WorldWideScience

Sample records for vesicular-arbuscular mycorrhizal infection

  1. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum.

    Science.gov (United States)

    Cliquet, J. B.; Stewart, G. R.

    1993-03-01

    To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.

  2. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... ... association between certain plants and microorganisms plays an important role in soil ..... an Agrostis capillaris population on a copper contaminated soil. Plant ... vesicular-arbuscular mycorrhizal fungi in Amazonian Peru.

  3. Vesicular-arbuscular mycorrhizal populations in stored topsoil

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.A.; Hunter, D.; Birch, P.; Short, K.C. (North East London Polytechnic, London (UK). Environment and Industry Research Unit, Dept. of Biology and Biochemistry)

    1987-01-01

    Two soil stores of different ages were sampled to investigate their vesicular-arbuscular mycorrhizal (VAM) populations. The soils collected were assessed for pH, moisture content, loss on ignition, spore numbers, number and size of root fragments present and percentage of these roots infected with VAM. A corn-root bioassay was used to determine soil infectivity. Root fragment number, size, % root infection and soil infectivity were negatively correlated with soil depth. VAM spore number was not significantly correlated with depth in either store. It appears that infected root fragments and fresh roots were the source of inoculum although there may have been a contribution from spores in the younger store. The infectivity of the older store soil was less than that of the younger store. 12 refs., 5 tabs.

  4. The distribution of vesicular-arbuscular mycorrhizal fungi in India.

    Science.gov (United States)

    Rani, R; Mukerji, K G

    1990-01-01

    Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.

  5. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected by...... in relation to final phosphorus uptake and dry-matter production, and it is proposed that a relatively low soil-phosphorus availability was counterbalanced, to some extent, by a well-developed VAM infection....

  6. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  7. Initial vesicular-arbuscular mycorrhizal development of slender wheatgrass on two amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Zak, J.C.; Parkinson, D. (University of Calgary, Calgary, AB (Canada). Dept. of Biology)

    1982-01-01

    The initial vesicular-arbuscular (VA) mycorrhizal development of slender wheatgrass on extracted oil-sands and subalpine coal-mine spoils, amended with either fertilizer, peat, or liquid sewage sludge, was examined. Plants were sampled at 2,6 and 10 weeks after plant emergence and the level of infection was expressed as length of mycorrhizal root per plant and length of root which contained arbuscules, vesicles, or only hyphae. Mycorrhizal infection of slender wheatgrass on the oil sands was limited to plants on the peat-amended spoil. Infection of plants on the peat-amended oil-sands spoil was detected by 2 weeks. Plants on the subalpine spoil were infected at 2 weeks only on the peat-amended spoil. While slender wheatgrass on the control and fertilizer-amended spoil developed mycorrhizae by 6 weeks, infection was not observed in plants on the sewage-amended spoil until 10 weeks. At 10 weeks, there were no significant differences in lengths of mycorrhizal root per plant among the amendments. Increased P levels in the fertilizer- and sewage-amended subalpine spoil did not suppress VA mycorrhizal development. 43 refs., 6 tabs.

  8. The vesicular-arbuscular mycorrhizal symbiosis | Quilambo | African ...

    African Journals Online (AJOL)

    Vesicular-arbuscular mycorrhiza fungi are associated with the majority ot the terrestrial plants. Their function ranges from stress alleviation to bioremediation in soils polluted with heavy metals. However, our knowledge about this symbiosis is still limited. For the semi-arid tropics, where some african countries are located, ...

  9. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems.

    Science.gov (United States)

    Schreiner, R P; Koide, R T

    1993-08-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  10. Stimulation of Vesicular-Arbuscular Mycorrhizal Fungi by Mycotrophic and Nonmycotrophic Plant Root Systems

    OpenAIRE

    Schreiner, R. Paul; Koide, Roger T.

    1993-01-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  11. Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: concentration and enumeration of propagules.

    Science.gov (United States)

    Tommerup, I C

    1982-09-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particles in each soil fraction by an aqueous flotation method. The technique is proposed as a quantitative method for estimating the numbers of spores and fragments of mycorrhizae. The scheme includes a viability test that was used to differentiate between potentially infective propagules and those that were either dormant or incapable of regrowth.

  12. Identification of a Vesicular-Arbuscular Mycorrhizal Fungus by Using Monoclonal Antibodies in an Enzyme-Linked Immunosorbent Assay †

    OpenAIRE

    Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.

    1987-01-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were no...

  13. Increased Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi by Manipulation of Nutrient Regimens †

    OpenAIRE

    Douds, David D.; Schenck, N. C.

    1990-01-01

    Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions contain...

  14. Airstream Fractionation of Vesicular-Arbuscular Mycorrhizal Fungi: Concentration and Enumeration of Propagules

    OpenAIRE

    Tommerup, Inez C.

    1982-01-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particl...

  15. Interaction of Vesicular-arbuscular Mycorrhizal Fungi and Phosphorus with Meloidogyne incognita on Tomato.

    Science.gov (United States)

    Cason, K M; Hussey, R S; Roncadori, R W

    1983-07-01

    The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 mug [low P] or 30 mug [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 mu/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.

  16. Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.

    Science.gov (United States)

    Habte, M; Fox, R L; Aziz, T; El-Swaify, S A

    1988-04-01

    The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.

  17. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture.

    Science.gov (United States)

    Hung, L L; Sylvia, D M

    1988-02-01

    Bahia grass (Paspalum notatum) and industrial sweet potato (Ipomoea batatas) colonized by Glomus deserticola, G. etunicatum, and G. intraradices were grown in aeroponic cultures. After 12 to 14 weeks, all roots were colonized by the inoculated vesicular-arbuscular mycorrhizal fungi. Abundant vesicles and arbuscules formed in the roots, and profuse sporulation was detected intra-and extraradically. Within each fungal species, industrial sweet potato contained significantly more roots and spores per plant than bahia grass did, although the percent root colonization was similar for both hosts. Mean percent root colonization and sporulation per centimeter of colonized root generally increased with time, although with some treatments colonization declined by week 14. Spore production ranged from 4 spores per cm of colonized root for G. etunicatum to 51 spores per cm for G. intraradices. Infectivity trials with root inocula resulted in a mean of 38, 45, and 28% of bahia grass roots colonized by G. deserticola, G. etunicatum, and G. intraradices, respectively. The germination rate of G. etunicatum spores produced in soil was significantly higher than that produced in aeroponic cultures (64% versus 46%) after a 2-week incubation at 28 degrees C. However, infectivity studies comparing G. etunicatum spores from soil and aeroponic culture indicated no biological differences between the spore sources. Aeroponically produced G. deserticola and G. etunicatum inocula retained their infectivity after cold storage (4 degrees C) in either sterile water or moist vermiculite for at least 4 and 9 months, respectively.

  18. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Wright, S F; Morton, J B; Sworobuk, J E

    1987-09-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains.

  19. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    OpenAIRE

    Lin, XG.; Hao, WY.; Wu, TH.

    1993-01-01

    Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight ...

  20. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species.

    Science.gov (United States)

    Caglar, S; Akgun, A

    2006-07-01

    The experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species used as rootstocks. The stratified Pistacia seeds were inoculated with VAM fungi. The highest rate of inoculated roots was 96.7% in P. khinjuck seedlings with G. clarum and G. etunicatum, 83.3% in P. vera seedlings with G. caledonium and 73.3% in P. terebinthus seedlings with G. caledonium. Mycorrhizal inoculations improved seedling height only in P. terebinthus. Certain mycorrhizal inoculations increased the leaf N, but not P and K contents. Seedlings inoculated with G. caledonium had higher reducing sugar contents. It was concluded that pre-inoculated Pistacia seedlings could have a better growth in the harsh field conditions.

  1. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    Science.gov (United States)

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  2. Partitioning of Intermediary Carbon Metabolism in Vesicular-Arbuscular Mycorrhizal Leek.

    Science.gov (United States)

    Shachar-Hill, Y.; Pfeffer, P. E.; Douds, D.; Osman, S. F.; Doner, L. W.; Ratcliffe, R. G.

    1995-05-01

    Vesicular-arbuscular mycorrhizal fungi are symbionts for a large variety of crop plants; however, the form in which they take up carbon from the host is not established. To trace the course of carbon metabolism, we have used nuclear magnetic resonance spectroscopy with [13C]glucose labeling in vivo and in extracts to examine leek (Allium porrum) roots colonized by Glomus etunicatum (and uncolonized controls) as well as germinating spores. These studies implicate glucose as a likely substrate for vesicular-arbuscular mycorrhizal fungi in the symbiotic state. Root feeding of 0.6 mM 1-[13C]glucose labeled only the fungal metabolites trehalose and glycogen. The time course of this labeling was dependent on the status of the host. Incubation with 50 mM 1-[13C]glucose caused labeling of sucrose (in addition to fungal metabolites) with twice as much labeling in uncolonized plants. There was no detectable scrambling of the label from C1 glucose to the C6 position of glucose moieties in trehalose or glycogen. Labeling of mannitol C1,6 in the colonized root tissue was much less than in axenically germinating spores. Thus, carbohydrate metabolism of host and fungus are significantly altered in the symbiotic state.

  3. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats.

    Science.gov (United States)

    Will, M E; Sylvia, D M

    1990-07-01

    Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.

  4. Phosphorus use efficiency of tomato as influenced by phosphorus and vesicular arbuscular mycorrhizal (VAM) fungi inoculation

    International Nuclear Information System (INIS)

    Dhinakaran, R.; Savithri, P.

    1997-01-01

    A pot experiment was conducted on tomato (Lycopersicon esculentum L.var. CO3) grown in red non-calcareous soil (Paralythic Ustochrept) to study the effect of different P treatments involving single superphosphate (SSP) and Mussoorie rock phosphate (MRP) added at different levels, viz. 100 and 75 kg P 2 O 5 /ha along with and without vesicular arbuscular mycorrhizal (VAM) fungi inoculation. The results revealed that the P application as superphosphate at 100 kg P 2 O 5 /ha significantly increased the yield of tomato but the application of VAM fungi did not have any pronounced effect on tomato yield. The 32 P studies confirmed the increased uptake of P by the plants at higher level of P application. P content and its uptake by tomato fruit increased with the increasing levels of P application and VAM inoculation. The VAM fungi inoculation was also helpful in increasing the fertilizer use efficiency and also per cent P derived from fertilizer. (author)

  5. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens.

    Science.gov (United States)

    Douds, D D; Schenck, N C

    1990-02-01

    Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions containing P. However, Glomus intraradices produced significantly more spores in plant roots in the tap water control treatment. The effect of the nutrient solutions was not due solely to N nutrition, because the addition of NH(4)NO(3) decreased both colonization and sporulation by G. margarita relative to levels produced by Hoagland solution without P.

  6. Influence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency.

    Science.gov (United States)

    McArthur, DAJ.; Knowles, N. R.

    1993-01-01

    Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM

  7. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  8. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  9. Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO(2) and Flavonols.

    Science.gov (United States)

    Bécard, G; Douds, D D; Pfeffer, P E

    1992-03-01

    Various flavonoids were tested for their ability to stimulate in vitro growth of germinated spores of vesicular-arbuscular mycorrhizal fungi. Experiments were performed in the presence of 2% CO(2), previously demonstrated to be required for growth of Gigaspora margarita (G. Bécard and Y. Piché, Appl. Environ. Microbiol. 55:2320-2325, 1989). Only the flavonols stimulated fungal growth. The flavones, flavanones, and isoflavones tested were generally inhibitory. Quercetin (10 muM) prolonged hyphal growth from germinated spores of G. margarita from 10 to 42 days. An average of more than 500 mm of hyphal growth and 13 auxiliary cells per spore were obtained. Quercetin also stimulated the growth of Glomus etunicatum. The glycosides of quercetin, rutin, and quercitrin were not stimulatory. The axenic growth of G. margarita achieved here under rigorously defined conditions is the most ever reported for a vesicular-arbuscular mycorrhizal fungus.

  10. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Suciatmih Suciatmih

    2003-06-01

    Full Text Available In order to describe the vesicular-arbuscular mycorrhizal (VAM status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2% high level, 32 (66.7% medium level, and 2(4.1% low level respectively.

  11. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    OpenAIRE

    Suciatmih Suciatmih

    2003-01-01

    In order to describe the vesicular-arbuscular mycorrhizal (VAM) status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2%) high level, 32 (66.7%) medium level, and 2(4.1%) low level respectively.

  12. A plausible mechanism of biosorption in dual symbioses by vesicular-arbuscular mycorrhizal in plants.

    Science.gov (United States)

    Azmat, Rafia; Hamid, Neelofer

    2015-03-01

    Dual symbioses of vesicular-arbuscular mycorrhizal (VAM) fungi with growth of Momordica charantia were elucidated in terms of plausible mechanism of biosorption in this article. The experiment was conducted in green house and mixed inoculum of the VAM fungi was used in the three replicates. Results demonstrated that the starch contents were the main source of C for the VAM to builds their hyphae. The increased plant height and leaves surface area were explained in relation with an increase in the photosynthetic rates to produce rapid sugar contents for the survival of plants. A decreased in protein, and amino acid contents and increased proline and protease activity in VAM plants suggested that these contents were the main bio-indicators of the plants under biotic stress. The decline in protein may be due to the degradation of these contents, which later on converted into dextrose where it can easily be absorbed by for the period of symbioses. A mechanism of C chemisorption in relation with physiology and morphology of plant was discussed.

  13. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... and top of tubes, and of cocci with a diameter of 0.55-0.78 mum in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1-7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  14. Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, V.; Ragupathy, S.; Parthipan, B.; Rani, D.B.R.; Mahadevan, A.

    1991-12-31

    Vesicular-arbuscular mycorhizzal (VAM) status was assessed for coal, lignite and calcite mine spoils. The three study sites were: The Kothagudem coal field in the south central region where waste materials are piled 1 to 2 m high on the soil surface. Samples were collected from plants growing on the waste. Neyveli, on the southeastern coast, is a lignite coal mine where the spoil is piled 70 to 100 m high on the soil surface. Samples were collected from recently revegetated mine spoil and from 25 year old revegetated sites. The calcite mine at Thazhaiyuthu in the south where the spoil is piled up 2 to 3 m on the soil surface. Samples were collected from 4 to 7 year old reclaimed sites. The wastes generally supported different plant species. The level of VAM infection of plants was markedly different in each mine spoil, with the maximum infection in the coal and calcite spoils, and the least in the lignite spoil. There was more infection in the 25 year old lignite spoil than in the newly revegetated spoil. There were different VAM species in each spoil, and no one species was present in all of the samples. The authors conclude that one of the factors leading to the differences between spoils is the amount of topsoil contained in the spoil (least in the lignite spoils which are very deep). The other is age of the spoils. Unfortunately the authors concluded that the best approach is to enrich the spoils with VAM rather than salvaging and replacing topsoil

  15. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1993-01-01

    Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as (NH4+)-N-15 or (NH3-)N-15. Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers...... with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as (NH4+)-N-15 or (NO3-)-N-15 at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root...... compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of N-15 in mycorrhizal plants was 38 or 40%, respectively, when (NH4+)-N-15 or (NO3-)-N-15 was applied...

  16. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots.

    Science.gov (United States)

    Guttenberger, M

    2000-08-01

    The most widespread type of mycorrhiza is the so-called vesicular-arbuscular mycorrhiza. In this endomycorrhiza, fungal hyphae penetrate plant cell walls in the root cortex. There they form densely branched arbuscules. Fungus and plant plasma membrane are separated by a common interfacial apoplast. The pH of the compartment between the symbionts is of pivotal importance for nutrient transfer. Histochemical experiments were conducted to check for an acidic nature of the interface in the model system Glomus versiforme (Karst.) Berch-Allium porrum L. Two chemically different acidotropic dyes (neutral red and LysoSensor Green DND-189) stained the arbuscules intensely. The staining of arbuscules could be eliminated by addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) or treatments leading to membrane rupture. Therefore, the staining of the arbuscules was based on the ion-trap mechanism, which indicates acidic, membrane-bound compartments. Microscopic examination of stained arbuscules at high optical resolution revealed a peripheral accumulation of the dye. Since plasmolysis rapidly destained the arbuscules, it is concluded that the dyes accumulate in the arbuscular interface, indicating the highly acidic nature of this compartment. The findings are discussed with respect to their relevance for the nutrient transfer in mycorrhizas. In addition, evidence for a discontinuity in the arbuscular interface between the stem and the branches of the arbuscule is given.

  17. The Effect of Vesicular Arbuscular Mycorrhizal (VAM on Yield and Yield Components of Three Sorghum (Sorghum bicolor Cultivars

    Directory of Open Access Journals (Sweden)

    A. Mehraban

    2012-10-01

    Full Text Available To evaluate the influence of vesicular arbuscular mycorrhizal (VAM on yield and yield components of three sorghum cultivars, a factorial experiment based randomized complete block design with four replications was carried out in 2007, at the Agricultural Research Center of Zahak, Iran. The treatments were different mycorrhiza species in three levels: without mycorrhiza (M1, Glomus etanicatum (M2 and G. mosseae(M3 and three cultivars of sorghum: local cultivars (C1, KGS25 (C2 and KGS29 (C3. The results showed that all of the traits measured were increased by inoculation of cultivars with mycorrhiza. The highest plant height (165.1 cm, stem diameter (1.61 cm, flag leaf length (27.22 cm, flag leaf width (3.67 cm and ear width (5.00 cm was obtained by inoculation of seed with Glumus etanicatum, and highest ear length (19.21 cm, ear number (2.51, seed number per ear (10252.11, 1000-seed weight (17.56 g and grain yield (1967.32 kg/ha by using Glumus mossea. The highest leaf width and length belonged to local cultivar, and the highest seed yield to KGS 29 cultivar. However, differences of other traits among sorghum cultivars were not significant. Based on the experimental results it can be concluded that highest grain yield may be obtained by inoculating seeds of KGS 29 with Glumus mossea.

  18. Existing of Vesicular Arbuscular Mycorrhizal on The Corn Field Subjected by Long-term Organic and Inorganic Fertilizers

    Directory of Open Access Journals (Sweden)

    Sri Yusnaini

    2009-09-01

    Full Text Available The existing of vesicular arbuscular mycorrhizal fungi was determined in continuously cropping systems which had applied by organic and/or inorganic fertilizers for a long term (4 years application of corn and upland rice rotation. The experiment was established at Taman Bogo, Probolinggo sub-district, East Lampung district. The experiment were: control (without fertilizer, 20 Mg ha-1 chicken manure (CK, 20 Mg ha-1 green manure Glyricidium sp. (GM, 100 % inorganic fertilizers (IF (urea 300 kg ha-1, SP 36 200 kg ha-1, and KCl 100 kg ha-1, 50% CK + 50% IF, 50% GM + 50% IF, 75% CK + 25% IF, and 75% GM + 25% IF. Soil samples were taken at the first corn growing season (2001 and the eight corn growing season (2004. VAM fungi spores were examined by wet sieving methods. The results showed that application of chicken manure or its combination with inorganic fertilizers had higher VAM fungi spore. The dominant species of VAM fungi at all treatment was Glomus constrictum.

  19. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida.

    Science.gov (United States)

    Sylvia, D M; Will, M E

    1988-02-01

    Beach replenishment is a widely used method of controlling coastal erosion. To reduce erosional losses from wind, beach grasses are often planted on the replenishment sands. However, there is little information on the microbial populations in this material that may affect plant establishment and growth. The objectives of this research were to document changes in the populations of vesicular-arbuscular mycorrhizal (VAM) fungi and other soil microorganisms in replenishment materials and to determine whether roots of transplanted beach grasses become colonized by beneficial microbes. The study was conducted over a 2-year period on a replenishment project in northeastern Florida. Three sampling locations were established at 1-km intervals along the beach. Each location consisted of three plots: an established dune, replenishment sand planted with Uniola paniculata and Panicum sp., and replenishment sand left unplanted. Fungal and bacterial populations increased rapidly in the rhizosphere of beach grasses in the planted plots. However, no bacteria were recovered that could fix significant amounts of N(2). The VAM fungi established slowly on the transplanted grasses. Even after two growing seasons, levels of root colonization and sporulation were significantly below those found in the established dune. There was a shift in the dominant VAM fungi found in the planted zone with respect to those in the established dunes. The most abundant species recovered from the established dunes were Glomus deserticola, followed by Acaulospora scrobiculata and Scutellospora weresubiae. The VAM fungi that colonized the planted zone most rapidly were Glomus globiferum, followed by G. deserticola and Glomus aggregatum.

  20. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani.

    Science.gov (United States)

    Yao, M K; Tweddell, R J; Désilets, H

    2002-10-01

    Two micropropagated potato cultivars, Goldrush and LP89221, were inoculated into sowing trays with either Glomus etunicatum or G. intraradices in a greenhouse. After 2 weeks, plantlets were transplanted into pots and roots were challenged 7 days later with Rhizoctonia solani. At different times after R. solani infection, disease severity, mortality rate, root colonization levels, various growth parameters, and shoot mineral content were evaluated. In Goldrush, only inoculation with G. etunicatum led to a significant reduction in disease severity, ranging between 60.2% and 71.2%, on both shoot and crown. This decrease was not observed in LP89221. Compared with the control plantlets, inoculation of Goldrush with G. etunicatum or G. intraradices reduced significantly the mortality rate by 77% and 26%, respectively, whereas vesicular-arbuscular mycorrhizal (VAM) fungi did not significantly influence the mortality rate in LP89221. In Goldrush, inoculation with G. etunicatum significantly increased shoot fresh weight, root dry weight and the number of tubers produced per plant, whereas G. intraradices only significantly increased the number of tubers. Tuber and root fresh weights of both potato cultivars were significantly reduced by R. solani infection. However, R. solani-infected plantlets of both Goldrush and LP89221, inoculated with G. etunicatum, produced significantly greater tuber fresh weight than non-VAM plantlets. In R. solani-infected plantlets of Goldrush but not LP89221, G. etunicatum and G. intraradices increased root fresh weight by approximately 140.3% and 76.5%, respectively, compared with non-VAM plants. The potato cultivars Goldrush and LP89221 responded differently to VAM fungal inoculation and to R. solani infection in terms of shoot mineral content.

  1. Influence of Species of Vesicular-Arbuscular Mycorrhizal Fungi and Phosphorus Nutrition on Growth, Development, and Mineral Nutrition of Potato (Solanum tuberosum L.).

    Science.gov (United States)

    McArthur, DAJ.; Knowles, N. R.

    1993-07-01

    Growth, development, and mineral physiology of potato (Solanum tuberosum L.) plants in response to infection by three species of vesicular-arbuscular mycorrhizal (VAM) fungi and different levels of P nutrition were characterized. P deficiency in no-P and low-P (0.5 mM) nonmycorrhizal plants developed between 28 and 84 d after planting. By 84 d after planting, P deficiency decreased plant relative growth rate such that no-P and low-P plants had, respectively, 65 and 45% less dry mass and 76 and 55% less total P than plants grown with high P (2.5 mM). A severe reduction in leaf area was also evident, because P deficiency induced a restriction of lateral bud growth and leaf expansion and, also, decreased the relative plant allocation of dry matter to leaf growth. Root growth was less influenced by P deficiency than either leaf or stem growth. Moreover, P-deficient plants accumulated a higher proportion of total available P than high-P plants, indicating that P stress had enhanced root efficiency of P acquisition. Plant P deficiency did not alter the shoot concentration of N, K, Mg, or Fe; however, the total accumulation of these mineral nutrients in shoots of P-stressed plants was substantially less than that of high-P plants. P uptake by roots was enhanced by each of the VAM symbionts by 56 d after planting and at all levels of abiotic P supply. Species differed in their ability to colonize roots and similarly to produce a plant growth response. In this regard, Glomus intraradices (Schenck and Smith) enhanced plant growth the most, whereas Glomus dimorphicum (Boyetchko and Tewari) was least effective, and Glomus mosseae ([Nicol. and Gerd.] Gerd. and Trappe) produced an intermediate growth response. The partial alleviation of P deficiency in no-P and low-P plants by VAM fungi stimulated uptake of N, K, Mg, Fe, and Zn. VAM fungi enhanced shoot concentrations of P, N, and Mg by 28 d after planting and, through a general improvement of overall plant mineral nutrition

  2. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Rabie, G H

    1998-01-01

    Infection of Vicia faba with Bothytis fabae causes significant decreases in growth vigour, total nitrogen content, number of nodules and nutrient accumulation. Na-uptake and phenolics concentration increased compared to that of noninfected plants. In contrast, dual inoculation of Rhizobium and VA mycorrhizae increased all above parameters suggesting a distinct improvement of the plants. The results also revealed that an inverse correlation may exist between phenolic, calcium, magnesium and zinc concentrations in mycorrhizal plant tissues grown in presence of rhizobial bacteria and the disease severity. From these findings we conclude a possible role of both VA mycorrhizal fungi and rhizobial bacteria in the decrease of susceptibility of plants.

  3. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi

    Directory of Open Access Journals (Sweden)

    Keston O. W. Njira

    2017-01-01

    Full Text Available Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2 as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05 VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.

  4. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.

    Science.gov (United States)

    Burleigh, S H; Harrison, M J

    1997-05-01

    A cDNA clone (Mt4) was isolated as a result of a differential screen to identify genes showing altered expression during the interaction between Medicago truncatula and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus versiforme. Mt4 represents a M. truncatula mRNA that contains numerous short open reading frames, the two longest of which are predicted to encode polypeptides of 51 amino acids each. One of these open reading frames shares a short region of identity with a phosphate starvation-inducible gene from tomato. Mt4 gene expression is regulated in response to colonization by mycorrhizal fungi: transcripts were detected in non-colonized roots and levels decreased in both M. truncatula and M. sativa (alfalfa) roots after colonization by G. versiforme. Transcript levels also decreased during the incomplete interaction between G. versiforme and a M. sativa mycorrhizal minus (myc-) line, indicating that the down-regulation of this gene occurs early during the interaction between the fungus and its host plant. Phosphate levels in the nutrient media also affected the expression of the Mt4 gene: transcripts were present in the roots of plants grown under phosphate-deficient conditions, but were undetectable in the roots of plants grown under phosphate sufficient conditions. Furthermore, expression was only observed when plants were grown under nitrogen-sufficient conditions. Northern blot analyses indicate that Mt4 transcripts are present primarily in roots and barely detectable in stems or leaves. Thus, Mt4 represents a M. truncatula gene whose expression is regulated in response to both colonization by mycorrhizal fungi and to the phosphate status of the plant.

  5. Increased Phosphorus Uptake by Wheat and Field Beans Inoculated with a Phosphorus-Solubilizing Penicillium bilaji Strain and with Vesicular-Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Kucey, R M

    1987-12-01

    Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 mug of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 mug of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.

  6. Symbiont effect of Rhizobium bacteria and vesicular arbuscular mycorrhizal fungi on Pisum sativum in recultivated mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Biro, B.; Voros, I.; Kovespechy, K.; Szegi, J. (Hungarian Academy of Sciences, Budapest (Hungary). Soil Science and Agricultural Chemistry Research Institute)

    The frequency (F%) of spontaneous endomycorrhizal fungal infection (AMF) and the root modulation of Pisum sativum L, was studied after 8 and 15 years of recultivation in 4 soils (andesitic tuff yellow sand, yellow clay, and grey clay) disturbed by mining activities. The effects of Rhizobium inoculation and the interaction of both microsymbionts with plant production were also examined along with humus content and the humus stability coefficient, in the following variations: control, NPK fertilizer, NPK+lignite, NPK+straw and sewage sludge. Dump spoils originating from deep geological layers were poor in organic materials. After 12 years of recultivation, the humus content increased significantly. No such increase was noted in grey clay and the natural, brown forest soil used as an undisturbed (control) sample. The degradation of soils by mining brings about a decrease in the rhizobial and mycorrhizal population, so the number of spontaneous Rhizobium nodules is relatively low and does not influence the yield of peas. Inoculation with a selected effective strain of Rhizobium leguminosarum bv. viceae, however, enhanced dry matter production in these microbiologically degraded soils. Although the frequency of AMF infection was also higher after rhizobial inoculation, no positive correlation was found between dry matter production of peas and the F% of AMF. Spoils treated with lignite, straw, and sewage sludge had an especially high level of spontaneous mycorrhizal populations, indicating that organic materials had a favorable effect on the recultivation processes and fertility of mine spoils.

  7. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Allen, M.F. (University of Wyoming, Laramie, WY (USA))

    1980-01-01

    The % root infection of {ital Agropyron smithii} and {ital A. intermedium} by vesicular-arbuscular mycorrhizae was measured and spoil spores were counted in six reclaimed stripmine sites in Wyoming. On 2- and 3-yr old sites % infection and spore counts were c. 50% or less than native prairie levels. Spore counts of a 3-yr old disked prairie site were not different from the undisturbed prairie level, but infection was significantly lower. Spore counts of the reclimed sites were not highly correlated with % root infection. Five of seven annuals which colonized the reclaimed and disked sites were non-mycorrhizal. 43 refs., 3 tabs.

  8. [Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq].

    Science.gov (United States)

    Wei, G; Wang, H

    1991-03-01

    Inoculating Schizonepeta tenuifolia with VA mycorrhizal fungi can significantly improve the plant growth and uptake of P and S, and influence the absorption of K, Na, Fe, Mo, Mn, Zn, Co, Ba, Ni and Pb. It is interesting to note that VA mycorrhiza can also increase the synthesis of volatile oil in the shoots of S. tenuifolia. The efficiency of VA mycorrhiza varies with the fungal species.

  9. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1994-01-01

    colonization at all three levels of N supply, but this effect was strongest in plants of low N status. The results indicated that this increase was due partly to the improved inflow of N via the external hyphae. Root colonization by G. intraradices was unaffected by the amount of N supplied to the RC, while...... hyphal length increased in HC(A) compared to HC(B). Although a considerable N-15 content was detected in mycorrhizal roots adjacent to HC(B), only insignificant amounts of N-15 were found in the external hyphae in HC(B). The external hyphae depleted the soil of inorganic N in both HC(A) and HC(B), while...

  10. Dynamics of vesicular-arbuscular mycorrhizae during old field succession.

    Science.gov (United States)

    Johnson, Nancy Collins; Zak, Donald R; Tilman, David; Pfleger, F L

    1991-05-01

    The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H 2 O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.

  11. Vesicular-arbuscular mycorrhizae of Easter lily in the northwestern United States.

    Science.gov (United States)

    Ames, R N; Linderman, R G

    1977-12-01

    The vesicular-arbuscular (VA) mycorrhizal fungi of commercially grown Easter lily (Lilium longiflorum Thunb.) were studied. Soil and root samples were collected monthly from March through September 1975 from five fields in the coastal area of southern Oregon and northern California. Soil seivings were inoculated onto clover, onion, and lily to cause infections resulting in the production of many new mycorrhizal spores facilitating identification. Four VA mycorrhizal species were found: Acaulospora trappei, A. elegans, Glomus monosporus, and G. fasciculatus. All four VA species infected Easter lily, clover, and onion. Acaulospora trappei and G. fasciculatus were the most commonly isolated species from all five fields. Mycorrhizal infections in roots of field-grown lilies were sparse and presumably young in March and gradually increased in size and number until September when bulbs were harvested. Over 75% of each root system became infected with mycorrhizae in fields with all four fungal species, and those levels were reached by July. In fields with only two mycorrhizal species, usually 50% or less of each root system was infected, even by the end of the growing season.

