WorldWideScience

Sample records for vesicular-arbuscular mycorrhizal colonization

  1. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    The symbiotic association between certain plants and microorganisms plays an important role in soil fertilization, and improves their growth and mineral nutrition. The symbiotic association between vesicular arbuscular mycorrhizal (VAM) fungi and roots provides a significant contribution to plant nutrition and growth.

  2. The vesicular-arbuscular mycorrhizal symbiosis | Quilambo | African ...

    African Journals Online (AJOL)

    Vesicular-arbuscular mycorrhiza fungi are associated with the majority ot the terrestrial plants. Their function ranges from stress alleviation to bioremediation in soils polluted with heavy metals. However, our knowledge about this symbiosis is still limited. For the semi-arid tropics, where some african countries are located, ...

  3. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...

  4. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots.

    Science.gov (United States)

    Guttenberger, M

    2000-08-01

    The most widespread type of mycorrhiza is the so-called vesicular-arbuscular mycorrhiza. In this endomycorrhiza, fungal hyphae penetrate plant cell walls in the root cortex. There they form densely branched arbuscules. Fungus and plant plasma membrane are separated by a common interfacial apoplast. The pH of the compartment between the symbionts is of pivotal importance for nutrient transfer. Histochemical experiments were conducted to check for an acidic nature of the interface in the model system Glomus versiforme (Karst.) Berch-Allium porrum L. Two chemically different acidotropic dyes (neutral red and LysoSensor Green DND-189) stained the arbuscules intensely. The staining of arbuscules could be eliminated by addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) or treatments leading to membrane rupture. Therefore, the staining of the arbuscules was based on the ion-trap mechanism, which indicates acidic, membrane-bound compartments. Microscopic examination of stained arbuscules at high optical resolution revealed a peripheral accumulation of the dye. Since plasmolysis rapidly destained the arbuscules, it is concluded that the dyes accumulate in the arbuscular interface, indicating the highly acidic nature of this compartment. The findings are discussed with respect to their relevance for the nutrient transfer in mycorrhizas. In addition, evidence for a discontinuity in the arbuscular interface between the stem and the branches of the arbuscule is given.

  5. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  6. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected...

  7. Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland

    Science.gov (United States)

    Muthukumar, T.; Udaiyan, K.

    2002-10-01

    Vesicular-arbuscular mycorrhizal (VAM) colonization and spore numbers in the rhizosphere of Cyperus iria L. and C. rotundus L., growing in a semi-arid tropical grassland, was studied during the 1993 and 1994 monsoons. In addition, climatic and chemical properties of the soils were determined in order to investigate their influence on mycorrhizal variables. VAM fungal association in the sedges was confirmed by plant- and root-trap culture techniques. The soil nutrients exhibited seasonal variations, but were highly variable between years. Intercellular hyphae and vesicles with occasional intraradical spores characterized mycorrhizal association in sedges. Dark septate fungi also colonized roots of sedges. Temporal variations in mycorrhizal colonization and spore numbers occurred, indicating seasonality. However, the patterns of mycorrhizal colonization and spore numbers were different during both the years. The VAM fungal structures observed were intercellular hyphae and vesicles. Changes in the proportion of root length with VAM structures, total colonization levels and spore numbers were related to climatic and edaphic factors. However, the intensity of influence of climatic and soil factors on VAM tended to vary with sedge species.

  8. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    Santos Vera Lúcia dos

    2001-01-01

    Full Text Available The occurrence of vesicular-arbuscular mycorrhizae (AM and ectomycorrhizae (ECM in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonization increased followed by a decrease in AM. Pisolithus tinctorius was favored in simultaneous inoculation with G. etunicatum, and the positive effect of the simultaneous inoculation of both fungi in the percent colonization by the AM fungus occurred up to 60 days after inoculation. After 120 days, colonization of roots by G. etunicatum decreased in the presence of P. tinctorius. When inoculated simultaneously, the proportion of AM and ECM varied with evaluation time, while the combined percentage of mycorrhizal roots approached the maximum and remained more or less constant after 60 days, suggesting that there could be competition between the fungi for limiting substrate. The maximum percent mycorrhizal colonization varied with Eucalyptus species and the highest value was observed for E. camaldulensis, followed in order by E. citriodora, E. urophylla, E. grandis and E. cloeziana.

  9. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...... in fumigated plots, although both it and P uptake were increased by adding P fertilizer. The possible reasons for this discrepancy are discussed. A supplementary survey on infection development at five other field sites showed that peas are extensively colonized by VAM fungi, even in soils where a standard...

  10. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors

    Science.gov (United States)

    Miller, R.L.; Jackson, L.E.

    1998-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.

  11. Vesicular-arbuscular mycorrhiza response to crossed carbon and phosphorus resource gradients

    Energy Technology Data Exchange (ETDEWEB)

    Whitbeck, J.L. (Pennyslvania State Univ., University Park, PA (United States))

    1994-06-01

    Employing the annual herb Hemizonia luzulaefolia, native to nutrient limited grassland ecosystem in California, and a community of indigenous vesicular-arbuscular mycorrhizal (VAM) fungi, this study examined mycorrhizal response to interacting plant- and fungus-acquired resources. Plant carbon supply was manipulated through atmospheric carbon dioxide (CO[sub 2]) concentration, and substrate phosphorus (P) supply was varied in the nutrient solution. H. luzulaefolia responded strongly to VAM association, showing increased root and shoot biomass, greater leaf area, higher shoot P content and lower specific root length relative to non-mycorrhizal plants. Elevated (700 ppm) CO[sub 2] plants had lower mass, lower root:shoot ratios and slightly greater specific root length than ambient pCO[sub 2]-grown plants. VAM colonization of roots was stimulated by elevated CO[sub 2] early in the experiment. Low P plants showed greater leaf mass per area and lower shoot P concentration than plus-P plants. P effects on measures of VAM changed over time. While ambient pCO[sub 2]-grown plants responsed to added P with increased biomass, plants grown at elevated CO[sub 2] showed equivalent or lower biomass in plus-P treatments than in those with no added P. At the same time, ambient pCO[sub 2]-grown plants developed greater VAM colonization of roots in low P treatments, while at 700 ppm CO[sub 2]. VAM colonization was higher in plus-P treatments. It appears that atmospheric pCO[sub 2] affects the patterns of belowground allocation in H. luzulaefolia: ambient pCO[sub 2] plants direct carbon resources to VAM when P is low and to roots when P is available, while elevated CO[sub 2] plants maintain VAM colonization regardless of P environment and allocate to roots when P is low.

  12. APPARENT LACK OF VESICULAR-ARBUSCULAR MYCORRHIZA (VAM) IN SEAGRASSES ZOSTERA MARINA L. AND THALASSIA TESTUDIUM BANKS EX KONIG

    Science.gov (United States)

    We examined two populations of Zostera marina L. and one of Thalassia testudinum Banks ex Konig for presence of vesicular-arbuscular mycorrhiza (VAM). None of these plants showed any VAM colonization. In addition, we were unable to find any literature references on the presence o...

  13. Laboratory bioassay for assessing the effects of sludge supernatant on plant growth and vesicular-arbuscular mycorrhiza formation

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, K.S.; Liberta, A.E.

    1982-12-01

    A laboratory bioassay is described for assessing the effects of sludge supernatant on juvenile corn growth and the ability of vesicular-arbuscular (VA) mycorrhizal fungi, indigenous to coal spoil, to form mycorrhizae. The bioassay demonstrated that application rates can be identified that have the potential to promote increased plant dry weight without suppressing the formation of VA mycorrhizae in a plant's root system.

  14. Influence of vesicular arbuscular mycorrhiza (VAM) and phosphate ...

    African Journals Online (AJOL)

    A field experiment was carried out to find out the effect of biofertilizers, vesicular arbuscular mycorrhiza (VAM), and phosphate solubilising bacteria (PSB) individually and in combination on growth and physiological attributing properties of Marsdenia volubilis plant under nursery conditions. The plant seedlings were ...

  15. The vesicular-arbuscular mycorrhizal symbiosis | Quilambo | African ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 12 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  16. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... were estimated following the method of Dubois et al. (1956). The amount of nitrate formed was measured by the method of Cataldo et al. (1975). Estimation of praline was done according to Bates. (1973). The dried plant materials were ground in porcelain mortar with porcelain pestle and the N content was ...

  17. Factors influencing survival of vesicular-arbuscular mycorrhiza propagules during topsoil storage

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.; Carnes, B.A.; Moorman, T.B.

    1985-01-01

    The survival dynamics of vesicular-arbuscular mycorrhizal fungi were determined, (using a bioassay procedure) for soils stored from 0.5 to 6.0 years in topsoil stockpiles associated with a coal surface-mine in the western United States. Propagule mortality could best be related to in situ soil moisture potential using a piecewise regression model (R/sup 2/ = 0.57; P less than or equal to 0.001) with the breaking point occurring at -2 MPa. The addition of length of storage time was found to contribute significantly to the accuracy of the model (R/sup 2/ = 0.70; P less than or equal to 0.001). In addition, the piece-wise nature of the data suggested two separate populations of VAM fungi - those propagules found in soils with moisture potentials less than -2 MPa and those occurring in soils with moisture potentials greater than -2 MPa. Soil moisture and length of storage time had differing effects on each of these populations. When water potential was less than -2 MPa, moisture was an important predictor of inoculum (P < 0.001), while length of storage had little predictive capability (P = 0.17). However, when water potentials were greater than -2 MPa, the predictive importance of soil moisture (P = 0.86) and length of storage (P = 0.04) were reversed. The significance of these findings to topsoil replacement and subsequent plant community development are discussed. 28 references, 2 figures, 2 tables.

  18. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    Science.gov (United States)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  19. The development and significance of vesicular-arbuscular mycorrhizas as influenced by agricultural practices

    NARCIS (Netherlands)

    Ruissen, M.A.

    1982-01-01

    The development and significance of vesicular- arbuscular mycorrhizas (VAM) in wheat and potatoes have been studied in relation to various farming systems and agricultural practices. The effects of farming systems on VAM have been observed on three neighbouring experimental farms in the vicinity of

  20. The influence of vesicular-arbuscular mycorrhizas on production ...

    African Journals Online (AJOL)

    arbuscular mycorrhizas produced slight increases in dry mater production in unsterilized field plots at Cedara, Natal. Phosphorus levels in plant tops showed no increases due to mycorrhizas but crude protein content of all mycorrhizal plants were ...

  1. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    The effect of inoculation with vesicular–arbuscular mycorrhizal fungi on the growth of barley in the field was studied at two levels of soil P on plots fumigated with methyl bromide. During the vegetative phase, growth and P uptake was influenced only by soil P; P uptake in the period from earing...

  2. Effect of solarization and vesicular arbuscular mychorrizal on weed ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... determine VAM before testing in laboratory, VAM dutied like a bridge from donor lettuce to receiver wild mustard (Sinapsis ... Also the laboratory findings supported this; the number of spores, number of VAM infected and infection rate ..... Technics and usages of Mycorrhizal spor in agricultura. Cukurova.

  3. Arbuscular mycorrhizal fungi and colonization stimulant in cotton and maize

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    Full Text Available ABSTRACT: The objective of this study was to evaluate the effects of inoculation with different arbuscular mycorrhizal fungi native to Cerrado, associated with the application of colonization stimulant (7-hydroxy, 4’-methoxy-isoflavone at the initial growth of cotton and maize plants in a greenhouse. The experiment was carried out in a completely randomized design and 7x2 factorial scheme, with five species of arbuscular mycorrhizal fungi and combined inoculation (uniting all species in equal proportion and native fungi, in the presence and absence of colonization stimulant in maize and cotton crops. Shoots dry matter (SDM, roots dry matter (RDM, mycorrhizal colonization and accumulation of calcium, zinc and phosphorus in the SDM were evaluated at flowering. Inoculation of arbuscular mycorrhizal fungi and the use of colonization stimulant at low density of arbuscular mycorrhizal fungi propagules was beneficial to plant development. Inoculation with mycorrhizal fungi demonstrated different effects for the various parameters evaluated in cotton and maize, and the application of colonization stimulant promoted higher mycorrhizal colonization and initial growth in cotton, when associated with native AMF, and in corn, when associated with inoculation with Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus.

  4. The Effects of Vesicular-Arbuscular Mycorrhizae on the Plant Growth and Nutrient Uptake of Cucumber

    OpenAIRE

    ÇIĞŞAR, Sibel; Sari, Nebahat

    2014-01-01

    This study was conducted to investigate the effect of vesicular-arbuscular (VA) mycorrhizae on plant growth of cucumber. Yayla F 1 seeds were sown in sterile and non-sterile growing medium (organic manure:soil:mix of sand; v:v:v 1:1:1). The mix inoculum of Glomus mosseaand Glomus fasciculatumspores (10 g/plant) was placed 5 cm below the cucumber seed before sowing. In order to investigate the effects of VA mycorrhizae on plant growth, plant height, diameter, number of nodes were measured ...

  5. Arbuscular mycorrhizal fungi and colonization stimulant in cotton and maize

    National Research Council Canada - National Science Library

    Fabrício Henrique Moreira Salgado; Fátima Maria de Sousa Moreira; José Oswaldo Siqueira; Ricardo Henrique Barbosa; Helder Barbosa Paulino; Marco Aurélio Carbone Carneiro

    The objective of this study was to evaluate the effects of inoculation with different arbuscular mycorrhizal fungi native to Cerrado, associated with the application of colonization stimulant (7-hydroxy, 4’-methoxy-isoflavone...

  6. BIOFERTILIZATION WITH RHIZOBACTERIA AND A CONSORTIUM OF ARBUSCULAR MYCORRHIZAL FUNGI IN CITRUS ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Roberto Gregorio Chiquito-Contreras

    2012-11-01

    Full Text Available Biofertilization of plants with rhizobacteria and vesicular arbuscular mycorrhizae (mycorrhizal consortium, potentially promotes plant growth and health, and reduces the use of agrochemicals. The effect of individual and combined biofertilization with three strains of rhizobacteria and the mycorrhizal consortium (MTZ-1 was evaluated under nursery conditions on the growth of rootstocks of Citrus volkameriana and Rangpur lime grafted with Tahiti lime. Plants were inoculated individually and combined with the rhizobacteria strains FCA-8, FCA-56 and FCA-60 of Pseudomonas putida, and with MTZ-1; 50 % fertilization also was applied (18-46-00 N-P-K and compared with controls that received nursery management and 100 % fertilization. A split-plot experimental design with five replications per treatment was established. Individual and combined biofertilization with the three strains of bacteria and MTZ-1 positively promoted the growth of C. volkameriana, and Rangpur lime grafted with Tahiti lime, similar to the control with 100 % fertilization. The nutrient content of Tahiti lime leaves was similar to the control for both rootstocks. The presence of rhizobacterial and mycorrhizal populations in the combined biofertilization treatments demonstrated a positive synergism in the colonization of rootstock roots. Results demonstrate the potential of the three strains of P. putida and the MTZ-1 mycorrhizal consortium on the promotion of plant growth and assimilation of nutrients.

  7. NUTRIENT TRANSFER IN VESICULAR-ARBUSCULAR MYCORRHIZAS: A NEW MODEL BASED ON THE DISTRIBUTION OF ATPases ON FUNGAL AND PLANT MEMBRANES

    Directory of Open Access Journals (Sweden)

    S.E. SMITH

    1995-01-01

    Full Text Available In this paper we review the membrane transport processes that are involved in the transfer of mineral nutrients and organic carbon between the symbiotic partners in mycorrhizas. In particular, we reassess the prevailing hypothesis that transfer in vesicular-arbuscular (VA mycorrhizas occurs simultaneously and bidirectionally across the same interface and that arbuscules are the main sites of transfer. Using cytochemical techniques, we and our collaborators have reexamined the distribution of ATPases in the arbuscular and intercellular hyphal interfaces in VA mycorrhizas formed between roots ofAllium cepa (onion and the fungus Glomus intraradices. The results showed that H +-ATPases have different localisation on plant and fungal membranes in arbuscular and hyphal interfaces (Gianinazzi-Pearson et al. 1991. While some arbuscular interfaces had H+-ATPase activity on both fungal and plant membranes, in most cases the fungal membrane lacked this activity. In contrast, the plasma membranes of intercellular hyphae always had H + -ATPase and the adjacent root cells did not. This suggests that the different interfaces in a VA mycorrhiza may have different functions. We propose that passive loss of P from the arbuscules is associated with active uptake by the energised (ATPase-bearing plant membrane and that passive loss of carbohydrate from the root cells is followed by active uptake by the intercellular hyphae. If this model is correct, then variations in "mycorrhizal efficiency" (i.e. the extent to which mycorrhizal plants grow better than non-mycorrhizal controls might be determined by differences in the numbers of active arbuscules as a proportion of the total fungal biomass within the root. As a first step towards investigating this possibility, we have developed methods for measuring the surface areas of arbuscular and hyphal interfaces in different fungus-host combinations, Glomus spp./ Allium porrum (leek. We have also measured fluxes of P from

  8. Plant interspecific differences in arbuscular mycorrhizal colonization as a result of soil carbon addition.

    Science.gov (United States)

    Eschen, René; Müller-Schärer, Heinz; Schaffner, Urs

    2013-01-01

    Soil nutrient availability and colonization by arbuscular mycorrhizal fungi are important and potentially interacting factors shaping vegetation composition and succession. We investigated the effect of carbon (C) addition, aimed at reducing soil nutrient availability, on arbuscular mycorrhizal colonization. Seedlings of 27 plant species with different sets of life-history traits (functional group affiliation, life history strategy and nitrophilic status) were grown in pots filled with soil from a nutrient-rich set-aside field and amended with different amounts of C. Mycorrhizal colonization was progressively reduced along the gradient of increasing C addition in 17 out of 27 species, but not in the remaining species. Grasses had lower colonization levels than forbs and legumes and the decline in AM fungal colonization was more pronounced in legumes than in other forbs and grasses. Mycorrhizal colonization did not differ between annual and perennial species, but decreased more rapidly along the gradient of increasing C addition in plants with high Ellenberg N values than in plants with low Ellenberg N values. Soil C addition not only limits plant growth through a reduction in available nutrients, but also reduces mycorrhizal colonization of plant roots. The effect of C addition on mycorrhizal colonization varies among plant functional groups, with legumes experiencing an overproportional reduction in AM fungal colonization along the gradient of increasing C addition. We therefore propose that for a better understanding of vegetation succession on set-aside fields one may consider the interrelationship between plant growth, soil nutrient availability and mycorrhizal colonization of plant roots.

  9. Interspecific plant association effects on vesicular-arbuscular mycorrhiza occurrence in Atriplex confertifolia

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.; Moorman, T.B.; Schmidt, S.K.

    1983-01-01

    Earlier studies with the shrub Atriplex confertifolia (Chenopodiaceae) suggested that the occurrence of mycotrophy was related to the community from which root samples were obtained; plants in disturbed areas were non-mycotrophic, while those growing in native areas possessed infection. Upon closer examination when neighbouring plants were studied, the level of mycorrhizal infection of Atriplex confertifolia was found to be related to its interspecific plant associations. When Atriplex confertifolia occurred solitarily, or in the presence of non-mycorrhizal A. gardneri, it was non-mycotrophic. However, when occurring near grasses or Artemisia spinescens, it possessed mycorrhiza infection. What appeared to be a community effect for the occurrence of mycorrhiza is nothing more than an association effect in which level of infection is related to the degree of mycorrhizal host plant cover. In disturbed communities little chance occurs for encountering a neighbouring mycorrhizal plant, while native plant communities are composed primarily of mycorrhizal counterparts. 22 references, 1 figure, 3 tables.

  10. Vesicular-Arbuscular Mycorrhiza and Growth in Barley - Effects of Irradiation and Heating of Soil

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Andersen, A. J.

    1982-01-01

    propagules. Mycorrhiza developed more slowly after inoculation in irradiated soils than in untreated soils. This could have been due to the small amounts of inoculum used, but the high concentrations of nutrients released by irradiation of the soil were probably of greater significance particularly......The influence of soil irradiation (0.25–4.0 Mrad) and soil heating on mycorrhizal survival, establishment and development after reinoculation, and on plant growth, was investigated. The lowest radiation dose applied, completely eliminated the infectivity of a soil with a high number of mycorrhizal...

  11. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. [Poncirus trifoliata L. Raf. x Citrus sinensis L. Osbeck; Glomus intraradices Schenk and Smith

    Energy Technology Data Exchange (ETDEWEB)

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E. (Univ. of Florida, Gainesville (USA))

    1988-02-01

    Translocation of {sup 14}C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata (L.) Raf. {times} Citrus sinensis (L.) Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to {sup 14}CO{sub 2} for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the {sup 14}C-photosynthate to the mycorrhiza as did (0+) root systems.

  12. United States Air Force Summer Faculty Research Program for 1990. Program Management Report

    Science.gov (United States)

    1991-06-05

    Laboratory 144 An Assay to Determine the Phytotoxic Effects Dr. David Buckalew of Jet Fuel: Effects on Vesicular- Arbuscular Mycorrhizae 114 Volume IV...Fuel: Effects on Vesicular- Arbuscular Mycorrhizae by David W. Buckalew ABSTRACT A new protocol is presented for using plants as analytical tools to...measures of total root length and percent vesicular- arbuscular mycorrhizal colonization are recorded within a common test grass. A brief discussion of

  13. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  14. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1994-01-01

    Cucumis sativus L. cv. Aminex (F1 hybrid) was grown alone or in symbiosis with Glomus intraradices Schenck and Smith in containers with two hyphal compartments (HC(A) and HC(B)) on either side of a root compartment (RC) separated by fine nylon mesh. Plants received a total of either 100, 200 or 400...

  15. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1993-01-01

    with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as (NH4+)-N-15 or (NO3-)-N-15 at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root...

  16. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  17. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P < 0.05) colonization of roots was found in variant with biochar from sewage sludge. The lower colonization was recognized in control variant and variant with addition of mineral fertilizer. Our results indicate positive effect of modified biochar application to soil on increase in level of arbuscular mycorrhizal colonization of roots.

  18. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Nor; Kjøller, Rasmus; Bruun, Hans Henrik

    2016-01-01

    The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities wa...

  19. Order of arrival structures arbuscular mycorrhizal colonization of plants

    NARCIS (Netherlands)

    Werner, G.D.A.; Kiers, E.T.

    2015-01-01

    Priority effects - the impact of a species' arrival on subsequent community development - have been shown to influence species composition in many organisms. Whether priority effects among arbuscular mycorrhizal fungi (AMF) structure fungal root communities is not well understood. Here, we

  20. Growth and Nutrient Uptake Responses of Kinnow to Vesicular Arbuscular Mycorrhizae

    OpenAIRE

    M.H. Shamshiri; K Usha; Bhupinder Singh

    2012-01-01

    In a field experiment, three-year-old Kinnow trees budded on Jatti Katti (C. jambhiri) rootstock were inoculated by three different arbuscular mycorrhiza (AM), Glomus manihotis (T1), Glomus mosseae (T2), and Gigaspora gigantia (T3), separately or in combination (T4). Microscopic assessment of AM colonization on Kinnow roots showed a relatively lower level of infection by different species when inoculated separately than when inoculaed together. Application of AM improved growth parameters lik...

  1. Foliar Application of Phosphorus Has Minimal Impact on 'Pinot noir' Growth, Mycorrhizal Colonization, or Fruit Quality

    Science.gov (United States)

    Grapevines grown in low phosphorus (P) soils typical of western Oregon vineyards may benefit from additional P applied to the canopy using foliar sprays. Alternatively, vines may be negatively affected by foliar P sprays because lower root colonization by arbuscular mycorrhizal fungi (AMF) could red...

  2. Arbuscular mycorrhizal fungi colonize non-fixing root nodules of several legume species.

    NARCIS (Netherlands)

    Scheublin, T.R.; van der Heijden, M.G.A.

    2006-01-01

    • Many legumes form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal fungi (AMF). Rhizobia are located in root nodules and provide the plant with fixed atmospheric nitrogen, while AMF colonize plant roots and deliver several essential nutrients to the plant. Recent studies

  3. Arbuscular mycorrhizal fungi colonize nonfixing roots nodules of several legume species.

    NARCIS (Netherlands)

    Scheublin, T.R.; van der Heijden, M.G.A.

    2006-01-01

    • Many legumes form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal fungi (AMF). Rhizobia are located in root nodules and provide the plant with fixed atmospheric nitrogen, while AMF colonize plant roots and deliver several essential nutrients to the plant. Recent studies

  4. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

    Energy Technology Data Exchange (ETDEWEB)

    M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO; C. R. COGAR; C. E. WELLS; R. S. NOWAK

    2004-01-01

    The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungi via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.

  5. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    DEFF Research Database (Denmark)

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake...... fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter...... genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi...

  6. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-07-01

    The influence of albacore's mycorrhizal fungus on {sup 1}34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more {sup 1}34Cs (up to 250,000 Bq kg{sup -}1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased {sup 1}34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg{sup -}1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  7. Arbuscular Mycorrhizal Fungi Colonization in Upland Rice as Influenced by Agrochemical Application

    Directory of Open Access Journals (Sweden)

    Velu RAJESHKANNAN

    2009-12-01

    Full Text Available Mycorrhizal status of rice under upland conditions was studied using potted seedlings. Percentage of arbuscular mycorrhizal fungi (AMF root colonization varied between 17.35% and 37.18% over an age series of 7 to 70 days old rice plants. AMF root colonization was increased up to 35–42 days, beyond which the root colonization steadily declined. The vesicles appeared after two weeks and reached their maximum intensity on the 35th day. The arbuscules were formed late on the 42nd day (2.93% and slightly varied up to the 70th day (3.03%. Higher dosage of urea application suppressed plant growth whereas the superphosphate treatment had no marked impact on plant growth. Generally, application of these agrochemicals registered less influence on the hyphal colonization of AMF in rice plants, whereas arbuscular colonization was adversely affected by higher dosages of fertilizers. There were pronounced decreases in both the plant growth and their AMF colonization due to the application of systemic fungicides, carbendazim and thiophanate methyl. The application of single sprays of fungicides was less deleterious over multiple sprays.

  8. Evaluation of Mycorrhizal Fungi, Vermicompost and Humic Acid on Essence Yield and Root Colonization of Fennel

    Directory of Open Access Journals (Sweden)

    I. Akbari

    2016-02-01

    humic acid include: h1(no application and h2 (application. Each plot had 5 rows with row spacing of 50 cm and row length of 5 m was considered. Ten grams mycorrhizal fungi were added to the soil under each seed. Humic acid was sprayed in 3 stages (vegetative, reproductive and seed filling stage according to the recommended dose (200 mg per liter. Sampling and measuring of traits were done at the end of the season and after removal of border rows. A 50 gram sample of each plot milled and then essence collected with Clevenger for three hours using water distillation. Percent of fungal colonization obtained with Gridline Intersect Method. Finally, for analysis of data and drawing shapes, MSTAT-C software and Microsoft Excel were used. Comparison of the least significant difference test (LSD was conducted at the 5% level. Results and Discussion Results of this study showed the main effects of experimental factors on seed yield, essence percent and yield were significant. Comparison of mean results showed the highest seed yield (1119.37 kg ha-1 obtained from mycorrhizal colonization. With increasing vermicompost applying, seed yield also increased. So, the greatest and lowest seed yield obtained from 8 ton ha-1 vermicompost and control plots (1315 and 1016 kg ha-1, respectively. With humic acid foliar application, seed yield increased about 18 percent. In this experiment essence percent significantly increased due to mycorrhizal colonization. Essence percent of fennel seeds showed, the highest value of essence percent (2.83% obtained from 8 ton.ha-1 vermicompost and the lowest essence was obtained from control plots (2.15%. Seed essence percent significantly increased due to humic acid foliar application compared with control plots (2.6% and 2.4% respectively. Essence yield significantly increased due to mycorrhizal inoculation (31.67 kg ha-1. Vermicompost application increased essence yield about 64 and 25 percent compared with control plots. Compared to control, humic acid

  9. Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericoid mycorrhizal colonization

    DEFF Research Database (Denmark)

    Olsrud, Maria; Michelsen, Anders; Wallander, Håkon

    2007-01-01

    The relationship between ergosterol content in ericaceous hair roots and ericoid mycorrhizal (ErM) colonization versus dark septate endophytic (DSE) hyphal colonization was examined in a dwarf shrub-dominated subarctic mire in Northern Sweden. Ergosterol content in hair roots did not correlate...

  10. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  11. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek.

    Science.gov (United States)

    Mozafar, A; Ruh, R; Klingel, P; Gamper, H; Egli, S; Frossard, E

    2002-10-01

    We grew leek (Allium porrum) in soils of two shooting ranges heavily contaminated with heavy metals in the towns of Zuchwil and Oberuzwil in Switzerland as a bioassay to test the activity of arbuscular mycorrhizal (AM) fungi in these soils. Soil samples were taken from (1) front of the shooting house (HOUSE), (2) the area between house and target (FIELD) and (3) the berm (BACKSTOP). Samples of Ribwort plantain (Plantago lanceolata) growing naturally within the shooting ranges were also collected and the colonization of its roots by mycorrhizal fungi was measured. The number of AM spores in the soils was significantly reduced concomitant with the increase in the degree of soil contamination with metals. In Zuchwil, mycorrhizal fungi equally colonized roots of Ribwort plantain sampled from BACKSTOP and HOUSE. In Oberuzwil, however, plants from BACKSTOP had lower colonization when compared with those sampled from HOUSE. Colonization of leek was strongly reduced in the BACKSTOP soil of Zuchwil and slightly reduced in the BACKSTOP soil of Oberuzwil when compared with plants grown in respective HOUSE soil. Concentrations of Cd, Cr, Cu, Ni, Pb and Zn in the leaves of leek grown in the BACKSTOP soil was within the range considered toxic for human consumption. This points to the high degree of bioavailability of these metal in these soils. Significant decrease in the number of mycorrhizal spores in the BACKSTOP soils in Zuchwil and the low colonization of leek roots grown in these soils point to possible changes in the species diversity of mycorrhizal fungi in these soils.

  12. Utilization of Biopore Infiltration Hole and Cross Drain Technology to Improve Root Geometry and Mycorrhizal Colonization in Skidding Road

    OpenAIRE

    Diana Prameswari; Supriyanto .; Bambang Hero Saharjo; Basuki Wasis; Prijanto Pamoengkas

    2014-01-01

    Root geometry is important factor in planting in skidding roads. Soil compaction, lack of mycorrhizal population and stunted seedling growth are the common problem in skidding road for reforestation success. Implementation of bio-pore infiltration hole (BIH) and cross drain (CD) technology may improve the skidding road problems. The aim of the study was to examine the use of BIH and CD technology to improve root geometry and mycorrhizal colonization in skidding roads. Shorealeprosula and Sh...

  13. Application of the EDYS Model to Evaluate Control Methods for Invasive Plants at Yakima Training Center, Washington

    Science.gov (United States)

    2004-12-01

    Anderson. 1987. Effects of soil moisture and soil sterilization on vesicular- arbuscular mycorrhizal colonization and growth of little bluestem...potassium, and in the density of mycorrhiza , in biennial and matrix-forming perennial species of closed chalkland turf. Journal of Ecology 70:571-593...nitrogen between pasture plants infected with vesicular- arbuscular mycorrhizal fungi. New Phytologist 108:417-423. Heil, G.W. and W.H. Diemont. 1983

  14. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  15. Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato

    Directory of Open Access Journals (Sweden)

    Jonathan D. Judy

    2016-04-01

    Full Text Available Bioaccumulation of engineered nanomaterials (ENMs by plants has been demonstrated in numerous studies over the past 5–10 years. However, the overwhelming majority of these studies were conducted using hydroponic systems and the degree to which the addition of the biological and chemical components present in the soil might fundamentally alter the potential of plant bioaccumulation of ENMs is unclear. Here, we used two genotypes of Solanum lycopersicum (tomato, reduced mycorrhizal colonization (rmc, a mutant which does not allow arbuscular mycorrhizal fungi (AMF colonization, and its progenitor, 76R, to examine how colonization by AMF alters trends of gold ENM bioaccumulation from a natural soil. Gold was taken up and bioaccumulated by plants of both genotypes. Gold concentrations were significantly higher in the rmc treatment although this was likely attributable to the large differences in biomass between the 76R and rmc plants. Regardless, there was little evidence that AMF played a significant role in trafficking Au ENMs into the plants. Furthermore, despite very low NH4NO3 extractable Au concentrations, Au accumulated at the root-soil interface. Although this observation would seem to suggest that ENMs may have potential to influence this particularly biologically active and important soil compartment, we observed no evidence of this here, as the 76R plants developed a robust AMF symbiosis despite accumulation of Au ENMs at the rhizoplane.

  16. Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae).

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Hirayama, Yumiko; Sakoda, Aki; Suzuki, Ayako; Ebihara, Atsushi; Morita, Nana; Imaichi, Ryoko

    2016-02-01

    To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.

  17. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora.

    Science.gov (United States)

    Balestrini, Raffaella; Nerva, Luca; Sillo, Fabiano; Girlanda, Mariangela; Perotto, Silvia

    2014-01-01

    Little is known on the molecular bases of plant-fungal interactions in orchid mycorrhiza. We developed a model system to investigate gene expression in mycorrhizal protocorms of Serapias vomeracea colonised by Tulasnella calospora. Our recent results with a small panel of genes as indicators of plant response to mycorrhizal colonization indicate that genes related with plant defense were not significantly up-regulated in mycorrhizal tissues. Here, we used laser microdissection to investigate whether expression of some orchid genes was restricted to specific cell types. Results showed that SvNod1, a S. vomeracea nodulin-like protein containing a plastocyanin-like domain, is expressed only in protocorm cells containing intracellular fungal hyphae. In addition, we investigated a family of fungal zinc metallopeptidases (M36). This gene family has expanded in the T. calospora genome and RNA-Seq experiments indicate that some members of the M36 metallopeptidases family are differentially regulated in orchid mycorrhizal protocorms.

  18. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil.

    Science.gov (United States)

    Baird, Julia M; Walley, Fran L; Shirtliffe, Steven J

    2010-11-01

    Phosphorus (P) can be low in soil under low input organic management; however, beneficial crop plant associations with arbuscular mycorrhizal fungi (AMF) are known to promote crop nutrition and increase phosphorus uptake. Thus, management strategies that promote AMF associations are particularly desirable for low-input cropping systems. The objectives of this study were to determine the impact of seeding rate on AMF colonization and the impact of AMF colonization on P concentration and uptake by organically grown field pea and lentil. Field experiments examined the impact of three seeding rates of field pea and lentil on P uptake and crop yield. Phosphorus accumulation was examined further in a controlled growth chamber experiment, in which field pea was sown at rates corresponding to those used in the field and harvested at 10-day intervals until 50 days after emergence. In the field, the level of AMF colonization of roots remained at 80% for field pea, while colonization of lentil increased with increasing seeding rates from 77% to 88%. The level of AMF colonization of field pea achieved in the growth chamber after 50 days was 80% for the two highest seeding rates and 60% for the low seeding rate. The rate at which AMF colonization occurred did not vary between treatments. Ultimately, AMF colonization level did not affect P accumulation. In contrast to several previous studies, both field and growth chamber experiments revealed that AMF colonization was not reduced at higher seeding rates. These results suggest that organic farmers may increase seeding rates without adversely affecting P nutrition.

  19. Effect of Tree Species and Mycorrhizal Colonization on the Archaeal Population of Boreal Forest Rhizospheres▿

    Science.gov (United States)

    Bomberg, Malin; Timonen, Sari

    2009-01-01

    Group 1.1c Crenarchaeota are the predominating archaeal group in acidic boreal forest soils. In this study, we show that the detection frequency of 1.1c crenarchaeotal 16S rRNA genes in the rhizospheres of the boreal forest trees increased following colonization by the ectomycorrhizal fungus Paxillus involutus. This effect was very clear in the fine roots of Pinus sylvestris, Picea abies, and Betula pendula, the most common forest trees in Finland. The nonmycorrhizal fine roots had a clearly different composition of archaeal 16S rRNA genes in comparison to the mycorrhizal fine roots. In the phylogenetic analysis, the 1.1c crenarchaeotal 16S rRNA gene sequences obtained from the fine roots formed a well-defined cluster separate from the mycorrhizal ones. Alnus glutinosa differed from the other trees by having high diversity and detection levels of Crenarchaeota both on fine roots and on mycorrhizas as well as by harboring a distinct archaeal flora. The similarity of the archaeal populations in rhizospheres of the different tree species was increased upon colonization by the ectomycorrhizal fungus. A minority of the sequences obtained from the mycorrhizas belonged to Euryarchaeota (order Halobacteriales). PMID:18978075

  20. Effects of clipping and soil compaction on growth, morphology and mycorrhizal colonization of Schizachyrium scoparium, a C4 bunchgrass.

    Science.gov (United States)

    Wallace, L L

    1987-06-01

    A factorial design of clipping and compaction was used to study the responses of Schizachyrium scoparium and its mycorrhizal symbionts to these stresses. All treatment combinations significantly reduced the growth and biomass of plants relative to controls. Compaction significantly reduced tillering and crown expansion while clipping increased tillering early in the growing season and reduced it later. Mycorrhizal colonization of roots was highest in the clipped plots and lowest in compacted plots. Spore number was highest in compacted plots and lowest in clipped plots. It appears that spore number may be negatively correlated with root growth since any treatment that reduced plant growth yielded higher spore numbers. The combination of clipping and compaction reduced plant growth the most, but had intermediate effects on mycorrhizal colonization and spore number.

  1. Chitinase in roots of mycorrhizal Allium porrum: regulation and localization.

    Science.gov (United States)

    Spanu, P; Boller, T; Ludwig, A; Wiemken, A; Faccio, A; Bonfante-Fasolo, P

    1989-04-01

    Chitinase (EC 3.2.1.14) activity was measured in roots of Allium prorrum L. (leek) during development of a vesicular-arbuscular mycorrhizal symbiosis with Glomus versiforme (Karst.) Berch. During the early stages of infection, between 10 and 20 d after inoculation, the specific activity of chitinase was higher in mycorrhizal roots than in the uninfected controls. However, 60-90 d after inoculation, when the symbiosis was fully established, the mycorrhizal roots contained much less chitinase than control roots. Chitinase was purified from A. porrum roots. An antiserum against beanleaf chitinase was found to cross-react specifically with chitinase in the extracts from non-mycorrhizal and mycorrhizal A. porrum roots. This antiserum was used for the immunocytochemical localization of the enzyme with fluorescent and gold-labelled probes. Chitinase was localized in the vacuoles and in the extracellular spaces of non-mycorrhizal and mycorrhizal roots. There was no immunolabelling on the fungal cell walls in the intercellular or the intracellular phases. It is concluded that the chitin in the fungal walls is inaccessible to plant chitinase. This casts doubts on the possible involvement of this hydrolase in the development of the mycorrhizal fungus. However, fungal penetration does appear to cause a typical defense response in the first stages that is later depressed.

  2. Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants.

    Science.gov (United States)

    Fusconi, Anna; Lingua, Guido; Trotta, Antonio; Berta, Graziella

    2005-07-01

    Arbuscular mycorrhizal (AM) colonization can strongly affect the plant cell nucleus, causing displacement from the periphery to the center of the cell, hypertrophy and polyploidization. The hypertrophy response has been shown in a variety of AM plants whilst polyploidization has been reported only in Lycopersicon esculentum, a multiploid species with a small genome. In order to determine whether polyploidization is a general plant response to AM colonization, analyses were performed on Allium porrum, a plant with a large genome, which is much less subject to polyploidization than L. esculentum. The ploidy status of leaves, complete root systems and four zones of the adventitious roots was investigated in relation to phosphorus content, AM colonization and root differentiation in A. porrum plants grown under two different regimes of phosphate nutrition in order to distinguish direct effects of the fungus from those of improved nutrition. Results showed the presence of two nuclear populations (2C and 4C) in all treatments and samples. Linear regression analyses suggested a general negative correlation between phosphorus content and the proportion of 2C nuclei. The percentage of 2C nuclei (and consequently that of 4C nuclei), was also influenced by AM colonization, differentiation and ageing of the root cells, which resulted in earlier occurrence, in time and space, of polyploid nuclei.

  3. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient

    Directory of Open Access Journals (Sweden)

    Hannah Wilson

    2016-06-01

    Full Text Available Background: Arbuscular mycorrhizal fungi (AMF provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM was used to determine the direct and indirect effects of experimental warming on AMF colonization. Results: Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. Discussion: A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  4. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.

    Science.gov (United States)

    Watts-Williams, Stephanie J; Jakobsen, Iver; Cavagnaro, Timothy R; Grønlund, Mette

    2015-07-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    Science.gov (United States)

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-07-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

  6. Effect of endomycorrhizae on interactions between mycorrhizal and nonmycorrhizal plants. [Glomus monosporum/mosseae; Atriplex canescens; Sitanion hystrix

    Energy Technology Data Exchange (ETDEWEB)

    Franson, R.; Miller, R.M.

    1984-01-01

    An investigation on how infection with vesicular-arbuscular mycorrhizal fungi (VAM) changes interactions between plants was initiated. Specifically addressed were how does the presence or absence of VAM affect: (1) a species that typically shows little or no infection; and (2) a species that typically possesses moderate levels of infection. Results show: roots for inoculated species were higher than uninoculated treatments; the above ground dry weight gain were significantly higher with inoculation. The growth response of both species suggests a fungus-to-plant interaction even though infection, as measured by arbuscules a vesicles, was not always present. 2 figures. (MF)

  7. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  8. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Science.gov (United States)

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  9. Depletion of soil mineral N by roots of ¤Cucumis sativus¤ L. colonized or not by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Johansen, A.

    1999-01-01

    Two experiments were conducted where Cucumis sativus were grown in uncompartmented pots either alone or in symbiosis with Glomus intraradices Schenck and Smith (Experiment 1) or Glomus sp. (Experiment 2) in order to investigate if root colonization by arbuscular mycorrhizal (AM) fungi has an effect....... Dry weight of plant parts, total root length, mycorrhizal colonization rate and soil concentration of NH4+ and NO3- were recorded at five sequential harvest events: 21, 24, 30, 35 and 42 days (Experiment 1) and 22, 25, 28, 31 and 35 days (Experiment 2) after planting. In Experiment 1, plants were also...... analysed for total content of N and N-15. The mycorrhizal colonization rate increased during time: from 25 to 40% in Experiment 1 and from 50 to 60% in Experiment 2. Plant dry matter accumulation was unaffected by mycorrhizal colonization, except in Experiment 1 where shoot dry weights were slightly...

  10. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, L.C.; Gamon, J.A. (California State Univ., Los Angeles, CA (United States)); Andersen, C.P. (Environmental Protection Agency, Corvallis, OR (United States))

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  11. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi?

