WorldWideScience

Sample records for vesicular gaba transporter

  1. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    Directory of Open Access Journals (Sweden)

    Joeri eVan Liefferinge

    2013-08-01

    Full Text Available The vesicular neurotransmitter transporters (VNTs are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3, the vesicular excitatory amino acid transporter (VEAT, the vesicular nucleotide transporter (VNUT, vesicular monoamine transporters (VMAT1/2, the vesicular acetylcholine transporter (VAChT and the vesicular γ-aminobutyric acid (GABA transporter (VGAT in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.

  2. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Manami Yamashita

    2018-03-01

    Full Text Available Summary: Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression. : Recovery of inhibitory synaptic transmission from activity-dependent depression requires refilling of vesicles with GABA. Yamashita et al. find that vesicular uptake rate of GABA is a slow process, limiting the recovery rate of IPSCs from depression.

  3. Astrocytic GABA Transporters

    DEFF Research Database (Denmark)

    Schousboe, Arne; Wellendorph, Petrine; Frølund, Bente

    2017-01-01

    , and several of these compounds have been shown to exhibit pronounced anticonvulsant activity in a variety of animal seizure models. As proof of concept of the validity of this drug development approach, one GABA-transport inhibitor, tiagabine, has been developed as a clinically active antiepileptic drug......Inactivation of GABA-mediated neurotransmission is achieved by high-affinity transporters located at both GABAergic neurons and the surrounding astrocytes. Early studies of the pharmacological properties of neuronal and glial GABA transporters suggested that different types of transporters might...... be expressed in the two cell types, and such a scenario was confirmed by the cloning of four distinctly different GABA transporters from a number of different species. These GABA-transport entities have been extensively characterized using a large number of GABA analogues of restricted conformation...

  4. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  5. The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion

    Directory of Open Access Journals (Sweden)

    Monica eJenstad

    2013-12-01

    Full Text Available Intercellular communication is pivotal in optimising and synchronising cellular responses to keep internal homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS, glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine (GGG cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, proteins involved in the CNS in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32 and Slc38 and physiology of hormone secretion in islets of Langerhans.

  6. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    Science.gov (United States)

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  7. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    Science.gov (United States)

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  8. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor

    DEFF Research Database (Denmark)

    Thier, S; Kuhlenbäumer, G; Lorenz, D

    2011-01-01

    Background:  Clinical features and animal models of essential tremor (ET) suggest gamma-aminobutyric acid A receptor (GABA(A) R) subunits and GABA transporters as putative candidate genes. Methods:  A total of 503 ET cases and 818 controls were investigated for an association between polymorphisms...

  9. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  10. Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3

    Directory of Open Access Journals (Sweden)

    Johannes eZimmermann

    2015-09-01

    Full Text Available The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3 is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamatergic neurons has been demonstrated, the interplay between VGLUT3 and the neuron’s characteristic neurotransmitter transporter, particularly in the case of GABAergic neurons, at the synaptic and vesicular level is less clear. In this study, we explore how exogenous expression of VGLUT3 in striatal GABAergic neurons affects the packaging and release of glutamate and GABA in synaptic vesicles. We found that VGLUT3 expression in isolated, autaptic GABAergic neurons leads to action potential evoked release of glutamate. Under these conditions, glutamate and GABA could be packaged together in single vesicles release either spontaneously or asynchronously. However, the presence of glutamate in GABAergic vesicles did not affect uptake of GABA itself, suggesting a lack of synergy in vesicle filling for these transmitters. Finally, we found postsynaptic detection of glutamate released from GABAergic terminals difficult when bona fide glutamatergic synapses were present, suggesting that co-released glutamate cannot induce postsynaptic glutamate receptor clustering.

  11. Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling.

    Science.gov (United States)

    Moriyama, Yoshinori; Hiasa, Miki; Sakamoto, Shohei; Omote, Hiroshi; Nomura, Masatoshi

    2017-09-01

    Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.

  12. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    Science.gov (United States)

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  13. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs

    DEFF Research Database (Denmark)

    Madsen, Karsten K; White, H Steve; Schousboe, Arne

    2010-01-01

    of transmembrane transport and enzymatic degradation. The development of tiagabine selectively inhibiting the GABA transporter GAT1 constitutes a proof of concept that the GABA transporters are interesting drug targets in the context of antiepileptic drugs. The review provides a detailed analysis of the role......,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) has been shown to possess a novel anticonvulsant profile in animal models of epilepsy, involving the ability to inhibit GABA transport mediated by GAT1 and BGT1 at the same time....

  14. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1993-01-01

    was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  15. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human....... The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT......-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable...

  16. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  17. Pharmacological analysis of the activation and receptor properties of the tonic GABA(CR current in retinal bipolar cell terminals.

    Directory of Open Access Journals (Sweden)

    Stefanie M Jones

    Full Text Available GABAergic inhibition in the central nervous system (CNS can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A receptors (GABA(ARs respectively. Retinal bipolar cells (BCs exhibit a tonic current mediated by GABA(CRs in their axon terminal, in addition to synaptic GABA(AR and GABA(CR currents, which strongly regulate BC output. The tonic GABA(CR current in BC terminals (BCTs is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(CRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(CR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(CRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(CR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(CRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(CRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(ARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(CR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.

  18. Delineation of the Role of Astroglial GABA Transporters in Seizure Control

    DEFF Research Database (Denmark)

    Schousboe, Arne; Madsen, Karsten K

    2017-01-01

    the synaptic terminals, a transport which may limit the availability of transmitter GABA leading to a higher probability of seizure activity governed by the balance of excitatory and inhibitory neurotransmission. Based on this it was hypothesized that selective inhibition of astrocytic GABA transport might...... prevent such seizure activity. A series of GABA analogs of restricted conformation were synthesized and in a number of collaborative investigations between Prof. Steve White at the University of Utah and medicinal chemists and pharmacologists at the School of Pharmacy and the University of Copenhagen...

  19. Systematic Analysis of γ-Aminobutyric Acid (GABA) Metabolism and Function in the Social Amoeba Dictyostelium discoideum*

    Science.gov (United States)

    Wu, Yuantai; Janetopoulos, Chris

    2013-01-01

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several “early” developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development. PMID:23548898

  20. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1993-01-01

    differences in the mode of action of the two depolarizing stimuli were reflected in the properties of the increase in [Ca++]i elicited by 55 mM K+ and 100 microM glutamate, respectively. The K(+)-induced increase in [Ca++]i was reduced by both verapamil and Ca(++)-free media whereas the corresponding...... neurotransmitter glutamate (100 microM). Both depolarizing stimuli exerted prompt increases in the release of preloaded [3H]GABA as well as in [Ca++]i. However, the basic properties of transmitter release and the increase in [Ca++]i under a variety of conditions were different during stimulation with K...... was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  1. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    Directory of Open Access Journals (Sweden)

    Fabian C. Roth

    2012-01-01

    Full Text Available GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.

  2. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  3. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    Science.gov (United States)

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  4. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  5. Model of reversible vesicular transport with exclusion

    International Nuclear Information System (INIS)

    Bressloff, Paul C; Karamched, Bhargav R

    2016-01-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states. (paper)

  6. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  7. GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes.

    Directory of Open Access Journals (Sweden)

    Zhe Yu

    Full Text Available The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1 knockout (KO mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.

  8. Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation

    Science.gov (United States)

    Xu, Yuanzhong; O'Brien, William G.; Lee, Cheng-Chi; Myers, Martin G.

    2012-01-01

    It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons. To directly examine the role of GABA release from LepR neurons in body weight regulation, mice with disruption of GABA release specifically from LepR neurons were generated by deletion of vesicular GABA transporter in LepR neurons. Interestingly, these mice developed mild obesity on chow diet and were sensitive to diet-induced obesity, which were associated with higher food intake and lower energy expenditure. Moreover, these mice showed blunted responses in both food intake and body weight to acute leptin administration. These results demonstrate that GABA plays an important role in mediating leptin action. In combination with the previous studies that leptin reduces GABA release onto proopiomelanocortin neurons through leptin-inhibited neurons and that disruption of GABA release from agouti gene-related protein neurons, one subset of LepR-inhibited neurons, leads to a lean phenotype, our results suggest that, under our experimental conditions, GABA release from leptin-excited neuron dominates over leptin-inhibited ones. PMID:22334723

  9. GLTP mediated non-vesicular GM1 transport between native membranes.

    Directory of Open Access Journals (Sweden)

    Ines Lauria

    Full Text Available Lipid transfer proteins (LTPs are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP, we examined GM1 (monosialotetrahexosyl-ganglioside transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.

  10. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  11. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1

    OpenAIRE

    Wu, Yuanming; Wang, Wengang; Díez-Sampedro, Ana; Richerson, George B.

    2007-01-01

    GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons, and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured ...

  12. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  13. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  14. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.

    Science.gov (United States)

    Hoftman, Gil D; Volk, David W; Bazmi, H Holly; Li, Siyu; Sampson, Allan R; Lewis, David A

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Inada

    Full Text Available Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT-Venus transgenic mice from birth (P0 through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr, the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABA(A receptors and of the Na⁺-K⁺-Cl⁻ cotransporters, and chelating intracellular Ca²⁺, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABA(AR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.

  16. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons.

    Science.gov (United States)

    Guillot, Thomas S; Miller, Gary W

    2009-04-01

    Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.

  17. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome

    NARCIS (Netherlands)

    O'Grady, Gina L.; Verschuuren, Corien; Yuen, Michaela; Webster, Richard; Menezes, Manoj; Fock, Johanna M.; Pride, Natalie; Best, Heather A.; Damm, Tatiana Benavides; Turner, Christian; Lek, Monkol; Engel, Andrew G.; North, Kathryn N.; Clarke, Nigel F.; MacArthur, Daniel G.; Kamsteeg, Erik-Jan; Cooper, Sandra T.

    2016-01-01

    Objective: To describe the clinical and genetic characteristics of presynaptic congenital myasthenic syndrome secondary to biallelic variants in SLC18A3. Methods: Individuals from 2 families were identified with biallelic variants in SLC18A3, the gene encoding the vesicular acetylcholine transporter

  18. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    DEFF Research Database (Denmark)

    Carvill, Gemma L; McMahon, Jacinta M; Schneider, Amy

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutatio...

  19. Armadillo motifs involved in vesicular transport.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available Armadillo (ARM repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  20. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal......, tiagabine (49) containing (R)-nipecotic acid (24) as the GABA transport carrier-recognizing structure element, is now marketed as an antiepileptic agent....

  1. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  2. Expression of Vesicular Nucleotide Transporter in Rat Odontoblasts

    International Nuclear Information System (INIS)

    Ikeda, Erina; Goto, Tetsuya; Gunjigake, Kaori; Kuroishi, Kayoko; Ueda, Masae; Kataoka, Shinji; Toyono, Takashi; Nakatomi, Mitsushiro; Seta, Yuji; Kitamura, Chiaki; Nishihara, Tatsuji; Kawamoto, Tatsuo

    2016-01-01

    Several theories have been proposed regarding pain transmission mechanisms in tooth. However, the exact signaling mechanism from odontoblasts to pulp nerves remains to be clarified. Recently, ATP-associated pain transmission has been reported, but it is unclear whether ATP is involved in tooth pain transmission. In the present study, we focused on the vesicular nucleotide transporter (VNUT), a transporter of ATP into vesicles, and examined whether VNUT was involved in ATP release from odontoblasts. We examined the expression of VNUT in rat pulp by RT-PCR and immunostaining. ATP release from cultured odontoblast-like cells with heat stimulation was evaluated using ATP luciferase methods. VNUT was expressed in pulp tissue, and the distribution of VNUT-immunopositive vesicles was confirmed in odontoblasts. In odontoblasts, some VNUT-immunopositive vesicles were colocalized with membrane fusion proteins. Additionally P2X 3 , an ATP receptor, immunopositive axons were distributed between odontoblasts. The ATP release by thermal stimulation from odontoblast-like cells was inhibited by the addition of siRNA for VNUT. These findings suggest that cytosolic ATP is transported by VNUT and that the ATP in the vesicles is then released from odontoblasts to ATP receptors on axons. ATP vesicle transport in odontoblasts seems to be a key mechanism for signal transduction from odontoblasts to axons in the pulp

  3. A possible role of the non-GAT1 GABA transporters in transfer of GABA from GABAergic to glutamatergic neurons in mouse cerebellar neuronal cultures

    DEFF Research Database (Denmark)

    Suñol, C; Babot, Z; Cristòfol, R

    2010-01-01

    Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons......3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule......M concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1...

  4. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  5. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    DEFF Research Database (Denmark)

    Skovstrup, Soren; David, Laurent; Taboureau, Olivier

    2012-01-01

    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand...... to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues...

  6. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  7. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  8. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity

    DEFF Research Database (Denmark)

    Bolvig, T; Larsson, O M; Pickering, D S

    1999-01-01

    The inhibitory action of bicyclic isoxazole gamma-aminobutyric acid (GABA) analogues and their 4,4-diphenyl-3-butenyl (DPB) substituted derivatives has been investigated in cortical neurones and astrocytes as well as in human embryonic kidney (HEK 293) cells transiently expressing either mouse GA...... anticonvulsant activity, lack of proconvulsant activity and the ability of THPO to increase extracellular GABA concentration, indicate that these bicyclic isoxazole GABA analogues and their DPB derivatives may be useful lead structures in future search for new antiepileptic drugs....

  9. Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila

    Directory of Open Access Journals (Sweden)

    Yasmina Talmat-Amar

    2018-03-01

    Full Text Available Structural microtubule associated protein Tau is found in high amount in axons and is involved in several neurodegenerative diseases. Although many studies have highlighted the toxicity of an excess of Tau in neurons, the in vivo understanding of the endogenous role of Tau in axon morphology and physiology is poor. Indeed, knock-out mice display no strong cytoskeleton or axonal transport phenotype, probably because of some important functional redundancy with other microtubule-associated proteins (MAPs. Here, we took advantage of the model organism Drosophila, which genome contains only one homologue of the Tau/MAP2/MAP4 family to decipher (endogenous Tau functions. We found that Tau depletion leads to a decrease in microtubule number and microtubule density within axons, while Tau excess leads to the opposite phenotypes. Analysis of vesicular transport in tau mutants showed altered mobility of vesicles, but no change in the total amount of putatively mobile vesicles, whereas both aspects were affected when Tau was overexpressed. In conclusion, we show that loss of Tau in tau mutants not only leads to a decrease in axonal microtubule density, but also impairs axonal vesicular transport, albeit to a lesser extent compared to the effects of an excess of Tau.

  10. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  12. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    Science.gov (United States)

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  13. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    Science.gov (United States)

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.

  14. Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Persico, A.M.; Uhl, G.R. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Wang, Zhe Wu [Universitario Campus Bio-Medico, Rome (Italy)] [and others

    1995-12-18

    The principal brain synaptic vesicular monoamine transporter (VMAT2) is responsible for the reuptake of serotonin, dopamine, norepinephrine, epinephrine, and histamine from the cytoplasm into synaptic vesicles, thus contributing to determination of the size of releasable neurotransmitter vesicular pools. Potential involvement of VMAT2 gene variants in the etiology of schizophrenia and related disorders was tested using polymorphic VMAT2 gene markers in 156 subjects from 16 multiplex pedigrees with schizophrenia, schizophreniform, schizoaffective, and schizotypal disorders and mood incongruent psychotic depression. Assuming genetic homogeneity, complete ({theta} = 0.0) linkage to the schizophrenia spectrum was excluded under both dominant and recessive models. Allelic variants at the VMAT2 locus do not appear to provide major genetic contributions to the etiology of schizophrenia spectrum disorders in these pedigrees. 16 refs.