  12. Interaction of Vesicular-Arbuscular Mycorrhizae and Cultivars of Alfalfa Susceptible and Resistant to Meloidogyne hapla.

    Science.gov (United States)

    Grandison, G S; Cooper, K M

    1986-04-01

    The interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and the root-knot nematode (Meloidogyne hapla) was investigated using both nematode-susceptible (Grasslands Wairau) and nematode-resistant (Nevada Synthetic XX) cultivars of alfalfa (Medicago sativa) at four levels of applied phosphate. Mycorrhizal inoculation improved plant growth and reduced nematode numbers and adult development in roots in dually infected cultures of the susceptible cultivar. The tolerance of plants to nematode infection and development when preinfected with mycorrhizal fungi was no greater than when they were inoculated with nematodes and mycorrhizal fungi simultaneously. Growth of plants of the resistant cultivar was unaffected by nematode inoculation but was improved by mycorrhizal inoculation. Numbers of nematode juveniles were lower in the roots of the resistant than of the susceptible cultivar and were further reduced by mycorrhizal inoculation, although no adult nematodes developed in any resistant cultivar treatment. Inoculation of alfalfa with VAM fungi increased the tolerance and resistance of a cultivar susceptible to M. hapla and improved the resistance of a resistant cultivar.

  13. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    Science.gov (United States)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  14. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...... in fumigated plots, although both it and P uptake were increased by adding P fertilizer. The possible reasons for this discrepancy are discussed. A supplementary survey on infection development at five other field sites showed that peas are extensively colonized by VAM fungi, even in soils where a standard...

  15. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment.

    Science.gov (United States)

    Poulin, M J; Bel-Rhlid, R; Piché, Y; Chênevert, R

    1993-10-01

    Carbon dioxide has been previously identified as a critical volatile factor that stimulates hyphal growth ofGigaspora margarita, a vesiculararbuscular mycorrhizal fungus, and we determined the optimal concentration at 2.0%. The beneficial effect of CO2 on fungal development is also visible in the presence of stimulatory (quercetin, myricetin) or inhibitory (naringenin) flavonoids. Sterile root exudates from carrot seedlings stimulate the hyphal development ofG. margarita in the presence of optimal CO2 enrichment. Three flavonols (quercetin, kaempferol, rutin or quercetin 3-rutinoside) and two flavones (apigenin, luteolin) were identified in carrot root exudates by means of HPLC retention time. Flavonols like quercetin and kaempferol are known to have stimulatory effects on hyphal growth ofG. margarita.

  16. Occurrence of vesicular-arbuscular mycorrhizae in mixed overburden mine spoils of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.B.; Zuberer, D.A.

    1987-07-01

    Presently in east Texas, lignite surface mines are reclaimed and revegetated using mixed overburden materials which are equivalent to or better in physical-chemical properties than the poor topsoils removed during mining. Little information is available regarding the biological characteristics of levelled mixed overburden and the re-establishment of endomycorrhizal associations on revegetated mixed overburden sites. Therefore, the authors investigated the occurrence of infection of coastal bermudagrass (Cynodon dactylon), planted vegetatively on reclamation sites (1-10 years post-mining), with vesicular-arbuscular mycorrhizal (VAM) fungi. Numbers of spores were also monitored. For comparison, infection of coastal bermudagrass and spore numbers were determined for an unmined old field succession on soil typical of the region. VAM infection, measured as a percentage of root length infected or as a percentage of root segments exhibiting infection, returned to pre-mining levels by 3-7 years after disturbance. Intensity of infection was not altered by disturbance, age of reclaimed site, or season. Significantly greater numbers of spores (ca. 10-fold) were observed in the unmined soil and no differences were found between numbers of spores from variously aged mine spoil sites. 35 refs., 3 tabs.

  17. Accumulation of New Polypeptides in Ri T-DNA-Transformed Roots of Tomato (Lycopersicon esculentum) during the Development of Vesicular-Arbuscular Mycorrhizae.

    Science.gov (United States)

    Simoneau, P; Louisy-Louis, N; Plenchette, C; Strullu, D G

    1994-06-01

    Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.

  18. Effects of vesicular-arbuscular mycorrhizae on survival and growth of perennial grasses in lignite overburden in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Call, C.A.; Davies, F.T.

    1988-12-01

    Seedlings of sideoats grama (Bouteloua curtipendula), Indiangrass (Sorghastrum nutans), and kleingrass (Panicum coloratum) were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus fasciculatum and Gigaspora margarita) in a containerized system and transplanted into lignite overburden in the Post Oak Savannah region of Texas, U.S.A. After three growing seasons without cultural inputs, plants inoculated with VAM fungi had greater survival percentages, basal diameters, and above-ground biomass than noninoculated plants. Inoculated plants had higher levels of nitrogen and phosphorus in above-ground biomass than noninoculated plants. Root colonization percentages of inoculated plants remained fairly stable while noninoculated plants showed low levels of colonization over the 3-year study period. Vesicular-arbuscular mycorrhizae enhanced the survival and growth of the 3 grass species by making effective use of limited resources in the lignite overburden. 31 refs., 3 tabs.

  19. Aspectos ecológicos de fungos micorrízicos vesículo-arbusculares da mata tropical úmida da Ilha do Cardoso, SP, Brasil Ecological aspects of mycorrhizal vesicular-arbuscular fungi of the tropical humid forest of Cardoso Island, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Sandra F. B Trufem

    1990-12-01

    Full Text Available No período de agosto/1984 a maio/1987, em nove ocasiões, foram coletadas 300 amostras de solo da rizosfera de 35 espécies de plantas nativas da mata tropical úmida do Parque Estadual da Ilha do Cardoso, SP, Brasil, para a investigação da ocorrência de fungos micorrízicos vesículo-arbusculares (MVA ea obtenção de dados sobre aspectos ecológicos desses microrganismos. Foram verificados 35 taxa de fungos MV A, sete dos quais espécies novas. Os esporos qué ocorreram em maior quantidade foram os de Acaulospora foveata Trappe & Janos, Acaulospora scrobiculata Trappe, Glomus etunicatum Becker & Gerd.. Glomus geosporum (Nicol. & Gerd. Walker, Glomus macrocarpum Tul. & Tul. e Glomus microcarpum Tul. & Tul. As plantas cujas rizosferas apresentaram maior número de esporos de fungos MV A foram as de Blechnum serrulatum L.C. Rich., Euterpe edulis Mart, Neomarica caerulia Sprague, Geonoma elegans Mart, e Piper aduncum L. A maior diversidade de espécies de fugnos MV A ocorreu nas rizosferas de Aphettandra sp., Geonoma elegans Mart e Leandra barbinervis Cogn. Verificouse que houve predominancia de espécies de fungos micorrízicos vesículo-arbusculares clamidospóricas sobre as azigospóricas, bem como que a quantidade de esporos em urna dada rizosfera está diretamente relacionada com a diversidade. Glomus monosporum Gerd. & Trappe e as espécies de Sclerocystis podem ser apontadas como características do ecossistema estudado, que apresentou a média de 50,04 esporos/ 100g de solo.From August/1984 to May/1987, 300 soil samples were collected from the rhizospheres of 35 species of native plants of Parque Estadual da Ilha do Cardoso, SP, Brazil, in a wet tropical forest, to investigate the occurrence and some ecological aspects of vesicular-arbuscular mycorrhizal (VAM fungi. Thirty five taxa of VA M fungi were reported, seven of them as new species. The most numerous VA M fungal spores belong to Acaulospora foveata Trappe & Janos, Acaulospora

  20. Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field.

    Science.gov (United States)

    Stanley, Margot R; Koide, Roger T; Shumway, Durland L

    1993-05-01

    We examined in the field the effect of the vesicular-arbuscular (VA) mycorhizal symbiosis on the reproductive success of Abutilon theophrasti Medic., an early successional annual member of the Malvaceae. Mycorrhizal infection greatly enhanced vegetative growth, and flower, fruit and seed production, resulting in significantly greater recruitment the following year. In addition, the seeds produced by mycorrhizal plants were significantly larger and contained significantly more phosphorus than seeds from non-mycorrhizal plants, an effect which may improve offspring vigor. Infection by mycorrhizal fungi may thus contribute to the overall fitness of a host plant and strongly influence long-term plant population dynamics.

  1. Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland

    Science.gov (United States)

    Muthukumar, T.; Udaiyan, K.

    2002-10-01

    Vesicular-arbuscular mycorrhizal (VAM) colonization and spore numbers in the rhizosphere of Cyperus iria L. and C. rotundus L., growing in a semi-arid tropical grassland, was studied during the 1993 and 1994 monsoons. In addition, climatic and chemical properties of the soils were determined in order to investigate their influence on mycorrhizal variables. VAM fungal association in the sedges was confirmed by plant- and root-trap culture techniques. The soil nutrients exhibited seasonal variations, but were highly variable between years. Intercellular hyphae and vesicles with occasional intraradical spores characterized mycorrhizal association in sedges. Dark septate fungi also colonized roots of sedges. Temporal variations in mycorrhizal colonization and spore numbers occurred, indicating seasonality. However, the patterns of mycorrhizal colonization and spore numbers were different during both the years. The VAM fungal structures observed were intercellular hyphae and vesicles. Changes in the proportion of root length with VAM structures, total colonization levels and spore numbers were related to climatic and edaphic factors. However, the intensity of influence of climatic and soil factors on VAM tended to vary with sedge species.

  2. Vesicular arbuscular mycorrhizal fungi prevalence and diversity in ...

    African Journals Online (AJOL)

    The prevalence and population levels of VAM fungi in a range of field soil environments in Zimbabwe were determined. The main VAM genera Acaulospora, Scutellospora, Gigaspora, Glomus, Sclerocystis and Entrophospora were represented in the study sites. The relative abundance was ...

  3. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    The effect of inoculation with vesicular–arbuscular mycorrhizal fungi on the growth of barley in the field was studied at two levels of soil P on plots fumigated with methyl bromide. During the vegetative phase, growth and P uptake was influenced only by soil P; P uptake in the period from earing...... and inoculation increased the uptake of bromide, Zn and Cu significantly. Mycorrhizal infection in inoculated plots was first observed 25 days after seedling emergence, and final infection levels were c. 50% in contrast to 12 % without inoculation. The introduced endophyte had spread 30 cm horizontally during...

  4. Factors influencing survival of vesicular-arbuscular mycorrhiza propagules during topsoil storage

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.; Carnes, B.A.; Moorman, T.B.

    1985-01-01

    The survival dynamics of vesicular-arbuscular mycorrhizal fungi were determined, (using a bioassay procedure) for soils stored from 0.5 to 6.0 years in topsoil stockpiles associated with a coal surface-mine in the western United States. Propagule mortality could best be related to in situ soil moisture potential using a piecewise regression model (R/sup 2/ = 0.57; P less than or equal to 0.001) with the breaking point occurring at -2 MPa. The addition of length of storage time was found to contribute significantly to the accuracy of the model (R/sup 2/ = 0.70; P less than or equal to 0.001). In addition, the piece-wise nature of the data suggested two separate populations of VAM fungi - those propagules found in soils with moisture potentials less than -2 MPa and those occurring in soils with moisture potentials greater than -2 MPa. Soil moisture and length of storage time had differing effects on each of these populations. When water potential was less than -2 MPa, moisture was an important predictor of inoculum (P < 0.001), while length of storage had little predictive capability (P = 0.17). However, when water potentials were greater than -2 MPa, the predictive importance of soil moisture (P = 0.86) and length of storage (P = 0.04) were reversed. The significance of these findings to topsoil replacement and subsequent plant community development are discussed. 28 references, 2 figures, 2 tables.

  5. Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation.

    Science.gov (United States)

    Schwab, S M; Menge, J A; Leonard, R T

    1983-11-01

    A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study.

  6. Preliminary studies on the relationship between Tuber melanosporum and vesicular arbuscular mycorrizhae in the "burnt-places"

    Directory of Open Access Journals (Sweden)

    Rosell Armengol, Alexis

    1997-12-01

    Full Text Available The vesicular-arbuscular mycorrhizal status of the herbaceous plants living inside and outside the "burnt- places" caused by Tuber melanosporum Vitt. was examined in order to determine whether the fungus may interfere with endomycorrhizal formation. When plants surviving in the burnt-out areas were compared to those in surrounding ground, a clear reduction in growth and vesicular-arbuscular mycorrhizal colonization were observed; additionally a reduction in the number of endogonaceous spores occurring in me soil was detected. These results suggest mat T. melanosporum produces substances also inhibitive to endomycorrhizal fungi.

    S'ha examinat l'estat de les micorrizes vessículo-arbusculars de les plantes herbácies que viuen dins i fora deis tofoners deguts a Tuber melanosporum Vitt., a fi de determinar si el fong interfereix en la formació endomicorrízica. Quan varen comparar-se les plantes que sobrevivien als tofoners amb les del terreny del voltant, es va observar una clara reducció en llur creixement i en la micorrizació vessículo-arbuscular; i, a més, es va detectar una reducció notable en el nombre d'espores endogàmiques presents al sòl. Tot això suggereix que T. melanosporum produeix substancies inhibents també respecte als fongs endomicorrízics.

  7. The development and significance of vesicular-arbuscular mycorrhizas as influenced by agricultural practices

    NARCIS (Netherlands)

    Ruissen, M.A.

    1982-01-01

    The development and significance of vesicular- arbuscular mycorrhizas (VAM) in wheat and potatoes have been studied in relation to various farming systems and agricultural practices. The effects of farming systems on VAM have been observed on three neighbouring experimental farms in the vicinity of

  8. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp. Sucessão de micorrizas vesicular-arbuscular e ectomicorrizas em mudas de Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    Vera Lúcia dos Santos

    2001-06-01

    Full Text Available The occurrence of vesicular-arbuscular mycorrhizae (AM and ectomycorrhizae (ECM in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonization increased followed by a decrease in AM. Pisolithus tinctorius was favored in simultaneous inoculation with G. etunicatum, and the positive effect of the simultaneous inoculation of both fungi in the percent colonization by the AM fungus occurred up to 60 days after inoculation. After 120 days, colonization of roots by G. etunicatum decreased in the presence of P. tinctorius. When inoculated simultaneously, the proportion of AM and ECM varied with evaluation time, while the combined percentage of mycorrhizal roots approached the maximum and remained more or less constant after 60 days, suggesting that there could be competition between the fungi for limiting substrate. The maximum percent mycorrhizal colonization varied with Eucalyptus species and the highest value was observed for E. camaldulensis, followed in order by E. citriodora, E. urophylla, E. grandis and E. cloeziana.A ocorrência de micorrizas arbusculares (AM e ectomicorrizas (ECM no mesmo sistema radicular foi observada quando Eucalyptus urophylla S.T. Blake, E. citriodora Hook F., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell e E. camaldulensis Dehnh foram inoculadas simultaneamente com Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch. A sucessão entre os dois fungos foi observada. De modo geral, o aumento da colonização ECM foi acompanhado de um decréscimo em AM. A inoculação simultânea resultou em percentagens de colonização diferenciadas das

  9. The influence of vesicular-arbuscular mycorrhizas on production ...

    African Journals Online (AJOL)

    arbuscular mycorrhizas produced slight increases in dry mater production in unsterilized field plots at Cedara, Natal. Phosphorus levels in plant tops showed no increases due to mycorrhizas but crude protein content of all mycorrhizal plants were ...

  10. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    Science.gov (United States)

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  11. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    Science.gov (United States)

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  12. Vesicular-arbuscular mycorrhizae in jojoba and mariola

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, H E

    1975-01-01

    Glomus fasculatus was isolated from soil and roots of the indigenous desert plants Parthenium incanum and Simmondsia chinensis, possible sources of rubber and a waxy oil, respectively. It is suggested that inoculation of these plants with mycorrhizal G. spp. could enhance their productivity under cultivation.

  13. The effect of vesicular-arbuscular mycorrhiza isolated from Syrian soil on alfalfa growth and nitrogen fixation in saline soil

    International Nuclear Information System (INIS)

    El Atrash, F

    2001-01-01

    The influence of vesicular - arbuscular Mycorrhiza fungi (VAM) on symbiotic fixation of N 2 n alfalfa plants has been observed. Beneficial effects of study the effect of VAM or phosphorous fertilization on alfalfa (Medicago sativa L,) yields, umber of nodules and N 2 fixation by N 15 isotope dilution at different salinity levels. This experiment was realized in green house conditions, using soil of 2.3 dsm -1 conductivity mixed with sand (5: 2V) for alfalfa plants growing at various levels of phosphorus, or infected by Mycorrhiza fungi. Different conductivities (13.18, 22.2, 28.8, 43.5 dsm -1 ) were applied on these treatment by increasing concentrations of Nacl, CaCl 2 and MgCl 2 and MgCl 2 by salinity soil irrigation. Ten days after planting, soil was enriched with 2 ppm of (NH 4 15 ) 2 SO 4 . Plant were grown under greenhouse condition for ten weeks. Our results confirmed that increased salinity reduced nitrogen - fixation and the number of nodules. The negative effect with increasing salinity was less in Mycorrhiza plants than in plants fertilized with various levels of phosphorus, and only the higher levels of salinity reduced significantly, the percentage of Mycorrhiza colonization, However, at all levels of salinity, VAM stimulated plant growth and nutrient uptake. (author)

  14. Effect of solarization and vesicular arbuscular mychorrizal on weed ...

    African Journals Online (AJOL)

    mustard (Sinapsis arvensis L.) as observed in the experiment because mustrad has no symbiosis life with this fungus. Also the laboratory findings supported this; the number of spores, number of VAM infected and infection rate were higher both in main parcel of solarized and in the subplot parcel planted with VAM ...

  15. Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems.

    Science.gov (United States)

    Mullen, R B; Schmidt, S K

    1993-05-01

    Phosphorus levels, phenology of roots and shoots, and development of vesicular arbuscular mycorrhizal (VAM) fungi were monitored for two years in natural populations of the perennial alpine herb, Ranunculus adoneus. The purpose of this study was to understand how phosphorus uptake relates to the phenology of R. adoneus and to ascertain whether arbusculus, fungal structures used for nutrient transfer, were present when maximum phosphorus accumulation was occurring. Arbuscules were only present for a few weeks during the growing season of R. adoneus and their presence corresponded with increased phosphorus accumulation in both the roots and shoots of R. adoneus. In addition, phosphorus accumulation and peaks in mycorrhizal development occurred well after plant reproduction and most plant growth had occurred. The late season accumulation of phosphorus by mycorrhizal roots of R. adoneus is stored for use during early season growth and flowering the following spring. In this way R. adoneus can flower before soils thaw and root or mycorrhizal nutrient uptake can occur.

  16. APPARENT LACK OF VESICULAR-ARBUSCULAR MYCORRHIZA (VAM) IN SEAGRASSES ZOSTERA MARINA L. AND THALASSIA TESTUDIUM BANKS EX KONIG

    Science.gov (United States)

    We examined two populations of Zostera marina L. and one of Thalassia testudinum Banks ex Konig for presence of vesicular-arbuscular mycorrhiza (VAM). None of these plants showed any VAM colonization. In addition, we were unable to find any literature references on the presence o...

  17. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress

    International Nuclear Information System (INIS)

    Pai, G.; Bagyaraj, D.J.; Padmavathi Ravindra, T.; Prasad, T.G.

    1994-01-01

    The role of vesicular-arbuscular mycorrhizal (VAM) colonization on calcium uptake was studied under different levels of moisture stress. Pots maintained at different moisture levels were given water containing known amount of radioactive calcium. The radioactivity in different parts of the plant was assessed 60 h after giving 45 Ca to the soil. High 45 Ca activity was present in all parts of vesicular-arbuscular mycrrohizal (VAM) plants compared to non-mycorrhizal plants at all levels of moisture stress. (author). 14 refs., 1 tab

  18. Response of Sesbania grandiflora to Inoculation of Soil with Vesicular-Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Habte, M; Aziz, T

    1985-09-01

    A greenhouse experiment was conducted to determine the influence of two tropical isolates of Glomus fasciculatum and Glomus mosseae on the nutrient uptake and growth of Sesbania grandiflora. Inoculation of sterile soil with the fungi significantly improved growth and nutrient uptake by S. grandiflora, but the response of the legume was markedly better when the soil was inoculated with G. fasciculatum than when it was inoculated with G. mosseae. Nutrient uptake and growth of S. grandiflora in nonsterile soil was also significantly stimulated by inoculation, but the legume did not respond differently to the two endophytes under this condition.

  19. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.

    Science.gov (United States)

    Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Göbel, Cornelia; Feussner, Ivo; Stöhr, Christine

    2010-01-01

    Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.

  20. Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris)

    NARCIS (Netherlands)

    Nielsen, K.F.; Bouma, T.J.; Lynch, J.P.; Eissenstat, D.M.

    1998-01-01

    Low phosphorus availability is often a primary constraint to plant productivity in native soils. Here we test the hypothesis that root carbon costs are a primary limitation to plant growth in low P soils by assessing the effect of P availability and mycorrhizal infection on whole plant C budgets in

  1. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  2. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  3. Effects of bradyrhiziobium and vesicular arbuscular mycorrhizal (VAM) inoculation on symbiotic properties, yield and seed quality of groundnut

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedzein, Ekhlas Mohamedzein M [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1996-11-01

    A local and introduced Bradyrhizobium strains and a locally-isolated VAM fungi were used to study their effects on groundnut in clay (Shambat) and sandy (El-Rwakeeb) soil in a pot experiment. A field experiment was carried out at El-Rwakeeb to study the effect of urea, superphosphate and chicken manure on inoculated or uninoculated groundnut. Inoculation significantly increased number of nodules, dry weight of shoot, root and nodules, plant N and P content, number and dry weight of pods, yield and seed composition and quality in both pot and field experiments. Introduced strain (TAL 1000) was more effective than locally- isolated strain (ENRRI 16). All fertilizers added to inoculated or uninoculated groundnut significantly increased all measured parameters. Chiken manure reflected good results than rea and superphosphate, which showed comparable results. All treatents significantly improved the seed composition especially protein and oil content. (Author) 89 refs. , 25 tabs.

  4. Effects of bradyrhiziobium and vesicular arbuscular mycorrhizal (VAM) inoculation on symbiotic properties, yield and seed quality of groundnut

    International Nuclear Information System (INIS)

    Mohamedzein, Ekhlas Mohamedzein M.

    1996-11-01

    A local and introduced Bradyrhizobium strains and a locally-isolated VAM fungi were used to study their effects on groundnut in clay (Shambat) and sandy (El-Rwakeeb) soil in a pot experiment. A field experiment was carried out at El-Rwakeeb to study the effect of urea, superphosphate and chicken manure on inoculated or uninoculated groundnut. Inoculation significantly increased number of nodules, dry weight of shoot, root and nodules, plant N and P content, number and dry weight of pods, yield and seed composition and quality in both pot and field experiments. Introduced strain (TAL 1000) was more effective than locally- isolated strain (ENRRI 16). All fertilizers added to inoculated or uninoculated groundnut significantly increased all measured parameters. Chiken manure reflected good results than rea and superphosphate, which showed comparable results. All treatents significantly improved the seed composition especially protein and oil content. (Author)

  5. Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton.

    Science.gov (United States)

    Hussey, R S; Roncadori, R W

    1981-01-01

    The influence of Aphelenchus avenae on the relationship between cotton (Gossypium hirsutum 'Stoneville 213') and Gigaspora margarita or Glomus etunicatus was assessed by its effect on the mycorrhizal stimulation of plant growth and microorganism reproduction. The mycophagous nematode usually did not suppress stimulation of shoot growth resulting from mycorrhizae (G. margarita) at inoculum levels of 3,000 or 6,000 nematodes per pot, but retarded root growth at 6,000 per pot. When the nematode inoculum was increased to 10, 40, or 80 thousand, G. margarita stimulation of shoot or root growth was retarded at the two higher rates. Shoot growth enhancement by G. etunicatus was suppressed by 10 thousand A. avenae but not by 40 or 80 thousand. A. avenae reproduced better when the nematode was added 3 wk after G. margarita than with simultaneous inoculations. Sporulation of both fungi was affected little by the mycophagous nematode. The high numbers of A. avenae required for an antagonistic effect probably precludes the occurrence of any significant interaction between these two organisms under field conditions.

  6. Effects of below-ground insects, mycorrhizal fungi and soil fertility on the establishment of Vicia in grassland communities.

    Science.gov (United States)

    Ganade, G; Brown, V K

    1997-02-01

     The effects of, and interactions between, insect root feeders, vesicular-arbuscular mycorrhizal fungi and soil fertility on the establishment, growth and reproduction of Vicia sativa and V. hirsuta (Fabaceae) were investigated in an early-successional grassland community. Seeds of both species were sown into plots where soil insecticide (Dursban 5G), soil fungicide (Rovral) and soil fertiliser (NPK) were applied in a factorial randomised block design. Fertiliser addition reduced growth, longevity and reproduction of both Vicia species, due to the commonly recorded increase in the competitive advantage of the non-nitrogen-fixing species when nitrogen is added to the plant community. However, in plots where fertiliser was not applied, a reduction in root feeders and mycorrhizal infection led to an increase in seedling establishment and fruit production of V. sativa, and to an increase in flower production for both Vicia species. The interaction between all three soil treatments explained much of the variation in growth and longevity of V. sativa. Plants grew larger and survived longer in plots where natural levels of mycorrhizal infection and root feeders were low compared with plots where all the treatments were applied. This suggests that, although soil nutrient availability was a strong determinant of the performance of these two leguminous species, at natural levels of soil fertility biotic factors acting in the soil, such as mycorrhizal fungi and soil-dwelling insects, were important in shaping the competitive interactions between the two Vicia species and the plant community. Our results indicate that non-additive interactions between ecological factors in the soil environment may strongly affect plant performance.

  7. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  8. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  9. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  10. Infection Unit Density as an Index of Infection Potential of Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Ohtomo, Ryo; Kobae, Yoshihiro; Morimoto, Sho; Oka, Norikuni

    2018-03-29

    The effective use of arbuscular mycorrhizal (AM) fungal function to promote host plant phosphate uptake in agricultural practice requires the accurate quantitative evaluation of AM fungal infection potential in field soil or AM fungal inoculation material. The number of infection units (IUs), intraradical fungal structures derived from single root entries formed after a short cultivation period, may reflect the number of propagules in soil when pot soil is completely permeated by the host root. However, the original IU method, in which all AM propagules in a pot are counted, requires the fine tuning of plant growing conditions and is considered to be laborious. The objective of the present study was to test whether IU density, not the total count of IU, but the number of IUs per unit root length, reflects the density of AM fungal propagules in soil. IU density assessed after 12 d of host plant cultivation and 3,3'-diaminobenzidine (DAB) staining showed a stronger linear correlation with propagule density than the mean infection percentage (MIP). In addition, IU density was affected less by the host plant species than MIP. We suggest that IU density provides a more rapid and reliable quantitation of the propagule density of AM fungi than MIP or the original IU method. Thus, IU density may be a more robust index of AM fungal infection potential for research and practical applications.

  11. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    Science.gov (United States)

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  12. Latex content and biomass increase in Mycorrhizal guayule (Parthenium argentatum) under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, H.E.; Pfeiffer, C.M.

    1984-01-01

    Guayule seedlings were inoculated with two Glomus species in pasteurised soil and grown in the glasshouse without added fertilizer for 8 weeks prior to transplanting to the field. The survival rate of transplanted guayule seedlings was increased by inoculation with vesicular arbuscular mycorrhizal fungi compared wtih uninoculated controls. Inoculated guayule had greater concentrations of Ca, Fe, Mg and Mn at six months of age, and greater concentrations of Ca, Mg, and Zn at 12 months of age than did uninoculated plants. The latex content of both roots and shoots of guayule was greater in inoculated than in uninoculated guayule plants at 12 and 18 months of age. The resin content remained unchanged between treatments irrespective of sampling date.

  13. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    Science.gov (United States)

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  14. SOURCES OF MYCORRHIZAL INFECTION OF SHOREA ACUMINATA SEEDLINGS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    LEE Su SEE

    1995-01-01

    Full Text Available Uninoculated dipterocarp seedlings raised in normal field soil in nurseries were always found to have mycorrhizas after a few months. This study set out to determine whether dipterocarp seedlings could continue to grow and develop in the absence of mycorrhizas and also to determine possible sources of mycorrhizal infection of dipterocarp seedlings raised under laboratory conditions using Shorea acuminata as a typical example. Seedlings were planted in capped or uncapped perspex boxes containing sterile or non-sterile field soil and watered daily with sterile water or tap water. Seedling growth and development of mycorrhizas were monitored at monthly intervals for up to seven months. Seedlings grown in sterile soil remained uninfected after seven months while infection was found in some of the seedlings grown in normal soil regardless of whether they had been watered with tap water or sterile water. This showed that field soil (i.e. under grass far from the forest contained suitable inoculum for forest tree seedlings. Tap water and the air were not important sources of infection. However, mycorrhizal infection was very uneven indicating that the inoculum was probably very unevenly distributed in the soil or that the inoculum density was rather low. Seedlings grown in sterile soil showed better growth than those grown in normal soil and infection of roots by parasitic fungi in the latter was also observed.

  15. BIOFERTILIZATION WITH RHIZOBACTERIA AND A CONSORTIUM OF ARBUSCULAR MYCORRHIZAL FUNGI IN CITRUS ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Roberto Gregorio Chiquito-Contreras

    2012-11-01

    Full Text Available Biofertilization of plants with rhizobacteria and vesicular arbuscular mycorrhizae (mycorrhizal consortium, potentially promotes plant growth and health, and reduces the use of agrochemicals. The effect of individual and combined biofertilization with three strains of rhizobacteria and the mycorrhizal consortium (MTZ-1 was evaluated under nursery conditions on the growth of rootstocks of Citrus volkameriana and Rangpur lime grafted with Tahiti lime. Plants were inoculated individually and combined with the rhizobacteria strains FCA-8, FCA-56 and FCA-60 of Pseudomonas putida, and with MTZ-1; 50 % fertilization also was applied (18-46-00 N-P-K and compared with controls that received nursery management and 100 % fertilization. A split-plot experimental design with five replications per treatment was established. Individual and combined biofertilization with the three strains of bacteria and MTZ-1 positively promoted the growth of C. volkameriana, and Rangpur lime grafted with Tahiti lime, similar to the control with 100 % fertilization. The nutrient content of Tahiti lime leaves was similar to the control for both rootstocks. The presence of rhizobacterial and mycorrhizal populations in the combined biofertilization treatments demonstrated a positive synergism in the colonization of rootstock roots. Results demonstrate the potential of the three strains of P. putida and the MTZ-1 mycorrhizal consortium on the promotion of plant growth and assimilation of nutrients.

  16. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    Science.gov (United States)

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  17. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis

    International Nuclear Information System (INIS)

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E.