    Science.gov (United States)

    Jansa, Jan; Smith, F Andrew; Smith, Sally E

    2008-01-01

    Arbuscular mycorrhizal fungal (AMF) communities were established in pots using fungal isolates from a single field in Switzerland. It was tested whether multispecies mixtures provided more phosphorus and supported greater plant growth than single AMF species. Two host plants, medic (Medicago truncatula) and leek (Allium porrum), were inoculated with three AMF species (Glomus mosseae, G. claroideum and G. intraradices), either separately or in mixtures. The composition of the AMF communities in the roots was assessed using real-time PCR to determine the copy number of large ribosomal subunit genes. Fungal communities in the roots were usually dominated by one AMF species (G. mosseae). The composition of the communities depended on both plant identity and the time of harvest. Leek colonized by a mixture of G. claroideum and G. intraradices acquired more P than with either of the two AMF separately. Direct evidence is provided for functional complementarity among species within the AMF community colonizing a single root system. Competition among the species poses a major challenge in interpreting experiments with mixed inoculations, but this is greatly facilitated by use of real-time PCR.

  12. Former Land Use and Host Genotype Influence the Mycorrhizal Colonization of Poplar Roots

    Directory of Open Access Journals (Sweden)

    Felicia Gherghel

    2014-12-01

    Full Text Available The present paper analyses the community structure of ectomycorrhiza (ECM and arbuscular mycorrhiza (AM fungi associated with seven different poplar clone types growing in a patch system on soil from four different former land use types, originating from spruce forest, poplar stand, grassland and cornfield. We determined the extent to which ECM and AM play a role on the studied factors (genotype, former land use type and host growth. The diversity of ECM and AM fungal communities was estimated by morphological and molecular analyses of the 18S and ITS of the rDNA genes. Fifteen ECM fungal taxa and four AM groups were distinguished in the roots of the poplars grown for 18 months on soil originating from the respective land use types. The poplar clones showed significantly different rates of shoot length and AM colonization, especially concerning the occurrence of Glomus intraradices and Scutellospora sp. Populus deltoides had significantly higher Scutellospora sp. abundance. Although ECM abundance and diversity was high, no significant differences between the different land use types was found. However, some ECM fungi like Paxillus involutus, Laccaria proxima and Laccaria tortilis showed significant preferences for specific land use types. Our findings suggest that both factors, former land use type and poplar genotype, are important determinants of mycorrhizal colonization of the host plants.

  13. Pineapple (Ananas comosus cv. pérola ex vitro growth and mycorrhizal colonization affected by in vitro sucrose concentration

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2014-09-01

    Full Text Available The aim of this study was to evaluate the effect of sucrose concentration in the culture medium on growth and on the establishment of mycorrhizas during the acclimatization of pineapple cv. Pérola. The plantlets were micropropagated in MS culture medium with 0, 10, 20 and 30 g L-1 of sucrose and then they were acclimatized during 12 weeks under greenhouse conditions, in a sandy soil - compost mixture, uninoculated or inoculated with a Rhizophagus clarus isolate. Plantlets from the culture medium with 20 g and 30 g of sucrose L-1 showed higher shoot and root biomass than those from sugar-free medium. Mycorrhizal colonization was lower in plantlets micropropagated in sucrose-free medium, but the intensity of arbuscules did not differ among treatments. In the 12-week period of acclimatization, mycorrhizal colonization had no effect on plant biomass.

  14. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants.

    Science.gov (United States)

    Perner, Henrike; Schwarz, Dietmar; Bruns, Christian; Mäder, Paul; George, Eckhard

    2007-07-01

    Two challenges frequently encountered in the production of ornamental plants in organic horticulture are: (1) the rate of mineralization of phosphorus (P) and nitrogen (N) from organic fertilizers can be too slow to meet the high nutrient demand of young plants, and (2) the exclusive use of peat as a substrate for pot-based plant culture is discouraged in organic production systems. In this situation, the use of beneficial soil microorganisms in combination with high quality compost substrates can contribute to adequate plant growth and flower development. In this study, we examined possible alternatives to highly soluble fertilizers and pure peat substrates using pelargonium (Pelargonium peltatum L'Her.) as a test plant. Plants were grown on a peat-based substrate with two rates of compost addition and with and without arbuscular mycorrhizal (AM) fungi. Inoculation with three different commercial AM inocula resulted in colonization rates of up to 36% of the total root length, whereas non-inoculated plants remained free of root colonization. Increasing the rate of compost addition increased shoot dry weight and shoot nutrient concentrations, but the supply of compost did not always completely meet plant nutrient demand. Mycorrhizal colonization increased the number of buds and flowers, as well as shoot P and potassium (K) concentrations, but did not significantly affect shoot dry matter or shoot N concentration. We conclude that addition of compost in combination with mycorrhizal inoculation can improve nutrient status and flower development of plants grown on peat-based substrates.

  15. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition.

    Science.gov (United States)

    Geneva, Maria P; Stancheva, Ira V; Boychinova, Madlen M; Mincheva, Nadezhda H; Yonova, Petranka A

    2010-03-15

    The effect of foliar fertilization and Glomus intraradices inoculation on the growth, qualitative and quantitative pattern of essential oil in Salvia officinalis was determined. Sage plants were grown in a glass house on a soil/sand mixture (w/w = 3:1). Agroleaf total, N:P:K = 20:20:20 + microelements, was used at the whole vegetative growth stage as a 0.3% solution. Inoculation with Glomus intraradices was done at the sowing stage. Application of foliar fertilization and/or mycorrhizal colonization improved dry biomass accumulation and increased the content of antioxidant metabolites (ascorbate and reduced glutathione). Applied treatments lowered the activities of the antioxidants enzymes catalase, ascorbate peroxidase and superoxide dismutase, while guaiacol peroxidase increased. The relative quantity of essential oil pattern was also altered as a result of the applied treatments. Combined application (FF + Gi) significantly promoted 1,8-cineole and alpha-thujone, mycorrhizal colonization enhanced bornyl acetate, 1,8-cineole, alpha- and beta-thujones, while foliar fertilization increased bornyl acetate and camphor. The favorable effect of root colonization by Glomus intraradices was determined both on quantitative and qualitative pattern of sage essential oil. We conclude that inoculation with Glomus intraradices resulted in improved essential oil yield and quality, while combined application of foliar fertilizer and mycorrhizal fungi predominantly enhanced shoot biomass accumulation.

  16. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  17. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression

    Science.gov (United States)

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (gs), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28 and 26%, respectively). CER has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations. PMID:27524989

  18. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  19. Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.).

    Science.gov (United States)

    Jin, Hongyan; Germida, James J; Walley, Fran L

    2013-01-01

    The use of commercial inoculants containing non-resident arbuscular mycorrhizal fungi (AMF) is an emerging technology in field crop production in Canada. The objective of this study was to assess the impact of AMF inoculants containing either a single species (Glomus irregulare) or mixed species (G. irregulare, Glomus mosseae, and Glomus clarum) on AMF root colonization and consequent plant growth parameters of field pea grown using pot cultures. Field pea was grown in both sterilized and non-sterile (i.e., natural) field-collected soil containing resident AMF and received three inoculation treatments: uninoculated control, G. irregulare only, and a mixture of AMF species of G. irregulare, G. mosseae, and G. clarum. After 42 days, the AMF community assembled in field pea roots was assessed by cloning and sequencing analysis on the LSU-ITS-SSU rDNA gene, together with a microscopic assessment of colonization, biomass production, nutrient uptake, and N(2) fixation. The identity of AMF inoculants had a significant effect on field pea performance. The mixed species AMF inoculant performed better than the single species G. irregulare alone by promoting mycorrhizal colonization, field pea biomass, N and P uptake, and N(2) fixation and did not result in a significant compositional change of the AMF community that subsequently assembled in field pea roots. In contrast, the single species G. irregulare inoculant did not significantly enhance field pea biomass, N and P uptake, and N(2) fixation, although a significant compositional change of the subsequent AMF community was observed. No significant interactions affecting these measurements were detected between the resident AMF and the introduced AMF inoculants. The observation that the mixed species AMF inoculant promoted plant growth parameters without necessarily affecting the subsequent AMF community may have important implications regarding the use of non-resident AMF inoculants in agricultural production.

  20. Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant.

    Science.gov (United States)

    Cárdenas, Luis; Alemán, Emilia; Nava, Noreide; Santana, Olivia; Sánchez, Federico; Quinto, Carmen

    2006-03-01

    Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca(2+) signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.

  1. Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization via Jasmonic Acid and Strigolactone Signaling.

    Science.gov (United States)

    Nagata, Maki; Yamamoto, Naoya; Shigeyama, Tamaki; Terasawa, Yohei; Anai, Toyoaki; Sakai, Tatsuya; Inada, Sayaka; Arima, Susumu; Hashiguchi, Masatsugu; Akashi, Ryo; Nakayama, Hideyuki; Ueno, Daisuke; Hirsch, Ann M; Suzuki, Akihiro

    2015-11-01

    Establishment of a nitrogen-fixing symbiosis between legumes and rhizobia not only requires sufficient photosynthate, but also the sensing of the ratio of red to far red (R/FR) light. Here, we show that R/FR light sensing also positively influences the arbuscular mycorrhizal (AM) symbiosis of a legume and a non-legume through jasmonic acid (JA) and strigolactone (SL) signaling. The level of AM colonization in high R/FR light-grown tomato and Lotus japonicus significantly increased compared with that determined for low R/FR light-grown plants. Transcripts for JA-related genes were also elevated under high R/FR conditions. The root exudates derived from high R/FR light-grown plants contained more (+)-5-deoxystrigol, an AM-fungal hyphal branching inducer, than those from low R/FR light-grown plants. In summary, high R/FR light changes not only the levels of JA and SL synthesis, but also the composition of plant root exudates released into the rhizosphere, in this way augmenting the AM symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    Science.gov (United States)

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  3. Structure and function of mycorrhizal fungus communities of the Red Desert

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, A.C.; Miller, R.M.

    1984-01-01

    A chronological study since 1977 in the Red Desert of Wyoming is enabling examination into the sequence of events coupling mycotrophy with revegetation following strip-mining activities. Observational data support the hypothesis that diversification in the plant community and structure is ensured with the establishment of the mycotrophic habit; thereby increasing resiliency of the community for recovery from perturbations. The objectives of this research were: (1) to identify the species of vesicular-arbuscular mycorrhizal fungi (MF) present and evaluate primary edaphic factors affecting the population dynamics of the MF; (2) to isolate native species of MF; and (3) to develop a model system for characterizing stresses such as extremes in moisture and temperature on the coupling and function (particularly the cost-benefit of mycotrophy to the host) of mycorrhizal symbionts. 2 tables.

  4. Spore population, colonization, species diversity and factors influencing the association of arbuscular mycorrhizal fungi with litchi trees in India.

    Science.gov (United States)

    Kumar, Vinod; Kumar, Rajesh; Kumar, Ajit; Anal, Dubedi

    2016-01-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) in association with litchi (Litchi chinensis Sonn.) trees were studied during 2012-2013, where orchard soil had high pH (7.42-9.53) and salinity (0.07- 0.39 dSm(-1)). A total of 105 rhizospheric soil and root samples were collected considering variables like location, age of tree, cultivar and production management. Results showed that spore count was in the range of 1-22 g(-1) soil. All the examined root segments had colonization of AMF, which ranged between 3.3 to 90.0%. AMF community comprised of Glomus mosseae, G. intaradices, G. constricta, G. coronatum, G. fasciculatum, G. albidum, G. hoi, G. multicauli, Acaulospora scrobiculata, A. laevis, Rhizophagus litchi and Entrophosphora infrequens. Higher spore density and AMF colonization were observed at medium level (13-28 kg ha(-1)) of available phosphorus that decreased ('r' = -0.21 for spore density, -0.48 for root colonization) with increasing soil phosphorus. While nitrogen did not influence the AMF association, a weak negative linear relationship with AMF colonization ('r' = -0.30) was apparent in the medium level (112-200 kg ha(-1)) of potash. Micronutrients (Zn, Fe, Cu, Mn and B) did not affect spore density (zero or a very weak linear correlation) but influenced root colonization ('r' = -0.53 to -0.44), the effect being more prominent above critical limits. Nutritionally sufficient, irrigated litchi orchards had greater spore count (46% samples having 5-22 spores g(-1) soil) and colonization (> 50% in 37.4% roots examined) than nutrient deficient, non-irrigated orchards, indicating essentiality of a threshold nutrients and moisture regime for the association. AMF symbiosis was influenced by cultivar (greater in 'China'), but tree age was not correlated to mycorrhizal association. A consortium of native species coupled with the understanding of nutrient effects on AMF would be useful for field application in litchi.

  5. [Effects of mycorrhizal colonization and medicine quality of Paris polyphylla var. yunnanensis inoculated by different foreign AM fungi species].

    Science.gov (United States)

    Zhou Nong; Ding, Bo; Feng, Yuan; Qi, Wen-hua; Zhang, Hua; Guo, Dong-qin; Xiang, Jun

    2015-08-01

    After 28 foreign species of AM fungi were inoculated in sterilized soil, the effects of the AM mycorrhizal colonization and the medicine quality of Paris polyphylla var. yunnanensis were observed by combination of inoculation test in pot at room temperature and instrumental analysis. The results showed that, compared with control group (CK), the inoculation of foreign AM fungi in the soil influenced the spore density, mycorrhizal infection rate, and colonization intensity of AM fungi in root system of P. polyphylla var. yunnanensis. The inoculation of foreign AM fungi enhanced the mycorrhiza viability of P. polyphylla var. yunnanensis by increasing the activity of succinic dehydrogenase (SDH) and alkaline phosphatase (ALP) in intraradical hyphae. The content of single steroid saponin in rhizome of P. polyphylla var. yunnanensis showed variation after P. polyphylla var. yunnanensis was inoculated by different foreign species of AM fungi, which was beneficial for increasing the medicine quality; however, the kinds of steroid saponin showed no difference. In a degree, there was a selectivity of symbiosis between P. polyphylla var. yunnanensis and foreign AM fungi. And we found that the Claroideoglomus claroideum and Racocetra coralloidea were best foreign AM fungi species for cultivating P. polyphylla var. yunnanensis under field condition.

  6. Effect of biochar soil-amendments on Allium porrum growth, arbuscular mycorrhizal fungus colonization

    Science.gov (United States)

    Aims: Examine the interaction of biochar addition and arbuscular mycorrhizal [AM] fungus inoculation upon growth and Zn and Cu uptake by Allium porrum L. in heavy metal amended soil mix, and relate these responses to physicochemical properties of the biochars. Methods: The experiment was a complete ...

  7. Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa.

    Science.gov (United States)

    Saravesi, K; Ruotsalainen, A L; Cahill, J F

    2014-05-01

    Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.

  8. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth

    Directory of Open Access Journals (Sweden)

    Xiangying Wei

    2016-10-01

    Full Text Available Ericoid mycorrhizal (ERM fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19, quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and GnRH signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6% and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth.

  9. Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps.

    Science.gov (United States)

    Słomka, A; Kuta, E; Szarek-Łukaszewska, G; Godzik, B; Kapusta, P; Tylko, G; Bothe, H

    2011-07-15

    Violets of the sections Melanium were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Heartsease (Viola tricolor) from several heavy metal soils was AMF-positive at many sites but not at extreme biomes. The zinc violets Viola lutea ssp. westfalica (blue zinc violet) and ssp. calaminaria (yellow zinc violet) were always AMF-positive on heavy metal soils as their natural habitats. As shown for the blue form, zinc violets germinate independently of AMF and can be grown in non-polluted garden soils. Thus the zinc violets are obligatorily neither mycotrophs nor metalophytes. The alpine V. lutea, likely ancestor of the zinc violets, was at best poorly colonized by AMF. As determined by atomic absorption spectrometry, the contents of Zn and Pb were lower in AMF colonized plants than in the heavy metal soils from where the samples had been taken. AMF might prevent the uptake of toxic levels of heavy metals into the plant organs. Dithizone staining indicated a differential deposition of heavy metals in tissues of heartsease. Leaf hairs were particularly rich in heavy metals, indicating that part of the excess of heavy metals is sequestered into these cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization.

    Science.gov (United States)

    Gryndler, Milan; Hrselová, Hana; Cajthaml, Tomás; Havránková, Marie; Rezácová, Veronika; Gryndlerová, Hana; Larsen, John

    2009-04-01

    Soil organic matter is known to influence arbuscular mycorrhizal (AM) fungi, but limited information is available on the chemical components in the organic matter causing these effects. We studied the influence of decomposing organic matter (pure cellulose and alfalfa shoot and root material) on AM fungi after 30, 100, and 300 days of decomposition in nonsterile soil with and without addition of mineral N and P. Decomposing organic matter affected maize root length colonized by the AM fungus Glomus claroideum in a similar manner as other plant growth parameters. Colonized root length was slightly increased by both nitrogen and phosphorus application and plant materials, but not by application of cellulose. In vitro hyphal growth of Glomus intraradices was increased by soil extracts from the treatments with all types of organic materials independently of mineral N and P application. Pyrolysis of soil samples from the different decomposition treatments revealed in total 266 recognizable organic compounds and in vitro hyphal growth of G. intraradices in soil extract positively correlated with 33 of these compounds. The strongest correlation was found with 3,4,5-trimethoxybenzoic acid methyl ester. This compound is a typical product of pyrolysis of phenolic compounds produced by angiosperm woody plants, but in our experiment, it was produced mainly from cellulose by some components of the soil microflora. In conclusion, our results indicate that mycelia of AM fungi are influenced by organic matter decomposition both via compounds released during the decomposition process and also by secondary metabolites produced by microorganisms involved in organic matter decomposition.

  11. Arbuscular Mycorrhizal Colonization Enhanced Early Growth of Mallotus paniculatus and Albizia saman under Nursery Conditions in East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Dewi Wulandari

    2014-01-01

    Full Text Available Forest over logging, forest fire, forest conversion, and opencast mining have promoted deforestation in Indonesia, and reforestation is needed immediately. However, reforestation is limited by low seedling quality and production, and slow seedling growth in nurseries. Native tropical tree and fast-growing species, Mallotus paniculatus and Albizia saman, are potential to promote the first rotation of reforestation. Arbuscular mycorrhizal (AM fungi are known to promote nutrient uptake and plant growth. We examined the effects of two native AM fungi, Gigaspora decipiens and Glomus clarum, on the growth of M. paniculatus and A. saman seedlings under nursery conditions. At harvest, after six months, we determined AM colonization, shoot dry weight, and shoot N and P concentration. Approximately 90% and 50% of M. paniculatus and A. saman roots, respectively, were colonized by AM fungi, without any difference between the inoculation treatments. G. decipiens and G. clarum increased shoot height, leaf number, shoot dry weight, and shoot N and P uptake of both species. A positive correlation was observed between N and P uptake and shoot dry weight. These results suggest that AM fungi are effective in accelerating nutrient uptake and plant growth, which will, in turn, promote reforestation and sustainable forest timber production.

  12. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar

    Energy Technology Data Exchange (ETDEWEB)

    Quoreshi, A.M.; Khasa, D.P. [Symbiotech Research Inc. 201, 509-11 Avenue, Nisku, AB (Canada); Forest Biology Research Centre, University of Laval, Quebec (Canada)

    2008-05-15

    Aspen and balsam poplar seedlings were inoculated with six species of ectomycorrhizal fungi (Hebeloma longicaudum, Laccaria bicolor, Paxillus involutus, Pisolithus tinctorius, Rhizopogon vinicolor, and Suillus tomentosus), one species of endomycorrhizal fungus (Glomus intraradices), two species of bacteria (Agrobacterium sp. and Burkholderia cepacia), treated with a growth hormone (SR3), and co-inoculated with a combination of Paxillus and Burkholderia. The seedlings were grown in a greenhouse under three different fertility regimes. Bacterial inoculation alone did not affect seedling growth and nutrition as observed when co-inoculated with ectomycorrhizal fungus. The biomass and root collar diameter of aspen and balsam poplar were significantly increased when adequate mycorrhizas are formed and more prominent when co-inoculated with P. involutus and B. cepacia and grown at the 67% fertilizer level. Except for R. vinicolor and S. tomentosus, the other four species of ectomycorrhizal fungi and G. intraradices formed symbiotic associations with both plant species. Both ectomycorrhizal and endomycorrhizal colonization were observed at all fertilizer levels and fertilizer applications did not affect the colonization rates. Nitrogen and phosphorus concentrations were significantly improved in both aspen and balsam poplar compared with control only when co-inoculated with P. involutus and B. cepacia. However, plant net nitrogen uptake (content) increased significantly in all successful inoculation treatments and co-inoculated treatment when compared with control. These results hold promise for incorporation of inoculation of Populus sp. with appropriate mycorrhizal fungi and selected bacteria into commercial nursery system to improve the establishment of Populus in various sites. (author)

  13. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions

    Directory of Open Access Journals (Sweden)

    Grant Sinclair

    2014-06-01

    Full Text Available Plant adaptation to hyperosmotic environments is generally associated with reduced growth and ultimately yield loss, making farming difficult. The potential of mycorrhizal symbioses to alleviate salt stress has been documented and benefits to plant revealed to be specific and dependent to both plant cultivars and fungal strains.  A factorial greenhouse experiment was performed to determine the effects of three arbuscular mycorrhizal fungi (AMF species (Funneliformis caledonius, F. mosseae and Rhizophagus irregularis on three ‘day-neutral’ strawberry (Fragaria × ananassa Duch. cultivars (‘Albion’, ‘Charlotte’ and ‘Seascape’, and a mixture of R. irregularis and F. mosseae on ‘Seascape’, under four salt conditions (0–200 mM NaCl.  The overall results showed that plant biomass decreased with increasing salinity.  The cultivars responded differently to both AMF and salinity, and ‘Seascape’ was more tolerant to salinity than the other cultivars.  AMF enhanced plant growth and improved salt tolerance by increasing the proportion of medium (0.51.5 mm diameter roots. The mixture of two AMF species increased root and shoot mass to a higher degree than each species alone at low salinity (0–50 mM but reduced fruit quality.  At higher levels (100–200 mM, R. irregularis alleviated salt stress and improved fruit quality to a higher degree than the other AMF species.  Our results support the use of bio-inoculants in saline horticultural areas.  Because cultivars respond differently to fungal inoculants, and inoculants prefer specific environmental conditions, fungal inoculants need to be screened on a cultivar- and condition-specific basis.

  16. Behavior of decabromodiphenyl ether (BDE-209) in soil: Effects of rhizosphere and mycorrhizal colonization of ryegrass roots

    Energy Technology Data Exchange (ETDEWEB)

    Wang Sen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Huang, Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2011-03-15

    A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R{sup 2} = 0.66) was found between the residual BDE-209 concentration in soil and soil microbial biomass estimated as the total phospholipid fatty acids, suggesting a contribution of microbial degradation to BDE-209 dissipation. Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples, respectively, with a higher proportion of di- through hepta-BDE congeners in the plant tissues than in the soils, indicating the occurrence of BDE-209 debromination in the soil-plant system. AM inoculation increased the levels of lower brominated PBDEs in ryegrass. These results provide important information about the behavior of BDE-209 in the soil-plant system. - Research highlights: > BDE-209 dissipation in soil was affected by the proximity to the roots. > Microbial degradation contributes greatly to BDE-209 dissipation in the soil. > Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples. > AM inoculation increased root uptake and accumulation of BDE-209. - BDE-209 dissipation and degradation in soil were affected by both its proximity to ryegrass roots and inoculation with an AM fungus.

  17. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity.

    Science.gov (United States)

    Wang, Yuanpeng; Huang, Jing; Gao, Yanzheng

    2012-01-01

    Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM) fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd) in alfalfa (Medicago sativa L.) that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25-60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg kg(-1) Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mgkg(-1) Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2-80.5%) in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation.

  18. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina).

    Science.gov (United States)

    Becerra, Alejandra; Zak, Marcelo R; Horton, Thomas R; Micolini, Jorge

    2005-11-01

    The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H(2)O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H(2)O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H(2)O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters.

  19. RAM1 and RAM2 function and expression during arbuscular mycorrhizal symbiosis and Aphanomyces euteiches colonization.

    Science.gov (United States)

    Gobbato, Enrico; Wang, Ertao; Higgins, Gillian; Bano, Syeda Asma; Henry, Christine; Schultze, Michael; Oldroyd, Giles E D

    2013-10-01

    The establishment of the symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi requires a very tight molecular dialogue. Most of the known plant genes necessary for this process are also required for nodulation in legume plants and only very recently genes specifically required for AM symbiosis have been described. Among them we identified RAM (Reduced Arbuscular Mycorrhization)1 and RAM2, a GRAS transcription factor and a GPAT respectively, which are critical for the induction of hyphopodia formation in AM fungi. RAM2 function is also required for appressoria formation by the pathogen Phytophtora palmivora. Here we investigated the activity of RAM1 and RAM2 promoters during mycorrhization and the role of RAM1 and RAM2 during infection by the root pathogen Aphanomyces euteiches. pRAM1 is activated without cell type specificity before hyphopodia formation, while pRAM2 is specifically active in arbusculated cells providing evidence for a potential function of cutin momomers in the regulation of arbuscule formation. Furthermore, consistent with what we observed with Phytophtora, RAM2 but not RAM 1 is required during Aphanomyces euteiches infection.

  20. Colonização micorrízica natural de porta-enxertos de citros em campo Natural mycorrhizal colonization of citrus rootstocks under field conditions

    Directory of Open Access Journals (Sweden)

    Maiara de Souza Nunes

    2006-03-01

    Full Text Available O objetivo deste trabalho foi avaliar, em campo, a colonização micorrízica de porta-enxertos tradicionais e híbridos de citros, do Programa de Melhoramento Genético de Citros, da Embrapa Mandioca e Fruticultura Tropical, selecionados como tolerantes à seca. Raízes finas de citros e amostras de solo foram coletadas em duas épocas do ano. A colonização micorrízica foi elevada nos dois pomares amostrados, com variação entre os genótipos e as épocas de avaliação. Todos os porta-enxertos apresentaram porcentagens elevadas de colonização micorrízica, de 42 a 83%, mesmo em condições de alto teor de fósforo no solo.The objective of this work was to evaluate the mycorrhizal colonization of citrus rootstocks (traditional and hybrid, in the field, selected as tolerant to water deficit by the Citrus Breeding Program of Embrapa Mandioca e Fruticultura Tropical. Fine roots and soil samples were collected in two seasons of the year. The mycorrhizal colonization was high in both citrus orchards sampled, and varied among the genotypes and the seasons of the year. All citrus rootstocks presented high percentages of root colonization, varying from 42 to 83%, even in high soil phosphorous conditions.

  1. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization.

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Sánchez-López, Rosana; Nava, Noreide; Santana, Olivia; Cárdenas, Luis; Quinto, Carmen

    2014-05-01

    The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. [Colonization and structure of arbuscular mycorrhizal fungi community in Alsophila firma (Cyatheales: Cyatheaceae) from a tropical montane cloud forest in Veracruz, México].

    Science.gov (United States)

    Lara-Pérez, Luis Alberto; Noa-Carrazana, Juan Carlos; López, Ángel de Jesús Landa; Hernández-González, Sergio; Oros-Ortega, Iván; Torres, Antonio Andrade

    2014-12-01

    Alsophila firma is a tree fern that is distributed mainly in tropical montane cloud forest (TMCF) and is considered as a threatened species. Arbuscular mycorrrhizal fungi (AMF) have been proposed as an alternative in rescue programs of endangered species. However, our knowledge about diversity of AMF and mycorrhizal status of the species of TMCF is limited. In Mexico TMCF shows different degrees of conservation because of fragmentation and land use change. In this study, we evaluated the level of colonization, richness and abundances of spores of AMF in three fragments with different conservation status: conserved (100 years), secondary vegetation (17 years) and disturbed. For this, soil samples and roots were collected from five individuals of A. firma per site, with at least 100 m away from each other; a total of 100 cm of roots were analysed per site. Root samples showed AMF and occasionally dark septate fungi (DSF) colonizations. For the overall study, 19 species of AMF were recorded: Gigaspora (7), Acaulospora (4), Glomus (4), Funneliformis (2), Sclerocystis (1) and Scutellospora (1). The dominant species in the three sites were Funneliformis geosporum and Acaulospora scrobiculata. The highest diversity (H') and evenness (J') (p 90%. The present study confirmed that A. firma is a mycorrhizal species that exhibits high levels of colonization even in disturbed sites. We suggest that F. geosporum and A. scrobiculata may have the potential to inoculate the gametophyte and young sporophyte of A. firma, to support restoration programs, because of their abundances and high tolerance to disturbed sites.

  3. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    Science.gov (United States)

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  4. Vesicular-arbuscular mycorrhiza in guayule

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, H.E.

    1980-01-01

    There is renewed interest in the cultivation of guayule (Parthenium argentatum A. Gray) as a domestic source of natural rubber. Guayule roots from Texas were observed for the presence of mycorrihizae. A symbiont identified as Glomus fasciculatus has been isolated. (ACR)

  5. Evidence of differences between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Alguacil, Maria del Mar; Torrecillas, Emma; Lozano, Zenaida; Roldán, Antonio

    2011-12-01

    Arbuscular mycorrhizal fungi (AMF) play important roles as plant protection agents, reducing or suppressing nematode colonization. However, it has never been investigated whether the galls produced in roots by nematode infection are colonized by AMF. This study tested whether galls produced by Meloidogyne incognita infection in Prunus persica roots are colonized by AMF. We also determined the changes in AMF composition and biodiversity mediated by infection with this root-knot nematode. DNA from galls and roots of plants infected by M. incognita and from roots of noninfected plants was extracted, amplified, cloned, and sequenced using AMF-specific primers. Phylogenetic analysis using the small-subunit (SSU) ribosomal DNA (rDNA) data set revealed 22 different AMF sequence types (17 Glomus sequence types, 3 Paraglomus sequence types, 1 Scutellospora sequence type, and 1 Acaulospora sequence type). The highest AMF diversity was found in uninfected roots, followed by infected roots and galls. This study indicates that the galls produced in P. persica roots due to infection with M. incognita were colonized extensively by a community of AMF, belonging to the families Paraglomeraceae and Glomeraceae, that was different from the community detected in roots. Although the function of the AMF in the galls is still unknown, we hypothesize that they act as protection agents against opportunistic pathogens.

  6. Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels?

    Science.gov (United States)

    Li, Ai-Rong; Guan, Kai-Yun; Stonor, Rebecca; Smith, Sally E; Smith, F Andrew

    2013-10-01

    Because most parasitic plants do not form mycorrhizal associations, the nutritional roles of arbuscular mycorrhizal (AM) fungi in them have hardly been tested. Some facultative root hemiparasitic Pedicularis species form AM associations and hence are ideal for testing both direct and indirect effects of AM fungi on their nutrient acquisition. The aim of this study was to test the influence of AM inoculation on phosphorus (P) uptake by Pedicularis rex and P. tricolor. (32)P labelling was used in compartmented pots to assess the contribution of the AM pathway and the influence of AM inoculation on P uptake from a host plant into the root hemiparasites. Laboratory isolates of fungal species (Glomus mosseae and G. intraradices) and the host species (Hordeum vulgare 'Fleet') to which the two Pedicularis species showed obvious responses in haustorium formation and growth in previous studies were used. The AM colonization of both Pedicularis spp. was low (plant P (fungi strongly interfered with P acquisition by both Pedicularis species from their host barley, almost certainly because the numbers of haustoria formed by the parasite were significantly reduced in AM plants. Roles of AM fungi in nutrient acquisition by root parasitic plants were quantitatively demonstrated for the first time. Evidence was obtained for a novel mechanism of preventing root parasitic plants from overexploiting host resources through AM fungal-induced suppression of the absorptive structures in the parasites.

  7. Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants Reduzida formação de micorrízas arbusculares em tomateiros mutantes em etileno

    Directory of Open Access Journals (Sweden)

    Agustin Zsögön

    2008-01-01

    Full Text Available Plant hormones are likely key regulators of arbuscular mycorrhizae (AM development. However, their roles in AM are not well known. Here mutants in five hormone classes introgressed in a single tomato (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L. background (cv. Micro-Tom were used to determine their effects on AM development and the expression of defense-related genes (chitinases and b-1,3-glucanases in roots. Under low P conditions, mutant epinastic (epi and Never ripe (Nr, ethylene overproducer and low sensitivity, respectively, had the intraradical colonization by Glomus clarum highly inhibited, as compared to the control Micro-Tom (MT. No significant alterations in fungal colonization were observed in mutants affecting other hormone classes. Under low P conditions, the steady state levels of transcripts encoding a class I basic chitinase (chi9 were higher in mycorrhizal epi and Nr mutant roots as compared to MT controls. In contrast the steady state levels of a class III acidic b-1,3-glucanase (TomPR-Q'a transcripts in mycorrhizal epi mutant roots were significantly lower than in mycorrhizal MT roots. Root colonization in epi mutants was accompanied by several alterations in fungal morphology, as compared to root colonization in MT controls. The data suggest that ethylene may play an important role in controlling intraradical arbuscular mycorrhizal fungal growth.Os hormônios vegetais são possíveis reguladores chave do desenvolvimento de micorrizas arbusculares (MAS. Contudo, seus papéis em MA são pouco conhecidos. No presente estudo, foram utilizados mutantes em cinco classes hormonais introgredidos em uma única cultivar (cv. Micro-Tom de tomateiro (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L. para determinar seus efeitos no desenvolvimento de MA e expressão de genes relacionados à defesa (quitinases e b-1,3-glucanases em raízes. Sob condição de baixo P, os mutantes epinastic (epi e Never ripe (Nr, os

  8. The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms.

    Science.gov (United States)

    Cheeke, Tanya E; Pace, Brian A; Rosenstiel, Todd N; Cruzan, Mitchell B

    2011-02-01

    Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita.

    Science.gov (United States)

    Kojima, Tomoko; Saito, Masanori

    2004-06-01

    We developed a method for separating physiologically active intraradical hyphae of arbuscular mycorrhizal (AM) fungi from mycorrhizal roots, allowing the hyphae to be used for physiological and biochemical experiments. In the present study, the phosphate efflux from the intraradical hyphae in vitro was examined in relation to hyphal phosphatase activity. Onion seedlings (Allium cepa) were planted in the soil inoculated with Gigaspora margarita. Six weeks after transplanting, the intraradical hyphae were isolated from the mycorrhizal roots using plant cell-wall digestion enzymes. The hyphae were incubated briefly at 25 degrees C in a buffer solution (50 mM Tris/HCl, pH 7.4), then incubated for 2 h and gently shaken with various inhibitors. Phosphate efflux, the amount of phosphate released to the buffer, was analysed by EnzChek phosphate assay kit. Hyphal phosphatase activity was stained histochemically and the proportion of phosphatase-active arbuscules was examined for each inhibitor. Phosphate effluxes were to some degree reduced by all inhibitors used, while the phosphatase inhibitor, BeSO4, greatly reduced the efflux. The degree of inhibition in the arbuscular phosphatase by each chemical was closely correlated to the decrease in the phosphate efflux. These results suggest that hyphal phosphatase may be partially involved in the phosphate efflux process from intraradical hyphae.

  10. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  11. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  12. Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation.

    Science.gov (United States)

    Higo, Masao; Isobe, Katsunori; Miyazawa, Yusuke; Matsuda, Yukiya; Drijber, Rhae A; Torigoe, Yoichi

    2016-02-01

    A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.

  13. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  14. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R. [Universite du Littoral-Cote d' Opale, Lab. de Mycologie/Phytopathologie/Environnement, 62 - Calais (France)

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants found in many environments as result of the incomplete combustion of organic matter, and some of them are of great environmental concern due to their highly cytotoxic, genotoxic and carcinogenic properties for mammals. PAHs are thermodynamically stable and recalcitrant to microbial degradation, due to their aromatic nature and low aqueous solubility. Ecologically and economically speaking, plants have tremendous potential for bio-remediation of PAH-contaminated soils. The effect of plant roots on the dissipation of organic pollutants has mainly been attributed to an increase in microbial population and selection of specialized microbial communities in the rhizosphere, and also by improving physical and chemical soil conditions. Arbuscular mycorrhizal (AM) fungi living in symbiosis with plant roots play an essential role in plant nutrition and stress tolerance. AM plants are known to be involved in the biodegradation of pollutants such as PAHs. The role of AM fungi concerns two aspects: the improvement of the establishment and development of plants on polluted soil and the enhancement of PAHs degradation levels. AM colonization of different plant species is negatively affected when the plants are grown in contaminated soils. Nevertheless the AM colonization was shown to enhance plant survival and growth. Objectives of this work was to study the impact of PAHs on the development of G. intraradices and on the colonization of chicory (Cichorium intybus L.) and carrot (Daucus carota L.) roots transformed by Agrobacterium rhizogenes. Monoxenous root cultures have obvious advantages over traditional systems. This technique provides unique visualization of extra-radical fungus development and also allows an important production of extra-radical hyphae, spores and colonized roots free of any other microorganisms. These aspects are important to evaluate direct impact of PAHs on AM fungal

  15. Diversity of arbuscular mycorrhizal fungi in Camellia sinensis in ...

    African Journals Online (AJOL)

    A study of diversity of arbuscular mycorrhizal fungi in Camellia sinensis was conducted in four plantation territories of Uttarakhand. Microscopic analysis of the mycorrhizal status of roots has revealed that samples from all four locations belonged only to AM fungi. The mycorrhizal colonization level was found high thus ...

  16. EFFECT OF ARBUSCULAR MYCORRHIZAL COLONIZATION ON EARLY GROWTH AND NUTRIENT CONTENT OF TWO PEAT­ SWAMP FOREST TREE SPECIES SEEDLINGS, Calophyllum hosei AND Ploiarium alternifolium

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-03-01

    Full Text Available Tropical peat-swamp forests are one of  the largest near-surface reserves of terrestrial organic carbon,  but rnany peat-swamp forest tree species decreased due over-exploitation, forest fire and conversion of natural forests into agricultural lands. Among those species are slow-growing Calophyllum  hoseiand Ploiarium  alternifolium, two species are good for construction of boats, furniture, house building and considerable attention from pharmacological viewpoint for human healthly. This study was aimed at understanding the effects of arbuscular mycorrhizal (AM fungi on early growth of  C. hosei and P.alternifoliumunder greenhouse condition. Seedlings of C. hosei and P.alternifoliumwere inoculated with AM fungi: Glomus clarum and Glomus aggregatum ,or uninoculated under greenhouse condition during 6 months. AM colonization,   plant growth,  survival rate and  nutrient  content  (P, Zn  and B were measured. The percentage of C. hoseiand P.alternifolium ranged from 27-32% and 18-19%,  respectively. Both inoculated seedling species had greater plant  height, diameter, leaf number, shoot and root dry weight than control  seedlings.   Nutrient  content  of  inoculated  plants  were increased with AM colonization- Survival rates of  inoculated plants were higher (100%  than those of  control plants (67%. The results suggested that inoculation of AM fungi could improve the early growth of C. hoseiand P.alternifolium grown in tropical peat-swamp forest therefore  this finding has greater potential impact if this innovative technology applied in field scales which are socially acceptable, commercially profitable and environmentally friendly.

  17. Plant mycorrhizal traits and carbon fates from plot to globe

    Science.gov (United States)

    Soudzilovskaia, N.; Cornelissen, H. H. C.

    2016-12-01

    Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and

  18. Nodulation, arbuscular mycorrhizal colonization and growth of some legumes native from Brazil Nodulação, colonização micorrízica arbuscular e crescimento de algumas leguminosas nativas do Brasil

    Directory of Open Access Journals (Sweden)

    Camila M. Patreze

    2005-09-01

    Full Text Available The effects of rhizobial and mycorrhizal inoculation, nitrogen and phosphorus fertilization on nodulation, mycorrhizal colonization and initial growth were examined in Brazilian native plants, Enterolobium contortisiliquum (Vell. Conc. Morong, Inga laurina (Sw. Willd., Lonchocarpus muehlbergianus Hassl and Platypodium elegans Vogel. The experiment was carried out in a glasshouse using plastic bags filled with a mixture of sandy soil from riparian forest and vermiculite (2:1 amended with basal nutrients including NP, P and N and infected with rhizobia (r, mycorrhiza (m or both (rm, amounting seven treatments: NP, P, P+r, P+rm, N, N+m and N+rm, with ten replications each. The plants were analyzed at 120 and 255 days after sowing. P deficiency negatively affected growth and nodulation of all species. Autochton arbuscular mycorrhizal fungi (AMF colonized host roots and fungal inoculations did not enhance mycorrhizal colonization, which was also favored by added P. Nodulation was relatively higher in E. contortisiliquum and L. muehlbergianus, mainly in treatments containing P, and with rhizobial inoculation (P+r. Plants from these treatments developed better than others and, despite the rhizobia inoculated had no synergistic relationship with inoculated AMF, they also showed the best percentages of mycorrhizal colonization. Moreover, these two species showed highest rates of acetylene reduction and highest leghemoglobin content. These results suggest that E. contortisiliquum and L. muehlbergianus can have advantages for establishment in soils with low nitrogen levels.Foram examinados os efeitos da inoculação com rizóbio e micorriza, da fertilização com nitrogênio e fósforo na nodulação, na colonização micorrízica e no crescimento inicial das leguminosas arbóreas brasileiras Enterolobium contortisiliquum (Vell. Conc. Morong, Inga laurina (Sw. Willd., Lonchocarpus muehlbergianus Hassl e Platypodium elegans Vogel. O experimento foi

  19. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    Science.gov (United States)

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  20. Antioxidant defenses of mycorrhizal fungus infection against SO(2)-induced oxidative stress in Avena nuda seedlings.

    Science.gov (United States)

    Huang, L L; Yang, C; Zhao, Y; Xu, X; Xu, Q; Li, G Z; Cao, J; Herbert, S J; Hao, L

    2008-11-01

    Colonization of arbuscular mycorrhizal fungi Glomus mosseae increased Avena nuda seedling tolerance to SO(2) exposure, as indicated by elevated total plant biomass and ameliorative photosynthetic rate, when compared to the non-mycorrhizal plants. This is associated with an improved antioxidant capacity as shown by enhanced superoxide dismutase and catalase activity, increased ascorbic acid and glutathione content, and reduced malondialdehyde and hydrogen peroxide level in the mycorrhizal plants relative to the non-mycorrhizal plants under SO(2) exposure. The mycorrhizal fungi colonization had no effect on the stomatal conductance. To our knowledge, this is the first finding of this sort.

  1. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Coffea ...

    African Journals Online (AJOL)

    Objective: This study describes the status of mycorrhizal fungi in coffee (Coffea arabica) in the Yemeni ecosystems. Methodology and results: Soil samples were extracted from the rhizosphere of the coffee tree groves in several regions of Yemen. The frequency and the level of colonization of the arbuscular mycorrhizal fungi ...

  2. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies both in tree species as well as in two different nurseries. This variation is attributed to various factors such ...

  3. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  4. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods.