  15. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  16. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons

    DEFF Research Database (Denmark)

    Kanaani, Jamil; Cianciaruso, Chiara; Phelps, Edward A

    2015-01-01

    of the two non-allelic isoforms GAD65 and GAD67 to vesicular membranes is important for rapid delivery and accumulation of GABA for regulated secretion. While the membrane anchoring and trafficking of GAD65 are mediated by intrinsic hydrophobic modifications, GAD67 remains hydrophilic, and yet is targeted...... to vesicular membrane pathways and synaptic clusters in neurons by both a GAD65-dependent and a distinct GAD65-independent mechanism. Herein we have investigated the membrane association and targeting of GAD67 and GAD65 in monolayer cultures of primary rat, human, and mouse islets and in insulinoma cells. GAD......65 is primarily detected in Golgi membranes and in peripheral vesicles distinct from insulin vesicles in β-cells. In the absence of GAD65, GAD67 is in contrast primarily cytosolic in β-cells; its co-expression with GAD65 is necessary for targeting to Golgi membranes and vesicular compartments. Thus...

  17. Inhibition of GABA transporters fails to afford significant protection following focal cerebral ischemia

    DEFF Research Database (Denmark)

    Lie, Maria Ek; Gowing, Emma K; Clausen, Rasmus P

    2017-01-01

    Brain ischemia triggers excitotoxicity and cell death, yet no neuroprotective drugs have made it to the clinic. While enhancing GABAergic signaling to counterbalance excitotoxicity has shown promise in animal models, clinical studies have failed. Blockade of GABA transporters (GATs) offers...... show that tiagabine can promote protection, our findings indicate that caution should be had when using GAT1 and GAT3 inhibitors for conditions of brain ischemia....

  18. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  19. γ-Aminobutyric acid (GABA) signalling in plants.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Gilliham, Matthew; Xu, Bo

    2017-05-01

    The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA A receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

  20. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from......Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate...... the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y(+)LAT2 facilitate the exchange of neutral amino...

  1. Actin-based vesicular transport in the first 20 min after dusk is crucial for daily rhabdom synthesis in the compound eye of the grapsid crab Hemigrapsus sanguineus.

    Science.gov (United States)

    Matsushita, A; Arikawa, K

    1997-09-01

    In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.

  2. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.

    Science.gov (United States)

    Rau, Andrew R; Hentges, Shane T

    2017-08-02

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  3. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat.

    Science.gov (United States)

    Deng, Jiao; Zhang, Fu-Xing; Pang, You-Wang; Li, Jin-Lian; Li, Yun-Qing

    2006-07-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1-3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidin-biotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  4. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat

    Institute of Scientific and Technical Information of China (English)

    Jiao DENG; Fu-Xing ZHANG; You-Wang PANG; Jin-Lian LI; Yun-Qing LI

    2006-01-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1~3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidinbiotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  5. Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABA(A) receptor agonist gaboxadol

    DEFF Research Database (Denmark)

    Madsen, Karsten Kirkegaard; Ebert, Bjarke; Clausen, Rasmus Prætorius

    2011-01-01

    seizures. Even though less is known about the therapeutic potential of other GABA transport inhibitors, previous investigations have demonstrated that N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502), which, like tiagabine, is inactive...... of gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), which, at the doses used in this study (i.e., 1-5 mg/kg) selectively activates extrasynaptic a4-containing GABA(A) receptors, was determined alone and in combination with either tiagabine or EF1502 using Frings audiogenic seizure-susceptible and CF...

  6. Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Zeuthen, Thomas; Gether, Ulrik

    2002-01-01

    The rat gamma-aminobutyric acid transporter-1 (GAT-1) was expressed in Xenopus laevis oocytes and the substrate-independent Li(+)-induced leak current was examined using two-electrode voltage clamp. The leak current was not affected by the addition of GABA and was not due to H(+) permeation. The Li......(+)-bound conformation of the protein displayed a lower passive water permeability than that of the Na(+)- and choline (Ch(+))-bound conformations and the leak current did not saturate with increasing amounts of Li(+) in the test solution. The mechanism that gives rise to the leak current did not support active water...... transport in contrast to the mechanism responsible for GABA translocation (approximately 330 water molecules per charge). Altogether, these data support the distinct nature of the leak conductance in relation to the substrate translocation process. It was observed that the leak current was inhibited by low...

  7. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina

    NARCIS (Netherlands)

    Kamermans, M.; Werblin, F.

    1992-01-01

    Horizontal cells (HCs) appear to release, and also to be sensitive to, GABA. The external GABA concentration is increased with depolarization of the HC membrane via an electrogenic GABA transporter. This extracellular GABA opens a GABAA-gated Cl- channel in the HC membrane. Since the equilibrium

  8. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Directory of Open Access Journals (Sweden)

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  9. Functional genetic variants in the vesicular monoamine transporter 1 (VMAT1) modulate emotion processing

    Science.gov (United States)

    Lohoff, Falk W.; Hodge, Rachel; Narasimhan, Sneha; Nall, Aleksandra; Ferraro, Thomas N.; Mickey, Brian J.; Heitzeg, Mary M.; Langenecker, Scott A.; Zubieta, Jon-Kar; Bogdan, Ryan; Nikolova, Yuliya S.; Drabant, Emily; Hariri, Ahmad R.; Bevilacqua, Laura; Goldman, David; Doyle, Glenn A.

    2012-01-01

    SUMMARY Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits, and risk for psychopathology. PMID:23337945

  10. Phenyl Ring-Substituted Lobelane Analogs: Inhibition of [3H]Dopamine Uptake at the Vesicular Monoamine Transporter-2

    OpenAIRE

    Nickell, Justin R.; Zheng, Guangrong; Deaciuc, Agripina G.; Crooks, Peter A.; Dwoskin, Linda P.

    2011-01-01

    Lobeline attenuates the behavioral effects of methamphetamine via inhibition of the vesicular monoamine transporter (VMAT2). To increase selectivity for VMAT2, chemically defunctionalized lobeline analogs, including lobelane, were designed to eliminate nicotinic acetylcholine receptor affinity. The current study evaluated the ability of lobelane analogs to inhibit [3H]dihydrotetrabenazine (DTBZ) binding to VMAT2 and [3H]dopamine (DA) uptake into isolated synaptic vesicles and determined the m...

  11. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease.

    Science.gov (United States)

    German, Christopher L; Baladi, Michelle G; McFadden, Lisa M; Hanson, Glen R; Fleckenstein, Annette E

    2015-10-01

    Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    Science.gov (United States)

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  13. Selective mGAT2 (BGT-1) GABA Uptake Inhibitor

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Jørgensen, Lars; Madsen, Karsten Kirkegaard

    2013-01-01

    β-Amino acids sharing a lipophilic diaromatic side chain were synthesized and characterized pharmacologically on mouse GABA transporter subtypes mGAT1−4. The parent amino acids were also characterized. Compounds 13a, 13b, and 17b displayed more than 6-fold selectivity for mGAT2 over mGAT1. Compou...... 17b displayed anticonvulsive properties inferring a role of mGAT2 in epileptic disorders. These results provide new neuropharmacological tools and a strategy for designing subtype selective GABA transport inhibitors....

  14. Isoguvacine binding, uptake, and release: relation to the GABA system

    Energy Technology Data Exchange (ETDEWEB)

    White, W F; Snodgrass, S R

    1983-06-01

    Isoguvacine (1,2,3,6-tetrahydropyridine-4-carboxylic acid) is a GABA (gamma-aminobutyric acid) agonist with limited conformational flexibility. In these studies we investigated the binding, uptake, and release of (3H) isoguvacine by use of tissue preparations of rat CNS, comparing the results with similar studies of (3H)GABA. The results from these investigations indicate that isoguvacine binds to membrane preparations of rat forebrain with pharmacological characteristics similar to the post-synaptic GABA recognition site; that it is transported into synaptosomal preparations by an uptake system similar to the high-affinity GABA uptake system; and that recently accumulated isoguvacine is released in a Ca2+-dependent manner and by heteroexchange with external GABA. The ability of isoguvacine and gamma-hydroxybutyric acid to decrease the K+-stimulated Ca2+-dependent release process was also investigated. The results indicate that isoguvacine interactions have many of the biochemical features of GABA synaptic function, isoguvacine being, however, less potent than GABA.

  15. Dopamine transporter and vesicular monoamine transporter knockout mice : implications for Parkinson's disease.

    Science.gov (United States)

    Miller, G W; Wang, Y M; Gainetdinov, R R; Caron, M G

    2001-01-01

    One of the most valuable methods for understanding the function of a particular protein is the generation of animals that have had the gene encoding for the protein of interest disrupted, commonly known as a "quo;knockout"quo; or null mutant. By incorporating a sequence of DNA (typically encoding antibiotic resistance to aid in the selection of the mutant gene) into embryonic stem cells by homologous recombination, the normal transcription of the gene is effectively blocked (Fig. 1). Since a particular protein is encoded by two copies of a gene, it is necessary to have the gene on both alleles "quo;knocked out."quo; This is performed by cross-breeding animals with one affected allele (heterozygote) to generate offspring that have inherited two mutant alleles (homozygote). This procedure has been used to generate animals lacking either the plasma membrane dopamine transporter (DAT; Fig. 2) or the vesicular monoamine transporter (VMAT2; Fig. 3). Both DAT and VMAT2 are essential for dopamine homeostasis and are thought to participate in the pathogenesis of Parkinson's disease (1-5). Fig. 1. Maps of the targeting vector and the mock construct. The mouse genomic fragment (clone 11) was isolated from a Stratagene 129 SvJ library by standard colony hybridization using a PCR probe from the 5' end of rat cDNA. The restriction site abbreviations are as follows: H, HindIII; N, NotI; Sc, SacI; Sn, SnaI; X, XbaI; and Xh, XhoI. The region between HindIII and SnaI on clone 11 containing the coding sequence from transmembrane domains 3 and 4 of VMAT2 was deleted and replaced with PGK-neo. The 3' fragment of clone 11 was reserved as an external probe for Southern analysis. To facilitate PCR screening of embryonic stem cell clones, a mock construct containing the SnaI/XbaI fragment and part of the Neo cassette was generated as a positive control. pPNT and pGEM4Z were used to construct knockout and mock vectors, respectively. (Reproduced with permission from ref. 1). Fig. 2. DAT and

  16. Unusual armadillo fold in the human general vesicular transport factor p115.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available The golgin family gives identity and structure to the Golgi apparatus and is part of a complex protein network at the Golgi membrane. The golgin p115 is targeted by the GTPase Rab1a, contains a large globular head region and a long region of coiled-coil which forms an extended rod-like structure. p115 serves as vesicle tethering factor and plays an important role at different steps of vesicular transport. Here we present the 2.2 A-resolution X-ray structure of the globular head region of p115. The structure exhibits an armadillo fold that is decorated by elongated loops and carries a C-terminal non-canonical repeat. This terminal repeat folds into the armadillo superhelical groove and allows homodimeric association with important implications for p115 mediated multiple protein interactions and tethering.

  17. MS transport assays for γ-aminobutyric acid transporters--an efficient alternative for radiometric assays.

    Science.gov (United States)

    Schmitt, Sebastian; Höfner, Georg; Wanner, Klaus T

    2014-08-05

    Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.

  18. Novel agents acting on GABA2 receptors: potential cognitive enhancers

    International Nuclear Information System (INIS)

    Chebib, M.

    2001-01-01

    γ- Aminobutyric acid (GABA) is a low molecular weight ammo acid found throughout the central and peripheral nervous systems. It is a very flexible molecule and thus can attain a number of low-energy conformations which are recognised by a series of enzymes, receptors and transporter systems. This article will concentrate on the effects of GABA C as the major inhibitory neurotransmitter in the brain. GABA C receptors belong to the superfamily of ligand-gated ion channels that include nicotinic acetylcholine, GABA A , strychnine-sensitive glycine, and serotonin type 3 receptors. The compound outlined in this article provide us with novel leads for the design and development of compounds that may be selective for GABA receptors. Such compounds will help in the study of GABA C receptors both in vitro and in vivo, providing an insight into the role these receptors play in the brain

  19. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi

    Directory of Open Access Journals (Sweden)

    Rohde Jörg

    2012-07-01

    Full Text Available Abstract Background The Orf virus (ORFV, a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep. Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. Results Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. Conclusions The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.

  20. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells.

    Science.gov (United States)

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob; Holm, René; Nielsen, Carsten Uhd

    2016-01-20

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells, porcine LLC-PK1 cells, and rat SKPT cells using radiolabelled taurine. Hyperosmotic conditions were obtained by incubation with raffinose (final osmolality of 500mOsm) for 24h prior to the uptake experiments. Expression of the taurine transporter, TauT, was investigated at the mRNA level by real-time PCR. Uptake of the GABA-mimetics gaboxadol and vigabatrin was investigated in SKPT cells, and quantified by liquid scintillation or HPLC-MS/MS analysis, respectively. The uptake rate of [(3)H]-taurine was Na(+) and Cl(-) and concentration dependent with taurine with an apparent Vmax of 6.3±1.6pmolcm(-2)min(-1) and a Km of 24.9±15.0μM. β-alanine, nipecotic acid, gaboxadol, GABA, vigabatrin, δ-ALA and guvacine inhibited the taurine uptake rate in a concentration dependent manner. The order of affinity for TauT was β-alanine>GABA>nipecotic acid>guvacine>δ-ALA>vigabatrin>gaboxadol with IC50-values of 0.04, 1.07, 2.02, 4.19, 4.94, 31.4 and 39.9mM, respectively. In conclusion, GABA mimetics inhibited taurine uptake in hyperosmotic rat renal SKPT cells. SKPT cells, which seem to be a useful model for investigating taurine transport in the short-term presence of high concentrations of osmolytes. Furthermore, analogues of β-alanine appear to have higher affinities for TauT than GABA-analogues. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  2. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  3. Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells.

    Science.gov (United States)

    Matsui, T; Nakayama, H; Yoshida, K; Shinmyo, A

    2003-10-01

    Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.

  4. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  5. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    Science.gov (United States)

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  6. The four human ¿-aminobutyric acid (GABA) transporters

    DEFF Research Database (Denmark)

    Kvist, Trine; Christiansen, Bolette; Jensen, Anders Asbjørn

    2009-01-01

    in high throughput screening. We find that the assay is categorized by high Z'-factors (Z' > 0.5) for all four GAT subtypes, demonstrating that the assay is excellent for a high throughput screen. This [3H]GABA uptake assay therefore enables future high through put screening of compound libraries...

  7. Regulation of vesicular traffic by a GTP-binding protein on the cytoplasmic surface of secretory vesicles in yeast

    International Nuclear Information System (INIS)

    Novick, P.J.; Goud, B.; Salminen, A.; Walworth, N.C.; Nair, J.; Potenza, M.

    1988-01-01

    Vesicular transport is an important mechanism for the intracellular traffic of proteins and lipids in eukaryotic cells. Vesicles mediate the passage of proteins between the various organelles of the secretory pathway and the exocytic release of these proteins into the extracellular environment. Vesicles also mediate the uptake of proteins and fluid from the external environment, delivering them to endosomes. Despite the generality of the vesicular transport mechanism, the process is not yet understood at a molecular level. The key questions that are addressed are (1) How are vesicles formed from the membrane of the donor organelle? (2) How are these vesicles transported? (3) How do the vesicles recognize the membrane of the target (acceptor) organelle? (4) How is membrane fusion accomplished? The genetic flexibility of yeast has been exploited to identify components of the cellular machinery required for vesicular transport

  8. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    Directory of Open Access Journals (Sweden)

    Caroline Fasano

    2017-05-01

    Full Text Available Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT and the atypical type III vesicular glutamate transporter (VGLUT3; therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

  9. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  10. Endogenous synthesis of taurine and GABA in rat ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and ..gamma..-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  11. Endogenous synthesis of taurine and GABA in rat ocular tissues

    International Nuclear Information System (INIS)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and γ-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye. (author)

  12. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    Science.gov (United States)

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. GABA not only a neurotransmitter: osmotic regulation by GABAAR signalling

    Directory of Open Access Journals (Sweden)

    Tiziana eCesetti

    2012-01-01

    Full Text Available In neurons the anionic channel γ-aminobutyric (GABA A receptor (GABAAR plays a central role in mediating both the neurotrophic and neurotransmitter role of GABA. Activation of this receptor by GABA also affects the function of non-neuronal cells in the central nervous system (CNS, as GABAARs are expressed in mature macroglia and in almost all progenitor types, including neural stem cells. The relevance of GABA signalling in non-neuronal cells has been comparatively less investigated than in neurons. However, it is becoming increasingly evident that these cells are direct targets of GABA regulation. In non-neuronal cells GABAAR activation leads to influx or efflux of chloride (Cl- depending on the electrochemical gradient. Ion transport is indissolubly associated to water fluxes across the plasma membrane and plays a key role in brain physiology. Therefore, GABAAR could affect osmotic tension in the brain by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signalling could affect the movement of water also by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. This regulation has consequences at the cellular level as it modulates cell volume and activates multiple intracellular signalling mechanisms important for cell proliferation, maturation and survival. It may also have consequences at the systemic level. For example, it may indirectly control neuronal excitability, by regulating the extracellular space and interstitial concentration of Cl-, and contribute to brain water homeostasis. Therefore, GABAergic osmotic regulation should be taken into account during the treatment of pathologies requiring the administration of GABAAR modulators and for the development of therapies for diseases causing water unbalance in the brain.