    1988-01-01

    Translocation of 14 C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. x Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO 2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14 C-photosynthate to the mycorrhiza as did (0+) root systems

  18. Contribution of soil-32P, fertilizer-32P and VA mycorrhizal fungi to phosphorus nutrition of corn plant

    International Nuclear Information System (INIS)

    Feng Gu; Yang Maoqiu; Bai Dengsha; Huang Quansheng

    1997-01-01

    32 P labelled fertilizer and five synthetic phosphates (dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate and apatite), which were used to simulate inorganic phosphates such as Ca 2 -P, Ca 8 -P, Fe P , Al-P and Ca 10 -P in calcareous soil, were applied to corn plants inoculating with and without vesicular-arbuscular (VA) mycorrhizal fungi in a calcareous soil. The results showed that VA mycorrhizal fungi and dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate promoted growth and increased phosphorus content of corn plant. The four synthetic phosphates except apatite had higher contributions to corn plant growth than VA mycorrhizal fungi. Contributions of fertilizer-P, soil-P and synthetic phosphates to phosphorus nutrition of corn plant were in order of synthetic phosphates (except apatite) > soil- P > fertilizer-P. Inoculating with VA mycorrhizal fungi increased the contribution of soil-P and decreased the contribution of synthetic phosphates, but did not affect the contribution of fertilizer-P

  19. Effect of mycorrhizal infection on root uptake by pine seedlings and redistribution of three contrasting radio-isotopes: 85Sr, 95mTc and 137Cs

    International Nuclear Information System (INIS)

    Plassard, C.; Ladeyn, I.; Staunton, S.

    2004-01-01

    Mycorrhizal infection is known to improve phosphate nutrition and water supply of higher plants. It has been reported to both increase the uptake of potentially toxic pollutant elements and to protect plants against toxic effects. Little is known about the effect of mycorrhizal infection on the dynamics of radioactive pollutants in soil-plant systems. The aim of this study was to compare the root uptake and root-shoot transfer of three radio-isotopes with contrasting chemical properties ( 85 Sr, 95m Tc and 137 Cs) in mycorrhizal and control, non mycorrhizal plants. The plant studied was Pinus pinaster and the associated ecto-mycorrhizal fungus was Rhizopogon roseolus (strain R18-2). Plants were grown under anoxic conditions for 3 months then transferred to thin layers of autoclaved soil and allowed to grow for four months. After this period, the rhizotrons were dismantled, and plant tissue analysed. Biomass, nutrient content (K, P, N, Ca) and activities of each isotope in roots, shoots and stems were measured, and the degree of mycorrhizal infection assessed. The transfer factors decreased in the order Tc>Sr>Cs as expected from the degree of immobilisation by soil. No effect of mycorrhizal infection on root uptake was observed for Sr. Shoot activity concentration of Tc was decreased by mycorrhizal infection but root uptake correlated well with mycelial soil surface area. In contrast, Cs shoot activity was greater in mycorrhizal than control plants. The uptake and root to shoot distribution shall be discussed in relation to nutrient dynamics. (author)

  20. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  1. Keanekaragaman Fungi Mikoriza Arbuskula Pada Areal Tanaman Kelapa Sawit (Studi Kasus Di PTPN III Kebun Batang Toru Kabupaten Tapanuli Selatan)

    OpenAIRE

    Siregar, Nabilah

    2014-01-01

    The first thing that must be known to study the potential of vesicular arbuscular mycorrhizal is to know the diversity of these organisms. Data of diversity vesicular arbuscular mycorrhizal used to obtain the selection of of potential and effective isolates. The aim of this research was to know the density of spore, colonization percentage, and types of vesicular arbuscular mycorrhizal of oil palm tree in PTPN III Batang Toru Estate at different soil fertility conditions. Methods of soil and ...

  2. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    Science.gov (United States)

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Effect of Mycorrhizal Fungi and Trifluralin Herbicide on Emergence, Growth and Root Colonization of Clover (Trifolium repens L.

    Directory of Open Access Journals (Sweden)

    Hassan Shahgholi

    2016-09-01

    Full Text Available Introduction: Herbicides, despite of their control of weeds, have the potential to affect sensitive crops in rotation and also beneficial non-targeted soil microbes including vesicular arbuscular mycorrhiza (VAM fungi (6. AM fungi can increase the growth of crops through increasing uptake of phosphorus and insoluble micronutrients, and indirectly by improving soil quality parameters (30. However, several authors have reported different effects of herbicides on VAM symbiosis, which ranges from no adverse effects to slightly or highly toxic effects (6. Pesticides have also been reported to stimulate colonization of plant roots by AM fungi (27. Therefore, the objective of this study was to investigate the interaction effects of mycorrhizal fungi and Trifluralin herbicide on the growth and root colonization of clover. Materials and Methods: A factorial experiment was arranged in randomized complete block design with three replicates at the College of Agricultural, University of Shahrood during 2012. Treatments were included three levels of mycorrhiza inoculation, M1: non mycorrhiza (control, M2: Glommus mosseae and M3: Glommus intraradices and herbicide treatments were included four levels of Trifluralin(T1: 0, T2: 1000, T3: 1500 and T4: 2000 ml ha-1. In mycorrhizal treatments, 20 g inoculums were thoroughly mixed with soil. Seeds of clover (Trifolium repens L. were sown in the pots maintained near the field in order to provide normal environmental conditions. Seedlings were thinned to two plants per pot at three leaf stages. At the time of harvesting, the emergence and growth characteristics of clover and root colonization was also registered. Statistical analyses of data were performed with statistical software MSTATC. Significant differences between means refer to the probability level of 0.05 calculated by LSD test. Results and Discussion: The results showed that emergence, uniformity (EU values decreased and time to 10% (D10 and 90% (D90 of

  4. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  5. Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Renker, Carsten; Buscot, François

    2006-05-01

    Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.].

  6. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  7. Revegetation of oil sands tailings. Growth improvement of silver-berry and buffalo-berry by inoculation with mycorrhizal fungi and N/sub 2/-fixing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.

    1988-01-01

    The ability of actinorhizal shrubs to tolerate inhospitable conditions while improving soil fertility and organic matter status has led to increased usage of these plants for land reclamation and amenity planting purposes. Silver-berry and buffalo-berry are two such shrubs being tested as potential candidates for the revegetation of the oil sands tailings in northeastern Alberta. Associated with the roots of silver-berry and buffalo-berry are two symbiants, the N/sub 2/-fixing actimomycete Frankia and the vesicular-arbuscular mycorrhizal (VAM) fungi. Numerous studies have demonstrated that, particularly in nutrient-limited conditions, mycorrhization and nodulation can result in significantly better plant performance as a consequence of improved N and P nutrition. It was found in this study that in Alberta, silver-berry and buffalo-berry are strictly VA mycorrhizal; that they are highly dependent on their symbiants for optimum growth; and that the VAM inoculum potential of both stockpiled and undisturbed muskeg peak is negligible, due to the absence of VAM hosts. Means to increase the inoculum potential of peat have been studied. The efficacy of inoculating seedlings grown in greenhouses with VAM and Frankia has been demonstrated. Overwinter mortality was higher for inoculated shrubs, but after one growing season, shoot-weights of silver-berry were 3 to 7 times greater than for uninoculated shrubs, and shoot weights of buffalo-berry were 3 to 5 times greater. 122 refs., 12 figs., 31 tabs.

  8. Effect of mycorrhizal infection on root uptake by pine seedlings and redistribution of three contrasting radio-isotopes: {sup 85}Sr, {sup 95m}Tc and {sup 137}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Plassard, C.; Ladeyn, I.; Staunton, S. [Institut National de Recherches Agronomiques (INRA), UMR Rhizosphere and Symbiose 34 - Montpellier (France)

    2004-07-01

    Mycorrhizal infection is known to improve phosphate nutrition and water supply of higher plants. It has been reported to both increase the uptake of potentially toxic pollutant elements and to protect plants against toxic effects. Little is known about the effect of mycorrhizal infection on the dynamics of radioactive pollutants in soil-plant systems. The aim of this study was to compare the root uptake and root-shoot transfer of three radio-isotopes with contrasting chemical properties ({sup 85}Sr, {sup 95m}Tc and {sup 137}Cs) in mycorrhizal and control, non mycorrhizal plants. The plant studied was Pinus pinaster and the associated ecto-mycorrhizal fungus was Rhizopogon roseolus (strain R18-2). Plants were grown under anoxic conditions for 3 months then transferred to thin layers of autoclaved soil and allowed to grow for four months. After this period, the rhizotrons were dismantled, and plant tissue analysed. Biomass, nutrient content (K, P, N, Ca) and activities of each isotope in roots, shoots and stems were measured, and the degree of mycorrhizal infection assessed. The transfer factors decreased in the order Tc>Sr>Cs as expected from the degree of immobilisation by soil. No effect of mycorrhizal infection on root uptake was observed for Sr. Shoot activity concentration of Tc was decreased by mycorrhizal infection but root uptake correlated well with mycelial soil surface area. In contrast, Cs shoot activity was greater in mycorrhizal than control plants. The uptake and root to shoot distribution shall be discussed in relation to nutrient dynamics. (author)

  9. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  10. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness.

    Science.gov (United States)

    Carey, Peter D; Fitter, Alastair H; Watkinson, Andrew R

    1992-07-01

    The effect of vesicular-arbuscular mycorrhiza (VAM) on the fecundity ofVulpia ciliata ssp.ambigua was investigated at two field sites in eastern England by applying the fungicide benomyl to reduce VAM infection. The application of benomyl at the two sites produced very different results. At one site the application of the fungicide reduced the fecundity of plants whereas at the other fecundity was increased. At the first site the reduction in fecundity was linked to a significant reduction in VAM infection on the sprayed plants. The mechanism of the benefit associated with the VAM infection is however unclear: there was no treatment effect on morphology or on phosphorus inflow. At the second site, where fecundity was increased, there was only a negligible amount of VAM infection amongst the unsprayed plants and it is suggested that the increase in fecundity with the application of benomyl may have resulted from a reduction in infection by other, presumably pathogenic, fungi. The value of VAM fungi to the host plant may therefore not be restricted to physiological benefits. They may also provide protection to the plant by competing for space with other species of pathogenic fungi.

  11. Effect of past agricultural use on the infectivity and composition of a community of arbuscular mycorrhizal fungi

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Alena; Janoušková, Martina; Slavíková, R.; Pánková, Hana; Daniel, Ondřej; Vazačová, Kristýna; Rydlová, Jana; Vosátka, Miroslav; Münzbergová, Zuzana

    2016-01-01

    Roč. 221, APR 01 (2016), s. 28-39 ISSN 0167-8809 R&D Projects: GA ČR GAP504/10/1486 Institutional support: RVO:67985939 Keywords : terminal restriction fragment length polymorfism (T-RFLP) * arbuscular mycorrhizal fungi (AMF) * secondary succession Subject RIV: EF - Botanics Impact factor: 4.099, year: 2016

  12. Effect of solarization and vesicular arbuscular mychorrizal on weed ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... 2Organic Farming Program, Vocational School of Bismil, Dicle University, .... area in the early morning (07:00 - 09:00) with 45 x 35 cm space in ..... Brazil. Robinson D, Fitter A (1999). The magnitude and control of carbon.

  13. Fungos micorrízicos vesículo-arbusculares em rizosferas de plantas em dunas do Parque Estadual da Ilha do Cardoso, São Paulo, Brasil: (1 Taxonomia Vesicular-arbuscular mycorrhizal fungi from rhizospheres of dunes plants of Parque Estadual da Ilha do Cardoso, São Paulo State, Brazil (1: taxonomy

    Directory of Open Access Journals (Sweden)

    S. F. B Trufem

    1989-01-01

    Full Text Available De março/1988 a março/1989, mensalmente, foram coletadas o total de 450 amostras de solo de rizosferas de plantas de dunas do Parque Estadual da Ilha do Cardoso, Estado de Sáo Paulo, com a finalidade de se verificar a ocorrência de fungos micorrízicos vesículo-arbusculares (MVA. As plantas mais constantemente investigadas foram: Baccharis trimera DC. (Compositae, Blutaparon portulacoides (St. Hü. Mears (Amaranthaceae, Dalbergia hecastaphylla (L. Taub. (Legurninosae, Hydrocotyle bonariensis Lam. (Umbelliferae,Ipomoeapes-caprae (L.Sweet(Convolvulaceae, Polygaid cyparisseas St. Hül & Moq. (Polygalaceae, além de gramíneas, ciperáceas e outras, que foram coletadas mais esporadicamente. O solo foi tratado pela técnica de decantação e peneiramento em via úmida. Foram verificados 14 taxons de fungos MVA: Acaulospora scrobiculata Trappe, Acaulospora tuberculata Janos & Trappe, Cigaspora gigantea (Nicol. & Gerd. Gerd. & Trappe, Glomus fasciculatum (Thaxter Gerd. & Trappe emend. Walker & Koske, Glomus globiferum Koske & Walker, Glomus monosporum Gerd. & Trappe, Sclerocystis sinuosa Gerd. & Bakshi, Scutellospora calospora (Nicol & Gerd Walker & Sanders, Scutellospora coralloidea (Trappe, Gerd. & Ho (Walker & Sanders, Scutellospora gilmorei (Trappe & Gerd. Walker & Sanders, Scutellospora gregaria (Schenck & Nicol. Walker & Sanders, Scutellospora pérsica (Koske & Walker Walker & Sanders, Scutellospora verrucosa Koske & Walker Walker & Sanders e Scutellospora sp. São apresentadas descrições taxonómicas, comentarios e murônimos dos taxons verificados.Monthly, from March/1988 to March/1989 were collected the total of 450 soil samples from rhizospheres of plants from dunes of Parque Estadual da Ilha do Cardoso, São Paulo State, Brazil, to report the occurrence of VANÍ fungus. The investigated plants were: Baccharis trímera DC. (Compositae, Blutaparon portulacoides (St. Hil. Mears (Amaranthaceae, Dalbergia hecastaphylla (L. Taub. (Legumiosae, Hydrocotyle bonariensis Lam. (Umbelliferae, Ipomoea pes-caprae (L. Sweet (Convolvulaceae, Polygala cyparisseas St. Hill & Moq. (Polygalaceae; Gramineae, Cyperaceae and other plants were occasionaly collected. The soil was prepared according the wet sieving and decanting technique. It was observed the following 14 taxa of VA M fungüs: Acaulospora scrobiculata Trappe, Acaulospora tuberculata Janos & Trappe, Gigaspora gigantea (Nicol. & Gerd Gerd & Trappe, Glomus fasciculatum (Thaxter Gerd. & Trappe emend. Walker & Koske, Glomus globiferum Koske & Walker, Glomus monosporum Gerd. & Trappe, Sclerocystís sinuosa Gerd. & Bakshi, Scutellospora calospora (Nicol. & Gerd. Walker & Sanders, Scutellospora collaroidea (Trappe, Gerd. & Ho Walker & Sanders, Scutellospora gilmorei (Trappe & Gerd. Walker & Sanders, Scutellospora gregaria (Schénck & Nicol. Walker & Sanders, Scutellospora pérsica (Koske & Walker Walker & Sanders, Scutellospora verrucosa (Koske & Walker Walker & Sanders and Scutellospora sp. Are presented taxonomical, coments and muronyms of the studied taxa.

  14. Keanekaragaman Fungi Mikoriza Arbuskula Pada Areal Tanaman Karet (Studi Kasus Di PTPN III Kebun Batang Toru Kabupaten Tapanuli Selatan)

    OpenAIRE

    Siregar, Rizky Amelia Dona

    2014-01-01

    RIZKY AMELIA DONA SIREGAR. Vesicular Arbuscular Mycorrhizal Diversity of Rubber Plantation Area (Case Study in PTPN III Batang Toru Estate, South Tapanuli). Supervised by DELVIAN and DWI SURYANTO. This study aims to determine the density of spores, colonization percentage, and types of vesicular arbuscular mycorrhizal in rubber tree in PTPN III Batang Toru Estate with different soil fertility conditions. Soil and root samples were taken from rhizosphere of rubber each 3 plots in afdeling ...

  15. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies both in tree species as well as in two different nurseries. This variation is attributed to various factors such ...

  16. Methods for assessing the impact of avermectins on the decomposer community of sheep pastures.

    Science.gov (United States)

    King, K L

    1993-06-01

    This paper outlines methods which can be used in the field assessment of potentially toxic chemicals such as the avermectins. The procedures focus on measuring the effects of the drug on decomposer organisms and the nutrient cycling process in pastures grazed by sheep. Measurements of decomposer activity are described along with methods for determining dry and organic matter loss and mineral loss from dung to the underlying soil. Sampling methods for both micro- and macro-invertebrates are discussed along with determination of the percentage infection of plant roots with vesicular-arbuscular mycorrhizal fungi. An integrated sampling unit for assessing the ecotoxicity of ivermectin in pastures grazed by sheep is presented.

  17. Effects of endomycorrhizal infection, artificial herbivory, and parental cross on growth of Lotus corniculatus L.

    Science.gov (United States)

    Borowicz, V A; Fitter, A H

    1990-03-01

    We examined how combinations of parentage, fungicide application, and artificial herbivory influence growth and shoot phosphorus content in pre-reproductive Lotus corniculatus, using young offspring arising from three parental crosses, two of which had one parent in common. Soil with vesicular-arbuscular mycorrhizal (VAM) fungi was treated with either water or benomyl, an anti-VAM fungicide, and added to trays containing groups of four full siblings. There were two experiments; in the first no plants were clipped while in the second two of the four plants were clipped to simulate herbivory. In both experiments plants of the two related crosses accumulated more biomass and total shoot P than did plants of the third cross. Plants inoculated with watertreated soil had greater shoot mass and P concentration than did fungicide-treated replicates but the extent of increase in P concentration varied among crosses. In Experiment 2, clipping reduced root mass and resulted in higher shoot P concentration. In this experiment there was a significant interaction of fungicide application and clipping: both unclipped and clipped plants grew better in soil not treated with fungicide, but the increase in shoot mass, total mass, and total P was greater in unclipped plants. Significant interaction of fungicide treatment and clipping is most likely due to reduced availability of carbon to the roots of clipped plants, resulting in poorer symbiotic functioning.

  18. Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza.

    Science.gov (United States)

    Haselwandter, K; Read, D J

    1980-04-01

    Types of root infection were analysed in healthy dominant and sub-dominant plants of zonal and azonal vegetation above the timberline in the Central and Northern Calcareous Alps of Austria. In the open nival zone vegetation, infection by fungi of the Rhizoctonia type was predominant, vesicular-arbuscular mycorrhizal infection, which was mostly of the fine endophyte (Glomus tenuis) type, being light and mainly restricted to grasses in closed vegetation patches. More extensive Glomus tenuis infection was found in the alpine grass heath, but in Carex, Rhizoctonia was again the most important fungus. The ericaceous plants of the dwarf shrub heath have typical ericoid infection, but quantitative analysis reveals a decrease of infection intensity with increase of altitude. The possible function of the various types of root infection are discussed, and the status of Rhizoctonia as a possible mycorrhizal fungus is considered.

  19. Axenic culture and encapsulation of the intraradical forms of Glomus spp.

    Science.gov (United States)

    Strullu, D G; Romand, C; Plenchette, C

    1991-05-01

    In recent years there have been many attempts to cultivate in vitro vesicular-arbuscular mycorrhizal (VAM) fungi which are obligate symbionts. Resting spores extracted from soils are often used as inoculum. Mycorrhizal root pieces are also used for inoculation but the role of intra-radical structures has not been clearly established. On agar medium vegetative mycelium was regenerated from individual intra-radical vesicles and from hyphae extracted by enzymatic maceration. After cell penetration, the mycelium probably accumulates substances which allow growth of VAM fungi in pure culture. When associated with tomato roots, this mycelium forms typical mycorrhizae. Encapsulation stabilized the biological properties of mycorrhizal roots and isolated vesicles. The immobilization also preserved the infectivity of the intra-radical hyphae and vesicles. After 25 years of exclusive utilization of resting spores as starting material for axenic and dual cultures of VAM fungi, it appears that intra-radical vesicles may be preferable propagules.

  20. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  1. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  2. VAM populations in relation to grass invasion associated with forest decline.

    Science.gov (United States)

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  3. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    Science.gov (United States)

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins.

  4. Mycorrhizal diversity of stevia (Stevia rebaudiana Bertoni) rhizosphere in Tawangmangu, Indonesia

    Science.gov (United States)

    Astuti, D. Y.; Parjanto; Cahyani, V. R.

    2018-03-01

    Mycorrhizal fungi is a group of soil fungi with mutualistic symbiosis between fungi and plant roots. The diversity on mycorrhiza contributes the maintenance of plant biodiversity, ecosystem function, and plant productivity. Climate change may affects the distribution and diversity of mycorrhizal fungi, and thus the study on mycorrhizal diversity is important to develop the information about mycorrhizal function and utilization. The present study investigated mycorrhizal diversity in the rhizosphere of stevia at four locations in different altitudes and soil types. The samples taken from Tlogodlingo (Andisols 1), Kalisoro (Andisols 2), Nglurah (Alfisols 1) and Ledoksari (Alfisols 2) in Tawangmangu, Karanganyar, Central Java, Indonesia. The result showed that Glomus sp. and Acaulospora sp. were the common genus found at all locations, whereas Gigaspora sp. was the only species found in the acidic Alfisol soil. Statistical analysis indicated that altitude, soil pH, and P availability significantly positively correlated with mycorrhizal spore density. The increase of altitude, soil pH and P availability, also increase the mycorrhizal spore density. Mycorrhizal infectivity negatively correlated with C/N ratio.

  5. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  6. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Directory of Open Access Journals (Sweden)

    Cinta Calvet

    2015-09-01

    Full Text Available Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72 and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5 media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.

  7. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, C.; Garcia-Figueres, F.; Lovato, P.; Camprubi, A.

    2015-07-01

    Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment. (Author)

  8. 32P uptake and translocation in chickpea (Cicer arietinum L.) inoculated with vesicular-arbuscular mycorrhiza

    International Nuclear Information System (INIS)

    Chaturvedi, C.; Singh, Renu

    1990-01-01

    32 P uptake in chickpea (Cicer arietinum L.) cultivars L-550 and C-235 as affected by vesicualr-arbuscular mycorrhiza (G. caledonicum) and Rhizobium was investigated in P deficient soils. Test plants coinoculated with the above two symbionts exhibited higher 32 P uptake than inoculated with either symbiont alone. Uninoculated plants showed minimum level of 32 P uptake. (author). 1 tab., 7 refs

  9. Increasing Growth and Yield of Upland Rice by Application of Vesicular Arbuscular Mycorrhizae and Potassium Fertilizer

    Directory of Open Access Journals (Sweden)

    Dedi Natawijaya

    2012-01-01

    Full Text Available Field experiment with a split plot design has been carried out in order to assess the growth characteristics andyields, and effectiveness of MVA upland rice which were given potassium fertilizer in two growing seasons. MVAinoculation consisted of three treatments (without MVA, Glomus sp. and Gigaspora sp. while potassium fertilizerconsisted of five levels (0, 12.5, 25, 37.5, and 50 kg ha-1 K. The results showed that plant growth variable which wasinoculated by MVA at any levels of K fertilizer was higher in the dry season than that in the wet season, whereas theopposite occurred for net assimilation rate. Potassium content of leaf tissue, shoot/root ratio, and grain weight perhill was determined and mutually dependent on genus MVA, dosages of K fertilizer, and growing season. Harvestindex and grain dry weight per hill were influenced by the growing season and the genus MVA but the effect did notdepend on each other. At all dosages of K fertilizer and any MVA genera, Gigaspora sp. inoculation was better thanthat of Glomus sp. Dry weight of grains per hill was affected by the contribution of grain content per hill, weight of1000 grains and number of productive seedlings per hill. The optimum dosage of K fertilizer in the dry season was32.4 kg ha-1 K with grain yield 3.12 Mg ha-1 for inoculation of Gigaspora sp., whereas the optimum dosage in the wetseason was 34.2 kg ha-1 K for the treatment Glomus sp. inoculation with Gigaspora sp. in the wet season did notreach dosages of optimum K fertilizer.

  10. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  11. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 98 of 98 ... Vol 6, No 1 (2000), Natural control of fungi and mycotoxin in grains - means of ... var. longum as causal agent of collar rot of coffee in Zimbabwe, Details .... Vesicular arbuscular mycorrhizal fungi prevalence and diversity in ...

  12. Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro.

    Science.gov (United States)

    Tsai, S M; Phillips, D A

    1991-05-01

    Because flavonoids from legumes induce transcription of nodulation genes in symbiotic rhizobial bacteria, it is reasonable to test whether these compounds alter the development of vesicular-arbuscular mycorrhizal (VAM) fungi that infect those plants. Quercetin-3-O-galactoside, the dominant flavonoid released naturally from alfalfa (Medicago sativa L.) seeds, promoted spore germination of Glomus etunicatum and Glomus macrocarpum in vitro. Quercetin produced the maximum increases in spore germination, hyphal elongation, and hyphal branching in G. etunicatum at 1 to 2.5 muM concentrations. Two flavonoids exuded from alfalfa roots, 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone, also enhanced spore germination of this fungal species. Formononetin, an isoflavone that is released from stressed alfalfa roots, inhibited germination of both Glomus species. These in vitro results suggest that plant flavonoids may facilitate or regulate the development of VAM symbioses and offer new hope for developing pure, plant-free cultures of VAM fungi.

  13. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  14. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  15. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus

    NARCIS (Netherlands)

    Siciliano, V.; Genre, A.; Balestrini, R.; Cappellazzo, G.; Wit, de P.J.G.M.; Bonfante, P.

    2007-01-01

    Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in

  16. EFFECTS OF MYCORRHIZAL FUNGI ON IN-VITRO NITROGEN RESPONSE OF SOME DUTCH INDIGENOUS ORCHID SPECIES

    NARCIS (Netherlands)

    DIJK, E; ECK, ND

    The effect of mycorrhizal infection on the response to mineral nitrogen was studied in Orchis morio L., Dactylorhiza praetermissa (Druce) Soo var. junialis (Vermin.) Sengh., Dactylorhiza majalis (Reichb.) Hunt & Summerh., and Dactylorhiza incarnara (L.) Soo, using two strains of Ceratorhiza sp. and

  17. Partner selection in the mycorrhizal mutualism

    NARCIS (Netherlands)

    Werner, G.D.A.; Kiers, E.T.

    2015-01-01

    Partner selection in the mycorrhizal symbiosis is thought to be a key factor stabilising the mutualism. Both plant hosts and mycorrhizal fungi have been shown to preferentially allocate resources to higher quality partners. This can help maintain underground cooperation, although it is likely that

  18. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, T.; Radimszky, L.; Nemeth, T. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuezfoe, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. (orig.)

  19. The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens.

    Science.gov (United States)

    Titus, J; Del Moral, R

    1998-03-01

    This study was designed to examine the role of vesicular-arbuscular mycorrhizae (VAM) and microsites on the growth of pioneer species. Flat, rill, near-rock, and dead lupine microsites were created in plots in barren areas of the Pumice Plain of Mount St. Helens. VAM propagules were added to the soil in half of the plots. Six pioneer species were planted into both VAM and non-VAM inoculated microsites. Plants in dead lupine microsites were greater in biomass than those in flat, rill, and near-rock microsites. Significant effects of VAM on plant biomass did not occur. Microsites continue to be important to plant colonization on the Pumice Plain, but VAM do not yet appear to play an important role. This may be due to limited nutrient availability and the facultatively mycotrophic nature of the colonizing plant species. It is unlikely that VAM play an important role in successional processes in newly emplaced nutrient-poor surfaces.

  20. Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor V.; Kohler, Annegret; Martin, Francis

    2013-05-23

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms for assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of L. bicolor. Most of this data is publicly available on JGI MycoCosm?s Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).

  1. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass

    International Nuclear Information System (INIS)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna

    2005-01-01

    In a first experiment of soil contaminated with 137 Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of 137 Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the 137 Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of 137 Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced 137 Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or 137 Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of 137 Cs. There may be a potential for selecting fungal strains that stimulate 137 Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of 137 Cs-contaminated soil

  2. Arbuscular mycorrhizal fungi mediated uptake of {sup 137}Cs in leek and ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna [Department of Soil Sciences, Swedish University of Agricultural Sciences P.O. Box 7014, SE-750 07 Uppsala (Sweden)

    2005-02-15

    In a first experiment of soil contaminated with {sup 137}Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of {sup 137}Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the {sup 137}Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of {sup 137}Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced {sup 137}Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or {sup 137}Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of {sup 137}Cs. There may be a potential for selecting fungal strains that stimulate {sup 137}Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of {sup 137}Cs-contaminated soil.

  3. EFFECTS OF VARIOUS SOIL ENVIRONMENTAL STRESSES ON THE OCCURRENCE, DISTRIBUTION AND EFFECTIVENESS OF VA MYCORRHIZAE

    Directory of Open Access Journals (Sweden)

    A.G. KHAN

    1995-01-01

    Full Text Available The vesicular - arbuscular (VA mycorrhizal fungi are geographically ubiquitous soil inhabitants and form universal symbiotic relationship with plants from every phylum. These fungi link host plants with host soils and their biota in the mycorrhizosphere and play an important role in plant health, productivity and soil structure. Although VA mycorrhizal fungi do not show any host specificity, there is increasing evidence that various climatic and edaphic environmental factors such as land use and management practices, physical, chemical and biological properties of host soils and host plant characteristics influence their occurrence, taxonomic distribution and effectiveness. The interaction of these factors with vesicular-arbuscular mycorrhizae (VAM is poorly understood except in a few cases. It is now very clear that VA mycorrhizal associations are ecologically significant factors that require more attention than previously accorded. This paper discusses the occurrence, distribution and significance of VAM in environmentally stressed soil conditions that limit plant growth such as drought, waterlogging and salinity.

  4. Mycorrhizal dependency of laurel (Ocotea sp.)

    International Nuclear Information System (INIS)

    Sierra-Escobar, Jorge A; Castro Restrepo, Dagoberto; Osorio Vega, Walter

    2009-01-01

    A greenhouse experiment was carried out to determine the mycorrhizal dependency of laurel (>Ocotea sp.). In order to do this, a completely randomized experimental design was used, with six treatments in a factorial array of 3 x 2 and five repetitions. The treatments involved a combination of three Phosphorus (P) levels in soil solution (0.002, 0.02 and 0.2 mg L-1) and two levels of mycorrhizal inoculation, either inoculated or non-inoculated with Glomus aggregatum Schenck and Smith. The leaf P content as a function of time was used as an output variable. Shoot dry matter, shoot P content, mycorrhizal colonization of roots, and mycorrhizal dependence were measured at harvest. The results indicated that the leaf P content increased significantly when using the mycorrhizal inoculation in laurel at P level 0.2 mg L -1, but not in the other P levels, on some of the sampling days. Shoot dry weight and total plant P content did not increase at all levels of soil available P. Mycorrhizal dependency of laurel reached 28%, which allows this species to be classified as moderately dependent on mycorrhiza.

  5. Relationship Between Mycorrhizal Associations and Tree Phyto-Sanitary Conditions of Urban Woodlands of Bogota D.C., Colombia

    International Nuclear Information System (INIS)

    Ramos Montano, Carolina; Posada Almanza, Raul H; Ronderos Figueroa, Miguel A; Penagos Canon, Gustavo A

    2010-01-01

    Spore number and root infection by Arbuscular mycorrhizal fungi were evaluated in Eugenia myrtifolia, Ficus soatensis and Croton bogotensis, in parks and green zones of urban woodlands of Bogota D.C, Colombia. The aim was to investigate relations between mycorrhizal associations and tree phyto-sanitary conditions, and effects of two distinct climatic zones. It was demonstrated that plant species and climate are significant sources of variations in the general mycorrhizal state. Eugenia myrtifolia showed the highest degree of root colonization but the lowest number of spores, while C. bogotensis had the opposite response. In general, dry environments favored the mycorrhizal infection levels. By considering overall data, there was a positive relation between the general phytosanitary status of the urban trees and the mycorrhizal colonization. The evaluation of the relationship with the incidence of specific foliar symptoms showed that chlorosis, bight and herbivory maintained a negative relation with the mycorrhization in E. myrtifolia and C. bogotensis. Results suggest that association with AM fungi helps in any way for reducing

  6. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions.

