communication (information accuracy, information openness and information feedback flow. Risk assessment is associated with control activities, which is subsequently associated with monitoring. The results of the additional secondary SEM analyses supported the reciprocal associations among risk assessment

  12. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  13. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoyi; Li, Dongye [Capital Medical University and Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Beijing (China); Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Zhao, Huilin [Shanghai Jiao Tong University, Department of Radiology, Renji Hospital, School of Medicine, Shanghai (China); Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Cui, Yuanyuan [PLA General Hospital, Department of Radiology, Beijing (China); Zhou, Zechen [Philips Research China, Healthcare Department, Beijing (China); Yuan, Chun [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); University of Washington, Department of Radiology, Seattle, WA (United States); Zhao, Xihai [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Beijing Institute for Brain Disorders, Center for Stroke, Beijing (China)

    2017-05-15

    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  15. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    International Nuclear Information System (INIS)

    Chen, Xiaoyi; Li, Dongye; Zhao, Huilin; Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui; Cui, Yuanyuan; Zhou, Zechen; Yuan, Chun; Zhao, Xihai

    2017-01-01

    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  16. Welding residual stress improvement in internal components by water jet peening

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Hayashi, M.; Hayashi, E.

    1996-01-01

    Cavitations are generated when highly pressurized water is jetted in water. Surface residual stress is improved remarkably due to the peening effect of extremely high pressure caused by the collapse of cavitation bubbles. This technique is called water jet peening (WJP). WJP is expected to be an effective maintenance technique for the prevention of stress corrosion cracking caused by residual stress in various components of power generating plants. Various kinds of specimens were water jet peened to evaluate the fundamental characteristics of WJP and to select the most appropriate conditions for the residual stress improvement. Test results showed that WJP markedly improved the tensile residual stress caused by welding and grinding to the high compressive residual stress and seems to prevent the stress corrosion cracking

  17. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    Science.gov (United States)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  18. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    Science.gov (United States)

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  19. Equipment to reduce the emission of noxious components in the exhaust gas of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Tatsutomi, Y; Inoue, H

    1976-10-21

    The invention concerns an arrangement for the reduction of emission of noxious components in exhaust gas of an internal combustion engine with automatic drive. According to the invention, there is a further switch in parallel with the usual kickdown switch, which is actuated by a temperature sensor and/or choke. If the operating temperature of the engine is below a certain value, or if the choke is pulled out, then the switch is closed. This has the effect that the downstream valve is brought into the same position as that in which the closed kickdown switch would place it. The automatic drive therefore takes up that position, independently of the position of the accelerator pedal, which it would normally occupy only with the accelerator pedal fully pressed down. This guarantees that the engine is always kept at high speed during the hot running phase, which reduces the portion of the noxious gas components emitted.

  20. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    Science.gov (United States)

    Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  1. Method for estimating failure probabilities of structural components and its application to fatigue problem of internally cooled superconductors

    International Nuclear Information System (INIS)

    Shibui, M.

    1989-01-01

    A new method for fatigue-life assessment of a component containing defects is presented such that a probabilistic approach is incorporated into the CEGB two-criteria method. The present method assumes that aspect ratio of initial defect, proportional coefficient of fatigue crack growth law and threshold stress intensity range are treated as random variables. Examples are given to illustrate application of the method to the reliability analysis of conduit for an internally cooled cabled superconductor (ICCS) subjected to cyclic quench pressure. The possible failure mode and mechanical properties contributing to the fatigue life of the thin conduit are discussed using analytical and experimental results. 9 refs., 9 figs

  2. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica.

    Science.gov (United States)

    Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith

    2016-06-01

    Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. 75 FR 56015 - Vessel Inspection Alternatives

    Science.gov (United States)

    2010-09-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 46 CFR Part 8 Vessel Inspection Alternatives CFR... Certificate; (ii) International Tonnage Certificate; (iii) Cargo Ship Safety Construction Certificate; (iv) Cargo Ship Safety Equipment Certificate; and (v) International Oil Pollution Prevention Certificate; and...

  4. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    Science.gov (United States)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  5. Radiographic changes of TMJ components with an advancement of TMJ internal derangement

    International Nuclear Information System (INIS)

    Kurita, Hiroshi

    2006-01-01

    Internal derangement (ID) of the temporomandibular joint (TMJ) relates to a mechanical and anatomical disturbance interfering with the smooth joint function. The ID usually develops in a benign and self-limiting fashion and does not always lead to progressing disorders. Radiographically visible degenerative changes occur with advancement of ID. It is thought that most of these changes closely correlate with the self-limiting nature of ID. In this report, a variety of radiographically visible degenerative changes were shown to develop with advancing ID. These changes, including a total and more anterior displacement of the TMJ disk, deviations in configuration of the TMJ disk, resorption of lateral pole of TMJ condyle, regression in horizontal size of the TMJ condyle, and flattening of the articular eminence, developed reflecting each other and might play an important role in an improvement of clinical signs and symptoms in the long run. It is also suggested that most of the acute and destructive radiographically visible degenerative changes were arrested or slowed in those patients whose symptoms and signs were successfully resolved or reduced. (author)

  6. Wear plates control rod guide tubes top internal reactor vessel C. N. VANDELLOS II; Desgaste placas tubos guia barras de control interno superior vasija del reactor C.N. Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The guide tubes for control rods forming part of the upper internals of the reactor vessel, its function is to guide the control rod to permit its insertion in the reactor core. These guide tubes are suspended from the upper support plate which are fixed by bolts and extending to the upper core plate which is fastened by clamping bolts (split pin) to prevent lateral displacement of the guide tubes, while allowing axial expansion.

  7. Incidence of traumatic carotid and vertebral artery dissections: results of cervical vessel computed tomography angiogram as a mandatory scan component in severely injured patients

    Directory of Open Access Journals (Sweden)

    Schicho A

    2018-01-01

    Full Text Available Andreas Schicho,1 Lukas Luerken,1 Ramona Meier,1 Antonio Ernstberger,2 Christian Stroszczynski,1 Andreas Schreyer,1 Lena-Marie Dendl,1 Stephan Schleder1 1Department of Radiology, 2Department of Trauma Surgery, University Medical Center, Regensburg, Germany Purpose: The aim of this study was to evaluate the true incidence of cervical artery dissections (CeADs in trauma patients with an Injury Severity Score (ISS of ≥16, since head-and-neck computed tomography angiogram (CTA is not a compulsory component of whole-body trauma computed tomography (CT protocols. Patients and methods: A total of 230 consecutive trauma patients with an ISS of ≥16 admitted to our Level I trauma center during a 24-month period were prospectively included. Standardized whole-body CT in a 256-detector row scanner included a head-and-neck CTA. Incidence, mortality, patient and trauma characteristics, and concomitant injuries were recorded and analyzed retrospectively in patients with carotid artery dissection (CAD and vertebral artery dissection (VAD. Results: Of the 230 patients included, 6.5% had a CeAD, 5.2% had a CAD, and 1.7% had a VAD. One patient had both CAD and VAD. For both, CAD and VAD, mortality is 25%. One death was caused by fatal cerebral ischemia due to high-grade CAD. A total of 41.6% of the patients with traumatic CAD and 25% of the patients with VAD had neurological sequelae. Conclusion: Mandatory head-and-neck CTA yields higher CeAD incidence than reported before. We highly recommend the compulsory inclusion of a head-and-neck CTA to whole-body CT routines for severely injured patients. Keywords: polytrauma, carotid artery, vertebral artery, dissection, blunt trauma, computed tomography angiogram

  8. BWR internals life assurance

    International Nuclear Information System (INIS)

    Herrera, M.L.; Stancavage, P.P.

    1988-01-01

    Boiling water reactor (BWR) internal components play an important role in power plant life extension. Many important internals were not designed for easy removal and changes in material properties and local environmental effects due to high radiation makes stress corrosion cracking more likely and more difficult to correct. Over the past several years, operating experience has shown that inspection, monitoring and refurbishment can be accomplished for internal structures with existing technology. In addition, mitigation techniques which address the causes of degradation are available to assure that life extension targets can be met. This paper describes the many considerations and aspects when evaluating life extension for reactor vessel internals

  9. A kinetic model for impact/sliding wear of pressurized water reactor internal components: Application to rod cluster control assemblies

    International Nuclear Information System (INIS)

    Zbinden, M.

    1996-01-01

    Certain internal components of Pressurized Water Reactors are damaged by wear when subjected to vibration induced by flow. In order to enable predictive calculation of such wear, one must have a model which takes account reliably of real damages. The modelling of wear represents a final link in a succession of numerical calculations which begins by the determination of hydraulic excitations induced by the flow. One proceeds, then, in the dynamic response calculation of the structure to finish up with an estimation of volumetric wear and of the depth of wear scars. A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which correspond to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work

  10. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  11. Hybrid Correlation Energy (HyCE): An Approach Based on Separate Evaluations of Internal and External Components.

    Science.gov (United States)

    Ivanic, Joseph; Schmidt, Michael W

    2018-06-04

    A novel hybrid correlation energy (HyCE) approach is proposed that determines the total correlation energy via distinct computation of its internal and external components. This approach evolved from two related studies. First, rigorous assessment of the accuracies and size extensivities of a number of electron correlation methods, that include perturbation theory (PT2), coupled-cluster (CC), configuration interaction (CI), and coupled electron pair approximation (CEPA), shows that the CEPA(0) variant of the latter and triples-corrected CC methods consistently perform very similarly. These findings were obtained by comparison to near full CI results for four small molecules and by charting recovered correlation energies for six steadily growing chain systems. Second, by generating valence virtual orbitals (VVOs) and utilizing the CEPA(0) method, we were able to partition total correlation energies into internal (or nondynamic) and external (or dynamic) parts for the aforementioned six chain systems and a benchmark test bed of 36 molecules. When using triple-ζ basis sets it was found that per orbital internal correlation energies were appreciably larger than per orbital external energies and that the former showed far more chemical variation than the latter. Additionally, accumulations of external correlation energies were seen to proceed smoothly, and somewhat linearly, as the virtual space is gradually increased. Combination of these two studies led to development of the HyCE approach, whereby the internal and external correlation energies are determined separately by CEPA(0)/VVO and PT2/external calculations, respectively. When applied to the six chain systems and the 36-molecule benchmark test set it was found that HyCE energies followed closely those of triples-corrected CC and CEPA(0) while easily outperforming MP2 and CCSD. The success of the HyCE approach is more notable when considering that its cost is only slightly more than MP2 and significantly cheaper

  12. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  13. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  14. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  15. Structural analysis of the JT-60SA cryostat vessel body

    Energy Technology Data Exchange (ETDEWEB)

    Botija, José, E-mail: jose.botija@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Fernández, Pilar; Medrano, Mercedes; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico; Tomarchio, Valerio [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira; Shibama, Yusuke [JAEA – Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► Structural analysis to validate the JT-60SA cryostat vessel body design. ► Design code ASME 2007 “Boiler and Pressure Vessel Code. Section VIII”. ► First buckling mode: load multiplier of 10.644, higher than the minimum factor 4.7. ► Elastic and elastic–plastic stress analysis meets ASME against plastic collapse. ► Bolted fasteners have been analyzed showing small gaps closed by strong welding. -- Abstract: The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10{sup −3} Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident. The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.

  16. Vessel Operator System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  17. Life extension of the BR2 aluminium vessel

    International Nuclear Information System (INIS)

    Koonen, E.; Fabry, A.; Chaouadi, R.; Verwerft, M.; Raedt, C. de; Winckel, S. van; Wacquier, W.; Dadoumont, J.; Verwimp, A.

    2000-01-01

    The BR2 reactor has recently undergone a major refurbishment comprising the replacement of all vessel internals. The vessel itself however was not replaced. An important requalification programme has been executed to prove that the vessel would remain fit during the contemplated life extension period of BR2. Representative material samples could be obtained from the shroud surrounding the vessel. A comprehensive in-service inspection was carried out and a vessel surveillance programme has been established. (author)

  18. Components of the primary circuit of LWRs

    International Nuclear Information System (INIS)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  19. Vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Gerich, J.W.

    1986-01-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10 -8 torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m 3 internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  20. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  1. Synthesis of results obtained on sodium components and technology through the Generation IV International Forum SFR Component Design and Balance-of-Plant Project

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Rodriguez, G.; Kisohara, N.; Kim, J. B.; Gerber, A.; Ashurko, Y.; Toyama, S.