  14. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2018-03-01

    Ubiquitous expression of GABA type A receptors (GABA A R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABA A Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABA A R function. Here we review the current understanding of how GABA A Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABA A R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABA A R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018. © 2017 Wiley Periodicals, Inc.

  15. Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis.

    Science.gov (United States)

    Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P F

    2013-09-01

    Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway.

  16. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    Science.gov (United States)

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  17. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    Science.gov (United States)

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  18. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br [Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, MG 36036-900 (Brazil); Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States); Weller, Peter F. [Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States)

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  19. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    International Nuclear Information System (INIS)

    Melo, Rossana C.N.; Weller, Peter F.

    2016-01-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  20. Turnover and release of GABA in rat cortical slices: effect of a GABA-T inhibitor, gabaculine

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1982-01-01

    The turnover and release of endogenous and labeled GABA were followed in rat cortical slices after incubation with [ 3 H]GABA. High performance liquid chromatography was used to measure endogenous GABA and to separate [ 3 H]GABA from its metabolites. During superfusion with 3 mM K + the slices rapidly lost their [ 3 H]GABA content while maintaining constant GABA levels. Exposure to 50 mM K + for 25 min caused an initial rapid rise in the release of both endogenous and [ 3 H]GABA followed by a more rapid decline in the release of the latter. The specific activity of released GABA was two to four times higher than that in the slices. Depolarization lead to a net synthesis of GABA. The GABA -T inhibitor, gabaculine, (5 micrometers) in vitro arrested the metabolism of [ 3 H]GABA and rapidly doubled the GABA content but did not significantly increase the high K + evoked release of endogenous GABA. In vivo pretreatment with 0.5 mM/kg gabaculine quadrupled GABA content and increased both the spontaneous and evoked release of endogenous GABA but while its Ca 2 + -dependent release increased by 50%, the Ca 2 + -independent release was enhanced sevenfold. This large Ca 2 + -independent release of GABA is likely to have different functional significance from the normal Ca 2 + -dependent release

  1. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

    Science.gov (United States)

    Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2005-09-01

    Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.

  2. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  3. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated caco-2, LLC-PK1 and rat renal SKPT cells

    DEFF Research Database (Denmark)

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob Munk

    2016-01-01

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells....... Uptake of the GABA-mimetics gaboxadol and vigabatrin was investigated in SKPT cells, and quantified by liquid scintillation or HPLC-MS/MS analysis, respectively. The uptake rate of [(3)H]-taurine was Na(+) and Cl(-) and concentration dependent with taurine with an apparent Vmax of 6.3±1.6pmolcm(-2)min(-1......) and a Km of 24.9±15.0μM. β-alanine, nipecotic acid, gaboxadol, GABA, vigabatrin, δ-ALA and guvacine inhibited the taurine uptake rate in a concentration dependent manner. The order of affinity for TauT was β-alanine>GABA>nipecotic acid>guvacine>δ-ALA>vigabatrin>gaboxadol with IC50-values of 0.04, 1.07, 2...

  4. A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system.

    Directory of Open Access Journals (Sweden)

    Rafael Romero-Calderón

    2008-11-01

    Full Text Available Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.

  5. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  6. Effects of surface functionalization of hydrophilic NaYF4 nanocrystals doped with Eu3+ on glutamate and GABA transport in brain synaptosomes

    Science.gov (United States)

    Sojka, Bartlomiej; Kociołek, Daria; Banski, Mateusz; Borisova, Tatiana; Pozdnyakova, Natalia; Pastukhov, Artem; Borysov, Arsenii; Dudarenko, Marina; Podhorodecki, Artur

    2017-08-01

    Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.

  7. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    Science.gov (United States)

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus

    Science.gov (United States)

    Albers, H. Elliott; Walton, James C.; Gamble, Karen L.; McNeill, John K.; Hummer, Daniel L.

    2016-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker. PMID:27894927

  9. GABA predicts visual intelligence.

    Science.gov (United States)

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Gaba /SUB a/ vs gaba /SUB b/ modulation of septal-hippocampal interconnections

    International Nuclear Information System (INIS)

    Blaker, W.D.; Cheney, D.L.; Costa, E.

    1986-01-01

    The authors perform studies to correlate pharmacologically induced decreases in the hippocampal TR /SUB ACh/ with changes in extinction of a foodreinforced lever press response. The authors differentiate the behavioral effects elicited by GABAergic vs. non-GABAergic inhibition of hippocampal cholinergic activity as well as show that GABA /SUB A/ receptor activation in the septum produces a behavioral-biochemical profile different from that elicited by GABA /SUB B/ receptor activation. To characterize GABA receptors tritium-GABA binding was performed in rats injected bilaterally with 1 ug kainic acid into the ventral and dorsal hippocampi. Representative cumulative recorder tracings showing the effect of varius intraseptal doses of the GABA /SUB A/ agonist muscimol on extinction after CRF training are show for one experiment. The most marked differences between muscimol and saline treated rats were seen in the extinction response patterns

  11. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    Science.gov (United States)

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  12. Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    OpenAIRE

    Jalil, Syed Uzma; Ahmad, Iqbal; Ansari, Mohammad Israil

    2017-01-01

    GABA-transaminase (GABA-T) involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants disp...

  13. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  14. Regulation of vesicular trafficking by Parkinson's disease-associated genes

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Inoshita

    2015-10-01

    Full Text Available The regulatory mechanisms that control intracellular vesicular trafficking play important roles in cellular function and viability. Neurons have specific vesicular trafficking systems for synaptic vesicle formation, release and recycling. Synaptic vesicular trafficking impairments induce neuronal dysfunction and physiological and behavioral disorders. Parkinson's disease (PD is an age-dependent neurodegenerative disorder characterized by dopamine depletion and loss of dopamine neurons in the midbrain. The molecular mechanism responsible for the neurodegeneration that occurs during PD is still not understood; however, recent functional analyses of familial PD causative genes suggest that a number of PD causative genes regulate intracellular vesicular trafficking, including synaptic vesicular dynamics. This review focuses on recent insights regarding the functions of PD causative genes, their relationship with vesicular trafficking and how mutations associated with PD affect vesicular dynamics and neuronal survival.

  15. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Airstream Fractionation of Vesicular-Arbuscular Mycorrhizal Fungi: Concentration and Enumeration of Propagules

    OpenAIRE

    Tommerup, Inez C.

    1982-01-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particl...

  17. Distribution of metallothionein I + II and vesicular zinc in the developing central nervous system: correlative study in the rat

    DEFF Research Database (Denmark)

    Penkowa, M; Nielsen, H; Hidalgo, J

    1999-01-01

    in hippocampal cortex, basal forebrain, neocortex, cerebellar cortex, and cranial nerve nuclei. MT I + II mRNAs were detected in regions of the brain that also displayed MT I + IIir, indicating transcriptional events. Vesicular Zn was recorded in neonatal brain solely in the dentate hi of the hippocampus...... candidates for chelating unbound Zn released from Zn-containing nerve terminals or transported into the brain. Whether vesicular Zn and MT I + II occur in identical regions of the developing brain is unknown. Accordingly, the developmental distribution of MT I + II and vesicular Zn was mapped. By using...

  18. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Functional loss of GABA transaminase (GABA-T expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Syed Uzma Jalil

    2017-06-01

    Full Text Available GABA-transaminase (GABA-T involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants displayed precocious leaf senescence, which was accompanied by the assays of physiological parameters of leaf senescence during various stress conditions. Furthermore, our physiological evidence indicates that pop2-1 and pop2-3 mutations rapidly decreased the efficiency of leaf photosynthesis, chlorophyll content, GABA content, GABA-T, and glutamate decarboxylase (GAD activity and on the other hand increases membrane ion leakage, malondialdehyde (MDA level in stress induced leaves. However, cell viability assay by trypan blue and insitu Hydrogen peroxidation assay by 3,3-diaminobenzidine (DAB in stress induced leaves also display that pop2-1 and pop2-3 mutant leaves show oversensitivity in response to different stress conditions as compared to wild type. These results strongly indicate that the loss-of-function of GABA transaminase gene induces early leaf senescence in Arabidopsis thaliana during various stress conditions.

  20. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    dependent on the composition of the GABA-A receptor subunits through which they act. We show here that positive modulators of alpha(1)-subtype containing GABA-A receptors with zolpidem (10 mg/kg) increase HPA activity in terms of increase in plasma corticosterone and induction of Fos in the PVN, whereas...... after positive modulation of GABA-A receptors composed of alpha(1)-subunit(s) affects a selective afferent system than the PVN, which is distinct from another afferent system(s) activated by non alpha(1)-containing GABA-A receptors....

  1. Release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices: comparison with endogenous and exogenous labeled GABA

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1983-01-01

    To compare the storage and release of endogenous GABA, of [ 3 H]GABA formed endogenously from glutamate, and of exogenous [ 14 C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4- 3 H]1-glutamate and 0.5 microCi/ml [U- 14 C]GABA and then were superfused in the presence or absence of Ca + with either 50 mM K + or 50 microM veratridine. Exogenous [ 14 C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [ 3 H]GABA stayed constant over a 48 min period. In the presence of Ca + 50 mM K + and in the presence or absence of Ca2 + veratridine released exogenous [ 14 C]GABA more rapidly than endogenous or endogenously formed [ 3 H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [ 14 C]GABA was three times, while that of endogenously formed [ 3 H]GABA was only 50% higher than that in the slices. The observation that endogenous GABA and [ 3 H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [ 3 H] glutamate can enter a glutamate pool that normally serves as precursor of GABA

  2. VGLUT3 does not synergize GABA/glycine release during functional refinement of an inhibitory auditory circuit

    Directory of Open Access Journals (Sweden)

    Daniel T Case

    2014-11-01

    Full Text Available The vesicular glutamate transporter VGLUT3 is expressed at several locations not normally associated with glutamate release. Although the function of this protein remains generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB and the lateral superior olive (LSO of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement. It has however been unknown whether the primary function of VGLUT3 in development of these inhibitory synapses is to enable glutamate release or to promote loading of inhibitory neurotransmitter through vesicular synergy. Using tissue from young mice in which Vglut3 had been genetically deleted, we evaluated inhibitory neurotransmission in the MNTB-LSO pathway. Our results show, in contrast to what has been seen at adult synapses, that VGLUT3 expression has little or no effect on vesicular synergy at the immature glycinergic synapse of brainstem. This finding supports the model that the primary function of increased VGLUT3 expression in the immature auditory brainstem is to enable glutamate release in a developing inhibitory circuit.

  3. Measurement of release of endogenous GABA and catabolites of [3H]GABA from synaptosomal preparations using ion-exchange chromatography

    International Nuclear Information System (INIS)

    Grove, J.; Gardner, C.R.; Richards, M.H.

    1982-01-01

    Picomole quantities of endogenous GABA in acidified superfusates of synaptosomal preparations have been measured using micro-bore ion-exchange chromatography and post-column formation of the fluorescent iso-indole derivative. Using this technique superfusates have been analyzed directly, without further manipulations, to investigate the release of endogenous GABA. Spontaneous release of GABA was 2-5 pmol/200 microliters superfusate increasing to 20 pmol/200 microliters with potassium stimulation. When gamma-vinyl GABA (RMI 71754), an inhibitor of GABA-T was injected into rats (750 mg/kg) and synaptosomes prepared the potassium-evoked release of GABA was increased 3-fold compared to controls. Chromatographic separations and measurement of release of endogenous and radiolabeled GABA allowed the real specific activity of released GABA to be calculated. Only when 500 microM amino-oxyacetic acid was added during isolation of synaptosomes was the specific activity of released GABA the same as the initial specific activity

  4. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  5. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  6. Pharmacological approaches to the study of CHOLINO- and GABA-receptor states in nerve cells after irradiation with low intensity

    International Nuclear Information System (INIS)

    Anan'eva, T.V.; Dvoretskij, A.I.

    2000-01-01

    The peculiarities of functioning specific cholino- and GABA-receptors (ChR and GABA-R) by modeling the effect of synaptic neuromediators, correspondingly acetocholine (ACh) and gamma-aminobutyric acid (GABA), in low concentrations on the K + active transport in the rats cerebral cortex after single-time or chronical total irradiation with the dose of 0.25 Gy are studied. As a result of the study of both the acetocholine (10 -10 and 10 -6 mole/l) and gamma-aminobutyric avid (10 -9 and 10 -5 mole/l) effects on the K + active transport in the rats cerebral cortex slices in presence of any selective antagonists of the choline- and GABA-receptors, it is shown, that after the whole body irradiation with 25 c Gy (1.75 m Gy/min) the metabotropic muscarinic ChR and GABA B - receptors were involved into the processes of neurotransmitter modulation, whereas under ionotropic nicotinic choline- and GAB A - receptors. The observed changes are supposed to be of adaptive character. The post irradiation structural and functional disturbances may be considered as one of the causes of essential distortions in the processes of interneuronal metabolic communication in the central nerve system [ru

  7. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R; Frey, Kirk A; Vander Borght, Thierry; Sherman, Phillip S

    1996-05-01

    The effects of various dopaminergic drug treatments on the in vivo regional brain distribution of high-affinity radioligands ([{sup 11}C]dihydrotetrabenazine and [{sup 11}C]methoxytetrabenazine) for the rat brain vesicular monoamine transporter (VMAT2) were determined. Acute treatments with reserpine (2 mg/kg i.p.), tetrabenazine (10 mg/kg i.v.) or related benzoisoquinolines significantly reduced radiotracer binding in vivo. In contrast, radiotracer distributions remained unchanged after treatments with other dopaminergic drugs, whether given by single injection (haloperidol, 1 mg/kg i.p., pargyline 80 mg/kg), repeatedly (pargyline, 80 mg/kg s.c., 14 days), or by continuous infusion (deprenyl, 10 mg/kg/day, 5 days; L-DOPA methyl ester 100 mg/kg/day, 5 days). Repeated injections of tetrabenazine (5 mg/kg i.p., twice daily, 3 days) did not alter in vivo radioligand binding measured after allowing drug washout from the brain. These studies support the proposal that in vivo PET imaging of VMAT2 radioligands in patients with extrapyramidal movement disorders will not be affected by concurrent use of L-DOPA or deprenyl.

  8. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients.

    Science.gov (United States)

    Frankle, W Gordon; Cho, Raymond Y; Prasad, Konasale M; Mason, N Scott; Paris, Jennifer; Himes, Michael L; Walker, Christopher; Lewis, David A; Narendran, Rajesh

    2015-11-01

    Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm. The binding of [(11)C]flumazenil, a benzodiazepine-specific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 off-medication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABAA receptors for benzodiazepine ligands, detected as an increase in [(11)C]flumazenil tissue distribution volume (VT). [(11)C]Flumazenil VT was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [(11)C]flumazenil ΔVT in the medial temporal lobe was correlated with positive symptoms, and baseline [(11)C]flumazenil VT in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [(11)C]flumazenil ΔVT was positively associated with gamma-band oscillation power. This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition.