    Science.gov (United States)

    Sánchez-Blanco, Ma Jesús; Ferrández, Trinitario; Morales, Ma Angeles; Morte, Asunción; Alarcón, Juan José

    2004-06-01

    The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.

  7. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  8. Role of VAM on growth and phosphorus nutrition of maize with low soluble phosphate fertilization

    Directory of Open Access Journals (Sweden)

    Amitava Rakshit

    2010-01-01

    Full Text Available The effect of vesicular arbuscular mycorrhizal (VAM infection on growth and P nutrition in Maize (Zea mays, cv.DDH hybrid were assessed in Oxisol pot experiment. Maize was grown inoculated with spores of VAM fungi Glomus mosseae or non-inoculated. Low soluble ferrous phosphate (FePO4.4H2O was added to the mycorrhized and non-micrrohized maized. The dry weight of mycorrhized plants with added phosphate (P were higher than in mycorrhized plants without added P or non-mycorrhized plants with added P. The amount of P in the soil samples from pots with mycorrhizal plants fertilized with P was evidently smaller than those in samples also fertilized non-mycorrhizal plants. The percentage of P was higher in tissues of fertilized mycorrhial plants than in those mycorrihzed plants without or nonmycorrhized plants with added low-soluble P. These results indicated that plants in VAM symbiosis mobilize P better from low-soluble P than non-mycorrhized plants.

  9. Role of VAM on growth and phosphorus nutrition of maize with low soluble phosphate fertilization

    Directory of Open Access Journals (Sweden)

    Rakshit Amitava

    2010-03-01

    Full Text Available The effect of vesicular arbuscular mycorrhizal (VAM infection on growth and P nutrition in Maize (Zea mays, cv.DDH hybrid were assessed in Oxisol pot experiment. Maize was grown inoculated with spores of VAM fungi Glomus mosseae or non-inoculated. Low soluble ferrous phosphate (FePO4.4H2O was added to the mycorrhized and non-micrrohized maized. The dry weight of mycorrhized plants with added phosphate (P were higher than in mycorrhized plants without added P or non-mycorrhized plants with added P. The amount of P in the soil samples from pots with mycorrhizal plants fertilized with P was evidently smaller than those in samples also fertilized non-mycorrhizal plants. The percentage of P was higher in tissues of fertilized mycorrhial plants than in those mycorrihzed plants without or nonmycorrhized plants with added low-soluble P. These results indicated that plants in VAM symbiosis mobilize P better from low-soluble P than non-mycorrhized plants.

  10. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  11. Frost hardiness of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine roots.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2013-10-01

    The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.

  12. Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines.

    OpenAIRE

    Nogales, A. (Amaia); Aguirreolea, J. (Jone); Santa-Maria, E. (Eva); Camprubi, A. (Amalia); Calvet, C. (Cinta)

    2009-01-01

    A study was conducted with the vine rootstock Richter 110 (Vitis berlandieri Planch. x Vitis rupestris L.) in order to assess whether the colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices (BEG 72) can delay the disease development in plants inoculated with the root-rot fungus Armillaria mellea (Vahl:Fr) Kummer, and to elucidate if the levels of polyamines (PAs) are modified in response to G. intraradices, A. mellea or by the dual infection. Four treatments were consi...

  13. Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi

    OpenAIRE

    Castillo, Pablo; Nico, Andrés I.; Azcón González de Aguilar, Concepción; Río Rincón, C. del; Calvet, Cinta; Jiménez-Díaz, Rafael M.

    2006-01-01

    The effects were investigated, under controlled conditions, of single and joint inoculation of olive planting stocks cvs Arbequina and Picual with the arbuscular mycorrhizal fungi (AMF) Glomus intraradices, Glomus mosseae or Glomus viscosum, and the root-knot nematodes Meloidogyne incognita and Meloidogyne javanica, on plant performance and nematode infection. Establishment of the fungal symbiosis significantly increased growth of olive plants by 88·9% within a range of 11·9–214·0%, ...

  14. Capacidade infectiva de fungos micorrízicos arbusculares em áreas reflorestadas após mineração de bauxita no Pará Infective capacity of arbuscular mycorrhizal fungi in reforested areas after bauxite mining in the Pará State, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Lucy Caproni

    2003-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade infectiva das espécies de fungos micorrízicos arbusculares (FMA e relacionála com o número mais provável (NMP de propágulos infectivos e número de esporos extraídos diretamente do campo. Amostras de solo foram coletadas em áreas degradadas pela mineração de bauxita com cobertura de 2, 6, 12 e 16 anos após revegetação e em uma área de floresta primária, em Porto Trombetas, PA. Os esporos de FMA foram extraídos e identificados taxonomicamente por suas características morfológicas. A maioria das espécies apresentou comportamento diferente nas áreas em estudo. Glomus macrocarpum foi a que apresentou infectividade mais rápida e alto potencial infectivo, nos solos das cinco áreas estudadas. Esta espécie também apresentou alto NMP de propágulos e alto número de esporos em todas as áreas estudadas. A capacidade infectiva das espécies não está relacionada com a densidade de propágulos. As espécies de FMA possuem diferentes graus de tolerância às condições de solo e se comportaram de maneira diferente de acordo com a idade da revegetação.The objective of this work was to evaluate the infective capacity of arbuscular mycorrhizal fungi (AMF species and relate it to the most probable number (MPN of infective propagules and number of spores extracted directly from the field. Soil samples were taken from areas degraded by bauxite mining, 2, 6, 12 and 16 years after reforestation and from an area of primary forest. The spores were extracted and morphologically identified. Most of the species had different behavior for the areas of study. Glomus macrocarpum showed fast infectivity in soils with high infective potential, independently of the soil origin. This species also showed high MPN values of infective propagules and high number of spores in all areas. The infective capacity of the species did not relate to the density of infective propagules. AMF species have different

  15. Effects of arbuscular mycorrhizal fungi on gas exchange and stable isotope ratio of δ13C, δ15N of leymus chinensis plant

    International Nuclear Information System (INIS)

    Shi Weiqi; Wang Guoan; Li Xiaolin

    2008-01-01

    Leymus chinensis, one of dominant species in Inner Mongolia grassland, was selected to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on plant gas change parameters and stable isotope ratio in pot culture. The plant was inoculated with two mycorrhizal fungi, Glomus intraradices and Glomus claroidum, and the uninoculated plant was used as the control check. On the 45th , 60th , 75th days after sowing, gas exchange parameters and stable isotope ratio were measured. The results showed that AM infection promoted phosphoms content, stomatal conductance and photosynthetic rate of Leymus chinensis, reduced host δ 15 N, however, it did not influence host intrinsic water using efficiency and δ 13 C. It was the growth time that significantly affected the gas exchange and stable isotope ratio of δ 13 C and δ 15 N. And the interaction of inoculation and growth time also influenced on the net photosynthetic rate, δ 13 C and δ 15 N of the host. Stomatal conductance and photosynthetic rate were always changed the same direction by arbuscular mycorrhizal fungi causing no significant difference between mycorrhizal and non-mycorrhizal plant. AMF absorbed nitrogen and accumulated δ 15 N, thus, it transformed less 15 N into the host, and as a result, the mycorrhizal plant had lower δ 15 N. Therefore, the results gave a new way and reference to know of the grass balance of carbon gain and water cost and the nitrogen cycle in grassland. (authors)

  16. Arbuscular mycorrhizal infection in two morphological root types of Araucaria araucana (Molina K. Koch Infección por micorrizas arbusculares en dos tipos de raíces de Araucaria araucana (Molina K. Koch

    Directory of Open Access Journals (Sweden)

    P. Diehl

    2010-06-01

    Full Text Available Araucaria araucana (Molina K. Koch is a conifer distributed in the Andean-Patagonian forests in the south of Argentina and Chile. The main objective of this work was to relate the different root classes appearing in A. araucana to mycorrhizal behavior. Samples were collected in three different sites in the Lanín National Park (NW Patagonia, Argentina. Two different root classes were present in A. araucana: longitudinal fine roots (LFR and globular short roots (GSR. Both had extensive mycorrhizal arbuscular symbiosis (AM and presented abundant hyphae and coils in root cells, a characteristic of the anatomical Paris-type. Dark septate fungal endophytes were also observed. Values of total AM colonization were high, with similar partial AM% values for each root class. Seasonal differences were found for total and partial colonization, with higher values in spring compared to autumn. Regarding the percentage of fungal structures between root classes, values were similar for vesicles and arbuscules, but higher coil percentages were observed in GSR compared to LFR. The percentages of vesicles increased in autumn, whereas the arbuscule percentages increased in spring, coinciding with the plant growth peak. Results show that both root classes of A. araucana in Andean-Patagonian forests are associated with AM fungi, which may have ecological relevance in terms of the importance of this symbiosis, in response to soil nutrient-deficiencies, especially high P-retention.La conífera Araucaria araucana (Molina K. Koch se encuentra distribuida en los bosques Andino-Patagónicos de Argentina y Chile. En este trabajo se relacionaron las diferentes clases morfológicas de raíces presentes en la especie con el comportamiento micorrícico. Las muestras fueron tomadas en tres sitios del Parque Nacional Lanín (NO de Patagonia, Argentina. Se observaron dos clases diferentes de raíces: raíces finas longitudinales (RFL y raíces cortas globulares (RCG. Ambas clases

  17. Respons Fisiologi Beberapa Genotipe Kedelai yang Bersimbiosis dengan MVA terhadap Berbagai Tingkat Cekaman Kekeringan

    Directory of Open Access Journals (Sweden)

    HAPSOH

    2006-06-01

    Full Text Available Present research was aimed to study physiological changes of soybean which were inoculated with vesicular arbuscular mycorrhizal fungi (VAM. Glomus etunicatum was exposed to moderate and severe drought condition. Symbiotic association with VAM improved adaptability as it was shown by the increasing leaf proline content. The MLG 3474 and Sindoro are the more tolerant genotypes while the responses of plant to VAM on improving the adaptability to drought were larger on Lokon.

  18. The Physiological Response of Soybean Genotypes to VAM Inoculation on Selected Drought Stress Levels

    Directory of Open Access Journals (Sweden)

    HAPSOH

    2006-06-01

    Full Text Available Present research was aimed to study physiological changes of soybean which were inoculated with vesicular arbuscular mycorrhizal fungi (VAM. Glomus etunicatum was exposed to moderate and severe drought condition. Symbiotic association with VAM improved adaptability as it was shown by the increasing leaf proline content. The MLG 3474 and Sindoro are the more tolerant genotypes while the responses of plant to VAM on improving the adaptability to drought were larger on Lokon.

  19. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    OpenAIRE

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N...

  20. Interaction of arbuscular mycorrhizal fungus ( Glomus intraradices ...

    African Journals Online (AJOL)

    In this research, the effect of two arbuscular mycorrhizal fungal (AMF) inoculation (Glomus intraradices and Glomus etunicatum) on tomato plants growing in nutrient solution with high concentrations of copper were studied. Copper (Cu) is an essential micronutrient for plant growth. In the present study, the effect of copper ...

  1. Response of Arbuscular mycorrhizal fungi and Rhizobium ...

    African Journals Online (AJOL)

    The aim of the present study was to investigate the effect ofRhizobium and Arbuscular mycorrhizal fungi inoculation, both individually and in combination on growth and chlorophyll content of economically important plant Vigna unguiculata L. A significant (p < 0.05) increase over control in root length (45.6 cm), shoot height ...

  2. Occurrence and succession of mycorrhizas in Alnus incana

    Energy Technology Data Exchange (ETDEWEB)

    Arveby, A.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Section of Forest Ecophysiology; Granhall, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology

    1998-12-31

    The occurrence of different mycorrhizas of the grey alder, Alnus incana (L.) Moench., in Sweden was investigated. Root sampling was carried out in planted and natural grey alder stands, representing different soil types, geographical sites, and plant ages. Mycorrhizal infection of roots was found to be frequent at all investigated sites, except for some planted peat bogs, where alders do not occur naturally. At the latter sites, mycorrhizal infection was less frequent and consisted only of ectomycorrhizas. Young trees here were non-mycorrhizal. At all other sites vesicular-arbuscular mycorrhiza (VAM) was found to be the almost exclusive type of mycorrhiza in first-year seedlings. In trees older than one year ectomycorrhiza was the dominating type. In the planted stands up to five years of age no fruitbodies of ectomycorrhizal fungi were found. In such stands the ectomycorrhizas generally had thin, translucent mantles and could be observed only by microscopic examination. In one old plantation (27 years) and in the natural stands sporocarps of several specific `alder fungi` were found. Here, the mycorrhizal root tips had thick, mostly whitish mantles. The Hartig net was in all cases confined to penetration between epidermal cells. Soil collected from one alder site and two non-alder biotopes readily infected grey alder seedlings with Frankia and VAM fungi whereas a peat soil failed to infect seedlings with any symbiont. In vitro inoculation of nodulated seedlings with Glomus mossae (Nicol. and Gerd.) Gerdemann and Trappe resulted in VAM-infection. Simultaneous syntheses with isolates of alder-specific, and other, ectomycorrhizal fungi, using three different methods, failed. On the basis of these results an endomycorrhizal-ectomycorrhizal succession after the first growth season in Alnus incana is concluded. A subsequent succession of ectomycorrhizal species from early-stage to late-stage ones is discussed 58 refs, 3 figs, 2 tabs

  3. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  4. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  5. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  6. Importance of mycorrhizal symbiosis for local adaptations of Aster amellus

    OpenAIRE

    Plachá, Hana

    2006-01-01

    3 Abstract The importance of arbuscular mycorrhizal (AM) symbiosis for survival and growth of many plant species is generally recognized. It has been repeatedly shown that symbiosis with mycorrhizal fungi can increase the fitness of many plant species. This increasing fitness is caused by increased uptake of phosphorus and other nutrients or pathogen protection. Most studies on mycorrhizal associations explore these types of relationship using single plant population and single fungal species...

  7. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  8. Investigation of the unusual behavior of cesium-137 and other radionuclides in the Florida environment. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Gamble, J.F.

    1976-01-01

    The most significant development in the contract year was the documentation of the presence of endomycorrhizal, vesicular arbuscular (V-A) mycorrhizae in the pasture systems of south Florida that have the elevated levels of cesium-137 activity. In all samples the V-A hyphal network was well developed and growing throughout the particles of organic matter. The organic particles are held in a loose, aggregate structure by the hyphal network. In improved pastures of Digitaria decumbens (pangola) and Paspalum notatum (bahiagrass) the root infection ranged from 24 to 95 percent. The principle association was Gigaspora and Glomus sp. In the unimproved pastures of mostly Aristida stricta (wiregrass) and Serenoa repens (saw palmetto) the infection was 70 percent and only Acaulospora laevis was found. Experiments are in progress to show whether there are differences in cesium uptake between mycorrhizal and non-mycorrhizal grass plants. The test grass is pangola. Greenhouse tests involve V-A mycorrhizal control using a fungicide, the infection of grass cuttings with mycorrhizal strains found in the test area. These pot experiments will serve as pilot programs for field experiments. The effects of ectomycorrhizal associations on uptake of cesium in pine seedlings is also being studied. Analysis of the dynamics of organic matter cycling in a mesic hardwood forest shows that the rates of organic matter flow are similar to tropical systems although the plant species are warm temperate. The increased tempo of organic turnover probably contributes to the observed higher-than-expected levels of cesium-137 activity in Florida biosystems

  9. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    Directory of Open Access Journals (Sweden)

    Graziella S Gattai

    2011-09-01

    Full Text Available The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco. Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1 to uncontaminated soil (37 mg Pb Kg soil-1 in the proportions of 7.5%, 15%, and 30% (v:v. The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil.

  10. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  11. ARBUSCULAR MYCORRHIZAL ASSOCIATION IN Coccothrinax readii Quero

    Directory of Open Access Journals (Sweden)

    Gerardo Emmanuel Polanco Hernández

    2013-08-01

    Full Text Available Coccothrinax readii, is a palm endemic to the Yucatan coast, its successful establishment in stressful environments suggests that factors such as mycorrhizal association may determine its success, the question arose in this work, assess environmental conditions which states and to describe their particular characteristics related to the anatomy of their roots and mycorrhizal colonization in three different seasons over a year. The study site was the coastal dune scrub of San Benito, Yucatan, where he placed a data logger that measurements performed ambient temperature (T, relative humidity (HR and photosynthethic photon flux (PPF for five days in dry, rainy and windy, also determined  the total phosphorus and extractable of the soil. The results indicate significant fluctuations of environmental variables throughout the year, on the other hand, the presence of the velamen on the roots of C. readii not restrict arbuscular mycorrhizal colonization. This association is affected by microenvironmental conditions, as during the dry season, when environmental conditions are unfavorable, the colonization percentage is higher than in the windy season, when microenvironmental conditions are more favorable.

  12. Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato.

    Science.gov (United States)

    Vos, Christine; Geerinckx, Katleen; Mkandawire, Rachel; Panis, Bart; De Waele, Dirk; Elsen, Annemie

    2012-02-01

    The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.

  13. Influence of mycorrhizal developmental stages and plant age on rhizosphere mycoflora of Pinus kesiya (Royle

    Directory of Open Access Journals (Sweden)

    G. D. Sharma

    2014-08-01

    Full Text Available Quantitatively the population was recorded to be high around thc mycorrhizal roots. Some fungi were specific to different stages of mycorrhizal development. Rhizopus nigricans and Cunninghamella elegans were recorded at 5% mycorrhizal association stage. Fusarium sp. was found at 20% mycorrhizal association, while Mucor spp. were obtained at 60% stage. Verticillium sp. had the highest frequency of occurrence in the beginning of mycorrhizal association but later on Penicilium spp. were found to be the most common. Sugar content of mycorrhizal and nonmycorrhizal roots were determined to assess their effect on the mycorrhizospheric micropopulation. The mannitol and trehalose were present only in mycorrhizal roots.

  14. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Nor; Kjøller, Rasmus; Bruun, Hans Henrik

    2016-01-01

    The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities wa...

  15. Molecular characterisation of a mycorrhizal inoculant that enhances ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... lum used as biological models originated from the same desert area. In order to identify this mycorrhizal fungal inoculum, a molecular approach developed by Helgason et al. (1999) was adapted. The small subunit 18S from the roots of mycorrhizal T. alexandrium was amplified using primers NS31 and ...

  16. Impact of fertilizer, corn residue, and cover crops on mycorrhizal inoculum potential and arbuscular mycorrhizal fungi associations

    Science.gov (United States)

    Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...

  17. Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy

    Directory of Open Access Journals (Sweden)

    Mauritz Vestberg

    2012-03-01

    Full Text Available The impact of host mycotrophy on arbuscular mycorrhizal fungal (AMF markers was studied in a temperate agricultural soil cropped with mycorrhizal barley, flax, reed canary-grass, timothy, caraway and quinoa and non-mycorrhizal buckwheat, dyer's woad, nettle and false flax. The percentage of AMF root colonization, the numbers of infective propagules by the Most Probable Number (MPN method, and the amounts of signature Phospholipid Fatty Acid (PLFA 16:1ω5 and Neutral Lipid Fatty Acid (NLFA 16:1ω5 were measured as AMF markers.  Crop had a significant impact on MPN levels of AMF, on NLFA 16:1ω5 levels in bulk and rhizosphere soil and on PLFA 16:1ω5 levels in rhizosphere soil. Reed canary-grass induced the highest levels of AMF markers. Mycorrhizal markers were at low levels in all non-mycorrhizal crops. NLFA 16:1ω5 and the ratio of NLFA to PLFA 16:1ω5 from bulk soil are adequate methods as indicators of AMF biomass in soil.

  18. Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2006-01-01

    This study investigated whether arbuscular mycorrhizal fungi (AMF) could take up phosphorus (P) from pools that are normally considered unavailable to plants. An aluminum (Al) resistant maize variety, inoculated with three species of Glomus or uninoculated, supplied with nutrient solution without P,

  19. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  20. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  1. Influence of mycorrhizal associations on paper birch and jack pine seedlings when exposed to elevated copper, nickel or aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.D.; Browning, M.H.R.; Hutchinson, T.C.

    1986-10-01

    Acid deposition may adversely affect northern forest ecosystems by increasing the concentration of metals in the soil solution. This study investigates the effects of ectomycorrhizal fungi on paper birch and jack pine seedlings exposed to elevated Cu, Ni or Al in sand culture. One of four mycorrhizal fungi, Scleroderma flavidum, was able to reduce Ni toxicity to the birch seedlings. It did this by reducing transport of Ni to the stems. None of the fungi affected Cu toxicity in birch. In separate experiments, jack pine seedlings were exposed to combinations of Al and Ca. Infection with Rhizopogon rubescens increased seedling susceptibility to Al. Seedlings inoculated with Suillus tomentosus showed a greater growth stimulation by Ca than uninoculated jack pines. Thus, for both tree species, the mycorrhizal association could alter the response of seedlings to high concentrations of certain metals, although this varied with fungal species. 8 references.

  2. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    FAMA

    2015-09-30

    Sep 30, 2015 ... AMF on root colonization, biomass production, mycorrhizal dependency (MD) and shoot mineral ... four months of growth in a sterilized soil and greenhouse conditions, grasses inoculated with AMF ..... Quetta, Pakistan.

  3. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy ...

    African Journals Online (AJOL)

    sadia

    2016-05-18

    May 18, 2016 ... Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Received 19 ... weeks of pot experiment, roots colonization, shoot and root biomass, growth, heavy metals contents ... using arbuscular mycorrhizal fungi (AMF) in soil.

  4. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  5. Mycorrhizal responses to biochar in soil-concepts and mechanisms.

    NARCIS (Netherlands)

    Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C.

    2007-01-01

    Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing

  6. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Ouahmane Lahcen, Ndoye Ibrahima, Morino Abdessadek, Ferradous Abderrahim, Sfairi Youssef, Al Faddy Mohamed Najib, Abourouh Mohamed ...

  7. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  8. Molecular trait indicators: Moving beyond phylogeny in arbuscular mycorrhizal ecology

    NARCIS (Netherlands)

    Gamper, H.A.; van der Heijden, M.; Kowalchuk, G.A.

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most

  9. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.

    2017-01-01

    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.683, year: 2016

  10. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  11. Mycorrhizal symbiosis: ancient signalling mechanisms co-opted

    NARCIS (Netherlands)

    Geurts, R.; Vleeshouwers, V.G.A.A.

    2012-01-01

    Mycorrhizal root endosymbiosis is an ancient property of land plants. Two parallel studies now provide novel insight into the mechanism driving this interaction and how it is used by other filamentous microbes like pathogenic oomycetes.

  12. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  13. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  14. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest.

    Science.gov (United States)

    Nina Wurzburger; Ronald L. Hendrick

    2009-01-01

    1. Relationships between mycorrhizal plants and soil nitrogen (N) have led to the speculation that the chemistry of plant litter and the saprotrophy of mycorrhizal symbionts can function together to...

  15. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars.

    Science.gov (United States)

    Salloum, M S; Guzzo, M C; Velazquez, M S; Sagadin, M B; Luna, C M

    2016-12-01

    Breeding selection of germplasm under fertilized conditions may reduce the frequency of genes that promote mycorrhizal associations. This study was developed to compare variability in mycorrhizal colonization and its effect on mycorrhizal dependency (MD) in improved soybean genotypes (I-1 and I-2) with differential tolerance to drought stress, and in unimproved soybean genotypes (UI-3 and UI-4). As inoculum, a mixed native arbuscular mycorrhizal fungi (AMF) was isolated from soybean roots, showing spores mostly of the species Funneliformis mosseae. At 20 days, unimproved genotypes followed by I-2, showed an increase in arbuscule formation, but not in I-1. At 40 days, mycorrhizal plants showed an increase in nodulation, this effect being more evident in unimproved genotypes. Mycorrhizal dependency, evaluated as growth and biochemical parameters from oxidative stress was increased in unimproved and I-2 since 20 days, whereas in I-1, MD increased at 40 days. We cannot distinguish significant differences in AMF colonization and MD between unimproved and I-2. However, variability among improved genotypes was observed. Our results suggest that selection for improved soybean genotypes with good and rapid AMF colonization, particularly high arbuscule/hyphae ratio could be a useful strategy for the development of genotypes that optimize AMF contribution to cropping systems.

  16. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  17. Infection,

    Science.gov (United States)

    1980-10-16

    characteristic in severe gram-negative sepsis. Hypertriglyceridemia results from an increase in hepatic synthesis in combination with diminished activity of...induced stress, and tissue repair (1). The magnitude and type of nutritional losses caused by an infection reflect both the severity and duration of an... several functional forms of nutrient loss must be anticipated. Functional losses are defined as the within-body losses of nutrients due to infection

  18. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    Science.gov (United States)

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  19. Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico

    Science.gov (United States)

    Ligia Lebrón; Jean D. Lodge; Paul. Bayman

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbon, at three farms in...

  20. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis

    NARCIS (Netherlands)

    Gerz, Maret; Guillermo Bueno, C.; Ozinga, Wim A.; Zobel, Martin; Moora, Mari

    2018-01-01

    Mycorrhizal symbiosis is a widespread association between plant roots and mycorrhizal fungi, which is thought to contribute to plant niche differentiation and expansion. However, this has so far not been explicitly tested. To address the effect of mycorrhizal symbiosis on plants’ realized niches, we

  1. [Mycotrophic capacity and efficiency of microbial consortia of arbuscular mycorrhizal fungi native of soils from Buenos Aires province under contrasting management].

    Science.gov (United States)

    Thougnon Islas, Andrea J; Eyherabide, Mercedes; Echeverría, Hernán E; Sainz Rozas, Hernán R; Covacevich, Fernanda

    2014-01-01

    We characterized the infective and sporulation capacities of microbial consortia of arbuscular mycorrhizal fungi (AMF) native of Buenos Aires province (Argentina) and determined if some soil characteristics and mycorrhizal parameters could allow to select potentially beneficial inocula. Soil samples were selected from seven locations in Buenos Aires province all under agricultural (A) and pristine (P) conditions. The AMF were multiplied and mycorrhizal root colonization of trap plants was observed at 10 weeks of growth. Spore number in field was low; however, after multiplication spore density accounted for 80-1175 spores per 100g of soil. The principal component analysis showed that the P and Fe soil contents are the main modulators of infectivity and sporulation capacity. The mycorrhizal potential was determined in three locations, being high in Pristine Lobería and Agricultural Trenque Lauquen and low in Junín. Agricultural Lobería (AL) and Pristine Lobería (PL) inocula were selected and their efficiency was evaluated under controlled conditions. Even though shoot dry matter increases after inoculation was not significant (p>0.05) mycorrhizal response was greater than 40% for tomato and 25% for corn, particularly after inoculation with inocula from the agricultural management. These results could be associated to the incipient development of mycorrhizae in both species. Additional research should be conducted to further develop our findings in order to determine the factors involved in the selection of efficient inocula. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. INFLUENCE OF MEDIA GELLING AGENTS ON ROOT BIOMASS AND IN VITRO VA-MYCORRfflZAL SYMBIOSIS OF CARROT WITH GIGASPORA MARGARITA

    Directory of Open Access Journals (Sweden)

    ANJALI VERMA

    1997-01-01

    Full Text Available An in vitro study with Ri-TDNA transformed roots of carrot (Daucus carota was carried out to evaluate the role of macro-elements contributed as impurities in the gelling agent (phytagel over and above those present in the minimal (M medium. Production of root biomass was taken as a measure to quantify the influence of macro-elements added to the minimal medium. The levels of phosphorus when adjusted to 1.19 mg/1 and 1.09 mg/l, lead to dry root biomass production at par with the control. Attempts made to lower the amount of impurities in phytagel by de-ionization using different alkalies, proved NaOH to give the best results in terms of relatively high amount of root biomass. In an in vitro dual culture system with carrot as host and Gigaspora margarita as the vesicular-arbuscular mycorrhizal fungus, phytagel impurities helped to produce maximum number of infection units and auxiliary cells when phytagel was added to the minimal medium.

  3. CONTROL OF “DAMPING OFF” DISEASE CAUSED BY Sclerotium rolfsii SACC. USING ACTINOMYCETES AND VAM FUNGI ON SOYBEAN IN THE DRY LAND BASED ON MICROORGANISM DIVERSITY OF RHIZOSPHERE ZONE

    Directory of Open Access Journals (Sweden)

    Ika Rochdjatun Sastrahidayat

    2011-02-01

    Full Text Available One of the obstacles in the efforts to increase soybean production in Indonesia is disease such as damping off which is caused by Sclerotium rolfsii. In East Java, the intensity of S. Rolfsii reached approximately 8.61% that spread all over Indonesia region, even in our neighbor countries such as Malaysia, Thailand and the Philippines. This research was carried out to determine the efficacy of Actinomycetes and VAM (Vesicular Arbuscular Mycorrhizal against damping-off attack and the diversity of micro-organisms in rhizosfer. Research conducted in the laboratory and screen house on Plant Protection Department, Faculty of Agriculture, University of Brawijaya and in Lawang District Malang. Observation variables include level of pathogen attack and infection rate of damping-off pathogen. Plant height, number of pods, pod weight, seed weight and weight of 100 seeds from each treatment, diversity and identification of microorganisms in rhizosphere were also observed. The results showed that Actinomycetes and VAM application could decrease the percentage of plant death due to damping-off. Application of Actinomycetes and VAM gave effect on microorganism diversity of Ratai Rhizosphere but not on Wilis.

  4. Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases.

    Science.gov (United States)

    Phirke, Niteen V; Kothari, Raman M; Chincholkar, Sudhir B

    2008-12-01

    The corporate R&D banana orchards of Musa paradisiaca (dwarf Cavendish AAA, var. shrimanti) on a medium black alluvial soil with low nutrients harboured diversified species of vesicular-arbuscular mycorrhizal (VAM) fungi. These fungi infected the roots severely (69.2%), showed elevated (69.8 g(-1) soil) spore density, increased soil bacterial density (245 x 10(8) cfu g(-1)), produced siderophores (58.2%) and reduced nematode population (2.3 g(-1)) in the mycorrhizosphere of plants for integrated plant nutrition management (IPNM) system as compared to traditional treatment of applying chemical fertilisers alone and other test treatments. The interactions of plant roots with native VAM and local and applied rhizobacteria in the matrix of soil conditioner enabled proper nourishment and protection of crop in IPNM treatment as compared to traditional way. Hence, exploitation of plant growth promoting rhizobacteria through judiciously designed IPNM system revealed the (a) relatively increased banana productivity (21.6%, 76 MT ha(-1)), (b) least occurrence of fusarial wilt and negligible evidence of Sigatoka, (c) saving of 50% chemical fertilisers and (d) permitted control over soil fertility in producer's favour over traditional cultivation practices. These findings are discussed in detail.