    Science.gov (United States)

    Gehring, Catherine A; Mueller, Rebecca C; Whitham, Thomas G

    2006-08-01

    Although both environment and genetics have been shown to affect the mycorrhizal colonization of host plants, the impacts of these factors on hosts that can be dually colonized by both ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi are less understood. We examined the influence of environment and host crosstype on the EM and AM colonization of cottonwoods (Populus angustifolia and natural hybrids) by comparing levels of colonization of trees growing in common gardens that differed in elevation and soil type. We also conducted a supplemental watering experiment to determine the influence of soil moisture on AM and EM colonization. Three patterns emerged. First, garden location had a significant impact on mycorrhizal colonization, such that EM colonization was 30% higher and AM colonization was 85% lower in the higher elevation garden than the lower elevation garden. Second, crosstype affected total (EM + AM) colonization, but did not affect EM or AM colonization. Similarly, a significant garden x crosstype interaction was found for total colonization, but not for EM or AM colonization. Third, experimental watering resulted in 33% higher EM colonization and 45% lower AM colonization, demonstrating that soil moisture was a major driver of the mycorrhizal differences observed between the gardens. We conclude that environment, particularly soil moisture, has a larger influence on colonization by AM versus EM fungi than host genetics, and suggest that environmental stress may be a major determinant of mycorrhizal colonization in dually colonized host plants.

  5. Glyphosate drift affects arbuscular mycorrhizal association in coffee

    OpenAIRE

    Carvalho,F.P.; Souza,B.P.; França,A.C.; Ferreira,E.A.; Franco,M.H.R.; Kasuya,M.C.M.; Ferreira,F.A.

    2014-01-01

    Mycorrhizal association promotes better survival and nutrition of colonized seedling on field, and consequently, increasing of productivity. However, the weed management can interfere on this association, due to incorrect use of glyphosate. This work has assessed the effects of glyphosate drift on the growth and nutrition of arabica coffee plants (Catuaí Vermelho - IAC 99) colonized with arbuscular mycorrhizal fungi (AMF). The experiment was conducted in 2 x 5 factorial scheme, and included i...

  6. Influence of vesicular arbuscular mycorrhiza (VAM) and phosphate ...

    African Journals Online (AJOL)

    User

    2013-09-18

    Sep 18, 2013 ... Organic wastes and biofertilizers are alternate sour- ... consequence of regular application of chemical fertilizers. However, a large proportion of soluble inorganic phos- phate added to soil is rapidly fixed as insoluble forms.

  7. Effect of solarization and vesicular arbuscular mychorrizal on weed ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... To determine VAM before testing in laboratory, VAM dutied like a bridge from donor lettuce to receiver wild mustard (Sinapsis arvensis L.) as observed in the experiment because mustrad has no symbiosis life with this fungus. Also the laboratory findings supported this; the number of spores, number of VAM.

  8. Effect of solarization and vesicular arbuscular mychorrizal on weed ...

    African Journals Online (AJOL)

    mustard (Sinapsis arvensis L.) as observed in the experiment because mustrad has no symbiosis life with this fungus. Also the laboratory findings supported this; the number of spores, number of VAM infected and infection rate were higher both in main parcel of solarized and in the subplot parcel planted with VAM ...

  9. Growth response of Pterocarpus soyauxii and Lophira alata seedlings to host soil mycorrhizal inocula in relation to land use types.

    NARCIS (Netherlands)

    Onguene, N.A.; Ngonkeu, L.E.M.; Kuyper, T.W.

    2011-01-01

    Deficiency in mycorrhizal inoculum in soils due to land use types (LUT) can be alleviated by quantity and quality inoculum addition. A bioassay was carried out to determine how host soil mycorrhizal inoculum influenced mycorrhizal colonization, carbon allocation and partitioning of seedlings of two

  10. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  11. Fungos micorrízicos vesículo-arbusculares em rizosferas de plantas em dunas do Parque Estadual da Ilha do Cardoso, São Paulo, Brasil: (1 Taxonomia Vesicular-arbuscular mycorrhizal fungi from rhizospheres of dunes plants of Parque Estadual da Ilha do Cardoso, São Paulo State, Brazil (1: taxonomy

    Directory of Open Access Journals (Sweden)

    S. F. B Trufem

    1989-01-01

    Full Text Available De março/1988 a março/1989, mensalmente, foram coletadas o total de 450 amostras de solo de rizosferas de plantas de dunas do Parque Estadual da Ilha do Cardoso, Estado de Sáo Paulo, com a finalidade de se verificar a ocorrência de fungos micorrízicos vesículo-arbusculares (MVA. As plantas mais constantemente investigadas foram: Baccharis trimera DC. (Compositae, Blutaparon portulacoides (St. Hü. Mears (Amaranthaceae, Dalbergia hecastaphylla (L. Taub. (Legurninosae, Hydrocotyle bonariensis Lam. (Umbelliferae,Ipomoeapes-caprae (L.Sweet(Convolvulaceae, Polygaid cyparisseas St. Hül & Moq. (Polygalaceae, além de gramíneas, ciperáceas e outras, que foram coletadas mais esporadicamente. O solo foi tratado pela técnica de decantação e peneiramento em via úmida. Foram verificados 14 taxons de fungos MVA: Acaulospora scrobiculata Trappe, Acaulospora tuberculata Janos & Trappe, Cigaspora gigantea (Nicol. & Gerd. Gerd. & Trappe, Glomus fasciculatum (Thaxter Gerd. & Trappe emend. Walker & Koske, Glomus globiferum Koske & Walker, Glomus monosporum Gerd. & Trappe, Sclerocystis sinuosa Gerd. & Bakshi, Scutellospora calospora (Nicol & Gerd Walker & Sanders, Scutellospora coralloidea (Trappe, Gerd. & Ho (Walker & Sanders, Scutellospora gilmorei (Trappe & Gerd. Walker & Sanders, Scutellospora gregaria (Schenck & Nicol. Walker & Sanders, Scutellospora pérsica (Koske & Walker Walker & Sanders, Scutellospora verrucosa Koske & Walker Walker & Sanders e Scutellospora sp. São apresentadas descrições taxonómicas, comentarios e murônimos dos taxons verificados.Monthly, from March/1988 to March/1989 were collected the total of 450 soil samples from rhizospheres of plants from dunes of Parque Estadual da Ilha do Cardoso, São Paulo State, Brazil, to report the occurrence of VANÍ fungus. The investigated plants were: Baccharis trímera DC. (Compositae, Blutaparon portulacoides (St. Hil. Mears (Amaranthaceae, Dalbergia hecastaphylla (L. Taub. (Legumiosae, Hydrocotyle bonariensis Lam. (Umbelliferae, Ipomoea pes-caprae (L. Sweet (Convolvulaceae, Polygala cyparisseas St. Hill & Moq. (Polygalaceae; Gramineae, Cyperaceae and other plants were occasionaly collected. The soil was prepared according the wet sieving and decanting technique. It was observed the following 14 taxa of VA M fungüs: Acaulospora scrobiculata Trappe, Acaulospora tuberculata Janos & Trappe, Gigaspora gigantea (Nicol. & Gerd Gerd & Trappe, Glomus fasciculatum (Thaxter Gerd. & Trappe emend. Walker & Koske, Glomus globiferum Koske & Walker, Glomus monosporum Gerd. & Trappe, Sclerocystís sinuosa Gerd. & Bakshi, Scutellospora calospora (Nicol. & Gerd. Walker & Sanders, Scutellospora collaroidea (Trappe, Gerd. & Ho Walker & Sanders, Scutellospora gilmorei (Trappe & Gerd. Walker & Sanders, Scutellospora gregaria (Schénck & Nicol. Walker & Sanders, Scutellospora pérsica (Koske & Walker Walker & Sanders, Scutellospora verrucosa (Koske & Walker Walker & Sanders and Scutellospora sp. Are presented taxonomical, coments and muronyms of the studied taxa.

  12. Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Leyval, C.; Binet, P. [H. Poincare University, Vandoeuvre-les-Nancy (France). Centre de Pedologie Biologique

    1998-03-01

    The rhizosphere of plants plays a role in the bioremediation of soils polluted with organic pollutants such as polyaromatic hydrocarbons (PAHs). Arbuscular mycorrhizal (AM) fungi provide a direct link between soil and plant roots, but very little is known of the interactions between PAHs and AM fungi. The effect of PAHs on mycorrhizal colonization in polluted soil were studied and the effect of AM fungi on plant growth in these soils. Lee (Allium porrum L.), maize (Zea mays L.), ryegrass (Lolium perenne L.), and clover (Trifolium subterraneum L.) were grown in pots containing a soil artificially contaminated with increasing concentrations of anthracene or mixed with an industrial soil polluted with PAHs. Mycorrhizal colonization by the indigenous AM population of the nonpolluted soil was not significantly affected by the addition of anthracene up to 10 g kg{sup -1}. However, mycorrhizal colonization of clover and leek decreased when the industrial soil was added to the nonpolluted soil, while maize and ryegrass colonization was not affected. The effect of PAHs on plant survival and growth depended on plant species. Inoculation of ryegrass with Glomus mosseae improved plant survival and plant growth in the industrially polluted soil. At 5 g of PAH kg{sup -1} only mycorrhizal plants survived. Mycorrhizal fungi may contribute to the establishment and maintenance of plants in PAH-polluted soils. 34 refs., 3 figs., 4 tabs.

  13. Arbuscular mycorrhizal fungi species associated with rhizosphere of ...

    African Journals Online (AJOL)

    A survey of arbuscular mycorrhizal fungi (AMF) diversity and date palm (Phoenix dactylifera L.) tree root colonization in arid areas was undertaken in ten palm groves located along the Ziz valley (Tafilalet, south-west Morocco). The frequency and the mean intensity of root colonization reached 72 and 43% respectively and ...

  14. Root colonization of bait plants by indigenous arbuscular mycorrhizal fungal communities is not a suitable indicator of agricultural land-use legacy

    Czech Academy of Sciences Publication Activity Database

    Jansa, Jan; Řezáčová, Veronika; Šmilauer, P.; Oberholzer, H.-R.; Egli, S.

    2016-01-01

    Roč. 231, SEPTEMBER (2016), s. 310-319 ISSN 0167-8809 R&D Projects: GA ČR GAP504/12/1665; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Geography * Root colonization Subject RIV: EE - Microbiology, Virology Impact factor: 4.099, year: 2016

  15. The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (Glomus spp.) trigger resistance against white rot (Sclerotinia sclerotiorum) in sunflower.

    Science.gov (United States)

    Bán, Rita; Baglyas, Gellért; Virányi, Ferenc; Barna, Balázs; Posta, Katalin; Kiss, József; Körösi, Katalin

    2017-03-01

    White rot caused by Sclerotinia sclerotiorum (SS) is one of the most devastating plant diseases of sunflower. Controlling this pathogen by available tools hardly result in acceptable control. The aim of this study was to elucidate the effects of plant resistance inducers, BTH (benzothiadiazole in Bion 50 WG) and arbuscular mycorrhizal fungi (AMF) on disease development of white rot in three sunflower genotypes. Defence responses were characterized by measuring the disease severity and identifying cellular/histological reactions (e.g. autofluorescence) of host plants upon infection. Depending on the host genotype, a single application of inducers reduced disease symptoms. Histological examination of host responses revealed that BTH and/or AMF pre-treatments significantly impeded the development of pathogenic hyphae in Iregi szürke csíkos and P63LE13 sunflower plants and it was associated with intensive autofluorescence of cells. Both localized and systemic induction of resistance was observed. Importantly, the frequency of mycorrhization of hybrid P63LE13 and PR64H41 was significantly increased upon BTH treatment, so it had a positive effect on the formation of plant-mycorrhiza interactions in sunflower. To our knowledge, this is the first report on the additive effect of BTH on mycorrhization and the positive effect of these inducers against SS in sunflower.

  16. The interactive effect of phosphorus and nitrogen on "in vitro" spore germination of Glomus etunicatum Becker & Gerdemann, root growth and mycorrhizal colonization

    Directory of Open Access Journals (Sweden)

    Bressan Wellington

    2001-01-01

    Full Text Available The effects of P and N amendment and its interactions on spore germination, root growth and colonized root length by Glomus etunicatum Becker & Gerdemann (INVAM S329 was studied "in vitro" in RiT - DNA transformed roots of Anthylis vulneraria sub sp. Sampaiana (Kidney vetch. Three N media concentrations (5, 10 and 50 mg/l at P constant level (2 mg/l and three P media concentrations (2, 10 and 20 mg/l at N constant level (5 mg/l were utilized as a treatment. Bécard & Fortin medium was used as a basal medium for root growth and colonized root length, and water/agar (0.8% media was the control for spore germination. Spore germination of G. etunicatum at low P level was reduced by N addition in relation to the control media, and at low N level addition of P stimulated spore germination. Total root length was stimulated by N addtion at low P level, but no significant difference (p£0.05 was observed between 10 and 50 mg/l of N. P addition at low N level media also stimulated total root growth, and a significant difference (p£0.05 was observed among P concentrations. Colonized root length by G. etunicatum increased significantly (p£0.05 with P additions at low N levels. Under low P level no significant differences was found between 10 and 50 mg/l of N. These results demonstrate that the interaction between P and N affect differently spore germination, root growth and colonized root lenght.

  17. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots

    Science.gov (United States)

    Courty, P. E.; Labbé, J.; Kohler, A.; Marçais, B.; Bastien, C.; Churin, J. L.; Garbaye, J.; Le Tacon, F.

    2011-01-01

    The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F1 individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner. PMID:20881013

  18. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula

    Science.gov (United States)

    Konvalinková, Tereza; Püschel, David; Janoušková, Martina; Gryndler, Milan; Jansa, Jan

    2015-01-01

    Plant and fungal partners in arbuscular mycorrhizal symbiosis trade mineral nutrients for carbon, with the outcome of this relationship for plant growth and nutrition being highly context-dependent and changing with the availability of resources as well as with the specific requirements of the different partners. Here we studied how the model legume Medicago truncatula, inoculated or not with a mycorrhizal fungus Rhizophagus irregularis, responded to a gradient of light intensities applied over different periods of time, in terms of growth, phosphorus nutrition and the levels of root colonization by the mycorrhizal fungus. Short-term (6 d) shading, depending on its intensity, resulted in a rapid decline of phosphorus uptake to the shoots of mycorrhizal plants and simultaneous accumulation of phosphorus in the roots (most likely in the fungal tissues), as compared to the non-mycorrhizal controls. There was, however, no significant change in the levels of mycorrhizal colonization of roots due to short-term shading. Long-term (38 d) shading, depending on its intensity, provoked a multitude of plant compensatory mechanisms, which were further boosted by the mycorrhizal symbiosis. Mycorrhizal growth- and phosphorus uptake benefits, however, vanished at 10% of the full light intensity applied over a long-term. Levels of root colonization by the mycorrhizal fungus were significantly reduced by long-term shading. Our results indicate that even short periods of shade could have important consequences for the functioning of mycorrhizal symbiosis in terms of phosphorus transfer between the fungus and the plants, without any apparent changes in root colonization parameters or mycorrhizal growth response, and call for more focused research on temporal dynamics of mycorrhizal functioning under changing environmental conditions. PMID:25763002

  19. Potential to breed for mycorrhizal association in durum wheat.

    Science.gov (United States)

    Ellouze, Walid; Hamel, Chantal; DePauw, R M; Knox, R E; Cuthbert, Richard D; Singh, Asheesh K

    2016-03-01

    The selection of genotypes under high soil fertility may alter the effectiveness of mycorrhizal symbioses naturally forming between crop plants and the mycorrhizal fungi residing in cultivated fields. We tested the hypothesis that the mycorrhizal symbiosis of 5 landraces functions better than the mycorrhizal symbiosis of 27 cultivars of durum wheat that were bred after the development of the fertilizer industry. We examined the development of mycorrhiza and the response of these genotypes to mycorrhiza formation after 4 weeks of growth under high and low soil fertility levels in the greenhouse. The durum wheat genotypes were seeded in an established extraradical hyphal network of Rhizophagus irregularis and in a control soil free of mycorrhizal fungi. The percentage of root length colonized by mycorrhizal fungi was lower in landraces (21%) than in cultivars (27%; P = 0.04) and in the most recent releases (29%; P = 0.02), which were selected under high soil fertility levels. Plant growth response to mycorrhiza varied from -36% to +19%. Overall, durum wheat plant breeding in Canada has increased the mycorrhizal development in wheat grown at a low soil fertility level. However, breeding had inconsistent effects on mycorrhizal development and has led to the production of cultivars with patterns of regulation ranging from unimproved to inefficient.

  20. Responses of mycorrhizal fungi and other rootassociated fungi to climate change

    DEFF Research Database (Denmark)

    Merrild, Marie Porret

    Climate change is expected to affect many terrestrial ecosystem processes. Mycorrhizal fungi are important to soil carbon (C) and nutrient cycling thus changes in abundance of mycorrhizal fungi could alter ecosystem functioning. The aim of the present thesis was therefore to investigate responses...... of mycorrhizal fungi to climate change in a seasonal and long-term perspective. Effects of elevated CO2 (510 ppm), night-time warming and extended summer drought were investigated in the long-term field experiment CLIMAITE located in a Danish semi-natural heathland. Mycorrhizal colonization was investigated...... levels. Colonization by arbuscular mycorrhizal (AM) fungi increased under elevated CO2 and warming in spring while ericoid mycorrhiza (ErM) colonisation decreased in response to drought and warming. Increased AM colonization correlated with higher phosphorus and nitrogen root pools. Dark septate...

  1. Systematic Identification, Evolution and Expression Analysis of the Zea mays PHT1 Gene Family Reveals Several New Members Involved in Root Colonization by Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Liu, Fang; Xu, Yunjian; Jiang, Huanhuan; Jiang, Chaosheng; Du, Yibin; Gong, Cheng; Wang, Wei; Zhu, Suwen; Han, Guomin; Cheng, Beijiu

    2016-06-13

    The Phosphate Transporter1 (PHT1) family of genes plays pivotal roles in the uptake of inorganic phosphate from soils. However, there is no comprehensive report on the PHT1 family in Zea mays based on the whole genome. In the present study, a total of 13 putative PHT1 genes (ZmPHT1;1 to 13) were identified in the inbred line B73 genome by bioinformatics methods. Then, their function was investigated by a yeast PHO84 mutant complementary experiment and qRT-PCR. Thirteen ZmPHT1 genes distributed on six chromosomes (1, 2, 5, 7, 8 and 10) were divided into two paralogues (Class A and Class B). ZmPHT1;1/ZmPHT1;9 and ZmPHT1;9/ZmPHT1;13 are produced from recent segmental duplication events. ZmPHT1;1/ZmPHT1;13 and ZmPHT1;8/ZmPHT1;10 are produced from early segmental duplication events. All 13 putative ZmPHT1s can completely or partly complement the yeast Pi-uptake mutant, and they were obviously induced in maize under low Pi conditions, except for ZmPHT1;1 (p < 0.01), indicating that the overwhelming majority of ZmPHT1 genes can respond to a low Pi condition. ZmPHT1;2, ZmPHT1;4, ZmPHT1;6, ZmPHT1;7, ZmPHT1;9 and ZmPHT1;11 were up-regulated by arbuscular mycorrhizal fungi (AMF), implying that these genes might participate in mediating Pi absorption and/or transport. Analysis of the promoters revealed that the MYCS and P1BS element are widely distributed on the region of different AMF-inducible ZmPHT1 promoters. In light of the above results, five of 13 ZmPHT1 genes were newly-identified AMF-inducible high-affinity phosphate transporters in the maize genome. Our results will lay a foundation for better understanding the PHT1 family evolution and the molecular mechanisms of inorganic phosphate transport under AMF inoculation.

  2. Arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  3. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi

    Science.gov (United States)

    Asrar, Abdul-Wasea A.; Elhindi, Khalid M.

    2010-01-01

    The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  4. Plant mycorrhizal traits in Europe in relation to climatic and edaphic gradients

    Science.gov (United States)

    Guillermo Bueno, C.; Gerz, Maret; Zobel, Martin; Moora, Mari

    2017-04-01

    Around 90% of plant species associate with mycorrhizal fungi. The symbiosis is known to provide plants with soil N, P and water, and fungi with plant photosynthesized carbohydrates. However, not all mycorrhizal symbioses are identical. The identity of associated plant and fungal species differs, as does the effect of the symbiosis on nutrient cycling and ecosystems more generally. In this study, we analysed the European distribution of two plant mycorrhizal traits in relation to climatic and edaphic drivers. We used the European distribution of the frequency of mycorrhizal colonization (plant mycorrhizal status); whether mycorrhizal fungi either always (obligately mycorrhizal, OM), or sometimes (facultatively mycorrhizal, FM) colonize plant roots, and the four main plant mycorrhizal types; arbuscular (AM), ecto-(ECM), ericoid (ERM), and non-mycorrhizal (NM) plants. We expected AM species to predominate in ecosystems where most soil nutrients occur in inorganic forms (lower latitudes) and those with higher soil pH. By contrast, due to the saprophytic abilities of ECM and ERM fungi, we expected ECM and ERM plants to predominate in ecosystems where nutrients are bound to organic compounds (higher latitudes) and those with lower soil pH. NM plant species are known to be common in disturbed habitats or in extremely phosphorus poor ecosystems, such as the Arctic tundra. Our results showed that the distribution of mycorrhizal types was driven by temperature and soil pH, with increases of NM, ECM and ERM, and decreases of AM, with latitude. FM predominated over OM species and this difference increased with latitude and was dependent on temperature drivers only. These results represent the first evidence at a European scale of plant mycorrhizal distribution patterns linked with climatic and edaphic gradients, supporting the idea of a tight relationship between the mycorrhizal symbiosis and nutrient cycling.

  5. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  6. Metabolic transition in mycorrhizal tomato roots

    Science.gov (United States)

    Rivero, Javier; Gamir, Jordi; Aroca, Ricardo; Pozo, María J.; Flors, Víctor

    2015-01-01

    Beneficial plant–microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography–mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed. PMID:26157423

  7. Seasonal Dynamics of Arbuscular Mycorrhizal Fungal Communities in Roots in a Seminatural Grassland▿ †

    OpenAIRE

    Santos-González, Juan C.; Finlay, Roger D.; Tehler, Anders

    2007-01-01

    Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulga...

  8. Arbuscular Mycorrhizal Fungi Promote the Growth of Ceratocarpus arenarius (Chenopodiaceae) with No Enhancement of Phosphorus Nutrition

    OpenAIRE

    Zhang, Tao; Shi, Ning; Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the lar...

  9. Colonização micorrízica e nodulação radicular em mudas de sabiá (Mimosa caesalpiniaefolia Benth. sob diferentes níveis de salinidade Mycorrhizal colonization and root nodulation in sabiá seedlings (Mimosa caesalpiniaefolia Benth. at different salinity levels

    Directory of Open Access Journals (Sweden)

    Rodrigo Castro Tavares

    2012-09-01

    Full Text Available O sabiá (Mimosa caesalpiniaefolia Benth. é uma espécie vegetal nativa do nordeste brasileiro e reúne algumas características fundamentais para compor programas de reabilitação de áreas salinizadas, principalmente quanto associado aos fungos micorrízicos arbusculares (FMAs e a bactérias fixadoras de nitrogênio (BFN. O objetivo do presente estudo foi avaliar a colonização micorrízica e a nodulação radicular de mudas de sabiá adubadas com composto orgânico e irrigadas com águas de diferentes condutividades elétricas. O experimento foi conduzido em casa de vegetação, com delineamento experimental inteiramente casualizado, em esquema fatorial com 2 (presença e ausência de fungos micorrízicos arbusculares x 2 (presença e ausência de composto orgânico x 5 níveis de condutividade elétrica da água de irrigação (0,7; 1,2; 2,2; 3,2 e 4,2 dS m-1, com 3 repetições. Os resultados obtidos indicam que: a salinidade reduziu a colonização micorrízica e a nodulação radicular das mudas de sabiá; a intensificação das condições de estresse salino aumentaram a dependência micorrízica das mudas de sabiá; a colonização das mudas de sabiá com os FMAs proporcionou aumentos na matéria seca dos nódulos radiculares da ordem de 1900%; as micorrizas arbusculares reduziram o pH após o cultivo do solo; e a adição de vermicomposto não promoveu efeito sobre a colonização micorrízica das mudas de sabiá, entretanto, aumentou a produção de matéria seca dos nódulos radiculares.The sabiá (Mimosa caesalpiniaefolia Benth. is a plant species native to the Brazilian northeast and brings together some fundamental features for use in rehabilitation programs of salinized areas, especially if associated with arbuscular mycorrhizal fungi (AMF and nitrogen-fixing bacteria (BFN. The aim of this study was to evaluate the mycorrhizal colonization and root nodulation of sabiá seedlings fertilized with organic compost and irrigated

  10. Alterations of the Antioxidant Enzyme Activities are not General Characteristics of the Colonization Process by Arbuscular Mycorrhizal Fungi Alteraciones de las Actividades de Enzimas Antioxidantes no son Características Generales del Proceso de Colonización por Hongos Micorrízicos Arbusculares

    Directory of Open Access Journals (Sweden)

    Yakelin Rodríguez

    2012-09-01

    Full Text Available Antioxidant system is involved in arbuscular mycorrhizal symbiosis, but its role during the colonization process is still poorly understood. To gain new insights into the role of antioxidant system during root colonization by arbuscular mycorrhizal fungi, the activities of key antioxidant enzymes were evaluated in tomato (Solanum lycopersicum L. roots inoculated with six strains of different genera and species: two Glomus mosseae, Glomus cubense, Glomus intraradices, Glomus sp. and Acaulospora scrobiculata. Glomus cubense and A. scrobiculata strains reached the highest infectivity levels with maximum values of colonization frequency and intensity of 29-10.88% and 18-9.20%, respectively; G. mosseae strains showed an intermediate infectivity, both with 15% of colonization frequency and maximum intensities of 7.647.06%, respectively; while the infectivity levels of Glomus sp. and G. intraradices strains were the lowest with colonization frequency- 13% and intensities- 5.07 and 5.41, respectively. Some activity patterns of peroxidase, superoxide dismutase, and polyphenol oxidase enzymes were not specific for early or late colonization stages neither for the colonization level and type of strain. However, a unique superoxide dismutase-band presents at early colonization and the low level of guaiacol-peroxidase activity at later stages presents in all inoculated roots indicate that these antioxidant responses are independent of colonization degree and strain. Taking together, our data suggest that alterations of the antioxidant enzyme activities are not general characteristics of the colonization process by arbuscular mycorrhizal fungi, probably having the key role on those responses the specific feature of each strain rather than colonization per se.El sistema antioxidante está involucrado en la simbiosis micorrízico-arbuscular, pero su rol durante el proceso de colonización es aún escasamente comprendido. Para esclarecer el papel del sistema

  11. Mycorrhizal colonization, spore density and diversity of arbuscular mycorrhizal fungi in Cerrado soil under no-till and conventional tillage systemsColonização micorrízica, densidade de esporos e diversidade de fungos micorrízicos arbusculares em solo de Cerrado sob plantio direto e convencional

    Directory of Open Access Journals (Sweden)

    José Luiz Rodrigues Torres

    2012-04-01

    Full Text Available The quest for sustainability in agricultural production through conservation management practices such as no-tillage, has favored the biochemical processes of soil, such as soil arbuscular mycorrhizal fungi (AMFs, which promote a significant increase in specific surface absorption of the root system of plants. The objective of this study was to evaluate the root colonization, spore density and diversity of AMFs in rhizosphere of corn and soybean grown under no-tillage with different cover crops and compared an area conventional tillage and fallow, in Uberaba, state of Minas Gerais. The corn and soybeans were rotated with millet, crotalaria and brachiaria. The experimental design was randomized blocks, with split plots. The experiment was established in 2000, and in 2007 assessed the colonization (COL and spore density (ESP (0.0-0.05m and 0.05-0.10m. In the layer of 0.0-0.10m evaluated the diversity of AMFs. It was found that there was a strong effect of culture on COL and ESP. However, the effect of the covers and management was seen only in 0.0-0.05m. The roots of corn has a higher percentages of COL and ESP compared with soybeans, for the coverage Brachiaria and millet. The mycorrhizal colonization of soybean and maize in Cerrado area was up 80% for soybeans and up 95% for corn. Conventional tillage soil the lowest number of AMFs species in relation to the coverage of millet and Brachiaria in no-till corn and soybeans. The principal components analysis with some chemical, physical and biological factors of soil shows the separation of the areas assessed, and the biological component (COL and ESP in the efficient separation of the areas under cultivation, for the conditions of this study.A busca da sustentabilidade na produção agrícola através de manejos conservacionistas, como o sistema plantio direto, tem favorecido os processos bioquímicos do solo como dos fungos micorrízicos arbusculares (FMAs, os quais promovem um aumento expressivo

  12. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  13. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular ... collected from two social forestry nurseries of Mahabubnagar district (A.P), and brought to the .... main regression line is shown in red. Spores of the lower infection ...

  14. Mycorrhizal status and AMF community structure of fruit crops from ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal fungi (AMF) association of Mangifera indica (mango), Musa acuminate (banana), Carica papaya (papaya), Citrus limon (lemon), Persea americana (avocado), and Psidium guajava (guava) was investigated from a lowland area of Showa Robit. Percentage of root colonization, spore abundance, ...

  15. Effect of mycorrhizal inoculum and urea fertilizer on diseases ...

    African Journals Online (AJOL)

    A randomized block design with four replicates was used, with two applications of mycorrhizal inoculum. The inoculum contained spores of Glomus sp. and Gigaspora sp. in concentration of 2.103 spores.g-¹. A urea treatment and an absolute control were also used. The number of nodules per plant, the root colonization rate ...

  16. Dioecious species and arbuscular mycorrhizal symbioses

    Science.gov (United States)

    Vega-Frutis, Rocío; Varga, Sandra; Kytöviita, Minna-Maarit

    2013-01-01

    Sex-specific interactions with herbivores and pollinators have been observed in female and male plants of dioecious species. However, only a limited number of studies have revised sex-specific patterns in mycorrhizal symbiosis. To test whether female and male plants of Antennaria dioica differ in their relationship with arbuscular mycorrhizal (AM) fungi, we examined the temporal and spatial variation in AM fungi in female, male and non-reproductive A. dioica plants in three natural populations in Finland during flowering and after seed production. Our results are consistent with previous studies both under greenhouse and field conditions with the same species showing differences in AM colonization between the sexes linked with allocation to reproduction. Taken together, the results indicate that there is a sex-specific interaction between A. dioica and AM fungi. Overall, females have a greater investment in AM fungi, likely to enhance their uptake of soil nutrients and support the reproduction by seed. PMID:23299337

  17. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  18. Enhanced Tomato Disease Resistance Primed by Arbuscular Mycorrhizal Fungus

    Directory of Open Access Journals (Sweden)

    Yuanyuan eSong

    2015-09-01

    Full Text Available Roots of most terrestrial plants form symbiotic associations (mycorrhiza with soil- borne arbuscular mycorrhizal fungi (AMF. Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill. early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL and lipoxygenase (LOX in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related (PR proteins, PR1, PR2 and PR3, as well as defense-related genes LOX, AOC and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT plant, a jasmonate (JA biosynthesis mutant (spr2, and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for

  19. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula.

    Science.gov (United States)

    Sieh, Daniela; Watanabe, Mutsumi; Devers, Emanuel A; Brueckner, Franziska; Hoefgen, Rainer; Krajinski, Franziska

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction that occurs between the large majority of vascular plants and fungi of the phylum Glomeromycota. In addition to other nutrients, sulfur compounds are symbiotically transferred from AM fungus to host plants; however, the physiological importance of mycorrhizal-mediated sulfur for plant metabolism has not yet been determined. We applied different sulfur and phosphate fertilization treatments to Medicago truncatula and investigated whether mycorrhizal colonization influences leaf metabolite composition and the expression of sulfur starvation-related genes. The expression pattern of sulfur starvation-related genes indicated reduced sulfur starvation responses in mycorrhizal plants grown at 1 mM phosphate nutrition. Leaf metabolite concentrations clearly showed that phosphate stress has a greater impact than sulfur stress on plant metabolism, with no demand for sulfur at strong phosphate starvation. However, when phosphate nutrition is high enough, mycorrhizal colonization reduces sulfur stress responses, probably as a result of symbiotic sulfur uptake. Mycorrhizal colonization is able to reduce sulfur starvation responses in M. truncatula when the plant's phosphate status is high enough that sulfur starvation is of physiological importance. This clearly shows the impact of mycorrhizal sulfur transfer on plant metabolism. © 2012 Max-Planck Society New Phytologist © 2012 New Phytologist Trust.

  20. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  1. RESPONSE OF TWO SUNFLOWER (HELIANTHUS ANNUUS L. GENOTYPES TO VA-MYCORRHIZAL INOCULATION AND PHOSPHORUS LEVELS

    Directory of Open Access Journals (Sweden)

    C.P. CHANDRASHEKARA, V.C. PATIL

    1995-01-01

    Full Text Available The performance of two sunflower genotypes (Morden and MSFH-8 with and without VA-mycorrhizal fungi at three P levels (38, 56 and 75 kg P2O5 ha-1 in vertisol of Dharwad was studied to determine the effect of mycorrhizal inoculation on plant growth, yield and P uptake. The results showed that the VAM inoculation increased sunflower yield (14%, total biomass (16%, oil content (3.1% and P uptake (30.5% over uninoculated control. The percent root colonization and chlamydo-spore count decreased with increasing P levels. The total biomass production, seed yield and P uptake of mycorrhizal plants at 38 kg P2O5 ha-1 more than the non-mycorrhizal plants at 75 kg P2O5 ha-1. The biomass and seed yield of mycorrhizal plants at same P level were more than the non-mycorrhizal plants. Mycorrhizal plants of Morden at 38 kg P2O5 ha-1 and MSFH-8 at 56 kg P2O5 ha-1 produced higher seed yield, oil content and total biomass than non-mycorrhizal plants supplied with 75 kg P2O5 ha-1. The results indicated that, VA-mycorrhizal inoculation helps in saving 25 and 50 percent of recommended dose of phosphatic fertilizer (75 kg P2O5 ha-1 in MSFH-8 (single cross hybrid and Morden (open pollinated variety, respectively.

  2. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment.

    Science.gov (United States)

    Pánková, Hana; Raabová, Jana; Münzbergová, Zuzana

    2014-01-01

    Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies

  3. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment.

    Directory of Open Access Journals (Sweden)

    Hana Pánková

    Full Text Available Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K and Ceske Stredohori (region S. Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local

  4. Mycorrhizal association in soybean and weeds in competition

    Directory of Open Access Journals (Sweden)

    Cíntia Maria Teixeira Fialho

    2016-04-01

    Full Text Available The purpose of this study was to evaluate the effects of mycorrhizal association on the interference of Bidens pilosa, Urochloa decumbens and Eleusine indica on soybean culture in two conditions: a plants competing without contact with roots of another species; b with contact between roots. At 60 days after planting, growth, nutrient accumulation and mycorrhizal colonization of soybean and weeds were evaluated. The contact between roots of soybean plant and weed species increased the negative interference effects for both species, with less growth and nutrient accumulation. With the individualization of roots, higher competition occurred for soil resources up to 60 days of coexistence between species. In competition with soybean, Bidens pilosa and Urochloa decumbens stood out in accumulation of most nutrients without differing from when cultivated in monocultivation. The increase of the soybean mycorrhizal colonization was 53, 40 and 33% when in competition with Urochloa decumbens, Eleusine indica and Bidens pilosa species, respectively. A positive interaction occurred for soybean mycorrhizal colonization and competing plants irrespective of weed species or root contact.

  5. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  6. arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    PROF EKWUEME

    KEYWORDS: AMF, Colonization, Spore density, Foliar nutrients, Cross River Basin of Nigeria. INTRODUCTION. Arbuscular mycorrhizal fungi (AMF) are found in most agricultural soils (Ryan and Angus, 2003). They are broad-host ranged and colonize the roots of most crops and weeds. About 90% of terrestrial plants.

  7. Effect of mycorrhizal inoculations on the growth of Shorea robusta seedlings

    Directory of Open Access Journals (Sweden)

    ASHWANI TAPWAL

    2015-05-01

    Full Text Available Tapwal A, Kumar R, Borah D. 2015. Effect of mycorrhizal inoculations on the growth of Shorea robusta seedlings. Nusantara Bioscience 7: 1-5. Shorea robusta is one of important timber yielding tree species of northeast India and known to have both ectomycorrhizal (EcM and endomycorrhizal (AM associations. It is hypothesized that under favorable conditions different mycorrhizal fungi present in soil develop symbiotic association with fine roots of trees. In present investigations, mycorrhizal inoculum of EcM and AM fungi applied to S. robusta seedlings raised in polyethylene bags in nursery. Observations on growth characters and mycorrhizal colonization were recorded at the interval of three months. The results revealed that irrespective of type of mycorrhizal inoculation, growth of the seedlings increased significantly in comparison to control. Maximum growth was observed for the seedlings inoculated with EcM alone, followed by dual inoculations (EcM+AM, seedlings inoculated with AM fungi and minimum in control.

  8. Mycorrhizal status of an ozone-sensitive poplar clone treated with the antiozonant ethylene diurea

    OpenAIRE

    Katanić, Marina; Paoletti, Elena; Orlović, Saša; Grebenc, Tine; Kraigher, Hojka

    2014-01-01

    The antiozonant ethylene diurea is proven to prevent growth reductions in forest trees induced by ozone. The community of mycorrhizal fungi could be useful indicator of environmental stress. In this study, response of mycorrhizal fungi and fine roots to a 4-year exposure to ambient ozone and treatment with antiozonant was investigated in ozone-sensitive poplar clone under field conditions. The community of ectomycorrhizal fungi and root length colonization with ectomycorrhizal, arbuscular myc...

  9. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins.

    Science.gov (United States)

    Foo, Eloise; Ross, John J; Jones, William T; Reid, James B

    2013-05-01

    Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells.

  10. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Eva Nouri

    Full Text Available Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis, the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  11. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  12. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  13. OCCURRENCE OF ARBUSCULAR MYCORRHIZAL FUNGI IN SOME MEDICINAL PLANTS OF KERALA

    Science.gov (United States)

    Mathew, Abraham; Malathy, M.R.

    2006-01-01

    The occurrence of mycorrhiza in 40 selected medicinal plants was studied. The percentage of mycorrhizal colonization in each of the plant was calculated. The colonization was found to be very less in four plants and very high in six plants. All others showed a moderate level of colonization. The present work suggests the use of mycorrhiza as a biofertilizer to enhance the growth and yield of medicinal plants. PMID:22557224

  14. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  15. Arbuscular mycorrhizal fungi in terms of symbiosis-parasitism continuum.

    Science.gov (United States)

    Schmidt, B; Gaşpar, S; Camen, D; Ciobanu, I; Sumălan, R

    2011-01-01

    Arbuscular mycorrhizal fungi are forming the most wide-spread mycorrhizal relationships on Earth. Mycorrhiza contributes to phosphorous acquisition, water absorption and resistance to diseases. The fungus promotes the absorption of nutrients and water from soil, meanwhile the host plant offers photosynthetic assimilates in exchange, like carbohydrates, as energy source. The plant benefits from the contribution of symbiotic partner only when nutrients are in low concentrations in soil and the root system would not be able to absorb sufficiently the minerals. When the help of mycorrhizal fungi is not necessarily needed, the host plant is making an economy of energy, suppressing the development of fungi in the internal radicular space. In this moment, the nature of relationship turns from symbiotic to parasitic, triggering a series of defensive reactions from the plant. Also, there were several cases reported when the presence of arbuscular mycorrhizal fungi negatively influenced the host plant. For example, in adverse environmental conditions, like very high temperatures, instead of determining a higher plant biomass and flowering, the mycorrhiza reduces the growth of the host plant. We conducted a pot experiment with hydroponic culture to examine the effect of arbuscular mycorrhiza on development of French marigold as a host plant. As experimental variants, the phosphorous content in nutrient medium and temperature varied. Plants were artificially infected with arbuscular mycorrhizal fungi using a commercial inoculum containing three fungal species, as following: Glomus intraradices, Glomus etunicatum and Glomus claroideum. Colonization intensity and arbuscular richness were checked using root staining with aniline blue and estimation with the Trouvelot method. To observe the differences between plants from the experimental variants, we examined the number of side shoots, flower buds and fully developed flowers, fresh biomass and total leaf area. Results show that

  16. Arbuscular mycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters Colonización micorrícico arbuscular de Alnus acuminata Kunth en el noroeste argentino en relación a la estacionalidad y a los parámetros edáficos

    Directory of Open Access Journals (Sweden)

    Alejandra Gabriela Becerra

    2007-07-01

    Full Text Available The objective of this study was to determine patterns of arbuscular mycorrhizal (AM colonization of Alnus acuminata Kunth at two natural forests in relation to soil parameters at two different seasons (autumn and spring. The soil parameters studied were field capacity, pH, electrical conductivity, available P, total N and organic matter. The percentage of AM colonization was estimated and correlated to soil properties and to two different seasons. The results indicate that the percentage of AM colonization varied among soil types and was higher in spring than autumn. A significant positive correlation was found between AM colonization and electrical conductivity, organic matter and total Nitrogen. Results of this study provide evidence that AM colonization of A. acuminata can be affected by some soil parameters and seasonality.El objetivo de este estudio fue determinar el patrón de colonización micorrícico arbuscular (MA de Alnus acuminata Kunth en dos bosques del Noroeste Argentino, en relación a los parámetros edáficos y en dos estaciones del año (otoño y primavera. Los parámetros edáficos estudiados fueron: capacidad de campo, pH, conductividad eléctrica, fósforo disponible, N total y materia orgánica. Se cuantificó el porcentaje de colonización MA y se lo correlacionó con las variables estudiadas (parámetros edáficos y estaciones. Los resultados indican que el porcentaje de colonización MA varió entre los dos tipos de suelo y las estaciones, siendo mayor en primavera. Se observó correlación positiva significativa entre el porcentaje de colonización MA y la conductividad eléctrica, materia orgánica y N total. Los resultados de este estudio indican que la colonización MA de A. acuminata puede ser afectada por algunos parámetros edáficos y la estacionalidad.

  17. Resource allocation in an annual herb: Effects of light, mycorrhizal fungi, and defoliation

    Science.gov (United States)

    Aguilar-Chama, Ana; Guevara, Roger

    2016-02-01

    Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.

  18. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, C.; Garcia-Figueres, F.; Lovato, P.; Camprubi, A.

    2015-07-01

    Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment. (Author)

  19. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Directory of Open Access Journals (Sweden)

    Cinta Calvet

    2015-09-01

    Full Text Available Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72 and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5 media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.