    2013-01-01

    Status: The viability of designing SFR components and BOP has been demonstrated with design, construction and operation of previous sodium-cooled reactors. The main objective of this R&D project is related to system performance, or by development on the use of AECS in the BOP that could allow further cost improvements. Objective: To conduct collaborative research and development of components and BOP for the SFR System. The Project has to satisfy the GIF’s criteria of safety, economy, sustainability, proliferation resistance and physical protection. Activities within this Project are addressing experimental and analytical evaluation of advanced ISI&R, LBB assessment, development of AECS with Brayton cycles, advanced SG technologies. Project activities will be based in part on the extensive historical R&D experience with component design and balance of plant for sodium-cooled fast reactors

  2. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    Science.gov (United States)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our

  3. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  4. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  5. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  6. Electrical discharge machining for vessel sample removal

    International Nuclear Information System (INIS)

    Litka, T.J.

    1993-01-01

    Due to aging-related problems or essential metallurgy information (plant-life extension or decommissioning) of nuclear plants, sample removal from vessels may be required as part of an examination. Vessel or cladding samples with cracks may be removed to determine the cause of cracking. Vessel weld samples may be removed to determine the weld metallurgy. In all cases, an engineering analysis must be done prior to sample removal to determine the vessel's integrity upon sample removal. Electrical discharge machining (EDM) is being used for in-vessel nuclear power plant vessel sampling. Machining operations in reactor coolant system (RCS) components must be accomplished while collecting machining chips that could cause damage if they become part of the flow stream. The debris from EDM is a fine talclike particulate (no chips), which can be collected by flushing and filtration

  7. Case study for one-piece removal method of reactor vessel of nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagane, Satoru; Kitahara, Katsumi; Yoshikawa, Seiji; Miyasaka, Yasuhiko; Fukumura, Nobuo; Nisizawa, Ichiou

    2010-01-01

    A reactor installed at the center part of the nuclear ship 'Mutsu' has been stored safely and exhibited in a reactor room building since 1996. The reactor vessel and its internals are key components because of main radioactive wastes for the reasonable decommissioning plan in the future. This report describes the one-piece removal method as the one package of the reactor vessel with its internals intact with a shipping container or additional shields. The reactor vessel package (Max.100ton) will be classified acceptable for burial at the low level radioactive waste (LLW), which will be buried at a LLW pit facility under waste disposal regulations. And also, the package will be classified as an IP-2-equivalent package according to the requirement for Shipments and Packagings. (author)

  8. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  9. Emergency venting of pressure vessels

    International Nuclear Information System (INIS)

    Steinkamp, H.

    1995-01-01

    With the numerical codes developed for safety analysis the venting of steam vessel can be simulated. ATHLET especially is able to predict the void fraction depending on the vessel height. Although these codes contain a one-dimensional model they allow the description of complex geometries due to the detailed nodalization of the considered apparatus. In chemical reactors, however, the venting process is not only influenced by the flashing behaviour but additionally by the running chemical reaction in the vessel. Therefore the codes used for modelling have to consider the kinetics of the chemical reaction. Further multi-component systems and dissolving processes have to be regarded. In order to preduct the fluid- and thermodynamic process it could be helpful to use 3-dimensional codes in combination with the one-dimensional codes as used in nuclear industry to get a more detailed describtion of the running processes. (orig./HP)

  10. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    International Nuclear Information System (INIS)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-01-01

    The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)

  11. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  12. The International Haemovigilance Network Database for the Surveillance of Adverse Reactions and Events in Donors and Recipients of Blood Components: technical issues and results.

    Science.gov (United States)

    Politis, C; Wiersum, J C; Richardson, C; Robillard, P; Jorgensen, J; Renaudier, P; Faber, J-C; Wood, E M

    2016-11-01

    The International Haemovigilance Network's ISTARE is an online database for surveillance of all adverse reactions (ARs) and adverse events (AEs) associated with donation of blood and transfusion of blood components, irrespective of severity or the harm caused. ISTARE aims to unify the collection and sharing of information with a view to harmonizing best practices for haemovigilance systems around the world. Adverse reactionss and adverse events are recorded by blood component, type of reaction, severity and imputability to transfusion, using internationally agreed standard definitions. From 2006 to 2012, 125 national sets of annual aggregated data were received from 25 countries, covering 132.8 million blood components issued. The incidence of all ARs was 77.5 per 100 000 components issued, of which 25% were severe (19.1 per 100 000). Of 349 deaths (0.26 per 100 000), 58% were due to the three ARs related to the respiratory system: transfusion-associated circulatory overload (TACO, 27%), transfusion-associated acute lung injury (TRALI, 19%) and transfusion-associated dyspnoea (TAD, 12%). Cumulatively, 594 477 donor complications were reported (rate 660 per 100 000), of which 2.9% were severe. ISTARE is a well-established surveillance tool offering important contributions to international efforts to maximize transfusion safety. © 2016 International Society of Blood Transfusion.

  13. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  14. Structural analysis of the KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    In, Sang Ryul; Yoon, Byeong Joo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    Structure analysis of the vacuum vessel for the KSTAR tokamak which, is in the end phase of the conceptual design have been performed. Mechanical stresses and deformations of the vessel produced by constant forces due to atmospheric pressure, dead weight, fluid pressure, etc and various transient electromagnetic forces induced during tokamak operations were calculated as well as modal characteristics and buckling properties were investigated. Influences of the temperature gradient and the constraint condition of the support on the thermal stress and deformation of the vessel were analyzed. The thermal stress due to the temperature distribution on the vessel as supplying the N{sub 2} gas of 400 deg C through poloidal channels according to the recent baking concept were calculated. No severe problem in the robustness of the vessel was found when applying the constant pressures on the vessel. However the mechanical stress due to the EM force induced by halo currents flowing on the vessel and the plasma facing components (PFCs) far exceeded the allowable limit. Some reinforcing components should be added on the boundary of the PFC support and the vessel, and that of the vessel support and the vessel. A steep temperature gradient in the vicinity of the inlet and oulet of the heating gas produced a thermal stress much higher than allowable. It is necessary to make the temperature of the vessel as uniform as possible and to develop a new support concept which is flexible enough to accommodate a thermal expansion of a few cm while sufficiently strong to resist mechanical impacts. (author). 5 refs., 41 figs., 9 tabs.

  15. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    International Nuclear Information System (INIS)

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories

  16. Improvement to reactor vessel

    International Nuclear Information System (INIS)

    1974-01-01

    The vessel described includes a prestressed concrete vessel containing a chamber and a removable cover closing this chamber. The cover is in concrete and is kept in its closed position by main and auxiliary retainers, comprising fittings integral with the concrete of the vessel. The auxiliary retainers pass through the concrete of the cover. This improvement may be applied to BWR, PWR and LMFBR type reactor vessel [fr

  17. Design of vacuum vessel for Indian Test Facility (INTF) for 100 keV neutral beams

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Yadav, Ashish; Gangadharan, Roopesh; Prasad, Rambilas; Ulahannan, Shino; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Thickness calculation and optimization for the main shell, ducts, Dishends and top lid on the main shell. • Nozzle and flange design for the port openings. • Support structure design for the main shell and ducts. • FEA validation of the INTF vessel for operational, seismic and lifting condition. - Abstract: The Indian Test Facility (INTF) vacuum vessel is designed to install a full-scale test set-up of Diagnostic Neutral Beam (DNB) [1] for the qualification of beam parameters and the behavior of beam-line components prior to installation and operation in ITER. Vacuum vessel is designed in cylindrical shape having length of ∼9 m with diameter of ∼4.5 m and has a detachable top-lid for mounting as well as removal of internal components during installation and maintenance phases. The Vessel has hemispherical dish-ends with large openings for high-voltage bushing on one side and duct on another side. Vessel is provided with openings for hydraulic, cryo, gas-feed and diagnostics. Vessel duct is composed of three segments with length ranges from 3 m to 5 m with diameter of ∼1.5 m and one vessel at the end to house the second calorimeter. The objective of this paper is to present the design and analysis of vacuum vessel, with respect to its functional and operational requirements. The design calculations are done as per ASME-BPVC SectionVIII-Div.1 and subsequently Finite Element Analysis (FEM) method has been adopted to verify the design.

  18. Design of vacuum vessel for Indian Test Facility (INTF) for 100 keV neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jaydeep, E-mail: Jaydeep.joshi@iter-india.org [ITER-India, Institute for Plasma Research, A29, GIDC Electronics Estate, Gandhinagar 382016, Gujarat (India); Yadav, Ashish; Gangadharan, Roopesh [ITER-India, Institute for Plasma Research, A29, GIDC Electronics Estate, Gandhinagar 382016, Gujarat (India); Prasad, Rambilas [Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273001 (India); Ulahannan, Shino [Airframe Aerodesigns Pvt. Ltd., HAL Airport Exit Road, Old Airport Road, Bengaluru 17 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, A29, GIDC Electronics Estate, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Thickness calculation and optimization for the main shell, ducts, Dishends and top lid on the main shell. • Nozzle and flange design for the port openings. • Support structure design for the main shell and ducts. • FEA validation of the INTF vessel for operational, seismic and lifting condition. - Abstract: The Indian Test Facility (INTF) vacuum vessel is designed to install a full-scale test set-up of Diagnostic Neutral Beam (DNB) [1] for the qualification of beam parameters and the behavior of beam-line components prior to installation and operation in ITER. Vacuum vessel is designed in cylindrical shape having length of ∼9 m with diameter of ∼4.5 m and has a detachable top-lid for mounting as well as removal of internal components during installation and maintenance phases. The Vessel has hemispherical dish-ends with large openings for high-voltage bushing on one side and duct on another side. Vessel is provided with openings for hydraulic, cryo, gas-feed and diagnostics. Vessel duct is composed of three segments with length ranges from 3 m to 5 m with diameter of ∼1.5 m and one vessel at the end to house the second calorimeter. The objective of this paper is to present the design and analysis of vacuum vessel, with respect to its functional and operational requirements. The design calculations are done as per ASME-BPVC SectionVIII-Div.1 and subsequently Finite Element Analysis (FEM) method has been adopted to verify the design.

  19. ALICE HMPID Radiator Vessel

    CERN Document Server

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  20. Supracondylar corrective osteotomy for cubitus varus--the internal rotation component and its importance. An unique bone experiment.

    Directory of Open Access Journals (Sweden)

    Jimulia T

    1994-10-01

    Full Text Available In 20 patients with cubitus varus, a clinical test suggested by Yamamoto et al (1985 was carried out to measure the internal rotation. Average internal rotation was found to be 37.5 +/- 9.390. A correction for internal rotation was carried out for all the patients having angle more than 20 degrees. Following osteotomy, post-operative Yamamoto′s angle was measured and was found to be 8.85 +/- 6.5. An experiment was carried out on postmortem human humerus with cubitus varus. The internal rotation was measured with Kirschner wires and was found to be 30 degrees. Osteotomy was carried out to eliminate varus and correct internal rotation. Radiographs taken before and after the osteotomy confirmed the correction. We conclude that this derotation has to be corrected and Yamamoto′s test should be used to assess the correction.

  1. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  2. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  3. Structural Analysis of the NCSX Vacuum Vessel

    International Nuclear Information System (INIS)

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-01-01

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered

  4. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  5. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  6. A kinetic model for impact/sliding wear of pressurized water reactor internal components. Application to rod cluster control assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, M; Durbec, V

    1996-12-01

    A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author). 34 refs.

  7. A kinetic model for impact/sliding wear of pressurized water reactor internal components. Application to rod cluster control assemblies

    International Nuclear Information System (INIS)

    Zbinden, M.; Durbec, V.

    1996-12-01

    A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author)

  8. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  9. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  10. THE FEATURES OF COMPONENTS OF INTERNAL AND EXTERNAL ENVIRONMENT INFLUENCE ON THE BUSINESS ACTIVITY OF A COMPANY

    OpenAIRE

    Levushkina S. V.; Semko I. A.

    2014-01-01

    The article presents the material on the market uncertainty of the business environment in Russia, it requires in-depth analysis of the processes in the external and internal environment of the organization. Subjects of different organizational - legal forms are in constantly changing conditions of the business climate

  11. Components of the LWR primary circuit. Pt. 2

    International Nuclear Information System (INIS)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 0 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  12. Pressure vessel design

    International Nuclear Information System (INIS)

    Annaratone, D.

    2007-01-01

    This book guides through general and fundamental problems of pressure vessel design. It moreover considers problems which seem to be of lower importance but which turn out to be crucial in the design phase. The basic approach is rigorously scientific with a complete theoretical development of the topics treated, but the analysis is always pushed so far as to offer concrete and precise calculation criteria that can be immediately applied to actual designs. This is accomplished through appropriate algorithms that lead to final equations or to characteristic parameters defined through mathematical equations. The first chapter describes how to achieve verification criteria, the second analyzes a few general problems, such as stresses of the membrane in revolution solids and edge effects. The third chapter deals with cylinders under pressure from the inside, while the fourth focuses on cylinders under pressure from the outside. The fifth chapter covers spheres, and the sixth is about all types of heads. Chapter seven discusses different components of particular shape as well as pipes, with special attention to flanges. The eighth chapter discusses the influence of holes, while the ninth is devoted to the influence of supports. Finally, chapter ten illustrates the fundamental criteria regarding fatigue analysis. Besides the unique approach to the entire work, original contributions can be found in most chapters, thanks to the author's numerous publications on the topic and to studies performed ad hoc for this book. (orig.)