  5. Role of VAM on growth and phosphorus nutrition of maize with low soluble phosphate fertilization Efecto de la infestación con micorrizas vesiculo arbusculares (VAM en plantas de Zea mays fertilizadas con dosis bajas de fósforo

    Directory of Open Access Journals (Sweden)

    Amitava Rakshit

    2010-01-01

    Full Text Available The effect of vesicular arbuscular mycorrhizal (VAM infection on growth and P nutrition in Maize (Zea mays, cv.DDH hybrid were assessed in Oxisol pot experiment. Maize was grown inoculated with spores of VAM fungi Glomus mosseae or non-inoculated. Low soluble ferrous phosphate (FePO4.4H2O was added to the mycorrhized and non-micrrohized maized. The dry weight of mycorrhized plants with added phosphate (P were higher than in mycorrhized plants without added P or non-mycorrhized plants with added P. The amount of P in the soil samples from pots with mycorrhizal plants fertilized with P was evidently smaller than those in samples also fertilized non-mycorrhizal plants. The percentage of P was higher in tissues of fertilized mycorrhial plants than in those mycorrihzed plants without or nonmycorrhized plants with added low-soluble P. These results indicated that plants in VAM symbiosis mobilize P better from low-soluble P than non-mycorrhized plants.En condiciones de casa de malla se evaluó el efecto de la infestación con micorrizas vesículo arbusculares (VAM en la asimilación de P por plantas de maíz (Zea mays, cv.DDH hybrid cultivadas en un Oxisol. Como micorriza se utilizó el hongo Glomus mosseae. En ambos tratamientos (con micorriza y sin ella se aplicó fosfato ferroso (FePO4.4H2O. La producción de MS de maíz fue mayor cuando se aplicaron el hongo + la fuente de P. La cantidad de P en el suelo con este tratamiento fue menor que en el suelo fertilizado pero sin aplicación del hongo. En las hojas de las plantas las mayores concentraciones de P se observaron igualmente en el tratamiento micorriza + aplicación de fertilizante.

  6. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  7. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils

    International Nuclear Information System (INIS)

    Leung, H.M.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    A greenhouse trial was conducted to investigate the role of arbuscular mycorrhizas (AM) in aiding arsenic (As) uptake and tolerance by Pteris vittata (As hyperaccumulator) and Cynodon dactylon (a multi-metal root accumulator). Plants inoculated with lived and killed native mycorrhizas isolated from an As mine site were grown in a sterile and slightly acidic soil. The infectious percentage of mycorrhizas (0 mg/kg As: 26.4%, 50 mg/kg As: 30.3%, 100 mg/kg As: 40.6%) and the average biomass of shoots in infected P. vittata increased (0 mg/kg As: 2.45 g/pot, 50 mg/kg As: 2.48 g/pot, 100 mg/kg As: 10.9 g/pot) according to the increase of As levels when compared to control. The indigenous mycorrhizas enhanced As accumulation (0 mg/kg As: 3.70 mg/kg, 50 mg/kg As: 58.3 mg/kg; 100 mg/kg As: 88.1 mg/kg) in the As mine populations of P. vittata and also sustained its growth by aiding P absorption. For C. dactylon, As was mainly accumulated in mycorrhizal roots and translocation to shoots was inhibited. - Indigenous mycorrhizal fungi play an important role in As tolerance

  8. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Leung, H.M. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Ye, Z.H. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); School of Life Sciences, Zhongshan University, Guangzhou 510275 (China); Wong, M.H. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-01-15

    A greenhouse trial was conducted to investigate the role of arbuscular mycorrhizas (AM) in aiding arsenic (As) uptake and tolerance by Pteris vittata (As hyperaccumulator) and Cynodon dactylon (a multi-metal root accumulator). Plants inoculated with lived and killed native mycorrhizas isolated from an As mine site were grown in a sterile and slightly acidic soil. The infectious percentage of mycorrhizas (0 mg/kg As: 26.4%, 50 mg/kg As: 30.3%, 100 mg/kg As: 40.6%) and the average biomass of shoots in infected P. vittata increased (0 mg/kg As: 2.45 g/pot, 50 mg/kg As: 2.48 g/pot, 100 mg/kg As: 10.9 g/pot) according to the increase of As levels when compared to control. The indigenous mycorrhizas enhanced As accumulation (0 mg/kg As: 3.70 mg/kg, 50 mg/kg As: 58.3 mg/kg; 100 mg/kg As: 88.1 mg/kg) in the As mine populations of P. vittata and also sustained its growth by aiding P absorption. For C. dactylon, As was mainly accumulated in mycorrhizal roots and translocation to shoots was inhibited. - Indigenous mycorrhizal fungi play an important role in As tolerance.

  9. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils

    International Nuclear Information System (INIS)

    Vinichuk, M.; Mårtensson, A.; Ericsson, T.; Rosén, K.

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of 137 Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with 137 Cs was investigated, with non-mycorrhizal quinoa included as a “reference” plant. The effect of cucumber and ryegrass inoculation with AM fungi on 137 Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and 137 Cs uptake increased on loamy sand and loamy soils. The total 137 Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of 137 Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. - Highlights: ► Effect of soil inoculation on 137 Cs uptake by crops was studied in greenhouse. ► 137 Cs uptake by inoculated sunflower plants was most pronounced. ► The higher 137 Cs uptake by inoculated sunflower due to presence of mycorrhiza. ► Studies suggest potential for use of mycorrhiza on contaminated sites.

  10. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils.

    Science.gov (United States)

    Vinichuk, M; Mårtensson, A; Ericsson, T; Rosén, K

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of (137)Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with (137)Cs was investigated, with non-mycorrhizal quinoa included as a "reference" plant. The effect of cucumber and ryegrass inoculation with AM fungi on (137)Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and (137)Cs uptake increased on loamy sand and loamy soils. The total (137)Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of (137)Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mycorrhizal inoculation affects the phytochemical content in strawberry fruits

    Directory of Open Access Journals (Sweden)

    Ana Paula Cecatto

    2016-04-01

    Full Text Available The aim of this research was to evaluate the effect of the inoculation date of arbuscular mycorrhizal fungi on the fruit quality and the content of phytochemicals in a strawberry soilless growing system. The experiment was performed in Huelva (Spain and was conducted in a greenhouse on the La Rábida Campus of Huelva University under natural light and temperature from October 2013 to June 2014. Three short-day strawberry cultivars (‘Splendor’, ‘Sabrina’ and ‘Fortuna’ were grown in polyethylene bags filled with coconut fibres. Randomized block design, with 3 repetitions and factorial arrangement (3 cultivars x 3 treatments, was established. Each replicate consisted of one bag with 12 plants supporting structures at 40 cm height. The treatments were: T1 = mycorrhizal inoculation in the transplantation; T2 = mycorrhizal inoculation 30 days after transplantation (DAT; and T0 = control treatment, without inoculation. Arbuscular mycorrhizal fungi inoculation significantly affected the contents of anthocyanin and phenolics. When the inoculation is performed in the transplantation, the fruits showed a high content of anthocyanin and total phenolics. The mycorrhizal inoculation influences decreasing the acidity in fruit throughout the growing season and increase firmness only during the early stage of production.

  12. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  13. Dynamic of arbuscular mycorrhizal population on Amazon forest from the south Colombia

    International Nuclear Information System (INIS)

    Pena Vanegas, Clara P

    2001-01-01

    This work compared changes occurred on the number of arbuscular mycorrhizal spores at three mature forests and three regenerative forests, before and after clear-cutting. Results suggest that it is possible to predict the quantity of arbuscular mycorrhizal inocule after clear-cutting if initial number and type of forests is known before. A model to explain these changes shows that arbuscular mycorrhizal depletion on mature forests is about 70% after clear-cutting. Survival mycorrhizal populations colonize regenerative forests. Then, if a clear-cutting occurs on regenerative forests, arbuscular mycorrhizal populations will decrease on 35%, being less drastic that it occurred on mature forests

  14. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  15. IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses

    Directory of Open Access Journals (Sweden)

    Yue Jin

    2018-03-01

    Full Text Available Legume plants form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal (AM fungi, which are regulated by a set of common symbiotic signaling pathway genes. Central to the signaling pathway is the activation of the DMI3/IPD3 protein complex by Ca2+ oscillations, and the initiation of nodule organogenesis and mycorrhizal symbiosis. DMI3 is essential for rhizobial infection and nodule organogenesis; however, ipd3 mutants have been shown to be impaired only in infection thread formation but not in root nodule organogenesis in Medicago truncatula. We identified an IPD3-like (IPD3L gene in the M. truncatula genome. A single ipd3l mutant exhibits a normal root nodule phenotype. The ipd3l/ipd3-2 double mutant is completely unable to initiate infection threads and nodule primordia. IPD3L can functionally replace IPD3 when expressed under the control of the IPD3 promoter, indicating functional redundancy between these two transcriptional regulators. We constructed a version of IPD3 that was phosphomimetic with respect to two conserved serine residues (IPD3-2D. This was sufficient to trigger root nodule organogenesis, but the increased multisite phosphorylation of IPD3 (IPD3-8D led to low transcriptional activity, suggesting that the phosphorylation levels of IPD3 fine-tune its transcriptional activity in the root nodule symbiosis. Intriguingly, the phosphomimetic version of IPD3 triggers spontaneous root-like nodules on the roots of dmi3-1 and dmi2-1 (DMI2 is an LRR-containing receptor-like kinase gene which is required for Ca2+ spiking, but not on the roots of wild-type or ipd3l ipd3-2 plants. In addition, fully developed arbuscules were formed in the ipd3l ipd3-2 mutants but not the ccamk/dmi3-1 mutants. Collectively, our data indicate that, in addition to IPD3 and IPD3L, another new genetic component or other new phosphorylation sites of IPD3 function downstream of DMI3 in rhizobial and mycorrhizal symbioses.

  16. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil

    Science.gov (United States)

    Syamsiyah, J.; Herawati, A.; Mujiyo

    2018-03-01

    The aim of this study was to determine the soil aggregate stability and its relationship with another variable in alfisol. The research used completely randomized design with four treatments: two sterilization levels (no sterilization and with sterilization) and two levels of mycorrhizal inoculation (no mycorrhizal and with mycorrhizal). Mycorrhizal (5 grams/pot) was inoculated before planting rice seeds. The soil aggregate stability was measured by wet-sieving and turbidimetric measurements. The results showed that soil aggregate stability was higher in mycorrhizal inoculated than non-mycorrhizal inoculated treatment, by 5% in sterilization soil and 3.2% in non-sterilization soil. The correlation analysis indicated that soil aggregate stability has a tight relationship with spore population, total glomalin, available glomalin, dry weight, tiller number of plant, and soil organic C. Inoculation of mycorrhizal contributed to stabilize soil aggregates in alfisol

  17. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.

    1995-01-01

    An experiment was set up to test the ability of arbuscular mycorrhizal (AM) roots and hyphae to produce extracellular phosphatases and to study the relationship between phosphatase activity and soil organic P (P-o). Non-mycorrhizal cucumber and cucumber in symbiosis with either of two mycorrhizal...... fungi were grown in a sandy loam-sand mixture in three-compartment pots. Plant roots were separated from two consecutively adjoining compartments, first by a 37 m mesh excluding roots and subsequently by a 0.45 m membrane excluding mycorrhizal hyphae. Soil from the two root-free compartments...... was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite...

  18. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  19. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  1. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    International Nuclear Information System (INIS)

    Gyuricza, Veronika; Declerck, Stephane; Dupre de Boulois, Herve

    2010-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  2. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  4. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  5. Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?

    Energy Technology Data Exchange (ETDEWEB)

    Hofmockel, Kirsten; Hobbie, Erik

    2017-07-31

    Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.

  6. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

  7. Arbuscular mycorrhizal fungi in a semi-arid, limestone mining-impacted area of Brazil

    Directory of Open Access Journals (Sweden)

    Thaís Teixeira-Rios

    2013-12-01

    Full Text Available The main goal of this study was to determine the diversity and activity of arbuscular mycorrhizal fungi (AMF in an area degraded by limestone mining within the semi-arid region of Brazil known as the caatinga (shrublands. Near a limestone quarry, we selected two areas of caatinga (preserved and degraded for study. The number of glomerospores did not differ significantly between the two areas. There was a trend toward the most probable number of infective propagules being higher in the degraded area. Twenty AMF taxa were identified in the two sampled areas, species richness, diversity and evenness being higher in the preserved area. Two species of Racocetra represent new records for the semi-arid region of Brazil. Glomerospore production and AMF species richness were unaffected by mining activity in the study area.

  8. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  9. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  10. Plant mycorrhizal traits in Europe in relation to climatic and edaphic gradients

    Science.gov (United States)

    Guillermo Bueno, C.; Gerz, Maret; Zobel, Martin; Moora, Mari

    2017-04-01

    Around 90% of plant species associate with mycorrhizal fungi. The symbiosis is known to provide plants with soil N, P and water, and fungi with plant photosynthesized carbohydrates. However, not all mycorrhizal symbioses are identical. The identity of associated plant and fungal species differs, as does the effect of the symbiosis on nutrient cycling and ecosystems more generally. In this study, we analysed the European distribution of two plant mycorrhizal traits in relation to climatic and edaphic drivers. We used the European distribution of the frequency of mycorrhizal colonization (plant mycorrhizal status); whether mycorrhizal fungi either always (obligately mycorrhizal, OM), or sometimes (facultatively mycorrhizal, FM) colonize plant roots, and the four main plant mycorrhizal types; arbuscular (AM), ecto-(ECM), ericoid (ERM), and non-mycorrhizal (NM) plants. We expected AM species to predominate in ecosystems where most soil nutrients occur in inorganic forms (lower latitudes) and those with higher soil pH. By contrast, due to the saprophytic abilities of ECM and ERM fungi, we expected ECM and ERM plants to predominate in ecosystems where nutrients are bound to organic compounds (higher latitudes) and those with lower soil pH. NM plant species are known to be common in disturbed habitats or in extremely phosphorus poor ecosystems, such as the Arctic tundra. Our results showed that the distribution of mycorrhizal types was driven by temperature and soil pH, with increases of NM, ECM and ERM, and decreases of AM, with latitude. FM predominated over OM species and this difference increased with latitude and was dependent on temperature drivers only. These results represent the first evidence at a European scale of plant mycorrhizal distribution patterns linked with climatic and edaphic gradients, supporting the idea of a tight relationship between the mycorrhizal symbiosis and nutrient cycling.

  11. In vitro culture of arbuscular mycorrhizal fungi: advances and future ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal (AM) fungi are ecologically important for most vascular plants for their growth and survival. AM fungi are obligate symbionts. In recent years, there have been many attempts to cultivate in vitro. Some relevant results indicate efforts are not far from successful growth of AM fungi independent of a plant ...

  12. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Science.gov (United States)

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  13. Cropping enhances mycorrhizal benefits to maize in a tropical soil

    Czech Academy of Sciences Publication Activity Database

    Jemo, M.; Souleymanou, A.; Frossard, E.; Jansa, Jan

    2014-01-01

    Roč. 79, č. 2014 (2014), s. 117-124 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) LK11224; GA ČR GAP504/12/1665 Institutional support: RVO:61388971 Keywords : tropical soil * mycorrhizal benefits * southern Cameroon Subject RIV: EE - Microbiology, Virology Impact factor: 3.932, year: 2014

  14. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Ouhmane

    tree Ceratonia siliqua, a Mediterranean legume in Morocco. ... After 6 months of culturing in nursery conditions, height, shoot and root ... distributed around the world and the Mediterranean ... more resistant to water stress compared to other ... individual trees. ... mycorrhizal maize roots were used for the control treatment.

  15. Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae)

    Science.gov (United States)

    Aaron H. Kennedy; D. Lee Taylor; Linda E. Watson

    2011-01-01

    Mycoheterotrophic species have abandoned an autotrophic lifestyle and obtain carbon exclusively from mycorrhizal fungi. Although these species have evolved independently in many plant families, such events have occurred most often in the Orchidaceae, resulting in the highest concentration of these species in the tracheophytes. Studies of mycoheterotrophic species...

  16. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Science.gov (United States)

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  17. Effect of mycorrhizal inoculum and urea fertilizer on diseases ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Ambang Zachée*, Ndongo Bekolo, Bime, Ngoh Dooh, Maho Yalen and .... and 29°C. The soil is classified as the ferruginous tropical soil. According to the description of the physical properties of the soil by ... mycorrhizal inoculation, showed different variations of .... Cahiers ORSTOM, Paris, France.

  18. Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: Distribution ...

    African Journals Online (AJOL)

    Roots and rhizospheric soils of 26 plant species belonging to 18 families representing five different habitats at El-Omayed Biosphere Reserve were collected and examined for arbuscular-mycorrhizal fungal (AMF) associations. Plant species recorded in the habitat of coastal sand dunes had the highest percentage of ...

  19. Mycorrhizal inoculation of pecan seedlings with some marketable truffles

    Directory of Open Access Journals (Sweden)

    Gian M. Benucci

    2013-12-01

    Full Text Available Pecan is the common name of Carya illinoinensis (Wangenh. K. Koch, an ectomycorrhizal tree native to North America, also frequently known as hickory. Mycorrhizal inoculations of pecan seedlings with: Tuber aestivum Vittad., T. borchii Vittad., T. indicum Cooke & Massee, and T. lyonii Butters are described and discussed.

  20. Solanum cultivar responses to arbuscular mycorrhizal fungi: growth ...

    African Journals Online (AJOL)

    A greenhouse experiment was carried out in a sandy soil with a low available phosphorus to evaluate responsiveness of four Solanum aethiopicum cultivars to indigenous arbuscular mycorrhizal fungi. Results showed clear interaction between genetic variability of cultivars and fungal isolates on shoot biomass and on ...

  1. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    The aim of our work was to assess the effect of inoculation with three arbuscular mycorrhizal fungi (AMF) (Rhizoglomus aggregatum (N.C. Schenck and G.S. Sm.) Sieverd., G.A. Silva and Oeh., Funneliformis mosseae (T.H. Nicolson and Gerd.) C. Walker and A. Schüssler. and Rhizoglomus intraradices (N.C. Schenck and ...

  2. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm

    NARCIS (Netherlands)

    Boon, E.; Halary, S.; Bapteste, E.; Hijri, M.

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great

  3. Arbuscular mycorrhizal fungi species associated with rhizosphere of ...

    African Journals Online (AJOL)

    A survey of arbuscular mycorrhizal fungi (AMF) diversity and date palm (Phoenix dactylifera L.) tree root colonization in arid areas was undertaken in ten palm groves located along the Ziz valley (Tafilalet, south-west Morocco). The frequency and the mean intensity of root colonization reached 72 and 43% respectively and ...

  4. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Science.gov (United States)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  5. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  6. Arbuscular mycorrhizal fungi improve the growth of olive trees and ...

    African Journals Online (AJOL)

    Two native Algerian mycorrhizal fungi (Glomus mosseae and Glomus intraradices) were tested for their effect on the growth of micropropagated olive tree (Olea europaea L.). The effect of inoculation of plantlets with G. mosseae was also compared with chemical fertilization using osmocote. Specific molecular techniques ...

  7. Influence of mycorrhizal inoculation on alley cropped farms in a ...

    African Journals Online (AJOL)

    The use of Arbuscular mycorrhizal (AM) fungi under farmers' conditions was tried at Ajibode Village, a humid tropical environment on maize/cassava intercropped farms in an alley cropping system. Four species of AM fungi (Glomus clarum, Glomus mosseae Glomus etunicatum and Acaulospora dilatata) were used in ...

  8. Mycorrhizal association in soybean and weeds in competition

    Directory of Open Access Journals (Sweden)

    Cíntia Maria Teixeira Fialho

    2016-04-01

    Full Text Available The purpose of this study was to evaluate the effects of mycorrhizal association on the interference of Bidens pilosa, Urochloa decumbens and Eleusine indica on soybean culture in two conditions: a plants competing without contact with roots of another species; b with contact between roots. At 60 days after planting, growth, nutrient accumulation and mycorrhizal colonization of soybean and weeds were evaluated. The contact between roots of soybean plant and weed species increased the negative interference effects for both species, with less growth and nutrient accumulation. With the individualization of roots, higher competition occurred for soil resources up to 60 days of coexistence between species. In competition with soybean, Bidens pilosa and Urochloa decumbens stood out in accumulation of most nutrients without differing from when cultivated in monocultivation. The increase of the soybean mycorrhizal colonization was 53, 40 and 33% when in competition with Urochloa decumbens, Eleusine indica and Bidens pilosa species, respectively. A positive interaction occurred for soybean mycorrhizal colonization and competing plants irrespective of weed species or root contact.

  9. Arbuscular mycorrhizal fungi improve the growth of olive trees and ...

    African Journals Online (AJOL)

    STORAGESEVER

    quality olive plants. To study the potential of the mycorrhizal fungi Glomus mosseae and Glomus intraradices to stimulate the growth of micropropagated olive plants and to compare their ... phosphate, 15% potassium oxide, 2% magnesium oxide, 4.5% sulphur, 0.02% ..... Our results indicate the feasibility of G. mosseae and.

  10. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  11. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Key words: Arbuscular mycorrhizal fungi, agroforestry tree species. INTRODUCTION ... plant growth hormones, protection of host roots from pathogens .... interactions between fungal strains and soil than between the fungus ... phosphorus and drought stress on the growth of Acacic nilotica and. Leucaena ...

  12. Mycorrhizal symbioses of Salix repens : diversity and functional significance

    NARCIS (Netherlands)

    Heijden, van der E.W.

    2000-01-01

    This thesis investigates the significance of different mycorrhizal fungi, belonging to different functional types (arbuscular mycorrhiza-AM and ectomycorrhiza-EcM), in Salix repens . A comparison between above-ground and below-ground observations on ectomycorrhizal

  13. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition

    Directory of Open Access Journals (Sweden)

    N. Aliasgharzad

    2009-05-01

    Full Text Available It has widely been accepted that mycorrhizal symbiosis improves micronutrients uptake by most of the plants. In this study, sorghum (Sorghum bicolor L. plants were grown in sterile perlite and were inoculated with either Glomus etunicatum (GE or G.intraradices (GI, while the control set was left un-inoculated. Rorison's nutrient solution with three levels of 0, half and full strength (C0, C0.5 and C1, respectively of Fe, Cu, Zn and Mn was applied to the pots during 85 days of growth period. Chrome azurol-S assay was used for determination of siderophores in root leachates on 45, 65 and 85 days after sowing (DAS. Siderophore production per unit volume of root was higher in mycorrhizal than non-mycorrhizal plants. Both GE and GI were efficient fungi in this respect. Siderophore production was significantly induced at C0 level of the micronutrients. Amount of siderophores produced on 45 and 85 DAS was more than 65 DAS. Mycorrhizal root colonization by GE or GI was not significantly affected by micronutrient levels.

  14. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used

  15. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis

    NARCIS (Netherlands)

    Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; Palmer, T.M.; West, S.A.; Vandenkoornhuyse, P.; Jansa, J.; Bücking, H.

    2011-01-01

    Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We

  16. Differences in Arbuscular Mycorrhizal Fungi among Three Coffee Cultivars in Puerto Rico

    OpenAIRE

    Lebrón, Ligia; Lodge, D. Jean; Bayman, Paul

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ a...

  17. Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of lespedeza

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, F.M. (USDA Forest Service, Berea, KY (USA). Northeastern Forest Experiment Station, Forestry Sciences Laboratory)

    1984-01-01

    The external mycelium of a vesicular-arbuscular mycorrhizal (VAM) fungus was effective in aggregating a sandy loam minesoil. The polysaccharide nature of the soil binding agent on hyphal surfaces and on the surfaces of sand particles in contact with the hyphae within the aggregate was demonstrated with the periodic acid-Schiff reagent staining reaction. A possible stabilizing mechanism for macroaggregates was proposed that involves a coupling reaction between glucosamines in the hyphal walls of the fungus with phenolic compounds released during lignin degradation of sericea lespedeza root tissue. 28 refs.

  18. On the perils of mycorrhizal status lists: the case of Buddleja davidii.

    Science.gov (United States)

    Dickie, I A; Thomas, M M; Bellingham, P J

    2007-11-01

    One observation in a mycorrhizal check-list that Buddleja davidii is nonmycorrhizal has been perpetuated in subsequent citations and used in a number of analyses of mycorrhizal ecology and evolution. Direct observation of B. davidii from New Zealand and the UK shows extensive arbuscular mycorrhizal fungal structures inside B. davidii roots. The suggestion that B. davidii is nonmycorrhizal is therefore not supported. The use of mycorrhizal checklists for analysis of plant traits and evolution needs to be undertaken with care to ensure the validity of underlying data.

  19. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dubchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134 Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  20. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dudchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134 Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  1. Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants

    Directory of Open Access Journals (Sweden)

    Mohsen K.H. Ebrahim

    2017-11-01

    Full Text Available Tomato cultivars (Sultana-7 & Super Strain-B were germinated with various concentrations (0–200 mM of NaCl. Seed germination in the Super Strain-B was promoted by 25 mM NaCl. However, the germination of both cultivars was progressively inhibited by 50 and 100 mM NaCl and obstructed at 200 mM NaCl, and this response was more pronounced for Sultana-7. Therefore, Super Strain-B was selected for further investigation, such as growth under NaCl stress (50 & 100 mM and inoculation with vesicular-arbuscular mycorrhizal fungus (Glomus fasciculatum, VAMF. The leaves of Super Strain-B showed reduced mineral (N, P, K, Mg uptake and K/Na ratio as well as increased Na uptake and N/P ratio in response to salinity. Moreover, salinity decreased the chlorophyll (Chl contents coupled with an increase in Chl a/b, Hill-reaction activity, and quenched Chl a fluorescence emission. These changes reflect a disturbance in the structure, composition and function of the photosynthetic apparatus as well as the activity of photosystem 2. The superoxide dismutase and peroxidase activities of leaves were enhanced by salinity, whereas the catalase activity was decreased. Leaf polysaccharides and proteins as well as shoot biomass also decreased as a result of salinity, but the total soluble sugars and root to shoot ratio improved.VAMF enhanced both the photosynthesis and productivity of plants; thus, VAMF may alleviate the adverse effects of salinity in plants by increasing their salt tolerance. Although mycorrhizal infection showed a negative correlation with salinity, it remained relatively high (21 & 25% at 100 mM NaCl. Keywords: Mycorrhizae, tomato, salinity, minerals, photosynthetic performance and antioxidant enzymes

  2. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Leaf elemental analysis in mycorrhizal post oak seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Boling, B.C. [Department of Biology, University of North Texas, P.O. Box 305220, Denton, TX 76203-5220 (United States); Naab, F.U. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States)]. E-mail: fun001@unt.edu; Smith, D. [Department of Biology, University of North Texas, P.O. Box 305220, Denton, TX 76203-5220 (United States); Duggan, J.L. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); McDaniel, F.D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States)

    2006-09-15

    Growth and element assimilation was investigated in the leaves of post oak seedlings exposed to four different treatment combinations of fertilization and ectomycorrhizal inoculation. Element concentration was analyzed via particle-induced X-ray emission spectrometry (PIXE). PIXE detected 10 of the 13 essential macro and micronutrients: P, S, Mg, Ca, K, Cu, Zn, Mn, Fe and Cl. Mean growth and dry weight was significantly different across the treatment groups as well as the mean concentration of Mg, Al, S, K, Ca, Fe, Cu and Zn. The data suggest that fertilization rather than mycorrhizal inoculation had a stronger influence on nutrient uptake. This study is the first to analyze element concentration in post oak and to investigate the potential benefits of mycorrhizal symbiosis in post oak seedlings in terms of nutrient uptake.

  4. The Role of Mycorrhizal Fungi in Ecosystem Energetics.

    Science.gov (United States)

    1982-03-01

    do not pene- trate the stele . They are the main organ of exchange between the plant and the mycorrhizal fungus. Intercellular hyphae are in direct...processes. Energy flow through the grazing and detritus pathways involves bio - chemical transformation of photosynthate to cellular biomass within...seedlings. 3. Measurement of Annual Production of Aboveground Plant Production and Partitioning Between Stems, Needles, and Branches. Volumes of bio - mass

  5. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    International Nuclear Information System (INIS)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-01-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  6. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-07-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  7. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism.

    Science.gov (United States)

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches.

  8. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    International Nuclear Information System (INIS)

    Liu, A.; Dalpe, Y.

    2005-01-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement

  9. arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross. River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  10. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 mM) on tolerance of green basil (Ocimum basilicum L.) to salinity ...

  11. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  12. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  13. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  14. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    Science.gov (United States)

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  15. Meta-analysis of crop and weed growth responses to arbuscular-mycorrhizal fungi

    Science.gov (United States)

    Arbuscular mycorrhizal fungi (AMF) have long been regarded as beneficial soil microorganisms, but have been reported to have detrimental effects on several non-mycorrhizal agricultural weed species. If AMF have negative effects on weeds but neutral or positive effects on crops under certain cropping...

  16. Arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  17. Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs

    Science.gov (United States)

    Rebecca E. Hewitt; Elizabeth Bent; Teresa N. Hollingsworth; F. Stuart Chapin; D. Lee Taylor

    2013-01-01

    Climate-induced changes in the tundra fire regime are expected to alter shrub abundance and distribution across the Arctic. However, little is known about how fire may indirectly impact shrub performance by altering mycorrhizal symbionts. We used molecular tools, including ARISA and ITS sequencing, to characterize the mycorrhizal communities on resprouting ...

  18. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica

    OpenAIRE

    Jacquemyn, Hans; Waud, Michael; Lievens, Bart; Brys, Rein

    2016-01-01

    Background and Aims In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats.

  19. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize

    NARCIS (Netherlands)

    Wang, Xinxin; Hoffland, Ellis; Feng, Gu; Kuijper, Thomas

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We

  20. 65Zn transfer in maize – Mycorrhizal system: mechanism to alleviate Zn deficiency

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Tenshia, J.S. Virgine; Meena, S.

    2017-01-01

    Mycorrhizal symbiosis improves the host plant Zn nutrition as a consequence of hyphal transport, enhanced availability in soil as measured using isotopic dilution techniques besides preferential mobilization and transport of Zn. Overall, the data suggest that mycorrhizal symbiosis can improve the host plant nutrition and quality of grains through the mobilization and transport of slowly diffusing ions such as Zn

  1. Preliminary study on biodiversity of arbuscular mycorrhizal fungi (AMF) in oil palm (Elaeis guineensis Jacq.) plantations in Thailand

    Science.gov (United States)

    Auliana; Kaonongbua, W.

    2018-04-01

    Oil palm (Elaeis guineensis Jacq.) is one of the promising crop plants which has been used as raw material for producing daily products. In agricultural ecosystems, crop plants could develop a plant-fungal association with arbuscular mycorrhizal fungi (AMF). The objectives of this study were to determine the AMF biodiversity and mycorrhizal infection percentage (MIP) from field-collected soil samples of three oil palm plantations from Nong Khai, Surat Thani, and Chiang Rai provinces of Thailand. Soil characteristics (moisture content, pH, and available phosphorus) were also measured. Thirteen AMF species belonging to seven genera were identified from all soil samples, whereas Glomus spp. and Acaulospora spp. were most commonly found species. AMF biodiversity value from Chiang Rai was statistically different from other two provinces (p biodiversity. These results confirmed that AMF normally occurs in oil palm plantations, but at different levels of biodiversity possibly due to different environmental factors in each plantation. Nevertheless, this information could be useful for using AMF in plant growth promoter and pathogen resistance programs in order to achieve the agricultural sustainability, especially in oil palm plantations.

  2. [Effects of mycorrhizal colonization and medicine quality of Paris polyphylla var. yunnanensis inoculated by different foreign AM fungi species].