  20. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  1. Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucaria angustifolia (Bert. O. Ktze. ecosystems Densidade de esporos e colonização radicular por fungos microrrízicos arbusculares em ecossistemas de Araucaria angustifolia (Bert. O. Ktze. preservados e impactados

    Directory of Open Access Journals (Sweden)

    Milene Moreira

    2006-08-01

    Full Text Available Araucaria angustifolia (Bert. O. Ktze., a native forest tree from Brazil, is under extinction risk. This tree depends on arbuscular mycorrhizal fungi for growth and development, especially in tropical low-P soils but, despite being a conifer, Araucaria does not form ectomycorrhiza, but only the arbuscular endomycorrhiza. This study aimed at surveying data on the spore density and root colonization (CR by arbuscular mycorrhizal fungi (AMF in Araucaria angustifolia forest ecosystems, in order to discriminate natural, implemented, and anthropic action-impacted ecosystems, by means of Canonical Discriminant Analysis (CDA. Three ecosystems representative of the Campos do Jordão (SP, Brazil region were selected: 1. a native forest (FN; 2. a replanted Araucaria forest (R; and 3. a replanted Araucaria forest, submitted to accidental fire (RF. Rhizosphere soil and roots were sampled in May and October, 2002, for root colonization, AMF identification, and spores counts. Root percent colonization rates at first collection date were relatively low and did not differ amongst ecosystems. At the second period, FN presented higher colonization than the other two areas, with much higher figures than during the first period, for all areas. Spore density was lower in FN than in the other areas. A total of 26 AMF species were identified. The percent root colonization and spore numbers were inversely related to each other in all ecosystems. CDA indicated that there is spatial distinction among the three ecosystems in regard to the evaluated parameters.A Araucaria angustifolia (Bert. O. Ktze. é uma espécie florestal nativa do Brasil e encontra-se ameaçada de extinção. É altamente dependente de fungos micorrízicos arbusculares para seu desenvolvimento, principalmente em solos com baixos teores de fósforo. Embora sendo uma conífera, esta árvore não forma ectomicorriza, mas sim a endomicorriza arbuscular. O presente estudo teve como objetivo levantar dados

  2. Mycorrhizal fungi associated with Taiwanese Pyrola morrisonensis (Ericaceae in a naturally regenerated forest

    Directory of Open Access Journals (Sweden)

    Yosuke MATSUDA

    2017-11-01

    Full Text Available Pyrola morrisonensis, an evergreen herb in the family Ericaceae, is endemic to Taiwan. We examined mycorrhizal development and the associated fungi in this species. Nine plants were collected in a naturally regenerated forest in central Taiwan. The plants were genetically identical in their internal transcribed spacer (ITS region, and their sequences matched the known sequence for P. morrisonensis. Fine roots of each plant were colonized by mycorrhizal fungi that formed mycorrhizas either with or without fungal mantles. DNA sequences of the ITS region of these fungi suggested that they belonged to mycorrhizal taxa that are common tree symbionts. Among them, members of Thelephoraceae were the dominant taxon in the host plants. These results indicate that P. morrisonensis is intimately associated with mycorrhizal fungi that might also connect with neighboring trees.

  3. Colon cancer

    Science.gov (United States)

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma; Colon carcinoma ... eat may play a role in getting colon cancer. Colon cancer may be linked to a high-fat, ...

  4. Occurrence of arbuscular mycorrhizal fungi on King George Island, South Shetland Islands, Antarctica

    Directory of Open Access Journals (Sweden)

    MARISÂNGELA V. BARBOSA

    2017-08-01

    Full Text Available ABSTRACT Arbuscular mycorrhizal fungi make up an important ecological niche in ecosystems, and knowledge of their diversity in extreme environments is still incipient. The objective of this work was to evaluate the density and diversity of arbuscular mycorrhizal fungi in the soil of King George Island in the South Shetland Islands archipelago, Antarctica. For that, soil and roots of Deschampsia antarctica were collected at the brazilian research station in Antarctica. The spore density, species diversity and mycorrhizal colonization in the roots were evaluated. There was a low density of spores (27.4 ± 17.7 and root mycorrhizal colonization (6 ± 5.1%, which did not present statistical difference. Four species of arbuscular mycorrhizal fungi were identified, distributed in two genera: three species of the genus Glomus (Glomus sp1, Glomus sp2 and Glomus sp3 and one of the genus Acaulospora, which was identified at species level (Acaulospora mellea. Greater soil diversity was verified with pH 5.9 and phosphorus concentration of 111 mg dm-3, occurring two species of genus Glomus and A. mellea. Based on literature data, this may be the first record of this species of Acaulospora mellea in Antarctic soils, colonizing D. antarctica plants.

  5. EFFECT OF DIESEL AND BIODIESEL ON THE GROWTH OF Brachiaria decumbens INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Dora Trejo

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi have been found to be associated with plants useful in soil phytoremediation. The aim of this study was to compare the effects of diesel and biodiesel in soil and sand on the growth of Brachiaria decumbens inoculated with mycorrhizae. Two experiments were carried out: one experiment in soil and another in sand. A two-level- factorial design with three factors was used (one on sterile and another on non-sterile soil, with and without mycorrhizae; and one with diesel and another with biodiesel. In sand, a two-factor design with two levels was used (with and without mycorrhizae and with diesel and biodiesel, both with three replications. NOVADIESEL, biodiesel and PEMEX diesel were use as contaminants, both at 7%. The fresh and dry weight of the plants and percentage of mycorrhizal colonization, were assessed 30 days after planting. In soil, biodiesel was more toxic and reduced the fresh and dry weights of plants, especially in non-sterile soil. Biodiesel yielded greater mycorrhizal colonization values that doubled those of the control. In sand, diesel was found to reduce three times the fresh and dry weights of plants, compared to the biodiesel. In sand diesel presented high values of mycorrhizal colonization in comparison with biodiesel.  Plants inoculated with mycorrhizal fungi exhibited better development than non-inoculated plants, even in the presence of contaminants.

  6. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition

    Directory of Open Access Journals (Sweden)

    N. Aliasgharzad

    2009-05-01

    Full Text Available It has widely been accepted that mycorrhizal symbiosis improves micronutrients uptake by most of the plants. In this study, sorghum (Sorghum bicolor L. plants were grown in sterile perlite and were inoculated with either Glomus etunicatum (GE or G.intraradices (GI, while the control set was left un-inoculated. Rorison's nutrient solution with three levels of 0, half and full strength (C0, C0.5 and C1, respectively of Fe, Cu, Zn and Mn was applied to the pots during 85 days of growth period. Chrome azurol-S assay was used for determination of siderophores in root leachates on 45, 65 and 85 days after sowing (DAS. Siderophore production per unit volume of root was higher in mycorrhizal than non-mycorrhizal plants. Both GE and GI were efficient fungi in this respect. Siderophore production was significantly induced at C0 level of the micronutrients. Amount of siderophores produced on 45 and 85 DAS was more than 65 DAS. Mycorrhizal root colonization by GE or GI was not significantly affected by micronutrient levels.

  7. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review.

    Science.gov (United States)

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-12-01

    Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K(+) : Na(+) ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na(+)/H(+) antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes.

  8. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Varga, Sandra; Vega-Frutis, Rocío; Kytöviita, Minna-Maarit

    2013-08-01

    In gynodioecious plants, females are predicted to produce more and/or better offspring than hermaphrodites in order to be maintained in the same population. In the field, the roots of both sexes are usually colonized by arbuscular mycorrhizal (AM) fungi. Transgenerational effects of mycorrhizal symbiosis are largely unknown, although theoretically expected. We examined the maternal and paternal effects of AM fungal symbiosis and host sex on seed production and posterior seedling performance in Geranium sylvaticum, a gynodioecious plant. We hand-pollinated cloned females and hermaphrodites in symbiosis with AM fungi or in nonmycorrhizal conditions and measured seed number and mass, and seedling survival and growth in a glasshouse experiment. Females produced more seeds than hermaphrodites, but the seeds did not germinate, survive or grow better. Mycorrhizal plants were larger, but did not produce more seeds than nonmycorrhizal plants. Transgenerational parental effects of AM fungi were verified in seedling performance. This is the first study to show transgenerational mycorrhiza-mediated parental effects in a gynodioecious species. Mycorrhizal symbiosis affects plant fitness mainly through female functions with enduring effects on the next generation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Microscopic characterization of orchid mycorrhizal fungi: Scleroderma as a putative novel orchid mycorrhizal fungus of Vanilla in different crop systems.

    Science.gov (United States)

    González-Chávez, Ma Del Carmen A; Torres-Cruz, Terry J; Sánchez, Samantha Albarrán; Carrillo-González, Rogelio; Carrillo-López, Luis Manuel; Porras-Alfaro, Andrea

    2018-02-01

    Vanilla is an orchid of economic importance widely cultivated in tropical regions and native to Mexico. We sampled three species of Vanilla (V. planifolia, V. pompona, and V. insignis) in different crop systems. We studied the effect of crop system on the abundance, type of fungi, and quality of pelotons found in the roots using light and electron microscopy and direct sequencing of mycorrhizal structures. Fungi were identified directly from pelotons obtained from terrestrial roots of vanilla plants in the flowering stage. Root samples were collected from plants in crop systems located in the Totonacapan area in Mexico (states of Puebla and Veracruz). DNA was extracted directly from 40 pelotons and amplified using ITS rRNA sequencing. Peloton-like structures were observed, presenting a combination of active pelotons characterized by abundant hyphal coils and pelotons in various stages of degradation. The most active pelotons were observed in crop systems throughout living tutors (host tree) in comparison with roots collected from dead or artificial tutors. Fungi identified directly from pelotons included Scleroderma areolatum, a common ectomycorrhizal fungus that has not been reported as a mycorrhizal symbiont in orchids. Direct amplification of pelotons also yielded common plant pathogens, including Fusarium and Pyrenophora seminiperda, especially in those sites with low colonization rates, and where large numbers of degraded pelotons were observed. This research reports for the first time the potential colonization of Vanilla by Scleroderma, as a putative orchid mycorrhizal symbiont in four sites in Mexico and the influence of crop system on mycorrhizal colonization on this orchid.

  10. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    OpenAIRE

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth...

  11. Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae)

    Science.gov (United States)

    Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.

    2009-01-01

    Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011

  12. Cellular programs for arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Harrison, Maria J

    2012-12-01

    In arbuscular mycorrhizal (AM) symbiosis, AM fungi colonize root cortical cells to obtain carbon from the plant, while assisting the plant with the acquisition of mineral nutrients from the soil. Within the root cells, the fungal hyphae inhabit membrane-bound compartments that the plant establishes to accommodate the fungal symbiont. Recent data provide new insights into the events associated with development of the symbiosis including signaling for the formation of a cellular apparatus that guides hyphal growth through the cell. Plant genes that play key roles in a cellular program for the accommodation of microbial symbionts have been identified. In the inner cortical cells, tightly regulated changes in gene expression accompanied by a transient reorientation of secretion, enables the cell to build and populate the periarbuscular membrane with its unique complement of transporter proteins. Similarities between the cellular events for development of the periarbuscular membrane and cell plate formation are emerging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India.

    Science.gov (United States)

    Ghosh, Ranjan; Barman, Soma; Mukherjee, Rajib; Mandal, Narayan C

    2016-02-01

    Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38 μg ml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15 μg ml(-1)) and P10 (485.18±14.23 μg ml(-1)) at 28 °C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Conditions Promoting Mycorrhizal Parasitism are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Directory of Open Access Journals (Sweden)

    Martina Friede

    2016-09-01

    Full Text Available Interactions of plants with arbuscular mycorrhizal fungi (AMF may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD of a plant and in consequence may play an important role in plant-plant interactions.In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic.Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant

  15. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Science.gov (United States)

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  16. Phosphorus Requirement for Colonization by Arbuscular ...

    African Journals Online (AJOL)

    Therefore, this study was conducted to investigate the effect of phosphorus (P) concentrations on arbuscular mycorrhizal fungi (AMF) colonization and growth of two perennial crops (Catha edulis and Ensete ventricosum) and four multipurpose agroforestry trees (Cordia africana, Croton macrostachyus, Erythrina brucei and ...

  17. Mycorrhizal associations in Ailanthus altissima (Simaroubaceae) from forested and non-forested sites

    Science.gov (United States)

    Cynthia D. Huebner; Carolyn McQuattie; Joanne Rebbeck

    2007-01-01

    Ailanthus altissima tree seedlings were excavated from each of two habitats: (1) a forest adjacent to a trail and stream and (2) a non-forested steep, barren slope adjacent to a major highway. Each seedling root system was examined for colonization by mycorrhizal structures using light microscopy and transmission electron microscopy. The roots were...

  18. Inoculation of fumigated nursery beds and containers with arbuscular mycorrhizal products for eastern redcedar production

    Science.gov (United States)

    Michelle M. Cram; Stephen W. Fraedrich

    2015-01-01

    Commercially available arbuscular mycorrhizal (AM) products were applied at an operational rate to eastern redcedar (Juniperus virginiana L.) nursery beds and containers to evaluate seedling growth and colonization responses. A field study at the Augusta Forestry Center in Crimora, VA, and a companion container study were initiated in the fall of 2012. MycoApply® Endo...

  19. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Doddema, H; Kuiper, PJC; Stulen, I.

    2005-01-01

    The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars-a traditional, low-yielding Mozambican landrace (Local) and a

  20. Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia.

    NARCIS (Netherlands)

    Emiru Birhane, E.B.; Kuyper, T.W.; Sterck, F.J.; Bongers, F.

    2010-01-01

    This study assessed the arbuscular mycorrhizal (AM) status of Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands in relation to season, management and soil depth in Ethiopia. We studied 43 woody species in 52 plots in three areas. All woody species were colonized by AM fungi,

  1. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales).

    Science.gov (United States)

    Vohník, Martin; Pánek, Matěj; Fehrer, Judith; Selosse, Marc-André

    2016-11-01

    The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.

  2. DETERMINACIÓN DE LA DEPENDENCIA MICORRIZAL DEL LULO Determination Of Mycorrhizal Dependency Of Lulo

    Directory of Open Access Journals (Sweden)

    OCTAVIO GONZÁLEZ

    Full Text Available Se realizó un experimento de invernadero para determinar la dependencia micorrizal del lulo (Solanum quitoense Lam. híbrido “La selva”. Se utilizó un diseño experimental completamente al azar, los tratamientos tuvieron un arreglo factorial 3x2 con tres repeticiones; estos consistieron en la combinación de tres niveles de fósforo (P en la solución del suelo (0,002, 0,02 y 0,2 mg L-1 con dos niveles de inoculación del hongo micorrizal Glomus aggregatum (inoculado y no inoculado. Se emplearon como variables respuesta el contenido de P foliar en función del tiempo, la masa seca aérea y de raíces, la colonización micorrizal, la dependencia micorrizal y la morfología del sistema de raíces al momento de la cosecha. Los resultados indican que esta especie puede ser clasificada como moderadamente dependiente de la asociación micorrizal. La dependencia micorrizal fue mayor a 0,002 mg L-1. Todas las plantas inoculadas con G. aggregatum exhibieron colonización micorrizal, mientras que ninguna de las plantas no inoculadas desarrollaron la asociación micorrizal. La inoculación modificó significativamente la longitud y área superficial del sistema de raíces en las plantas de lulo en los niveles 0,002 y 0,02 mg L-1.A greenhouse experiment was carried out to determine the mycorrhizal dependency of lulo (Solanum quitoense Lam.. An experimental design completely randomized was used, treatments were arranged in factorial combination 3x2, which consisted of the combination of three soil solution phosphorus (P concentration (0.002, 0.02 and 0.2 mg L-1 and two levels of inoculation with the mycorrhizal fungus Glomus aggregatum (inoculated and uninoculated. Foliar P content was monitored as a function of time. At harvest, shoot and root dry weight, shoot P content, mycorrhizal colonization, mycorrhizal dependency, and root morphology were determined. The results indicated that lulo can be classified as moderately dependent on the mycorrhizal

  3. Contaminação do solo com antraceno e creosoto e o crescimento vegetal e a colonização micorrízica pelo Glomus etunicatum Soil contamination with anthracene and creosote: impact on plant growth and mycorrhizal colonization by Glomus etunicatum

    Directory of Open Access Journals (Sweden)

    Alessandra Monteiro de Paula

    2007-08-01

    -derived, polycyclic aromatic hydrocarbons (PAHs, is a growing problem with serious environmental consequences. To evaluate the environmental impact of these products it is important to understand their effects on plants and the associated microbiota. The effects of PAHs on growth and mycorrhizal colonization of Brachiaria brizantha and Pueraria phaseoloides were evaluated here. Two PAHs, anthracene and creosote, were applied to a soil infested with the mycorrhizal fungus Glomus etunicatum at varied concentrations: anthracene (0; 0.25; 0.5; 0.75 and 1 g kg-1 soil and creosote (0; 0.5; 1; 2 and 3 g kg-1 soil. This soil was packed into plastic tubes (290 cm³ where test plants were sown and grown for six weeks. It was found that anthracene did not affect pueraria growth and had a slight stimulus on brachiaria growth at the lowest concentration, whereas creosote had no effect on pueraria either, but inhibited brachiaria growth. Both contaminants inhibited mycorrhizal colonization in pueraria by about 90 %, compared to the control. At concentrations below those found in contaminated soils, AM colonization was inhibited by 50 %. The potential impact of these products on plant-AM fungus relationships is quite evident here. No colonization was found in brachiaria, regardless of the presence of PAHs. The results showed a differentiated sensitivity of the plants to the contaminants and their marked negative effect on G. etunicatum root colonization. In the evaluated concentration range, pueraria was insensitive to both compounds, which indicates the species for further studies on phytoremediation of areas under the impact of these contaminants.

  4. Expanding Genomics of Mycorrhizal Symbiosis

    Directory of Open Access Journals (Sweden)

    Alan eKuo

    2014-11-01

    Full Text Available The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant and soil health, and carbon and nutrient cycles. The symbiosis evolved repeatedly and independently as multiple morphological types (e.g. arbuscular [AM], ectomycorrhizal [ECM] in multiple fungal clades (e.g. phyla Glomeromycota, Ascomycota, Basidiomycota. The accessibility and culturability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first 3 mycorrhizal fungal genomes, representing 3 fungal phyla and 2 mycorrhizal types. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant-degrading enzymes (PDEs and expansion of lineage-specific gene families, including short secreted protein (SSP effectors and other symbiosis genes. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of gene families in contrast to Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other 2 fungi, the symbiosis can involve similar solutions as loss of PDEs and mycorrhiza-induced SSPs. The mycorrhizal community is building on these studies with 3 large-scale initiatives. The Mycorrhizal Genomics Initiative (MGI is sequencing 35 genomes of multiple fungal clades and mycorrhizal types for phylogenomic and population analyses. 17 MGI species whose symbiosis is reconstitutable in vitro are targeted for comprehensive transcriptomics of mycorrhiza formation. MGI genomes are seeding a set of 50+ reference fungal genomes for annotating metatranscriptomes sampled from 7 diverse well-described soil sites. These 3 projects address fundamental questions about the nature and role of a

  5. Effects of organic farming on communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Lee, Si-Woo; Lee, Eun-Hwa; Eom, Ahn-Heum

    2008-03-01

    Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.

  6. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Souchie, Edson L; Azcón, Rosario; Barea, Jose M; Silva, Eliane M R; Saggin-Júnior, Orivaldo J

    2010-09-01

    This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.

  7. Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress.

    Science.gov (United States)

    Labidi, Sonia; Ben Jeddi, Fayçal; Tisserant, Benoit; Debiane, Djouher; Rezgui, Salah; Grandmougin-Ferjani, Anne; Lounès-Hadj Sahraoui, Anissa

    2012-07-01

    This study investigated the effects of increasing CaCO(3) concentrations (0, 5, 10, 20 mM) on arbuscular mycorrhizal (AM) symbiosis establishment as well as on chicory root growth and mineral nutrient uptake in a monoxenic system. Although CaCO(3) treatments significantly decreased root growth and altered the symbiosis-related development steps of the AM fungus Rhizophagus irregularis (germination, germination hypha elongation, root colonization rate, extraradical hyphal development, sporulation), the fungus was able to completely fulfill its life cycle. Even when root growth decreased more drastically in mycorrhizal roots than in non-mycorrhizal ones in the presence of high CaCO(3) levels, the AM symbiosis was found to be beneficial for root mineral uptake. Significant increases in P, N, Fe, Zn and Cu concentrations were recorded in the mycorrhizal roots. Whereas acid and alkaline phosphatase enzymatic activities remained constant in mycorrhizal roots, they were affected in non-mycorrhizal roots grown in the presence of CaCO(3) when compared with the control.

  8. Leucanthemum vulgare lam. germination, growth and mycorrhizal symbiosis under crude oil contamination.

    Science.gov (United States)

    Noori, Azam Sadat; Maivan, Hassan Zare; Alaie, Ebrahim

    2014-01-01

    Oil contamination of soil limits plants' access to water and nutrients. Leucanthemum vulgare colonized by mycorrhizae could provide an effective tool in remedying oil contamination. Seeds of L. vulgare were planted in pots containing soil mixed with petroleum at 0, 2.5, 5, 7.5, and 10% w/w and propagules of mycorrhizal fungi. Plants were grown under ambient conditions for 16 weeks. Seed germination data were collected weekly for three weeks. Mycorrhizal percentage, spore counts, length and weight of roots and shoots were determined after harvesting. Results showed significant differences in seed germination rates between oil-treated, mycorrhizal and non-mycorrhizal plants. The overall germination rate was greater at 7.5% w/w crude oil contamination (p = 0.05) in mycorrhizal and non-mycorrhizal pots with significant differences between their respective Root:Shoot ratios (both length and weight). Results of this research showed L. vulgare could be germinated and grown in crude oil contaminated soils and could be used to augment plant establishment as part of phytoremediation practices.

  9. Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline.

    Science.gov (United States)

    Hasselquist, Niles; Germino, Matthew J; McGonigle, Terence; Smith, William K

    2005-03-01

    * Plants establishing in environments that are marginal for growth could be particularly sensitive to mycorrhizal associations. We investigated ectomycorrhizal colonization and its significance for young conifers growing at, or above, their normal limits for growth, in the alpine-treeline ecotone. * Colonization of seedlings (treeline may include a below-ground, mycorrhizal component that complements previously reported effects of trees on the microclimate and ecophysiology of seedlings.

  10. Mid-Infrared and near-infrared spectral properties of mycorrhizal and non-mycorrhizal root cultures.

    Science.gov (United States)

    Calderón, Francisco J; Acosta-Martinez, Veronica; Douds, David D; Reeves, James B; Vigil, Merle F

    2009-05-01

    We investigated the Fourier-transformed mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties of mycorrhizal (M) and non-mycorrhizal (NM) carrot roots with the goal of finding infrared markers for colonization by arbuscular mycorrhizal (AM) fungi. The roots were cultured with or without the AM fungus Glomus intraradices under laboratory conditions. A total of 50 M and NM samples were produced after pooling subsamples. The roots were dried, ground, and scanned separately for the NIR and MIR analyses. The root samples were analyzed for fatty acid composition in order to confirm mycorrhizal infection and to determine the presence of fatty acid markers. Besides the roots, fatty acid standards, pure cultures of saprophytic fungi, and chitin were also scanned in order to identify spectral bands likely to be found in M samples. Principal components analysis (PCA) was used to illustrate spectral differences between the M and NM root samples. The NIR analysis achieved good resolution with the raw spectral data and no pretreatment was needed to obtain good resolution in the PCA analysis of the NIR data. Standard normal variate and detrending pretreatment improved the resolution between M and NM in the MIR range. The PCA loadings and/or the spectral subtraction of selected samples showed that M roots are characterized by absorbances at or close to 400 cm(-1), 1100-1170 cm(-1), 1690 cm(-1), 2928 cm(-1), and 5032 cm(-1). The NM samples had characteristic absorbances at or near 1734 cm(-1), 3500 cm(-1), 4000 cm(-1), 4389 cm(-1), and 4730 cm(-1). Some of the bands that differentiate M from NM roots are prominent in the spectra of pure fungal cultures, chitin, and fatty acids. Our results show that mycorrhizal and nonmycorrhizal root tissues can be differentiated via MIR and NIR spectra with the advantage that the same samples can then be used for other analyses.

  11. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Azam [State University of New York, College of Environmental Science and Forestry (United States); White, Jason C. [Connecticut Agricultural Experiment Station (United States); Newman, Lee A., E-mail: lanewman@esf.edu [State University of New York, College of Environmental Science and Forestry (United States)

    2017-02-15

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  12. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Science.gov (United States)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-02-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  13. Mycorrhizal specificity does not limit the distribution of an endangered orchid species.

    Science.gov (United States)

    Waud, Michael; Brys, Rein; Van Landuyt, Wouter; Lievens, Bart; Jacquemyn, Hans

    2017-03-01

    What factors determine the distribution of a species is a central question in ecology and conservation biology. In general, the distribution of plant species is assumed to be controlled by dispersal or environmentally controlled recruitment. For plant species which are critically dependent on mycorrhizal symbionts for germination and seedling establishment, specificity in mycorrhizal associations and availability of suitable mycorrhizal fungi can be expected to have a major impact on successful colonization and establishment and thus ultimately on a species distribution. We combined seed germination experiments with soil analyses and fungal assessments using 454 amplicon pyrosequencing to test the relative importance of dispersal limitation, mycorrhizal availability and local growth conditions on the distribution of the orchid species Liparis loeselii, which, despite being widely distributed, is rare and endangered in Europe. We compared local soil conditions, seed germination and mycorrhizal availability in the soil between locations in northern Belgium and France where L. loeselii occurs naturally and locations where conditions appear suitable, but where adults of the species are absent. Our results indicated that mycorrhizal communities associating with L. loeselii varied among sites and plant life cycle stages, but the observed variations did not affect seed germination, which occurred regardless of current L. loeselii presence and was significantly affected by soil moisture content. These results indicate that L. loeselii is a mycorrhizal generalist capable of opportunistically associating with a variety of fungal partners to induce seed germination. They also indicate that availability of fungal associates is not necessarily the determining factor driving the distribution of mycorrhizal plant species. © 2017 John Wiley & Sons Ltd.

  14. Efeito do fósforo, fumigação do substrato e fungo micorrízico arbuscular sobre o crescimento de plantas de mamoeiro Effect of phosphorus, soil fumigation and mycorrhizal colonization on papaya growth

    Directory of Open Access Journals (Sweden)

    M. T. A. Minhoni

    2003-10-01

    Full Text Available Estudou-se o efeito da inoculação com o fungo micorrízico arbuscular (FMA, Glomus macrocarpum, da fumigação do substrato e da adição de fósforo solúvel (60, 120, 240 e 480 mg kg-1 de P no solo sobre as variáveis altura, número de folhas e diâmetro do caule de plantas de mamoeiro cv. Sunrise Solo.O FMA edoses crescentes de fósforo, isoladamente, exerceram efeitos significativos sobre essas variáveis. Não houve efeito significativo do fator fumigação do substrato. O efeito da inoculação foi mais acentuado no tratamento com adição de 60 mg kg-1 de P no solo. A inoculação com G. macrocarpum reduziu a necessidade de fósforo para o mamoeiro, tanto que as variáveis estudadas em plantas inoculadas na ausência de adubação fosfática não diferiram de plantas não inoculadas em substrato adicionado de mais de 240 mg kg-1 de P no solo.The effects of inoculation with arbuscular mycorrhizal fungus (AMF, substratum fumigation, and addition of soluble phosphate on papaya plant cultivar "Sunrise Solo" parameters (height, leaf number, and stem diameter were studied. Separate treatments with AMF inoculation (Glomus macrocarpum and increasing phosphorus levels (60, 120, 240, and 480 mg kg-1 of P in soil influenced these parameters significantly, while the factor substratum fumigation had no significant effect. The inoculation effect was most expressive when 60 mg kg-1 of P in soil was added. Such was the reduction in phosphorus requirement of papaya by Glomus macrocarpum inoculation, that the studied parameters between inoculated plants without phosphate addition and not-inoculated ones in substratum enriched with over 240 mg kg-1 of P in soil did not differ.

  15. Vesicular-arbuscular mycorrhizae established with Glomus fasciculatus spores isolated from the feces of cricetine mice

    Science.gov (United States)

    Frederick M. Rothwell; Coleman Holt

    1978-01-01

    Cricetine mice were trapped on two revegetated surface-mined areas - one with a freshly seeded grass-legume cover and one with an early successional grass-forb cover. Chlamydospores of Glomus fasciculatus isolated from the feces of these animals produced representative endomycorrhizae with corn under greenhouse conditions.

  16. EFFECTS OF CORN CULTIVAR-TILLAGE SYSTEM COMBINATION ON VESICULAR ARBUSCULAR MYCORRHIZAE

    Directory of Open Access Journals (Sweden)

    Joko Prasetyo .

    2011-10-01

    Full Text Available Pengaruh kombinasi  varietas jagung dan sistem olah tanah terhadap mikorisa vesikular arbuskular.  Penelitian telah dilakukan untuk mengevaluasi pengaruh kombinasi sistem olah tanah dan varietas terhadap  populasi mikorisa vesikular arbuskular. Penelitian juga ditujukan untuk mengetahui pengaruh kombinasi varietas jagung dan sistem olah tanah terhadap infeksi mikorisa vesicular arbuskular. Penelitian terdiri atas enam perlakuan yang disusun dalam rancangan acak kelompok. Perlakuan tersebut adalah varietas RR yang ditanam pada sistem olah tanah konservasi  (RRCT, varietas C7 yang ditanam pada sistem olah tanah konservasi (C7CT, varietas Bisma ditanam pada sistem olah tanah konservasi (BCT, varietas RR ditanam pada sistem olah tanah sempurna (RRFT, varietas C7 yang ditanam pada sistem olah tanah sempurna (C7FT, dan varietas Bisma ditanam pada sistem olah tanah sempurna (BFT. Hasil penelitian pada sistem olah tanah konservasi  menunjukkan bahwa varietas RR dan C7 secara nyata dapat menurunkan infeksi mikorisa dibandingkan dengan varietas Bisma. Hasil penelitian juga menunjukkan bahwa pada varietas RR dan C7, olah tanah konservasi secara nyata menurunkan infeksi mikorisa dibandingkan dengan sistem olah tanah sempurna.

  17. Increasing Growth and Yield of Upland Rice by Application of Vesicular Arbuscular Mycorrhizae and Potassium Fertilizer

    Directory of Open Access Journals (Sweden)

    Dedi Natawijaya

    2012-01-01

    Full Text Available Field experiment with a split plot design has been carried out in order to assess the growth characteristics andyields, and effectiveness of MVA upland rice which were given potassium fertilizer in two growing seasons. MVAinoculation consisted of three treatments (without MVA, Glomus sp. and Gigaspora sp. while potassium fertilizerconsisted of five levels (0, 12.5, 25, 37.5, and 50 kg ha-1 K. The results showed that plant growth variable which wasinoculated by MVA at any levels of K fertilizer was higher in the dry season than that in the wet season, whereas theopposite occurred for net assimilation rate. Potassium content of leaf tissue, shoot/root ratio, and grain weight perhill was determined and mutually dependent on genus MVA, dosages of K fertilizer, and growing season. Harvestindex and grain dry weight per hill were influenced by the growing season and the genus MVA but the effect did notdepend on each other. At all dosages of K fertilizer and any MVA genera, Gigaspora sp. inoculation was better thanthat of Glomus sp. Dry weight of grains per hill was affected by the contribution of grain content per hill, weight of1000 grains and number of productive seedlings per hill. The optimum dosage of K fertilizer in the dry season was32.4 kg ha-1 K with grain yield 3.12 Mg ha-1 for inoculation of Gigaspora sp., whereas the optimum dosage in the wetseason was 34.2 kg ha-1 K for the treatment Glomus sp. inoculation with Gigaspora sp. in the wet season did notreach dosages of optimum K fertilizer.

  18. Effects of vesicular-arbuscular mycorrhizae and seed source on nursery-grown black walnut seedlings

    Science.gov (United States)

    B. L. Brookshire; H. E. Garrett; T. L. Robison

    2003-01-01

    A nursery study was established in Missouri to evaluate the effects of endomycorrhizal inoculation and seed source on the growth of black walnut seedlings. Inoculation, in general, resulted in seedlings with significantly larger sturdiness quotients. Glomus intraradicies was found to produce larger seedlings than Glomus etunicatus...

  19. Mycorrhizal fungi suppress aggressive Agricultural weeds.

    NARCIS (Netherlands)

    Rinaudo, V.; Barberi, P.; Giovannetti, M.; van der Heijden, M.G.A.

    2010-01-01

    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from

  20. Arbuscular mycorrhizal symbiosis of Thymus kotschyamus Boiss. & Hohen. in relation with soil elements during spring and autumn in Noujian Watershed (Lorestan province

    Directory of Open Access Journals (Sweden)

    Parvin Ramak

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are the most important microorganisms of soil having an important role in soil fertility. In this research, the correlation between soil nutrient elements and Arbuscular mycorrhizal fungi colonization and spore numbers in the rhizosphere of Thymus kotschyamus Boiss. & Hohen. growing in the three regions (Taf, Vark and Kohkala of Noujian watershed were studied during spring and autumn. Influence of arbuscular mycorrhizal symbiosis were also determined on vegetative characteristics and essential oil yield of T. kotschyamus.The results indicated that magnesium significant positive correlation with arbuscular mycorrhiza fungi spore density (+0.84 and percentage colonization (+0.92. Soil organic matter no significant linear correlation with arbuscular mycorrhiza fungi spore density and percentage colonization. Potassium negatively correlated with spore density and percentage colonization respectively; -0.85 and -0.90. Arbuscular mycorrhizal fungi colonization significant linear correlation with dry weight (+0.79. Essential oil yield of T. kotschyamus positively correlated with that of spore density and percentage colonization respectively; +0.93 and +0.91. Given the importance of mycorrhizal symbiosis and compilation this with soil elements, this information can be useful for development of medicinal plants in agricultural ecosystems.

  1. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil.

    Science.gov (United States)

    Ambrosini, Vítor Gabriel; Voges, Joana Gerent; Canton, Ludiana; Couto, Rafael da Rosa; Ferreira, Paulo Ademar Avelar; Comin, Jucinei José; de Melo, George Wellington Bastos; Brunetto, Gustavo; Soares, Cláudio Roberto Fonsêca Sousa

    2015-01-01

    High copper (Cu) levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P) absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis) and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM), height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels.

  2. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vítor Gabriel Ambrosini

    2015-12-01

    Full Text Available Abstract High copper (Cu levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF. The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM, height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels.

  3. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  4. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

    Science.gov (United States)

    Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; Paz, José Antonio; García-Mina, José María; Pozo, María José; López-Ráez, Juan Antonio

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Evaluation of some fungicides on mycorrhizal symbiosis between two Glomus species from commercial inocula and Allium porrum L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Dorrego, A.; Mestre Pares, J.

    2010-07-01

    This paper reports the effect of twenty-five commonly used fungicides in agriculture on two arbuscular mycorrhizal fungi (AMF) present in commercial products of ATENS, S.L.: Glomus intra radices (Schenck and Smith) and Glomus mosseae [(Nicol. and Gerd.) Gerdemann and Trappe], forming the symbiosis with leek plants. Systemic fungicides (Aliette, Beltanol, Caddy 10, Forum, Moncut, Ortiva, Previcur, Ridomil Gold MZ, Ridomil Gold SL, Rubigan, Sinthane, Stroby, Swich, Tachigarem, Teldor, Topas 10 EC, Frupica) and non systemic fungicides (Daconil 75%, Ditiver, Euparem, INACOP, Octagon, Parmex, Terrazole and Metaram), started to be applied to soil and leaves at recommended concentrations and frequencies 4 weeks after transplant and AMF inoculation. The effect of the fungicides was assessed by comparing treated and untreated plants that were inoculated with the AMF through quantification of root mycorrhizal colonization. Among the fungicides applied to the soil, Octagon, Ditiver, Parmex and Metaram virtually eliminated the mycorrhizal symbiosis in treated plants, while the mycorrhizal colonization was not affected by the soil treatment with Beltanol, INACOP and Previcur. Three fungicides of foliar recommended application: Rubigan, Frupica, and Sinthane, strongly inhibited mycorrhizal colonization, but Aliette, Forum, Teldor, Swich and Ortiva, did not seem to reduce it substantially. In addition, the work describes the individual effect of each fungicide applied on both, foliage and soil. (Author) 29 refs.

  6. Effects of Soil Aluminum on Early Arbuscular Mycorrhizal Colonization of Wheat an Barley Cultivars Growing in an Andisol Efecto del Aluminio del Suelo en la Colonización Temprana por Micorrizas Arbusculares en Cultivares de Trigo y Cebada Creciendo en un Andisol

    Directory of Open Access Journals (Sweden)

    Alex Seguel

    2012-09-01

    Full Text Available Aluminum phytotoxicity in acid soils is an important environmental stress that negatively affects crop production, but arbuscular mycorrhizal (AM fungi performance would allow plants to better withstand this environmental condition. This study aimed to analyze the effect of soil Al on early AM colonization of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. cultivars. Near-isogenic Crac, Invento, and Porfiado wheat cultivars and Sebastián and Aurora barley cultivars were sown in pots in an acid soil at three Al saturation levels (60, 34, and 11%. At 20 d after sowing (DAS 'Crac' presented higher AM colonization (27% than other cultivars. However, 'Invento' had the fastest colonization at 41 DAS, which was inhibited in short term at lower Al-saturation. Moreover, roots of 'Aurora' were colonized 28 and 51% at 20 and 66 DAS, respectively, and also decreased at lower Al-saturation. In soil with 60% Al-saturation a great spore production was observed at 41 DAS, 'Aurora' had the highest spore density at 66 DAS. At 20 DAS a negative relationship (r = -0.37; p La fitotoxicidad por Al en suelos ácidos es un importante estrés que afecta negativamente la producción de cultivos, pero la actividad de hongos micorrícicos arbusculares (MA permitiría que las plantas soporten mejor esta condición ambiental. Este estudio tuvo como objetivo analizar el efecto del Al en la colonización MA temprana de cultivares de trigo (Triticum aestivum L. y cebada (Hordeum vulgare L.. Cultivares de trigo Crac, Invento, y Porfiado, y de cebada Sebastián y Aurora fueron sembrados en macetas en un suelo ácido con tres niveles de saturación de Al (60, 34, y 11%. A los 20 días después de la siembra (DDS 'Crac' presentó la mayor colonización MA (27%; sin embargo, 'Invento' tuvo la más rápida colonización a los 41 DDS, la cual fue inhibida a corto plazo a una menor saturación de Al. Por otra parte, las raíces de 'Aurora' fueron colonizadas 28 y 51% a los

  7. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.D. [Department of Soil Environmental Science, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)]. E-mail: bdchen@rcees.ac.cn; Zhu, Y.-G. [Department of Soil Environmental Science, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Duan, J. [Department of Soil Environmental Science, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Xiao, X.Y. [Department of Soil Environmental Science, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Smith, S.E. [Centre for Soil-Plant Interactions, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia)

    2007-05-15

    A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings. - This study demonstrated that AM associations can encourage plant survival in Cu mine tailings.

  8. A plasma membrane zinc transporter from ¤Medicago truncatula¤ is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization

    DEFF Research Database (Denmark)

    Burleigh, S.H.; Kristensen, B.K.; Bechmann, I.E.

    2003-01-01

    Here we present a Zn transporter cDNA named MtZIP2 from the model legume Medicago truncatula. MtZIP2 encodes a putative 37 kDa protein with 8-membrane spanning domains and has moderate amino acid identity with the Arabidopsis thaliana Zn transporter AtZIP2p. MtZIP2 complemented a Zn-uptake mutant...... of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems......, but not in leaves of M. truncatula and, in contrast to all other plant Zn transporters characterized thus far, MtZIP2 was up-regulated in roots by Zn fertilization. Expression was highest in roots exposed to a toxic level of Zn. MtZIP2 expression was also examined in the roots of M. truncatula when colonized...

  9. Expanding genomics of mycorrhizal symbiosis.

    Science.gov (United States)

    Kuo, Alan; Kohler, Annegret; Martin, Francis M; Grigoriev, Igor V

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  10. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    characteristics of plant growth promoting rhizobacteria (PGPR) and hence selected for further study. The sixty six isolates were further ... microorganisms as inoculum to boost production of the crop could be one of the potential ... vesicular arbuscular mycorrhizal (VAM) fungi (Glomus fasiculatum) on mineral content of tef.

  11. Browse Title Index

    African Journals Online (AJOL)

    Items 3951 - 4000 of 11090 ... Vol 10, No 36 (2011), Effect of vermicompost on manifestation of pesticide action on growth of Zinnia elegans, Abstract PDF. AK Sharan, M Kumar, R Singh, AK Neha, GD Sharma, C Jee. Vol 7, No 19 (2008), Effect of vesicular arbuscular mycorrhizal fungus on the physiological and biochemical ...

  12. Browse Title Index

    African Journals Online (AJOL)

    Items 151 - 200 of 444 ... Vol 24 (1991), Effects of nitrate and ammonium nitrogen on vesicular-arbuscular mycorrhizal infection in letttuce (Lactuca sativa) grown in sand with nutrient solutions, Abstract. E Owusu-Benoah. Vol 20 (1987), Effects of N-nitrate fertilization on yield and dinitrogen fixation in common bean (Phaseolus ...

  13. Author Details

    African Journals Online (AJOL)

    Owusu-Benoah, E. Vol 24 (1991) - Articles Effects of nitrate and ammonium nitrogen on vesicular-arbuscular mycorrhizal infection in letttuce (Lactuca sativa) grown in sand with nutrient solutions. Abstract. ISSN: 0855-0042. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  14. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings

    Science.gov (United States)

    Mark D. Coleman; Caroline S. Bledsoe; Barbara A. Smit

    1990-01-01

    Mechanistic hypotheses to explain mycorrhizal enhancement of root hydraulic conductivity (Lp) suggest that phosphorus (P) nutrition, plant growth substances and/or altered morphology may be responsible. Such ideas are based on work with VA (vesicular-arbuscular) mycorrhizas. Since VA mycorrhizas and ectomycorrhizas differ in many respects, they...

  15. Effect of manganese on endomycorrhizal sugar maple seedlings

    Science.gov (United States)

    George A. Schier; Carolyn J. McQuattie

    2002-01-01

    Manganese (Mn) toxicity may play an important role in the poor survival of seedlings in declining sugar maple (Acer saccharum Marsh.) stands in northern Pennsylvania. To determine the effect of Mn on the growth of sugar maple seedlings, 1-year-old seedlings inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi and growing in sand-vermiculite-...

  16. (VAM) and phosphate solubilizing bacteria (PSB)

    African Journals Online (AJOL)

    User

    2013-09-18

    Sep 18, 2013 ... potash mobilizing and plant promoting microorganisms. Vesicular arbuscular mycorrhizal (VAM) fungi improve plant growth through phosphorous nutrition. In addition to phosphorous, they also help in the uptake of other nutri- ent elements. Nutrient absorption by fungal symbionts is due to external hyphae ...