  9. Logistics in the cell: cargoes and transportation.

    Science.gov (United States)

    Nadezhdina, E S

    2014-09-01

    Eukaryotic cells are large and thus require a vesicular transport system. The system involves the formation of membrane transport containers, their short- and long-distance movements, recognition of destination points, and fusion with other membranes. Understanding the molecular mechanisms of these processes is of theoretical and practical significance. This special issue of Biochemistry (Moscow) collects surveys and experimental articles describing various aspects of vesicular transport.

  10. The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management

    DEFF Research Database (Denmark)

    Madsen, Karsten K; Hansen, Gert H; Danielsen, E Michael

    2015-01-01

    anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact...

  11. GABA interaction with lipids in organic medium

    International Nuclear Information System (INIS)

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-01-01

    The interaction of 3 H-GABA and 14 C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3 H-GABA and 14 C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between 3 H-GABA-lipids. The apparent dissociation constants (K/sub d/) for 3 H-GABA-lipids or 14 C-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, β-alanine and glycine displaced 3 H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 μM were required and in the partition system 3 H-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables

  12. Expression of vesicular glutamate transporters in peripheral vestibular structures and vestibular nuclear complex of rat.

    Science.gov (United States)

    Zhang, F X; Pang, Y W; Zhang, M M; Zhang, T; Dong, Y L; Lai, C H; Shum, D K Y; Chan, Y S; Li, J L; Li, Y Q

    2011-01-26

    Glutamate transmission from vestibular end organs to central vestibular nuclear complex (VNC) plays important role in transferring sensory information about head position and movements. Three isoforms of vesicular glutamate transporters (VGLUTs) have been considered so far the most specific markers for glutamatergic neurons/cells. In this study, VGLUT1 and VGLUT2 were immunohistochemically localized to axon terminals in VNC and somata of vestibular primary afferents in association with their central and peripheral axon endings, and VGLUT1 and VGLUT3 were co-localized to hair cells of otolith maculae and cristae ampullaris. VGLUT1 and VGLUT2 defined three subsets of Scarpa's neurons (vestibular ganglionic neurons): those co-expressing VGLUT1 and VGLUT2 or expressing only VGLUT2, and those expressing neither. In addition, many neurons located in all vestibular subnuclei were observed to contain hybridized signals for VGLUT2 mRNA and a few VNC neurons, mostly scattered in medial vestibular nucleus (MVe), displayed VGLUT1 mRNA labelling. Following unilateral ganglionectomy, asymmetries of VGLUT1-immunoreactivity (ir) and VGLUT2-ir occurred between two VNCs, indicating that the VNC terminals containing VGLUT1 and/or VGLUT2 are partly of peripheral origin. The present data indicate that the constituent cells/neurons along the vestibular pathway selectively apply VGLUT isoforms to transport glutamate into synaptic vesicles for glutamate transmission. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Transmission and pathogenesis of vesicular stomatitis viruses

    Science.gov (United States)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  14. In vitro GABA transport in the neurohypophysis from rats with hereditary diabetes insipidus and after osmotic stimulation

    International Nuclear Information System (INIS)

    Hamberger, A.; Norstroem, A.; Sandberg, M.; Svanberg, U.

    1979-01-01

    The present study reports on a series of experiments in which the osmotic state of the animal correlates with the concentration of GABA in the pituitary as well as with uptake and release of exogenous GABA. Male rats (200-250 g) of the Sprague-Dawley strain and Brattleboro rats with hereditary hypothalamic diabetes insipidus (D.I.) were used and the uptake of [ 3 H]GABA into the posterior pituitary, studied. Radioactivity was determined by liquid scintillation spectrometry. The radioactivity expressed as cpm/mg protein did not differ proportionally from that expressed as cpm/mg wet weight among control and experimental rats. For radiolabelling of neurophysin in vivo, L-[ 35 S]cystein-hydrochloride was injected into the supraoptic nucleus. The total release of [ 35 S] was proportional to the release of labelled neurophysin. The endogenous levels of most amino acids in the neurohypophysis did not differ appreciably from those of whole brain. The GABA level in the D.I. glands was close to the detection limit of the method and was reduced compared to control glands. Otherwise, no marked difference appeared between control and D.I. glands. (Auth.)

  15. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover.

    Science.gov (United States)

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

  16. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. GABA (γ-aminobutyric acid production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    Directory of Open Access Journals (Sweden)

    Kasarin TIANSAWANG

    2016-01-01

    Full Text Available Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.

  18. Computational modeling reveals dendritic origins of GABA(A-mediated excitation in CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Naomi Lewin

    Full Text Available GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABA(A-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABA(A receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABA(A-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABA(A-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABA(A reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K(+ transients can augment GABA(A-mediated excitation, but not cause it. Our model also suggests the potential for GABA(A-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic

  19. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    OpenAIRE

    TIANSAWANG,Kasarin; LUANGPITUKSA,Pairoj; VARANYANOND,Warunee; HANSAWASDI,Chanida

    2016-01-01

    Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber con...

  20. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  1. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  2. GABA, a natural immunomodulator of T lymphocytes

    DEFF Research Database (Denmark)

    Bjurstöm, Helen; Wang, Junyang; Ericsson, Ida

    2008-01-01

    gamma-aminobutyric acid (GABA) is the main neuroinhibitory transmitter in the brain. Here we show that GABA in the extracellular space may affect the fate of pathogenic T lymphocytes entering the brain. We examined in encephalitogenic T cells if they expressed functional GABA channels that could...

  3. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  4. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  5. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  6. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  7. ASTROCYTIC CONTROL OF BIOSYNTHESIS AND TURNOVER OF THE NEUROTRANSMITTERS GLUTAMATE AND GABA

    Directory of Open Access Journals (Sweden)

    Arne eSchousboe

    2013-08-01

    Full Text Available Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis. Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase (PC, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA – glutamine cycle the operation of which involves the enzymes glutamine synthetase (GS and glutaminase (PAG together with the plasma membrane transporters for glutamate, GABA and glutamine. The distribution of these proteins between neurons and astrocytes determines the efficacy of the cycle and it is of particular importance that GS is exclusively expressed in astrocytes. It should be kept in mind that the operation of the cycle is associated with movement of ammonia nitrogen between the two cell types and different mechanisms which can mediate this have been proposed.This review is intended to delineate the above mentioned processes and to discuss quantitatively their relative importance in the homeostatic mechanisms responsible for the maintenance of optimal conditions for the respective neurotransmission processes to operate.

  8. Use of 3H-muscimol for GABA receptor studies

    International Nuclear Information System (INIS)

    Snodgrass, S.R.

    1978-01-01

    It is stated that gamma aminobutyric acid (GABA) is a major transmitter in the mammalian central nervous system and studies of synaptic receptors for neurotransmitters have been useful in many areas of neuropharmacology. Although GABA receptors can be studied using 3 H-GABA itself, a ligand which does not bind to GABA uptake sites would be valuable for autoradiography and for other studies of receptor function. Muscimol (3-hydroxy-5-aminomethly-isoxazole) is a naturally occurring GABA analogue found in Amanita muscaria. It seems to enter the brain after peripheral injection. Evidence is here presented of the binding of 3 H-muscimol by brain tissue. The ability of muscimol to alter evoked release of GABA by synaptosomes was also of muscimol to alter evoked release of GABA by synaptosomes was also used to verify the ability of muscimol to alter the function of GABA neurones. (author)

  9. Big GABA: Edited MR spectroscopy at 24 research sites.

    Science.gov (United States)

    Mikkelsen, Mark; Barker, Peter B; Bhattacharyya, Pallab K; Brix, Maiken K; Buur, Pieter F; Cecil, Kim M; Chan, Kimberly L; Chen, David Y-T; Craven, Alexander R; Cuypers, Koen; Dacko, Michael; Duncan, Niall W; Dydak, Ulrike; Edmondson, David A; Ende, Gabriele; Ersland, Lars; Gao, Fei; Greenhouse, Ian; Harris, Ashley D; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F A; Kangarlu, Alayar; Lange, Thomas; Lebel, R Marc; Li, Yan; Lin, Chien-Yuan E; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D; Oeltzschner, Georg; Prisciandaro, James J; Puts, Nicolaas A J; Roberts, Timothy P L; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G; Schallmo, Michael-Paul; Simard, Nicholas; Swinnen, Stephan P; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D; Wittsack, Hans-Jörg; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J; Edden, Richard A E

    2017-10-01

    Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community

  10. Use of 3h-γ-aminobutyric acid for transport studies with isolated nerve-terminals from rat brain

    International Nuclear Information System (INIS)

    Halvarsson, G.B.; Karlsson, I.; Sellstroem, A.

    1985-01-01

    Isolated synaptosomes were used to study the problem of net accumulation of neurotransmitters. The time-course and the kinetics of exogenous and endogenous GABA transport were studied by liquid-scintillation counting and HPLC-amino acid analysis respectively. Different pools of GABA were suggested by a 6-fold difference in tissue-to-medium-ratio of endogenous vs. exogenous GABA. Net accumulation, exchange and net efflux of GABA was found to be a function of the GABA concentration in the incubation medium. The K/sub m/s for net accumulation and for 3 H-GABA accumulation were 2.68 +/- 1.16 and 6.19 +/- 1.26 μM respectively, whereas the V/sub max/s were 5.9 +/- 4.9 and 134 +/- 13 pmol/mg w.w min respectively. This means that the transport studies which use exogenous substances (e.g. 3 H-GABA) considerably overestimate the transport by overlooking the magnitude of the counter transport. 22 references, 5 figures, 2 tables

  11. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  12. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  13. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  14. An Electrostatic Funnel in the GABA-Binding Pathway.

    Directory of Open Access Journals (Sweden)

    Timothy S Carpenter

    2016-04-01

    Full Text Available The γ-aminobutyric acid type A receptor (GABAA-R is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

  15. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    Science.gov (United States)

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (Pfood intake. Insulin was decreased (P0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  16. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    International Nuclear Information System (INIS)

    Guastella, J.; Stretton, A.O.

    1991-01-01

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA

  17. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    Science.gov (United States)

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA.

    Science.gov (United States)

    Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H

    1993-03-01

    The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders

  19. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  20. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  1. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  2. Occipital GABA correlates with cognitive failures in daily life.

    Science.gov (United States)

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Perisylvian GABA levels in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Atagün, Murat İlhan; Şıkoğlu, Elif Muazzez; Soykan, Çağlar; Serdar Süleyman, Can; Ulusoy-Kaymak, Semra; Çayköylü, Ali; Algın, Oktay; Phillips, Mary Louise; Öngür, Dost; Moore, Constance Mary

    2017-01-10

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy ( 1 H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1 H-MRS data was acquired using a Siemens 3T whole body scanner to quantify right and left perisylvian structures' (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ 2 =9.62, df: 3, p=0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r 2 =0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1993-01-01

    Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as (NH4+)-N-15 or (NH3-)N-15. Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers...... with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as (NH4+)-N-15 or (NO3-)-N-15 at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root...... compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of N-15 in mycorrhizal plants was 38 or 40%, respectively, when (NH4+)-N-15 or (NO3-)-N-15 was applied...

  5. Fast detection of extrasynaptic GABA with a whole-cell sniffer.

    Science.gov (United States)

    Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  6. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    Science.gov (United States)

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phenotypic and chemotypic characterization of GABA-shunt mutants in Arabidopsis thaliana

    OpenAIRE

    Mekonnen, Dereje Worku

    2013-01-01

    Gamma-Aminobutyric acid (GABA) is a four carbon non protein amino acid, and the pathway that involves its production and degradation is called the GABA shunt. The GABA shunt is a short enzymatic pathway that involves three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semi aldehyde dehydrogenase (SSADH). GABA shunt is conserved almost in all organisms studied so far. The pathway starts in the cytosol and finishes in mitochondria in higher organisms like plant...

  8. REGULATED VESICULAR TRAFFICKING OF SPECIFIC PCDH15 AND VLGR1 VARIANTS IN AUDITORY HAIR CELLS

    Science.gov (United States)

    Zallocchi, Marisa; Delimont, Duane; Meehan, Daniel T.; Cosgrove, Dominic

    2012-01-01

    Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal co-localization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular sub-pools. The apically trafficked pool co-localized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associates with membrane microdomains and SNAP25. Moreover, co-immunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions. PMID:23035094

  9. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    Directory of Open Access Journals (Sweden)

    Rasmus Kordt Christensen

    2014-05-01

    Full Text Available Gamma-amino-butyric acid (GABA is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a Human Embryonic Kidney (HEK cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a sniffer allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  10. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    Science.gov (United States)

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  11. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    Science.gov (United States)

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  12. Study of GABA in healthy volunteers: pharmacokinetics and pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Junfeng eLi

    2015-11-01

    Full Text Available Preclinical studies show that GABA exerts anti-diabetic effects in rodent models of type 1 diabetes. Because little is known about its absorption and effects in humans, we investigated the pharmacokinetics and pharmacodynamics of GABA in healthy volunteers. Twelve subjects were subjected to an open-labeled, three-period trial involving sequential oral administration of placebo, 2g GABA once, and 2g GABA three times/day for seven days, with a 7-day washout between each period. GABA was rapidly absorbed (Tmax: 0.5~1 h with the half-life (t1/2 of 5 h. No accumulation was observed after repeated oral GABA administration for 7 days. Remarkably, GABA significantly increased circulating insulin levels in the subjects under either fasting (1.6-fold, single dose; 2.0-fold, repeated dose; p<0.01 or fed conditions (1.4-fold, single dose; 1.6-fold, repeated dose; p<0.01. GABA also increased glucagon levels only under fasting conditions (1.3-fold, single dose, p<0.05; 1.5-fold, repeated dose, p<0.01. However, there were no significant differences in the insulin-to-glucagon ratio and no significant change in glucose levels in these healthy subjects during the study period. Importantly, GABA significantly decreased glycated albumin levels in the repeated dosing period. Subjects with repeated dosing showed an elevated incidence of minor adverse events in comparison to placebo or the single dosing period, most notably transitional discomforts such as dizziness and sore throat. However, there were no serious adverse events observed throughout the study. Our data show that GABA is rapidly absorbed and tolerated in human beings; its endocrine effects, exemplified by increasing islet hormonal secretion, suggest potential therapeutic benefits for diabetes.

  13. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants.

    Science.gov (United States)

    Renault, Hugues

    2013-06-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants.

  14. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    Science.gov (United States)

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  15. Cloning of the γ-aminobutyric acid (GABA) ρ1 cDNA: A GABA receptor subunit highly expressed in the retina

    International Nuclear Information System (INIS)

    Cutting, G.R.; Lu, Luo; Kasch, L.M.; Montrose-Rafizadeh, C.; Antonarakis, S.E.; Guggino, W.B.; Kazazian, H.H. Jr.; O'Hara, B.F.; Donovan, D.M.; Shimada, Shoichi; Uhl, G.R.

    1991-01-01

    Type A γ-aminobutyric acid (GABA A ) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. The authors have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence is 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABA A subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA ρ 1 , with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family

  16. Porters and neurotransmitter transporters

    NARCIS (Netherlands)

    Nelson, Nathan; Lill, H

    1994-01-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma

  17. GABA signalling during development: new data and old questions.

    Science.gov (United States)

    Varju, P; Katarova, Z; Madarász, E; Szabó, G

    2001-08-01

    In addition to being the major inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) is thought to play a morphogenetic role in embryonic development. During the last decade, considerable progress has been made in elucidating the molecular mechanisms involved in GABA synthesis and biological action. The present review is an attempt to summarise recent results on the ontogeny of the different components of embryonic GABA signalling with an emphasis on the synthesis of GABA by different molecular forms of glutamic acid decarboxylase (GAD).

  18. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    DEFF Research Database (Denmark)

    Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole

    2014-01-01

    magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition......, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect...

  19. Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: concentration and enumeration of propagules.

    Science.gov (United States)

    Tommerup, I C

    1982-09-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particles in each soil fraction by an aqueous flotation method. The technique is proposed as a quantitative method for estimating the numbers of spores and fragments of mycorrhizae. The scheme includes a viability test that was used to differentiate between potentially infective propagules and those that were either dormant or incapable of regrowth.