  13. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  14. An empirical exploration of the relations between the health components of the International Classification of Functioning, Disability and Health (ICF).

    Science.gov (United States)

    Perenboom, Rom J M; Wijlhuizen, Gert Jan; Garre, Francisca Galindo; Heerkens, Yvonne F; van Meeteren, Nico L U

    2012-01-01

    The aim of this study was to investigate the relations between the ICF components from a subjective perspective. Data on health condition and perceived functioning were collected among 2941 individuals with at least one chronic disease or disorder. Path analysis was used with perceived level of participation as the final denominator. Three models were tested: one with the number of chronic diseases and disorders as an indicator of health condition, one with perceived health as indicator of health condition, and one with perceived health as part of the personal factors. Although all models showed a good fit, the model with the best fit was that with perceived health as an indicator of health condition. From a patient's perspective, components of the ICF scheme appear to be associated with each other, with perceived health being the best indicator of the health condition.

  15. Customers and markets. International components for win-win relations; Kunden und Maerkte. Internationale Bausteine fuer Win-Win-Relationen

    Energy Technology Data Exchange (ETDEWEB)

    Lamprecht, F.

    1998-09-01

    In deregulated energy markets, power supply companies change from commodity suppliers to service providers. The core of the process of change is a change in attitude, from producer to customer-oriented marketer; the means applied in the process are a diversified and integrated marketing strategy, targeting both external and internal conditions, which fits into a comprehensive concept of an integrated communications strategy. An international conference held in mid-June in Lisbon, organised by the associations Unipede and EURELECTRIC as well as the International Energy Agency (IEA), supplied a wealth of information on this topical issue spanning a broad range of interesting aspects, as eg. approaches to identify customer needs and correspondingly develop new services, or the quest for new business segments and possibilities of finding win-win relations for both customers and power producers. (orig./CB) [Deutsch] Auf liberalisierten Strommaerkten entwickeln sich die Energieversorger zu Dienstleistern. Kern des Wandels ist der Weg von der Produktions- zur Kundenorientierung, Mittel eine differenzierte und integrierte Marketingstrategie, die nach aussen wie nach innen gerichtet ist und in ein umfassendes Konzept einer integrierten Kommunikationsstrategie eingepasst ist. Eine von den Verbaenden Unipede und EURELECTRIC sowie der Internationalen Energie-Agentur (IEA) Mitte Juni in Lissabon ausgerichtete internationale Konferenz lieferte hierzu eine Fuelle an Material. Es wurde thematisch ein weiter Bogen gespannt. Von der Ermittlung unterschiedlicher Kundenbeduerfnisse ueber Methoden, sich danach auszurichten sowie speziell entwickelte Marketingstrategien, bis hin zu neuen Betaetigungsfeldern wurde nach Moeglichkeiten gesucht, Win-Win-Relationen fuer Kunden und EVU darzustellen. (orig.)

  16. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Linjun [Zhejiang Univ. of Technology, Hangzhou (China). College of Mechanical Engineering; Xue, Guohong; Zhang, Ming [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China)

    2017-11-15

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  17. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Xie, Linjun

    2017-01-01

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  18. Conjugate heat transfer analysis for in-vessel retention with external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong-Woon; Bae, Jae-ho; Song, Hyuk-Jin

    2016-01-01

    Highlights: • A conjugate heat transfer analysis method is applied for in-vessel corium retention. • 3D heat diffusion has a formidable effect in alleviating focusing heat load from metallic layer. • The focusing heat load is decreased by about 2.5 times on the external surface. - Abstract: A conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue for in-vessel retention. The method calculates steady-state three-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel three-layered stratified corium (metallic pool, oxide pool and heavy metal and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel). The three-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method. For the ex-vessel boiling boundary conditions, nucleate, transition and film boiling are considered. The thermal integrity of a reactor vessel is addressed in terms of heat flux at the outer-most nodes of the vessel and remaining thickness profile. The vessel three-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate

  19. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  20. Cracking at nozzle corners in the nuclear pressure vessel industry

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Cracks in nozzle corners at the pressure boundary of nuclear reactors have been frequently observed in service. These cracks tend to form with radial orientations with respect to the nozzle central axis and are believed to be initiated by thermal shock. However, their growth is believed to be primarily due to a steady plus a fluctuating internal pressure. Due to the impracticality of fracture testing of full-scale models, the Oak Ridge National Laboratory instituted the use of an intermediate test vessel (ITV) for use in fracture testing which had the same wall thickness and nozzle size as the prototype but significantly reduced overall length and diameter. In order to determine whether or not these ITVs could provide realistic data for full-scale reactor vessels, laboratory models of full-scale boiling water reactors and ITVs were constructed and tested. After briefly reviewing the laboratory testing and correlating results with service experience, results obtained will be used to draw some general conclusions regarding the stable growth of nonplanar cracks with curved crack fronts which are the most common precursors to fracture of pressure vessel components near junctures. Use of linear elastic fracture mechanics is made in determining stress-intensity distribution along the crack fronts

  1. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint.

    Science.gov (United States)

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping

  2. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  3. Containment vessel drain system

    Science.gov (United States)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  4. Proceedings of the CSNI workshop on International Standard Problem 48 - Analysis of 1:4-scale prestressed concrete containment vessel model under severe accident conditions

    International Nuclear Information System (INIS)

    2005-01-01

    At the CSNI meeting in June 2002, the proposal for an International Standard Problem on containment integrity (ISP 48) based on the NRC/NUPEC/Sandia test was approved. Objectives were to extend the understanding of capacities of actual containment structures based on results of the recent PCCV Model test and other previous research. The ISP was sponsored by the USNRC, and results had been made available thanks to NUPEC and to the USNRC. Sandia National Laboratory was contracted to manage the technical aspects of the ISP. At the end of the ISP48, a workshop was organized in Lyon, France on April 6-7, 2005 hosted by Electricite de France. Its overall objective was to present results obtained by participants in the ISP 48 and to assess the current practices and the state of the art with respect to the calculation of concrete structures under severe accident conditions. Experience from other areas in civil engineering related to the modelling of complex structures was greatly beneficial to all. Information obtained as a result of this assessment were utilized to develop a consensus on these calculations and identify issues or 'gaps' in the present knowledge for the primary purpose of formulating and prioritizing research needs on this topic. The ISP48 exercise was published in the report referenced NEA/CSNI/R(2005)5 in 3 volumes. Volume 1 contains the synthesis of the exercise; Volumes 2 and 3 contain individual contributions of participating organizations. The CSNI Working Group on the Integrity and Ageing and in particular its sub-group on the behaviour of concrete structures has produced extensive material over the last few years. The complete list of references is given in this document. These proceedings gather the papers and presentations given by the participants at the Lyon workshop

  5. Food Consumption Patterns Of The Ozyorsk Population In 1948-1966, Important For Estimating Peroral Component Of Internal Exposure Doses

    International Nuclear Information System (INIS)

    Mokrov, Y.; Martyushov, V.Z.; Stukalov, Pavel M.; Ivanov, I.A.; Beregich, D.A.; Anspaugh, L.R.; Napier, Bruce A.

    2008-01-01

    Results of reconstruction of food consumption patterns are presented for the residents of Ozyorsk for the period of 1948-1966. The reconstruction was performed on the basis analysis of the archive data. The given period of time is characterized by maximum releases into the atmosphere from the Mayak PA sources, and, therefore, it is considered to be the most significant period for calculating peroral component contribution to effective exposure doses to the population. The paper describes main foodstuff suppliers (regions) and their economic indices, as well as delivery rates and consumption rates for most important foodstuffs (primarily whole milk).

  6. Development of radiation hard components for remote maintenance

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Obara, Kenjiro; Kakudate, Satoshi; Tominaga, Ryuichiro; Akada, Tamio; Morita, Hirosuke.

    1997-01-01

    In International Thermonuclear Experimental Reactor (ITER), in-vessel remote-handling is inevitably required to assemble and maintain activated in-vessel components due to D-T operation. The components of the in-vessel remote-handling system must have sufficient radiation hardness to allow for operation under an intense gamma-ray radiation of over 30 kGy/h for periods up to more than 1,000 hours. To this end, extensive irradiation tests and quality improvements including the optimization of material composition have been conducted through the ITER R and D program in order to develop radiation hard components which satisfy radiation doses from 10 MGy to 100 MGy at the dose rate of 10 kGy/h. This paper outlines the latest status of the radiation hard component development that has been conducted as the Japan Home Team's contribution to ITER. The remote-handling components tested are categorized into either robotics, viewing systems or common components. The irradiation tests include commercial base products for screening both modified and newly developed products to improve their radiation hardness. (author)

  7. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  8. TMI-2 Vessel Investigation Project integration report

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. R.; Rempe, J. L.; Stickler, L. A.; Korth, G. E.; Diercks, D. R.; Neimark, L. A.; Akers, D W; Schuetz, B. K.; Shearer, T L; Chavez, S. A.; Thinnes, G. L.; Witt, R. J.; Corradini, M L; Kos, J. A. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-03-01

    The Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) was an international effort that was sponsored by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. The primary objectives of the VIP were to extract and examine samples from the lower head and to evaluate the potential modes of failure and the margin of structural integrity that remained in the TMI-2 reactor vessel during the accident. This report presents a summary of the major findings and conclusions that were developed from research during the VIP. Results from the various elements of the project are integrated to form a cohesive understanding of the vessel`s condition after the accident.

  9. Advanced inspection and repair techniques for primary side components

    International Nuclear Information System (INIS)

    Elm, Ralph

    1998-01-01

    The availability of nuclear power plant mainly depends on the components of the Nuclear Steam Supply System (NSSS) such as reactor pressure vessel, core internals and steam generators. The last decade has been characterized by intensive inspection and repair work on PWR steam generators. In the future, it can be expected, that the inspection of the reactor pressure vessel and the inspection and repair of its internals, in both PWR and BWR will be one of the challenges for the nuclear community. Due to this challenge, new, advanced inspection and repair techniques for the vital primary side components have been developed and applied, taking into account such issues as: use of reliable and fast inspection methods, repair of affected components instead of costly replacement, reduction of outage time compared to conventional methods, minimized radiation exposure, acceptable costs. This paper reflects on advanced inspection and repair techniques such as: Baffle Former Bolt inspection and replacement, Barrel Former Bolt inspection and replacement, Mechanized UT and visual inspection of reactor pressure vessels, Steam Generator repair by advanced sleeving technology. The techniques described have been successfully applied in nuclear power plants and improved the operation performance of the components and the NPP. (author). 6 figs

  10. Internal examination of CAGR's

    International Nuclear Information System (INIS)

    Walton, P.J.; Langley, J.P.; Simons, C.R.; Hart, J.D.

    1975-01-01

    During selected reactor maintenance periods it will be necessary to conduct examinations of reactor internal components to gain assurance of their continuing integrity throughout the design life. Equipment for remote examination is being developed that will measure the distortions of the graphite moderator bricks and extract samples from them for analysis. Other remotely operated equipment will allow closed circuit TV viewing inside the reactors: the equipment provides both wide field and detailed inspection facilities within a single compact unit. Manipulators are being developed to ring the viewing units to the best vantage points. Reeling and handling gear will be operated from outside the vessels and these provide full containment at all times. (author)

  11. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  12. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  13. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    Loeb, A.; Sokcic-Kostic, M.; Eisenmann, B.; Prechtl, E.

    2007-01-01

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m 3 . Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  14. Radioactive waste processing vessel

    International Nuclear Information System (INIS)

    Hayashi, Masaru; Suzuki, Osamu; Ishizaki, Kanjiro.

    1987-01-01

    Purpose: To obtain a vessel of a reduced weight and with no external leaching of radioactive materials. Constitution: The vessel main body is constituted, for example, with light weight concretes or foamed concretes, particularly, foamed concretes containing fine closed bubbles in the inside. Then, layers having dense texture made of synthetic resin such as polystylene, vinylchloride resin, etc. or metal plate such as stainless plate are integrally disposed to the inner surface of the vessel main body. The cover member also has the same structure. (Sekiya, K.)

  15. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  16. Process-integrated online monitoring of safety-relevant aluminum airbag pressure vessel components for a combined defect detection and material property determination by using contactless NDT (EMUS and EC)

    International Nuclear Information System (INIS)

    Becker, R.; Dobmann, G.; Salzburger, H.-J.