  17. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  18. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  19. Successive cultivation of maize and agricultural practices on root colonization, number of spores and species of arbuscular mycorrhizal fungi Cultivo sucessivo de milho e práticas agrícolas sobre a colonização radical, número de esporos e de espécies de fungos micorrízicos arbusculares

    Directory of Open Access Journals (Sweden)

    Rosilaine Carrenho

    2001-12-01

    Full Text Available A large number of propagules and a broad spectrum of species are two important components of ecosystem (including agroecosystem sustainability. Previous studies carried out in temperate areas showed that repeated monoculture leads to a decrease in the species abundance of arbuscular mycorrhizal fungi (AMF. This study evaluated the influence of maize monoculture and its agricultural practices on AMF during three consecutive cropping years in a Brazilian field. At the end of each cycle, soil and root samples were evaluated for species composition, spore populations and root colonization by AMF. The AMF community present during this period was scored according to the Spearman rank correlation and Principal Components Analysis. The mean percent root colonization values for the three cultivation periods were: 66.9, 60.7 and 70.5, respectively. Seven species were detected in the first year, Scutellospora persica being the most abundant (24.1% of spores and Glomus macrocarpum the most observed (100% of samples. In the second year, Glomus etunicatum was the species with the greatest number of spores (24.7% and, like G. macrocarpum, the most frequently observed (90% in a community of thirteen. In the third year, twenty-three AMF species were identified, Scutellospora sp. 1 being the most abundant (17.4%, and Gigaspora decipiens and Glomus claroideum the most frequent (both with a relative frequency of 70%. The main soil factors influencing root colonization and sporulation by AMF were pH (and related properties, phosphorus and organic matter contents.Elevado número de propágulos e de espécies são componentes importantes para manter a sustentabilidade dos ecossistemas, incluindo agrossistemas. Estudos desenvolvidos em áreas temperadas indicaram que monocultivo prolongado conduziu ao decréscimo na abundância de esporos e de espécies de fungos micorrízicos arbusculares (FMA. O presente estudo avaliou a influência da monocultura de milho e de suas

  20. Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum).

    Science.gov (United States)

    Schliemann, Willibald; Kolbe, Barbara; Schmidt, Jürgen; Nimtz, Manfred; Wray, Victor

    2008-05-01

    Colonization of the roots of leek (Allium porrum L.) by the arbuscular mycorrhizal fungus Glomus intraradices induced the formation of apocarotenoids, whose accumulation has been studied over a period of 25 weeks. Whereas the increase in the levels of the dominating cyclohexenone derivatives resembles the enhancement of root length colonization, the content of mycorradicin derivatives remains relatively low throughout. Structural analysis of the cyclohexenone derivatives by mass spectrometry and NMR spectroscopy showed that they are mono- and diglycosides of 13-hydroxyblumenol C and blumenol C acylated with 3-hydroxy-3-methyl-glutaric and/or malonic acid. Along with the isolation of three known compounds five others are shown to be hitherto unknown members of the fast-growing family of mycorrhiza-induced cyclohexenone conjugates.

  1. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups...

  2. Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands

    NARCIS (Netherlands)

    Galvan Vivero, G.A.; Paradi, I.; Burger, K.; Baar, J.; Kuyper, T.W.; Scholten, O.E.; Kik, C.

    2009-01-01

    Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions,

  3. BIOMETRIC PARAMETERS OF FIELD GROWN SESAME INFLUENCED BY ARBUSCULAR MYCORRHIZAL INOCULATION, ROCK PHOSPHATE FERTILIZATION AND IRRIGATION

    Directory of Open Access Journals (Sweden)

    V.S. Harikumar

    2017-08-01

    Full Text Available The aim of the study was to assess the effect of inoculation with arbuscular mycorrhizal fungi (AMF and rock phosphate (RP fertilization on biometric parameters and mycorrhizal colonization of field grown sesame under rainfed and irrigated conditions. Inoculation of AMF Funneliformis dimorphicus improved the biometric parameters of the crop such as leaf area (LA, leaf area index (LAI, specific leaf weight (SLW, net assimilation rate (NAR, oil index (OI as well as mycorrhizal colonization (%F in roots. Mycorrhizal inoculation however, did not give any positive response on harvest index (HI. LA, LAI and OI and %F showed a general increment in treatments of no added P (P0, while the other parameters such as SLW and NAR were improved by the application of RP at half the recommended dose (P50. HI did not respond to RP fertilization. Most of the parameters (LA, LAI, NAR, %F showed higher values under rainfed condition than irrigated condition whereas, SLW, HI and OI improved significantly under irrigated condition. Results indicated that the inoculation of AMF to field grown sesame can compensate for 50% of the recommended P fertilizer under a need based irrigation schedule, without affecting the biometric parameters.

  4. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    Energy Technology Data Exchange (ETDEWEB)

    Lingua, Guido [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)], E-mail: guido.lingua@mfn.unipmn.it; Franchin, Cinzia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Todeschini, Valeria [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Castiglione, Stefano [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Biondi, Stefania [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Burlando, Bruno [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Parravicini, Valerio [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Torrigiani, Patrizia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Berta, Graziella [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)

    2008-05-15

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes.

  5. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  6. Exogenous Polyamines Improve Mycorrhizal Development And Growth And Flowering Of Freesia hybrida

    Directory of Open Access Journals (Sweden)

    Rezvanypour Shirin

    2015-12-01

    Full Text Available An experiment was conducted in order to investigate the effects of exogenous polyamines (PAs on the development of mycorrhizae in roots, nutrient uptake and vegetative and reproductive growth of Freesia hybrida ‘Golden Wave’. Corms of freesia were inoculated with Rhizophagus intraradices at sowing time and treated once a week by one of three PAs, putrescine (Put, spermidine or spermine, in concentrations of 0.05 and 0.1 mM each as foliar application or soil drench. Application of PAs, especially as soil drench, increased mycorrhizal colonization as well as the growth and development of inoculated plants. Among the three PAs, Put in 0.1 mM concentration was the most effective in increasing colonization, enhancing floral stem length and diameter, floral spike length, floret number on main and lateral spikes and increasing corm and cormlet weight, corm diameter and cormlet number. Sole application of arbuscular mycorrhizal fungi had no significant effect on the flowering time but soil drench with 0.1 mM Put accelerated flowering by about 17 days. Application of PAs elevated leaves N, P, K, Mg, Fe and Zn and corms’ P, K, Ca, Fe and Zn concentration of inoculated plants. Our results suggest that soil drench application of PAs, especially Put, positively influenced mycorrhizal inoculation and nutrient uptake, which leads to improving growth, flower and corm production and quality of mycorrhizal plants of freesia.

  7. Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata.

    Science.gov (United States)

    Bayman, Paul; Mosquera-Espinosa, Ana T; Saladini-Aponte, Carla M; Hurtado-Guevara, Nilbeth C; Viera-Ruiz, Naida L

    2016-11-01

    Oeceoclades maculata is a naturalized, invasive, terrestrial orchid in Puerto Rico and elsewhere in the neotropics. We asked whether its success might be partly explained by its mycorrhizal associations, hypothesizing a relationship with many fungal partners or with one widely distributed partner. Oeceoclades maculata roots were collected throughout Puerto Rico, and the degree of mycorrhizal colonization was measured. For identification of fungi, the ITS region was sequenced from pure cultures and directly from roots. Representative fungi were used for symbiotic seed germination experiments. Colonization of O. maculata roots was very variable. The most common fungus identified by BLAST searches was Psathyrella cf. candolleana, but typical orchid mycorrhizal fungi (Ceratobasidium and Tulasnella) were also found, as were a range of saprotrophs. Seeds germinated in vitro only in the presence of Psathyrella. These results are surprising in two respects. First, O. maculata appears to be highly specific for fungi during seed germination, but unusually promiscuous as adult plants. Second, mycorrhizal associations with Psathyrella and with other saprotrophic fungi have been previously reported, but only from mycoheterotrophic (i.e., nonphotosynthetic) orchids, not from green orchids like Oeceoclades. This combination may partly explain the success of Oeceoclades. © 2016 Botanical Society of America.

  8. Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference

    Directory of Open Access Journals (Sweden)

    André Cabral França

    2016-06-01

    Full Text Available Mycorrhizae provide several benefits to coffee plants. This study evaluated whether these benefits influence the damage caused by the Bidens pilosa competition with coffee seedlings. A randomized blocks design was used, with treatments established in a 2 x 3 factorial scheme (presence and absence of B. pilosa interference in non-inoculated control or plants inoculated with either Claroideoglomus etunicatum or Dentiscutata heterogama. Coffee seedlings were inoculated with fungi spores and developed for 120 days. Then, they were subjected to the interference of B. pilosa for more 120 days, when data were collected for growth traits, mycorrhizal colonization, dry matter and foliar nutrient concentrations in coffee plants. Dry matter and nutrient contents in B. pilosa plants were also evaluated. Inoculation provided better growth and nutrition of coffee plants. The competition with B. pilosa reduced mycorrhizal colonization, height, leaf area, leaf and stem dry mass, root dry weight, number of reproductive branches and levels of P and Fe in the coffee plants. However, the harmful effect of the interference was lower in inoculated coffee plants. The dry mass of B. pilosa decreased under the interference of inoculated coffee plants. The inoculation of C. etunicatum and D. heterogama in Arabica coffee seedlings increases the competitiveness of the crop against B. pilosa interference.

  9. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  10. Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings

    OpenAIRE

    Kariman, Khalil; Barker, Susan J.; Finnegan, Patrick M.; Tibbett, Mark

    2014-01-01

    In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefo...

  11. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  12. Effect of Mycorrhizal Fungus (Glomus spp on Wheat (Triticumaestivum Yield and Yield Components with Regard to Irrigation Water Quality

    Directory of Open Access Journals (Sweden)

    S Habibi

    2016-02-01

    Full Text Available Introduction Decrease in water quality affected by salinization of the water resources due to the drought is one of the limiting factors of plant production. Using mycorrhizal fungi is an important approach to deal with damaging effects during stress conditions. The symbiosis of arbuscular mycorrhiza (AM with the host plant and hence, the production of a very extensive network of hypha, enhances nutrient acquisition and improves water uptake in the host plant. The specialized network of hypha raises the uptake and translocation of nutrients to the plant, whereas it inhibits high uptake of Na and Cl and their transport to plant shoots compared with plant roots. Hence, AM can alleviate the stress of salinity on plant growth and increases their tolerance to the stresses. Materials and Methods In order to evaluate the influence of mycorrhizal fungi on yield and yield components of wheat, a greenhouse experiment was conducted in research farm of Shahid Chamran Ahvaz University. Experimental design was a randomized complete block design arranged in split factorial with three replications. The factors were water salinity (water quality including filtered water (EC ≥ 1 dS m-1, tap water (EC = 1/7-3 ds m-1, tap water plus NaCl and filtered water plus NaCl (EC = 8 ds m-1. Soil sterilization included sterilized and non-sterilized soil and mycorrhizal inoculation were in five levels (non-inoculated, inoculated with ‌Glomusmosseae, G. intraradices, G. geosporum and mixture of them. Yield and yield components were measured at crop maturity and colonization percentage of root was determined at flowering stage. Root colonization by AM was determined through preparing root samples at 1 g in each experimental unit, and roots were stained using the Gridline- Intersect Method. The harvest index and mycorrhizal dependency were also measured. Salinity levels determined approximate the threshold of wheat –tolerate- salinity before the results would rather

  13. Crecimiento y micorrización arbuscular nativa de trigo en siembra directa bajo distintas formas de colocación de fósforo Phosphorus placement effect on growth and indigenous mycorrhizal colonization of wheat under no-tillage

    Directory of Open Access Journals (Sweden)

    Fernanda Covacevich

    2008-12-01

    el suelo y en la planta. Se determinó una elevada relación (r²= 0,85 entre la colonización MA y el contenido de P-Bray (0-20 cm en el suelo, siendo la tasa de disminución de la colonización MA mayor en el rango de 6 a 13 mg kg-1 de P-Bray. A niveles similares de P-Bray, la aplicación de P al voleo disminuyó en menor medida la colonización por HMA comparado con la aplicación en la línea de siembra. Este comportamiento contribuiría a explicar la falta de diferencias en rendimiento entre las dos formas de colocación de P en suelos bajo SD con niveles bajos de P.Wheat (Triticum aestivum L. yields of crops under no-tillage (NT that have had broadcast phosphorus (P applications do not differ from NT wheat crops that have had near-the-seed banded P applications. Although it is believed that an adequate colonization of roots by arbuscular mycorrhiza (AM under NT could contibute to a better crop growth, the effect of P placement on the AM colonization of a wheat crop under NT is unknown. The objective of the study was to evaluate the influence of P fertilizer placement (banded or broadcast on growth and the AM indigenous colonization of wheat under NT. The experiment was carried out in a soil with 13.9 mg kg-1 Bray-P and the treatments were: 0 (NP0, 25 (NP25 y 50 kg ha-1 (NP50, banded (inc at planting or broadcast (vol three months before planting. In addition, two treatments were included: one without fertilizer application (N0P0 and another with 150 kg of P ha-1 broadcast (NP150 vol. Aerial plant P concentration and biomass production, percentage of AM in roots, arbuscules content (A and soil Bray-P availability was evaluated in tillering and stem elongation at two soil depths (0-10 and 10-20 cm. Phosphorus fertilization increased the soil P content (0-10 cm and the plant P content. At the two soil depths, fertilization with 25 and 50 kg P ha-1 depressed AM and A as compared to the unfertilized treatments, mainly when the P was banded. Mycorrhizal colonization

  14. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2017-07-19

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  15. Influence of arbuscular mycorrhizal fungi inoculum produced on-farm and phosphorus on growth and nutrition of native woody plant species from Brazil

    Directory of Open Access Journals (Sweden)

    Luis Claudio Goetten

    2016-03-01

    Full Text Available Mycorrhizal fungus inoculum produced on-farm can be used during production of woody plant seedlings to reduce costs associated with purchase of commercial inoculant and fertilization. This study aimed to test the efficiency of a mycorrhizal inoculant produced on-farm to promote growth and nutrition of woody species in combination with different levels of phosphorus. Plants were submitted to different treatments of phosphorus (0, 40 and 80 mg P/dm3 and mycorrhizal inoculation (uninoculated, and inoculation with Rhizophagus clarus [Rc] or Claroideoglomus etunicatum [Ce]. Species included were Luehea divaricata, Centrolobium robustum, Schinus terebinthifolius, Garcinia gardneriana, Cedrella fissilis, and Lafoensia pacari. The inoculum was produced using the on-farm methodology. Mycorrhizal colonization of plants inoculated with Rc and Ce ranged from 44.8 to 74.8%, except forGarcinia gardneriana. Inoculation treatment increased plant height and stem diameter of Luehea divaricata, Centrolobium robustum and Cedrella fissilis while phosphorus, inoculation and the interaction affected these parameters for G. gardneriana and Lafoensia pacari. Shoot biomass increased significantly with inoculation treatment in four species. For most species, mycorrhizal fungus inoculation and the addition of phosphorus increased the shoot phosphorus content. Mycorrhizal fungus inoculum produced on-farm successfully colonized tree seedlings and improved growth and/or nutrition under nursery conditions, producing seedlings useful for revegetation of degraded lands.

  16. Mycorrhizal aspects in slope stabilisation

    Science.gov (United States)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  17. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    dehydrogenase activity and the number of mycorrhizal infective propagules were evaluated in association with several plant physiological parameters (vegetative growth, NDVI‒Normalized Difference Vegetation Index and PRI‒Photochemical Reflectance Index, leaf nutrient content) and root mycorrhizal colonization percentage. Preliminary results indicate an overall decrease in soil microbial activity due to Cu addition, regardless of the presence or absence of the inoculated mycorrhizal fungus. High Cu concentrations in soil decreased plant shoot length, root fresh weight and NDVI and PRI values. However, differences between mycorrhizal treatments were detected on plant response to Cu stress. The usefulness of grapevine inoculation with AMF to enhance plant performance at high Cu levels in the soil is discussed.

  18. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    Science.gov (United States)

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  19. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    Science.gov (United States)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  20. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies. © 2016 by the Ecological Society of America.

  1. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability.

    Science.gov (United States)

    Querejeta, José I; Egerton-Warburton, Louise M; Allen, Michael F

    2009-03-01

    California coast live oak (Quercus agrifolia) forms tripartite symbiotic associations with arbuscular (AMF) and ectomycorrhizal (EMF) fungi. We selected oak individuals differing in topographic position and depth to groundwater (mesic valley vs. xeric hill sites) to investigate changes of tree mycorrhizal status in response to interannual rainfall variability. EMF root colonization, as well as hyphal abundance and viability in upper rhizosphere soil (0-30 cm), were negatively affected by severe multi-year drought, although not to the same extent in each topographic location. Oak trees growing in hill sites showed EMF colonization levels drought. By contrast, oaks in valley sites maintained much higher EMF colonization (>19%) in upper roots during drought. EMF root colonization increased sharply at both topographic positions during the ensuing wet year (78% in valley, 49% in hill), which indicates that the mycorrhizal status of roots in upper rhizosphere soil is highly responsive to interannual rainfall variability. Across sites and years, percentage EMF colonization and soil hyphal density and viability were strongly positively correlated with soil moisture potential, but percentage AMF root colonization was not. Interestingly, changes in percentage EMF root colonization and density of viable hyphae between a wet and a dry year were proportionally much greater in xeric hill sites than in mesic valley sites. The mycorrhizal status of oak trees was particularly responsive to changes in soil moisture at the hill sites, where roots in upper rhizosphere soil shifted from almost exclusively AMF during severe drought to predominantly EMF during the ensuing wet year. By contrast, the mycorrhizal status of oaks in the valley sites was less strongly coupled to current meteorological conditions, as roots in upper soil layers remained predominantly EMF during both a dry and a wet year. Canopy shading and hydraulic lift by oaks in valley sites likely contributed to maintain the

  2. Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments

    Directory of Open Access Journals (Sweden)

    Josy Fraccaro de Marins

    Full Text Available ABSTRACT There have been several reports of symbionts in the roots of plants that live in aquatic environments. Arbuscular mycorrhizal fungi (AMF are the most common microsymbionts and possibly recolonized the aquatic environment together with plants; however, their functions and the extent of their benefits are unclear. Furthermore, the presence of other groups of fungi, such as dark septate fungi (DSF, with functions supposedly analogous to those of mycorrhizal fungi, has also been reported. The present work provides a compilation of data regarding the presence of arbuscular mycorrhizae in plants from, or under the influence of, aquatic environments, and co-colonization by AMF and DSF. Forty species of non-vascular plants, ferns, fern allies, and gymnosperms from 15 families, and 659 species of angiosperms from 87 families were investigated. From the first group (non-flowering plants 57 % of the species showed arbuscular mycorrhizal structures in their tissues or roots, whereas among the second group (flowering plants 71% had such structures. Among the mycorrhizal angiosperms, 52 % showed arbuscules in their roots. DSF were found in 1% of non-flowering plants and 5 % of angiosperms. All of these are discussed in this review.

  3. Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders?

    Directory of Open Access Journals (Sweden)

    Jan eJansa

    2013-05-01

    Full Text Available Mycorrhizal fungi interconnect two different kinds of environments, namely the plant roots with the surrounding soil. This widespread coexistence of plants and fungi has important consequences for plant mineral nutrition, water acquisition, carbon allocation, tolerance to abiotic and biotic stresses and interplant competition. Yet some current research indicates a number of important roles to be played by hyphae-associated microbes, in addition to the hyphae themselves, in foraging for and acquisition of soil resources and in transformation of organic carbon in the soil-plant systems. We critically review the available scientific evidence for the theory that the surface of mycorrhizal hyphae in soil is colonized by highly specialized microbial communities, and that these fulfill important functions in the ecology of mycorrhizal fungal hyphae such as accessing recalcitrant forms of mineral nutrients, and production of signaling and other compounds in the vicinity of the hyphae. The validity of another hypothesis will then be addressed, namely that the specific associative microbes are rewarded with exclusive access to fungal carbon, which would qualify them as hypersymbionts (i.e. symbionts of symbiotic mycorrhizal fungi. Thereafter, we ask whether recruitment of functionally different microbial assemblages by the hyphae is required under different soil conditions (questioning what evidence is available for such an effect, and we identify knowledge gaps requiring further attention.

  4. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Yamir Torres-Arias

    Full Text Available Abstract In order to obtain an arbuscular mycorrhizal fungi (AMF native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum. Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  5. Arbuscular mycorrhizal fungi mediated uptake of {sup 137}Cs in leek and ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna [Department of Soil Sciences, Swedish University of Agricultural Sciences P.O. Box 7014, SE-750 07 Uppsala (Sweden)

    2005-02-15

    In a first experiment of soil contaminated with {sup 137}Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of {sup 137}Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the {sup 137}Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of {sup 137}Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced {sup 137}Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or {sup 137}Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of {sup 137}Cs. There may be a potential for selecting fungal strains that stimulate {sup 137}Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of {sup 137}Cs-contaminated soil.

  6. Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor V.; Kohler, Annegret; Martin, Francis

    2013-05-23

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms for assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of L. bicolor. Most of this data is publicly available on JGI MycoCosm?s Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).

  7. Mycorrhizal status of plants in two successional stages on spoil heaps from fireloam mining in Lower Silesia (SW Poland

    Directory of Open Access Journals (Sweden)

    Dorota Kasowska

    2014-01-01

    Full Text Available The mycorrhizal status of two plant communities representing an initial stage (1-2 year-old and a 8-9-year-old stage of succession on spoil heaps from fireloam mining in Lower Silesia, Poland, was determined. In the initial stage, the mycorrhizal structures were not observed in 39% of the investigated species; they were members of the Polygonaceae, Chenopodiaceae and Poaceae families. The relative cover of non-mycorrhizal plants exceeded 50% and the major role was played by the Polygonum aviculare population, which predominated the whole community. Mycorrhizal species (arbuscular mycorrhizae contributed to 61 % of the composition of the initial phyto-coenosis. The most numerous taxa were those with 20-40% of the root length colonized, with a small number of arbuscules (0.2-3.1% of the root length containig arbuscules and no vesicles. In the advanced stage of succession, mycorrhizal plants definitely dominated and the major role was played by the Tussilago farfara population. Compared with the initial stage, the later one also harboured more plants with mycorrhizas occupied >40% of the root length, as well as containing numerous arbuscules (>20% of the root length and vesicles. The non-mycorrhizal species, i.e., Equisetum arvense and Poa compressa, represented 11 % o': the community composition and their relative cover amounted to 3%. Despite the relatively frequent occurrence of the arbuscular mycorrhizae in the initial stage of succession, the qualitative properties of the colonization indicated a low effectiveness of symbiosis. This could be caused by the lack of adaptation of the fungal symbiont to the edaphic conditions which were changed after disturbance.

  8. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  9. Explorations of mechanisms regulating ectomycorrhizal colonization of boron-fertilized pine: Quarterly report, January 1, 1989--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, H.E.; Begonia, G.; Sword, M.A.

    1989-01-01

    This report describes four experiments that test the chemical basis of mycorrhizal colonization in the root system of pine trees. This quarter, modifications to the experimental design are described, plant growth data are included, and phenolic compounds produced by pine trees in responce to colonization are evaluated. 7 refs., 1 tab. (TEM)

  10. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Gucwa-Przepiora, E.; Malkowski, E.; Sas-Nowosielska, A.; Kucharski, R.; Krzyzak, J.; Kita, A.; Romkens, P.F.A.M. [University of Silesia, Katowice (Poland)

    2007-12-15

    The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously, growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.

  11. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Cao, Ming-Qin; Zou, Ying-Ning; He, Xin-hua

    2014-07-25

    To test direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability, perspex pots separated by 37-μm nylon mesh in the middle were used to form root-free hyphae and root/hyphae chambers, where trifoliate orange (Poncirus trifoliata) seedlings were colonized by Funneliformis mosseae or Paraglomus occultum in the root/hyphae chamber. Both fungal species induced significantly higher plant growth, root total length, easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP), and mean weight diameter (an aggregate stability indicator). The Pearson correlation showed that root colonization or soil hyphal length significantly positively correlated with EE-GRSP, difficultly-extractable GRSP (DE-GRSP), T-GRSP, and water-stable aggregates in 2.00-4.00, 0.50-1.00, and 0.25-0.50 mm size fractions. The path analysis indicated that in the root/hyphae chamber, aggregate stability derived from a direct effect of root colonization, EE-GRSP or DE-GRSP. Meanwhile, the direct effect was stronger by EE-GRSP or DE-GRSP than by mycorrhizal colonization. In the root-free hyphae chamber, mycorrhizal-mediated aggregate stability was due to total effect but not direct effect of soil hyphal length, EE-GRSP and T-GRSP. Our results suggest that GRSP among these tested factors may be the primary contributor to aggregate stability in the citrus rhizosphere.

  12. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil

    Science.gov (United States)

    Yang, Yurong; Liang, Yan; Han, Xiaozhen; Chiu, Tsan-Yu; Ghosh, Amit; Chen, Hui; Tang, Ming

    2016-01-01

    Understanding the roles of arbuscular mycorrhizal fungi (AMF) in plant interaction is essential for optimizing plant distribution to restore degraded ecosystems. This study investigated the effects of AMF and the presence of legume or grass herbs on phytoremediation with a legume tree, Robinia pseudoacacia, in Pb polluted soil. In monoculture, mycorrhizal dependency of legumes was higher than that of grass, and AMF benefited the plant biomass of legumes but had no effect on grass. Mycorrhizal colonization of plant was enhanced by legume neighbors but inhibited by grass neighbor in co-culture system. N, P, S and Mg concentrations of mycorrhizal legumes were larger than these of non-mycorrhizal legumes. Legume herbs decreased soil pH and thereby increased the Pb concentrations of plants. The neighbor effects of legumes shifted from negative to positive with increasing Pb stress levels, whereas grass provided a negative effect on the growth of legume tree. AMF enhanced the competition but equalized growth of legume-legume under unpolluted and Pb stress conditions, respectively. In conclusion, (1) AMF mediate plant interaction through directly influencing plant biomass, and/or indirectly influencing plant photosynthesis, macronutrient acquisition, (2) legume tree inoculated with AMF and co-planted with legume herbs provides an effective way for Pb phytoremediation. PMID:26842958

  13. Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae) with no enhancement of phosphorus nutrition.

    Science.gov (United States)

    Zhang, Tao; Shi, Ning; Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment.

  14. Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae with no enhancement of phosphorus nutrition.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%. Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment.

  15. Association and mycorrhizal dependency in Jatropha curcas L. seedlings under salt stress

    Directory of Open Access Journals (Sweden)

    Dilliani Felipe Barros de Oliveira

    Full Text Available ABSTRACT The cultivation of Jatropha curcas L. for biodiesel production is possible in salinized areas; however, biomass production is limited in these soils. Arbuscular mycorrhizal fungi (AMF are a promising alternative for bioremediation in salinized soils. Yet, salinity also affects the AMF at the time of colonization and, in this case, the symbiosis is not always established. Therefore, the aim of this study was to test the hypotheses that three AMF species commonly found in saline soils are associated with J. curcas and if seedlings previously inoculated with these AMF are more tolerant to salt stress. Two trials were performed: the first one was carried out in a completely randomized design with five treatments (control, Rhizophagus intraradices, Gigaspora albida, Claroideoglomus etunicatum, and the three species together and six repetitions to investigate the formation of symbiosis among species; and the second trial was carried out in randomized blocks in a 4 × 2 factorial scheme (2, 5, 8, and 10 dS m-1, with and without mycorrhizae with eight repetitions to verify the development and mycorrhizal dependency (MD of the seedlings previously inoculated, in salinized environment. The three species of AMF are associated with J. curcas both alone and together. Mycorrhizal dependency increased with salinity, indicating that J. curcas is a facultative species. The pre-colonized seedlings with AMF are an alternative to the establishment of J. curcas in salinized soils.

  16. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil.

    Science.gov (United States)

    García, Ileana V; Mendoza, Rodolfo E

    2007-05-01

    The seasonality of arbuscular mycorrhizal (AM) fungi-plant symbiosis in Lotus glaber Mill. and Stenotaphrum secundatum (Walt.) O.K. and the association with phosphorus (P) plant nutrition were studied in a saline-sodic soil at the four seasons during a year. Plant roots of both species were densely colonized by AM fungi (90 and 73%, respectively in L. glaber and S. secundatum) at high values of soil pH (9.2) and exchangeable sodium percentage (65%). The percentage of colonized root length differed between species and showed seasonality. The morphology of root colonization had a similar pattern in both species. The arbuscular colonization fraction increased at the beginning of the growing season and was positively associated with increased P concentration in both shoot and root tissue. The vesicular colonization fraction was high in summer when plants suffer from stress imposed by high temperatures and drought periods, and negatively associated with P in plant tissue. Spore and hyphal densities in soil were not associated with AM root colonization and did not show seasonality. Our results suggest that AM fungi can survive and colonize L. glaber and S. secundatum roots adapted to extreme saline-sodic soil condition. The symbiosis responds to seasonality and P uptake by the host altering the morphology of root colonization.

  17. Post-transplant reactions of mycorrhizal and mycorrhiza-free seedlings of Leucaena leucocephala to pH changes in an Oxisol and Ultisol of Hawaii

    Science.gov (United States)

    M. Habte; G. Diarra; P.G. Scowcroft

    2011-01-01

    The extent to which pretransplant colonization of seedlings with the arbuscular mycorrhizal fungus (AMF) Glomus aggregatum Schenck and Smith emend. Koske could enhance the post-transplant growth of two cultivars of Leucaena leucocephala (Lam.) de Wit (cv. K-8 and cv. K-636) in Al- and Mn-rich acid soils was evaluated in a...

  18. Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids

    Science.gov (United States)

    Martos, Florent; Perry, Brian A; Padamsee, Mahajabeen; Roy, Mélanie; Pailler, Thierry

    2010-01-01

    Mycoheterotrophic plants are achlorophyllous plants that obtain carbon from their mycorrhizal fungi. They are usually considered to associate with fungi that are (1) specific of each mycoheterotrophic species and (2) mycorrhizal on surrounding green plants, which are the ultimate carbon source of the entire system. Here we review recent works revealing that some mycoheterotrophic plants are not fungal-specific, and that some mycoheterotrophic orchids associate with saprophytic fungi. A re-examination of earlier data suggests that lower specificity may be less rare than supposed in mycoheterotrophic plants. Association between mycoheterotrophic orchids and saprophytic fungi arose several times in the evolution of the two partners. We speculate that this indirectly illustrates why transition from saprotrophy to mycorrhizal status is common in fungal evolution. Moreover, some unexpected fungi occasionally encountered in plant roots should not be discounted as ‘molecular scraps’, since these facultatively biotrophic encounters may evolve into mycorrhizal symbionts in some other plants. PMID:20061806

  19. Dioecious species and arbuscular mycorrhizal symbioses: the case of Antennaria dioica.

    Science.gov (United States)

    Vega-Frutis, Rocío; Varga, Sandra; Kytöviita, Minna-Maarit

    2013-03-01

    Sex-specific interactions with herbivores and pollinators have been observed in female and male plants of dioecious species. However, only a limited number of studies have revised sex-specific patterns in mycorrhizal symbiosis. To test whether female and male plants of Antennaria dioica differ in their relationship with arbuscular mycorrhizal (AM) fungi, we examined the temporal and spatial variation in AM fungi in female, male and non-reproductive A. dioica plants in three natural populations in Finland during flowering and after seed production. Our results are consistent with previous studies both under greenhouse and field conditions with the same species showing differences in AM colonization between the sexes linked with allocation to reproduction. Taken together, the results indicate that there is a sex-specific interaction between A. dioica and AM fungi. Overall, females have a greater investment in AM fungi, likely to enhance their uptake of soil nutrients and support the reproduction by seed.

  20. Effect of four species of arbuscular mycorrhizal fungi on the production of tomato fruits

    Directory of Open Access Journals (Sweden)

    Juan Francisco Ley-Rivas

    2015-06-01

    Full Text Available The effect of native arbuscular mycorrhizal fungi (AMF Glomus sp. 1, Glomus sp. 2, Glomus clarum and Glomus intraradices on tomato (Solanum lycopersicum L. Var., amalia was evaluated under controlled conditions by means of growth variables (height, stem diameter, number of leaves, flowers and fruits, dry aerial and underground biomass and fresh mass of fruits and the mycorrhizal variables (colonization, visual density, quantification of endophyte, external mycelium and spores. The strains Glomus sp. 1 and Glomus intraradices were the most efficient, with harvest index values of 65 and 56.3% and fruit fresh weight of 166.7 and 131.8 g, respectively. It is emphasized that the fungal strain Glomus sp. 1 always presented lower values than strain Glomus intraradices.

  1. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    Science.gov (United States)

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  2. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  3. Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Nava, Noreide; Quinto, Carmen

    2015-01-01

    Respiratory oxidative burst homolog (RBOH)-mediated reactive oxygen species (ROS) regulate a wide range of biological functions in plants. They play a critical role in the symbiosis between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. For instance, overexpression of PvRbohB enhances nodule numbers, but reduces mycorrhizal colonization in Phaseolus vulgaris hairy roots and downregulation has the opposite effect. In the present study, we assessed the effect of both rhizobia and AM fungi on electrolyte leakage in transgenic P. vulgaris roots overexpressing (OE) PvRbohB. We demonstrate that elevated levels of electrolyte leakage in uninoculated PvRbohB-OE transgenic roots were alleviated by either Rhizobium or AM fungi symbiosis, with the latter interaction having the greater effect. These results suggest that symbiont colonization reduces ROS elevated electrolyte leakage in P. vulgaris root cells. PMID:25946118

  4. Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB.

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Nava, Noreide; Quinto, Carmen

    2015-01-01

    Respiratory oxidative burst homolog (RBOH)-mediated reactive oxygen species (ROS) regulate a wide range of biological functions in plants. They play a critical role in the symbiosis between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. For instance, overexpression of PvRbohB enhances nodule numbers, but reduces mycorrhizal colonization in Phaseolus vulgaris hairy roots and downregulation has the opposite effect. In the present study, we assessed the effect of both rhizobia and AM fungi on electrolyte leakage in transgenic P. vulgaris roots overexpressing (OE) PvRbohB. We demonstrate that elevated levels of electrolyte leakage in uninoculated PvRbohB-OE transgenic roots were alleviated by either Rhizobium or AM fungi symbiosis, with the latter interaction having the greater effect. These results suggest that symbiont colonization reduces ROS elevated electrolyte leakage in P. vulgaris root cells.

  5. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV).

    Science.gov (United States)

    Maffei, Giulia; Miozzi, Laura; Fiorilli, Valentina; Novero, Mara; Lanfranco, Luisa; Accotto, Gian Paolo

    2014-04-01

    The arbuscular mycorrhizal (AM) symbiosis is considered a natural instrument to improve plant health and productivity since mycorrhizal plants often show higher tolerance to abiotic and biotic stresses. However, the impact of the AM symbiosis on infection by viral pathogens is still largely uncertain and little explored. In the present study, tomato plants were grown under controlled conditions and inoculated with the AM fungus Funneliformis mosseae. Once the mycorrhizal colonization had developed, plants were inoculated with the Tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus causing one of the most serious viral diseases of tomatoes in Mediterranean areas. Biological conditions consisted of control plants (C), TYLCSV-infected plants (V), mycorrhizal plants (M), and TYLCSV-infected mycorrhizal plants (MV). At the time of analysis, the level of mycorrhiza development and the expression profiles of mycorrhiza-responsive selected genes were not significantly modified by virus infection, thus indicating that the AM symbiosis was unaffected by the presence and spread of the virus. Viral symptoms were milder, and both shoot and root concentrations of viral DNA were lower in MV plants than in V plants. Overall F. mosseae colonization appears to exert a beneficial effect on tomato plants in attenuating the disease caused by TYLCSV.

  6. Community Analysis of Arbuscular Mycorrhizal Fungi in Roots of Poncirus trifoliata and Citrus reticulata Based on SSU rDNA

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2014-01-01

    Full Text Available Morphological observation of arbuscular mycorrhizal fungi (AMF species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf. and red tangerine (Citrus reticulata Blanco were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10, all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.

  7. Community analysis of arbuscular mycorrhizal fungi in roots of Poncirus trifoliata and Citrus reticulata based on SSU rDNA.

    Science.gov (United States)

    Wang, Peng; Wang, Yin

    2014-01-01

    Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf.) and red tangerine (Citrus reticulata Blanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.

  8. Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings.

    Science.gov (United States)

    Kariman, Khalil; Barker, Susan J; Finnegan, Patrick M; Tibbett, Mark

    2014-10-01

    In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg(-1) soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.

  9. Response of Mycorrhizal Diversity to Current Climatic Changes

    OpenAIRE

    Williams, Stephen E.; Stanley E. Bellgard

    2011-01-01

    Form and function of mycorrhizas as well as tracing the presence of the mycorrhizal fungi through the geological time scale are herein first addressed. Then mycorrhizas and plant fitness, succession, mycorrhizas and ecosystem function, and mycorrhizal resiliency are introduced. From this, four hypotheses are drawn: (1) mycorrhizal diversity evolved in response to changes in Global Climate Change (GCC) environmental drivers, (2) mycorrhizal diversity will be modified by present changes in GCC ...

  10. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Khalid M. Elhindi

    2017-01-01

    Full Text Available Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum plants were grown in a non-saline soil (EC = 0.64 dS m−1, in low saline soil (EC = 5 dS m−1, and in a high saline soil (EC = 10 dS m−1. There were differences between arbuscular mycorrhizal (Glomus deserticola colonized plants (+AMF and non-colonized plants (−AMF. Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.

  11. Influence of mycorrhizal fungi on the growth and development of sandy everlasting Helichrysum arenarium (L. Moench.

    Directory of Open Access Journals (Sweden)

    Anna K. Sawilska

    2012-12-01

    Full Text Available The significance of root colonization by mycorrhizal fungi for the growth and development of Helichrysum arenarium was investigated in two independent experiments. In the first experiment the association of root colonization level with the pluviothermal conditions within the growing season and the age of a natural plant population was analyzed. In the second one, under controlled conditions, the influence of artificial inoculation with the arbuscular fungus Glomus intraradices on the features of plants raised from achenes was studied. It was shown that hydrothermal conditions during blooming period had a greater influence on reproduction processes of sandy everlasting than both the population age (the secondary succession progress and the level of root colonization by mycorrhizal fungi. High amount of precipitation at plant generative development phase positively influences the potential and actual fertility of ramets. The presence of arbuscular fungus in the soil favors the growth and development of sandy everlasting specimens at their early growing stages: they have a better-developed root system and a greater photosynthetic area.

  12. Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding

    Directory of Open Access Journals (Sweden)

    Catherine N. Jacott

    2017-11-01

    Full Text Available There is an increasing need to develop high-yielding, disease-resistant crops and reduce fertilizer usage. Combining disease resistance with efficient nutrient assimilation through improved associations with symbiotic microorganisms would help to address this. Arbuscular mycorrhizal fungi (AMF form symbiotic relationships with most terrestrial plants, resulting in nutritional benefits and the enhancement of stress tolerance and disease resistance. Despite these advantages, arbuscular mycorrhizal (AM interactions are not normally directly considered in plant breeding. Much of our understanding of the mechanisms of AM symbiosis comes from model plants, which typically exhibit positive growth responses. However, applying this knowledge to crops has not been straightforward. In many crop plants, phosphate uptake and growth responses in AM-colonized plants are variable, with AM plants exhibiting sometimes zero or negative growth responses and lower levels of phosphate acquisition. Host plants must also balance the ability to host AMF with the ability to resist pathogens. Advances in understanding the plant immune system have revealed similarities between pathogen infection and AM colonization that may lead to trade-offs between symbiosis and disease resistance. This review considers the potential trade-offs between AM colonization, agronomic traits and disease resistance and highlights the need for translational research to apply fundamental knowledge to crop improvement.

  13. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    Directory of Open Access Journals (Sweden)

    Laurel A Kluber

    Full Text Available Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM and ectomycorrhizal (EcM communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity. Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do

  14. The Genome of Laccaria Bi color Provides Insights into Mycorrhizal Symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F [UMR, France; Aerts, A. [U.S. Department of Energy, Joint Genome Institute; Ahren, D [Lund University, Sweden; Brun, A [UMR, France; Duchaussoy, F [UMR, France; Gibon, J [UMR, France; Kohler, A [UMR, France; Lindquist, E [U.S. Department of Energy, Joint Genome Institute; Pereda, V [UMR, France; Salamov, A. [U.S. Department of Energy, Joint Genome Institute; Shapiro, HJ [U.S. Department of Energy, Joint Genome Institute; Wuyts, J [UMR, France; Blaudez, D [UMR, France; Buee, M [UMR, France; Brokstein, P [U.S. Department of Energy, Joint Genome Institute; Canbeck, B [Lund University, Sweden; Cohen, D [UMR, France; Courty, PE [UMR, France; Coutinho, PM [Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and Unive; Danchin, E [Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and Unive; Delaruelle, C [UMR, France; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Deveau, A [UMR, France; DiFazio, Stephen P [West Virginia University; Duplessis, S [UMR, France; Fraissinet-Tachet, L [Universite de Lyon, France; Lucic, E [UMR, France; Frey-Klett, P [UMR, France; Fourrey, C [UMR, France; Feussner, I [Georg-August Universitat Gottingen Germany; Gay, G [Universite de Lyon, France; Grimwood, Jane [Stanford University; Hoegger, P J [Georg-August Universitat Gottingen Germany; Jain, P [University of Alabama, Huntsville; Kilaru, S [Georg-August Universitat Gottingen Germany; Labbe, J [UMR, France; Lin, Y C [Ghent University, Belgium; Legue, V [UMR, France; Le Tacon, F [UMR, France; Marmeisse, R [Universite de Lyon, France; Melayah, D [Universite de Lyon, France; Montanini, B [UMR, France; Muratet, M [University of Alabama, Huntsville; Nehls, U [Eberhard-Karls-Universitat, Tubingen, Germany; Niculita-Hirzel, H [University of Lausanne, Switzerland; Oudot-Le Secq, M P [UMR, France; Peter, M [UMR, France; Quesneville, H [Unite de Recherches en Genomique-Info,Evry Cedex; Rajashekar, B [Lund University, Sweden; Reich, M [UMR, France; Rouhler, N [UMR, France; Schmutz, Jeremy [Stanford University; Yin, Tongming [ORNL; Chalot, M [UMR, France; Henrissat, B [Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and Unive; Kues, U [Georg-August Universitat Gottingen Germany; Lucas, S [U.S. Department of Energy, Joint Genome Institute; Van de Peer, Y [Ghent University, Belgium; Podila, G [University of Alabama, Huntsville; Polle, A [Georg-August Universitat Gottingen Germany; Pukkila, P J [University of North Carolina, Chapel Hill; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Rouze, P [Ghent University, Belgium; Sanders, I R [University of Lausanne, Switzerland; Stajich, J E [University of California, Berkeley; Tunlid, A [Lund University, Sweden; Tuskan, Gerald A [ORNL; Grigoriev, I. [U.S. Department of Energy, Joint Genome Institute

    2008-01-01

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and

  15. Auxin influences strigolactones in pea mycorrhizal symbiosis.

    Science.gov (United States)

    Foo, E

    2013-03-15

    Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intraradices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Colonic angiodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, C.; Legmann, P.; Garnier, T.; Levesque, M.; Favriel, J.M.