    Science.gov (United States)

    Zhou Nong; Ding, Bo; Feng, Yuan; Qi, Wen-hua; Zhang, Hua; Guo, Dong-qin; Xiang, Jun

    2015-08-01

    After 28 foreign species of AM fungi were inoculated in sterilized soil, the effects of the AM mycorrhizal colonization and the medicine quality of Paris polyphylla var. yunnanensis were observed by combination of inoculation test in pot at room temperature and instrumental analysis. The results showed that, compared with control group (CK), the inoculation of foreign AM fungi in the soil influenced the spore density, mycorrhizal infection rate, and colonization intensity of AM fungi in root system of P. polyphylla var. yunnanensis. The inoculation of foreign AM fungi enhanced the mycorrhiza viability of P. polyphylla var. yunnanensis by increasing the activity of succinic dehydrogenase (SDH) and alkaline phosphatase (ALP) in intraradical hyphae. The content of single steroid saponin in rhizome of P. polyphylla var. yunnanensis showed variation after P. polyphylla var. yunnanensis was inoculated by different foreign species of AM fungi, which was beneficial for increasing the medicine quality; however, the kinds of steroid saponin showed no difference. In a degree, there was a selectivity of symbiosis between P. polyphylla var. yunnanensis and foreign AM fungi. And we found that the Claroideoglomus claroideum and Racocetra coralloidea were best foreign AM fungi species for cultivating P. polyphylla var. yunnanensis under field condition.

  3. Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Rydlova, J.; Vosatka, M. [Academy of Science. Pruhonice (Czech Republic). Inst. of Botany

    2001-07-01

    Among plants colonizing mine spoil banks in Northern Bohemia the first colonizers, mainly ruderal annuals from Chenopodiaceae and Brassicaceae were found not to be associated with arbuscular mycorrhizal fungi (AMF). These species cultivated in pots with soil from four sites in different succession stages of the spoil bank did not respond to the presence of native or non-native AMF. All grass species studied (Elytrigia repens, Calamagrostis epigejos and Arrhenatherum elatius) were found moderately colonized in the field. Carduus acanthoides was found to be highly colonized in the field; however, it did not show growth response to AMF in the pot experiment. The AMF native in four sites on the spoil banks showed high infectivity but low effectiveness in association with colonizing plants compared to the non-native isolate G. fistulosum BEG23. In general, dependence on AMF in the cultivation experiment was rather low, regardless of the fact that plants were found to be associated with AMF either in the field or in pots. Occurrence and effectiveness of mycorrhizal associations might relate primarily to the mycotrophic status of each plant species rather than to the age of the spoil bank sites studied.

  4. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species.

    Science.gov (United States)

    Suvi, Triin; Tedersoo, Leho; Abarenkov, Kessy; Beaver, Katy; Gerlach, Justin; Kõljalg, Urmas

    2010-01-01

    Nyctaginaceae includes species that are predominantly non-mycorrhizal or form arbuscular or ectomycorrhiza. Root-associated fungi were studied from P. grandis and P. sechellarum roots collected respectively on the islands of Cousin and Silhouette in Seychelles. In addition fungal sporocarps were collected from the sampling area. Fungal symbionts were identified from the roots by anatomotyping and rDNA sequencing; sporocarps collected were examined microscopically and sequenced. Three distantly related ectomycorrhizal fungal species belonging to Thelephoraceae were identified from the roots of P. grandis. Sporocarps also were found for two symbionts and described as new Tomentella species. In addition Tomentella species collected from other Seychelles islands were studied and described as new species if there was no close resemblance to previously established species. P. sechellarum was determined to be an arbuscular mycorrhizal plant; three arbuscular mycorrhizal fungal species were detected from the roots. P. grandis is probably associated only with species of Thelephoraceae throughout its area. Only five Tomentella species are known to form ectomycorrhiza with P. grandis and they never have been found to be associated with another host, suggesting adaptation of these fungi to extreme environmental conditions in host's habitat.

  5. Inoculum density of Glomus mosseae and growth of onion plants in unsterilized bituminous coal spoil

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.G.

    1988-01-01

    The effect of inoculum, density (number of vesicular-arbuscular mycorrhizal (VAM) propagules g/sup -1/ of inoculum) on the growth of onions (Allium cepa L.) infected by Glomus mosseae (Nicol and Gerd). Gerdemann and Trappe, Comb nov in unsterilized coal spoil containing indigenous VAM fungi, including G. mosseae, was investigated. The amount of onion roots converted to mycorrhizas by inoculant fungus, estimated by a gridline intersect method, increased with inoculum density (..gamma..0.62, P0.05) until a plateau was reached. Onion growth responses also increased significantly (P<0.05) with the amount of VAM inoculum present in the coal spoil. The initial linear relationship between inoculum propagules (MPN estimates), percent colonization of onion roots and onion shoot dry weight became quadratic as the number of infection propagules increased. VAM infection had no significant effect on root:shoot ratios. Similarly there was no significant interaction (P>0.05) between the inoculum density, VAM-colonized root mass and the onion root:shoot fresh weight ratios. The amount of the windswept bituminous coal spoil bound to VAM (presumably because of VAM external hyphae) also increased as inoculum density increased (..gamma..0.63, P<0.05). There was a stronger correlation (ga0.85, P<0.05) between the amount of spoil adhered per plant and the root fresh wt plant/sup -1/ indicating that root effects were primarily responsible for increasing spoil adherence. There were negative correlations (P<0.05) between root fresh wt plant/sup -1/ (..gamma..-0.68), inoculum density (..gamma..-0.589), percent root elngth infected (..gamma..-0.73) and the amount of spoil adhered g/sup -1/ root fresh wt. The possible exploitation of VAM in revegetation of bituminous coal spoil is discussed. 25 refs., 2 tabs.

  6. Responses of mycorrhizal fungi and other rootassociated fungi to climate change

    DEFF Research Database (Denmark)

    Merrild, Marie Porret

    Climate change is expected to affect many terrestrial ecosystem processes. Mycorrhizal fungi are important to soil carbon (C) and nutrient cycling thus changes in abundance of mycorrhizal fungi could alter ecosystem functioning. The aim of the present thesis was therefore to investigate responses...... of mycorrhizal fungi to climate change in a seasonal and long-term perspective. Effects of elevated CO2 (510 ppm), night-time warming and extended summer drought were investigated in the long-term field experiment CLIMAITE located in a Danish semi-natural heathland. Mycorrhizal colonization was investigated...... levels. Colonization by arbuscular mycorrhizal (AM) fungi increased under elevated CO2 and warming in spring while ericoid mycorrhiza (ErM) colonisation decreased in response to drought and warming. Increased AM colonization correlated with higher phosphorus and nitrogen root pools. Dark septate...

  7. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies

  8. [Discussion on appraisal methods and key technologies of arbuscular mycorrhizal fungi and medicinal plant symbiosis system].

    Science.gov (United States)

    Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi

    2011-11-01

    Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.

  9. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, H. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Joner, E.J. [Bioforsk Soil and Environment, FredrikA Dahls vei 20, N-1432 As (Norway); Leyval, C. [LIMOS, Nancy University, CNRS, Faculte des Sciences, BP239, 54506 Vandoeuvre-les-Nancy, Cedex (France); Jakobsen, I. [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Chen, B.D. [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Roos, P. [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Thiry, Y.; Rufyikiri, G. [Biosphere Impact Assessment, SCK.CEN, Foundation of Public Utility, 200 Boeretang, 2400 Mol (Belgium); Delvaux, B. [Universite catholique de Louvain, Unite des Sciences du Sol, Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, S. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)], E-mail: declerck@mbla.ucl.ac.be

    2008-05-15

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies.

  10. Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer

    Directory of Open Access Journals (Sweden)

    Ieda R Coelho

    2014-12-01

    Full Text Available The system for production of inoculum of arbuscular mycorrhizal fungi (AMF using sand and vermiculite irrigated with nutrient solution is promising. However, organic amendments added to the substrate can stimulate sporulation of AMF and replace the nutrient solution. The aim of this study was to maximize the production of AMF (Acaulospora longula, Claroideoglomus etunicatum, Dentiscutata heterogama and Gigaspora albida using selected organic substrates (vermicompost, coir dust and Tropstrato together with sand and vermiculite. The production of spores varied among the tested AMF and according to the organic source added to the substrate. The vermicompost promoted higher sporulation of A. longula in relation to the other AMF and substrates. The Tropstrato® inhibited the sporulation of D. heterogama while the reproduction of C. etunicatum was not affected by the organic compounds. The inoculum of A. longula also showed a high number of infective propagules and promoted biomass accumulation in maize plants. The system of inoculum production using sand and vermiculite + 10% vermicompost favors the production of infective inoculum of A. longula with the fungus benefiting growth of corn plants.

  11. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    Science.gov (United States)

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Reaction of mycorrhizal and non-mycorrhizal Scots pine fine roots along a deposition gradient of air pollutants in eastern Germany

    International Nuclear Information System (INIS)

    Muenzenberger, B.; Schminke, B.; Strubelt, F.; Huettl, R.F.

    1995-01-01

    Based on an ecosystematic approach within the comprehensive SANA (regeneration of the atmosphere above the new federal states) project the influence of industrial air pollutants (SO 2 , NO x ) (alkaline fly ashes) on the vitality of mycorrhizal, mycorrhizal frequency, and on parameters of root growth such as root biomass and necromass and distribution of different root classes in the soil horizons was investigated. The studies were conducted in three comparable Scots pine ecosystems in eastern Germany which were exposed to different deposition loads of air pollutants during the time of the former German Democratic Republic. Site specific differences were obtained for all parameters investigated. The reference plot Neuglobsow (background deposition) revealed the highest number of vital mycorrhizal, highest mycorrhizal frequency, and largest biomass of finest roots in the humus layer. At the impact-site Roesa and Taura (heavy and moderate deposition) located near Halle/Bitterfeld and Leipzig, the number of vital mycorrhizae was reduced and the life-span of mycorrhizae of reduced vitality was elongated. Finest root biomass and necromass of the humus layer were also lower at these plots as compared to Neuglobsow. At Neuglobsow a higher turnover of mycorrhizae and finest roots of the humus layer is assumed. The reduced growth of mycorrhizal and non-mycorrhizal finest roots at the two pollution impacted sites Roesa and Taura is seen as an adaptation mechanism of the root system to high nutrient inputs. 14 refs., 4 figs

  13. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  14. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    Science.gov (United States)

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  15. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation.

    Science.gov (United States)

    Lopes Leal, Patrícia; Varón-López, Maryeimy; Gonçalves de Oliveira Prado, Isabelle; Valentim Dos Santos, Jessé; Fonsêca Sousa Soares, Cláudio Roberto; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared with soils from contaminated non-rehabilitated area and non-contaminated adjacent soils. Arbuscular mycorrhizal fungi communities attributes were assessed by direct field sampling, trap culture technique, and by glomalin contents estimate. Arbuscular mycorrhizal fungi was markedly favored by rehabilitation, and a total of 15 arbuscular mycorrhizal fungi morphotypes were detected in the studied area. Species from the Glomus and Acaulospora genera were the most common mycorrhizal fungi. Number of spores was increased by as much as 300-fold, and species richness almost doubled in areas rehabilitated by planting Eucalyptus in rows and sowing B. decumbens in inter-rows. Contents of heavy metals in the soil were negatively correlated with both species richness and glomalin contents. Introduction of B. decumbens together with Eucalyptus causes enrichment of arbuscular mycorrhizal fungi species and a more balanced community of arbuscular mycorrhizal fungi spores in contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.

    Science.gov (United States)

    Schweiger, Peter F

    2016-10-20

    Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15 N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ 15 N and decreased foliar δ 15 N only under N deficiency. The roots of these plants were 15 N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ 15 N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15 N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  18. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    Directory of Open Access Journals (Sweden)

    Peter E Larsen

    2016-01-01

    Full Text Available In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree and Laccaria bicolor (mycorrhizal fungi interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.

  19. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  20. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Science.gov (United States)

    Veiga, Rita S. L.; Jansa, Jan; Frossard, Emmanuel; van der Heijden, Marcel G. A.

    2011-01-01

    Background Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. Methodology/Principal Findings First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. Conclusions/Significance Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions. PMID

  1. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  2. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  3. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    Science.gov (United States)

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

  4. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  5. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ning, J.C.; Cumming, J.R.

    2001-07-01

    Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 {mu}M for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation ({lt}60 {mu}M). Colonization by AM fungi greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 {mu}M). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of nonmycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C-min values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.

  6. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary

    Directory of Open Access Journals (Sweden)

    Donkó Ádám

    2014-11-01

    Full Text Available The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

  7. Effect of arbuscular mycorrhizal fungal inoculation in combination with different organic fertilizers on maize crop in eroded soils

    International Nuclear Information System (INIS)

    Sharif, M.; Saud, S.; Khan, F.

    2012-01-01

    A pot experiment was conducted to study the effect of inoculating maize (Zea mays L. Azam) with Arbuscular mycorrhizal (AM) fungi in 2 different series of North West Pakistan during the year 2007. Data showed significant increase in shoots and roots yield of maize with the inoculation of AM fungi alone and in combination with farm yard manure (FYM), poultry manure (PM) and humic acid (HA) over control and N-P-K treatments. Accumulation of N by maize shoots increased significantly by the addition of HA, PM and FYM plus N-P-K with or without inoculation of AM fungi over the treatments of N-P-K and control. Plants P accumulation increased significantly over control and N-P-K treatments with the inoculation of AM fungi alone and in combination with FYM, PM and HA in missa soil series. In missa gullied soil series, significantly increased plants P accumulation was noted by the treatments of AM inoculation with PM followed by HA. Accumulation of Mn by maize shoots increased significantly with AM inoculation with HA and PM over all other treatments, Fe increased with PM, HA and FYM. Plants Cu accumulation in missa series increased significantly over control and N-P-K treatments by AM alone and in combination with PM, FYM and HA and by AM fungi with PM, FYM and HA in missa gullied series. Maximum Mycorrhizal root infection rate of 51 % was recorded in the treatment of AM fungal inoculation with HA followed by the treatment inoculated with AM fungi with FYM. In missa gullied soil series, Maximum (59 %) and significantly increased roots infection rates over all treatments were observed in the treatment of AM fungal inoculation with HA followed by PM. Spores concentrations of AM fungi increased significantly with AM inoculation alone and with FYM, PM and HA. Maximum spores numbers of 50 in 20 g soil were recorded by the inoculation of AM fungi alone and with HA. (author)

  8. A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1

    Science.gov (United States)

    Guether, Mike; Neuhäuser, Benjamin; Balestrini, Raffaella; Dynowski, Marek; Ludewig, Uwe; Bonfante, Paola

    2009-01-01

    In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4+ seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4+. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake. PMID:19329566

  9. Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus1[W

    Science.gov (United States)

    Siciliano, Valeria; Genre, Andrea; Balestrini, Raffaella; Cappellazzo, Gilda; deWit, Pierre J.G.M.; Bonfante, Paola

    2007-01-01

    Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in epidermal cells during appressorium development, has been reported to be responsible for assembling a trans-cellular tunnel to accommodate the invading fungus. Here, we used PPAs as markers for cell responsiveness to fungal contact to investigate gene expression at this early stage of infection with minimal transcript dilution. PPAs were identified by confocal microscopy in transformed roots of Medicago truncatula expressing green fluorescent protein-HDEL, colonized by the AM fungus Gigaspora margarita. A PPA-targeted suppressive-subtractive cDNA library was built, the cDNAs were cloned and sequenced, and, consequently, 107 putative interaction-specific genes were identified. The expression of a subset of 15 genes, selected by reverse northern dot blot screening, and five additional genes, potentially involved in PPA formation, was analyzed by real-time reverse transcription-polymerase chain reaction and compared with an infection stage, 48 h after the onset of the PPA. Comparison of the expression profile of G. margarita-inoculated wild type and the mycorrhiza-defective dmi3-1 mutant of M. truncatula revealed that an expansin-like gene, expressed in wild-type epidermis during PPA development, can be regarded as an early host marker for successful mycorrhization. A putative Avr9/Cf-9 rapidly elicited gene, found to be up-regulated in the mutant, suggests novel regulatory roles for the DMI3 protein in the early mycorrhization process. PMID:17468219

  10. The potential role of Arbuscular Mycorrhizal Fungi in the restoration of degraded lands

    Directory of Open Access Journals (Sweden)

    Fisseha Asmelash Belay

    2016-07-01

    Full Text Available Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlining causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that Arbuscular Mycorrhizal Fungi (AMF biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in-situ management for effective restoration of degraded lands will also remain to be important research areas. Keywords: AMF, ecological restoration, facilitation, inoculation, land degradation

  11. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands

    Science.gov (United States)

    Asmelash, Fisseha; Bekele, Tamrat; Birhane, Emiru

    2016-01-01

    Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlying causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that arbuscular mycorrhizal fungi (AMF) biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems, and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in situ management for effective restoration of degraded lands will also remain to be important research areas. PMID:27507960

  12. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus increase yield of soybean and cotton under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-05-01

    Full Text Available Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF enhance plant nutrition by providing especially phosphorus (P, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for P supply in soybean (Glycine max L. and cotton (Gossypium hirsutum L.. The experiments were carried out in plots and the treatments were: Fertilizer; AMF, AMF + Fertilizer and AMF + ½ Fertilizer; non-inoculated and non-fertilized plants were considered the control. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth and yield under a field conditions. The results showed that AMF inoculation increased the effect of fertilizer application in soybean, and that in cotton R. clarus was more effective than chemical fertilizer

  13. The ecology of arbuscular-mycorrhizal fungi (AMF) under different cropping regimes

    International Nuclear Information System (INIS)

    Chaudhry, M. S.; Saeed, M.; Nasim, F. U. H.; Anjum, S.

    2015-01-01

    The ecology of Arbuscular Mycorrhizal Fungi (AMF) in mono-cropping and low-input ideal agroforestry cropping systems of Avena sativa has been studied. Soil chemical heterogeneity, seasonality and nature of cropping system showed significant attributes on AMF. AMF percentage in roots and spore populations in soil were elevated in dry season compared to wet season. With respect to cropping regimes, mono-cropping systems exhibited highest root infection whereas the agroforestry systems possessed highest AM fungal spore populations. Generally, farming systems tested here possessed significant colonization of AMF, however, overall extent of colonization and spore densities were low. While assessing the correlation between soil chemical composition and AMF, electrical conductivity, organic carbon content, available potassium and saturation percentage showed a negative correlation. However, pH showed a positive correlation and available phosphorus content showed no correlation with AMF. Present study was aimed to view the importance of agroforestry in modern agriculture and normal agricultural system and the benefits associated with AM fungi. (author)

  14. Mycorrhizal synthesis between Lactarius deliciosus and Arbutus unedo L.

    Science.gov (United States)

    Gomes, Filomena; Suárez, Diego; Santos, Rita; Silva, Márcia; Gaspar, Daniel; Machado, Helena

    2016-04-01

    Arbutoid mycorrhizae were synthesized in vitro between Arbutus unedo L. and two isolates of Lactarius deliciosus. The fungal isolates were obtained from sporocarps collected under Pinus sylvestris and in a mixed forest stand of Quercus suber and Pinus pinea. Synthesis tubes filled with a mixture of sterilized peat, vermiculite, and perlite imbibed with nutrient solution were used. Two inoculation methods using solid and liquid media were tested. Shoots from an adult selected clone of A. unedo were used after in vitro rooting by auxin dipping. After 3 months of shoots transfer to the substrate, the root systems were examined for arbutoid mycorrhizae formation and later on ex vitro conditions, 9 months after acclimatization. The inoculum treatment with liquid medium improved the mycorrhizal development for both isolates, in vitro. Sterilized substrate for plant acclimatization increased the mycorrhizal development. The arbutoid mycorrhizae were observed in vitro as well as 9 months after acclimatization. Standard arbutoid mycorrhiza features were observed: pale yellow mantle, typical cruciform appearance, Hartig net (HN), and intracellular hyphal complexes, both confined to the epidermis. L. deliciosus mycorrhizae synthetized in vitro persisted 9 months after plant acclimatization. Morphological observations were confirmed by molecular techniques.

  15. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    Science.gov (United States)

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  17. Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.

    Science.gov (United States)

    Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing

    2017-05-01

    Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.

  18. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  19. Role of Arbuscular Mycorrhizal Fungi on Iris

    Directory of Open Access Journals (Sweden)

    CHEN Yuan

    2014-06-01

    Full Text Available For efficiency using the amphibious plant iris to restore polluted water, the promoting effect of different arbuscular mycorrhiza fungi(AMFon iris was investigated, by monitoring the plant growth index, the physicochemical properties of the soil and the plant photosynthesis indexes. The result showed that the promoting effects of the AMF on the aboveground part and the underground part of the iris were based on different mechanism. For the underground part of the iris, the AMF stimulated its growth through the nutrient enrichment which was performed by the enormous hypha network. The nitrogen absorbing rate of the G. mosseae and the G. intraradices infected iris increased about 71.75% and 42.55%, and the phosphorous absorbing rate increased 8.36% and 9.5% separately. For the aboveground part of the iris, the AMF strengthened the conductance of the leaves’ stomas to control the balance between the net photosynthesis rate and the transpiration rate, so that the utilization rate of water resources was optimized, the metabolic rate was accelerated and the growth of the plant was promoted eventually. In this study, the promoting effect of the G. mosseae on the photosynthesis rate of the iris was significantly better than that of the G. intraradices(P<0.05.

  20. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  1. Mycorrhizal fungi associated with Taiwanese Pyrola morrisonensis (Ericaceae in a naturally regenerated forest

    Directory of Open Access Journals (Sweden)

    Yosuke MATSUDA

    2017-11-01

    Full Text Available Pyrola morrisonensis, an evergreen herb in the family Ericaceae, is endemic to Taiwan. We examined mycorrhizal development and the associated fungi in this species. Nine plants were collected in a naturally regenerated forest in central Taiwan. The plants were genetically identical in their internal transcribed spacer (ITS region, and their sequences matched the known sequence for P. morrisonensis. Fine roots of each plant were colonized by mycorrhizal fungi that formed mycorrhizas either with or without fungal mantles. DNA sequences of the ITS region of these fungi suggested that they belonged to mycorrhizal taxa that are common tree symbionts. Among them, members of Thelephoraceae were the dominant taxon in the host plants. These results indicate that P. morrisonensis is intimately associated with mycorrhizal fungi that might also connect with neighboring trees.

  2. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism

    Czech Academy of Sciences Publication Activity Database

    Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A. G.; Hiiesalu, Inga; Jairus, T.; Johnson, N. C.; Kane, A.; Koorem, K.; Kochar, M.; Ndiaye, C.; Pärtel, M.; Reier, Ü.; Saks, Ü.; Singh, R.; Vasar, M.; Zobel, M.

    2015-01-01

    Roč. 349, č. 6251 (2015), 970-973 ISSN 0036-8075 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * 454 sequencing * diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 34.661, year: 2015

  3. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula

    Czech Academy of Sciences Publication Activity Database

    Konvalinková, T.; Püschel, David; Janoušková, Martina; Gryndler, M.; Jansa, J.

    2015-01-01

    Roč. 6, FEB 13 (2015), s. 1-11 ISSN 1664-462X Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * light intensity * shading duration Subject RIV: EE - Microbiology, Virology Impact factor: 4.495, year: 2015

  4. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens

    NARCIS (Netherlands)

    Liang, Minxia; Liu, Xubing; Etienne, Rampal S; Huang, Fengmin; Wang, Yongfan; Yu, Shixiao

    Soilborne pathogens can contribute to diversity maintenance in tree communities through the Janzen-Connell effect, whereby the pathogenic reduction of seedling performance attenuates with distance from conspecifics. By contrast, arbuscular mycorrhizal fungi (AMF) have been reported to promote

  5. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits

    NARCIS (Netherlands)

    Behm, J.E.; Kiers, E.T.

    2014-01-01

    Statistical models of ecosystem functioning based on species traits are valuable tools for predicting how nutrient cycling will respond to global change. However, species such as arbuscular mycorrhizal fungi (AMF) have evolved high intraspecific trait variation, making trait characterization and

  6. Effects of Microbiotic Soil Crust Organisms and Mycorrhizal Fungi on Seedling Growth of Blackbrush (Coleogyne ramosissima)

    National Research Council Canada - National Science Library

    Pendleton, Rosemary

    1999-01-01

    .... A series of experiments conducted from 1993 to 1997 tested the effect of inoculation with arbuscular mycorrhizal fungi on the growth of young blackbrush seedlings under a variety of soil nutrient conditions...

  7. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    International Nuclear Information System (INIS)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-01-01

    The influence of arbuscular mycorrhizal fungus on 1 34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more 1 34Cs (up to 250,000 Bq kg - 1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased 1 34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg - 1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  8. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-07-01

    The influence of albacore's mycorrhizal fungus on {sup 1}34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more {sup 1}34Cs (up to 250,000 Bq kg{sup -}1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased {sup 1}34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg{sup -}1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  9. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Azam [State University of New York, College of Environmental Science and Forestry (United States); White, Jason C. [Connecticut Agricultural Experiment Station (United States); Newman, Lee A., E-mail: lanewman@esf.edu [State University of New York, College of Environmental Science and Forestry (United States)

    2017-02-15

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  10. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    International Nuclear Information System (INIS)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-01-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  11. Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status?

    Science.gov (United States)

    Reinhart, Kurt O; Lekberg, Ylva; Klironomos, John; Maherali, Hafiz

    2017-08-01

    Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

  12. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-07-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseaae and G. deserticola in vitro. (Author)

  13. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    International Nuclear Information System (INIS)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-01-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. (Author)

  14. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica.

    Science.gov (United States)

    Jacquemyn, Hans; Waud, Michael; Lievens, Bart; Brys, Rein

    2016-07-01

    In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany

  15. DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities

    OpenAIRE

    De Beenhouwer , Matthias; Muleta , Diriba; Peeters , Bram; Van Geel , Maarten; Lievens , Bart; Honnay , Olivier

    2015-01-01

    International audience; Arabica coffee is a major agricultural commodity worldwide, representing 60 % of the world’s coffee production. Arabica coffee is cultivated in more than 36 countries and is a key cash crop for many developing countries. Despite the coffee’s huge economic importance, there is very limited knowledge on the association of arbuscular mycorrhizal fungi with coffee roots. Therefore, we assessed the mycorrhizal diversity and community composition in Arabica coffee (Coffea ar...

  16. Metagenomic Analyses of the Viruses Detected in Mycorrhizal Fungi and Their Host Orchid.

    Science.gov (United States)

    Shimura, Hanako; Masuta, Chikara; Koda, Yasunori

    2018-01-01

    In nature, mycorrhizal association with soilborne fungi is indispensable for orchid families. Fungal structures from compatible endo-mycorrhizal fungi in orchid cells are digested in cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until shoots develop (leaves) and become photoautotrophic. Seeds of all orchid species surely geminate with the help of their own fungal partners, and this specific partnership has been acquired for a long evolutional history between orchids and fungi.We have studied the interactions between orchids and mycorrhizal fungi and recently conducted transcriptome analyses (RNAseq) by a next-generation sequencing (NGS) approach. It is possible that orchid RNA isolated form naturally grown plants is contaminated with RNAs derived from mycorrhizal fungi in the orchid cells. To avoid such contamination, we here prepared aseptically germinated orchid plants (i.e., fungus-free plants) together with a pure-cultured fungal isolate and field-growing orchid samples. In the cDNA library prepared from orchid and fungal tissues, we found that partitivirus-like sequences were common in an orchid and its mycorrhizal fungus. These partitivirus-like sequences were closely related by a phylogenetic analysis, suggesting that transmission of an ancestor virus between the two organisms occurred through the specific relation of the orchid and its associated fungus.

  17. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  18. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress.

    Science.gov (United States)

    Wang, Yanhong; Wang, Minqiang; Li, Yan; Wu, Aiping; Huang, Juying

    2018-01-01

    Soil salinity is a common and serious environmental problem worldwide. Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators of soil salinity tolerance in plants. However, few studies have addressed the possible benefits of AMF inoculation for medicinal plants under saline conditions. In this study, we examined the effects of colonization with two AMF, Funneliformis mosseae and Diversispora versiformis, alone and in combination, on the growth and nutrient uptake of the medicinal plant Chrysanthemum morifolium (Hangbaiju) in a greenhouse salt stress experiment. After 6 weeks of a non-saline pretreatment, Hangbaiju plants with and without AMF were grown for five months under salinity levels that were achieved using 0, 50 and 200 mM NaCl. Root length, shoot and root dry weight, total dry weight, and root N concentration were higher in the mycorrhizal plants than in the non-mycorrhizal plants under conditions of moderate salinity, especially with D. versiformis colonization. As salinity increased, mycorrhizal colonization and mycorrhizal dependence decreased. The enhancement of root N uptake is probably the main mechanism underlying salt tolerance in mycorrhizal plants. These results suggest that the symbiotic associations between the fungus D. versiformis and C. morifolium plants may be useful in biotechnological practice.

  19. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L

    International Nuclear Information System (INIS)

    Orłowska, Elżbieta; Godzik, Barbara; Turnau, Katarzyna

    2012-01-01

    The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots. - Highlights: ► The role of arbuscular mycorrhizal fungi (AMF) in As uptake was studied. ► Growth of Plantago lanceolata was significantly enhanced by mycorrhizal inoculation. ► Arsenic concentration and uptake significantly depended on the AMF isolate. ► Arbuscular mycorrhizal fungi may be useful for bioremediation of As contaminated wastes. - Effect of arbuscular mycorrhizal fungi on As uptake by Plantago lanceolata strongly depends on the origin of fungal isolates.

  1. MycoDB, a global database of plant response to mycorrhizal fungi

    Science.gov (United States)

    Chaudhary, V. Bala; Rúa, Megan A.; Antoninka, Anita; Bever, James D.; Cannon, Jeffery; Craig, Ashley; Duchicela, Jessica; Frame, Alicia; Gardes, Monique; Gehring, Catherine; Ha, Michelle; Hart, Miranda; Hopkins, Jacob; Ji, Baoming; Johnson, Nancy Collins; Kaonongbua, Wittaya; Karst, Justine; Koide, Roger T.; Lamit, Louis J.; Meadow, James; Milligan, Brook G.; Moore, John C.; Pendergast, Thomas H., IV; Piculell, Bridget; Ramsby, Blake; Simard, Suzanne; Shrestha, Shubha; Umbanhowar, James; Viechtbauer, Wolfgang; Walters, Lawrence; Wilson, Gail W. T.; Zee, Peter C.; Hoeksema, Jason D.

    2016-05-01

    Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.

  2. Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L. (Poaceae).

    Science.gov (United States)

    Koslowsky, S D; Boener, R E

    1989-01-01

    The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.

  3. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  4. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  5. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Jonasson, Sven; Strom, Lena

    2008-01-01

    15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non-mycorrhiza......15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non...

  6. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Fulai

    2017-01-01

    Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown...... to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma...... tolerance of the host plants via enhancing water and nutrient uptake, improving photosynthetic capacity and efficiency, protecting plant against oxidative damage, and increasing accumulation of osmolytes are discussed. This chapter also provides some future perspectives for better understanding...