    1999-01-01

    Airbag pressure vessels for the north-American market mainly are made by forging and by the use of steel alloys. In Europe aluminum alloys are common and the manufacturing process is extrusion of circular blanks - made from cold rolled plates - in a form applying a 100 t press at room temperature. Then by heat treatment the strength/hardness of the material is properly adjusted and after that the pressure vessel parts have to be continuously inspected with an inspection and handling cycle time of 3 s. Inspection of the axis-symmetric parts is asked for surface breaking extrusion defects as well as for surface parallel delaminations in the bulk volume. Furthermore, the material strength is a quality characteristic that has to be nondestructively registered and documented. The inspection is performed by eddy current probes and an EMAT, of which the eddy current impedance measurements are used for surface breaking extrusion defect detection and sizing (single frequency technique with digital locus curve filtering) and strength characterization (3-frequency technique with digital filtering for signal-to-noise enhancement). The bulk delaminations are detected by an EMAT-resonance technique using a spiral eddy current coil and permanent magnets for the EMA-energy transformation. The inspections are performed by singling the parts on a conveying belt, rotating two of them parallel on turntables scanning with the transducers in specially selected circular scan paths. The performance of the system is characterized by a number of 6000 parts per shift in the two time-parallel inspection lines with 3 shifts in 24 hours. The registered quality characteristics are documented by laser writing onto the surface of each part. The emphasis of the contribution is on the presentation and discussion of the safety and economical benefits by process-integrated NDT. (author)

  17. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  18. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  20. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man.

    Science.gov (United States)

    Strutton, Paul H; Beith, Iain D; Theodorou, Sophie; Catley, Maria; McGregor, Alison H; Davey, Nick J

    2004-10-01

    Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (+/- S.E.M.) ipsilateral MEP latencies were longer ( Pmuscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70+/-0.20 (IO), 0.14+/-0.05 (D) and 0.08+/-0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21+/-0.38 compared with 0.26+/-0.06 in the other cortex ( Pmuscles and also shows hemispheric asymmetry.

  1. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  2. Cheboygan Vessel Base

    Data.gov (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  3. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  4. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  5. 2011 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  6. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  7. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. Coastal Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  9. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  10. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1977-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction. (Auth.)

  11. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  12. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  13. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  14. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  15. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  16. PWR reactor vessel in-service-inspection according to RSEM

    International Nuclear Information System (INIS)

    Algarotti, Marc; Dubois, Philippe; Hernandez, Luc; Landez, Jean Paul

    2006-01-01

    Nuclear services experience Framatome ANP (an AREVA and Siemens company) has designed and constructed 86 Pressurized Water Reactors (PWR) around the world including the three units lately commissioned at Ling Ao in the People's Republic of China and ANGRA 2 in Brazil; the company provided general and specialized outage services supporting numerous outages. Along with the American and German subsidiaries, Framatome ANP Inc. and Framatome ANP GmbH, Framatome ANP is among the world leading nuclear services providers, having experience of over 500 PWR outages on 4 continents, with current involvement in more than 50 PWR outages per year. Framatome ANP's experience in the examinations of reactor components began in the 1970's. Since then, each unit (American, French and German companies) developed automated NDT inspection systems and carried out pre-service and ISI (In-Service Inspections) using a large range of NDT techniques to comply with each utility expectations. These techniques have been validated by the utilities and the safety authorities of the countries where they were implemented. Notably Framatome ANP is fully qualified to provide full scope ISI services to satisfy ASME Section XI requirements, through automated NDE tasks including nozzle inspections, reactor vessel head inspections, steam generator inspections, pressurizer inspections and RPV (Reactor Pressure Vessel) inspections. Intercontrole (Framatome ANP subsidiary dedicated in supporting ISI) is one of the leading NDT companies in the world. Its main activity is devoted to the inspection of the reactor primary circuit in French and foreign PWR Nuclear Power Plants: the reactor vessel, the steam generators, the pressurizer, the reactor internals and reactor coolant system piping. NDT methods mastered by Intercontrole range from ultrasonic testing to eddy current and gamma ray examinations, as well as dye penetrant testing, acoustic monitoring and leak testing. To comply with the high requirements of

  17. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  18. Use of SiCf/SiC ceramic composites as structure material of a fusion reactor toroid internal components

    International Nuclear Information System (INIS)

    Aiello, G.

    2001-01-01

    The use of low neutron-induced activation structural materials seems necessary in order to improve safety in future fusion power reactors. Among them, SiC f /SiC composites appear as a very promising solution because of their low activation characteristics coupled with excellent mechanical properties at high temperatures. With the main objective of evaluating the limit of present-day composites, a tritium breeding blanket using SiC f /SiC as structural material (the TAURO blanket) has been developed in the last years by the Commissariat a l'Energie Atomique (CEA). The purpose of this thesis was to modify the available design tools (computer codes, design criteria), normally used for the analyses of metallic structures, in order to better take into account the mechanical behaviour of SiC f /SiC. Alter a preliminary improvement of the calculation methods, two main topics of study could be identified: the modelling of the mechanical behaviour of the composite and the assessment of appropriate design criteria. The different behavioural models available in literature were analysed in order to find the one that was the best suited to the specific problems met in the field of fusion power. The selected model was then implemented in the finite elements code CASTEM 2000 used within the CEA for the thermo-mechanical analyses of the TAURO blanket. For the design of the blanket, we proposed a new resistance criterion whose main advantage, with respect to the other examined, lies in the easiness of identification. The suggested solutions were then applied in the design studies of the TAURO blanket. We then could show that the use of appropriate calculation methodologies is necessary in order to achieve a correct design of the blanket and a more realistic estimate of the limits of present day composites. The obtained results can also be extended to all nuclear components making use of SiC f /SiC structures. (author) [fr

  19. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  20. Graywater Discharges from Vessels

    Science.gov (United States)

    2011-11-01

    metals (e.g., cadmium, chromium, lead, copper , zinc, silver, nickel, and mercury), solids, and nutrients (USEPA, 2008b; USEPA 2010). Wastewater from... flotation ), and disinfection (using ultraviolet light) as compared to traditional Type II MSDs that use either simple maceration and chlorination, or...Coliform Naval Vessels Oceanographic Vessels Small Cruise Ships 25a Vendor 2 Hamann AG Biological Treatment with Dissolved Air Flotation and

  1. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  2. Confinement Vessel Assay System: Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  3. Confinement Vessel Assay System: Calibration and Certification Report

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le) 100-g 239 Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  4. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  5. The application of external vibration monitoring to reactors with concrete pressure vessels

    International Nuclear Information System (INIS)

    Hammill, W.J.

    1979-01-01

    The application of external vibration monitoring techniques to advanced gas cooled reactors (AGR) which have concrete pressure vessels is considered. A monitoring system for a particular AGR coolant circuit structure is developed, whose primary objective is to detect impacting of two components, although the detection of forced vibration response is also considered. Experimental results from instrumented components in the reactor and data from rig tests on full size units have been used together with a mathematical model of some elements of the transmission path in order to establish its dynamic characteristics and relate internal component vibration to externally measured signals. The application of external vibration monitoring to the external detection of the forced vibration response of an internal reactor assembly and the remote monitoring of circulator sound output is discussed. (author)

  6. Radiology trainer. Torso, internal organs and vessels

    International Nuclear Information System (INIS)

    Staebler, A.; Ertl-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  7. Reliability and Validity of the Sensory Component of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI): A Systematic Review.

    Science.gov (United States)

    Hales, M; Biros, E; Reznik, J E

    2015-01-01

    Since 1982, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) has been used to classify sensation of spinal cord injury (SCI) through pinprick and light touch scores. The absence of proprioception, pain, and temperature within this scale creates questions about its validity and accuracy. To assess whether the sensory component of the ISNCSCI represents a reliable and valid measure of classification of SCI. A systematic review of studies examining the reliability and validity of the sensory component of the ISNCSCI published between 1982 and February 2013 was conducted. The electronic databases MEDLINE via Ovid, CINAHL, PEDro, and Scopus were searched for relevant articles. A secondary search of reference lists was also completed. Chosen articles were assessed according to the Oxford Centre for Evidence-Based Medicine hierarchy of evidence and critically appraised using the McMasters Critical Review Form. A statistical analysis was conducted to investigate the variability of the results given by reliability studies. Twelve studies were identified: 9 reviewed reliability and 3 reviewed validity. All studies demonstrated low levels of evidence and moderate critical appraisal scores. The majority of the articles (~67%; 6/9) assessing the reliability suggested that training was positively associated with better posttest results. The results of the 3 studies that assessed the validity of the ISNCSCI scale were confounding. Due to the low to moderate quality of the current literature, the sensory component of the ISNCSCI requires further revision and investigation if it is to be a useful tool in clinical trials.

  8. A multimodal high-value curriculum affects drivers of utilization and performance on the high-value care component of the internal medicine in-training exam.

    Science.gov (United States)

    Chau, Tom; Loertscher, Laura

    2018-01-01

    Background : Teaching the practice of high-value care (HVC) is an increasingly important function of graduate medical education but best practices and long-term outcomes remain unknown. Objective : Whether a multimodal curriculum designed to address specific drivers of low-value care would affect resident attitudes, skills, and performance of HVC as tested by the Internal Medicine In-Training Exam (ITE). Methods : In 2012, we performed a baseline needs assessment among internal medicine residents at a community program regarding drivers of healthcare utilization. We then created a multimodal curriculum with online interactive worksheets, lectures, and faculty buy-in to target specific skills, knowledge, and culture deficiencies. Perceived drivers of care and performance on the Internal Medicine ITE were assessed yearly through 2016. Results : Fourteen of 27 (52%) residents completed the initial needs assessment while the curriculum was eventually seen by at least 24 of 27 (89%). The ITE was taken by every resident every year. Long-term, 3-year follow-up demonstrated persistent improvement in many drivers of utilization (patient requests, reliance on subspecialists, defensive medicine, and academic curiosity) and improvement with sustained high performance on the high-value component of the ITE. Conclusion : A multimodal curriculum targeting specific drivers of low-value care can change culture and lead to sustained improvement in the practice of HVC.

  9. 46 CFR 2.10-101 - Annual vessel inspection fee.

    Science.gov (United States)

    2010-10-01

    ... inspections, damage surveys, repair and modification inspections, change in vessel service inspections, permit... of international certificates. (d) Entitlement to inspection services for the current year remains... MODUs 4,695 Semi-submersible MODUs 8,050 Nautical School Vessels: Length not greater than 100 feet 835...

  10. Postural stability in patients with knee osteoarthritis: comparison with controls and evaluation of relationships between postural stability scores and International Classification of Functioning, Disability and Health components.

    Science.gov (United States)

    Hsieh, Ru-Lan; Lee, Wen-Chung; Lo, Min-Tzu; Liao, Wei-Cheng

    2013-02-01

    To assess the differences in postural stability between patients with knee osteoarthritis and controls without knee osteoarthritis, and to evaluate possible relations between postural stability scores and International Classification of Functioning, Disability and Health (ICF) components. An age-matched, case-controlled trial with a cross-sectional design. A teaching hospital. Patients with knee osteoarthritis (n=73) and age-matched controls (n=60). Data on patients' postural stability and additional health-related variables were collected using various instruments. These included the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory, the World Health Organization Quality of Life Brief Version, the physical function test (chair-rising time), the Chinese version of the Western Ontario and McMaster Universities Osteoarthritis Index, the Chinese version of the Knee Injury and Osteoarthritis Outcome Score, and the Biodex Stability System. A comparison of postural stability in patients with knee osteoarthritis versus that of controls was performed. The relation between postural stability scores for patients with knee osteoarthritis and ICF components was evaluated. Pearson correlation tests were used to determine the variables that correlated with postural stability among these patients. Patients with knee osteoarthritis displayed lower overall postural stability than controls (scores of 0.7 vs. 0.5, P=.006) and scored lower on the environmental domain of the World Health Organization Quality of Life Brief Version (62.2 vs 66.8, P=.014). For patients with knee osteoarthritis, postural stability was weakly associated with the ICF components of body functions and structures, including pain (r=.33-.34, P=.004), physical fatigue (r=.28, P=.016), and reduced motivation (r=.30, P=.011). Weak to moderate associations between postural stability and the ICF components of activities and participation were found; the relevant ICF variables included

  11. Acrylic vessel cleaning tests

    International Nuclear Information System (INIS)

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  12. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  13. Structural features and in-service inspection of the LTHR-200 pressure vessel

    International Nuclear Information System (INIS)

    Xiong Dunshi; He Shuyan; Liu Junjie; Yu Suyuan

    1993-01-01

    LTHR-200 is a low temperature district-heating reactor. It adopts double-shell design pressure vessel and metal containment. Because of the safety and structural features of the reactor, the in-service inspection of the pressure vessel can be simplified greatly. LTHR-200 is an integrated arrangement. Both its core components and the main heat exchangers are contained in the reactor pressure vessel. The coolant of the main loop is run by a full-power natural circulation and there need no main pumps and pipes. Thus, the reactor pressure vessel constitutes the pressure boundary of the reactor's main loop coolant. In regard to these features, a small-sized containment is designed for the reactor. The metal safety container with a small volume is placed closely around the reactor pressure vessel. Outside the metal containment, there is a large reinforced concrete construction for the reactor. Their main operation and design parameters are as follows: The pressure vessel: operation pressure = 2.4 MPa; design pressure = 3.0 MPa; design temperature = 250 deg C; 40 year fast neutron (E>1MeV) fluence in the belt-line region = < 10E16n/cm; internal diameter = 5000 mm; material SA516-70; shell thickness 65 mm; The metal containment: maximum operation pressure = 1.8 MPa; design pressure = 1.8 MPa; design temperature = 250 deg. C; upper internal diameter 7000 mm; lower internal diameter = 5600 mm; material = SA516-70; shell thickness, upper part = 80 mm; lower part = 50 mm. All penetrating pipes through the pressure vessel are located at the top penetration section of the shell. All the internal diameters of penetrating pipes are less than 50 mm. Inside and outside the metal containment wall respectively, isolating valves are connected to the reactor coolant pipe which passes through the containment. These two isolating valves use different driving methods. Every penetrating part of the reactor construction uses a proper form of structure according to safety requirements

  14. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  15. Radioactive liquid containing vessel

    International Nuclear Information System (INIS)

    Sakurada, Tetsuo; Kawamura, Hironobu.