  20. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    Science.gov (United States)

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  2. Probing GABA Receptor Function in Schizophrenia with Iomazenil

    OpenAIRE

    Ahn, Kyungheup; Gil, Roberto; Seibyl, John; Sewell, Richard Andrew; D'Souza, Deepak Cyril

    2010-01-01

    Several lines of evidence from post-mortem, brain imaging, and genetic studies in schizophrenia patients suggest that Gamma-amino butyric acid (GABA) deficits may contribute to the pathophysiology of schizophrenia. Pharmacological induction of a transient GABA-deficit state has been shown to enhance vulnerability of healthy subjects to the psychotomimetic effects of various drugs. Exacerbating or creating a GABA deficit was hypothesized to induce or unmask psychosis in schizophrenia patients,...

  3. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  4. GABA shunt in the callus cells derived from soybean cotyledon

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, M; Nakano, Y; Kitaoka, S [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1975-01-01

    In the growing callus cells from soybean cotyledon, the activities of glutamate decarboxylase and GABA transaminase were increased in the early phase of the callus growth on the Miller agar medium. Succinate dehydrogenase activity was also changed in a similar manner. From these and the additional evidences that GABA transaminase was probably localized in the mitochondria, it has been made clear that the GABA shunt (GABA by-pass pathway) is operative and contributes to the respiratory metabolism in growing callus cells. Feeding young callus cells with GABA-U-/sup 14/C for 24 hr actually resulted in finding 53% of the taken up radioactivity in released carbon dioxide. Considerable parts of the taken up radioactivity were found in amino acids and proteins which should have been formed via the GABA shunt also.

  5. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  6. L-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia

    OpenAIRE

    Volk, David W.; Gonzalez-Burgos, Guillermo; Lewis, David A.

    2016-01-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic L-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia.

  7. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    Science.gov (United States)

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  8. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Elster, L

    1998-01-01

    The correct establishment and function of synapses depend on a variety of factors, such as guidance of pre- and postsynaptic neurons as well as receptor development and localization. gamma-Aminobutyric acid (GABA) has a pronounced effect on these events and elicits differentiation of neurons......; that is, GABA acts as a trophic signal. Accordingly, activating preexisting GABA receptors, a trophic GABA signal enhances the growth rate of neuronal processes, facilitates synapse formation, and promotes synthesis of specific proteins. Transcription and de novo synthesis are initiated by the GABA signal......, but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  9. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  10. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  11. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  12. Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum

    Science.gov (United States)

    Scofield, Michael D.; Rice, Kenner C.; Cheng, Kejun; Roques, Bernard P.

    2014-01-01

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse. PMID:24431463

  13. (E)-[125I]-5-AOIBV: a SPECT radioligand for the vesicular acetylcholine transporter

    International Nuclear Information System (INIS)

    Emond, Patrick; Mavel, Sylvie; Zea-Ponce, Yolanda; Kassiou, Michael; Garreau, Lucette; Bodard, Sylvie; Drossard, Marie-Laure; Chalon, Sylvie; Guilloteau, Denis

    2007-01-01

    The premise that, over the course of Alzheimer's disease (AD), changes in the levels of the vesicular acetylcholine transporter (VAChT) occur in parallel with changes to other cholinergic marker proteins provides the basis for the applicability of benzovesamicol derivatives as radioligands for AD studies by single photon emission computed tomography or positron emission tomography. We report the synthesis of enantiopure benzovesamicol derivatives: (R,R) or (S,S)-(E)-2-hydroxy-5-(3-iodoprop-2-en-1-oxy)-3- (4-phenylpiperidino)tetralin [(R,R)-AOIBV: K d =0.45 nM or (S,S)-5-AOIBV: K d =4.3 nM] and their corresponding tributyltin precursors for radioiodination. (R,R or S,S)-5-AOIBV was labeled with iodine-125 from their corresponding n-tributyltin precursors. Both compounds were obtained with radiochemical and optical purity greater than 97% and in radiochemical yields ranging 34-36%. To determine if these compounds could provide an advantage when compared to [ 125 I]-iodo benzovesamicol (IBVM), IBVM was also labeled and used as the reference compound in all ex vivo experiments. Ex vivo biodistribution experiments in rats revealed that [ 125 I]-(R,R)-5-AOIBV displayed the most suitable pharmacological profile as the radioactivity distribution corresponded well with the known VAChT brain density. Moreover, pre-injection of vesamicol prevented the uptake of [ 125 I]-(R,R)-5-AOIBV in striatum, cortex and hippocampus, demonstrating selectivity for the VAChT. However, even if time activity curves of [ 125 I]-(R,R)-5-AOIBV confirmed that this compound could be used to visualize the VAChT in vivo, at each point of the kinetic study, [ 125 I]-(R,R)-5-AOIBV showed a lower specific binding compared to [ 125 I]-IBVM. These results made [ 125 I]-( R,R)-5-AOIBV inferior to [ 125 I]-IBVM for the VAChT exploration in vivo

  14. Vesicular and Plasma Membrane Transporters for Neurotransmitters

    Science.gov (United States)

    Blakely, Randy D.; Edwards, Robert H.

    2012-01-01

    The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity. PMID:22199021

  15. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia.

    Science.gov (United States)

    Volk, David W; Gonzalez-Burgos, Guillermo; Lewis, David A

    2016-12-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic l-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How and why does tomato accumulate a large amount of GABA in the fruit?

    Directory of Open Access Journals (Sweden)

    Mariko eTakayama

    2015-08-01

    Full Text Available γ-Aminobutyric acid (GABA has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate of the tricarboxylic acid (TCA cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD, GABA transaminase (GABA-T and succinic semialdehyde dehydrogenase (SSADH. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development.

  17. GABA sensitivity of spectrally classified horizontal cells in goldfish retina

    NARCIS (Netherlands)

    Verweij, J.; Kamermans, M.; Negishi, K.; Spekreijse, H.

    1998-01-01

    We studied the GABA sensitivity of horizontal cells in the isolated goldfish retina. After the glutamatergic input to the horizontal cells was blocked with DNQX, GABA depolarized the monophasic and biphasic horizontal cells. The pharmacology of these GABA-induced depolarizations was tested with the

  18. Inactivation of γ-aminobutyric acid aminotransferase by γ-ethynyl- and γ-vinyl GABA

    International Nuclear Information System (INIS)

    Silverman, R.B.; Burke, J.R.; Nanavati, S.M.

    1989-01-01

    γ-Ethynyl- and γ-vinyl GABA (vigabatrin) are anticonvulsant agents that have been shown to be mechanism-based inactivators of γ-aminobutyric acid aminotransferase (GABA-T). The inactivation mechanisms of these compounds have been investigated. Inactivation of GABA-T by [ 3 H]γ-ethynyl GABA led to the incorporation of 1.0 equiv of 3 H into the enzyme which is not released by enzyme denaturation. Inactivation by γ-ethynyl GABA of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PLP. Eight different possible adducts are consistent with that result. Experiments have been carried out to differentiate these possibilities. Similar studies have been carried out with γ-vinyl GABA. Inactivation by [ 14 C]γ-vinyl GABA resulted in the incorporation of 1.0 equiv of 14 C per active site. Unlike the case with γ-ethynyl GABA, γ-vinyl GABA inactivation of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PMP

  19. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    Science.gov (United States)

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure. Copyright © 2015 the American Physiological Society.

  20. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    Science.gov (United States)

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  1. The role of GABA in the regulation of GnRH neurons

    Directory of Open Access Journals (Sweden)

    Miho eWatanabe

    2014-11-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.

  2. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez-Burgos

    2011-01-01

    Full Text Available Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  3. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  4. The GABA shunt in the callus cells derived from soybean cotyledon

    International Nuclear Information System (INIS)

    Tokunaga, Masao; Nakano, Yoshihisa; Kitaoka, Shozaburo

    1975-01-01

    In the growing callus cells from soybean cotyledon, the activities of glutamate decarboxylase and GABA transaminase were increased in the early phase of the callus growth on the Miller agar medium. Succinate dehydrogenase activity was also changed in a similar manner. From these and the additional evidences that GABA transaminase was probably localized in the mitochondria, it has been made clear that the GABA shunt (GABA by-pass pathway) is operative and contributes to the respiratory metabolism in growing callus cells. Feeding young callus cells with GABA-U- 14 C for 24 hr actually resulted in finding 53% of the taken up radioactivity in released carbon dioxide. Considerable parts of the taken up radioactivity were found in amino acids and proteins which should have been formed via the GABA shunt also. (auth.)

  5. Computed tomography of the vesicular glands: anatomical animal model (Oryctolagus cuniculus)

    International Nuclear Information System (INIS)

    Dimitrov, R.; Stamatova-Yovcheva, K.; Hamza, S.; Toneva, Y.

    2014-01-01

    Spiral CT is a non-invasive imaging method of choice for animal anatomical studies. The aim of the study was to establish the imaging anatomical features of the vesicular glands in the rabbit. Eight sexually mature healthy clinically male New Zealand rabbits of 18 months of age with body weight from 2.8 kg to 3.2 kg were used. The animals were anesthetized. As contrast medium Opti-ray350 was administrated. The computed tomography scan was complied with certain bone and soft tissue markers. For this purpose, a whole body multi-slice spiral computed tomography scanner was used. The both soft tissue glands were heterogeneous and relatively hyperdense structures, and defined in detail from the adjacent soft tissues. The urinary bladder neck was ventrally to the glands. Both vesicular glands were better differentiated each other when the rabbit is examined in abdominal recumbence. In dorsal recumbence the shape of the transversal image of the glandular finding was oval. In abdominal recumbence both the left and right soft tissue vesicular gland were defined. Transversal anatomical computed tomographic investigation of the rabbit vesicular gland is a detailed and definitive method, to study the normal morphology of these glands. Key words: Vesicular Gland. Helical Computed Tomography. Anatomy. Rabbit

  6. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  7. How and why does tomato accumulate a large amount of GABA in the fruit?

    OpenAIRE

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    γ-Aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehy...

  8. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H; Cosgrove, Dominic

    2010-02-16

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.

  9. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  10. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  11. ATP is stored in lamellar bodies to activate vesicular P2X4 in an autocrine fashion upon exocytosis.

    Science.gov (United States)

    Fois, Giorgio; Winkelmann, Veronika Eva; Bareis, Lara; Staudenmaier, Laura; Hecht, Elena; Ziller, Charlotte; Ehinger, Konstantin; Schymeinsky, Jürgen; Kranz, Christine; Frick, Manfred

    2018-02-05

    Vesicular P2X 4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X 4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X 4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X 4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X 4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X 4 ) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X 4 ), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion. © 2018 Fois et al.

  12. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    Science.gov (United States)

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  13. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size

    Science.gov (United States)

    Andersen, Lau Møller; Blicher, Jakob Udby

    2017-01-01

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  14. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    Science.gov (United States)

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  15. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado

    2013-08-01

    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  16. Expression profile of vesicular nucleotide transporter (VNUT, SLC17A9) in subpopulations of rat dorsal root ganglion neurons.

    Science.gov (United States)

    Nishida, Kentaro; Nomura, Yuka; Kawamori, Kanako; Moriyama, Yoshinori; Nagasawa, Kazuki

    2014-09-05

    ATP plays an important role in the signal transduction between sensory neurons and satellite cells in dorsal root ganglia (DRGs). In primary cultured DRG neurons, ATP is known to be stored in lysosomes via a vesicular nucleotide transporter (VNUT), and to be released into the intercellular space through exocytosis. DRGs consist of large-, medium- and small-sized neurons, which play different roles in sensory transmission, but there is no information on the expression profiles of VNUT in DRG subpopulations. Here, we obtained detailed expression profiles of VNUT in isolated rat DRG tissues. On immunohistochemical analysis, VNUT was found in DRG neurons, and was predominantly expressed by the small- and medium-sized DRG ones, as judged upon visual inspection, and this was compatible with the finding that the number of VNUT-positive DRG neurons in IB4-positive cells was greater than that in NF200-positive ones. These results suggest that VNUT play a role in ATP accumulation in DRG neurons, especially in small- and medium-sized ones, and might be involved in ATP-mediated nociceptive signaling in DRGs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis.

    Science.gov (United States)

    Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D

    2004-12-30

    Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.

  18. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    Science.gov (United States)

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  19. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  20. Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses

    Energy Technology Data Exchange (ETDEWEB)

    Suszkiw, J B; Zimmermann, H; Whittaker, V P [Max-Planck-Institut fuer Biophysikalische Chemie (Karl-Friedrich-Bonhoefer-Inst.), Goettingen (Germany, F.R.)

    1978-06-01

    The disposition of newly synthesized ACh subsequent to depletion of vesicular endogenous ACh by stimulation was studied in the electromotor nerve terminals of Torpedo marmorata using (/sup 3/H) acetate as a precursor of ACh. Little vesicular (/sup 3/H) ACh could be isolated from tissue immediately after stimulation at 1 Hz. After 3 h post-stimulation recovery the newly-synthesized (/sup 3/H) ACh is found predominantly in a subpopulation of vesicles distinct from the vesicles containing most of the endogenous poorly labelled ACh. Restimulation of the tissue causes release of highly labelled ACh with a specific radioactivity (SRA) comparable to that of the newly synthesized (/sup 3/H) ACh in the highly labelled subpopulation of vesicles and significantly greater than the SRA of ACh in the main vesicular pool of the total tissue.

  1. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  2. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  3. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  4. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Aron Baumann

    2016-11-01

    Full Text Available Apathy is considered to be a core feature of Parkinson’s disease (PD and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction, and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e. 6-OHDA or MPTP claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2. Apathetic-like behavior in VMAT2 deficient (LO mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study of the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

  5. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    Directory of Open Access Journals (Sweden)

    Evert eBoonstra

    2015-10-01

    Full Text Available The food supplement version of gamma-aminobutyric acid (GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood brain barrier (BBB, but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  6. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro......1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from......M). When Na+ was replaced with Li+, phlorizin also inhibited Li+ and water transport, but with a lower affinity (Ki, 100 microM). When Na+ was replaced by choline, which is not transported, the SGLT1 Lp was indistinguishable from that in Na+ or Li+, but in this case water transport was less sensitive...

  7. Sodium-independent, bicuculline-sensitive [3H]GABA binding to isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Minuk, G.Y.; Bear, C.E.; Sarjeant, E.J.

    1987-01-01

    To determine whether hepatocytes possess specific receptor sites for gamma-aminobutyric acid (GABA), a potent amino acid neurotransmitter, [ 3 H]GABA, was added to sodium-free suspensions of Percoll-purified hepatocytes derived from collagenase-perfused rat livers under various experimental conditions and in the presence or absence of specific GABA receptor agonists (muscimol) and antagonists (bicuculline). The effects of GABA, muscimol, and bicuculline on hepatocyte resting membrane potentials were also determined. Specific binding of [ 3 H]GABA to hepatocytes was a consistent finding. GABA-hepatocyte interactions were reversible and temperature dependent. Muscimol and bicuculline inhibited binding in a dose-dependent manner (IC50, 30 nM and 50 microM, respectively), whereas strychnine (1.0-100 microM), a nonspecific central nervous system stimulant, had no appreciable effect. Both GABA and muscimol (100 microM) caused significant hyperpolarization of hepatocyte resting membrane potential (delta PD 5.4 +/- 3.1 and 22.2 +/- 16.2 mV, respectively, means +/- SD, P less than 0.0005). Bicuculline (100 microM) inhibited the effect of muscimol (P less than 0.05). The results of this study suggest that specific GABA receptor sites exist on the surface of isolated rat hepatocytes. The presence of such sites raises the possibility that, in addition to adrenergic and cholinergic innervation, hepatic function may be influenced by GABA-ergic neurotransmitter mechanisms

  8. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    Science.gov (United States)

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  9. GABA-B receptor activation and conflict behavior

    International Nuclear Information System (INIS)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [ 3 H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables

  10. Vesicular stomatitis forecasting based on Google Trends.

    Science.gov (United States)

    Wang, JianYing; Zhang, Tong; Lu, Yi; Zhou, GuangYa; Chen, Qin; Niu, Bing

    2018-01-01

    Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  11. Vesicular stomatitis forecasting based on Google Trends

    Science.gov (United States)

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  12. Vesicular stomatitis forecasting based on Google Trends.