  7. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies

  8. Underground resource allocation between individual networks of mycorrhizal fungi

    DEFF Research Database (Denmark)

    Mikkelsen, Bolette Lind; Rosendahl, Søren; Jakobsen, Iver

    2008-01-01

    * Fusions between individual mycelia of arbuscular mycorrhizal (AM) fungi have been observed in two-dimensional systems but never in soil systems. Here, phosphorus ((32)P) labelling was used to demonstrate nutrient transfer between individual mycelia and to investigate the possible role...... of G. mosseae overlapped. The transfer probably occurred via anastomoses between the mycelia as no transfer of (32)P was detected between the mycelia of different fungi at the second harvest. * The indicated ability of AM fungal mycelia to anastomose in soil has implications for the formation of large...... of anastomosis. * Trifolium subterraneum colonized by Glomus mosseae were grown in root-retaining mesh bags, which were placed 20 cm apart. The mycelium of one plant, the donor, had access to (32)P-labelled soil placed adjacent to the mesh bag. Transfer of (32)P from the donor mycelium to the receiver plant...

  9. [Proteome analysis on interaction between Anoectochilus roxburghii and Mycorrhizal fungus].

    Science.gov (United States)

    Gao, Chuan; Guo, Shun-Xing; Zhang, Jing; Chen, Juan; Zhang, Li-Chun

    2012-12-01

    To study the mechanism of plant growing promoted by Mycorrhizal fungus through the difference of proteomes. The differential proteomes between uninoculated and inoculated endophytic fungi, Epulorhiza sp. on Anoectochilus roxburghii were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrum. Twenty-seven protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Twenty-two candidate proteins were identified by database comparisons. The function of these proteins mostly involved in signal transduction, metabolic regulation, as well as photosynthesis and substance metabolism. The results indicate that the regulator control system of plant is influenced by fungi action, and the positive regulation improves substance metabolism and photosynthesis, which results in strong plant and higher resistance. It is also deduced that silent genes may exist in endosymbiosis plants.

  10. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants.

    Science.gov (United States)

    Navarro García, Alejandra; Del Pilar Bañón Árias, Sebastián; Morte, Asunción; Sánchez-Blanco, María Jesús

    2011-01-01

    The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in

  13. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  14. Arbuscular mycorrhizal fungi (AMF) as bio protector agents against wilt induced by Verticillium spp. in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, N.; Garmendia, I.; Sanchez-Diaz, M.; Aguirreolea, J.

    2010-07-01

    Verticillium dahliae Kleb. is a vascular pathogen that alters water status and growth of pepper plants and causes drastic reductions in yield. Its control is difficult because it can survive in field soil for several years. The application of arbuscular mycorrhizal fungi (AMF) as bio protector agents against V. dahliae is an alternative to the use of chemicals which, in addition, is more respectful with the environment. The establishment of the mutualistic association of plant roots and AMF involves a continuous cellular and molecular dialogue between both symbionts that includes the pre activation of plant defense responses that may enhance the resistance or tolerance of mycorrhizal plants to soil-borne pathogens. Some AMF can improve the resistance of Capsicum annuum L. against V. dahliae. This is especially relevant for pepper cultivars (i.e. cv. Piquillo) that exhibit high susceptibility to this pathogen. Compared with non-mycorrhizal plants, mycorrhizal pepper can exhibit more balanced antioxidant metabolism in leaves along the first month after pathogen inoculation, which may contribute to delay both the development of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants with the subsequent benefit for yield. In stems, mycorrhizal pepper show earlier and higher deposition of lignin in xylem vessels than non mycorrhizal plants, even in absence of the pathogen. Moreover, AMF can induce new isoforms of acidic chitinases and superoxide dismutase in roots. Mycorrhizal-specific induction of these enzymatic activities together with enhanced peroxidase and phenylalanine ammonia-lyase in roots may also be involved in the bio protection of Verticillium-induced wilt in pepper by AMF. (Author) 81 refs.

  15. Production and infectivity of inoculum of arbuscular mycorrhizal fungi multiplied in a substrate supplemented with Tris-HCl buffer Produção e infectividade de inóculo de fungos micorrízicos arbusculares multiplicados em substrato suplementado com tampão Tris-HCl

    Directory of Open Access Journals (Sweden)

    Fábio Sérgio Barbosa da Silva

    2007-12-01

    Full Text Available The effect of adding Tris-HCl buffer on production and infectivity of AMF inoculum was investigated. Sporulation of Glomus etunicatum, Acaulospora longula and Gigaspora albida was improved in solution with buffer. The infectivity of G. etunicatum increased after storage, what suggests that the inoculum of this isolate is benefited by storage.O efeito da adição do tampão Tris-HCl na produção e infectividade de inóculo foi investigado. A esporulação de Glomus etunicatum, Acaulospora longula e Gigaspora albida foi incrementada utilizando solução com tampão. A infectividade de G. etunicatum aumentou após estocagem, sugerindo que o inóculo deste isolado é beneficiado pelo armazenamento.

  16. Fiber, food, fuel, and fungal symbionts.

    Science.gov (United States)

    Ruehle, J L; Marx, D H

    1979-10-26

    Virtually all plants of economic importance form mycorrhizae. These absorbing organs of higher plants result from a symbiotic union of beneficial soil fungi and feeder roots. In forestry, the manipulation of fungal symbionts ecologically adapted to the planting site can increase survival and growth of forest trees, particularly on adverse sites. Vesicular-arbuscular mycorrhizae, which occur not only on many trees but also on most cultivated crops, are undoubtedly more important to world food crops. Imperatives for mycorrhizal research in forestry and agriculture are (i) the development of mass inoculum of mycorrhizal fungi, (ii) the interdisciplinary coordination with soil management, plant breeding, cultivation practices, and pest control to ensure maximum survival and development of fungal symbionts in the soil, and (iii) the institution of nursery and field tests to determine the circumstances in which mycorrhizae benefit plant growth in forestry and agri-ecosystems.

  17. POTENCIAL SIMBIOTICO Y EFECTIVIDAD DE HONGOS MICORRIZO ARBUSCULARES DE TRES SUELOS SOMETIDOS A DIFERENTES USOS MYCORRHIZAL SYMBIOTIC POTENTIAL AND EFFECTIVENESS OF THREE SOILS UNDER DIFFERENT USES

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Jaramillo Padilla

    2004-06-01

    consisting of a soil-quartz (1:1 ratio mixture. The substrate was inoculated with a crude inoculum of Glomus aggregatum, a mycorrhizal fungus of known effectiveness. Mycorrhizal effectiveness was evaluated by monitoring P pinnule content of the leucaena seedlings at regular intervals of time during the growth period of 49 days. At harvest, shoot dry mass, shoot P content, and mycorrhizal colonization were determined. Plant growth and P uptake were significantly higher in plants growing in the substrate inoculated with G. aggregatum than those plants grown in either non-inoculated substrate or substrate inoculated with aliquots of tested soils. Mycorrhizal colonization was very high in the G. aggregtaum inoculated-substrate and virtually absent in the other treatments. Results suggest that in the tested soils there were a low mycorrhizal effectiveness and/or low content of mycorrizal infective propagules, which was confirmed by the most-probable-number method and mycorrhizal spore counting.

  18. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables

    Science.gov (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov

    2014-01-01

    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  19. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Janoušková, Martina; Hujslová, M.; Slavíková, R.; Gryndlerová, H.; Jansa, J.

    2016-01-01

    Roč. 6, č. 13 (2016), s. 4332-4346 ISSN 2045-7758 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * nutrient uptake response * mycorrhizal benefits and costs Subject RIV: EF - Botanics Impact factor: 2.440, year: 2016

  20. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review

    Science.gov (United States)

    Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara

    2018-01-01

    Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.

  1. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    Science.gov (United States)

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Diversity and dynamics of mycorrhizal associations in tropical rain forests with different disturbance regimes in South Cameroon

    NARCIS (Netherlands)

    Onguene, N.A.

    2000-01-01

    The present study documents the occurrence of mycorrhizal associations in the rain forests of south Cameroon. All species investigated are mycorrhizal. Most timber species form arbuscular mycorrhiza, but some timber species, which usually occur in clumps, form ectomycorrhiza. Species

  3. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Cozzolino, V; De Martino, A; Nebbioso, A; Di Meo, V; Salluzzo, A; Piccolo, A

    2016-06-01

    In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.

  4. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  5. EFFECT OF DIESEL AND BIODIESEL ON THE GROWTH OF Brachiaria decumbens INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Dora Trejo

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi have been found to be associated with plants useful in soil phytoremediation. The aim of this study was to compare the effects of diesel and biodiesel in soil and sand on the growth of Brachiaria decumbens inoculated with mycorrhizae. Two experiments were carried out: one experiment in soil and another in sand. A two-level- factorial design with three factors was used (one on sterile and another on non-sterile soil, with and without mycorrhizae; and one with diesel and another with biodiesel. In sand, a two-factor design with two levels was used (with and without mycorrhizae and with diesel and biodiesel, both with three replications. NOVADIESEL, biodiesel and PEMEX diesel were use as contaminants, both at 7%. The fresh and dry weight of the plants and percentage of mycorrhizal colonization, were assessed 30 days after planting. In soil, biodiesel was more toxic and reduced the fresh and dry weights of plants, especially in non-sterile soil. Biodiesel yielded greater mycorrhizal colonization values that doubled those of the control. In sand, diesel was found to reduce three times the fresh and dry weights of plants, compared to the biodiesel. In sand diesel presented high values of mycorrhizal colonization in comparison with biodiesel.  Plants inoculated with mycorrhizal fungi exhibited better development than non-inoculated plants, even in the presence of contaminants.

  6. Total fatty acid composition in the characterization and identification of orchid mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2011-08-01

    Full Text Available Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.

  7. Occurrence of arbuscular mycorrhizal fungi on King George Island, South Shetland Islands, Antarctica.

    Science.gov (United States)

    Barbosa, Marisângela V; Pereira, Elismara A; Cury, Juliano C; Carneiro, Marco A C

    2017-01-01

    Arbuscular mycorrhizal fungi make up an important ecological niche in ecosystems, and knowledge of their diversity in extreme environments is still incipient. The objective of this work was to evaluate the density and diversity of arbuscular mycorrhizal fungi in the soil of King George Island in the South Shetland Islands archipelago, Antarctica. For that, soil and roots of Deschampsia antarctica were collected at the brazilian research station in Antarctica. The spore density, species diversity and mycorrhizal colonization in the roots were evaluated. There was a low density of spores (27.4 ± 17.7) and root mycorrhizal colonization (6 ± 5.1%), which did not present statistical difference. Four species of arbuscular mycorrhizal fungi were identified, distributed in two genera: three species of the genus Glomus (Glomus sp1, Glomus sp2 and Glomus sp3) and one of the genus Acaulospora, which was identified at species level (Acaulospora mellea). Greater soil diversity was verified with pH 5.9 and phosphorus concentration of 111 mg dm-3, occurring two species of genus Glomus and A. mellea. Based on literature data, this may be the first record of this species of Acaulospora mellea in Antarctic soils, colonizing D. antarctica plants.

  8. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.; Ambe, F.

    2000-01-01

    The effect of arbuscular mycorrhizal (AM) colonization on the uptake of trace elements in marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 74 As, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants were grown under controlled environmental conditions in sand culture either without mycorrhizas or in association with an AM fungus, Glomus etunicatum. The multitracer was applied to the pot, and plants were harvested at 7 and 21 d after tracer application. We found that the uptake of 7 Be, 22 Na, 51 Cr, 59 Fe, 65 Zn, and 95m Tc was higher in the mycorrhizal marigolds than in the non-mycorrhizal ones, while that of 46 Sc, 56 Co, 83 Rb, and 85 Sr was lower in the mycorrhizal marigolds than in the non-mycorrhizal ones. Thus, the multitracer technique enabled to analyze the uptake of various elements by plant simultaneously. It is suggested that this technique could be used to analyze the effects of AM colonization on the uptake of trace elements by plant. (author)

  9. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment.

    Science.gov (United States)

    Varga, Sandra

    2015-03-01

    • Arbuscular mycorrhizal fungi usually enhance overall plant performance, yet their effects on seed germination and early plant establishment, crucial steps in plant cycles, are generally overlooked. In gynodioecious species, sexual dimorphism in these traits has been reported, with females producing seeds that germinate at a faster rate than seeds from hermaphrodites.• Using the gynodioecious plant Geranium sylvaticum, I investigated in a greenhouse experiment whether the presence of arbuscular mycorrhizal spores affects seed germination and early plant establishment, examining at the same time whether the sex of the mother producing the seeds also influences these parameters and whether sex-specific interactions between these two factors exist.• The presence of arbuscular mycorrhizal spores in the soil decreased seed germination, did not affect plant survival, but did increase plant growth. Moreover, no significant differences in seed traits were detected between the sexes of the plants producing the seeds.• This study demonstrates that arbuscular mycorrhizal fungi may have contrasting effects for plants during early life stages and that mycorrhizal effects can take place even at the precolonization stage. © 2015 Botanical Society of America, Inc.

  10. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  11. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning.

    Science.gov (United States)

    Li, Jinglong; Sun, Yuqing; Jiang, Xuelian; Chen, Baodong; Zhang, Xin

    2018-08-15

    In a pot experiment, Medicago sativa inoculated with/without arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were grown in four levels (0, 10, 25, and 75 mg/kg) of arsenic (As)-polluted soil to investigate the influences of AM symbiosis on plant As tolerance. The results showed that mycorrhizal inoculation significantly increased plant biomass, while As addition decreased mycorrhizal colonization and hyphal length density. Mycorrhizal inoculation dramatically improved plant phosphorus (P) nutrition, restricted As uptake and retained more As in roots by upregulating the expression of the AM-induced P transporter gene MsPT4 and the metallothionein gene MsMT2. High soil As content downregulated MsPT4 expression. Dimethylarsenic acid (DMA) was detected only in the shoots of mycorrhizal plants, indicating that AM fungi likely play an essential role in As detoxification by biological methylation. The present investigation allowed deeper insights into the As detoxification mechanisms of AM associations and demonstrated the important role of AM fungi in plant resistance under As-contaminated conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  13. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize.

    Science.gov (United States)

    Wang, Xin-Xin; Hoffland, Ellis; Feng, Gu; Kuyper, Thomas W

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two maize ( Zea mays L.) cultivars, non-inoculated or inoculated with the arbuscular mycorrhizal fungi Funneliformis mosseae or Claroideoglomus etunicatum , were grown for 45 days in two-compartment rhizoboxes, containing a root compartment and a hyphal compartment. The soil in the hyphal compartment was supplemented with 20, 100, and 200 mg P kg -1 soil as calcium phytate. We measured activity of phytase and acid phosphatase in the hyphal compartment, hyphal length density, P uptake, and plant biomass. Our results showed: (1) phytate addition increased phytase and acid phosphatase activity, and resulted in larger P uptake and plant biomass; (2) increases in P uptake and biomass were correlated with phytase activity but not with acid phosphatase activity; (3) lower phytate addition rate increased, but higher addition rate decreased hyphal length density. We conclude that P from phytate can be taken up by arbuscular mycorrhizal plants and that phytase plays a more important role in mineralizing phytate than acid phosphatase.

  14. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    Science.gov (United States)

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  16. Lead tolerance of Populus nigra in symbiosis with arbuscular mycorrhizal fungi in relation to physiological parameters

    International Nuclear Information System (INIS)

    Salehi, A.; Tabari, M.; Mohammadi Goltapeh, E.; Shirvani, A.

    2016-01-01

    With the aim to examine lead tolerance of Populus nigra (clone 62/154) in symbiosis witharbuscular mycorrhizal fungi, a greenhouse experiment was carried out in a factorial randomized complete scheme with two factors 1) fungal inoculation in 4 levels (control, inoculation with Glomus mosseae, inoculation with G. intraradices and inoculation with G. mosseae+G. intraradices) and 2) lead in 4 levels (0, 100, 500 and 1000 mg kg-1 soil). Mycorrhizal colonization and physiological parameters of plants were measured at the end of growth season. Results showed that at all Pb levels, the percentage of root mycorrhizal colonization in fungal treatments was significantly higher than that in control treatment (without fungal inoculation), however without significant differences between 3 fungal treatments. Pb treatments had no significant effect on root mycorrhizal colonization of P. nigra plants. Also, photosynthesis, stomatal conductance, transpiration, intercellular CO2 concentration and water use efficiency of P. nigra plants had no significant inhibitory effects versus the control found under Pb and fungal treatments or their interaction.The results of present study demonstrated that fungal treatments had no significant effects on physiological parameters and Pb tolerance of P. nigraplants. While, in relation to mycorrhizal colonization and physiological parameters, P. nigra clone 62/154 showeda good tolerance to Pb stress. So, in further investigations of phytoremediation of lead-contaminated soils, this clone can be considered as a proposed species.

  17. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  18. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  19. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene‐silencing approach

    DEFF Research Database (Denmark)

    Grønlund, Mette; Albrechtsen, Merete Tryde; Johansen, Ida Elisabeth

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) have a key role in plant phosphate (Pi) uptake by their efficient capture of soil phosphorus (P) that is transferred to the plant via Pi transporters in the root cortical cells. The activity of this mycorrhizal Pi uptake pathway is often associated with downregu......Arbuscular mycorrhizal fungi (AMF) have a key role in plant phosphate (Pi) uptake by their efficient capture of soil phosphorus (P) that is transferred to the plant via Pi transporters in the root cortical cells. The activity of this mycorrhizal Pi uptake pathway is often associated...... with downregulation of Pi transporter genes in the direct Pi uptake pathway. As the total Pi taken up by the plant is determined by the combined activity of mycorrhizal and direct pathways, it is important to understand the interplay between these, in particular the actual activity of the pathways. To study...

  20. ARBUSCULAR MYCORRHIZAL FUNGI IN SUCCESSIONAL STAGES OF CAATINGA IN THE SEMI-ARID REGION OF BRAZIL

    Directory of Open Access Journals (Sweden)

    Carla da Silva Sousa

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813331Caatinga is an exclusively Brazilian biome with areas in accentuated process of desertification. Arbuscularmycorrhizal fungi (AMF act in plant succession by favoring the establishment of plant species typical ofsuccessional stages and by accelerating recovery leading to a climax stage. The objective of the present workwas to evaluate the occurrence and diversity of AMF in successional stages of caatinga in the semi-aridregion of Paraíba State. Experimental plots (30 x 60 m were delimitated in 2007 in areas corresponding todifferent caatinga successional stages: early caatinga succession (natural revegetation during the previous15 years; intermediate (natural revegetation for about 35 years; late (mature caatinga with more than50 years without major disturbances; and also in pasture areas fenced and protected to represent the initialphase of succession. Plots of all four stages were implemented with three replicates. Soil and root sampleswere collected in the experimental plots, from the 0-15 cm soil layer in the dry and in the rainy seasons.All areas presented low infectivity potential suggesting that the introduction of mycorrhizal seedlings mayaccelerate the process of revegetation of degraded soils in this region. Except for the areas of late stage, theglomalin reservoirs increased along with the advancement of the succession process. Areas in the late stageof succession presented greater richness of AMF species, indicating that the establishment of the vegetationalso exerts a significant effect in the fungal community. Glomus and Acaulospora species were predominantin both seasons, possibly because they are well adapted to semi-arid conditions

  1. Interaction of arbuscular mycorrhizal symbionts with arsenic and other potentially toxic elements

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2000-01-01

    The response of arbuscular mycorrhizal (AM) symbionts to arsenic, and arsenic interactions with phosphorus and potentially toxic elements (PTEs) in soils from a former arsenic mine, the Devon Great Consols, were investigated. The objective was to determine whether AM associations ameliorate arsenic toxicity in Plantago lanceolata and Agrostis capillaris, plants commonly found at abandoned mines. An exploratory investigation indicated the richness in biodiversity of AMF that colonised plants growing at the site. Arsenic was found at high concentrations and was strongly associated with copper and iron. P. lanceolata was always colonised by AMF, while colonisation of A. capillaris was variable. There was no evidence in the field of soil pH or PTEs influencing AMF colonisation and spore density. There was no strong correlation between arsenic content in plant and available arsenic, obtained through various extraction methods. Spore germination and infectivity in the mine soils were strongly influenced by the AMF genotype and to a lesser extent by the soil environment. P. lanceolata and A. capillaris root growth was inhibited at arsenic concentrations of ≥50 μg g -1 in agar. Bioavailability experiments using mine soils and Terra-Green TM (calcined attapulgite) spiked with sodium arsenate gave no evidence that AMF-colonised plants translocated less arsenic to the shoots. Plants accumulated more arsenic in their roots than in their shoots, whether they were colonised by AMF or not. The A. capillaris genotype used in the present study translocated less of both arsenic and phosphorus to its shoots than P. lanceolata. High available phosphorus in Terra-Green TM protected plants against arsenic toxicity, at -1 As. There was evidence for inhibition by arsenic in AMF colonisation of roots. For quantifying AMF extra radical hyphae contribution to arsenic transportation from growth medium to plant using a compartmented pot system, the use of low phosphorus medium and a longer

  2. Improvement of Canola (Brassica napus L.) Inoculated with Rhizobium, Azospirillum and/or Mycorrhizal Fungi Under Salinity Stress

    International Nuclear Information System (INIS)

    El-Ghandour, I. A.; Galal, Y.G; Ebraheem, Rabab M.M.; Yousef, Khayria A.

    2004-01-01

    Bio fertilization technology was applied for improving canola plant growth and nutrient acquisition in sandy saline soil ,as a biological mean used to develop plant growth and nutrient uptake under salinity stress. Canola was cultivated in pots packed at rate of 7 kg saline sandy soil pot -1 , and inoculated with Rhizobium leguminosarum biovar viceae, Azospirillum brasilense strain no. 40 and arbuscular mycorrhizal fungi either solely or in combinations of them. Nitrogen fertilizer was added in form ( 15 NH 4 ) 2 SO 4 with 5% 15 N atom excess at rate of 0.99 g N pot -1 . Maximum dry matter accumulation induced by composite inoculation (Rh + Azo + AM). Na concentrations were frequently affected by Rhizobium and /or mycorrhizae while K was affected by Azospirillum and /or mycorrhizae. Azospirillum enhanced Ca uptake whereas Mg content was responded well to composite inoculants of Rh + Azo + AM. Dual inoculation with Rh + Azo resulted in the highest values of N uptake by plant. Similar effect was noticed with P uptake when dual inoculums of Azo + AM were applied. Data of 15 N isotope showed that the highest portion and value of N 2 -fixed was recorded with composite inoculums followed by dual inoculations. On the other hand, the infection with AM fungi gave the highest proportion of N derived from fertilizer as compared to other inoculants or uninoculated control. In the same trend, the fertilizer use efficiency (FUE%) was enhanced by AM infection. Dual inoculums of Rh + Azo induced highest content of proline in leaves. (Authors)

  3. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    Science.gov (United States)

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  4. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Renker, C.; Blanke, V.; Buscot, F.

    2005-01-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  5. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  6. Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth

    Directory of Open Access Journals (Sweden)

    M. MARIN

    2008-12-01

    Full Text Available Wild cardoon (Cynara cardunculus L. is a promising crop for biomass production. A nursery trial was conducted to investigate the effectiveness of mycorrhizal inoculation on the biomass yield of wild cardoon seedlings and the effect of the pesticides fosetyl-Al, folpet and propamocarb, as fungicides, and isofenphos, phoxim and oxamyl, as insecticides, on cardoon plant growth and the mycorrhization. The arbuscular mycorrhizal (AM fungi inocula were: commercial inoculum with Glomus mosseae spores, and an inoculum of a Glomus sp. strain (AMF-i isolated locally. Mycorrhizal inoculation with either inoculum increased cardoon shoot biomass compared to non-inoculated control plants. The pesticide applications had a neutral or positive effect on cardoon seedling growth. However, the AM fungi colonisation did not decrease except for plants colonised by G. mosseae and treated with the insecticides isofenphos and oxamyl. Thus, the mycorrhiza can survive to pesticide concentrations employed in commercial nursery, and enhance cardoon plant productivity.

  7. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses.

    Science.gov (United States)

    Mayer, Zoltán; Duc, Nguyen Hong; Sasvári, Zita; Posta, Katalin

    2017-12-01

    The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.

  8. Mycorrhizal colonisation of highbush blueberry and its native relatives in central Finland

    Directory of Open Access Journals (Sweden)

    A. KASURINEN

    2008-12-01

    Full Text Available Transmission electromicroscopy, trypan blue staining in combination with stereomicroscope analysis and biochemical ergosterol assay were used to study the mycorrhizal symbionts in wild bilberry (Vaccinium myrtillus, bog whortleberry (Vaccinium uliginosum and highbush blueberry (Vaccinium corymbosum roots. TEM-analysis showed that in all species ericoid mycorrhizas formed hyphae coil inside the epidermal root cells. In stereomicroscopic viewing the highest mycorrhizal colonisation was observed in the roots of wild bilberries (51%, whereas according to the ergosterol assay the highest total fungal biomass of roots was found in bog whortleberries (209 mg g-1 of root d. wt. Both ergosterol and microscopical method showed that the mycorrhizal associations in blueberry cultivars and their wild relatives growing on natural soil medium are frequent, although ericoid mycorrhiza formation of highbush blueberries was somewhat weaker than that of wild bilberries and bog whortleberries.

  9. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    International Nuclear Information System (INIS)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun

    2016-01-01

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  11. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Songlin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycká 129, Prague 6−Suchdol 165 21 (Czech Republic); Zhang, Xin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Sun, Yuqing; Wu, Zhaoxiang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Li, Tao [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu, Yajun [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 (China); Lv, Jitao; Li, Gang; Zhang, Zhensong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Jing; Zheng, Lirong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhen, Xiangjun [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); and others

    2016-10-05

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  12. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  13. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Science.gov (United States)

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  14. Conditions Promoting Mycorrhizal Parasitism are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Directory of Open Access Journals (Sweden)

    Martina Friede

    2016-09-01

    Full Text Available Interactions of plants with arbuscular mycorrhizal fungi (AMF may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD of a plant and in consequence may play an important role in plant-plant interactions.In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic.Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant

  15. Do genetically modified plants impact arbuscular mycorrhizal fungi?

    Science.gov (United States)

    Liu, Wenke

    2010-02-01

    The development and use of genetically modified plants (GMPs), as well as their ecological risks have been a topic of considerable public debate since they were first released in 1996. To date, no consistent conclusions have been drawn dealing with ecological risks on soil microorganisms of GMPs for the present incompatible empirical data. Arbuscular mycorrhizal fungi (AMF), important in regulating aboveground and underground processes in ecosystems, are the most crucial soil microbial community worthy of being monitored in ecological risks assessment of GMPs for their sensitivity to environmental alterations (plant, soil, climatic factor etc.). Based on current data, we suggest that there is a temporal-spatial relevance between expression and rhizosphere secretion of anti-disease and insecticidal proteins (e.g., Bt-Bacillus thuringiensis toxins) in and outer roots, and AMF intraradical and extraradical growth and development. Therefore, taking Bt transgenic plants (BTPs) for example, Bt insecticidal proteins constitutive expression and rhizosphere release during cultivation of BTPs may damage some critical steps of the AMF symbiotic development. More important, these processes of BTPs coincide with the entire life cycle of AMF annually, which may impact the diversity of AMF after long-term cultivation period. It is proposed that interactions between GMPs and AMF should be preferentially studied as an indicator for ecological impacts of GMPs on soil microbial communities. In this review, advances in impacts of GMPs on AMF and the effect mechanisms were summarized, highlighting the possible ecological implications of interactions between GMPs and AMF in soil ecosystems.

  16. The effect of mercury on trees and their mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe, Sharon R., E-mail: jeanphil@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Franklin, Jennifer A., E-mail: jafranklin@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Buckley, David S., E-mail: dbuckley@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Hughes, Karen, E-mail: khughes@utk.edu [University of Tennessee, Ecology and Evolutionary Biology, 350 Hesler Biology Building and Greenhouse, 1406 Circle Drive, Knoxville, TN 37996-1610 (United States)

    2011-10-15

    The Oak Ridge Reservation, established in 1942, was the designated site for the construction of the atomic bomb. During a 20-year period from 1944 to 1963 radioactive and toxic chemical pollutants, especially mercury compounds were released into the surrounding waterways. Tree diversity and mycorrhizal presence and abundance were analyzed in the mercury-contaminated floodplains of East Fork Poplar Creek Oak Ridge (EFPC) (Tennessee). A subsequent greenhouse study was conducted to assess the phytotoxic effects of different mercuric solutions on Platanus occidentalis (American Sycamore), inoculated with soils from EFPC. Total soil mercury in the field had no effect on tree diversity. Organic species of mercury proved to be more toxic than inorganic species of mercury and soil inoculants from EFPC had no protective effects against Hg toxicity in our greenhouse study. Comparison of the effects of mercury contamination in our field and greenhouse studies was difficult due to uncontrolled factors. - Highlights: > Heavy metals effects on ecosystems may be difficult to pinpoint in the field. > Toxic effects of mercury depend on its chemical form and concentration. > Mycorrhizae have been shown to be increase heavy metal tolerance in host plant. - Though evidence suggests that mercury-contaminated soils may reduce tree and fungal populations, there are tolerant species that may remain and survive following contamination.

  17. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    De Jaeger, Nathalie; de la Providencia, Ivan E; de Boulois, Hervé Dupré; Declerck, Stéphane

    2011-09-01

    Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Dispersal of arbuscular mycorrhizal fungi and plants during succession

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Jairus, Teele; Neuenkamp, Lena; Vasar, Martti; Bueno, C. Guillermo; Gerz, Maret; Davison, John; Zobel, Martin

    2016-11-01

    Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.

  19. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Science.gov (United States)

    Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume

    2006-01-01

    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 −13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107

  20. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  1. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil.

    Science.gov (United States)

    Schneider, Jerusa; Stürmer, Sidney Luiz; Guilherme, Luiz Roberto Guimarães; de Souza Moreira, Fatima Maria; Soares, Claudio Roberto Fonsêca de Sousa

    2013-11-15

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Compatibility and incompatibility in hyphal anastomosis of arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Candido Barreto de Novais

    Full Text Available ABSTRACT: Arbuscular mycorrhizal fungi (AMF, which live in symbiosis with 80 % of plants, are not able to grow when separated from their hosts. Spore germination is not host-regulated and germling growth is shortly arrested in the absence of host roots. Germling survival chances may be increased by hyphal fusions (anastomoses, which allow access to nutrients flowing in the extraradical mycelium (ERM. Perfect anastomoses, occurring with high frequency among germlings and the ERM of the same isolate, show protoplasm continuity and disappearance of hyphal walls. A low frequency of perfect fusions has been detected among co-specific genetically different isolates, although fungal nuclei have been consistently detected in all perfect fusions, suggesting active nuclear migration. When plants of different taxa establish symbioses with the same AMF species, anastomoses between ERM spreading from single root systems establish a common mycelium, which is an essential element to plant nutrition and communication. The interaction among mycelia produced by different isolates may also lead to pre-fusion incompatibility which hinders anastomosis formation, or to incompatibility after fusion, which separates the hyphal compartments. Results reported here, obtained by analyses of hyphal compatibility/incompatibility in AMF, suggest that anastomosis formation and establishment of protoplasm flow, fundamental to the maintenance of mycelial physiological and genetic continuity, may affect the fitness of these ecologically important biotrophic fungi.

  3. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  4. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may...

  5. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  6. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  7. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    Science.gov (United States)

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem.

    Science.gov (United States)

    Jiang, Shengjing; Liu, Yongjun; Luo, Jiajia; Qin, Mingsen; Johnson, Nancy Collins; Öpik, Maarja; Vasar, Martti; Chai, Yuxing; Zhou, Xiaolong; Mao, Lin; Du, Guozhen; An, Lizhe; Feng, Huyuan

    2018-03-30

    Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  10. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  11. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange.