    1984-11-01

    The main clinical, endoscopic and radiographic findings in thirty documented cases of colonic angiodysplasia or vacular ectasia are described. We emphasise the association with colonic diverticulosis and cardiovascular pathology, describe the histological changes, summarize the present physiopathological hypothesis, and consider the various therapeutic approaches.

  17. Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime.

    Science.gov (United States)

    Füzy, Anna; Bothe, Hermann; Molnár, Edit; Biró, Borbála

    2014-03-01

    AMF (arbuscular mycorrhizal fungi) colonization of the grass chalk false-brome (Brachypodium pinnatum (L.) P. B.) was studied in selected habitats under spatially different light regimes: (a) shade condition under oak trees, (b) half shade in a shrubby area and (c) full-sun conditions on unshaded grassland. This study assessed the variations in AMF colonization of the grass dependent on the light supply in field habitats. Soil, root and shoot samples were collected four times during the vegetation period (in June, July, September and October). Root colonization, root and shoot biomass as well as soil water content were determined. The highest rate of AMF colonization was detected in June under half-sun and full-sun conditions, where about 50% of the roots were colonized. The average amount of arbuscules was less than 20% in the roots at the three sites, with the highest number of arbuscules in June, under half-sun and full-sun conditions, however, not under the trees. Overall, best mycorrhizal colonization occurred during summer, and its rate decreased in autumn. This tendency inversely correlated with the amount of precipitation, and thus with the water content of soils. The high colonization rate of the examined root samples, and also its seasonal fluctuation, might reflect the importance of the symbiosis where inorganic nutrients and water are the growth-limiting factors. The marginal AMF colonization of chalk false-brome under shade conditions indicates that plants do not use AMF under all stress conditions. When low light limits photosynthesis and thus growth of the plants, they dispense with the colonization of AMF in order to save the expenditure of organic carbon. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Maintenance and preservation of ectomycorrhizal and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Lalaymia, Ismahen; Cranenbrouck, Sylvie; Declerck, Stéphane

    2014-07-01

    Short- to long-term preservation of mycorrhizal fungi is essential for their in-depth study and, in the case of culture collections, for safeguarding their biodiversity. Many different maintenance/preservation methods have been developed in the last decades, from soil- and substrate-based maintenance to preservation methods that reduce (e.g., storage under water) or arrest (e.g., cryopreservation) growth and metabolism; all have advantages and disadvantages. In this review, the principal methods developed so far for ectomycorrhizal and arbuscular mycorrhizal fungi are reported and described given their distinct biology/ecology/evolutionary history. Factors that are the most important for their storage are presented and a protocol proposed which is applicable, although not generalizable, for the long-term preservation at ultra-low temperature of a large panel of these organisms. For ECM fungi, isolates should be grown on membranes or directly in cryovials until the late stationary growth phase. The recommended cryopreservation conditions are: a cryoprotectant of 10% glycerol, applied 1-2 h prior to cryopreservation, a slow cooling rate (1 °C min(-1)) until storage below -130 °C, and fast thawing by direct plunging in a water bath at 35-37 °C. For AMF, propagules (i.e., spores/colonized root pieces) isolated from cultures in the late or stationary phase of growth should be used and incorporated in a carrier (i.e., soil or alginate beads), preferably dried, before cryopreservation. For in vitro-cultured isolates, 0.5 M trehalose should be used as cryoprotectant, while isolates produced in vivo can be preserved in dried soil without cryoprotectant. A fast cryopreservation cooling rate should be used (direct immersion in liquid nitrogen or freezing at temperatures below -130 °C), as well as fast thawing by direct immersion in a water bath at 35 °C.

  19. Influence of cover crops on citrus crops on arbuscular mycorrhizal fungi development in the Colombian piedmont Oxisols

    Directory of Open Access Journals (Sweden)

    Hernán Javier Monroy L.

    2013-01-01

    Full Text Available Native arbuscular mycorrhizal fungi associated with grassand legume cover crops established on Oxisol soils in the Colombian piedmont (Meta were identified morphologically and the ability to colonize was evaluated. The experimental area consisted of cover crops Arachispintoi (CIAT 18744, Brachiaria brizantha cv. Toledo, B. dictyoneura cv. Llanero, Desmodium ovalifolium c v. Maquenque, Panicum maximum (CIAT 36000, Paspalumnotatum, and a chemical control (Glyphosate and mechanical control established in the rows in a Valencia orange grove. The experiment followed a complete randomized block design (8 cover crops and three replications, evaluated during the wet and dry seasons. Rhizosphere soil and grass and legumes roots were sampled in order to identified AMF and quantify the number of spores and the percentage of colonization. A total of 26 species were identified, including Acaulosporascrobiculata, A. morrowiae and, Scutellospora heterogama, which accounted for over 65% of the population. Thepercentage of root colonization ranged between 47% and 94% with spore counts between 63 and 300/100 g of dry soil. Cover crops with the highest colonization percentage and AMF diversity were B. brizantha, B. dictyoneura and P. notatumin their respective order. Glyphosate and mechanical control had a negative influence on the sporulation and colonization of the arbuscular mycorrhizal fungi in the root system

  20. Arbuscular Mycorrhizal Fungal Mediation of Plant-Plant Interactions in a Marshland Plant Community

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  1. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    Science.gov (United States)

    Gattai, Graziella S.; Pereira, Sônia V.; Costa, Cynthia M. C.; Lima, Cláudia E. P.; Maia, Leonor C.

    2011-01-01

    The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina) in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco). Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1) to uncontaminated soil (37 mg Pb Kg soil-1) in the proportions of 7.5%, 15%, and 30% (v:v). The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil. PMID:24031701

  2. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Wang, Hui; Guo, Shun-Xing

    2012-05-01

    The seed germination of orchids under natural conditions requires association with mycorrhizal fungi. Dendrobium nobile and Dendrobium chrysanthum are threatened orchid species in China where they are considered medicinal plants. For conservation and application of Dendrobium using symbiosis technology, we isolated culturable endophytic and mycorrhizal fungi colonized in the protocorms and adult roots of two species plants and identified them by morphological and molecular analyses (5.8S and nrLSU). Of the 127 endophytic fungi isolated, 11 Rhizoctonia-like strains were identified as Tulasnellales (three strains from protocorms of D. nobile), Sebacinales (three strains from roots of D. nobile and two strains from protocorms of D. chrysanthum) and Cantharellales (three strains from roots of D. nobile), respectively. In addition, species of Xylaria, Fusarium, Trichoderma, Colletotrichum, Pestalotiopsis, and Phomopsis were the predominant non-mycorrhizal fungi isolated, and their probable ecological roles in the Dendrobium plants are discussed. These fungal resources will be of great importance for the large-scale cultivation of Dendrobium plants using symbiotic germination technology and for the screening of bioactive metabolites from them in the future. © Springer-Verlag 2012

  3. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    Science.gov (United States)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  4. Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex).

    Science.gov (United States)

    Bergero, R; Perotto, S; Girlanda, M; Vidano, G; Luppi, A M

    2000-10-01

    Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed.

  5. Responses of Mycorrhizal Symbioses to Deliberate Leaks from AN Experimental CO2 Sequestration Field: the Zert Site

    Science.gov (United States)

    Apple, M. E.; Rowe, J. O.; Zhou, X.; Jewell, S.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2012-12-01

    Carbon sequestration is a means of reducing the concentration of atmospheric CO2 . It is important to monitor carbon sequestration fields for surface detection of possible leaks of CO2 . At The Zero Emissions Research Technology (ZERT) site, CO2 is injected at 0.15 tonnes/day increased to 0.3 tonnes/day into the soil through a shallow horizontal injection well with deliberate zones of leaking CO2 , which wells up through the soil and reaches concentrations of 16% w/v. The ZERT site is an experimental facility designed for developing means of surface detection of leaking CO2 and for determining the responses of plants to very high soil CO2 . Within 1 - 2 weeks of CO2 injections, dandelions and grasses begin to form circular zones of leaf dieback called hot spots. While the hotspots are visually apparent, the responses of the underground mycorrhizal symbioses to very high soil CO2 at the ZERT site are as yet undetermined. To examine the effects of leaking CO2 on mycorrhizae, we collected soil and root samples between and at the hotspots before CO2 was injected, then inoculated the rhizosphere with mycorrhizal inoculum containing spores of Glomus and Gigaspora sp., and resampled the soil and roots after three weeks of CO2 injection. We then evaluated the samples for percent mycorrhizal colonization via the line-intercept method in cleared roots in which fungal structures were stained with India-ink. Plants with mycorrhizal fungi benefit by improved P uptake, so we hypothesize that where plants have increased anthocyanin production, a symptom of P deficiency, mycorrhizal colonization would be reduced. In previous summers of the ZERT experiments, leaves have turned red/purple with CO2 exposure, and as of August, 2012, current year leaves appear to have increased anthocyanin above hotspots. Plant roots exude organic carbon into the soil, where it is used by mycorrhizal fungi. Mycorrhizal symbioses are key in the carbon dynamics of soil and in linking the above and below

  6. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress.

    Science.gov (United States)

    Tabrizi, Leila; Mohammadi, Siavash; Delshad, Mojtaba; Moteshare Zadeh, Babak

    2015-01-01

    In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012-2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil(-1) accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.

  7. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.

    Science.gov (United States)

    Veiga, Rita S L; Faccio, Antonella; Genre, Andrea; Pieterse, Corné M J; Bonfante, Paola; van der Heijden, Marcel G A

    2013-11-01

    The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non-mycorrhizal plants. The interaction of such non-host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non-mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual-compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non-host/AMF interactions and the biological basis of AM incompatibility. © 2013 John Wiley & Sons Ltd.

  8. Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae).

    Science.gov (United States)

    Otero, J Tupac; Flanagan, Nicola S; Herre, E Allen; Ackerman, James D; Bayman, Paul

    2007-12-01

    Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.

  9. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-09-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  10. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-07-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  11. Shifts in soil fungal communities in Tuber melanosporum plantations over a 20-year transition from agriculture fields to oak woodlands

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2016-04-01

    Full Text Available Aim of study: To explore the diversity of soil fungi found in black truffle (Tuber melanosporum plantations following the introduction of the mycorrhizal-colonized host tree, (Quercus ilex, through the development of the brûlé and production of mature sporocarps.Area of study: This research was carried out province of Teruel, Aragon (central eastern Spain.Material and Methods: Soil samples from 6 plantations were collected beneath Q. ilex trees inoculated with T. melanosporum, of 3, 5, 7, 10, 14 and 20 years after out planting in truffle plantations. Soil DNA was extracted, PCR-amplified and sequenced to compare soil fungi present at different ages.Main results: As tree age increased, we observed an increased frequency of T. melanosporum (from 8% to 71% of sequenced colonies and concomitant decrease in the combined frequency of Fusarium spp. and Phoma spp. (from 64% to 3%.Research highlights: There are important shifts in species richness and in functional groups in the soil fungal communities in maturing black truffle-oak woodland plantations. The observed inverse relationship between the frequency of soil endophytic and/or pathogenic fungi and that of the mycorrhizal mutualist T. melanosporum provides support to continue a deeper analysis of shifts in fungal communities and functional groups where there is a transition from agriculture fields to woodlands.Abbreviations used: Ectomycorrhiza (ECM fungus; Vesicular arbuscular mycorrhiza (VAM; Operational taxonomic unit (OTU.

  12. Mycorrhizal symbiosis enhances Phalaenopsis orchid's growth and ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis. Fungal Genet. Biol. 23: 205-212. Johnson TR, Stewart SL, Dytra D, Kane ME, and Richardson L (2007). Asymbiotic and symbiotic seed germination of Eulophia alta. (Orchidaceae)-preliminary evidence for the symbiotic culture.

  13. Response of Arbuscular mycorrhizal fungi and Rhizobium ...

    African Journals Online (AJOL)

    Michael Horsfall

    the alternative sources to meet the nutrient requirement of crops. Arbuscular Mycorrhizal (AM) fungi are found in many soils around the w orld, and they form association with 80% of all terrestrial plant roots (Harley and Harley, 1987). The beneficial effects of AM fungi symbiotic association on the growth of plants are well ...

  14. Response of Arbuscular mycorrhizal fungi and Rhizobium ...

    African Journals Online (AJOL)

    The aim of the present study was to investigate the effect ofRhizobium and Arbuscular mycorrhizal fungi inoculation, both individually and in combination on growth and chlorophyll content of economically important plant Vigna unguiculata L. A significant (p < 0.05) increase over control in root length (45.6 cm), shoot height ...

  15. Interaction of arbuscular mycorrhizal fungus ( Glomus intraradices ...

    African Journals Online (AJOL)

    In this research, the effect of two arbuscular mycorrhizal fungal (AMF) inoculation (Glomus intraradices and Glomus etunicatum) on tomato plants growing in nutrient solution with high concentrations of copper were studied. Copper (Cu) is an essential micronutrient for plant growth. In the present study, the effect of copper ...

  16. Composition of arbuscular mycorrhizal fungi associated with ...

    African Journals Online (AJOL)

    Composition of arbuscular mycorrhizal fungi associated with cassava (Manihot esculenta Crantz) cultivars as influenced by chemical fertilization and tillage in Cameroon. Didier Aime Boyogueno Begoude, Papa Saliou Sarr, Tatiana Laure Yondi Mpon, Didier Alexis Owona, Miraine Ndacnou Kapeua, Shigeru Araki ...

  17. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Laparre, Jérôme; Malbreil, Mathilde; Letisse, Fabien; Portais, Jean Charles; Roux, Christophe; Bécard, Guillaume; Puech-Pagès, Virginie

    2014-03-01

    The arbuscular mycorrhizal (AM) symbiosis is a widespread mutualistic association between soil fungi (Glomeromycota) and the roots of most plant species. AM fungi are obligate biotrophs whose development is partially under the control of their plant host. We explored the possibility to combine metabolomic and transcriptomic approaches to find putative mycorrhiza-associated metabolites regulating AM fungal development. Methanol extracts of Medicago truncatula roots colonized or not with the AM fungus Rhizophagus irregularis were analyzed and compared by ultra-high-performance liquid chromatography (UHPLC), high-resolution mass spectrometry (Q-TOF), and multivariate statistical discrimination. We detected 71 mycorrhiza-associated analytes exclusively present or at least 10-fold more abundant in mycorrhizal roots. To identify among these analytes those that could regulate AM fungal development, we fractionated by preparative and semi-preparative HPLC the mycorrhizal and non-mycorrhizal root extracts and established how the 71 analytes were distributed among the fractions. Then we tested the activity of the fractions on germinating spores of R. irregularis by quantifying the expression of 96 genes known for their diverse in planta expression patterns. These investigations reveal that propionyl- and butyryl-carnitines accumulated in mycorrhizal roots. The results suggest that these two molecules regulate fungal gene expression in planta and represent interesting candidates for further biological characterization.

  18. Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings?

    Science.gov (United States)

    Suz, Laura M; Martín, María P; Fischer, Christine R; Bonet, José A; Colinas, Carlos

    2010-06-01

    Although successful cultivation of the black truffle (Tuber melanosporum) has inspired the establishment of widespread truffle orchards in agricultural lands throughout the world, there are many unknowns involved in proper management of orchards during the 6-10 years prior to truffle production, and there are conflicting results reported for fertilizer treatments. Here, we systematically evaluate the combined effects of nitrogen, phosphorous, and potassium with different doses of each element, applied to either foliage or roots, on plant growth parameters and the mycorrhizal status of outplanted 3-year-old seedlings in five experimental Quercus ilex-T. melanosporum orchards. Fertilization did not significantly improve seedling aboveground growth, but the plants treated with the fertilizer 12-7-7 applied to the roots (HNr) displayed longer field-developed roots. Only the fertilizer with the highest dose of K (10-6-28) applied to the foliage (HKf) increased the probability of fine root tip colonization by T. melanosporum in field-developed roots. However, the plants treated with the same fertilizer applied to the soil (HKr) presented the highest probability for colonization by other competing mycorrhizal soil fungi. Potassium seems to have an important role in mycorrhizal development in these soils. Apart from T. melanosporum, we found 14 ectomycorrhizal morphotypes, from which seven were identified to species level, three to genus, two to family, and two remained unidentified by their morphological characteristics and DNA analyses.

  19. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garmendia, I.; Mangas, V. J.

    2012-11-01

    The objective of this work was to study the influence of two arbuscular mycorrhizal fungi (AMF) Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and G. intraradices (Schenck and Smith) on cut flower yield of rose (Rosa hybrida L. cv. Grand Gala) under commercial-like greenhouse conditions. Flower production was positively influenced by G. mosseae inoculation. Both inocula tested caused low levels of mycorrhizal root colonization, with higher percentages in Rosa associated with G. mosseae. Significant improvement of plant biomass, leaf nutritional status or flower quality was not detected in inoculated plants probably due to the low symbiosis establishment. However, G. mosseae reduced by one month the time needed for 80% of the plants to flower and slightly increased number of cut flowers relative to non-mycorrhizal controls on the fourth, sixth and eighth months after transplanting. It is suggested that an altered carbohydrate metabolism could contribute to this positive effect. Low colonization of rose roots supports the idea that more effort is required to ensure successful application of AMF in ornamental production systems. (Author) 40 refs.

  20. Pectin localization in the Mediterranean orchid Limodorum abortivum reveals modulation of the plant interface in response to different mycorrhizal fungi.

    Science.gov (United States)

    Paduano, Chiara; Rodda, Michele; Ercole, Enrico; Girlanda, Mariangela; Perotto, Silvia

    2011-02-01

    In most mycorrhizal symbioses, phylogenetically distinct fungi colonize simultaneously the roots of individual host plants. A matter of debate is whether plants can distinguish among these fungal partners and differentiate their cellular responses. We have addressed this question in the orchid mycorrhizal symbiosis, where individual roots of the Mediterranean species Limodorum abortivum can be colonized by a dominant unculturable fungal symbiont belonging to the genus Russula and by more sporadic mycelia in the genus Ceratobasidium (form-genus Rhizoctonia). The phylogenetic position of the Ceratobasidium symbionts was further investigated in this work. Both Russula and Ceratobasidium symbionts form intracellular coils in the cortical roots of L. abortivum, but hyphae are very different in size and morphology, making the two fungi easily distinguishable. We have used John Innes Monoclonal 5, a widely used monoclonal antibody against pectin, to investigate the composition of the symbiotic plant interface around the intracellular coils formed by the two fungal partners. Immunolabelling experiments showed that pectin is exclusively found in the interface formed around the Ceratobasidium, and not around the Russula symbiont. These data indicate that the plant responses towards distinct mycorrhizal fungal partners can vary at a cellular level.

  1. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System

    Science.gov (United States)

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements. PMID:28890723

  2. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Directory of Open Access Journals (Sweden)

    David P Janos

    Full Text Available Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  3. Diversity of Arbuscular Mycorrhizal Fungi and its Influence on Soil Dynamics

    Science.gov (United States)

    Turner, K. M.; Treseder, K. K.

    2002-12-01

    The diversity of arbuscular mycorrhizal fungi (AMF) has been correlated with increased plant biodiversity, productivity, and fecundity. However, the influence of AMF diversity on below-ground ecosystem characteristics has yet to be determined. A greenhouse experiment was conducted to examine these interactions. Pot cultures containing equal numbers of four common grass species were either inoculated with one of four AMF species, a mixture of all four species, or were not inoculated, for a total of six different community compositions. After two months of growth, the pot cultures were harvested. Results indicated both individual species effects and diversity effects on factors controlling ecosystem-level processes. Bacterial abundance, bacterial diversity, glomalin concentration, hyphal colonization of roots, and above ground plant biomass exhibited significant differences among treatments. However, N mineralization rates, nitrification rates, and levels of organic matter did not respond significantly to treatments. Bacterial diversity, bacterial abundance, and above ground biomass displayed a similar pattern across treatments, and this may indicate potential interactions among AMF, bacteria, and plants. Specifically, the non-mycorrhizal treatment produced the highest values for all three of these characters while the Glomus intraradices monoculture produced the lowest values. Species also varied in production of glomalin, a compound associated with carbon sequestration, with Gigaspora gigantea producing the highest concentration of 1.67mg/g soil and Glomus etunicatumproducing the lowest concentration of 0.63 mg/g soil. Arbuscular mycorrhizal diversity significantly effected the total amount of fungal root colonization (high diversity: 70.9 percent; monocultures: 46.1-63.3 percent) and fungal fecundity and had a marginally significant influence on the abundance of external hyphae. This increased fungal abundance suggested niche complimentarity and positive species

  4. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  5. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions

    Directory of Open Access Journals (Sweden)

    Yanling eMo

    2016-05-01

    Full Text Available Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM colonization improved the fruit yield and water use efficiency of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of SOD, CAT, APX, GR and MDHAR in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2- compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances in the knowledge of AM-induced drought tolerance.

  6. Nickel remediation by AM-colonized sunflower.

    Science.gov (United States)

    Ker, Keomany; Charest, Christiane

    2010-08-01

    This greenhouse study aimed to examine the contribution of arbuscular mycorrhizal (AM) colonization on the uptake of and tolerance to nickel (Ni) in sunflower (Helianthus annuus L.). We hypothesized that AM colonization increases Ni content and tolerance in sunflower grown under varying soil Ni concentrations. The combined effect of AM colonization and soil Ni input on the assimilation of nitrogen, in particular the activity of glutamine synthetase (GS), in sunflower plants was also investigated. A factorial experimental design was performed with sunflower cv. Lemon Queen, with or without the AM fungus, Glomus intraradices Schenck & Smith, and treated with 0, 100, 200, or 400 mg Ni kg(-1) dry soil (DS). The AM colonization significantly enhanced plant growth and Ni content, especially at the lower soil Ni treatments. Furthermore, the AM plants exposed to the highest soil Ni level of 400 mg Ni kg(-1) DS had a significantly higher shoot Ni extracted percentage than non-AM plants, suggesting that the AM symbiosis contributed to Ni uptake, then its translocation from roots to shoots. The AM colonization also significantly increased the GS activity in roots, this being likely an indicator of an enhanced Ni tolerance. These findings support the hypothesis that AM symbiosis contributes to an enhanced Ni plant uptake and tolerance and should be considered as part of phytoremediation strategies.

  7. Arbuscular Mycorrhizal Fungal Diversity in Sugarcane Rhizosphere in Relation with Soil Properties

    Directory of Open Access Journals (Sweden)

    Promita DATTA

    2012-02-01

    Full Text Available Arbuscular mycorrhizal (AM species diversity and their root colonization patterns may vary in a plant species as influenced by soil environmental and biological factors. In the present study, sugarcane rhizospheric soils were collected from 41 main sugarcane producing tehsil places belonging to 10 districts from Maharashtra, India. Rhizospheric soil samples and roots were analyzed for spore density, relative abundance and frequency of AM spores at genus as well as at species level, extent of AM colonization in roots and various soil chemical properties. Soil sample from Jalgaon district possessed maximum spore density and AM root colonization. Genus Glomus exhibited highest relative abundance with maximum frequency of 32.55%. Species wise, Glomus fasciculatum possessed highest relative abundance and maximum frequency was observed in case of Glomus fasciculatum, Glomus intraradices, Glomus mosseae and Glomus versiforme. Maximum similarity of AM spores was recorded between Satara and Sangli districts which may be because of almost similar soil pH profile. Data obtained after cluster analysis represented the close relationship between spore density, AM root colonization and soil Cu, Zn and Fe concentrations. A statistically significant positive correlation was also found when AM spore density and root colonization was compared with soil Cu, Zn and Fe contents. This kind of data can be used to predict type of AM fungi to be used as bioinoculant in particular region.

  8. Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis.

    Science.gov (United States)

    Gaude, Nicole; Schulze, Waltraud X; Franken, Philipp; Krajinski, Franziska

    2012-04-01

    The development of an arbuscular mycorrhizal (AM) symbiosis is a non-synchronous process with typical mycorrhizal root containing different symbiotic stages at one time. Methods providing cell type-specific resolution are therefore required to separate these stages and analyze each particular structure independently from each other. We established an experimental system for analyzing specific proteomic changes in arbuscule-containing cells of Glomus intraradices colonized Medicago truncatula roots. The combination of laser capture microdissection (LCM) and liquid chromatography-tandem mass chromatography (LC-MS/MS) allowed the identification of proteins with specific or increased expression in arbuscule-containing cells. Consistent with previous transcriptome data, the proteome of arbuscule-containing cells showed an increased number of proteins involved in lipid metabolism, most likely related to the synthesis of the periarbuscular membrane. In addition, transcriptome data of non-colonized cells of mycorrhizal roots suggest mobilization of carbon resources and their symplastic transport toward arbuscule-containing cells for the synthesis of periarbuscular membranes. This highlights the periarbuscular membrane as important carbon sink in the mycorrhizal symbiosis.

  9. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland.

    Science.gov (United States)

    Santos-González, Juan C; Finlay, Roger D; Tehler, Anders

    2007-09-01

    Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected.

  10. Seasonal Dynamics of Arbuscular Mycorrhizal Fungal Communities in Roots in a Seminatural Grassland▿ †

    Science.gov (United States)

    Santos-González, Juan C.; Finlay, Roger D.; Tehler, Anders

    2007-01-01

    Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected. PMID:17630308

  11. Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii

    Science.gov (United States)

    Campos, Maryluce Albuquerque da Silva; da Silva, Fábio Sérgio Barbosa; Yano-Melo, Adriana Mayumi; de Melo, Natoniel Franklin; Pedrosa, Elvira Maria Régis; Maia, Leonor Costa

    2013-01-01

    In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF) improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, CO2 evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and CO2 evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction. PMID:25288951

  12. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures.

    Science.gov (United States)

    Kariman, Khalil; Barker, Susan J; Jost, Ricarda; Finnegan, Patrick M; Tibbett, Mark

    2014-03-01

    • Most terrestrial plants form mutually beneficial symbioses with specific soil-borne fungi known as mycorrhiza. In a typical mycorrhizal association, fungal hyphae colonize plant roots, explore the soil beyond the rhizosphere and provide host plants with nutrients that might be chemically or physically inaccessible to root systems. • Here, we combined nutritional, radioisotopic ((33)P) and genetic approaches to describe a plant growth promoting symbiosis between the basidiomycete fungus Austroboletus occidentalis and jarrah (Eucalyptus marginata), which has quite different characteristics. • We show that the fungal partner does not colonize plant roots; hyphae are localized to the rhizosphere soil and vicinity and consequently do not transfer nutrients located beyond the rhizosphere. Transcript profiling of two high-affinity phosphate (Pi) transporter genes (EmPHT1;1 and EmPHT1;2) and hyphal-mediated (33)Pi uptake suggest that the Pi uptake shifts from an epidermal to a hyphal pathway in ectomycorrhizal plants (Scleroderma sp.), similar to arbuscular mycorrhizal symbioses, whereas A. occidentalis benefits its host indirectly. The enhanced rhizosphere carboxylates are linked to growth and nutritional benefits in the novel symbiosis. • This work is a starting point for detailed mechanistic studies on other basidiomycete-woody plant relationships, where a continuum between heterotrophic rhizosphere fungi and plant beneficial symbioses is likely to exist. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii

    Directory of Open Access Journals (Sweden)

    Maryluce Albuquerque da Silva Campos

    2013-09-01

    Full Text Available In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, CO₂ evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and CO₂ evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction.

  14. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Veresoglou, Stavros D; Rillig, Matthias C

    2012-04-23

    Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.

  15. The Physiological Response of Soybean Genotypes to VAM Inoculation on Selected Drought Stress Levels

    Directory of Open Access Journals (Sweden)

    HAPSOH

    2006-06-01

    Full Text Available Present research was aimed to study physiological changes of soybean which were inoculated with vesicular arbuscular mycorrhizal fungi (VAM. Glomus etunicatum was exposed to moderate and severe drought condition. Symbiotic association with VAM improved adaptability as it was shown by the increasing leaf proline content. The MLG 3474 and Sindoro are the more tolerant genotypes while the responses of plant to VAM on improving the adaptability to drought were larger on Lokon.

  16. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  17. Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum

    DEFF Research Database (Denmark)

    Larsen, John; Graham, James H.; Cubero, Jaime

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reduci...... AM fungi may offer plant beneficial traits in terms of biocontrol of root cortical pathogens.......Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reducing...... the pathogen root infection level, measured both in terms of Pythium ELISA and by recovery on selective media and only at the first harvest. Likewise, P. aphanidermatum root infection reduced colonization levels of G. intraradices, but not that of the two other AM fungi. In conclusion, plant growth suppressive...

  18. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela

    Directory of Open Access Journals (Sweden)

    Laurie Fajardo

    2015-09-01

    Full Text Available The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry for est destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela. Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m (two were previously treated with hydrogel (R2 and R2', and two were left untreated (R1 and R1', and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community. Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment. Soil of the NR1 treat ment (with a higher herbaceous component showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatumand Rhizophagus intraradiceswere found in all treatments; besides, Diversispora spurcaand Funneliformis geosporumwere only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role.

  19. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants

    Science.gov (United States)

    Lukešová, Tereza; Kohout, Petr; Větrovský, Tomáš; Vohník, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  20. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela.

    Science.gov (United States)

    Fajardo, Laurie; Loveral, Milagros; Arrindell, Pauline; Aguilar, Victor Hugo; Hasmy, Zamira; Cuenca, Gisela

    2015-09-01

    The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry forest destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela). Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m) (two were previously treated with hydrogel (R2 and R2'), and two were left untreated (R1 and R1'), and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community). Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF) species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment). Soil of the NRI treatment (with a higher herbaceous component) showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatum and Rhizophagus intraradices were found in all treatments; besides, Diversispora spurca and Funnefformis geosporum were only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites) were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role.

  1. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    Directory of Open Access Journals (Sweden)

    Tereza Lukešová

    colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.

  2. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Igiehon, Nicholas O; Babalola, Olubukola O

    2017-06-01

    Worldwide agricultural food production has to double in 2050 so as to feed the global increasing population while reducing dependency on conventional chemical fertilizers plus pesticides. To accomplish this objective, there is the need to explore the several mutualistic interactions between plant roots and rhizosphere microbiome. Biofertilization is the process of boosting the abundance of microorganisms such as arbuscular mycorrhizal fungi (AMF) in the natural plant rhizosphere which depicts a beneficial alternative to chemical fertilization practices. Mineral nutrients uptake by AMF are plausible by means of transporters coded for by different genes and example include phosphate transporter. These fungi can be produced industrially using plant host and these, including the possibility of AMF contamination by other microorganism, are factors militating against large scale production of AMF. AMF isolates can be inoculated in the greenhouse or field, and it has been shown that AMF survival and colonization level were enhanced in soybeans grown on land that was previously cultivated with the same plant. Next generation sequencing (NGS) is now used to gain insight into how AMF interact with indigenous AMF and screen for beneficial microbial candidates. Besides application as biofertilizers, novel findings on AMF that could contribute to maintenance of agricultural development include AMF roles in controlling soil erosion, enhancing phytoremediation, and elimination of other organisms that may be harmful to crops through common mycelia network. The combination of these potentials when fully harnessed under agricultural scenario will help to sustain agriculture and boost food security globally.

  3. Dispersal of arbuscular mycorrhizal fungi and plants during succession

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Jairus, Teele; Neuenkamp, Lena; Vasar, Martti; Bueno, C. Guillermo; Gerz, Maret; Davison, John; Zobel, Martin

    2016-11-01

    Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.

  4. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis

    Science.gov (United States)

    Guillotin, Bruno; Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis. PMID:27899928

  5. NIN is involved in the regulation of Arbuscular Mycorrhizal symbiosis.

    Directory of Open Access Journals (Sweden)

    Bruno GUILLOTIN

    2016-11-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signalling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signalling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signalling pathways of both nodulation and in AM symbiosis.

  6. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  7. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Guillotin, Bruno; Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.

  9. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    MacLean, Allyson M; Bravo, Armando; Harrison, Maria J

    2017-10-01

    Plants have lived in close association with arbuscular mycorrhizal (AM) fungi for over 400 million years. Today, this endosymbiosis occurs broadly in the plant kingdom where it has a pronounced impact on plant mineral nutrition. The symbiosis develops deep within the root cortex with minimal alterations in the external appearance of the colonized root; however, the absence of macroscopic alterations belies the extensive signaling, cellular remodeling, and metabolic alterations that occur to enable accommodation of the fungal endosymbiont. Recent research has revealed the involvement of a novel N-acetyl glucosamine transporter and an alpha/beta-fold hydrolase receptor at the earliest stages of AM symbiosis. Calcium channels required for symbiosis signaling have been identified, and connections between the symbiosis signaling pathway and key transcriptional regulators that direct AM-specific gene expression have been established. Phylogenomics has revealed the existence of genes conserved for AM symbiosis, providing clues as to how plant cells fine-tune their biology to enable symbiosis, and an exciting coalescence of genome mining, lipid profiling, and tracer studies collectively has led to the conclusion that AM fungi are fatty acid auxotrophs and that plants provide their fungal endosymbionts with fatty acids. Here, we provide an overview of the molecular program for AM symbiosis and discuss these recent advances. © 2017 American Society of Plant Biologists. All rights reserved.

  10. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant.

    Science.gov (United States)

    Pivato, Barbara; Offre, Pierre; Marchelli, Sara; Barbonaglia, Bruno; Mougel, Christophe; Lemanceau, Philippe; Berta, Graziella

    2009-02-01

    Bacterial strains from mycorrhizal roots (three belonging to Comamonadaceae and one to Oxalobacteraceae) and from non-mycorrhizal roots (two belonging to Comamonadaceae) of Medicago truncatula and two reference strains (Collimonas fungivorans Ter331 and Pseudomonas fluorescens C7R12) were tested for their effect on the in vitro saprophytic growth of Glomus mosseae BEG12 and on its colonization of M. truncatula roots. Only the Oxalobacteraceae strain, isolated from barrel medic mycorrhizal roots, and the reference strain P. fluorescens C7R12 promoted both the saprophytic growth and root colonization of G. mosseae BEG12, indicating that they acted as mycorrhiza helper bacteria. Greatest effects were achieved by P. fluorescens C7R12 and its influence on the saprophytic growth of G. mosseae was compared to that on Gigaspora rosea BEG9 to determine if the bacterial stimulation was fungal specific. This fungal specificity, together with plant specificity, was finally evaluated by comparing bacterial effects on arbuscular mycorrhizal symbiosis when each of the fungal species was inoculated to two different plant species (M. truncatula and Lycopersicon esculentum). The results obtained showed that promotion of saprophytic growth by P. fluorescens C7R12 was expressed in vitro towards G. mosseae but not towards G. rosea. Bacterial promotion of mycorhization was also expressed towards G. mosseae, but not G. rosea, in roots of M. truncatula and L. esculentum. Taken together, results indicated that enhancement of arbuscular mycorrhiza development was only induced by a limited number of bacteria, promotion by the most efficient bacterial strain being fungal and not plant specific.

  11. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    National Research Council Canada - National Science Library

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    .... All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged...

  12. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  13. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non-colonized

  14. Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling

    Directory of Open Access Journals (Sweden)

    Bo eShu

    2016-03-01

    Full Text Available Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinenis Sonn.. However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes and AM fungi unigenes (33,120 unigenes were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin

  15. Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling.

    Science.gov (United States)

    Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou

    2016-01-01

    Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex

  16. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    deciduous and evergreen plant species decreased. Species dominance was correlated with uptake of 13C, i.e., the most productive species also took up the highest amount of glycine. The ecosystem exhibited a tendency towards lower colonization by ericoid mycorrhizal fungi and dark septate endophytes in hair...

  17. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  18. Mycorrhizal diversity and specificity in Lecanorchis (Orchidaceae).

    Science.gov (United States)

    Okayama, Masanari; Yamato, Masahide; Yagame, Takahiro; Iwase, Koji

    2012-10-01

    Lecanorchis is a nonphotosynthetic plant genus in Vanilloideae, Orchidaceae. Because of the distribution of many Lecanorchis taxa in various climate conditions, we hypothesized that mycorrhizal diversity and specificity are different among the different taxa of Lecanorchis. In the present study, identities of mycorrhizal fungi were examined for 90 individuals of 10 Lecanorchis taxa at 26 sites from Niigata to Okinawa Prefectures in Japan. Phylogenetic analyses of Lecanorchis taxa based on the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene (rDNA) divided the examined Lecanorchis taxa into three groups, groups A, B, and C. ITS rDNA sequences suggested that fungi associating with Lecanorchis were ectomycorrhiza-forming fungi in Lactarius, Russula, Atheliaceae, and Sebacina, with Lactarius and Russula dominant. Our results suggested some degree of mycorrhizal specialization among Lecanorchis taxa. Interestingly, the Lecanorchis group C had some specific relationships with Lactarius, whereas less specificity was found in the relationships with Russula. However, observed specificity results may be biased by geographic opportunity, and we suggest further research to assess whether Lecanorchis species are limited to the associations we observed.

  19. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Akbar Safari Sinegani

    2017-01-01

    Full Text Available Introduction: The study of symbiotic relationship between arbuscular mycorrhizal fungi (AMF and medicinal plants is very important. Information about the symbiosis of medicinal plant species with AMF in the semi-arid regions of Iran is rare. This information allows increasing knowledge of the biology and ecology of these plant species. Materials and methods: The existence of AM symbiosis in 48 medicinal plant species (belonging to 9 families was studied by root staining. Soil around the root of each species was sampled and analyzed for all soil properties which may be interrelated to AM symbiosis. The importance of different soil properties in AMF and plant biological relationship and the dependency of root colonization and spore formation by AMF on soil properties were statistically analyzed. Results: Among them Lepidium sativum, Brassica oleracea, Cheiranthus cheiri, Beta vulgaris, Spinacia oleracea, Malva sylvestris, Zygophyllum fabago, Arctium Lappa have not been colonized by AM fungi. Colonization and spore density of perennial plants were slightly higher than those of annual plants and were varied among different plant families. Soil texture and available phosphorous were the most important soil properties affecting fungal root colonization and spore numbers. Discussion and conclusion: Although in accordance with other researches, most of the medicinal plants from Brassicaceae family had no mycorrhizal symbiosis, a few of them had this type of symbiosis. Dependency of spore formation by AM fungi on soil properties was higher than dependency of root colonization percentage on soil properties. Increasing root colonization and spore numbers with increasing the percentage of sand and decreasing the percentage of clay and available phosphorous in soils show that plants are more depended on mycorrhizal symbiosis in hard environments and less productive soils.

  20. Inoculum production of arbuscular mycorrhizal fungi native to soils under different forest covers

    Directory of Open Access Journals (Sweden)

    Renata Soares dos Santos

    Full Text Available ABSTRACT The low natural fertility of Brazilian soils requires the use of inoculants that facilitate the absorption of nutrients by plants. Arbuscular mycorrhizal fungi such as obligatory biotrophics of active roots perform this function, but access to this resource is limited by the difficulty in producing inoculants. The objective of this study was to investigate the production of AMF inoculants native of soils under different forest covers in Vitória da Conquista, BA, by means of spore quantification, colonization rate and species identification. For this purpose, soils were collected from sites under Mata Nativa (native forest and plantations of Madeira Nova (Pterogyne nitens and Eucalyptus, placed into separate 500 mL disposable cups with seeds of Brachiaria sp. and cultivated for five months. Spores were quantified and the AMF species identified in the control soil (without brachiaria and in the cups cultivated with brachiaria at each month. From the first month, the colonization rate of brachiaria roots was evaluated. The inoculants produced showed differences in the number of spores and species, in the AMF species identified, and in the root colonization rate as a function of the forest cover. Thus, considering the increase in the number of spores, species and colonization over time, the inoculant produced from the soil under native forest was more promising for utilization.

  1. Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized Additive Models and Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    IRNANDA AIKO FIFI DJUUNA

    2010-07-01

    Full Text Available Djuuna IAF, Abbott LK, Van Niel K (2010 Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized Additive Models and Generalized Linear Models. Biodiversitas 11: 145-150. The objective of this study was to predict the infectivity of arbuscular mycorrhizal fungi (AM fungi, from field soil based on soil properties and land use history using generalized additive models (GAMs and generalized linear models (GLMs. A total of 291 soil samples from a farm in Western Australia near Wickepin were collected and used in this study. Nine soil properties, including elevation, pH, EC, total C, total N, P, K, microbial biomass carbon, and soil texture, and land use history of the farm were used as independent variables, while the percentage of root length colonized (%RLC was used as the dependent variable. GAMs parameterized for the percent of root length colonized suggested skewed quadratic responses to soil pH and microbial biomass carbon; cubic responses to elevation and soil K; and linear responses to soil P, EC and total C. The strength of the relationship between percent root length colonized by AM fungi and environmental variables showed that only elevation, total C and microbial biomass carbon had strong relationships. In general, GAMs and GLMs models confirmed the strong relationship between infectivity of AM fungi (assessed in a glasshouse bioassay for soil collected in summer prior to the first rain of the season and soil properties.

  2. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Ouhmane

    In Morocco, the production of carob was estimated only to 8% of the world production. This production considered .... mycorrhizal maize roots were used for the control treatment. Mycorrhizal inoculation of C. siliqua seedlings and plant .... Hence the selection of efficient AM fungi is a key factor to ensure the success of soil.

  3. Does mycorrhizal specificity affect orchid decline and rarity?

    Science.gov (United States)

    Bailarote, Bruno Cachapa; Lievens, Bart; Jacquemyn, Hans

    2012-10-01

    Orchids rely on mycorrhizal fungi for seed germination, and many species maintain associations during later stages in their life cycle. Because of the critical dependence of orchids on fungi it has been suggested that the degree of mycorrhizal specificity may be associated with rarity and long-term survival of orchid species, especially in highly degraded or fragmented landscapes. To test this hypothesis, we compared mycorrhizal communities in two species that differed significantly in decline in Belgium and other parts of Europe. • Mycorrhizal associations were investigated in five populations of Anacamptis morio and Dactylorhiza fuchsii in Belgium. ITS-based DNA arrays were used for simultaneous detection and identification of a wide range of basidiomycetous mycorrhizal fungi. Mycorrhizal specificity, measured as phylogenetic diversity, was assessed for each population and compared between species. • For both species, the degree of phylogenetic relatedness of the mycorrhizal partners was low, and both species were associated with a large number of fungal lineages related to clades of the Tulasnellaceae family. Contrary to expectations, the species that was apparently resilient to decline was associated with fewer fungal operational taxonomical units than the declining species was, and the phylogenetic relatedness of mycorrhizal communities among populations was higher in the stable than in the declining orchid. • Although our results do not present detailed insights into the causes of orchid persistence, they do suggest that orchid rarity and persistence are not necessarily related to fungal diversity and that other factors may be more important in determining orchid persistence.