    Directory of Open Access Journals (Sweden)

    JianYing Wang

    Full Text Available Vesicular stomatitis (VS is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends.American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression.For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity, SP (specificity and ACC (prediction accuracy values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively.This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  13. Structural modifications of vesicular aggregates following gamma-irradiation

    International Nuclear Information System (INIS)

    Mantaka-Marketou, A.E.; Domasou, A.S.

    1991-01-01

    The structural changes of the didodecyldimethylammonium bromide (DDAB) vesicular bilayers after γ-irradiation and under conditions where mainly OH radicals are present are reported. Alterations of the vesicular structure, such as polarity and fluidity, were detected after a dose of 0.65 kGy. A higher dose of ∼14kGy cause important damage to the well organized molecular structure and this is manifested by an important augmentation of the fluidity and polarity of the Stern region of the aggregates. Increased water penetration into the bilayer of the vesicle is probably the reason for these changes and electron micrographs support this hypothesis. (author)

  14. GABA level, gamma oscillation, and working memory performance in schizophrenia

    OpenAIRE

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance ...

  15. Actions of insecticides on the insect GABA receptor complex

    International Nuclear Information System (INIS)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current

  16. Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons

    International Nuclear Information System (INIS)

    Ticku, M.K.; Lowrimore, P.; Lehoullier, P.

    1986-01-01

    Ethanol has a pharmacological profile similar to other centrally acting drugs, which facilitate GABAergic transmission. GABA is known to produce its effects by increasing the conductance to Cl- ions. In this study, we have examined the effect of ethanol on GABA-induced 36Cl-influx in primary spinal cord cultured neurons. GABA produces a concentration-dependent, and saturable effect on 36Cl-influx in these neurons. Ethanol potentiates the effect of GABA on 36Cl-influx in these neurons. GABA (20 microM) increased the 36Cl-influx by 75% over the basal value, and in the presence of 50 mM ethanol, the observed increase was 142%. Eadie-Hoffstee analysis of the saturation curves indicated that ethanol decreases the Km value of GABA (10.6 microM to 4.2 microM), and also increases the Vmax. Besides potentiating the effect of GABA, ethanol also appears to have a direct effect in the absence of added GABA. These results suggest that ethanol enhances GABA-induced 36Cl-influx and indicate a role of GABAergic system in the actions of ethanol. These results also support the behavioral and electrophysiological studies, which have implicated GABA systems in the actions of ethanol. The potential mechanism(s) and the role of direct effect of ethanol is not clear at this time, but is currently being investigated

  17. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade

    Directory of Open Access Journals (Sweden)

    Gregg W. Crabtree

    2016-10-01

    Full Text Available Proline dehydrogenase (PRODH, which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease.

  18. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.

    Science.gov (United States)

    Crabtree, Gregg W; Park, Alan J; Gordon, Joshua A; Gogos, Joseph A

    2016-10-04

    Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Alleviation in the rat of a GABA-induced reduction in food intake and growth.

    Science.gov (United States)

    Tews, J K; Repa, J J; Harper, A E

    1984-07-01

    Cold exposure and diet dilution which stimulate food intake of normal rats lessened depressions of food intake and growth induced by dietary GABA. During a 3-day adaptation to the cold, rats fed a diet containing 4.5% GABA lost weight; thereafter, food intake and growth rate differed little from those of cold control rats and were usually greater than those of normal rats fed GABA. Hepatic GABA-aminotransferase activity of cold-exposed rats fed the GABA diet increased to about twice that of normal control rats. Rats fed a control diet diluted by half with cellulose ate 50% more of this diet than of the undiluted diet but gained only 20% less weight. Rats ate twice as much of a diluted, 9% GABA diet as of an undiluted, 4.5% GABA diet (thus doubling their GABA intake) and gained three times as much weight. A novel food (condensed milk) barely lessened the adverse responses to GABA. These results show that conditions requiring rats to increase their food intake in order to maintain body weight can also increase their acceptance of a diet high in GABA.

  20. GABA predicts inhibition of frequency-specific oscillations in schizophrenia.

    Science.gov (United States)

    Rowland, Laura M; Edden, Richard A E; Kontson, Kimberly; Zhu, He; Barker, Peter B; Hong, L Elliot

    2013-01-01

    This study is the first to show a relationship between in-vivo brain gamma-amino butyric acid (GABA) levels and auditory inhibitory electrophysiological measures in schizophrenia. Results revealed a strong association between GABA levels and gating of the theta-alpha and beta activities in schizophrenia.

  1. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    Science.gov (United States)

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  2. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  3. Development of paradigm for the study of amino acid neurotransmitter release in human autopsy brain samples

    International Nuclear Information System (INIS)

    Kuo, K.-W.; Dodd, P.R.

    2001-01-01

    Full text: This study attempted to establish a release protocol to characterize both the vesicular and cytoplasmic components of amino acid transmitter release in human synaptosomes. Experiments with rat synaptosomes showed that, with depolarizing concentrations of K + ions, vesicular release could be successfully differentiated from cytoplasmic release for preloaded L-[ 3 H ]glutamate and [ 14 C ]GABA. However, human tissue studies did not give clear-cut results. Experiments were carried out to optimize the release paradigm as well as to improve the vesicular uptake of labeled transmitters. A 'pulse- chase' protocol, with an unlabelled D-aspartate chase, was performed in human tissue samples in order to enhance the L-[ 3 H ] glutamate release signal derived from exocytosis by removing the cytoplasmic pool of L-[ 3 H ] glutamate first. However, the results showed that total release was not enhanced effectively in comparison with the non-pulse-chase protocol. In brief, the pulse-chase protocol did not build up the vesicular pool of L-[ 3 H ]glutamate, though the cytoplasmic L- [ 3 H ] glutamate pool was effectively depressed by D-aspartate. Further studies applied 4- aminopyridine (4-AP) to trigger release, to circumvent the problem of the reversal of plasma membrane transporters caused by raised K + ion concentrations. The results showed that the application of 4-AP elicited the release of amino acid transmitters from rat synaptosomes, but failed to produce successful release signals in the human tissue experiments. Our findings suggest that the vesicular compartment may be impaired by freezing and affected by post-mortem delay (PMD). Rat studies showed that the freezing step had a major effect on Ca 2+-dependent release, as less L- [3 H ]glutamate and [ 14 C ]GABA were released from the frozen rat tissue preparations. Moreover, there was an indication of a decline in L-[ 3 H ]glutamate release with increasing PMD. Copyright (2001) Australian Neuroscience Society

  4. Effect of THIP and SL 76002, two clinically experimented GABA-mimetic compounds, on anterior pituitary GABA receptors and prolactin secretion in the rat

    International Nuclear Information System (INIS)

    Apud, J.A.; Masotto, C.; Racagni, G.

    1987-01-01

    In the present study, the ability of three direct GABA agonists, muscimol, THIP and SL 76002 to displace 3 H-GABA binding from anterior pituitary and medio-basal hypothalamus membranes was evaluated. Further, the effect of both THIP and SL 76002 on baseline prolactin levels or after stimulation of hormone release with haloperidol has been also studied. Either muscimol, THIP or SL 76002 have shown to posses 7-, 7- and 3-fold higher affinity, respectively, for the central nervous system than for the anterior pituitary 3 H-GABA binding sites. Moreover, THIP and SL 76002 have demonstrated to be respectively, 25- and 1000- fold less potent than muscimol in inhibiting 3 H- GABA binding at the level of the anterior pituitary and about 25- and 2700-fold less potent at the level of the medio-basal hypothalamus. Under basal conditions, either THIP or SL 76002 were ineffective to reduce prolactin release. However, after stimulation of prolactin secretion through blockade of the dopaminergic neurotransmission with haloperidol (0.1 mg/kg), both THIP (10 mg/kg) and SL 76002 (200 mg/kg) significantly counteracted the neuroleptic-induced prolactin rise with a potency which is in line with their ability to inhibit 3 H-GABA binding in the anterior pituitary. The present results indicate that both compounds inhibit prolactin release under specific experimental situations probably through a GABAergic mechanism. In view of the endocrine effects of these GABA-mimetic compounds, the possibility arises for an application of these type of drugs in clinical neuroendocrinology. 35 references, 3 figures, 2 tables

  5. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    Science.gov (United States)

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.

  6. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    Science.gov (United States)

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ghazaleh Samoudi

    Full Text Available BACKGROUND: The vestibular system is connected to spinal, cerebellar and cerebral motor control structures and can be selectively activated with external electrodes. The resulting sensation of disturbed balance can be avoided by using stochastic stimulation patterns. Adding noise to the nervous system sometimes improves function. Small clinical trials suggest that stochastic vestibular stimulation (SVS may improve symptoms in Parkinson's disease. We have investigated this claim and possible mechanisms using the 6-hydroxydopamine (6-OHDA hemilesion model of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: Animals were tested in the accelerating rod test and the Montoya staircase test of skilled forelimb use. In 6-OHDA hemilesioned animals, SVS improved rod performance by 56±11 s. At group level L-DOPA treatment had no effect, but positive responders improved time on rod by 60±19 s. Skilled forelimb use was not altered by SVS. To investigate how SVS may influence basal ganglia network activity, intracerebral microdialysis was employed in four regions of interest during and after SVS. In presence of the γ-amino buturic acid (GABA transporter inhibitor NNC 711, SVS induced an increase in GABA to 150±15% of baseline in the substantia nigra (SN of unlesioned animals, but had no effect in the pedunculopontine nucleus (PPN, the striatum or the ventromedial thalamus (VM. Dopamine release remained stable in all areas, as did GABA and amine concentrations in the SN of unstimulated controls. Following SVS, a sustained increase in GABA concentrations was observed in the ipsilesional, but not in the contralesional SN of 6-OHDA hemilesioned rats. In contrast, L-DOPA treatment produced a similar increase of GABA in the ipsi- and contra-lesional SN. CONCLUSIONS/SIGNIFICANCE: SVS improves rod performance in a rat model of Parkinson's disease, possibly by increasing nigral GABA release in a dopamine independent way. We propose that SVS could be useful for

  8. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    Science.gov (United States)

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  9. First case report of vesicular stomatitis in the State of Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Inácio José Clementino

    2014-10-01

    Full Text Available The present report describes the first case of vesicular stomatitis in the State of Paraíba, Brazil. Records from the Official Veterinary Services of the State of Paraíba were analyzed while responding to a suspected case of vesicular disease at a property (property I in the municipality of Pombal in which the cattle showed clinical signs and lesions of vesicular disease. Surveillance in the surrounding area revealed similar lesions in cattle at two other properties (II and III. Based on these events, the suspicion was considered well founded, and samples were collected for evaluation at the National Agricultural Laboratory of the State of Pará. The property was interdicted, and those located within a 3 km radius (perifocal from the focus were inspected. At property I, 42.86% (6/14 of the cattle showed vesicular disease lesions characterized by intense sialorrhea, ruptured oral vesicles, epithelial detachment of the tongue and muzzle, and vesicular lesions in the udder and interdigital space. Similar lesions were detected in cattle at properties II and III, affecting 80.95% (34/42 and 11.54% (3/26 of the animals, respectively. Tissue samples collected from the three properties were positive for the vesicular stomatitis virus (Indiana 3 subtype. The properties were monitored for 21 days after the last infected animal was cured, and afterwards, the three properties were released.

  10. Effect of Songyu Anshen Fang on expression of hypothalamic GABA ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. Available online ... GABA and GABA(B) receptor proteins in insomniac rats induced by ..... induced by PCPA; ***p < 0.001 vs Saline group ; ###p.

  11. Primate Cerebellar Granule Cells Exhibit a Tonic GABAAR Conductance that is not Affected by Alcohol: A Possible Cellular Substrate of the Low Level of Response Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia eMohr

    2013-11-01

    Full Text Available In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs and the magnitude of tonic GABAA receptor (GABAAR currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs in cerebellar slices from the non-human primate, Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs, non-human primate (NHP GCs exhibit a tonic conductance generated by 6 subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10M, inhibition by 6 selective antagonist, furosemide (100M, and enhancement by THDOC (10-20nM and THIP (500nM. In contrast to SDR GCs, in most NHP GCs (~60%, application of EtOH (25-105mM did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%, EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS, which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate 6 subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral

  12. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    International Nuclear Information System (INIS)

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for 3 H-GABA binding sites is greater in SS cerebellar tissue and 3 H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of 3 H-flunitrazepma binding is greater in SS mice. Ethanol also enhances 3 H-flunitrazepam binding and increases the levels of 3 H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures

  13. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    Science.gov (United States)

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  14. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  15. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Marc G. J. Feuilloley

    2013-06-01

    Full Text Available Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37 to GABA (10−5 M increased its necrotic-like activity on eukaryotic (glial cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.

  16. Current treatment of vesicular lithiasis

    International Nuclear Information System (INIS)

    Garcia Rodriguez, Oscar

    2010-01-01

    Surgical treatment of vesicular lithiasis has changed in past years. The addition of the new techniques in daily medical practice not always is immediate. Reasons relative to when to operate a patient presenting with gall bladder calculi are argued and documenting how this procedure is mainly reserved for symptomatic patients where pain is considered as a symptom par excellence. Also, it is exposed how this change has been faced. (author)

  17. GABA Shunt in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Petronia Carillo

    2018-02-01

    Full Text Available Plant responses to salinity are complex, especially when combined with other stresses, and involve many changes in gene expression and metabolic fluxes. Until now, plant stress studies have been mainly dealt only with a single stress approach. However, plants exposed to multiple stresses at the same time, a combinatorial approach reflecting real-world scenarios, show tailored responses completely different from the response to the individual stresses, due to the stress-related plasticity of plant genome and to specific metabolic modifications. In this view, recently it has been found that γ-aminobutyric acid (GABA but not glycine betaine (GB is accumulated in durum wheat plants under salinity only when it is combined with high nitrate and high light. In these conditions, plants show lower reactive oxygen species levels and higher photosynthetic efficiency than plants under salinity at low light. This is certainly relevant because the most of drought or salinity studies performed on cereal seedlings have been done in growth chambers under controlled culture conditions and artificial lighting set at low light. However, it is very difficult to interpret these data. To unravel the reason of GABA accumulation and its possible mode of action, in this review, all possible roles for GABA shunt under stress are considered, and an additional mechanism of action triggered by salinity and high light suggested.

  18. GABA+ levels in postmenopausal women with mild-to-moderate depression

    Science.gov (United States)

    Wang, Zhensong; Zhang, Aiying; Zhao, Bin; Gan, Jie; Wang, Guangbin; Gao, Fei; Liu, Bo; Gong, Tao; Liu, Wen; Edden, Richard A.E.

    2016-01-01

    Abstract Background: It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (1H-MRS). Methods: Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent 1H-MRS of the ACC/mPFC and PCC using the “MEGA Point Resolved Spectroscopy Sequence” (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. Results: Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = −0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = −0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = −0.018; PCC: P = 0.861, r = 0.043). Conclusion: Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women. PMID:27684829

  19. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  20. Identification of amino acids involved in histamine potentiation of GABA(A receptors

    Directory of Open Access Journals (Sweden)

    Ulrike eThiel

    2015-05-01

    Full Text Available Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans and rodents, the histaminergic neurons found in the tuberomamillary nucleus (TMN project widely throughout the central nervous system (CNS. Histamine acts as positive modulator of GABA(A receptors (GABA(ARs and, in high concentrations (10 mM, as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABA(ARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABA(ARs. We expressed GABA(ARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues ß2(N265 and ß2(M286, which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues alpha1(R120, ß2(Y157, ß3(D163, ß3(V175 and ß3(Q185. We showed that the amino acid residues ß2(Y157 and ß3(Q185 mediate the positive modulatory effect of histamine on GABA-induced currents, whereas alpha1(R120 and ß2(D163 form a potential histamine interaction site in GABA(ARs.