    Science.gov (United States)

    Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina

    2017-01-01

    Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Development of soil quality metrics using mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.

    2010-07-01

    Based on the Treaty on Biological Diversity of Rio de Janeiro in 1992 for maintaining and increasing biodiversity, several countries have started programmes monitoring soil quality and the above- and below ground biodiversity. Within the European Union, policy makers are working on legislation for soil protection and management. Therefore, indicators are needed to monitor the status of the soils and these indicators reflecting the soil quality, can be integrated in working standards or soil quality metrics. Soil micro-organisms, particularly arbuscular mycorrhizal fungi (AMF), are indicative of soil changes. These soil fungi live in symbiosis with the great majority of plants and are sensitive to changes in the physico-chemical conditions of the soil. The aim of this study was to investigate whether AMF are reliable and sensitive indicators for disturbances in the soils and can be used for the development of soil quality metrics. Also, it was studied whether soil quality metrics based on AMF meet requirements to applicability by users and policy makers. Ecological criterions were set for the development of soil quality metrics for different soils. Multiple root samples containing AMF from various locations in The Netherlands were analyzed. The results of the analyses were related to the defined criterions. This resulted in two soil quality metrics, one for sandy soils and a second one for clay soils, with six different categories ranging from very bad to very good. These soil quality metrics meet the majority of requirements for applicability and are potentially useful for the development of legislations for the protection of soil quality. (Author) 23 refs.

  16. Pre-inoculation by an arbuscular mycorrhizal fungus enhances male reproductive output of Cucurbita foetidissima

    Science.gov (United States)

    Rosemary L. Pendleton

    2000-01-01

    Male and female reproductive output of Cucurbita foetidissima, a gynodioecious native perennial, was examined in a 2-yr greenhouse/outplanting study. Plants were divided into three treatment groups: (1) a lowphosphorus (P) soil mix control; (2) a low-P soil mix with the addition of mycorrhizal inoculum (Glomus intraradices); and (3) a high-P soil mix. Plants were...

  17. Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks

    Czech Academy of Sciences Publication Activity Database

    Rydlová, Jana; Püschel, David; Vosátka, Miroslav; Charvátová, K.

    2008-01-01

    Roč. 82, č. 1 (2008), s. 15-20 ISSN 1613-9216 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : arbuscular mycorrhizal fungi * inoculum * reclamation Subject RIV: EF - Botanics Impact factor: 0.482, year: 2008

  18. BIOMETRIC PARAMETERS OF FIELD GROWN SESAME INFLUENCED BY ARBUSCULAR MYCORRHIZAL INOCULATION, ROCK PHOSPHATE FERTILIZATION AND IRRIGATION

    Directory of Open Access Journals (Sweden)

    V.S. Harikumar

    2017-08-01

    Full Text Available The aim of the study was to assess the effect of inoculation with arbuscular mycorrhizal fungi (AMF and rock phosphate (RP fertilization on biometric parameters and mycorrhizal colonization of field grown sesame under rainfed and irrigated conditions. Inoculation of AMF Funneliformis dimorphicus improved the biometric parameters of the crop such as leaf area (LA, leaf area index (LAI, specific leaf weight (SLW, net assimilation rate (NAR, oil index (OI as well as mycorrhizal colonization (%F in roots. Mycorrhizal inoculation however, did not give any positive response on harvest index (HI. LA, LAI and OI and %F showed a general increment in treatments of no added P (P0, while the other parameters such as SLW and NAR were improved by the application of RP at half the recommended dose (P50. HI did not respond to RP fertilization. Most of the parameters (LA, LAI, NAR, %F showed higher values under rainfed condition than irrigated condition whereas, SLW, HI and OI improved significantly under irrigated condition. Results indicated that the inoculation of AMF to field grown sesame can compensate for 50% of the recommended P fertilizer under a need based irrigation schedule, without affecting the biometric parameters.

  19. Predicting community and ecosystem outcomes of mycorrhizal responses to global change.

    NARCIS (Netherlands)

    Johnson, N.C.; Angelard, C.; Sanders, I.R.; Kiers, E.T.

    2013-01-01

    Mycorrhizal symbioses link the biosphere with the lithosphere by mediating nutrient cycles and energy flow though terrestrial ecosystems. A more mechanistic understanding of these plant-fungal associations may help ameliorate anthropogenic changes to C and N cycles and biotic communities. We explore

  20. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2

    NARCIS (Netherlands)

    Alberton, O.; Kuyper, T.W.; Gorissen, A.

    2005-01-01

    The aim here was to separately assess mycorrhizal fungal and plant responses under elevated atmospheric CO2, and to test a mycocentric model that assumes that increased carbon availability to the fungus will not automatically feed back to enhanced plant growth performance. Meta-analyses were applied

  1. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  2. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching

    NARCIS (Netherlands)

    Köhl, Luise; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi have been shown to play a crucial role in nutrient cycling and can reduce nutrient losses after rain induced leaching events. It is still unclear whether nutrient leaching losses vary depending on the AM fungal taxa that are present in soil. Using experimental

  3. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula

    Czech Academy of Sciences Publication Activity Database

    Konvalinková, Tereza; Püschel, David; Janoušková, Martina; Gryndler, Milan; Jansa, Jan

    2015-01-01

    Roč. 6, FEB 13 (2015), s. 1-11 ISSN 1664-462X R&D Projects: GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : arbuscular mycorrhizal symbiosis * light intensity * shading duration Subject RIV: EE - Microbiology, Virology Impact factor: 4.495, year: 2015

  4. Influence of cadmium and mycorrhizal fungi on the fatty acid profile of flax (Linum usitatissimum) seeds.

    Science.gov (United States)

    Kaplan, Matthew E; Simmons, Ellen R; Hawkins, Jack C; Ruane, Lauren G; Carney, Jeffrey M

    2015-09-01

    The soil environment can affect not only the quantity of crops produced but also their nutritional quality. We examined the combined effects of below-ground cadmium (0, 5, and 15 ppm) and mycorrhizal fungi (presence and absence) on the concentration of five major fatty acids within flax seeds (Linum usitatissimum). Plants grown with mycorrhizal fungi produced seeds that contained higher concentrations of unsaturated (18:1, 18:2 and 18:3), but not saturated (16:0 and 18:0) fatty acids. The effects of mycorrhizal fungi on the concentration of unsaturated fatty acids in seeds were most pronounced when plant roots were exposed to 15 ppm Cd (i.e. the concentrations of 18:1, 18:2 and 18:3 increased by 169%, 370% and 150%, respectively). The pronounced effects of mycorrhizal fungi on the concentration of unsaturated fatty acids at 15 ppm Cd may have been due to the presence of elevated levels of Cd within seeds. Our results suggest that, once the concentration of cadmium within seeds reaches a certain threshold, this heavy metal may improve the efficiency of enzymes that convert saturated fatty acids to unsaturated fatty acids. © 2014 Society of Chemical Industry.

  5. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    International Nuclear Information System (INIS)

    Lingua, Guido; Franchin, Cinzia; Todeschini, Valeria; Castiglione, Stefano; Biondi, Stefania; Burlando, Bruno; Parravicini, Valerio; Torrigiani, Patrizia; Berta, Graziella

    2008-01-01

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes

  6. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rasmussen, N.; Lloyd, D.C.; Ratcliffe, R.G.

    2000-01-01

    spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the P-i taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed...

  7. Impacts of farm management upon arbuscular mycorrhizal fungi and production and utilization of inoculum

    Science.gov (United States)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a mutualistic symbiosis with the roots of most crop plants. The plant benefits through increased: nutrient uptake from the soil, disease resistance, and water stress resistance. Optimal utilization of AM fungi is essen...

  8. Take advantage of mycorrhizal fungi for improved soil fertility and plant health

    Science.gov (United States)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a beneficial symbiosis with the roots of most crops. The plants benefit because the symbiosis increases mineral nutrient uptake, drought resistance, and disease resistance. These characteristics make utilization of AM f...

  9. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil.

    Science.gov (United States)

    Mickan, Bede S; Abbott, Lynette K; Stefanova, Katia; Solaiman, Zakaria M

    2016-08-01

    Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil ('field' chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent ('bait') chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions.

  10. ARBUSCULAR MYCORRHIZAL IN THE GROWTH OF LEGUMINOUS TREES ON COALMINE WASTE ENRICHED SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Shantau Camargo Gomes Stoffel

    2016-06-01

    Full Text Available The objective of this work was to evaluate the effects of arbuscular mycorrhizal inoculation in the growth, colonization and absorption of P and trace elements of leguminous trees on coal mine wastes. Independent assays for Mimosa scabrella Benth. (common name bracatinga, Mimosa bimucronata (DC. Kuntze (maricá and Parapiptadenia rigida (Benth. Brenan (angico-vermelho were carried out in a greenhouse on an entirely casualized experimental delineation composed of six treatments. Five coal mine autochthonous arbuscular mycorrhizal fungal isolates were tested, including Acaulospora colombiana, Acaulospora morrowiae, Dentiscutata heterogama, Rhizophagus clarus and Rhizophagus irregulars, aside from a control treatment, with four replications each. Results show that arbuscular mycorrhizal colonization was greater than 60% for Mimosa species, and up to 26% for Parapiptadenia. Overall, the fungal inoculation promoted better plant growth, with increments of up to 1430%. Phosphorous absorption was favored, especially when inoculation was done with A. colombiana, R. irregularis and A. morrowiae. Even though there was a conclusive reduction in the levels of trace elements in the plant´s shoots, the inoculation with those species of fungi promoted significant increments in the accumulated levels of As, Cu, Zn and Cr for all plant species tested. Therefore, arbuscular mycorrhizal fungi play important roles in these poor, degraded and often contaminated environments.

  11. Cultivation of flax in spoil-bank clay: Mycorrhizal inoculation vs. high organic amendments

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Rydlová, Jana; Sudová, Radka; Gryndler, Milan

    2008-01-01

    Roč. 171, č. 6 (2008), s. 872-877 ISSN 1436-8730 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50200510 Keywords : arbuscular mycorrhizal fungi * compost * flax Subject RIV: EF - Botanics Impact factor: 1.284, year: 2008

  12. Native grass facilitates mycorrhizal colonisation and P uptake of tree seedlings in two anthropogenic substrates

    Czech Academy of Sciences Publication Activity Database

    Batkhuugyin, Enkhtuya; Pöschl, M.; Vosátka, Miroslav

    2005-01-01

    Roč. 166, 1-4 (2005), s. 217-236 ISSN 0049-6979 R&D Projects: GA ČR(CZ) GA526/99/0895 Institutional research plan: CEZ:AV0Z60050516 Keywords : degraded ecosystems * arbuscular mycorrhizal fungi * phosphorus transfer Subject RIV: EF - Botanics Impact factor: 1.258, year: 2005

  13. Biology, ecology and evolution of the family Gigasporaceae, arbuscular mycorrhizal fungi (Glomeromycota)

    NARCIS (Netherlands)

    Souza, Francisco Adriano de

    2005-01-01

    Research described in this thesis focused on biological, ecological and evolutionary aspects of Arbuscular Mycorrhizal Fungi (AMF), and in particular of the family Gigasporaceae (Gigaspora and Scutellospora, genera). This study had two major objectives. The first objective was to obtain better

  14. Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland

    NARCIS (Netherlands)

    Gamper, H.A.; Leuchtmann, A.

    2007-01-01

    Taxon-specific polymerase chain reaction (PCR) primers enable detection of arbuscular mycorrhizal fungi (AMF, Glomeromycota) in plant roots where the fungi lack discriminative morphological and biochemical characters. We designed and validated pairs of new PCR primers targeted to the flanking

  15. Comparison of communities of arbuscular mycorrhizal fungi in roots of two Viola species

    DEFF Research Database (Denmark)

    Opik, M; Moora, Mari; Liira, Jaan

    2006-01-01

    The composition of arbuscular mycorrhizal (AM) fungal communities in roots of rare Viola elatior and common V. mirabilis was investigated using PCR with primers specific for Glomus and common was investigated using PCR with primers specific for group A, followed by single-stranded conformation...

  16. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    Science.gov (United States)

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  17. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species

    Science.gov (United States)

    Benedicte Bachelot; María Uriarte; Krista L. McGuire; Jill Thompson; Jess Zimmerman

    2017-01-01

    Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores...

  18. Effect of biochar soil-amendments on Allium porrum growth, arbuscular mycorrhizal fungus colonization

    Science.gov (United States)

    Aims: Examine the interaction of biochar addition and arbuscular mycorrhizal [AM] fungus inoculation upon growth and Zn and Cu uptake by Allium porrum L. in heavy metal amended soil mix, and relate these responses to physicochemical properties of the biochars. Methods: The experiment was a complete ...

  19. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    Science.gov (United States)

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  20. Interaction between root growth allocation and mycorrhizal fungi in soil with patchy P distribution

    Czech Academy of Sciences Publication Activity Database

    Felderer, B.; Jansa, Jan; Schulin, R.

    2013-01-01

    Roč. 373, 1-2 (2013), s. 569-582 ISSN 0032-079X Institutional support: RVO:61388971 Keywords : Preferential root growth * Arbuscular mycorrhizal fungi * Lotus japonicus Subject RIV: EE - Microbiology, Virology Impact factor: 3.235, year: 2013

  1. Inoculation of fumigated nursery beds and containers with arbuscular mycorrhizal products for eastern redcedar production

    Science.gov (United States)

    Michelle M. Cram; Stephen W. Fraedrich

    2015-01-01

    Commercially available arbuscular mycorrhizal (AM) products were applied at an operational rate to eastern redcedar (Juniperus virginiana L.) nursery beds and containers to evaluate seedling growth and colonization responses. A field study at the Augusta Forestry Center in Crimora, VA, and a companion container study were initiated in the fall of 2012. MycoApply® Endo...

  2. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment

    NARCIS (Netherlands)

    Van de Voorde, T.F.J.; Van der Putten, W.H.; Gamper, H.A.; Hol, W.H.G.; Bezemer, T.M.

    2010-01-01

    Plants differ greatly in the soil organisms colonizing their roots. However, how soil organism assemblages of individual plant roots can be influenced by plant community properties remains poorly understood. We determined the composition of arbuscular mycorrhizal fungi (AMF) in Jacobaea vulgaris

  3. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  4. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Doddema, H; Kuiper, PJC; Stulen, I.

    2005-01-01

    The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars-a traditional, low-yielding Mozambican landrace (Local) and a

  5. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  6. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  7. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2007-01-01

    Arbuscular mycorrhizal (AM) fungi are important below-ground carbon (C) sinks that can be sensitive to increased nitrogen (N) availability. The abundance of AM fungi (AMF) was estimated in maple (Acer spp.) fine roots following more than a decade of experimental additions of N designed to simulate chronic atmospheric N deposition.

  8. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  9. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots.

    Science.gov (United States)

    Vangelisti, Alberto; Natali, Lucia; Bernardi, Rodolfo; Sbrana, Cristiana; Turrini, Alessandra; Hassani-Pak, Keywan; Hughes, David; Cavallini, Andrea; Giovannetti, Manuela; Giordani, Tommaso

    2018-01-08

    Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.

  10. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil : I. Host-fungus compatibility

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Kuiper, P.J C; Stulen, I.

    2005-01-01

    The effects of inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on two peanut (Arachis hypogaea L.) cultivars, a traditional, low-yielding Mozambican landrace (Local) and a modern, high-yielding cultivar (Falcon), were tested in a non-sterile and

  11. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  12. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization

    Czech Academy of Sciences Publication Activity Database

    Konvalinková, Tereza; Püschel, David; Řezáčová, Veronika; Gryndlerová, Hana; Jansa, Jan

    2017-01-01

    Roč. 419, 1-2 (2017), s. 319-333 ISSN 0032-079X R&D Projects: GA MŠk(CZ) LK11224; GA ČR(CZ) GA14-19191S Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Carbon allocation * Mycorrhizal cost Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.052, year: 2016

  13. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    Science.gov (United States)

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  15. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  16. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Czech Academy of Sciences Publication Activity Database

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Roč. 4, MAY 12 (2016), s. 711 ISSN 1664-302X R&D Projects: GA ČR GAP504/12/1665; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : soil heterogeneity * organic amendments * arbuscular mycorrhizal (AM) fungi Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  17. Mycorrhizal symbiosis and seedling performance of the frankincense tree (Boswellia papyrifera)

    NARCIS (Netherlands)

    Hizikias, E.B.

    2011-01-01

    Arid areas are characterized by a seasonal climate with a long dry period. In such stressful

    environment, resource availability is driven by longterm and shorterm rainfall pulses.

    Arbuscular Mycorrhizal (AM) fungi enhance access to moisture and nutrients and thereby

  18. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorhizal

    NARCIS (Netherlands)

    Gao, X.; Kuyper, T.W.; Zou, C.; Zhang, F.; Hoffland, E.

    2007-01-01

    Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake

  19. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Janoušková, Martina; Li, Y.; Yu, X.; Yan, Y.; Zou, Z.; He, C.

    2015-01-01

    Roč. 42, č. 12 (2015), s. 1158-1167 ISSN 1445-4408 R&D Projects: GA MŠk LH12178 Institutional support: RVO:67985939 Keywords : mycorrhizal growth response * phosphate transporter * Rhizophagus irregularis Subject RIV: ED - Physiology Impact factor: 2.491, year: 2015

  20. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities.

    NARCIS (Netherlands)

    Scheublin, T.R.; Ridgway, K.P.; Young, J.P.W.; van der Heijden, M.G.A.

    2004-01-01

    Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study,

  1. Large-scale diversity patterns in spore communities of Arbuscular mycorrhizal fungi [Chapter 2

    Science.gov (United States)

    Javier Alvarez-Sanchez; Nancy C. Johnson; Anita Antoninka; V. Bala Chaudhary; Matthew K. Lau; Suzanne M. Owen; Patricia Gauadarrama; Silvia. Castillo

    2010-01-01

    Surprising little is known about the factors controlling Arbuscular Mycorrhizal (AM) fungal diversity and distribution patterns. A better understanding of these factors is necessary before mycorrhizas can be effectively managed for their benefits in ecosystem restoration and agriculture. The goal of this chapter is to examine the relationships between AM fungal...

  2. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant

    Science.gov (United States)

    Lauren P. Waller; Ragan M. Callaway; John N. Klironomos; Yvette K. Ortega; John L. Maron

    2016-01-01

    1. Arbuscular mycorrhizal (AM) fungi can exert a powerful influence on the outcome of plant–plant competition. Since some exotic plants interact differently with soil biota such as AM fungi in their new range, range-based shifts in AM responsiveness could shift competitive interactions between exotic and resident plants, although this remains poorly studied. 2. We...

  3. Arbuscular mycorrhizal impacts on competitive interactions between Acacia etbaica and Boswellia papyrifera seedlings under drought stress

    NARCIS (Netherlands)

    Birhane, E.; Sterck, F.J.; Bongers, F.; Kuyper, T.W.

    2014-01-01

    Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses. In this study we focus on interspecific competition between Acaia etbaica and Boswellia

  4. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato

    NARCIS (Netherlands)

    Ruiz-Lozano, J.M.; Aroca, R.; Zamarreno, A.M.; Molina, S.; Andreo Jimenez, B.; Porcel, R.; Garcia-Mina, J.M.; Ruyter-Spira, C.P.; Lopez-Raez, J.A.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of

  5. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    Czech Academy of Sciences Publication Activity Database

    Drumonde Melo, C.; Luna, S.; Krüger, Claudia; Walker, C.; Mendonça, D.; Fonseca, H. M. A. C.; Jaizme-Vega, M.; da Camara Machado, A.

    2017-01-01

    Roč. 79, FEB 2017 (2017), s. 48-61 ISSN 1146-609X Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * Juniperus bravifolia * native forests Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.652, year: 2016

  6. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2016-01-01

    Roč. 99, MAR 2016 (2016), s. 78-88 ISSN 0929-1393 R&D Projects: GA AV ČR(CZ) KJB600050636 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * heavy metal contamination * lead, zinc, copper and cadmium Subject RIV: EH - Ecology, Behaviour Impact factor: 2.786, year: 2016

  7. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Science.gov (United States)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  8. Mycorrhizal Symbiosis and Local Adaptation in Aster amellus: A Field Transplant Experiment

    Czech Academy of Sciences Publication Activity Database

    Pánková, Hana; Raabová, J.; Münzbergová, Zuzana

    2014-01-01

    Roč. 9, č. 4 (2014), s. 1-7, e93967 E-ISSN 1932-6203 R&D Projects: GA ČR GAP504/10/1486 Institutional support: RVO:67985939 Keywords : mycorrhizal symbiosis * local adaptation * Aster amellus Subject RIV: EF - Botanics Impact factor: 3.234, year: 2014

  9. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Suda, Jan; Sudová, Radka

    2012-01-01

    Roč. 4, č. 1 (2012), s. 56-64 ISSN 0038-0717 R&D Projects: GA AV ČR KJB600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : serpentine syndrome * arbuscular mycorrhizal fungi * reciprocal transplant experiment Subject RIV: EF - Botanics Impact factor: 3.654, year: 2012

  10. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Püschel, David; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2015-01-01

    Roč. 25, č. 3 (2015), s. 205-214 ISSN 0940-6360 R&D Projects: GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal fungi * Intraradical colonization * PCR inhibition Subject RIV: EE - Microbiology, Virology Impact factor: 3.252, year: 2015

  11. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  12. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Vlasáková, E.; Sudová, Radka

    2013-01-01

    Roč. 370, 1-2 (2013), s. 149-161 ISSN 0032-079X R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * drought * serpentine soil Subject RIV: EF - Botanics Impact factor: 3.235, year: 2013

  13. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis.

    Science.gov (United States)

    Maherali, Hafiz; Oberle, Brad; Stevens, Peter F; Cornwell, William K; McGlinn, Daniel J

    2016-11-01

    Mutualistic symbioses with mycorrhizal fungi are widespread in plants. The majority of plant species associate with arbuscular mycorrhizal (AM) fungi. By contrast, the minority associate with ectomycorrhizal (EM) fungi, have abandoned the symbiosis and are nonmycorrhizal (NM), or engage in an intermediate, weakly AM symbiosis (AMNM). To understand the processes that maintain the mycorrhizal symbiosis or cause its loss, we reconstructed its evolution using a ∼3,000-species seed plant phylogeny integrated with mycorrhizal state information. Reconstruction indicated that the common ancestor of seed plants most likely associated with AM fungi and that the EM, NM, and AMNM states descended from the AM state. Direct transitions from the AM state to the EM and NM states were infrequent and generally irreversible, implying that natural selection or genetic constraint could promote stasis once a particular state evolved. However, the evolution of the NM state was more frequent via an indirect pathway through the AMNM state, suggesting that weakening of the AM symbiosis is a necessary precursor to mutualism abandonment. Nevertheless, reversions from the AMNM state back to the AM state were an order of magnitude more likely than transitions to the NM state, suggesting that natural selection favors the AM symbiosis over mutualism abandonment.

  14. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks

    Czech Academy of Sciences Publication Activity Database

    Vosátka, Miroslav; Látr, A.; Gianinazzi, S.; Albrechtová, Jana

    2013-01-01

    Roč. 58, 1-3 (2013), s. 29-37 ISSN 0334-5114 R&D Projects: GA MPO FR-TI1/299 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * sustainable agriculture * inoculum quality Subject RIV: EF - Botanics Impact factor: 0.941, year: 2013

  15. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Science.gov (United States)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  16. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition

    Science.gov (United States)

    Melanie K. Taylor; Richard A. Lankau; Nina Wurzburger; Franciska de Vries

    2016-01-01

    1. Organic matter decomposition is the main process by which carbon (C) is lost from terrestrialecosystems, and mycorrhizal associations of plants (i.e. arbuscular mycorrhizas (AM) and ectomycorrhizas(ECM)) may have different indirect effects on this loss pathway. AM and ECM plants differin the soil...

  17. Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought

    Science.gov (United States)

    Querejeta, José Ignacio; Allen, Michael F

    2008-01-01

    Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar 15N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought. PMID:19704776

  18. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.

    NARCIS (Netherlands)

    Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H.

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against

  19. Misconceptions on the application of biological market theory to the mycorrhizal symbiosis

    NARCIS (Netherlands)

    Kiers, E.T.; West, S.A.; Wyatt, G.A.K.; Garner, A.; Bücking, H.; Werner, G.D.A.

    2016-01-01

    Letter to the Editor — The symbiosis between plants and arbuscular mycorrhizal fungi has been described as a biological market based on evidence that plants supply more carbohydrates to fungal partners that provide more soil nutrients, and vice versa 1–4 . A recent paper by Walder and van der

  20. Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders?

    Directory of Open Access Journals (Sweden)

    Jan eJansa

    2013-05-01

    Full Text Available Mycorrhizal fungi interconnect two different kinds of environments, namely the plant roots with the surrounding soil. This widespread coexistence of plants and fungi has important consequences for plant mineral nutrition, water acquisition, carbon allocation, tolerance to abiotic and biotic stresses and interplant competition. Yet some current research indicates a number of important roles to be played by hyphae-associated microbes, in addition to the hyphae themselves, in foraging for and acquisition of soil resources and in transformation of organic carbon in the soil-plant systems. We critically review the available scientific evidence for the theory that the surface of mycorrhizal hyphae in soil is colonized by highly specialized microbial communities, and that these fulfill important functions in the ecology of mycorrhizal fungal hyphae such as accessing recalcitrant forms of mineral nutrients, and production of signaling and other compounds in the vicinity of the hyphae. The validity of another hypothesis will then be addressed, namely that the specific associative microbes are rewarded with exclusive access to fungal carbon, which would qualify them as hypersymbionts (i.e. symbionts of symbiotic mycorrhizal fungi. Thereafter, we ask whether recruitment of functionally different microbial assemblages by the hyphae is required under different soil conditions (questioning what evidence is available for such an effect, and we identify knowledge gaps requiring further attention.

  1. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rdna sequences

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Holtgrewe-Stukenbrock, Eva

    2004-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium...

  2. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    , the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...... involved in the early and late stages of AMF symbiosis....

  3. Mycorrhizal responses under elevated CO2 : combining fungal and plant perspectives

    NARCIS (Netherlands)

    Alberton, O.

    2008-01-01

    The rising level of atmospheric carbon dioxide (CO2) combined with increased nutrient (especially nitrogen) availability are predicted to have substantial impacts on plant growth and the functioning of ecosystems. Soil micro-organisms, especially mycorrhizal fungi that form mutualistic associations

  4. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Yamir Torres-Arias

    Full Text Available Abstract In order to obtain an arbuscular mycorrhizal fungi (AMF native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum. Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  5. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    Science.gov (United States)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  6. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Nele eSchouteden

    2015-11-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are obligate root symbionts that can protect their host plant against biotic stress factors such as plant parasitic nematode (PPN infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead towards future field applications of AMF against PPN. The scientific community has entered an exciting era that provide the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  7. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved.

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  8. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M.

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead. PMID:26635750

  9. Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by AM fungi and rhizobia

    NARCIS (Netherlands)

    Huisman, Rik; Bouwmeester, Klaas; Brattinga, Marijke; Govers, Francine; Bisseling, Ton; Limpens, Erik

    2015-01-01

    In biotrophic plant-microbe interactions, microbes infect living plant cells where they are hosted in a novel membrane compartment; the host-microbe interface. To create a host-microbe interface, arbuscular mycorrhizal (AM) fungi and rhizobia make use of the same endosymbiotic program. It is a

  10. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Science.gov (United States)

    Vannette, Rachel L.; Hunter, Mark D.; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense. PMID:24065971

  11. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter.

    Science.gov (United States)

    Aucina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepsas, Edvardas; Iwanski, Michal

    2007-08-01

    We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.

  12. Growth and Mycorrhizal Community Structure of Pinus sylvestris Seedlings following the Addition of Forest Litter▿

    Science.gov (United States)

    Aučina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepšas, Edvardas; Iwanski, Michal

    2007-01-01

    We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities. PMID:17575001

  13. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    Science.gov (United States)

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  14. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  15. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  16. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Oliviera, R. S.; Rocha, I.; Ma, Y.; Vosátka, Miroslav; Freitas, H.

    2016-01-01

    Roč. 79, č. 7 (2016), s. 329-337 ISSN 1528-7394 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * phosphorus uptake * soil Subject RIV: GC - Agronomy Impact factor: 2.731, year: 2016

  17. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora.

    Science.gov (United States)

    Balestrini, Raffaella; Nerva, Luca; Sillo, Fabiano; Girlanda, Mariangela; Perotto, Silvia

    2014-01-01

    Little is known on the molecular bases of plant-fungal interactions in orchid mycorrhiza. We developed a model system to investigate gene expression in mycorrhizal protocorms of Serapias vomeracea colonised by Tulasnella calospora. Our recent results with a small panel of genes as indicators of plant response to mycorrhizal colonization indicate that genes related with plant defense were not significantly up-regulated in mycorrhizal tissues. Here, we used laser microdissection to investigate whether expression of some orchid genes was restricted to specific cell types. Results showed that SvNod1, a S. vomeracea nodulin-like protein containing a plastocyanin-like domain, is expressed only in protocorm cells containing intracellular fungal hyphae. In addition, we investigated a family of fungal zinc metallopeptidases (M36). This gene family has expanded in the T. calospora genome and RNA-Seq experiments indicate that some members of the M36 metallopeptidases family are differentially regulated in orchid mycorrhizal protocorms.

  18. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups

    NARCIS (Netherlands)

    De Souza, F.A.; Fernández, F.; Delmas, N.S.; Declerck, S.

    2005-01-01

    The significance of anastomosis formation and the hyphal healing mechanism (HHM) for functionality and integrity of the arbuscular mycorrhizal (AM) fungal mycelial network remains poorly documented. Four Glomeraceae and three Gigasporaceae were cultured monoxenically. Anastomosis formation was

  19. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?

    Czech Academy of Sciences Publication Activity Database

    Kohout, P.; Sudová, R.; Janoušková, M.; Čtvrtlíková, Martina; Hejda, M.; Pánková, H.; Slavíková, R.; Štajerová, K.; Vosátka, M.; Sýkorová, Z.

    2014-01-01

    Roč. 68, January (2014), s. 482-493 ISSN 0038-0717 Institutional support: RVO:60077344 Keywords : arbuscular mycorrhizal fungi * primers * diversity Subject RIV: EF - Botanics Impact factor: 3.932, year: 2014

  20. Transfer of 65Zn in maize -mycorrhizal systems: a potential mechanism to alleviate Zn deficiency in maize

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Tenshia, Virgin

    2017-01-01

    Mycorrhizas are root associated fungi and obligate symbionts known to improve the nutritional status of the host plant as a direct consequence of transfer of slowly diffusing nutrients such as zinc. The Zn use efficiency by crops hardly exceeds 2-5 per cent and major portion of the Zn gets accumulated in soil in various pools which are not available to plants. Further, mycorrhizal symbiosis alters the chemical and biochemical properties of rhizosphere that affect the isotopic parameters such as A value, E value and L value. These parameters were measured for both mycorrhizal and non-mycorrhizal maize plants. A pot culture experiment was conducted to determine the availability of Zn using isotopic dilution techniques. Maize plants were grown in pots inoculated with (M+) or without (M-) mycorrhizal fungus Glomus intraradices. Tagged 65 ZnSO 4 was applied to soil at the time of sowing