    1993-01-01

    Cooling jackets are coiled around the outer circumference of a container vessel, and the outer circumference thereof is covered with a surrounding plate. A liquid of good conductivity (for example, water) is filled between the cooling jackets and the surrounding plate. A radioactive liquid is supplied to the container vessel passing through a supply pipe and discharged passing through a discharge pipe. Cooling water at high pressure is passed through the cooling water jackets in order to remove the heat generated from the radioactive liquid. Since cooling water at high pressure is thus passed through the coiled pipes, the wall thickness of the container vessel and the cooling water jackets can be reduced, thereby enabling to reduce the cost. Further, even if the radioactive liquid is leaked, there is no worry of contaminating cooling water, to prevent contamination. (I.N.)

  16. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  17. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  18. ISO and EIGA standards for cryogenic vessels and accessories

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The EIGA/WG 6’s scope is cryogenic vessels and accessories, including their design, material compatibility, operational requirements and periodical inspection. The specific responsibilities include monitoring international standardization (ISO, CEN) and regulations (UN, TPED, PED...

  19. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  20. Progress of ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Bayon, A.; Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B.; Kim, B.C.; Kuzmin, E.; Le Barbier, R.; Martinez, J.-M.; Pathak, H.; Preble, J.; Sa, J.W.; Terasawa, A.; Utin, Yu.

    2013-01-01

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure

  1. Distribution of the In-Vessel Diagnostics in ITER Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    González, Jorge, E-mail: Jorge.Gonzalez@iter.org [Rüecker Lypsa, Carretera del Prat, 65, Cornellá de Llobregat (Spain); Clough, Matthew; Martin, Alex; Woods, Nick; Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon-CS 90 046 13067 Saint Paul Lez Durance (France); Martinez, Gonzalo [Technical University Of Catalonia (UPC), Barcelona-Tech, Barcelona (Spain); Stefan, Gicquel; Yunxing, Ma [ITER Organization, Route de Vinon sur Verdon-CS 90 046 13067 Saint Paul Lez Durance (France)

    2017-01-15

    The ITER In-Vessel Diagnostics have been distributed around the In-Vessel shell to understand burning plasma physics and assist in machine operation. Each diagnostics component has its own requirements, constraints, and even exclusion among them for the highly complex In-Vessel environment. The size of the plasma, the requirement to be able to align the blanket system to the magnetic centre of the machine, the cooling requirements of the blanket system and the size of the pressure vessel itself all add to the difficulties of integrating these systems into the remaining space available. The available space for the cables inside the special trays (in-Vessel looms) is another constraint to allocate In-Vessel electrical sensors. Besides this, there are issues with the Assembly sequences and surface & volumetric neutron heating considerations that have imposed several additional restrictions.

  2. Integrated conjugate heat transfer analysis method for in-vessel retention with external reactor vessel cooling - 15477

    International Nuclear Information System (INIS)

    Park, J.W.; Bae, J.H.; Seol, W.C.

    2015-01-01

    An integrated conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue. The method calculates steady-state 3-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel 3-layered stratified corium (metallic pool, oxide pool and heavy metal) and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel. The 3-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method and ex-vessel boiling regimes are parametrically considered. The thermal integrity of a reactor vessel is addressed in terms of un-molten thickness profile. The vessel 3-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate inside the oxide pool and the 3-dimensional vessel heat transfer provides a much larger minimum vessel wall thickness. (authors)

  3. LECOTELO - conceptual design, testings and realisation of the main vessel

    International Nuclear Information System (INIS)

    Ioan, M.; Hororoi, M.

    2013-01-01

    Lead Corrosion Testing Loop (LECOTELO) facility was conceived to assure all conditions requested by corrosion/erosion tests in pure hot lead for different materials. The main vessel will receive at least 36 different material samples; each of them must be swept on both sides by a lead flow at a very well known speed. Taking into account that the inner system of this vessel is rather complex, it is very important to know the behavior of the vessel at different speeds of the lead flow around the samples. After many simulations of different configurations of the inner components, it was obtained the best inner geometry of the flow which provides the minimum pressure loss between inlet and outlet vessel. Consequently, the design of vessel components was changed in accordance with these new results of simulations and in this moment they are in the manufacturing process. (authors)

  4. Expanding plasma jet in a vacuum vessel

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Yakovetskij, V.S.

    1998-01-01

    The paper deals with numerical calculations of parameters of a supersonic quasi-neutral argon plasma jet expanding into a cylindrical vacuum vessel and interacting with its inner surface. A modified method of large particles was used, the complex set of hydrodynamic equations being broken into simpler components, each of which describes a separate physical process. Spatial distributions of the main parameters of the argon plasma jet were simulated at various times after the jet entering the vacuum vessel, the parameters being the jet velocity field, the full plasma pressure, the electron temperature, the temperature of heavy particles, and the degree of ionization. The results show a significant effect of plasma jet interaction on the plasma parameters. The jet interaction with the vessel walls may result e.g. in excitation of shock waves and rotational plasma motions. (J.U.)

  5. Reliability and Validity of the Sensory Component of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI): A Systematic Review

    Science.gov (United States)

    Hales, M.; Biros, E.

    2015-01-01

    Background: Since 1982, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) has been used to classify sensation of spinal cord injury (SCI) through pinprick and light touch scores. The absence of proprioception, pain, and temperature within this scale creates questions about its validity and accuracy. Objectives: To assess whether the sensory component of the ISNCSCI represents a reliable and valid measure of classification of SCI. Methods: A systematic review of studies examining the reliability and validity of the sensory component of the ISNCSCI published between 1982 and February 2013 was conducted. The electronic databases MEDLINE via Ovid, CINAHL, PEDro, and Scopus were searched for relevant articles. A secondary search of reference lists was also completed. Chosen articles were assessed according to the Oxford Centre for Evidence-Based Medicine hierarchy of evidence and critically appraised using the McMasters Critical Review Form. A statistical analysis was conducted to investigate the variability of the results given by reliability studies. Results: Twelve studies were identified: 9 reviewed reliability and 3 reviewed validity. All studies demonstrated low levels of evidence and moderate critical appraisal scores. The majority of the articles (~67%; 6/9) assessing the reliability suggested that training was positively associated with better posttest results. The results of the 3 studies that assessed the validity of the ISNCSCI scale were confounding. Conclusions: Due to the low to moderate quality of the current literature, the sensory component of the ISNCSCI requires further revision and investigation if it is to be a useful tool in clinical trials. PMID:26363591

  6. TMI-2 Vessel Investigation Project integration report

    International Nuclear Information System (INIS)

    Wolf, J.R.; Rempe, J.L.; Stickler, L.A.; Korth, G.E.; Diercks, D.R.; Neimark, L.A.; Akers, D.W.; Schuetz, B.K.; Shearer, T.L.; Chavez, S.A.; Thinnes, G.L.; Witt, R.J.; Corradini, M.L.; Kos, J.A.

    1994-03-01

    The Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) was an international effort that was sponsored by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. The primary objectives of the VIP were to extract and examine samples from the lower head and to evaluate the potential modes of failure and the margin of structural integrity that remained in the TMI-2 reactor vessel during the accident. This report presents a summary of the major findings and conclusions that were developed from research during the VIP. Results from the various elements of the project are integrated to form a cohesive understanding of the vessel's condition after the accident

  7. Crashworthy sealed pressure vessel for plutonium transport

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1980-01-01

    A rugged transportation package for the air shipment of radioisotopic materials was recently developed. This package includes a tough, sealed, stainless steel inner containment vessel of 1460 cc capacity. This vessel, intended for a mass load of up to 2 Kg PuO 2 in various isotopic forms (not to exceed 25 watts thermal activity), has a positive closure design consisting of a recessed, shouldered lid fastened to the vessel body by twelve stainless-steel bolts; sealing is accomplished by a ductile copper gasket in conjunction with knife-edge sealing beads on both the body and lid. Follow-on applications of this seal in newer, smaller packages for international air shipments of plutonium safeguards samples, and in newer, more optimized packages for greater payload and improved efficiency and utility, are briefly presented

  8. Float level switch for a nuclear power plant containment vessel

    International Nuclear Information System (INIS)

    Powell, J.G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures

  9. Float level switch for a nuclear power plant containment vessel

    Science.gov (United States)

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  10. Pressure vessel integrity 1991

    International Nuclear Information System (INIS)

    Bhandari, S.; Doney, R.O.; McDonald, M.S.; Jones, D.P.; Wilson, W.K.; Pennell, W.E.

    1991-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on nuclear industry applications. The papers were prepared for technical sessions developed under the sponsorship of the ASME Pressure Vessels and Piping Division Committees for Codes and Standards, Computer Technology, Design and Analysis, and Materials Fabrication. They were presented at the 1991 Pressure Vessels and Piping Division Conference in San Diego, California, June 23-27. The primary objective of the sponsoring organization is to provide a forum for the dissemination and discussion of information on development and application of technology for the structural integrity assessment of pressure vessels and piping. This publication includes contributions from authors from Australia, France, Japan, Sweden, Switzerland, the United Kingdom, and the United States. The papers here are organized in six sections, each with a particular emphasis as indicated in the following section titles: Fracture Technology Status and Application Experience; Crack Initiation, Propagation and Arrest; Ductile Tearing; Constraint, Stress State, and Local-Brittle-Zones Effects; Computational Techniques for Fracture and Corrosion Fatigue; and Codes and Standards for Fatigue, Fracture and Erosion/Corrosion

  11. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  12. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  13. Visualization of vessel traffic

    NARCIS (Netherlands)

    Willems, C.M.E.

    2011-01-01

    Moving objects are captured in multivariate trajectories, often large data with multiple attributes. We focus on vessel traffic as a source of such data. Patterns appearing from visually analyzing attributes are used to explain why certain movements have occurred. In this research, we have developed

  14. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  15. Reactor vessel stud tensioner

    International Nuclear Information System (INIS)

    Malandra, L.J.; Beer, R.W.; Salton, R.B.; Spiegelman, S.R.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner, for facilitating the loosening or tightening of a stud nut on a reactor vessel stud, has gripper jaws which when the tensioner is lowered into engagement with the upper end of the stud are moved inwards to grip the upper end and which when the tensioner is lifted move outward to release the upper end. (author)

  16. TMI-2 Vessel Investigation Project Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1990-01-01

    The TMI-2 [Three Mile Island unit 2] Vessel Investigation Project Metallurgical Program at Argonne National Laboratory is a part of the international TMI-2 Vessel Investigation Project being conducted jointly by the U.S. Nuclear Regulatory Commission and the Organization for Economic Co-operation and Development (OECD). The overall project consists of three phases, namely (1) recovery of material samples from the lower head of the TMI-2 reactor, (2) examination and analysis of the lower head samples and the preparation and testing of archive material subjected to a similar thermal history, and (3) procurement, examination, and analysis of companion core material located adjacent to or near the lower head material. The specific objectives of the ANL Metallurgical Program, which accounts for a major portion of Phase 2, are to prepare metallographic and mechanical test specimen blanks from the TMI-2 lower head material, prepare similar test specimen blanks from suitable archive material subjected to the appropriate thermal processing, determine the mechanical properties of the lower vessel head and archive materials under the conditions of the core-melt accident, and assess the lower head integrity and margin-to-failure during the accident. The ANL work consists of three tasks: (1) archive materials program, (2) fabrication of metallurgical and mechanical test specimens from the TMI-2 pressure vessel samples, and (3) mechanical property characterization of TMI-2 lower pressure vessel head and archive material

  17. The Development of Key Technologies in Applications of Vessels Connected to the Internet

    Directory of Open Access Journals (Sweden)

    Zhe Tian

    2017-10-01

    Full Text Available With the development of science and technology, traffic perception, communication, information processing, artificial intelligence and the shipping information system have become important in supporting the realization of intelligent shipping transportation. Against this background, the Internet of Vessels (IoV is proposed to integrate all these advanced technologies into a platform to meet the requirements of international and regional transportations. The purpose of this paper is to analyze how to benefit from the Internet of Vessels to improve the efficiency and safety of shipping, and promote the development of world transportation. In this paper, the IoV is introduced and its main architectures are outlined. Furthermore, the characteristics of the Internet of Vessels are described. Several important applications that illustrate the interaction of the Internet of Vessels’ components are proposed. Due to the development of the Internet of Vessels still being in its primary stage, challenges and prospects are identified and addressed. Finally, the main conclusions are drawn and future research priorities are provided for reference and as professional suggestions for future researchers in this field.