  4. Dominant forest tree mycorrhizal type mediates understory plant invasions

    Science.gov (United States)

    Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei

    2017-01-01

    Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree myc- orrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...

  5. Effects of arbuscular mycorrhizal fungi on resistance to Phytophthora ...

    African Journals Online (AJOL)

    xp

    2012-06-28

    Jun 28, 2012 ... mycorrhizal (AM) fungi and Phytophthora parasitica of different citrus genotypes and the effect of AM fungi on the growth of ... Key words: Phytophthora parasitica, citrus, rootstock, arbuscular mycorrhizal (AM) fungi, root rot. INTRODUCTION ... It belongs in the kingdom Stramenopila, phylum Oomycota, and ...

  6. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus ... MD and shoot mineral contents (especially P) varied with AMF host plants. ... Key words: Grass species, symbiosis, mycorrhizal dependency, mineral nutrition.

  7. Mycorrhizal status of Lycium europaeum in the coastal dunes of ...

    African Journals Online (AJOL)

    Objective: This study describes the mycorrhizal status of Lycium europaeum in the mobile and fixed dunes in the coastal area of Mehdia (Northwest of Morocco). Methodology and results: Evaluation of the mycorrhization level in the roots was effected and the identification of the arbuscular mycorrhizal fungi was based on ...

  8. Contribution of arbuscular mycorrhizal fungus to red kidney and ...

    African Journals Online (AJOL)

    The researcher had investigated the role of arbuscular mycorrhizal fungal inoculation in red idney and wheat in heavy metals tolerance in soil artificially contaminated with high oncentrations of zinc, copper, lead and cadmium. Metals accumulated by mycorrhizal wheat lants were mostly distributed in root tissues, suggesting ...

  9. Molecular characterisation of a mycorrhizal inoculant that enhances ...

    African Journals Online (AJOL)

    The occurrence of drought is an economically important problem in Morocco. The use of mycorrhizal technology offers a possibility to overcome this problem. A mycorrhizal fungal inoculum “Aoufous Complex” isolated in Morocco was shown to enhance Trifolium alexandrium resistance in water deficit situation.

  10. Mycorrhizal status of Olea europaea spp. oleaster in Morocco | Sghir ...

    African Journals Online (AJOL)

    Objective: This study describes the mycorrhizal oleaster status (Olea europaea ssp. oleaster:) in the Moroccan ecosystems. Methodology and results: Soil samples were extracted from the rhizosphere of the oleaster tree groves in several regions of Morocco. The frequency and the levels of the arbuscular mycorrhizal fungi ...

  11. Characterization of Phosphate Transporters BdPT4 and BdPT8 in Mycorrhizal and Non-Mychorrhizal Brachypodium distachyon

    DEFF Research Database (Denmark)

    Clausen, Signe Sandbech

    to support maximal growth at a low nutrient supply. Roots of most plant species are colonized by arbuscular mycorrhiza (AM) fungi, which increase the uptake of nutrients, in particular P. In grasses, however, AM colonization may result in growth depressions, which have conventionally been ascribed to fungal...... was generated by Agrobacterium tumefaciens-mediated transformation. The transgenic lines were characterized for effects on growth and plant P uptake, and their subcellular localization was moreover determined by confocal microscopy. Quantitative expression analysis of 11 BdPTs in AM and non-mycorrhizal (NM...

  12. Effect of arbuscular mycorrhizal fungi and phosphate fertilization on initial growth of six arboreal species of cerrado

    Directory of Open Access Journals (Sweden)

    Kenia Alves Pereira Lacerda

    2011-09-01

    Full Text Available This study evaluated the benefit of inoculation with arbuscular mycorrhizal fungi, Glomus clarum, for the initial growth of some native arboreal species of the Cerrado biome, namely gabiroba (Campomanesia cambessedeana, baru (Dipterix alata, jatobá (Hymenaea courbaril, ingá (Inga laurina, caroba (Jacaranda cuspidifolia and chichá (Sterculia striata, in unsterilized soil with low (0.02 mg L‑1 and high (0.2 mg L‑1 concentrations of P in the soil solution. Experiments were conducted in a greenhouse, using 1.5 kg vases, for up to 120 days. The experimental design for each arboreal species was completely randomized, with ten replicates in a 2x2 factorial design (inoculated and noninoculated seedlings, and two levels of phosphorus (P in the soil solution. Arboreal plants of the Cerrado biome showed increased mycorrhizal colonization from inoculation with Glomus clarum, except chichá, as this species showed a high indigenous colonization, not differing from the colonization promoted by inoculated fungi. Inoculation promoted increased growth in baru, gabiroba, ingá, caroba and chichá, increasing shoot dry matter (MSPA and root dry matter (MSR. In caroba, this effect was synergistic with application of P to the soil. Baru and jatobá showed increased dry matter with application of P to the soil only. The mycotrophy (mycorrhizal dependence of species and their response to inoculation and to phosphorus are discussed. In order to produce quality seedlings of caroba, gabiroba, chichá and ingá, combining inoculation with Glomus clarum and phosphate fertilization of the soil is recommended, while for jatobá and baru only the application of P to the soil is recommended.

  13. Influence of mycorrhizal developmental stages and plant age on rhizosphere mycoflora of Pinus kesiya (Royle

    Directory of Open Access Journals (Sweden)

    G. D. Sharma

    2014-08-01

    Full Text Available Quantitatively the population was recorded to be high around thc mycorrhizal roots. Some fungi were specific to different stages of mycorrhizal development. Rhizopus nigricans and Cunninghamella elegans were recorded at 5% mycorrhizal association stage. Fusarium sp. was found at 20% mycorrhizal association, while Mucor spp. were obtained at 60% stage. Verticillium sp. had the highest frequency of occurrence in the beginning of mycorrhizal association but later on Penicilium spp. were found to be the most common. Sugar content of mycorrhizal and nonmycorrhizal roots were determined to assess their effect on the mycorrhizospheric micropopulation. The mannitol and trehalose were present only in mycorrhizal roots.

  14. Dominant forest tree mycorrhizal type mediates understory plant invasions.

    Science.gov (United States)

    Jo, Insu; Potter, Kevin M; Domke, Grant M; Fei, Songlin

    2018-02-01

    Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non-native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2006-01-01

    This study investigated whether arbuscular mycorrhizal fungi (AMF) could take up phosphorus (P) from pools that are normally considered unavailable to plants. An aluminum (Al) resistant maize variety, inoculated with three species of Glomus or uninoculated, supplied with nutrient solution without P,

  16. MYCORRHIZAL FUNGI INCREASED EARLY GROWTH OF TROPICAL TREE SEEDLINGS IN ADVERSE SOIL

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2009-06-01

    Full Text Available The rate of reforestation  has increased throughout the countries in Southeast Asia region during the last 20 years.  At the same time, inconvenient situations such as forest destruction, forest exploitation, illegal logging, clear-cut forest areas, old agricultural lands, post-wildfire areas, conversion  of natural  forests into  plantations, resettlement areas, mine  lands,  and amended adverse soils have also been increasing  significantly. Mycorrhizas, hovewer,  play important role  to increase  plant  growth,  enrich  nutrient content  and enhance  survival rates of forest tree species in temperate  and sub-tropical  regions.  Unfortunately, a little information so far is available  regarding  the effect of mycorrhizas on growth  of tree species growing  in tropical  forests. In relevant,  several experiments  were carried  out to determine whether  ectomycorrhizal (ECM fungi and arbuscular  mycorrhizal (AM fungi can enhance mycorrhizal colonization, nutrient content, and plant growth of some tropical rain forest tree species in Indonesia under nursery  and field conditions.   The families of tropical  tree species used in the experiment were  Thymelaeaceae (Aquilaria crassna, Leguminosae  (Sesbania grandifolia, Guttiferae (Ploiarium alternifolium and Calophyllum hosei, Apocynaceae (Dyera polyphylla and Alstonia scholaris, and Dipterocarpaceae (Shorea belangeran. These families are important as they provide timber  and non-timber  forest products (NTFPs.   This paper discusses the role of mycorrhizal fungi in increasing  early  growth  of tropical  tree seedlings in adverse soil.

  17. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants.

    Science.gov (United States)

    Vicente-Sánchez, J; Nicolás, E; Pedrero, F; Alarcón, J J; Maestre-Valero, J F; Fernández, F

    2014-07-01

    The present study evaluated the effects of inoculation with arbuscular mycorrhizal fungi (AMF; Glomus iranicum var. tenuihypharum sp. nova) on the physiological performance and production of lettuce plants grown under greenhouse conditions and supplied with reclaimed water (RW; urban-treated wastewater with high electrical conductivity; 4.19 dS m(-1)). Four treatments, fresh water, fresh water plus AMF inoculation, RW and RW plus AMF inoculation, were applied and their effects, over time, analyzed. Root mycorrhizal colonization, plant biomass, leaf-ion content, stomatal conductance and net photosynthesis were assessed. Overall, our results highlight the significance of the AMF in alleviation of salt stress and their beneficial effects on plant growth and productivity. Inoculated plants increased the ability to acquire N, Ca, and K from both non-saline and saline media. Moreover, mycorrhization significantly reduced Na plant uptake. Under RW conditions, inoculated plants also showed a better performance of physiological parameters such as net photosynthesis, stomatal conductance and water-use efficiency than non-mycorrhizal plants. Additionally, the high concentration of nutrients already dissolved in reclaimed water suggested that adjustments in the calculation of the fertigation should be conducted by farmers. Finally, this experiment has proved that mycorrhization could be a suitable way to induce salt stress resistance in iceberg lettuce crops as plants supplied with reclaimed water satisfied minimum legal commercial size thresholds. Moreover, the maximum values of Escherichia coli in the reclaimed water were close to but never exceeded the international thresholds established (Spanish Royal Decree 1620/2007; Italian Decree, 2003) and hence lettuces were apt for sale.

  18. Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands.

    Science.gov (United States)

    Galván, Guillermo A; Parádi, István; Burger, Karin; Baar, Jacqueline; Kuyper, Thomas W; Scholten, Olga E; Kik, Chris

    2009-06-01

    Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae-coronatum and the G. caledonium-geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices.

  19. Arbuscular Mycorrhizal Fungi and Biochar Improved Early Growth of Neem (Melia azedarach Linn. Seedling Under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2013-08-01

    Full Text Available The objective of this research was to determine the effect of biochar on the seedling quality index and growth of neem tree seedlings and arbuscular mycorrhizal fungi (AMF development  grown on ultisol  soil medium.  Two factors in completely randomised experimental design was conducted under green house conditions and Duncan Multiple Range Test was used to analyse the data. The results showed that neem seedling quality index was improved by interaction of AMF fungi and biochar amandment. The growth of neem seedling was significantly increased by interactions of arbuscular mycorrhizal fungi and biochar.  The combination  treatment of Glomus etunicatum and biochar 10% gave best results of height and diameter, and significantly increased by 712% and 303% respectively, as compared to control plant, while the combination treatment of Gigaspora margarita and biochar 10% gave the best result of shoot dry weight, and root dry weight and significantly increase by 4,547% and 6,957% as compared to control plant.  The mycorrhizal root colonization was increased with increasing biochar added, but decreases when 15% of biochar was applied.  N, P, and K uptake of 12 weeks neem seedling old was higher and significantly increased as compared to control plant.Keywords: AMF development, nutrient uptake , plant growth , seedling quality index, biochar  DOI: 10.7226/jtfm.19.2.103

  20. Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae promoted by mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2015-12-01

    Full Text Available Cyrtopodium glutiniferum is an endemic orchid of Brazil with potential medicinal and ornamental applications. As mycorrhizal fungi are essential for the initiation of the orchid life cycle, the aim of this study was to determine the strains of mycorrhizal fungi suitable for seed germination and protocorm development of C. glutiniferum and to characterize the symbiotic development of protocorms. Seeds of C. glutiniferum were inoculated with nine mycorrhizal fungi, Epulorhiza spp., Ceratorhiza spp., Rhizoctonia sp., originally isolated from Brazilian neotropical orchids. Only Epulorhiza isolates promoted seed germination and protocorm development. Three Epulorhiza isolates (M1, M6 = E. epiphytica, M20 = Epulorhiza sp. promoted protocorm development until leaf production at 63 days. The protocorms are comprised of parenchyma cells delimited by a unistratified epidermis; the parenchyma cells of the upper part of the protocorms are smaller than those located more towards the base. Intact and digested pelotons were observed inside of protocorms implying that the seedlings were capable of mycotrophy. Additionally, the development of a bud primordium only occurred after colonization by fungus. This study suggests that C. glutiniferum has a preference for strains of Epulorhiza and that fungus digestion is essential to protocorm development.

  1. Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile.

    Science.gov (United States)

    Herrera, Hector; Valadares, Rafael; Contreras, Domingo; Bashan, Yoav; Arriagada, Cesar

    2017-04-01

    Little is known about Orchidaceae plants in Chile and their mycorrhizal associations, a key issue for designing protective actions for endangered species. We investigated root fungi from seven terrestrial orchid species to identify potential mycorrhizal fungi. The main characteristics of Rhizoctonia-like fungi were observed under light microscopy, and isolates were identified through PCR-ITS sequencing. Molecular identification of fungal sequences showed a high diversity of fungi colonizing roots. Fungal ability to germinate seeds of different orchids was determined in symbiotic germination tests; 24 fungal groups were isolated, belonging to the genera Tulasnella, Ceratobasidium, and Thanatephorus. Furthermore, dark septate and other endophytic fungi were identified. The high number of Rhizoctonia-like fungi obtained from adult orchids from the Coastal mountain range suggests that, after germination, these orchids may complement their nutritional demands through mycoheterotrophy. Nonetheless, beneficial associations with other endophytic fungi may also co-exist. In this study, isolated mycorrhizal fungi had the ability to induce seed germination at different efficiencies and with low specificity. Germin ation rates were low, but protocorms continued to develop for 60 days. A Tulasnella sp. isolated from Chloraea gavilu was most effective to induce seed germination of different species. The dark septate endophytic (DSE) fungi did not show any effect on seed development; however, their widespread occurrence in some orchids suggests a putative role in plant establishment.

  2. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis.

    Science.gov (United States)

    Reddy, M Sudhakara; Kour, Manpreet; Aggarwal, Sipla; Ahuja, Shanky; Marmeisse, Roland; Fraissinet-Tachet, Laurence

    2016-09-01

    Metallothioneins (MTs) are small, cysteine-rich peptides involved in intracellular sequestration of heavy metals in eukaryotes. We examined the role in metal homeostasis and detoxification of an MT from the ectomycorrhizal fungus Pisolithus albus (PaMT1). PaMT1 encodes a 35 amino acid-long polypeptide, with 7 cysteine residues; most of them part of a C-x-C motif found in other known basidiomycete MTs. The expression levels of PaMT1 increased as a function of increased external Cu and Cd concentrations and were higher with Cu than with Cd. Heterologous complementation assays in metal-sensitive yeast mutants indicated that PaMT1 encodes a polypeptide capable of conferring higher tolerance to both Cu and Cd. Eucalyptus tereticornis plantlets colonized with P. albus grown in the presence of Cu and Cd showed better growth compared with those with non-mycorrhizal plants. Higher PaMT1 expression levels were recorded in mycorrhizal plants grown in the presence of Cu and Cd compared with those in control mycorrhizal plants not exposed to heavy metals. These data provide the first evidence to our knowledge that fungal MTs could protect ectomycorrhizal fungi from heavy metal stress and in turn help the plants to establish in metal-contaminated sites. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry.

    Science.gov (United States)

    Bois, G; Piché, Y; Fung, M Y P; Khasa, D P

    2005-05-01

    Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species.

  4. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia).

    Science.gov (United States)

    Mahdhi, Mosbah; Tounekti, Taieb; Al-Turki, Turki Ali; Khemira, Habib

    2017-08-01

    Arbuscular mycorrhizal fungi (AMF) constitute a key functional group of soil biota that can greatly contribute to crop productivity and ecosystem sustainability. They improve nutrient uptake and enhance the ability of plants to cope with abiotic stresses. The presence of AMF in coffee (Coffea arabica L.) plant roots have been reported in several locations but not in Saudi Arabia despite the fact that coffee has been in cultivation here since ancient times. The objective of the present study was to investigate the diversity of AMF communities colonizing the roots of coffee trees growing in two sites of Fifa Mountains (south-west Saudi Arabia): site 1 at 700 m altitude and site 2 at 1400 m. The AMF large subunit rDNA regions (LSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Microscopic observations indicated higher mycorrhizal intensity (24.3%) and spore density (256 spores/100 g of soil) in site 2 (higher altitude). Phylogenetic analysis revealed 10 phylotypes, six belonging to the family Glomeraceae, two to Claroideoglomercea, one to Acaulosporaceae and one to Gigasporaceae family. Glomus was the dominant genus at both sites and the genus Gigaspora was detected only at site 2. This is the first study reporting the presence of AMF in coffee roots and the composition of this particular mycorrhizal community in Saudi Arabia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    Science.gov (United States)

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  6. ARBUSCULAR MYCORRHIZAL FUNGI INCREASED EARLY GROWTH OF GAHARU WOOD OF Aquilaria malaccencsis and A. crasna UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-07-01

    Full Text Available Gaharu wood stand has an important source of profits to the forest community in South and Southeast Asia tropical forest countries, but Aquilaria species have reduced in number and turn out to be endangered due to overexploitation.   Today,   the planting stocks of   Aquilaria species are not sufficient to sustain the yield of gaharu wood and promote forest conservation.  The objective of this study was to determine   the effect of   five arbuscular mycorrhizal (AM fungi: Entrophospora sp., Gigaspora decipiens, Glomus clarum, Glomus sp. ZEA, and Glomus sp. ACA, on the early growth of  Aquilaria malaccensis and A. crasna under greenhouse conditions. The seedlings of  Aquilaria spp. were inoculated with Entrophospora sp., Gi. decipiens, Glomus clarum, Glomus sp. ZEA, Glomus sp. ACA and uninoculated (control under greenhouse conditions. Then, percentage AM colonization, plant growth, survival rate and nitrogen (N and phosphorus (P content and mycorrhizal dependence (MD were measured. The percentage AM colonization of A. malaccensis and A. crasna ranged from 83 to 97% and from 63 to 78%, respectively. Colonization by five AM fungi increased plant height, diameter, and shoot and root dry weights. N and P content of  the seedlings were also increased by AM colonization. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than those in the control seedlings. The MD of Aquilaria species was higher than 55 %. The results suggested that AM fungi can be inoculated`to Aquilaria species under nursery conditions to obtain vigorous seedlings, and the field experiment is underway to clarify the role of AM fungi under field conditions.

  7. Development of cassava plants and its mycorrhizal association in soil supplemented with sugarcane agroindustrial residue

    Directory of Open Access Journals (Sweden)

    Jorge Messias Leal Nascimento

    2014-02-01

    Full Text Available Application of organic agroindustrial residues on agriculture can be one way to improve the development and chemical composition of plants, reducing the cost with chemical fertilizers and impacts generated by the excessive use of them. Sugarcane agroindustrial residue has been generated in high quantity in Brazilian semiarid region and can be applied to cassava crop to improve its growth. The aim of this work was to evaluate the effect of application of sugarcane agroindustrial residue on the vegetative development, chemical composition and mycorrhizal association of cassava plants (Manihot esculenta var. Engana ladrão. It was performed an experiment in greenhouse with completely randomized design with four treatments of addition of sugarcane agroindustrial residue (0, 5, 10 and 15% with nine replicates. The addition of sugarcane agroindustrial residue increased fresh dry root biomass, leaf area, crude protein and mineral matter, without reducing the mycorrhizal colonization and glomerospores number. This type of residue can be one alternative to improve the nutritional value of these fodder.

  8. The Role of Mycorrhizal Inoculation on Growth and Essential Oil of Peppermint (Mentha piperita

    Directory of Open Access Journals (Sweden)

    M. Mahmoudzadeh

    2016-02-01

    Full Text Available Introduction: Arbuscular mycorrhizal symbiosis is formed by approximately 80% of the vascular plant species in all terrestrial biomes. Using soil microbial potential including arbuscular mycorrhizal fungi (AMF has been widely considered for improving plant growth, yield and nutrition. Medicinal herbs are known as sources of phyto chemicals or active compounds that are widely sought worldwide for their natural properties. Members of the Lamiaceae family have been used since ancient times as sources of spices and flavorings and for their pharmaceutical properties. Peppermint (Mentha piperita has a long tradition of medicinal use, with archaeological evidence placing its use at least as far back as ten thousand years ago. Essential oils - are volatile, lipophilic mixtures of secondary plant compounds, mostly consisting of monoterpenes, sesquiterpenes and phenylproponoids.Arbuscularmycorrhizal fungi with colonizing plant roots improve nutrient uptake as well as improving essential oil yield of medicinal plants by increasing plant biomass. The aim of the present study was to evaluate the effect of AMF inoculation on essential oil content and some growth parameters of peppermint (Mentha piperita plant under glasshouse condition. Materials and Methods: This study was performed on a loamy sand soil. The samples were air-dried, sieved (

  9. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events

    Science.gov (United States)

    Balzergue, Coline; Puech-Pagès, Virginie; Bécard, Guillaume; Rochange, Soizic F.

    2011-01-01

    Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia. PMID:21045005

  10. Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Nanjareddy, Kalpana; Blanco, Lourdes; Arthikala, Manoj-Kumar; Affantrange, Xochitl Alvarado; Sánchez, Federico; Lara, Miguel

    2014-03-01

    Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50 mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean. © 2014 Institute of Botany, Chinese Academy of Sciences.

  11. Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis1[W

    Science.gov (United States)

    Etemadi, Mohammad; Gutjahr, Caroline; Couzigou, Jean-Malo; Zouine, Mohamed; Lauressergues, Dominique; Timmers, Antonius; Audran, Corinne; Bouzayen, Mondher; Bécard, Guillaume; Combier, Jean-Philippe

    2014-01-01

    Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells. PMID:25096975

  12. Aplicação de formononetina na colonização e esporulação de fungos micorrízicos em braquiária Formononetin application on colonization and sporulation of arbuscular mycorrhizal fungi in Brachiaria

    Directory of Open Access Journals (Sweden)

    Cândido Barreto de Novais

    2009-05-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de aplicações de Mycoform na colonização micorrízica e esporulação de 13 isolados de fungos micorrízicos arbusculares em Brachiaria decumbens. O experimento foi conduzido em casa de vegetação, em solo esterilizado, com delineamento experimental inteiramente casualizado, em arranjo fatorial 3x13, com cinco repetições. O produto foi aplicado no plantio e foi ou não aplicado uma segunda vez 60 dias depois, na quantidade de 2 mg kg-1 de solo. Aos 150 dias de crescimento das plantas, foram coletadas amostras de raízes e de solo rizosférico, para a avaliação de colonização radicular e densidade de esporos. Houve estímulo do Mycoform nos parâmetros avaliados, efeito que variou com os isolados estudados. Foi observado efeito significativo da aplicação do Mycoform na colonização das raízes pelos isolados Glomus clarum DCS 09 e DCS 10, Paraglomus occultum DCS 06 e Acaulospora delicata DCS 02 e na esporulação dos isolados G. clarum DCS 09 e DCS 10, P. occultum DCS 06 e DCS 31, Glomus etunicatum DCS 12, A. delicata DCS 30 e Kuklospora colombiana DCS 03. O incremento na esporulação atingiu 89% e, na colonização, 60%, o que confirma os benefícios da formononetina na colonização e na esporulação dos fungos micorrízicos arbusculares.The aim of this work was to evaluate the effects of Mycoform on both sporulation and colonization of 13 arbuscular mycorrhiza fungi (AMF isolates in Brachiaria decumbens. The experiment was carried out in greenhouse conditions with sterile soil, in a completely randomized design with 3x13 factorial treatments and five repetitions. The product was applied once at planting and was or was not applied a second time 60 days afterwards, at an amount of 2 mg kg-1 of soil. Plants were allowed to grow for 150 days, when root and rhizospheric soil samples were collected to evaluate the percentage of colonized root segments and the spore density. Mycoform

  13. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization.

    Science.gov (United States)

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-01-01

    Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.

  14. Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?

    Science.gov (United States)

    Cevallos, Stefania; Sánchez-Rodríguez, Aminael; Decock, Cony; Declerck, Stéphane; Suárez, Juan Pablo

    2017-04-01

    In epiphytic orchids, distinctive groups of fungi are involved in the symbiotic association. However, little is known about the factors that determine the mycorrhizal community structure. Here, we analyzed the orchid mycorrhizal fungi communities associated with three sympatric Cymbidieae epiphytic tropical orchids (Cyrtochilum flexuosum, Cyrtochilum myanthum, and Maxillaria calantha) at two sites located within the mountain rainforest of southern Ecuador. To characterize these communities at each orchid population, the ITS2 region was analyzed by Illumina MiSeq technology. Fifty-five mycorrhizal fungi operational taxonomic units (OTUs) putatively attributed to members of Serendipitaceae, Ceratobasidiaceae and Tulasnellaceae were identified. Significant differences in mycorrhizal communities were detected between the three sympatric orchid species as well as among sites/populations. Interestingly, some mycorrhizal OTUs overlapped among orchid populations. Our results suggested that populations of studied epiphytic orchids have site-adjusted mycorrhizal communities structured around keystone fungal species. Interaction with multiple mycorrhizal fungi could favor orchid site occurrence and co-existence among several orchid species.

  15. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis.

    Science.gov (United States)

    Corrêa, Ana; Cruz, Cristina; Pérez-Tienda, Jacob; Ferrol, Nuria

    2014-05-01

    The role and importance of arbuscular mycorrhizae (AM) in plant nitrogen (N) nutrition is uncertain. We propose that this be clarified by using more integrative experimental designs, with the use of a gradient of N supply and the quantification of an extensive array of plant nutrient contents. Using such an experimental design, we investigated AM effects on plant N nutrition, whether the mycorrhizal N response (MNR) determines the mycorrhizal growth response (MGR), and how MNR influences plants' C economy. Oryza sativa plants were inoculated with Rhizophagus irregularis or Funneliformis mossae. AM effects were studied along a gradient of N supplies. Biomass, photosynthesis, nutrient and starch contents, mycorrhizal colonization and OsPT11 gene expression were measured. C investment in fungal growth was estimated. Results showed that, in rice, MGR was dependent on AM nutrient uptake effects, namely on the synergy between N and Zn, and not on C expenditure. The supply of C to the fungus was dependent on the plant's nutrient demand, indicated by high shoot C/N or low %N. We conclude that one of the real reasons for the negative MGR of rice, Zn deficiency of AMF plants, would have remained hidden without an experimental design allowing the observation of plants' response to AM along gradients of nutrient concentrations. Adopting more integrative and comprehensive experimental approaches in mycorrhizal studies seems therefore essential if we are to achieve a true understanding of AM function, namely of the mechanisms of C/N exchange regulation in AM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of Various Organic Matter stimulates Bacteria and Arbuscular Mycorrhizal Fungi Plantations on Eroded Slopes in Nepal

    Science.gov (United States)

    Shrestha Vaidya, G.; Shrestha, K.; Wallander, H.

    2009-04-01

    Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces erosion. Trees and shrubs on the lower hillsides in Nepal form symbiosis with arbuscular mycorrhizal (AM) fungi and these fungi are important for the uptake of mineral nutrients from the soil. In addition, the mycelia formed by these fungi have an important function in stabilizing the soil. The success of plantations of these eroded slopes is therefore highly dependent on the extent of mycorrhizal colonization of the plants. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant and nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter was placed in mesh bags which were buried around the trees of Bauhinia purpurea and Leucaena diversifolia .This experiment were done in two seasons ( (the wet and the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the six month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the wet and dry seasons. More microbial biomass was produced during wet season than during dry season. Further more, organic matter addition enhanced the production of AM fungal and bacterial biomass during both seasons. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival, growth and nutrient composition in the soil in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded

  17. Plant mortality varies with arbuscular mycorrhizal fungal species identities in a self-thinning population

    Science.gov (United States)

    Zhang, Qian; Tang, Jianjun; Chen, Xin

    2011-01-01

    Because arbuscular mycorrhizal fungal (AMF) species differ in stimulating the growth of particular host plant species, AMF species may vary in their effects on plant intra-specific competition and the self-thinning process. We tested this hypothesis using a microcosm experiment with Medicago sativa L. as a model plant population and four AMF species. Our results showed that the AMF species Glomus diaphanum stimulated host plant growth more than the other three AMF species did when the plants were grown individually. Glomus diaphanum also induced the highest rate of mortality in the self-thinning plant populations. We also found a positive correlation between mortality and growth response to colonization. Our results demonstrate that AMF species can affect plant mortality and the self-thinning process by affecting plant growth differently. PMID:21147829

  18. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland

    DEFF Research Database (Denmark)

    Schnoor, Tim Krone; Lekberg, Ylva; Rosendahl, Søren

    2011-01-01

    While the effect of disturbance on overall abundance and community composition of arbuscular mycorrhizal (AM) fungi has been researched in agricultural fields, less is known about the impact in semi-natural grasslands. We sampled two AM plant species, Festuca brevipila and Plantago lanceolata, from...... an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three...... the control or disturbed plots. We found no evidence of host preference in this system, except for one phylotype that preferentially seemed to colonize Festuca. Our results show that disturbance imposed a stronger structuring force for AM fungal communities than did host plants in this semi-natural grassland....

  19. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Akiyama, Kohki

    2007-06-01

    Arbuscular mycorrhizae formed between more than 80% of land plants and arbuscular mycorrhizal (AM) fungi represent the most widespread symbiosis on the earth. AM fungi facilitate the uptake of soil nutrients, especially phosphate, by plants, and in return obtain carbohydrates from hosts. Apocarotenoids, oxidative cleavage products of carotenoids, have been found to play a critical role in the establishment of AM symbiosis. Strigolactones previously isolated as seed-germination stimulants for root parasitic weeds act as a chemical signal for AM fungi during presymbiotic stages. Stimulation of carotenoid metabolism, leading to massive accumulation of mycorradicin and cyclohexenone derivatives, occurs during root colonization by AM fungi. This review highlights research into the chemical identification of arbuscular mycorrhiza-related apocarotenoids and their role in the regulation and establishment of AM symbiosis conducted in the past 10 years.

  20. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Abdel-Fattah, G M; El-Haddad, S A; Hafez, E E; Rashad, Y M

    2011-05-20

    Interaction between arbuscular mycorrhizal fungi as a bio-agent and Rhizoctonia root rot disease of common bean plant was investigated in this study under natural conditions in pot experiment. A mixture of Egyptian formulated AM (Multi-VAM) in suspension form (1 × 10(6) unit L(-1) in concentration) was used at dilution of 5 ml L(-1) water. The results demonstrated that colonization of bean plants with AM fungi significantly increased growth parameters, yield parameters and mineral nutrient concentrations and reduced the negative effects on these parameters as well as both disease severity and disease incidence. Different physical and biochemical mechanisms have been shown to play a role in enhancement of plant resistance against Rhizoctonia solani, namely, improved plant nutrition, improved plant growth, increase in cell wall thickening, cytoplasmic granulation, and accumulation of some antimicrobial substances (phenolic compounds and defense related enzymes). Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Koegel, Sally; Boller, Thomas; Lehmann, Moritz F; Wiemken, Andres; Courty, Pierre-Emmanuel

    2013-08-01

    We have recently identified two genes coding for ammonium transporters (AMT) in Sorghum bicolor that were induced in roots colonized by arbuscular mycorrhizal (AM) fungi. To improve our understanding of the dynamics of ammonium transport in this symbiosis, we studied the transfer of soil-ammonium-derived (15)N to S. bicolor plants via the Glomus mosseae fungal mycelium in compartmented microcosms. The (15)NH (4+)-containing hyphal compartment was inaccessible to the roots in the plant compartment. (15)N label concentrations significantly increased in plant roots and leaves already 48 h after exposure of the AM fungus to the (15)NH (4+) substrate, attesting an efficient symbiotic N transfer between the symbiotic partners and further highlighting that AM symbiosis represents an important component of plant nitrogen nutrition.

  2. Mycorrhizal association in gametophytes and sporophytes of the fern Pteris vittata (Pteridaceae with Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Alicia E Martinez

    2012-06-01

    Full Text Available Ferns, which are usually colonizing different environments and their roots frequently present mycorrhization, have two adult stages in their life cycle, the sporophytic and the gametophytic phase. This paper describes the experimental mycorrhizal association between Pteris vittata leptosporangiate fern and a strain of Glomus intraradices during the life cycle of the fern, from spore germination to the development of a mature sporophyte. The aim of this study was to compare the colonization pattern of in vitro cultures of G. intraradices along the fern life cycle with those found in nature. For this, mature spores were obtained from fertile P. vittata fronds growing in walls of Buenos Aires city, Argentina. Roots were stained and observed under the light microscope for arbuscular mycorrhizal colonization. Approximately, 75 fern spores were cultured in each pot filled with a sterile substrate and G. intraradices (BAFC N° 51.331 as inoculum on the surface. After germination took place, samples were taken every 15 days until the fern cycle was completed. In order to determine colonization dynamics each sample was observed under optical and confocal microscope after staining. Gametophyte was classified as Adiantum type. Male and female gametangia were limited to the lower face, mycorrhizal colonization started when they were differentiated and took place through the rhizoids. Spores and vesicles were not found in this cycle stage. Paris-type mycorrhizal colonization was established in the midrib and in the embrionary foot. It was colonized by external mycelium. When the first root was developed soil inoculum colonized de novo this structure and Arum-type colonization was observed. This study proves that the type of colonization is determined by the structure of the host, not by the fungus. Both the gametophyte and embryo foot have determined growth and Paris-type colonization, while, sporophyte roots have undetermined growth and Arum

  3. Observations on the mycorrhizal status of Polygonum viviparum in the Polish Tatra Mts. (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Michał Ronikier

    2013-12-01

    Full Text Available Polygonum viviparum is one of very few herbaceous plants known to form ectomycorrhiza; in the Tatra Mts. it is one of dominants in the alpine zone, but also descends down to the feet of the massif. Specimens of this plant were collected from 5 sites at the altitude range 900– 2150 m, from granite and limestone. It allowed an estimation of the ectomycorrhizal diversity as well as preliminary ecological observations. Roots were also stained in order to check potential presence of arbuscular mycorrhizal colonization. Ectomycorrhizae were present in all specimens (with 2–5 morphotypes observed on single plants. In total, 17 morphotypes were observed and briefly described. The most widespread were the mycorrhiza of Cenococcum geophilum and a brightly coloured morphotype resembling the ectomycorrhizae of Russula sp. No important differences in ectomycorrhizal colonization between low and high localities were found. Observed general differences in abundance and diversity of mycorrhiza in P. viviparum between sites could most probably be connected with plant community composition (presence/absence of ectomycorrhizal shrubs maintaining ectomycorrhizal fungi, although mycorrhizae were present also in sites devoid of other ectomycorrhizal plants. Structures associated to arbuscular colonization (vesicles, hyphal coils were occassionally observed, but without formation of arbuscules.

  4. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in South Indian Aquatic and Wetland Macrophytes

    Directory of Open Access Journals (Sweden)

    Kumar Seerangan

    2014-01-01

    Full Text Available Investigations on the prevalence of arbuscular mycorrhizal (AM and dark septate endophyte (DSE fungal symbioses are limited for plants growing in tropical aquatic and wetland habitats compared to those growing on terrestrial moist or dry habitats. Therefore, we assessed the incidence of AM and DSE symbiosis in 8 hydrophytes and 50 wetland plants from four sites in south India. Of the 58 plant species examined, we found AM and DSE fungal symbiosis in 21 and five species, respectively. We reported for the first time AM and DSE fungal symbiosis in seven and five species, respectively. Intermediate-type AM morphology was common, and AM morphology is reported for the first time in 16 plant species. Both AM and DSE fungal colonization varied significantly across plant species and sites. Intact and identifiable AM fungal spores occurred in root zones of nine plant species, but AM fungal species richness was low. Though no clear relationship between AM and DSE fungal colonization was recognized, a significant negative correlation between AM colonization and spore numbers was established. Our study suggests that the occurrence of AM and DSE fungal symbiosis in plants growing in hydrophytic and wetland habitats is not as common as in terrestrial habitats.

  5. Further advances in orchid mycorrhizal research.

    Science.gov (United States)

    Dearnaley, John D W

    2007-09-01

    Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world's largest plant family. The majority of the world's orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association.

  6. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth.

    Science.gov (United States)

    Smith, Sally E; Smith, F Andrew

    2012-01-01

    Recent research on arbuscular mycorrhizas has demonstrated that AM fungi play a significant role in plant phosphorus (P) uptake, regardless of whether the plant responds positively to colonization in terms of growth or P content. Here we focus particularly on implications of this finding for consideration of the balance between organic carbon (C) use by the fungi and P delivery (i.e. the C-P trade between the symbionts). Positive growth responses to arbuscular mycorrhizal (AM) colonization are attributed frequently to increased P uptake via the fungus, which results in relief of P deficiency and increased growth. Zero AM responses, compared with non-mycorrhizal (NM) plants, have conventionally been attributed to failure of the fungi to deliver P to the plants. Negative responses, combined with excessive C use, have been attributed to this failure. The fungi were viewed as parasites. Demonstration that the AM pathway of P uptake operates in such plants indicates that direct P uptake by the roots is reduced and that the fungi are not parasites but mutualists because they deliver P as well as using C. We suggest that poor plant growth is the result of P deficiency because AM fungi lower the amount of P taken up directly by roots but the AM uptake of P does compensate for the reduction. The implications of interplay between direct root uptake and AM fungal uptake of P also include increased tolerance of AM plants to toxins such as arsenate and increased success when competing with NM plants. Finally we discuss the new information on C-P trade in the context of control of the symbiosis by the fungus or the plant, including new information (from NM plants) on sugar transport and on the role of sucrose in the signaling network involved in responses of plants to P deprivation.

  7. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Using common mycorrhizal networks for controlled inoculation of Quercus spp. with Tuber melanosporum: the nurse plant method.

    Science.gov (United States)

    Pereira, Guillermo; Palfner, Götz; Chávez, Daniel; Suz, Laura M; Machuca, Angela; Honrubia, Mario

    2013-07-01

    The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH 7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.

  9. Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings after transplanting

    Science.gov (United States)

    Bill Eugene Davidson

    2015-01-01

    Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...

  10. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Edson L. Souchie

    2010-09-01

    Full Text Available This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L-1 of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungiand four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22, two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica and control (non-inoculated treatment. The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.Este estudo avaliou o sinergismo entre diversos isolados defungos solubilizadores de fosfato e micorrízicos arbusculares para beneficiar o crescimento de trevo ( Trifolium pratense na presença de apatita de Araxá. A cultura foi semeada diretamente em potes plásticos com 300 g de substrato esterilizado formado por areia lavada, vermiculita e sepiolita 1:1:1 (v:v:v e cultivada em câmara climática. O substrato foi fertilizado com 3 g L-1 de apatita de Araxá. O experimento foi instalado em delineamento completamente casualizado, esquema fatorial 8×2 (oito tratamentos de inoculação de fungos solubilizadores de fosfato com ou sem fungos micorr

  11. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  12. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition

    Directory of Open Access Journals (Sweden)

    Manoj Nath

    2016-10-01

    Full Text Available A defined balance between the generation and scavenging of reactive oxygen species (ROS is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also acts as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant–microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation and scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  13. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  14. Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology.

    NARCIS (Netherlands)

    Gamper, H.A.; van der Heijden, M.G.A.; Kowalchuk, G.A.

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most

  15. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.

    2017-01-01

    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology Impact factor: 3.683, year: 2016

  16. Mycorrhizal responses to biochar in soil-concepts and mechanisms.

    NARCIS (Netherlands)

    Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C.

    2007-01-01

    Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing

  17. Molecular characterisation of a mycorrhizal inoculant that enhances ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    . 1988; Smith and Read 1996, Smith et al. 1993). Under many natural or man made water stress conditions, arbuscular mycorrhizal fungi can play an important role. *Corresponding author. E-mail: zomure@yahoo.com. Tél: 00.

  18. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy ...

    African Journals Online (AJOL)

    Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. Sadia Kanwal, Asma Bano, Riffat Naseem Malik ...

  19. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Ouahmane Lahcen, Ndoye Ibrahima, Morino Abdessadek, Ferradous Abderrahim, Sfairi Youssef, Al Faddy Mohamed Najib, Abourouh Mohamed ...

  20. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  1. Mycorrhizal symbiosis: ancient signalling mechanisms co-opted

    NARCIS (Netherlands)

    Geurts, R.; Vleeshouwers, V.G.A.A.

    2012-01-01

    Mycorrhizal root endosymbiosis is an ancient property of land plants. Two parallel studies now provide novel insight into the mechanism driving this interaction and how it is used by other filamentous microbes like pathogenic oomycetes.

  2. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  3. The influence of pre-crop plants on the occurrence of arbuscular mycorrhizal fungi (Glomales and Phialophora graminicola associated with roots of winter XTriticosecale

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-08-01

    Full Text Available The influence of four pre-crop plant species on the occurrence of arbuscular mycorrhizal fungal (AMF, Glomales, Zygomycetes spores, mycorrhizae and Phialophora graminicola (Deacon Walker associated with roots of field-culuvated XTriticosecale Wittmack cv. Malno was investigated. The pre-crop plant species were Hordeum vutgare L., Lupinus luteus L., Pisum sativum L., and Vicia faba v. major Harz. Most spores and species of AMF were found when XTriticosecale was cultivated following P. sativum. Prior cropping with L. luteus caused the occurrence of the lowest number of spores among XTriticosecale roots. Mycorrhizal colonization of XTriticosecale was highest when planted after P. sativum and lowest when grown after L. luteus.

  4. Leaf metabolome in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schweiger, Rabea; Müller, Caroline

    2015-08-01

    Most land plants are associated with arbuscular mycorrhizal fungi, which colonise the plant roots and facilitate the uptake of water and nutrients. In turn, the fungi receive plant carbohydrates. Although the fungus is morphologically restricted to the roots, the exchange of substances and involvement of phytohormone signalling has consequences on systemic shoot tissues. Recent research provides growing insight in the species-specificity of leaf metabolic responses to arbuscular mycorrhiza, revealing that various metabolites can be affected. Such mycorrhiza-mediated changes in the chemical composition of leaf tissues can confer phytoprotection against different abiotic stresses. Moreover, they have consequences on numerous biotic interactions. In this review we highlight such findings and point out fields where more research is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza.