  1. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... ... association between certain plants and microorganisms plays an important role in soil ..... an Agrostis capillaris population on a copper contaminated soil. Plant ... vesicular-arbuscular mycorrhizal fungi in Amazonian Peru.

  2. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2015-09-01

    Full Text Available Cholecystokinin (CCK- and parvalbumin (PV-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behaviour. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV than they were in corresponding primary areas (V1, S1, M1 and Aud1. The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favour the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labelling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism.

  3. (E)-[{sup 125}I]-5-AOIBV: a SPECT radioligand for the vesicular acetylcholine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Patrick [INSERM U619, 37000 Tours (France); Universite Francois-Rabelais de Tours, CHRU, Hopital Bretonneau, Service de Medecine nucleaire, 37000 Tours (France); Mavel, Sylvie [INSERM U619, 37000 Tours (France); Universite Francois-Rabelais de Tours, CHRU, Hopital Bretonneau, Service de Medecine nucleaire, 37000 Tours (France)], E-mail: sylvie.mavel@univ-tours.fr; Zea-Ponce, Yolanda [INSERM U619, 37000 Tours (France); Universite Francois-Rabelais de Tours, CHRU, Hopital Bretonneau, Service de Medecine nucleaire, 37000 Tours (France); Kassiou, Michael [Discipline of Medical Radiation Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2050 (Australia); School of Chemistry, University of Sydney, NSW 2006 (Australia); Garreau, Lucette; Bodard, Sylvie; Drossard, Marie-Laure; Chalon, Sylvie; Guilloteau, Denis [INSERM U619, 37000 Tours (France); Universite Francois-Rabelais de Tours, CHRU, Hopital Bretonneau, Service de Medecine nucleaire, 37000 Tours (France)

    2007-11-15

    The premise that, over the course of Alzheimer's disease (AD), changes in the levels of the vesicular acetylcholine transporter (VAChT) occur in parallel with changes to other cholinergic marker proteins provides the basis for the applicability of benzovesamicol derivatives as radioligands for AD studies by single photon emission computed tomography or positron emission tomography. We report the synthesis of enantiopure benzovesamicol derivatives: (R,R) or (S,S)-(E)-2-hydroxy-5-(3-iodoprop-2-en-1-oxy)-3- (4-phenylpiperidino)tetralin [(R,R)-AOIBV: K{sub d}=0.45 nM or (S,S)-5-AOIBV: K{sub d}=4.3 nM] and their corresponding tributyltin precursors for radioiodination. (R,R or S,S)-5-AOIBV was labeled with iodine-125 from their corresponding n-tributyltin precursors. Both compounds were obtained with radiochemical and optical purity greater than 97% and in radiochemical yields ranging 34-36%. To determine if these compounds could provide an advantage when compared to [{sup 125}I]-iodo benzovesamicol (IBVM), IBVM was also labeled and used as the reference compound in all ex vivo experiments. Ex vivo biodistribution experiments in rats revealed that [{sup 125}I]-(R,R)-5-AOIBV displayed the most suitable pharmacological profile as the radioactivity distribution corresponded well with the known VAChT brain density. Moreover, pre-injection of vesamicol prevented the uptake of [{sup 125}I]-(R,R)-5-AOIBV in striatum, cortex and hippocampus, demonstrating selectivity for the VAChT. However, even if time activity curves of [{sup 125}I]-(R,R)-5-AOIBV confirmed that this compound could be used to visualize the VAChT in vivo, at each point of the kinetic study, [{sup 125}I]-(R,R)-5-AOIBV showed a lower specific binding compared to [{sup 125}I]-IBVM. These results made [{sup 125}I]-( R,R)-5-AOIBV inferior to [{sup 125}I]-IBVM for the VAChT exploration in vivo.

  4. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  5. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs).

    Science.gov (United States)

    Uehara, Eriko; Hokazono, Hideki; Hida, Mariko; Sasaki, Takako; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2017-06-01

    The multiple physiological effects of γ-aminobutyric acid (GABA) as a functional food component have been recently reported. We previously reported that GABA upregulated the expression of type I collagen in human dermal fibroblasts (HDFs), and that oral administration of GABA significantly increased skin elasticity. However, details of the regulatory mechanism still remain unknown. In this study, we further examined the effects of GABA on elastin synthesis and elastin fiber formation in HDFs. Real-time PCR indicated that GABA significantly increased the expression of tropoelastin transcript in a dose-dependent manner. Additionally, the expression of fibrillin-1, fibrillin-2, and fibulin-5/DANCE, but not lysyl oxidase and latent transforming factor-β-binding protein 4, were also significantly increased in HDFs. Finally, immunohistochemical analysis confirmed that treatment with GABA dramatically increased the formation of elastic fibers in HDFs. Taken together, our results showed that GABA improves skin elasticity in HDFs by upregulating elastin synthesis and elastin fiber formation.

  6. Is plasma GABA level a biomarker of Post-Traumatic Stress Disorder (PTSD) severity? A preliminary study.

    Science.gov (United States)

    Trousselard, Marion; Lefebvre, Bertrand; Caillet, Lionel; Andruetan, Yann; de Montleau, Franck; Denis, Josiane; Canini, Frédéric

    2016-07-30

    An increased reactivity to the environment is observed in Post-Traumatic Stress Disorder (PTSD). It would be related to impairment of the Gamma Amino Butyric Acid (GABA) neurotransmission. The study aimed to evaluate plasma GABA concentration as a candidate for PTSD severity biomarker. This hypothesis was studied in 17 PTSD patients and 17 healthy Controls using classic and emotional Stroop paradigms. Plasma GABA concentrations were assessed before and after both Stroop tests to evaluate GABA basal tone and GABA reactivity (change in GABAp), respectively. During baseline, PTSD had lower plasma GABA concentrations than the Controls. After the Stroop conflicts GABA reactivity was also lower in PTSD than in the Controls. The GABA baseline tone was negatively correlated with the severity of the PTSD symptoms. This relation was only marginally observed for GABA reactivity. The results produced a trend due to the small size of the sample compared to the number of statistical results given. Altogether, the reduced GABA concentration observed in PTSD could be considered as a possible biomarker for PTSD severity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. GABA and glutamate in schizophrenia: A 7 T 1H-MRS study

    Directory of Open Access Journals (Sweden)

    Anouk Marsman

    2014-01-01

    In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning patients with schizophrenia.

  8. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  9. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  10. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    Science.gov (United States)

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  11. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    Science.gov (United States)

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    Science.gov (United States)

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  13. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  14. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    1997-01-01

    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the

  15. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Directory of Open Access Journals (Sweden)

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  16. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.

    Science.gov (United States)

    Yoon, Jong H; Grandelis, Anthony; Maddock, Richard J

    2016-11-16

    The discovery of neural mechanisms of working memory (WM) would significantly enhance our understanding of complex human behaviors and guide treatment development for WM-related impairments found in neuropsychiatric conditions and aging. Although the dorsolateral prefrontal cortex (DLPFC) has long been considered critical for WM, we still know little about the neural elements and pathways within the DLPFC that support WM in humans. In this study, we tested whether an individual's DLPFC gamma-aminobutryic acid (GABA) content predicts individual differences in WM task performance using a novel behavioral approach. Twenty-three healthy adults completed a task that measured the unique contribution of major WM components (memory load, maintenance, and distraction resistance) to performance. This was done to address the possibility that components have differing GABA dependencies and the failure to parse WM into components would lead to missing true associations with GABA. The subjects then had their DLPFC GABA content measured by single-voxel proton magnetic spectroscopy. We found that individuals with lower DLPFC GABA showed greater performance degradation with higher load, accounting for 31% of variance, p (corrected) = 0.015. This relationship was component, neurochemical, and brain region specific. DLPFC GABA content did not predict performance sensitivity to other components tested; DLPFC glutamate + glutamine and visual cortical GABA content did not predict load sensitivity. These results confirm the involvement of DLPFC GABA in WM load processing in humans and implicate factors controlling DLPFC GABA content in the neural mechanisms of WM and its impairments. This study demonstrated for the first time that the amount of gamma-aminobutryic acid (GABA), the major inhibitory neurotransmitter of the brain, in an individual's prefrontal cortex predicts working memory (WM) task performance. Given that WM is required for many of the most characteristic cognitive and

  17. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    Science.gov (United States)

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  18. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    Science.gov (United States)

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  19. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target.

    Science.gov (United States)

    Hiu, Takeshi; Farzampour, Zoya; Paz, Jeanne T; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D; Wang, Gordon; Lemmens, Robin; Tran, Kevin V; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A; O'Rourke, Nancy; Smith, Stephen J; Huguenard, John R; Bliss, Tonya M; Steinberg, Gary K

    2016-02-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  20. Characterization of GABA/sub A/ receptor-mediated 36chloride uptake in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-01-01

    γ-Aminobutyric acid (GABA) receptor-mediated 36 chloride ( 36 Cl - ) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36 Cl - uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36 Cl - uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36 Cl - uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br - >Cl - ≥NO 3 - >I - ≥SCN - >>C 3 H 5 OO - ≥ClO 4 - >F - , consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl - channel. 43 references, 4 figures, 3 tables

  1. Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER.

    Science.gov (United States)

    Chen, Chen; Sigurdsson, Hilmar P; Pépés, Sophia E; Auer, Dorothee P; Morris, Peter G; Morgan, Paul S; Gowland, Penny A; Jackson, Stephen R

    2017-08-01

    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The vesicular-arbuscular mycorrhizal symbiosis | Quilambo | African ...

    African Journals Online (AJOL)

    Vesicular-arbuscular mycorrhiza fungi are associated with the majority ot the terrestrial plants. Their function ranges from stress alleviation to bioremediation in soils polluted with heavy metals. However, our knowledge about this symbiosis is still limited. For the semi-arid tropics, where some african countries are located, ...

  3. The Improvement of Sleep by Oral Intake of GABA and Apocynum venetum Leaf Extract.

    Science.gov (United States)

    Yamatsu, Atsushi; Yamashita, Yusuke; Maru, Isafumi; Yang, Jinwei; Tatsuzaki, Jin; Kim, Mujo

    2015-01-01

    The effects of two food materials, γ-aminobutyric acid (GABA) produced by natural fermentation and Apocynum venetum leaf extract (AVLE), on the improvement of sleep were investigated in humans. The electroencephalogram (EEG) test revealed that oral administration of GABA (100 mg) and AVLE (50 mg) had beneficial effects on sleep. GABA shortened sleep latency by 5.3 min and AVLE increased non-rapid eye movement (REM) sleep time by 7.6%. Simultaneous intake of GABA and AVLE shortened sleep latency by 4.3 min and increased non-REM sleep time by 5.1%. The result of questionnaires showed that GABA and AVLE enabled subjects to realize the effects on sleep. These results mean that GABA can help people to fall asleep quickly, AVLE induces deep sleep, and they function complementarily with simultaneous intake. Since both GABA and AVLE are materials of foods and have been ingested for a long time, they can be regarded as safe and appropriate for daily intake in order to improve the quality of sleep.

  4. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    Science.gov (United States)

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  5. The role of the GABA system in amphetamine-type stimulant use disorders

    Directory of Open Access Journals (Sweden)

    Dongliang eJiao

    2015-05-01

    Full Text Available Abuse of amphetamine-type stimulants (ATS has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid-ergic system plays an important role in ATS abuse. However the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders.

  6. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake

    International Nuclear Information System (INIS)

    Haberly, L.B.; Hansen, D.J.; Feig, S.L.; Presto, S.

    1987-01-01

    GABAergic neurons have been identified in the piriform cortex of the opossum at light and electron microscopic levels by immunocytochemical localization of GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase and by autoradiographic visualization of high-affinity 3 H-GABA uptake. Four major neuron populations have been distinguished on the basis of soma size, shape, and segregation at specific depths and locations: large horizontal cells in layer Ia of the anterior piriform cortex, small globular cells with thin dendrites concentrated in layers Ib and II of the posterior piriform cortex, and multipolar and fusiform cells concentrated in the deep part of layer III in anterior and posterior parts of the piriform cortex and the subjacent endopiriform nucleus. All four populations were well visualized with both antisera, but the large layer Ia horizontal cells displayed only very light 3 H-GABA uptake, thus suggesting a lack of local axon collaterals or lack of high-affinity GABA uptake sites. The large, ultrastructurally distinctive somata of layer Ia horizontal cells receive a very small number of symmetrical synapses; the thin, axonlike dendrites of small globular cells are exclusively postsynaptic and receive large numbers of both symmetrical and asymmetrical synapses, in contrast to somata which receive a small number of both types; and the deep multipolar and fusiform cells receive a highly variable number of symmetrical and asymmetrical synapses on somata and proximal dendrites. Labeled puncta of axon terminal dimensions were found in large numbers in the neuropil surrounding pyramidal cell somata in layer II and in the endopiriform nucleus. Moderately large numbers of labeled puncta were found in layer I at the depth of pyramidal cell apical dendrites with greater numbers in layer Ia at the depth of distal apical segments than in layer Ib

  7. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    Science.gov (United States)

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  8. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    OpenAIRE

    Lin, XG.; Hao, WY.; Wu, TH.

    1993-01-01

    Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight ...

  9. GABA abnormalities in schizophrenia: a methodological review of in vivo studies.

    Science.gov (United States)

    Taylor, Stephan F; Tso, Ivy F

    2015-09-01

    Abnormalities of GABAergic interneurons are some of the most consistent findings from post-mortem studies of schizophrenia. However, linking these molecular deficits with in vivo observations in patients - a critical goal in order to evaluate interventions that would target GABAergic deficits - presents a challenge. Explanatory models have been developed based on animal work and the emerging experimental literature in schizophrenia patients. This literature includes: neuroimaging ligands to GABA receptors, magnetic resonance spectroscopy (MRS) of GABA concentration, transcranial magnetic stimulation of cortical inhibitory circuits and pharmacologic probes of GABA receptors to dynamically challenge the GABA system, usually in combination with neuroimaging studies. Pharmacologic challenges have elicited behavioral changes, and preliminary studies of therapeutic GABAergic interventions have been conducted. This article critically reviews the evidence for GABAergic dysfunction from each of these areas. These methods remain indirect measures of GABAergic function, and a broad array of dysfunction is linked with the putative GABAergic measures, including positive symptoms, cognition, emotion, motor processing and sensory processing, covering diverse brain areas. Measures of receptor binding have not shown replicable group differences in binding, and MRS assays of GABA concentration have yielded equivocal evidence of large-scale alteration in GABA concentration. Overall, the experimental base remains sparse, and much remains to be learned about the role of GABAergic interneurons in healthy brains. Challenges with pharmacologic and functional probes show promise, and may yet enable a better characterization of GABAergic deficits in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synchronization by food access modifies the daily variations in expression and activity of liver GABA transaminase.

    Science.gov (United States)

    De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  11. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    Directory of Open Access Journals (Sweden)

    Dalia De Ita-Pérez

    2014-01-01

    Full Text Available Daytime restricted feeding (DRF is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO. Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  12. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  13. The role of GABA in the hypoxia tolerance of the epaulette shark

    International Nuclear Information System (INIS)

    Wise, G.; Mulvey, J.; Renshaw, G.M.C.; Dodd, P.R.

    1998-01-01

    Full text: The epaulette shark responds to hypoxia with brain hypometabolism which is correlated with increased levels of gamma-aminobutyric acid (GABA). We examined GABA-like immunoreactivity (GABA-IR) and the density and binding characteristics of GABA A receptors in the Epaulette shark brainstem. These studies were conducted to investigate changes in response to hypoxia. Experimental animals were exposed to eight cycles of an extreme hypoxic regimen (5% of normoxia). Animals were anaesthetised with 80mg/L of MS222 and the brain was dissected and processed either for immunohistochemistry or receptor ligand binding. Membranes were prepared at 4 deg C according to a previously reported protocol and the binding characteristics of [ 3 H]flunitrazeparn ([ 3 H]FNZ) were examined using an in vitro centrifugation assay. We report on the effect of hypoxia on specific [ 3 H]FNZ binding characteristics. GABA-IR was detected using a primary antibody dilution of 1:15 000 and the Vector ABC method. We report that an overall increase in the optical density of GABA-IR occurs with significant increases in three out of the four brainstem nuclei examined in experimental animals. The results of these studies are discussed in conjunction with the hypoxia-tolerance .of the epaulette shark. Copyright (1998) Australian Neuroscience Society

  14. Uptake and release of [14C] GABA from rabbit retina synaptosomes

    International Nuclear Information System (INIS)

    Redburn, D.A.