  18. Eddy current testing of composite pressure vessels

    Science.gov (United States)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  19. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  20. Vessels in Transit - Web Tool

    Data.gov (United States)

    Department of Transportation — A web tool that provides real-time information on vessels transiting the Saint Lawrence Seaway. Visitors may sort by order of turn, vessel name, or last location in...

  1. An ontology-based exploration of the concepts and relationships in the activities and participation component of the international classification of functioning, disability and health.

    Science.gov (United States)

    Della Mea, Vincenzo; Simoncello, Andrea

    2012-02-28

    The International Classification of Functioning, Disability and Health (ICF) is a classification of health and health-related issues, aimed at describing and measuring health and disability at both individual and population levels. Here we discuss a preliminary qualitative and quantitative analysis of the relationships used in the Activities and Participation component of ICF, and a preliminary mapping to SUMO (Suggested Upper Merged Ontology) concepts. The aim of the analysis is to identify potential logical problems within this component of ICF, and to understand whether activities and participation might be defined more formally than in the current version of ICF. In the relationship analysis, we used four predicates among those available in SUMO for processes (Patient, Instrument, Agent, and subProcess). While at the top level subsumption was used in most cases (90%), at the lower levels the percentage of other relationships rose to 41%. Chapters were heterogeneous in the relationships used and some of the leaves of the tree seemed to represent properties or parts of the parent concept rather than subclasses. Mapping of ICF to SUMO proved partially feasible, with the activity concepts being mapped mostly (but not totally) under the IntentionalProcess concept in SUMO. On the other hand, the participation concept has not been mapped to any upper level concept. Our analysis of the relationships within ICF revealed issues related to confusion between classes and their properties, incorrect classifications, and overemphasis on subsumption, confirming what already observed by other researchers. However, it also suggested some properties for Activities that could be included in a more formal model: number of agents involved, the instrument used to carry out the activity, the object of the activity, complexity of the task, and an enumeration of relevant subtasks.

  2. An ontology-based exploration of the concepts and relationships in the activities and participation component of the international classification of functioning, disability and health

    Directory of Open Access Journals (Sweden)

    Della Mea Vincenzo

    2012-02-01

    Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF is a classification of health and health-related issues, aimed at describing and measuring health and disability at both individual and population levels. Here we discuss a preliminary qualitative and quantitative analysis of the relationships used in the Activities and Participation component of ICF, and a preliminary mapping to SUMO (Suggested Upper Merged Ontology concepts. The aim of the analysis is to identify potential logical problems within this component of ICF, and to understand whether activities and participation might be defined more formally than in the current version of ICF. Results In the relationship analysis, we used four predicates among those available in SUMO for processes (Patient, Instrument, Agent, and subProcess. While at the top level subsumption was used in most cases (90%, at the lower levels the percentage of other relationships rose to 41%. Chapters were heterogeneous in the relationships used and some of the leaves of the tree seemed to represent properties or parts of the parent concept rather than subclasses. Mapping of ICF to SUMO proved partially feasible, with the activity concepts being mapped mostly (but not totally under the IntentionalProcess concept in SUMO. On the other hand, the participation concept has not been mapped to any upper level concept. Conclusions Our analysis of the relationships within ICF revealed issues related to confusion between classes and their properties, incorrect classifications, and overemphasis on subsumption, confirming what already observed by other researchers. However, it also suggested some properties for Activities that could be included in a more formal model: number of agents involved, the instrument used to carry out the activity, the object of the activity, complexity of the task, and an enumeration of relevant subtasks.

  3. In service inspection of SUPERPHENIX 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-01-01

    Although no in-service inspection constraints were imposed on the Phenix vessels, the Safety Authorities asked that the design of SUPERPHENIX 1 makes it possible to monitor throughout the lifetime of the reactor, surface and internal defects on the main vessel. A pool design and the presence of heat baffles inside the main vessel make access from the inside of the vessel impossible. Thus, an inspection can only be performed from the outside of the main vessel: the distance between the walls of the main and safety vessels is such that an inspection device can be introduced into the corresponding space. As the design of the reactor precludes radiographic inspection, the method which was selected for monitoring internal defects in the main vessel is ultrasonics. However, the anisotropic structure of austenitic stainless steel welds limits the performance of this technique. The authors present the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of SUPERPHENIX 1 vessels

  4. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  5. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  6. Reactor vessel stud closure system

    International Nuclear Information System (INIS)

    Spiegelman, S.R.; Salton, R.B.; Beer, R.W.; Malandra, L.J.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner apparatus for enabling the loosening or tightening of a stud nut on a reactor vessel stud. The apparatus is adapted to engage the vessel stud by closing a gripper around an upper end of the vessel stud when the apparatus is seated on the stud. Upon lifting the apparatus, the gripper releases the vessel stud so that the apparatus can be removed

  7. Status of the ITER vacuum vessel construction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.H.; Sborchia, C.; Ioki, K.; Giraud, B.; Utin, Yu.; Sa, J.W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wang, X., E-mail: xiaoyuwww@gmail.com [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Teissier, P.; Martinez, J.M.; Le Barbier, R.; Jun, C.; Dani, S.; Barabash, V.; Vertongen, P.; Alekseev, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jucker, P.; Bayon, A. [F4E, c/ Josep Pla, n. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Pathak, H.; Raval, J. [ITER-India, IPR, A-29, Electronics Estate, GIDC, Sector-25, Gandhinagar 382025 (India); Ahn, H.J. [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2014-10-15

    Highlights: • Final design of the ITER vacuum vessel (VV). • Procurement of the ITER VV. • Manufacturing results of real scale mock-ups. • Manufacturing status of the VV in domestic agencies. - Abstract: The ITER vacuum vessel (VV) is under manufacturing by four domestic agencies after completion of engineering designs that have been approved by the Agreed Notified Body (ANB). Manufacturing designs of the VV have been being completed, component by component, by accommodating requirements of the RCC-MR 2007 edition. Manufacturing of the VV first sector has been started in February 2012 in Korea and in-wall shielding in May 2013 in India. EU will start manufacturing of its first sector from September 2013 and Russia the upper port by the end of 2013. All DAs have manufactured several mock-ups including real-size ones to justify/qualify and establish manufacturing techniques and procedures.

  8. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  9. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  10. Vessel generator noise as a settlement cue for marine biofouling species.

    Science.gov (United States)

    McDonald, J I; Wilkens, S L; Stanley, J A; Jeffs, A G

    2014-01-01

    Underwater noise is increasing globally, largely due to increased vessel numbers and international ocean trade. Vessels are also a major vector for translocation of non-indigenous marine species which can have serious implications for biosecurity. The possibility that underwater noise from fishing vessels may promote settlement of biofouling on hulls was investigated for the ascidian Ciona intestinalis. Spatial differences in biofouling appear to be correlated with spatial differences in the intensity and frequency of the noise emitted by the vessel's generator. This correlation was confirmed in laboratory experiments where C. intestinalis larvae showed significantly faster settlement and metamorphosis when exposed to the underwater noise produced by the vessel generator. Larval survival rates were also significantly higher in treatments exposed to vessel generator noise. Enhanced settlement attributable to vessel generator noise may indicate that vessels not only provide a suitable fouling substratum, but vessels running generators may be attracting larvae and enhancing their survival and growth.

  11. Phenomenological vessel burst investigations

    International Nuclear Information System (INIS)

    Hippelein, K.W.; Julisch, P.; Muz, J.; Schiedermaier, J.

    1985-07-01

    Fourteen burst experiments have been carried out using vessels with circumferential and longitudinal flaws, for investigation of the fracture behaviour, i.e. the time-related fracture opening. The vessels had dimensions (outer diameter x wall thickness = 800 x 47 mm) which correspond to the dimensions of the main coolant piping of a 1300 MW e PWR. The test specimens had been made of the base-safe material 20 MnMoNi 55 and of a special, 22 NiMoCr 37 base alloy. The experimental conditions with regard to pressure and temperature have been chosen so as to correspond to normal operating conditions of a PWR (p∝17.5 MPa, T∝300 0 C), i.e. the flaws have been so dimensioned that failure was to be expected at a pressure of p∝17.5 MPa. As a rule, water has been used as the pressure medium, or in some cases air, in order to influence the time-dependent pressure decrease. Fluid and structural dynamics calculations have also been made. In order to determine the impact of a fast propagating crack on the leak-to-fracture curve, which normally is defined by quasistationary experiments, suitable tests have been made with large-volume, cylindrical vessels (outer diameter x wall thickness x length = 3000 x 21 x 14000 mm) made of the material WSt E 43. The leak-before-fracture criterion has been confirmed. (orig./HP) [de

  12. Blood Vessels in Allotransplantation.

    Science.gov (United States)

    Abrahimi, P; Liu, R; Pober, J S

    2015-07-01

    Human vascularized allografts are perfused through blood vessels composed of cells (endothelium, pericytes, and smooth muscle cells) that remain largely of graft origin and are thus subject to host alloimmune responses. Graft vessels must be healthy to maintain homeostatic functions including control of perfusion, maintenance of permselectivity, prevention of thrombosis, and participation in immune surveillance. Vascular cell injury can cause dysfunction that interferes with these processes. Graft vascular cells can be activated by mediators of innate and adaptive immunity to participate in graft inflammation contributing to both ischemia/reperfusion injury and allograft rejection. Different forms of rejection may affect graft vessels in different ways, ranging from thrombosis and neutrophilic inflammation in hyperacute rejection, to endothelialitis/intimal arteritis and fibrinoid necrosis in acute cell-mediated or antibody-mediated rejection, respectively, and to diffuse luminal stenosis in chronic rejection. While some current therapies targeting the host immune system do affect graft vascular cells, direct targeting of the graft vasculature may create new opportunities for preventing allograft injury and loss. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomenology of radiation-induced changes in blood vessels are systematized and authors' experience is generalized. Modern concepts about processes leading to vessel structure injury after irradiation is critically analyzed. Special attention is paid to reparation and compensation of X-ray vessel injury, consideration of which is not yet sufficiently elucidated in literature

  14. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomeology of radiation changes of blood vessels are systemized and the authors' experience is generalyzed. A critical analysis of modern conceptions on processes resulting in vessel structure damage after irradiation, is given. Special attention is paid to reparation and compensation of radiation injury of vessels

  15. Reproducibility of the items on the Stroke Specific Quality of Life questionnaire that evaluate the participation component of the International Classification of Functioning, Disability and Health.