    Science.gov (United States)

    Reininger, Vanessa; Sieber, Thomas N

    2013-12-01

    Dark septate endophytes (DSE) are very common root colonizers of woody plant species. Ascomycetes of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC) are the main representatives of DSE fungi in forest ecosystems. PAC and mycorrhizal fungi share the same habitat, but interactions among PAC, mycorrhizal fungi and plants are poorly understood. We compared the effects of single and dual inoculation of Norway spruce seedlings with PAC and the ectomycorrhizal (ECM) fungus Hebeloma crustuliniforme on host growth, degree of mycorrhization and density of endophytic PAC biomass. Single colonization by H. crustuliniforme or PAC significantly reduced plant biomass. Dual colonization reduced or neutralized plant growth depression caused by single fungal colonization. The degree of mycorrhization was independent on PAC colonization, and mycorrhization significantly reduced endophytic PAC biomass. Plant biomass of dually colonized plants positively correlated with PAC biomass. These results demonstrate the ability of dual inoculation of PAC and H. crustuliniforme to neutralize plant growth depression caused by single fungal inoculation. Our explanations of enhanced plant growth in dually inoculated plants are the inhibition of PAC during root colonization by the ECM mantle and ECM-mediated access to plant growth-promoting nutrients resulting from the mineralization of the potting medium by PAC. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest.

    Science.gov (United States)

    Nina Wurzburger; Ronald L. Hendrick

    2009-01-01

    1. Relationships between mycorrhizal plants and soil nitrogen (N) have led to the speculation that the chemistry of plant litter and the saprotrophy of mycorrhizal symbionts can function together to...

  7. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae)

    National Research Council Canada - National Science Library

    Hans Jacquemyn; Vincent Merckx; Rein Brys; Daniel Tyteca; Bruno P. A. Cammue; Olivier Honnay; Bart Lievens

    2011-01-01

    ... of the mycorrhizal specificity of orchids. Here, we used a network analysis approach to investigate orchid mycorrhizal associations in 16 species of the genus Orchis sampled across 11 different regions in Europe...

  8. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting

  9. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils.

    Science.gov (United States)

    Landwehr, Melanie; Hildebrandt, Ulrich; Wilde, Petra; Nawrath, Kerstin; Tóth, Tibor; Biró, Borbála; Bothe, Hermann

    2002-08-01

    Plants of saline and sodic soils of the Hungarian steppe and of gypsum rock in the German Harz mountains, thus soils of high ionic strength and electric conductivity, were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Roots of several plants of the saline and sodic soils such as Artemisia maritima, Aster tripolium or Plantago maritima are strongly colonized and show typical AMF structures (arbuscules, vesicles) whereas others like the members of the Chenopodiaceae, Salicornia europaea, Suaeda maritima or Camphorosma annua, are not. The vegetation of the gypsum rock is totally different, but several plants are also strongly colonized there. The number of spores in samples from the saline and sodic soils examined is rather variable, but high on average, although with an apparent low species diversity. Spore numbers in the soil adjacent to the roots of plants often, but not always, correlate with the degree of AMF colonization of the plants. As in German salt marshes [Hildebrandt et al. (2001)], the dominant AMF in the Hungarian saline and sodic soils is Glomus geosporum. All these isolates provided nearly identical restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of spore DNA amplified by polymerase chain reaction (PCR). Cloning and sequencing of several PCR products of the ITS regions indicated that ecotypes of the G. geosporum/ Glomus caledonium clade might exist at the different habitats. A phylogenetic dendrogram constructed from the ITS or 5.8S rDNA sequences was nearly identical to the one published for 18S rDNA data (Schwarzott et al. 2001). It is tempting to speculate that specific ecotypes may be particularly adapted to the peculiar saline or sodic conditions in such soils. They could have an enormous potential in conferring salt resistance to plants.

  10. Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients.

    Science.gov (United States)

    García, Ileana V; Mendoza, Rodolfo E

    2008-03-01

    Temporal variations in the relationships among plant nutrient concentrations, soil properties and arbuscular-mycorrhizal (AM) fungal dynamics were studied along a topographic and saline gradient in a temperate grassland soil. Soil and plant (Lotus tenuis, Paspalum vaginatum, Stenotaphrum secundatum) samples were collected on four seasonally based occasions. The morphology of AM root colonization had a similar pattern in the plants studied. Maximum arbuscular colonization occurred at the beginning of the growing season in late winter and was minimal in late summer, but maximal vesicular colonization occurred in summer and was minimal in winter, suggesting a preferential production of these morphological phases by the fungus with respect to season. The greatest arbuscular colonization was associated with the highest N and P concentrations in plant tissue, suggesting a correspondence with increases in the rate of nutrient transfer between the symbiotic partners. Water content, salinity and sodicity in soil were positively associated with AM root colonization and arbuscule colonization in L. tenuis, but negatively so in the grasses. There were distinct seasonally related effects with respect to both spore density and AM colonization, which were independent of particular combinations of plant species and soil sites.

  11. Functionality of arbuscular mycorrhizal fungi in three plant communities in the Managed Floristic Reserve San Ubaldo-Sabanalamar, Cuba

    Directory of Open Access Journals (Sweden)

    Eduardo Furrazola

    2015-06-01

    Full Text Available Despite the ubiquity and importance of indigenous arbuscular mycorrhizal fungi (AMF for plant ecosystems; functioning of indigenus mycorrhizal symbiosis (IMS and related environmental factors at coastal Caribbean ecosystems remains still scarce. In order to determine functionality of IMS under contrasting land uses and wet seasons from Cuba, the influence of the water stress on some AMF functionality parameters from a semi-natural savannah (NS, a recovered savannah (RS and an agro-ecosystem (AG from the Managed Floristic Reserve San Ubaldo-Sabanalamar, Pinar del Rio, Cuba were assessed during two-years. Soil and root samples were collected in April and October, during the dry and wet seasons, respectively, in 2008 and 2010. Four plots in each ecosystem were selected, and five soil sub-samples were randomly collected, bulked, mixed homogeneously and used as the composite sample per plot. The host plant root biomass, arbuscular mycorrhizal colonization of the host plant, density of the intraradical and extraradical AMF mycelia, fungal endophyte biomass and AMF spore density were assessed. The host plant root biomass increased in the NS environment during the dry season, and approximately 12.85g root/dm³ dry soil was recorded. The colonization degree were significantly higher in all environments during the wet season of the second year, with means ranging from 79% to 89%. The extraradical mycelia were significantly more abundant in the dry season of the second year in all environments, with a maximum of 279mg/dm³ in the RS ecosystem. The density of AMF spores was highest in the dry season of the second year for the three studied ecosystems. The RS ecosystem hosted 5 670 spores/100g dry soil. In general, the influence of rainfall seasonality on the function of AMF was stronger than the influence of ecosystem management. The root biomass and extraradical mycelia were high in the dry seasons, suggesting strategies to increase the volume of soil for

  12. Mycorrhizal phosphate uptake pathway in maize: Vital for growth and cob development on nutrient poor agricultural and greenhouse soils

    Directory of Open Access Journals (Sweden)

    Martin eWillmann

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighbouring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labelled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighbouring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signalling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells.

  13. Nitrogen Pollution Shifts Forest Mycorrhizal Associations at Continental Scale

    Science.gov (United States)

    Averill, C.; Talbot, J. M.; Dietze, M.

    2016-12-01

    Most trees on Earth form a symbiosis with either ectomycorrhizal or arbuscular mycorrhizal fungi. The type of association has demonstrated importance for understanding ecosystem carbon (C) and nitrogen (N) cycling. Furthermore, the effect is independent of other dominant drivers of ecosystem function: climate, mineralogy and organic matter chemistry. Given this, it becomes important to understand where different mycorrhizal associations are, what controls their distribution, and where they will be in the future. Here we analyze 3,000 forest inventory plots from the United State Forest Inventory and Analysis data set. We categorize forest basal area as ecto- or arbuscular mycorrhizal associated to generate a metric of the relative abundance of ectomycorrhizal trees (ectomycorrhizal basal area / ecto- + arbuscular mycorrhizal basal area). We model this abundance as a function of climate, soil chemical properties (pH and C:N stoichiometry), and atmospheric N deposition. We hypothesized that N pollution in the United States has affected the relative abundance of different mycorrhizal associations, and that this would be reflected in forest composition. Overall, models showed that climate, soil chemistry, and N deposition were important for predicting the current relative abundance of ecto- and arbuscular associated trees. Ectomycorrhizal trees were more abundant in cold and wet climates compared to hot and dry. Low soil pH and high soil C:N ratios were also associated with an increase in the relative abundance of ectomycorrhizal trees. Most interesting, there was a significant influence of N deposition on the relative abundance of different mycorrhizal associations. N deposition reduced the abundance of ectomycorrhizal compared to arbuscular mycorrhizal associated trees independent of climate and soil chemistry. Given the known associations between ectomycorrhizal dominance and soil C stabilization, we argue that N pollution in the United States has shifted the forest

  14. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    Science.gov (United States)

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  15. Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico

    Science.gov (United States)

    Ligia Lebrón; Jean D. Lodge; Paul. Bayman

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbon, at three farms in...

  16. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest.

    Science.gov (United States)

    Opik, Maarja; Moora, Mari; Zobel, Martin; Saks, Ulle; Wheatley, Ron; Wright, Frank; Daniell, Tim

    2008-01-01

    * Here, the diversity of arbuscular mycorrhizal (AM) fungi was determined in a boreal herb-rich coniferous forest in relation to environmental variables. * Root samples of five plant species (Fragaria vesca, Galeobdolon luteum, Hepatica nobilis, Oxalis acetosella and Trifolium pratense) were analysed from stands differing in age and forest management intensity. * Thirty-four Glomeromycota taxa (small-subunit ribosomal RNA gene (SSU rDNA) sequence groups) were detected from 90 root samples (911 clones), including eight new taxa. Sequence groups related to Glomus intraradices were most common (MO-G3 and MO-G13). Samples of H. nobilis were colonized by more AM fungal taxa (3.68 +/- 0.31) than those of O. acetosella (2.69 +/- 0.34), but did not differ significantly in this respect from those of F. vesca (3.15 +/- 0.38). Effects of forest management, host plant species (except above) or season on the number or composition of fungal taxa in root samples were not detected, and neither were they explained by environmental variables (vegetation, soil and light conditions). * This is the most taxon-rich habitat described to date in terms of root-colonizing Glomeromycota. The data demonstrate the importance of temperate coniferous forests as habitats for AM fungi and plants. Lack of obvious fungal community patterns suggests more complex effects of biotic and abiotic factors, and possibly no adverse effect of common forest management practices on AM fungal diversity.

  17. Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K+ Deprivation.

    Science.gov (United States)

    Garcia, Kevin; Chasman, Deborah; Roy, Sushmita; Ané, Jean-Michel

    2017-03-01

    Arbuscular mycorrhizal (AM) associations enhance the phosphorous and nitrogen nutrition of host plants, but little is known about their role in potassium (K+) nutrition. Medicago truncatula plants were cocultured with the AM fungus Rhizophagus irregularis under high and low K+ regimes for 6 weeks. We determined how K+ deprivation affects plant development and mineral acquisition and how these negative effects are tempered by the AM colonization. The transcriptional response of AM roots under K+ deficiency was analyzed by whole-genome RNA sequencing. K+ deprivation decreased root biomass and external K+ uptake and modulated oxidative stress gene expression in M. truncatula roots. AM colonization induced specific transcriptional responses to K+ deprivation that seem to temper these negative effects. A gene network analysis revealed putative key regulators of these responses. This study confirmed that AM associations provide some tolerance to K+ deprivation to host plants, revealed that AM symbiosis modulates the expression of specific root genes to cope with this nutrient stress, and identified putative regulators participating in these tolerance mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Smith, F Andrew; Grace, Emily J; Smith, Sally E

    2009-01-01

    Symbiosis is well recognized as a major force in plant ecology and evolution. However, there is considerable uncertainty about the functional, ecological and evolutionary benefits of the very widespread facultative arbuscular mycorrhizal (AM) associations, in which the plants can grow and reproduce whether or not they are colonized by AM fungi. Here we address the significance of new research findings that are overturning conventional views that facultative AM associations can be likened to parasitic fungus-plant associations. Specifically, we address the occurrence and importance of phosphate uptake via AM fungi that does not result in increases in total phosphorus (P) uptake or in plant growth, and possible signalling between AM fungi and plants that can result in plant growth depressions even when fungal colonization remains very low. We conclude that, depending on the individual AM fungi that are present, the role of facultative AM associations in the field, especially in relation to plant competition, may be much more subtle than has been previously envisaged.

  19. Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; Rodriguez-Echeverría, Susana; de Andrade, Leonaldo Alves; Freitas, Helena

    2016-01-01

    Many plant species from Brazilian semi-arid present arbuscular mycorrhizal fungi (AMF) in their rhizosphere. These microorganisms play a key role in the establishment, growth, survival of plants and protection against drought, pathogenic fungi and nematodes. This study presents a quantitative analysis of the AMF species associated with Mimosa tenuiflora, an important native plant of the Caatinga flora. AMF diversity, spore abundance and root colonization were estimated in seven sampling locations in the Ceará and Paraíba States, during September of 2012. There were significant differences in soil properties, spore abundance, percentage of root colonization, and AMF diversity among sites. Altogether, 18 AMF species were identified, and spores of the genera Acaulospora, Claroideoglomus, Dentiscutata, Entrophospora, Funneliformis, Gigaspora, Glomus, Racocetra, Rhizoglomus and Scutellospora were observed. AMF species diversity and their spore abundance found in M. tenuiflora rhizosphere shown that this native plant species is an important host plant to AMF communities from Brazilian semi-arid region. We concluded that: (a) during the dry period and in semi-arid conditions, there is a high spore production in M. tenuiflora root zone; and (b) soil properties, as soil pH and available phosphorous, affect AMF species diversity, thus constituting key factors for the similarity/dissimilarity of AMF communities in the M. tenuiflora root zone among sites. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  1. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Guirado, Nivaldo; Teramoto, Juliana Rolim Salome [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Regional Centro Sul; Azcon, Rozario [Consejo Superior de Investigaciones Cientificas (CSIC), Granada (Spain). Estacao Experimental de Zaidin; Cantarela, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Solos e Recursos Ambientais; Ambrosano, Glaucia Maria Bovi [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Odontologia Social], Email: ambrosano@apta.sp.gov.br; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Inst. de Zootecnia; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ungaro, Maria Regina Goncalves [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Plantas Graniferas

    2010-07-01

    Sugarcane (Saccharum spp.) is an important crop for sugar production and agro-energy purposes in Brazil. In the sugarcane production system after a 4- to 8-year cycle crop rotation may be used before replanting sugarcane to improve soil conditions and give an extra income. This study had the objective of characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapo, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy) were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek). The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52) but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests. (author)

  2. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    Science.gov (United States)

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  3. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.

    Science.gov (United States)

    de Melo, Rangel Wesley; Schneider, Jerusa; de Souza, Costa Enio Tarso; Sousa, Soares Cláudio Roberto Fonsêca; Guimarães, Guilherme Luiz Roberto; de Souza, Moreira Fatima Maria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.

  4. Effect of arbuscular mycorrhizal fungi on tomato yield and nutrient uptake under different fertilization levels

    Directory of Open Access Journals (Sweden)

    Ľudovít Nedorost

    2012-01-01

    Full Text Available Effect of the arbuscular mycorrhiza on tomato plants (Lycopersicon lycopersicum in the pot experiment was studied. Three different fertilization regimes (optimum – H1, stress a – H2, stress b - H3 and three different mycorrhizal treatments (control – Ctrl, Glomus mossae – Gm, Glomus intraradices – Gi were used. Economical parameter (yield, nutritional characteristic (vitamin C content, phosphates and minerals content, total antioxidant capacity, and level of root colonization were studied. The yield of the tomatoes was influenced by the basic dose of the fertilization, especially in the H2 and H3 treatment. The highest yield was in the H2 treatment in Gm (938 g per plant. The positive effect of the inoculation resulted in the increased content of the vitamin C. The highest significant influence was observed in the H2 treatment (plants inoculated with Gi with the average content of the vitamin C 289 mg.kg−1. The average rate of the colonization was in the range from 39 % to 65 %.

  5. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  6. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils].

    Science.gov (United States)

    Wang, Fang; Guo, Weil; Ma, Peng-kun; Pan, Liang; Zhang, Jun

    2016-01-15

    A greenhouse pot experiment was conducted to investigate the effects of arbuscular mycorrhizal (AM) fungi Glomus aggregatum (GA) and Funneliformis mosseae (FM) on AM colonization rate, biomass, nutrient uptake, C: N: P stoichiometric and Ce uptake and transport by maize (Zea mays L.) grown in soils with different levels of Ce-contaminated (100, 500 and 1000 mg x kg(-1)). The aim was to provide basic data and technical support for the treatment of soils contaminated by rare earth elements. The results indicated that symbiotic associations were successfully established between the two isolates and maize, and the average AM colonization rate ranged from 7. 12% to 74.47%. The increasing concentration of Ce in soils significantly decreased the mycorrhizal colonization rate, biomass, nutrition contents and transport rate of Ce from root to shoot of maize, and significantly increased C: P and N: P ratios and Ce contents in shoot and root of maize. Both AM fungi inoculations promoted the growth of maize, but the promoting role of FM was more significant than that of GA in severe Ce-contaminated soils. There were no significant differences in the growth of maize between two AM fungi in mild and moderate Ce-contaminated soils. Inoculation with AM fungi significantly improved nutritional status of maize by increasing nutrient uptake and decreasing C: N: P ratios. GA was more efficient than FM in enhancing nutrient uptake in mild and moderate Ce-contaminated soils, while FM was more efficient in severe Ce-contaminated soils. Moreover, inoculation with AM fungi significantly increased Ce contents of shoot and root in mild Ce-contaminated soils, but had no significant effect on Ce contents of maize in moderate and severe Ce-contaminated soils, and promoted the transport of Ce from root to shoot. The experiment demonstrates that AM fungi can alleviate toxic effects of Ce on plants and have a potential role in the phytoremediation of soils contaminated by rare earth elements.

  7. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession.

    Science.gov (United States)

    Knoblochová, Tereza; Kohout, Petr; Püschel, David; Doubková, Pavla; Frouz, Jan; Cajthaml, Tomáš; Kukla, Jaroslav; Vosátka, Miroslav; Rydlová, Jana

    2017-11-01

    The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.

  8. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots.

    Science.gov (United States)

    Campagnac, Estelle; Fontaine, Joël; Sahraoui, Anissa Lounès-Hadj; Laruelle, Frédéric; Durand, Roger; Grandmougin-Ferjani, Anne

    2008-12-01

    Sterols composition of transformed carrot roots incubated in presence of increasing concentrations of fenpropimorph (0.02; 0.2; 2mgl(-1)) and fenhexamid (0.02; 0.2; 2; 20mgl(-1)), colonized or not by Glomus intraradices was determined. In mycorrhizal roots treated with fenpropimorph, normal Delta(5)-sterols were replaced by unusual compounds such as 9beta,19-cyclopropylsterols (24-methylpollinastanol), Delta(8,14)-sterols (ergosta-8,14-dienol, stigmasta-8,14-dienol), Delta(8)-sterols (Delta(8) sitosterol) and Delta(7)-sterols (ergosta-7,22-dienol). After application of fenpropimorph, a drastic reduction of the mycorrhizal root growth, root colonization and extraradical fungal development was observed. Application of fenhexamid did not modify sterol profiles and the total colonization of roots. But the arbuscule frequency of the fungal partner was significantly affected. Comparison of the effects caused by the tested fungicides indicates that the usual phytosterols may be involved in symbiosis development. Indeed, observed modifications of root sterols composition could explain the high fenpropimorph toxicity to the AM symbiosis. However, the absence of sterolic modifications in the roots treated with fenhexamid could account for its more limited impact on mycorrhization.

  9. Mycorrhizal inoculation affects the phytochemical content in strawberry fruits

    Directory of Open Access Journals (Sweden)

    Ana Paula Cecatto

    2016-04-01

    Full Text Available The aim of this research was to evaluate the effect of the inoculation date of arbuscular mycorrhizal fungi on the fruit quality and the content of phytochemicals in a strawberry soilless growing system. The experiment was performed in Huelva (Spain and was conducted in a greenhouse on the La Rábida Campus of Huelva University under natural light and temperature from October 2013 to June 2014. Three short-day strawberry cultivars (‘Splendor’, ‘Sabrina’ and ‘Fortuna’ were grown in polyethylene bags filled with coconut fibres. Randomized block design, with 3 repetitions and factorial arrangement (3 cultivars x 3 treatments, was established. Each replicate consisted of one bag with 12 plants supporting structures at 40 cm height. The treatments were: T1 = mycorrhizal inoculation in the transplantation; T2 = mycorrhizal inoculation 30 days after transplantation (DAT; and T0 = control treatment, without inoculation. Arbuscular mycorrhizal fungi inoculation significantly affected the contents of anthocyanin and phenolics. When the inoculation is performed in the transplantation, the fruits showed a high content of anthocyanin and total phenolics. The mycorrhizal inoculation influences decreasing the acidity in fruit throughout the growing season and increase firmness only during the early stage of production.

  10. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  11. PRODUCTION OF AUSTRALIAN CEDAR SEEDLINGS INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI IN DIFFERENT TYPES OF CONTAINERS

    Directory of Open Access Journals (Sweden)

    Élida Ribeiro do Carmo

    2016-04-01

    Full Text Available ABSTRACT The present study aimed to evaluate the growth and the levels of N, P, K, Ca and Mg in Australian cedar seedlings which had been inoculated with arbuscular mycorrhizal fungi (AMF in different types of containers. The experiment was carried out in a greenhouse and the experimental design was that of randomized complete blocks (RCB, with a 4 x 4 factorial design consisting of four inoculation treatments with AMF (Rhizophagus clarum, Gigaspora margarita, a mixed inoculation (R. clarum + G. margarita and the control (with no AMF inoculation; four types of containers (plastic bags measuring 250 cm3, tubes of 55 and 130 cm3 and pressed blocks 440 cm3. plant-1, with four repetitions. The height, the diameter of the stem base, the aerial part dry weight (APDW, the dry weight of the root (DWR and the total plant dry weight (DW were measured, along with the Dickson quality index, the percentage of mycorrhizal colonization and the levels of N, P, K, Ca and Mg in the aerial part dry weight. One hundred and thirty eight days (138 days after sowing, the greatest growth and/or the highest levels of P, K and Ca could be observed in the aerial part dry weight of the Australian cedar seedlings which had been planted in the pressed block container and inoculated with a mixture of the two AMF species (G. margarita + R. clarum or with just R. clarum. Thus it can be seen that AMF can make a significant contribution to the production of Australian cedar seedlings.

  12. Early stage colon cancer

    National Research Council Canada - National Science Library

    Freeman, Hugh James

    2013-01-01

    .... After resection of malignant pedunculated colon polyps or early stage colon cancers, long-term repeated surveillance programs can also lead to detection and removal of asymptomatic high risk advanced...

  13. Colon diverticula - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100158.htm Colon diverticula - series—Normal anatomy To use the sharing ... to slide 6 out of 6 Overview The colon, or large intestine, is a muscular tube that ...

  14. Colon cancer - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100157.htm Colon cancer - Series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The colon, or large intestine, is a muscular tube that ...

  15. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.

    Science.gov (United States)

    Hasselquist, Niles J; Metcalfe, Daniel B; Inselsbacher, Erich; Stangl, Zsofia; Oren, Ram; Näsholm, Torgny; Högberg, Peter

    2016-04-01

    The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.

  16. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    Science.gov (United States)

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF

  17. Signaling in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Harrison, Maria J

    2005-01-01

    Many microorganisms form symbioses with plants that range, on a continuous scale, from parasitic to mutualistic. Among these, the most widespread mutualistic symbiosis is the arbuscular mycorrhiza, formed between arbuscular mycorrhizal (AM) fungi and vascular flowering plants. These associations occur in terrestrial ecosystems throughout the world and have a global impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. Development of the symbiosis involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells. The aim of this review is to explore the current understanding of the signals and signaling pathways used by the symbionts for the development of the AM symbiosis. Although the signal molecules used for initial communication are not yet known, recent studies point to their existence. Within the plant, there is evidence of arbuscular mycorrhiza-specific signals and of systemic signaling that influences phosphate-starvation responses and root development. The landmark cloning of three plant signaling proteins required for the development of the symbiosis has provided the first insights into a signaling pathway that is used by AM fungi and by rhizobia for their symbiotic associations with legumes.

  18. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  19. Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana.

    Science.gov (United States)

    Yagame, Takahiro; Yamato, Masahide; Suzuki, Akira; Iwase, Koji

    2008-02-01

    Mycorrhizal fungi were isolated from the nonphotosynthetic orchid Chamaegastrodia sikokiana and identified as members of Ceratobasidiaceae by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid. The ITS sequences were similar among geographically separated samples obtained from Mt. Kiyosumi in Chiba Prefecture and Mt. Yokokura in Kochi Prefecture. One of the isolated fungi, KI1-2, formed ectomycorrhiza on seedlings of Abies firma in pot culture, suggesting that tripartite symbiosis exists among C. sikokiana, mycorrhizal fungi, and A. firma in nature, and carbon compounds are supplied from A. firma to C. sikokiana through the hyphae of the mycorrhizal fungi. To our knowledge, this is the second study to suggest the involvement of Ceratobasidiaceae fungi in tripartite symbiosis with achlorophyllous orchids and photosynthetic host plants.

  20. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils.

    Science.gov (United States)

    Guo, Wei; Zhao, Renxin; Fu, Ruiying; Bi, Na; Wang, Lixin; Zhao, Wenjing; Guo, Jiangyuan; Zhang, Jun

    2014-03-01

    Coal mine spoils are usually unfavorable for plant growth and have different properties according to dumping years, weathering degree, and the occurrence of spontaneous combustion. The establishment of plant cover in mine spoils can be facilitated by arbuscular mycorrhizal fungi (AMF). A greenhouse pot experiment was conducted to evaluate the importance of AMF in plant adaptation to different mine spoils and the potential role of AMF for revegetation practices. We investigated the effects of Glomus aggregatum, Rhizophagus intraradices (syn. Glomus intraradices), and Funneliformis mosseae (syn. Glomus mosseae) on the growth, nutritional status, and metal uptake of maize (Zea mays L.) grown in recent discharged (S1), weathered (S2), and spontaneous combusted (S3) coal mine spoils. Symbiotic associations were successfully established between AMF and maize in three substrates. Mycorrhizal colonization effectively promoted plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K), adjusting C:N:P stoichiometry and alleviating toxic effects of heavy metals. G. aggregatum, R. intraradices, and F. mosseae exhibited different mycorrhizal effects in response to mine spoil types. F. mosseae was the most effective in the development of maize in S1 and may be the most appropriate for revegetation of this substrate, while R. intraradices played the most beneficial role in S2 and S3. Our results suggest that inoculation with AMF can enhance plant adaptation to different types of coal mine spoils and play a positive role in the revegetation of coal mine spoil banks.

  1. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris.

    Science.gov (United States)

    Arthikala, Manoj-Kumar; Montiel, Jesús; Nava, Noreide; Santana, Olivia; Sánchez-López, Rosana; Cárdenas, Luis; Quinto, Carmen

    2013-08-01

    Plant NADPH oxidases (RBOHs) regulate the early stages of rhizobial infection in Phaseolus vulgaris and affect nodule function in Medicago truncatula. In contrast, the role of RBOHs in the plant-arbuscular mycorrhizal (AM) symbiosis and in the regulation of reactive oxygen species (ROS) production during the establishment of the AM interaction is largely unknown. In this study, we assessed the role of P. vulgaris Rboh (PvRbohB) during the symbiosis with the AM fungus, Rhizophagus irregularis. Our results indicate that the PvRbohB transcript is significantly up-regulated in the mycorrhized roots of P. vulgaris. Further, the PvRbohB promoter was found to be active during the invasion of R. irregularis. Down-regulation of PvRbohB transcription by RNAi (RNA interference) silencing resulted in diminished ROS levels in the transgenic mycorrhized roots and induced early hyphal root colonization. Interestingly, the size of appressoria increased in PvRbohB-RNAi roots (760 ± 70.1 µm) relative to controls (251 ± 73.2 µm). Finally, the overall level of mycorrhizal colonization significantly increased in PvRbohB-RNAi roots [48.1 ± 3.3% root length colonization (RLC)] compared with controls (29.4 ± 1.9% RLC). We propose that PvRbohB negatively regulates AM colonization in P. vulgaris.

  2. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    Full Text Available ABSTRACT: Arbuscular mycorrhizal fungi (AMF are very important to plant nutrition, mostly in terms of acquisition of P and micronutrients. While Acacia mangium is closely associated with AMF throughout the whole cycle, Eucalyptus grandis presents this symbiosis primarily at the seedling stage. The aim of this study was to evaluate the dynamics of AMF in these two tree species in both pure and mixed plantations during the first 20 months after planting. We evaluated the abundance, richness and diversity of AMF spores, the rate of AMF mycorrhizal root colonization, enzymatic activity and soil and litter C, N and P. There was an increase in AMF root colonization of E. grandis when intercropped with A. mangium as well as an increase in the activity of acid and alkaline phosphatase in the presence of leguminous trees. AMF colonization and phosphatase activities were both involved in improvements in P cycling and P nutrition in soil. In addition, P cycling was favored in the intercropped plantation, which showed negative correlation with litter C/N and C/P ratios and positive correlation with soil acid phosphatase activity and soil N and P concentrations. Intercropping A. mangium and E. grandis maximized AMF root colonization of E. grandis and phosphatase activity in the soil, both of which accelerate P cycling and forest performance.

  3. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests.

    Science.gov (United States)

    Midgley, David J; Jordan, Lyndon A; Saleeba, Jennifer A; McGee, Peter A

    2006-05-01

    The utilisation of a range of cell-wall-related and aromatic carbon substrates by multiple genotypes of three ericoid mycorrhizal fungal taxa was compared with two orchid mycorrhizal fungal taxa. Both groups of fungi catabolised most common substrates, though significant inter- and intraspecific variability was observed in the use of a few carbon substrates. Orchid mycorrhizal fungi had limited access to tannic acid as a carbon source and did not use phenylalanine, while the ericoid mycorrhizal fungi used both. Utilisation of tryptophan was limited to single genotypes of each of the orchid mycorrhizal fungi, and to only two of the three ericoid mycorrhizal fungi examined. Although broadly similar, some significant differences apparently exist in carbon catabolism of ericoid and orchid mycorrhizal fungi from the same habitat. Functional and ecological implications of these observations are discussed.

  4. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    Science.gov (United States)

    Gopal, Selvakumar; Shagol, Charlotte C; Kang, Yeongyeong; Chung, Bong Nam; Han, Seung Gab; Tong-Min, Sa

    2018-02-02

    The propagation of pure cultures of AMF is an essential requirement for their large scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from the salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of Sorghum-Sudan grass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1 kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2.5 kg capacity pots containing sterilized soil. Among the 150 inoculants, only 27 seedlings were colonized by AMF spores. After 240 days, five inoculants among the 27 seedlings resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum, and Funneliformis mosseae. Furthermore, indigenous spore Funneliformis mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using single spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describes the feasible and cost effective method to mass produce AMF spores for large scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.

    1995-01-01

    was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite...... of increased phosphatase activity in soil influenced by roots. Phosphatase activity at both pH values was highest in soil influenced by uncolonized roots, but this was attributed to higher root length densities as compared to mycorrhizal roots. Mycorrhizal hyphae showed no influence on soil phosphatase...... activity in spite of high hyphal length densities ( gt 22 m cm-3). Hyphae were also able to deplete soil of P-i beyond the membrane interface....

  6. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

  7. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Science.gov (United States)

    Shi, Guoxi; Liu, Yongjun; Mao, Lin; Jiang, Shengjing; Zhang, Qi; Cheng, Gang; An, Lizhe; Du, Guozhen; Feng, Huyuan

    2014-01-01

    Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM) fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree). Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  8. Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter?

    Science.gov (United States)

    Richard, Franck; Selosse, Marc-André; Gardes, Monique

    2009-04-01

    Positive plant-plant interaction is a widespread phenomenon, especially in harsh environments, which can contribute to secondary successions. Here, we investigated whether Arbutus unedo positively influences Quercus ilex establishment in shrub communities by abiotic and/or biotic interactions in a Mediterranean forest ecosystem, where we previously showed that A. unedo and Q. ilex share numerous species of mycorrhizal fungi. In a first field experiment, patterns of Q. ilex survivorship were documented. During the summer following germination, a majority of seedlings survived in A. unedo chaparral (AU), whereas most of them died in previous succession stages dominated by Erica arborea (EA). These results showed that survival of the Q. ilex seedling is succession stage dependent, probably due to the differential effects of the summer drought. In a second experiment, Q. ilex seedlings were used as bait plants to investigate the mycorrhizal inoculum in EA and AU. Morphotyping and molecular typing revealed 2.5 times higher colonization in AU than in EA, with more diverse fungi. Our results demonstrate that A. unedo facilitates mycorrhization of Q. ilex by hosting compatible ectomycorrhizal symbionts and positively influences seedling survival by buffering abiotic conditions. A comprehensive understanding of facilitation should thus include investigations of the soil biological patterns.

  9. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  10. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit

    Directory of Open Access Journals (Sweden)

    Salvioli Alessandra

    2012-03-01

    Full Text Available Abstract Background Arbuscular mycorrhizal (AM symbiosis is the most widespread association between plant roots and fungi in natural and agricultural ecosystems. This work investigated the influence of mycorrhization on the economically relevant part of the tomato plant, by analyzing its impact on the physiology of the fruit. To this aim, a combination of phenological observations, transcriptomics (Microarrays and qRT-PCR and biochemical analyses was used to unravel the changes that occur on fruits from Micro-Tom tomato plants colonized by the AM fungus Glomus mosseae. Results Mycorrhization accelerated the flowering and fruit development and increased the fruit yield. Eleven transcripts were differentially regulated in the fruit upon mycorrhization, and the mycorrhiza-responsive genes resulted to be involved in nitrogen and carbohydrate metabolism as well as in regulation and signal transduction. Mycorrhization has increased the amino acid abundance in the fruit from mycorrhizal plants, with glutamine and asparagine being the most responsive amino acids. Conclusions The obtained results offer novel data on the systemic changes that are induced by the establishment of AM symbiosis in the plant, and confirm the work hypothesis that AM fungi may extend their influence from the root to the fruit.

  11. Response of Solanum melongena L. to Inoculation with Arbuscular Mycorrhizal Fungi under Low and High Phosphate Condition

    Directory of Open Access Journals (Sweden)

    Irfan AZIZ

    2011-08-01

    Full Text Available Solanum melongena L. a medicinally and economically important crop plants were grown in polythene bags. The effect of mycorrhizal inoculation (Glomus mosseae and increasing phosphate levels on the expression of the photosynthetic activity in terms of chlorophyll content. Antioxidant enzymes like peroxidase, polyphenol oxidase, root acid and alkaline phosphatase activity of Solanum melongena were evaluated. The experimental design was entirely at CRBD with eight treatments with three levels of phosphate (50,100,150 mg kg-1 of soil. Root colonization ranged from 50.33% to 67.33% . The activity of the studied antioxidant enzymes were found to be increased in arbuscular mycorrhizal (AM Solanum plants. Root phosphatase activity was greater in 100 and 150 mg phosphate level in AM treated than non AM treated Solanum plants. Besides, only AM treated plants of Solanum reflected increase in total chlorophyll content as compared to non AM plants. This work suggests that the mycorrhiza helps Solanum plants to perform better in low and high phosphate level by enhancing antioxidant enzyme activity, acid and alkaline phosphatase activity and total chlorophyll content.

  12. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    Science.gov (United States)

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  13. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Science.gov (United States)

    Tamayo, Elisabeth; Gómez-Gallego, Tamara; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization. PMID:25352857

  14. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Directory of Open Access Journals (Sweden)

    Guoxi Shi

    Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  15. Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review.

    Science.gov (United States)

    Gai, J P; Christie, P; Feng, G; Li, X L

    2006-06-01

    The biodiversity and distribution of arbuscular mycorrhizal fungi (AMF) in different ecosystems and plant communities in China has received increasing interest over the past decades. This has led to a steady increase in the number of scientific papers published on this topic. Studies have surveyed AMF-colonizing rhizospheres of most families of angiosperms, bryophytes, pteridophytes, and gymnosperms. China has about 30,000 plant species (one eighth of the plant species worldwide). A total of 104 AMF species within nine genera, including 12 new species, have been reported in environments such as croplands, grasslands, forests, and numerous disturbed environments. In this paper, we review data published over the past 20 years on AMF community composition and species distribution, the mycorrhizal status of plants, AMF spore communities in different habitats, and germplasm collections in China. Possible future trends in the study of the biodiversity of AMF are also briefly discussed. In particular, the aim of our review is to make some of the recent work published in the Chinese literature accessible to a wider international audience.

  16. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  17. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Directory of Open Access Journals (Sweden)

    Elisabeth eTamayo

    2014-10-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF, belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.

  18. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baodong [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Xiao Xueyi [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: ygzhu@rcees.ac.en; Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia); Miao Xie, Z. [Department of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Smith, Sally E. [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia)

    2007-07-01

    Mycorrhizal fungi may play an important role in protecting plants against arsenic (As) contamination. However, little is known about the direct and indirect involvement of arbuscular mycorrhizal fungi (AMF) in detoxification mechanisms. A compartmented pot cultivation system ('cross-pots') is used here to investigate the roles of AMF Glomus mosseae in plant phosphorus (P) and As acquisition by Medicago sativa, and P-As interactions. The results indicate that fungal colonization dramatically increased plant dry weight by a factor of around 6, and also substantially increased both plant P and As contents (i.e. total uptake). Irrespective of P and As addition levels, AM plants had shoot and root P concentrations 2 fold higher, but As concentrations significantly lower, than corresponding uninoculated controls. The decreased shoot As concentrations were largely due to 'dilution effects' that resulted from stimulated growth of AM plants and reduced As partitioning to shoots. The study provides further evidence for the protective effects of AMF on host plants against As contamination, and have uncovered key aspects of underlying mechanisms. The possible application of AMF in remediation practices is discussed.

  19. Effect of Mycorrhizal Inoculation and Pre-treatment with Salicylic Acid at Different Levels of Drought on Morphological Traits and Yield of Flax

    Directory of Open Access Journals (Sweden)

    A. Ansari

    2014-08-01

    Full Text Available The use of plant growth hormones and beneficial microorganisms, could reduce the drought damage. The purpose of this study was to investigate the treatment with salicylic acid and inoculated with mycorrhizal fungi at different levels of irrigation on flax growth. A factorial experiment based on randomized complete blocks design with 3 replications was performed in growth chamber of college of agriculture, Isfahan university of technology and in the years 2010-2011. Treatments were irrigation regimes at 3 levels (100%, 70% and 40% field capacity, mycorrhizae at 3 levels (non-inoculated and inoculated with two species Glomus mosseae and G. intraradices and salicylic acid in 2 levels (seeds treated with 250 μM concentration of salicylic acid for 8 hours and non-treated seeds. The level of 40% field capacity irrigation reduced the leaf number, root length, root dry weight, height, stem and leaf and total plant dry weight, number and weight of capsules per plant, number of seeds per capsule and seed yield and increased vesicle diameter and percent colonization. Both mycorrhizal species in the three levels of irrigation increased the drought tolerance of the flax but in G. mosseae was more effective. Salicylic acid decreased some of the investigated traits. Inoculation with mycorrhiza and treatment with salicylic acid reduced the investigated characteristics than the inoculation with mycorrhiza and non-application of salicylic acid. 100% field capacity and G. mosseae species were the best irrigation level and mycorrhizal fungi respectively. Therefore it is suggest that application of mycorrhizal fungi especially G. mosseae species increase in the cultivation of flax plants without treatment with salicylic acid, especially in drought conditions because in addition to increased yield, water consumption is also lower and it makes the plant more tolerant to stress conditions such as drought.

  20. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection.

    Science.gov (United States)

    Campos-Soriano, Lidia; García-Martínez, José; San Segundo, Blanca

    2012-08-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Their association benefits the host plant by improving nutrition, mainly phosphorus nutrition, and by providing increased capability to cope with adverse conditions. In this study, we investigated the transcriptional changes triggered in rice leaves as a result of AM symbiosis, focusing on the relevance of the plant defence response. We showed that root colonization by the AM fungus Glomus intraradices is accompanied by the systemic induction of genes that play a regulatory role in the host defence response, such as OsNPR1, OsAP2, OsEREBP and OsJAmyb. Genes involved in signal transduction processes (OsDUF26 and OsMPK6) and genes that function in calcium-mediated signalling processes (OsCBP, OsCaM and OsCML4) are also up-regulated in leaves of mycorrhizal rice plants in the absence of pathogen infection. In addition, the mycorrhizal rice plants exhibit a stronger induction of defence marker genes [i.e. pathogenesis-related (PR) genes] in their leaves in response to infection by the blast fungus Magnaporthe oryzae. Evidence indicates that mycorrhizal rice plants show enhanced resistance to the rice blast fungus. Overall, these results suggest that the protective effect of the AM symbiosis in rice plants relies on both the systemic activation of defence regulatory genes in the absence of pathogen challenge and the priming for stronger expression of defence effector genes during pathogen infection. The possible mechanisms involved in the mycorrhiza-induced resistance to M. oryzae infection are discussed. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  1. Nitrogen and arbuscular mycorrhizal fungi (AMF effect on two commercial sweet potato clones on an inseptisol soil

    Directory of Open Access Journals (Sweden)

    Alberto Espinosa Cuéllar

    2015-02-01

    Full Text Available Sweet potato [Ipomoea batatas L. (Lam], is the fifth most important food crop in developing countries due to its outstanding nutritional and culinary characteristics and it is also considered one of the two most important food crops along with cassava (Manihot esculenta Crantz. The response of various crops to inoculation with arbuscular mycorrhizal fungi is well known. The research was conducted at the The Research Institute of Tropical Root and Tuber Crops (INIVIT on an inseptisol soil. The objective was to compare the effect of five nitrogen doses in the presence or absence of an effective AMF strain oin two sweet potato clones ‘INIVIT B2-2005’ and ‘CEMSA 78-354’. Yield, colonization rate and amount of spores were evaluated. Treatments inoculated with effective strains obtained higher yields of 35 to 37 t.ha-1 with a dose of 60 kg N ha-1; and chemical fertilizer nitrogen was reduced by 37.5 % in the form of N. A yield of 30 to35 t.ha-1 was obtained with a dose of 90 kg ha-1 of N and no AMF application. In all cases the best colonization values and spore numbers in 50 g soil coincide with optimal fertilization doses for the treatment inoculated efficiently. Colonization values were in the range of 71 to 76 % and 628-659 spores for the nitrogen dose of 60 kg ha-1.

  2. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Me