    Science.gov (United States)

    Silva, Soraia Micaela; Corrêa, Fernanda Ishida; Faria, Christina Danielli Coelho de Morais; Pereira, Gabriela Santos; Attié, Edna Alves Dos Anjos; Corrêa, João Carlos Ferrari

    2016-12-01

    To evaluate the reproducibility of the Stroke Specific Quality of Life (SS-QOL) items that address the participation component of the International Classification of Functioning, Disability and Health (ICF) and analyse the correlation between the subscore of these 26 items and the total SS-QOL score. Seventy-five stroke survivors participated in this study. Reproducibility was evaluated using the intraclass correlation coefficient (ICC2,1), standard error of measurement (SEM), minimum detectable change (MDC) and the Bland-Altman plot. The correlation between the subscore of the 26 items and the total SS-QOL score was analysed using Spearman's correlation coefficients (rho) and simple linear regression. An alpha risk ≤ 0.05 was considered for all analyses. The SS-QOL items that address the participation component of the ICF demonstrated excellent reliability (intra-rater ICC2,1 = 0.96; inter-rater ICC2,1 = 0.95). The SEM and MDC were adequate. The Bland-Altman plot demonstrated satisfactory agreement. A significant and strong correlation (rho = 0.83) was found between the 26 SS-QOL items that address participation and the total SS-QOL score. Moreover, the evaluation of participation was found to explain 73% of the evaluation of health-related quality of life. The 26 SS-QOL items that address the participation component of the ICF demonstrated adequate reproducibility. Thus, participation, which represents the social aspects of functionality, can be adequately evaluated with these items. Implications for Rehabilitation The 26 Stroke Specific Quality of Life items that address participation proved to be reproducible for the analysis of social participation following a stroke. The findings can lead to a better understanding of the social participation of individuals with chronic hemiparesis and assist in the establishment of adequate treatment for such individuals. The rehabilitation process can be directed towards more specific goals focused on the

  16. Vessel Biofouling Prevention and Management Options Report

    Science.gov (United States)

    2015-03-01

    microorganism -containing biofilm (slime layer) which occurs on a marine surface under the right conditions. Biofilm growth can progress to a point where... biodegradable components, or non-biocidal alternatives; vessels that reside or operate >30 days in copper impaired ports or harbors shall consider alternatives...except for nontoxic, biodegradable types) or chemicals in the water is prohibited, as would be the creation of a cloud or plume generated by paint

  17. Reactor internals production under ideal conditions at Pensacola. [PWR type reactors

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The Westinghouse factory at Pensacola, Florida, which specialises in the production of pressure vessel internal components for PWRs, is described. Its excellent manufacturing and inspection facilities, supported by careful attention to staff training and motivation, are responsible for the extremely high level of quality and continual improvement in productivity.

  18. Internal variability of fine-scale components of meteorological fields in extended-range limited-area model simulations with atmospheric and surface nudging

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei

    2015-09-01

    Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.

  19. International ENEA/ISMES/ENS specialist meeting on 'On-site experimental verification of the seismic behaviour of nuclear reactor structures and components'. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The seismic verification of nuclear plants is a subject of increasing interest in all the industrial countries, with respect to both the safety aspects and the impact of the seismic event on the design and the costs of a nuclear reactor. This topic is especially of great interest for a country like Italy, whose territory is unfortunately characterized by non - negligible seismicity: we remember, not too many years ago, the catastrophic earthquakes of Frioul and Irpinia, that caused thousands of dead people. The meeting aimed at establishing the state-of-the-art on on-site testing of nuclear reactors structures and components, with particular attention to experiences and research programmes concerning: methodologies of on-site tests and interpretation of the experimental data; seismic monitoring systems, recorded data, their use and interpretation; calibration and validation of numerical analyses. Six technical sessions were held, during which 23 high papers were presented and discussed, and six panel discussions were held (the importance of discussion was emphasized in the meeting). The technical contributions consisted of: an introduction paper, summarizing the seismic studies performed in Italy for PEC reactor and explaining the reasons why on-site tests had been performed on this reactor; 6 invited lectures, one for each of the countries that are more deeply involved in seismic analysis, providing the state-of-the-art on the topics of interest for the meeting; 16 contributed papers dealing with more specific technical items, related to the various countries and international organizations.

  20. International ENEA/ISMES/ENS specialist meeting on 'On-site experimental verification of the seismic behaviour of nuclear reactor structures and components'. Proceedings

    International Nuclear Information System (INIS)

    1988-01-01

    The seismic verification of nuclear plants is a subject of increasing interest in all the industrial countries, with respect to both the safety aspects and the impact of the seismic event on the design and the costs of a nuclear reactor. This topic is especially of great interest for a country like Italy, whose territory is unfortunately characterized by non - negligible seismicity: we remember, not too many years ago, the catastrophic earthquakes of Frioul and Irpinia, that caused thousands of dead people. The meeting aimed at establishing the state-of-the-art on on-site testing of nuclear reactors structures and components, with particular attention to experiences and research programmes concerning: methodologies of on-site tests and interpretation of the experimental data; seismic monitoring systems, recorded data, their use and interpretation; calibration and validation of numerical analyses. Six technical sessions were held, during which 23 high papers were presented and discussed, and six panel discussions were held (the importance of discussion was emphasized in the meeting). The technical contributions consisted of: an introduction paper, summarizing the seismic studies performed in Italy for PEC reactor and explaining the reasons why on-site tests had been performed on this reactor; 6 invited lectures, one for each of the countries that are more deeply involved in seismic analysis, providing the state-of-the-art on the topics of interest for the meeting; 16 contributed papers dealing with more specific technical items, related to the various countries and international organizations

  1. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  2. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  3. Examination of VVER-1000 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Markulin, K.

    2008-01-01

    The increasing demand of a higher level of safety in the operation of the nuclear power plants requires the utilisation of more precise automated equipment to perform in-service inspections. That has been achieved by technological advances in computer technology, in robotics, in examination probe technology with the development of the advanced inspection technique and has also been due to the considerable and varied experience gained in the performance of such inspections. In-service inspection of reactor pressure vessel, especially Russian-designed WWER-1000 presents one of the most important and extensive examination of nuclear power plants primary circuit components. Such examination demand high standards of inspection technology, quality and continual innovation in the field of non-destructive testing advanced technology. A remote underwater contact ultrasonic technique is employed for the examination of the base metal of vessel and reactor welds, whence eddy current method is applied for clad surface examinations. Visual testing is used for examination of the vessel interior. The movement of inspection probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with inspection systems. The successful performance of reactor pressure vessel is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen non-destructive techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state-of-the-art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. This paper presents advanced approach in the reactor pressure vessel in-service inspections and it is especially developed for WWER-1000 nuclear power plants.(author)

  4. Components of the LWR primary circuit. Pt. 2. Komponenten des Primaerkreises von Leichtwasserreaktoren. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400/sup 0/C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  5. Components of the LWR primary circuit. Pt. 2. Design, construction and calculation. Draft

    International Nuclear Information System (INIS)

    1995-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 deg C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  6. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, Pierluigi, E-mail: pierluigi.zaccaria@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Masiello, Antonio [Fusion for Energy F4E, Barcelona (Spain); Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario [Ettore Zanon S.p.A., Schio (VI) (Italy)

    2015-10-15

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  7. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    International Nuclear Information System (INIS)

    Zaccaria, Pierluigi; Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco; Masiello, Antonio; Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario

    2015-01-01

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  8. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  9. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  10. International cooperation in production inspections

    International Nuclear Information System (INIS)

    Limousin, S.

    2009-01-01

    Nuclear pressure equipment, like the reactor pressure vessel or steam generators, are manufactured in many countries all around the world. As only few reactors were built in the 90's, most of the nuclear safety authorities have lost part of their know how in component manufacturing oversight. For these two reasons, vendor inspection is a key area for international cooperation. On the one hand, ASN has bilateral relationships with several countries (USA, Finland, China...) to fulfill specific purposes. On the other hand, ASN participates in international groups like the MDEP ( Multinational Design Evaluation Program). A MDEP working group dedicated to vendor inspection cooperation enables exchanges of informations (inspection program plan, inspection findings...) among the regulators. Join inspections are organized. International cooperation could lead in the long term to an harmonization of regulatory practices. (author)

  11. Pressure vessel lid

    International Nuclear Information System (INIS)

    Schoening, J.; Elter, C.; Becker, G.; Pertiller, S.

    1986-01-01

    The invention concerns a lid for closing openings in reactor pressure vessels containing helium, which is made as a circular casting with hollow spaces and a flat floor and is set on the opening and kept down. It consists of helium-tight metal cast material with sufficient temperature resistance. There are at least two concentric heat resistant seals let into the bottom of the lid. The bottom is in immediate contact with the container atmosphere and has hollow spaces in its inside in the area opposite to the opening. (orig./HP) [de

  12. [Small vessel cerebrovascular disease].

    Science.gov (United States)

    Cardona Portela, P; Escrig Avellaneda, A

    2018-05-09

    Small vessel vascular disease is a spectrum of different conditions that includes lacunar infarction, alteration of deep white matter, or microbleeds. Hypertension is the main risk factor, although the atherothrombotic lesion may be present, particularly in large-sized lacunar infarctions along with other vascular risk factors. MRI findings are characteristic and the lesions authentic biomarkers that allow differentiating the value of risk factors and defining their prognostic value. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Stress criteria for nuclear vessel concrete

    International Nuclear Information System (INIS)

    Costes, D.

    1975-01-01

    Concrete nuclear vessels are submitted to prestressing forces which limit tensile stresses in concrete when the vessel is under pressure with thermal gradients. Hence, the most severe conditions for concrete appear when the vessel is prestressed and not submitted to internal pressure. The triaxial states of stress in the concrete may be computed postulating elastic or other behavior and compared with safe limits obtained from rupture tests and fatigue tests. The first part of the paper, recalls experimental rupture results and the acceptability procedures currently used. Criteria founded on the lemniscoid surfaces are proposed, parameters for which are obtained by various tests and safety considerations. In the second part, rupture tests are reported on small, thick, cylindrical vessels submitted to external hydraulic pressure simulating prestressing forces. Materials used are plain concrete, microconcrete, marble and graphite. The strengths obtained are much higher than those which could be elastically computed, triaxial rupture states being provided by previous experiments. Such results may be due to a plastic stress redistribution before fracture and to stabilizing effects of stress gradients around the more stressed areas. Fatigue tests by external hydraulic loading are reported [fr

  14. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  15. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    place while our vessels are in service. As the inspection takes place we are able to view a real time image of detected discontinuities on a video monitor. The B-scan ultrasonic technique is allowing us to perform fast accurate examinations covering up to 95% of the surface area of each pressure vessel. Receiving data on 95% of a pressure vessel provides us with a lot of useful information. We use this data to determine the condition of each pressure vessel. Once the condition is known the vessels are classed by risk. The risk level is then managed by making decisions related to repair, operating parameters, accepting and monitoring or replacement of the equipment. Inspection schedules are set at maximum intervals and reinspection is minimized for the vessels that are not at risk. The remaining life of each pressure vessel is determined, mechanical integrity is proven and regulatory requirements are met. Abbott Laboratories is taking this proactive approach because we understand that our process equipment is a critical element for successful operation. A run to failure practice would never allow Abbott Laboratories to achieve the corporation's objective of being the world's leading health care company. Nondestructive state of the art technology and the understanding of its capabilities and limitations are key components of a proactive program for life extension of pressure vessels. 26

  16. Utilization of External Capacities as an Integral Component of Concepts for Residues and Dismantling Using the Example of the CARLA Plant. National and International Experiences in Recycling

    International Nuclear Information System (INIS)

    Kluth, Thomas

    2014-01-01

    In Germany, nuclear industry has impressively demonstrated that decommissioning and dismantling of nuclear installations are technologically feasible tasks. From numerous projects, already concluded as well as still in process, substantial experiences could be gained which shall find their way into future strategies for decommissioning and dismantling. The overhasty and uncoordinated change in national energy policy, willingly called 'energy turnaround', will inevitably lead to a real wave of decommissioning projects. Mastering these will only be possible by consistently implementing the available pool of experiences. Future dismantling strategies will have to design the interaction between dismantling and treatment of residues in a much more flexible way in order to perform the whole dismantling process more efficiently. The more intensive utilization of external capacities for the treatment of residues can make a relevant essential contribution. By the CARLA plant Siempelkamp offers such a safe and reliable component for every dismantling project, based on a proven and tested past while continuously developing for the future. Until today, more than 28,000 tons of radioactive metals could be processed in the CARLA plant and subsequently could be harmlessly recycled to a large extent. Over the time, the offered scope of service has constantly been expanded. In the separation and cutting area components with dimensions of up to the size of a 40' container can be treated by thermal as well as mechanical separation methods. The outside storage area for containers with a capacity of approx. 150 pieces of 20' containers along with the authorized storage period for delivered material of 3 years enables us to react very flexibly to all project situations and by buffer storage customer specific campaigns of sufficient size can be arranged. In April 2012, the decontamination capacity could be clearly extended by commissioning of a new decontamination

  17. The international experience of bacterial screen testing of platelet components with an automated microbial detection system: a need for consensus testing and reporting guidelines.

    Science.gov (United States)

    Benjamin, Richard J; McDonald, Carl P

    2014-04-01

    The BacT/ALERT microbial detection system (bioMerieux, Inc, Durham, NC) is in routine use in many blood centers as a prerelease test for platelet collections. Published reports document wide variation in practices and outcomes. A systematic review of the English literature was performed to describe publications assessing the use of the BacT/ALERT culture system on platelet collections as a routine screen test of more than 10000 platelet components. Sixteen publications report the use of confirmatory testing to substantiate initial positive culture results but use varying nomenclature to classify the results. Preanalytical and analytical variables that may affect the outcomes differ widely between centers. Incomplete description of protocol details complicates comparison between sites. Initial positive culture results range from 539 to 10606 per million (0.054%-1.061%) and confirmed positive from 127 to 1035 per million (0.013%-0.104%) donations. False-negative results determined by outdate culture range from 662 to 2173 per million (0.066%-0.217%) and by septic reactions from 0 to 66 per million (0%-0.007%) collections. Current culture protocols represent pragmatic compromises between optimizing analytical sensitivity and ensuring the timely availability of platelets for clinical needs. Insights into the effect of protocol variations on outcomes are generally restricted to individual sites that implement limited changes to their protocols over time. Platelet manufacturers should reassess the adequacy of their BacT/ALERT screening protocols in light of the growing international experience and provide detailed documentation of all variables that may affect culture outcomes when reporting results. We propose a framework for a standardized nomenclature for reporting of the results of BacT/ALERT screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [THE RESULTS OF IMPLEMENTATION OF THE INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT LOAN PROJECT "PREVENTION, DIAGNOSIS, AND TREATMENT OF TUBERCULOSIS AND AIDS", A "TUBERCULOSIS" COMPONENT].

    Science.gov (United States)

    2010-01-01

    Due to the implementation of the International Bank for Reconstruction and Development (IBRD) loan project "Prevention, diagnosis, treatment of tuberculosis and AIDS", a "Tuberculosis" component that is an addition to the national tuberculosis control program in 15 subjects of the Russian Federation, followed up by the Central Research Institute of Tuberculosis, Russian Academy of Medical Sciences, the 2005-2008 measures stipulated by the Project have caused substantial changes in the organization of tuberculosis control: implementation of Orders Nos. 109, 50, and 690 and supervision of their implementation; modernization of the laboratories of the general medical network and antituberbulosis service (404 kits have been delivered for clinical diagnostic laboratories and 12 for bacteriological laboratories, including BACTEC 960 that has been provided in 6 areas); 91 training seminars have been held at the federal and regional levels; 1492 medical workers have been trained in the detection, diagnosis, and treatment of patients with tuberculosis; 8 manuals and guidelines have been prepared and sent to all areas. In the period 2005-2008, the tuberculosis morbidity and mortality rates in the followed-up areas reduced by 1.2 and 18.6%, respectively. The analysis of patient cohorts in 2007 and 2005 revealed that the therapeutic efficiency evaluated from sputum smear microscopy increased by 16.3%; there were reductions in the proportion of patients having ineffective chemotherapy (from 16.1 to 11.1%), patients who died from tuberculosis (from 11.6 to 9.9%), and those who interrupted therapy ahead of time (from 11.8 to 7.8%). Implementation of the IBR project has contributed to the improvement of the national strategy and the enhancement of the efficiency of tuberculosis control.

  19. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  20. Project management techniques used in the European Vacuum Vessel sectors procurement for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Losasso, Marcello, E-mail: marcello.losasso@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Ortiz de Zuniga, Maria; Jones, Lawrence; Bayon, Angel; Arbogast, Jean-Francois; Caixas, Joan; Fernandez, Jose; Galvan, Stefano; Jover, Teresa [Fusion for Energy (F4E), Barcelona (Spain); Ioki, Kimihiro [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lewczanin, Michal; Mico, Gonzalo; Pacheco, Jose Miguel [Fusion for Energy (F4E), Barcelona (Spain); Preble, Joseph [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Stamos, Vassilis; Trentea, Alexandru [Fusion for Energy (F4E), Barcelona (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer File name contains the directory tree structure with a string of three-letter acronyms, thereby enabling parent directory location when confronted with orphan files. Black-Right-Pointing-Pointer The management of the procurement procedure was carried out in an efficient and timely manner, achieving precisely the contract placement date foreseen at the start of the process. Black-Right-Pointing-Pointer The contract start-up has been effectively implemented and a flexible project management system has been put in place for an efficient monitoring of the contract. - Abstract: The contract for the seven European Sectors of the ITER Vacuum Vessel (VV) was placed at the end of 2010 with a consortium of three Italian companies. The task of placing and the initial take-off of this large and complex contract, one of the largest placed by F4E, the European Domestic Agency for ITER, is described. A stringent quality controlled system with a bespoke Vacuum Vessel Project Lifecycle Management system to control the information flow, based on ENOVIA SmarTeam, was developed to handle the storage and approval of Documentation including links to the F4E Vacuum Vessel system and ITER International Organization System interfaces. The VV Sector design and manufacturing schedule is based on Primavera software, which is cost loaded thus allowing F4E to carry out performance measurement with respect to its payments and commitments. This schedule is then integrated into the overall Vacuum Vessel schedule, which includes ancillary activities such as instruments, preliminary design and analysis. The VV Sector Risk Management included three separate risk analyses from F4E and the bidders, utilizing two different methodologies. These efforts will lead to an efficient and effective implementation of this contract, vital to the success of the ITER machine, since the Vacuum Vessel is the biggest single work package of Europe's contribution to ITER and

  1. Structural analysis of NPP components and structures

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Keinaenen, H.; Talja, H.

    1998-01-01

    Capabilities for effective structural integrity assessment have been created and extended in several important cases. In the paper presented applications deal with pressurised thermal shock loading, PTS, and severe dynamic loading cases of containment, reinforced concrete structures and piping components. Hydrogen combustion within the containment is considered in some severe accident scenarios. Can a steel containment withstand the postulated hydrogen detonation loads and still maintain its integrity? This is the topic of Chapter 2. The following Chapter 3 deals with a reinforced concrete floor subjected to jet impingement caused by a postulated rupture of a near-by high-energy pipe and Chapter 4 deals with dynamic loading resistance of the pipe lines under postulated pressure transients due to water hammer. The reliability of the structural integrity analysing methods and capabilities which have been developed for application in NPP component assessment, shall be evaluated and verified. The resources available within the RATU2 programme alone cannot allow performing of the large scale experiments needed for that purpose. Thus, the verification of the PTS analysis capabilities has been conducted by participation in international co-operative programmes. Participation to the European Network for Evaluating Steel Components (NESC) is the topic of a parallel paper in this symposium. The results obtained in two other international programmes are summarised in Chapters 5 and 6 of this paper, where PTS tests with a model vessel and benchmark assessment of a RPV nozzle integrity are described. (author)

  2. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  3. In-vessel remote maintenance of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Tabor, M.A.; Hager, E.R.; Creedon, R.L.; Fisher, M.V.; Atkin, S.D.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is the first deuterium-tritium (D-T) fusion device that will study the physics of an ignited plasma. The ability of the tokamak vacuum vessel to be maintained remotely while under vacuum has not been fully demonstrated on previous machines, and this ability will be critical to the efficient and safe operation of ignition devices. Although manned entry into the CIT vacuum vessel will be possible during the nonactivated stages of operation, remotely automated equipment will be used to assist in initial assembly of the vessel as well as to maintain all in-vessel components once the D-T burn is achieved. Remote maintenance and operation will be routinely required for replacement of thermal protection tiles, inspection of components, leak detection, and repair welding activities. Conceptual design to support these remote maintenance activities has been integrated with the conceptual design of the in-vessel components to provide a complete and practical remote maintenance system for CIT. The primary remote assembly and maintenance operations on CIT will be accomplished through two dedicated 37- x 100-cm ports on the main toroidal vessel. Each port contains a single articulated boom manipulator (ABM), which is capable of accessing half of the torus. The proposed ABM consists of a movable carriage assembly, telescoping two-part mast, and articulated link sections. 1 ref

  4. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    Zheng Sun; Huai-Yue Han

    1994-01-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  5. Design characteristics of pantograph type in vessel fuel handling system in SFR

    International Nuclear Information System (INIS)

    Kim, S. H.; Koo, G. H.

    2012-01-01

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied

  6. Design characteristics of pantograph type in vessel fuel handling system in SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied.

  7. Targeting Therapy Resistant Tumor Vessels

    Science.gov (United States)

    2008-08-01

    Morris LS. Hysterectomy vs. resectoscopic endometrial ablation for the control of abnormal uterine bleeding . A cost-comparative study. J Reprod Med 1994;39...after the antibody treatment contain a pericyte coat, vessel architecture is normal, the diameter of the vessels is smaller (dilated, abnormal vessels...involvement of proteases from inflammatory mast cells and functionally abnormal (Carmeliet and Jain, 2000; Pasqualini (Coussens et al., 1999) and other bone

  8. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  9. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  10. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  11. Americium behaviour in plastic vessels.

    Science.gov (United States)

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. [Large vessel vasculitides].

    Science.gov (United States)

    Morović-Vergles, Jadranka; Puksić, Silva; Gracanin, Ana Gudelj

    2013-01-01

    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in young ages. Although all large arteries can be affected, the aorta, subclavian and carotid arteries are most commonly involved. The most common symptoms included upper extremity claudication, hypertension, pain over the carotid arteries (carotidynia), dizziness and visual disturbances. Early diagnosis and treatment has improved the outcome in patients with TA.

  13. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  14. Reactor containment vessel

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro; Hayagumo, Sunao; Morikawa, Matsuo.

    1981-01-01

    Purpose: To safety and simplify the structure in a reactor containment vessel. Constitution: Steam flow channels with steam jetting ports communicating to coolants are provided between a communication channel and coolants in a pressure suppression chamber. Upon loss of coolant accidents, pressure in a dry well will increase, then force downwards water in an annulus portion and further flow out the water through steam jetting ports into a suppression pool. Thus, the steam flow channel is filled with steams or airs present in the dry well, which are released through the steam jetting ports into the pressure suppression chamber. Even though water is violently vibrated owing to the upward movement of air bubbles and condensation of steam bubbles, the annular portion and the steam jetting ports are filled with steams or the like, direct dynamic loads onto the structures such as communication channels can be avoided. (J.P.N.)

  15. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1984-12-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  16. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1985-09-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  17. Autonomous radiation monitoring of small vessels

    International Nuclear Information System (INIS)

    Ziock, K.P.; Cheriyadat, A.; Fabris, L.; Goddard, J.; Hornback, D.; Karnowski, T.; Kerekes, R.; Newby, J.

    2011-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the land-based approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. In contrast to roadways, where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. A unique solution to this problem is based on a portal-less portal monitor designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. This paper presents the results of a recent test of the system in a maritime setting.

  18. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  19. Agreement on economic and technological cooperation between the Federal Republic of Germany and the GDR. Project part 3.2, ''NDT and QA''. Project task 2.11. Experiments with the full-size vessel in Stuttgart for selection of practice-relevant non-destructive testing methods for evaluation of the value and performance of recurrent inspections of reactor components. Final report

    International Nuclear Information System (INIS)

    Betzold, K.; Brinette, R.; Bonitz, F.

    1992-01-01

    The efficiency of NDT methods such as ALOK, SAFT, EMUS, LLT, phased array, and multi-frequency eddy current testing which are generally used for reactor components recurrent inspection has been verified with experiments using two test specimens. These are a section of a main coolant pipe and the full-size vessel installed at MPA-Stuttgart, furnished with PWR test bodies with artificial defects and artificially applied natural defects. The defects have been detected with commercial probes as well as with probes optimized for the NDT methods EMUS, LLT, phased array, and multi-frequency eddy current testing. Type, location, orientation and geometry of the defects have been measured, also recording the influence of type of defect on the efficiency of the NDT methods, in order to reveal problems linked with the various methods as well as their advantages. Further tests have been made for evaluation of a combination of ALOK and SAFT using novel, specifically developed test probes, and a combination of ALOK and phased array testing. (orig.) [de

  20. Fabrication of nuclear ship reactor MRX model and study on inspection and maintenance of components

    International Nuclear Information System (INIS)

    Kasahara, Yoshiyuki; Nakazawa, Toshio; Kusunoki, Tsuyoshi; Takahashi, Hiroki; Yoritsune, Tsutomu.

    1997-10-01

    The MRX (Marine Reactor X) is an integral type small reactor adopting passive safety systems. As for an integral type reactor, primary system components are installed in the reactor vessel. It is therefor important to establish the appropriate procedure for construction, inspection and maintenance, dismauntling, etc., for all components in the reactor vessel as well as in the reactor containment, because inspection space is limited. To study these subjects, a one-fifth model of the MRX was fabricated and operation capabilities were studied. As a result of studies, the following results are obtained. (1) Manufacturing and installing problems of the reactor pressure vessel, the containment vessel and internal components are basically not abserved. (2) Heat transfer tube structures of the steam generator and the heat exchangers of emergency decay heat removal system and containment water cooler were not seen of any problem for fabrication. However, due consideration is required in the detailed design of supports of heat transfer tubes. (3) Further studies should be needed for designs of flange penetrations and leak countermeasures for pipes instrument cables. (4) Arrangements of equipments in the containment should be taken in consideration in detail because the space is narrow. (5) Further discussion is required for installation methods of instruments and cables. (author)