    1977-01-01

    A partial separation of two synaptosomal fractions was achieved using modifications of conventional homogenization and centrifugation techniques. The two fractions contained morphologically distinct synaptosomal populations, receptor cell synaptosomes (large synaptosomes, P 1 ), and synaptosomes from the other cell types (smaller, conventional-sized synaptosomes, P 2 ). [ 14 C]GABA was bound and released from subcellular fractions from retina under conditions which support its role as a neurotransmitter in retina. On the other hand, [ 3 H]leucine, which is very likely a non-transmitter compound, was bound by retinal fractions but not released to the appropriate stimulation. [ 14 C]GABA binding and release sites were more prevalent in P 2 fractions. [ 14 C]GABA was bound by P 1 fractions containing photoreceptor synaptosomes; however, the K + stimulated release of [ 14 C]GABA appeared to be insensitive to external Ca 2+ . Possible mechanisms are discussed. (author)

  15. Temperature dependence and GABA modulation of [3H]triazolam binding in the rat brain

    International Nuclear Information System (INIS)

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-01-01

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of [ 3 H]TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0 0 C; K/sub d/ = 1.96 +/- 0.85 nM at 37 0 C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0 0 C and 1160 +/- 383 fmoles/mg protein at 37 0 C). Saturation studies of [ 3 H]TZ binding in the presence or absence of GABA (100μM) showed a GABA-shift. At 0 0 C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37 0 C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables

  16. Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains.

    Science.gov (United States)

    Sanchart, C; Rattanaporn, O; Haltrich, D; Phukpattaranont, P; Maneerat, S

    2016-09-01

    To evaluate the technological and safety properties of Lactobacillus futsaii CS3 and CS5 isolated from Thai fermented shrimp products (Kung-Som) in order to develop a valuable gamma-aminobutyric acid (GABA)-producing starter culture. Both strains showed a high GABA-producing ability (>8 mg ml(-1) ) in MRS broth containing 20 mg ml(-1) monosodium glutamate (MSG) for 120 h. They also exhibited inhibitory activity against foodborne pathogens and spoilage bacteria. Cell surface hydrophobicity and proteolytic activity were observed in both strains. Strain CS3 survived better under simulated gastrointestinal tract conditions with only 1·5 log-units cell decrease over 8 h. Both strains showed the ability to deconjugate taurocholate and taurodeoxycholate acid. Neither virulence genes nor biogenic amine production was detected. Strain CS3 exhibited susceptibility to all tested antibiotics with the exception of vancomycin, while strain CS5 showed resistance to vancomycin, ampicillin and chloramphenicol. Based on the results obtained, Lact. futsaii CS3 is very promising as a GABA-producing and potentially probiotic starter culture strain for applications in functional fermented foods. This study focuses on the technological and safety characteristics of Lact. futsaii CS3 and CS5 including their high GABA-producing capacity for the first time. This provides a way of replacing chemical GABA by natural GABA using a GABA-producing starter culture candidate, at the same time offering the consumer new attractive food products. © 2016 The Society for Applied Microbiology.

  17. Effect of Songyu Anshen Fang on expression of hypothalamic GABA ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of the Chinese compound, Songyu Anshen Fang (SYF) on levels of GABA and GABA(B) receptor proteins in insomniac rats induced by para-chlorophenylalanine (PCPA). Methods: All rats were randomly separated into either a control group, insomnia group, or a SYF group (at a dose of ...

  18. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2018-02-01

    Lactobacillus brevis is an efficient cell factory for producing bioactive γ-aminobutyric acid (GABA) by its gad operon-encoded glutamic acid decarboxylase (GAD) system. However, little mechanistic insights have been reported on the effects of carbohydrate, oxygen and early acidification on GABA production machinery in Lb. brevis. In the present study, GABA production from Lb. brevis was enhanced by accessible carbohydrates. Fast growth of this organism was stimulated by maltose and xylose. However, its GABA production was highly suppressed by oxygen exposure, but was fully restored by anaerobiosis that up-regulated the expression of gad operon in Lb. brevis cells. Although the level of cytosolic acidity was suitable for the functioning of GadA and GadB, early acidification of the medium (ipH 5 and ipH 4) restored GABA synthesis strictly in aerated cells of Lb. brevis because the expression of gad operon was not up-regulated in them. We conclude that GABA production machinery in Lb. brevis could be restored by accessible carbohydrates, anaerobiosis and early acidification. This will be of interest for controlling fermentation for synthesis of GABA and manufacturing GABA-rich fermented vegetables. Copyright © 2017. Published by Elsevier Ltd.

  19. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria.

    Science.gov (United States)

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-04-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.

  20. Regulation of (/sup 3/H)GABA release from strips of guinea pig urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, J.; Taniyama, K.; Iwai, S.; Tanaka, C.

    1988-12-01

    The presence of receptors that regulate the release of gamma-aminobutyric acid (GABA) was studied in strips of the guinea pig urinary bladder. GABA (10(-8)-10(-5) M) and muscimol (10(-8)-10(-5) M), but not baclofen (10(-5) M), reduced the Ca2+-dependent, tetrodotoxin-resistant release of (/sup 3/H)GABA evoked by high K+ from the urinary bladder strips preloaded with (/sup 3/H)GABA. The inhibitory effect of muscimol was antagonized by bicuculline and potentiated by diazepam, clonazepam, and pentobarbital sodium. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Acetylcholine (ACh) inhibited the high K+-evoked release of (/sup 3/H)GABA. The inhibitory effect of ACh was antagonized by atropine sulfate and pirenzepine but not by hexamethonium. Norepinephrine (NE) inhibited the evoked release of (/sup 3/H)GABA. The inhibitory effect of NE was mimicked by clonidine, but not by phenylephrine, and was antagonized by yohimbine but not by prazosin. These results provide evidence that the release of GABA from strips of guinea pig urinary bladder is regulated via the bicuculline-sensitive GABAA receptor, M1-muscarinic, and alpha 2-adrenergic receptors.

  1. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function.

    Science.gov (United States)

    Uehara, Takashi; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.

  2. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study.

    Science.gov (United States)

    Rowland, L M; Krause, B W; Wijtenburg, S A; McMahon, R P; Chiappelli, J; Nugent, K L; Nisonger, S J; Korenic, S A; Kochunov, P; Hong, L E

    2016-02-01

    Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.

  3. In vivo quantification of intracerebral GABA by single-voxel 1H-MRS-How reproducible are the results?

    International Nuclear Information System (INIS)

    Bogner, W.; Gruber, S.; Doelken, M.; Stadlbauer, A.; Ganslandt, O.; Boettcher, U.; Trattnig, S.; Doerfler, A.; Stefan, H.; Hammen, T.

    2010-01-01

    Gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the human brain. It plays a decisive role in a variety of nervous system disorders, such as anxiety disorders, epilepsy, schizophrenia, insomnia, and many others. The reproducibility of GABA quantification results obtained with a single-voxel spectroscopy J-difference editing sequence with Point Resolved Spectroscopy localization (MEGA-PRESS) was determined on a 3.0 Tesla MR scanner in healthy adults. Eleven volunteers were measured in long- and short-term intervals. Intra- and inter-subject reproducibility were evaluated. Internal referencing of GABA+ to total creatine (tCr) and water (H 2 O), as well as two different post-processing methods for the evaluation (signal integration and time-domain fitting) were compared. In all subjects lower coefficient of variation and therefore higher reproducibility can be observed for fitting compared to integration. The GABA+/tCr ratio performs better than the GABA+/H 2 O ratio or GABA+ without internal referencing for both fitting and integration (GABA+/tCr: 13.3% and 17.0%; GABA+/H 2 O: 15.0% and 17.8%; GABA+: 19.2% and 21.7%). Four-day measurements on three subjects showed higher intra- than inter-subject reproducibility (GABA+/tCr ∼10-12%). With a coefficient of variation of about 13% for inter-subject and 10-12% for intra-subject variability of GABA+/tCr, this technique seems to be a precise tool that can detect GABA confidently. The results of this study show the reproducibility limitations of GABA quantification in vivo, which are necessary for further clinical studies.

  4. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  5. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    OpenAIRE

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studie...

  6. Ventral tegmental area GABA neurons and opiate motivation

    Science.gov (United States)

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  7. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    Science.gov (United States)

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  8. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Elster, L

    1998-01-01

    , but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  9. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    Science.gov (United States)

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Insulin reduces neuronal excitability by turning on GABA(A channels that generate tonic current.

    Directory of Open Access Journals (Sweden)

    Zhe Jin

    Full Text Available Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid decreases neuronal excitability by activating GABA(A channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM "turns on" new extrasynaptic GABA(A channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50 in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.

  11. Retinal input to efferent target amacrine cells in the avian retina

    Science.gov (United States)

    Lindstrom, Sarah H.; Azizi, Nason; Weller, Cynthia; Wilson, Martin

    2012-01-01

    The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single, unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain we have been able to identify their terminals in retinal slices and make patch clamp recordings from TCs. TCs generate Na+ based action potentials triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine, and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl− transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain. PMID:20650017

  12. γ-amino butyric acid (GABA) level as an overall survival risk factor in breast cancer.

    Science.gov (United States)

    Brzozowska, Anna; Burdan, Franciszek; Duma, Dariusz; Solski, Janusz; Mazurkiewicz, Maria

    2017-09-21

    The γ-amino butyric acid (GABA) plays important role in the proliferation and migration of cancer cells. The aim of the study was to evaluate the level of GABA in breast cancer, in relation to clinical and epidemiological data. The study was conducted on 89 patients with breast cancer in stage I-II. GABA level was assessed using spectrofluorometric method in tumour homogenates. Immunoexpression of E-cadherin was evaluated histologically on paraffin fixed specimens. Overall and disease-free survival was assessed for a 15-year interval period. Median overall survival was significantly longer (127.2 months) in patients with a high level of GABA (>89.3 μg/1), compared with a group with a low level of the amino acid (106.4 months). Disease-free survival was insignificantly different - 99 and 109 months, respectively. A significantly longer overall survival (131.2 months) was seen among patients with a high level of GABA and positive E-cadherin immunoexpression, compared with a group characterized by a low level of GABA and lack of E-cadherin immunorectivity (98.1 months). The co-existence of negative immunoexpression of E-cadherin and low GABA concentration resulted in a six-fold increase in the risk of death (HR=6.03). GABA has a significant prognostic value in breast cancer. Co-existence of a low level of GABA and loss of E-cadherin immune-expression seems to be a new, independent, and negative prognostic marker of the neoplasm.

  13. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Genetics Home Reference: GABA-transaminase deficiency

    Science.gov (United States)

    ... Description GABA-transaminase deficiency is a brain disease (encephalopathy) that begins in infancy. Babies with this disorder ... genetic testing? What is precision medicine? What is newborn screening? New Pages LMNA-related congenital muscular dystrophy ...

  15. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    Science.gov (United States)

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated. A total of 37 adults (19 female, 18 male) aged 18-38 years completed the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ), and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel. There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (pGABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (pGABA+ ratio reduced with increasing restricted imagination (pschizophrenia spectra.

  16. GABA-mediated synchronization in the human neocortex: elevations in extracellular potassium and presynaptic mechanisms.

    Science.gov (United States)

    Louvel, J; Papatheodoropoulos, C; Siniscalchi, A; Kurcewicz, I; Pumain, R; Devaux, B; Turak, B; Esposito, V; Villemeure, J G; Avoli, M

    2001-01-01

    Field potential and extracellular [K(+)] ([K(+)](o)) recordings were made in the human neocortex in an in vitro slice preparation to study the synchronous activity that occurs in the presence of 4-aminopyridine (50 microM) and ionotropic excitatory amino acid receptor antagonists. Under these experimental conditions, negative or negative-positive field potentials accompanied by rises in [K(+)](o) (up to 4.1 mM from a baseline of 3.25 mM) occurred spontaneously at intervals of 3-27 s. Both field potentials and [K(+)](o) elevations were largest at approximately 1000 microm from the pia. Similar events were induced by neocortical electrical stimuli. Application of medium containing low [Ca(2+)]/high [Mg(2+)] (n=3 slices), antagonism of the GABA(A) receptor (n=7) or mu-opioid receptor activation (n=4) abolished these events. Hence, they represented network, GABA-mediated potentials mainly reflecting the activation of type A receptors following GABA release from interneurons. The GABA(B) receptor agonist baclofen (10-100 microM, n=11) reduced and abolished the GABA-mediated potentials (ID(50)=18 microM). Baclofen effects were antagonized by the GABA(B) receptor antagonist CGP 35348 (0.1-1 mM, n=6; ID(50)=0.19 mM). CGP 38345 application to control medium increased the amplitude of the GABA-mediated potentials and the concomitant [K(+)](o) rises without modifying their rate of occurrence. The GABA-mediated potentials were not influenced by the broad-spectrum metabotropic glutamate agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (100 microM, n=10), but decreased in rate with the group I receptor agonist (S)-3,5-dihydroxyphenylglycine (10-100 microM, n=9). Our data indicate that human neocortical networks challenged with 4-aminopyridine generate glutamatergic-independent, GABA-mediated potentials that are modulated by mu-opioid and GABA(B) receptors presumably located on interneuron terminals. These events are associated with [K(+)](o) elevations that may

  17. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    -dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as oral active beta....../tri-peptide transporters from vesicular storages 3) changes in gene transcription/mRNA stability. The aim of the present review is to discuss physiological, patho-physiological and drug-induced regulation of di/tri-peptide transporter mediated transport....

  18. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  19. GABA(B), not GABA(A) receptors play a role in cortical postictal refractoriness

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2015-01-01

    Roč. 88, Jan 2015 (2015), s. 99-102 ISSN 0028-3908 R&D Projects: GA MŠk(CZ) LH11015; GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : cortical seizures * postictal refractoriness * GABA receptors * pharmacology Subject RIV: FH - Neurology Impact factor: 4.936, year: 2015

  20. Pharmacological Identification of a Guanidine-Containing β-Alanine Analogue with Low Micromolar Potency and Selectivity for the Betaine/GABA Transporter 1 (BGT1)

    DEFF Research Database (Denmark)

    Al-Khawaja, Anas Mohammad Ali; Petersen, Jette Gellert; Damgaard, Maria

    2014-01-01

    of the amino group in β-alanine or GABA, a series of compounds was generated, and their pharmacological activity assessed at human GAT subtypes. Using a cell-based [(3)H]GABA uptake assay, several selective inhibitors at human BGT1 were identified. The guanidine-containing compound 9 (2-amino-1......,4,5,6-tetrahydropyrimidine-5-carboxylic acid hydrochloride) displayed more than 250 times greater potency than the parent compound β-alanine at BGT1 and is thus the most potent inhibitor reported to date for this subtype (IC50 value of 2.5 µM). In addition, compound 9 displayed about 400, 16 and 40 times lower inhibitory...

  1. Neuronal and glial release of (3H)GABA from the rat olfactory bulb

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, E.H.; Cuello, A.C.

    1981-12-01

    Neuronal versus glial components of the (3H)gamma-aminobutyric acid ((3H)GABA) release studies were performed with two different microdissected layers of the olfactory bulb of the rat. In some experiments substantia nigra was used as a GABAergic axonal system and the trigeminal ganglia as a peripheral glial model. Spontaneous release of (3H)GABA was always lower in neuronal elements as compared with glial cells. A veratridine-evoked release was observed from the ONL but not from the trigeminal ganglia. Tetrodotoxin (TTX) abolished the veratridine-evoked release from the ONL, which also showed a partial inhibition when high magnesium concentrations were used in a Ca2+-free solution. beta-Alanine was strongly exchanged with (3H)GABA from the ONL of animals with the olfactory nerve lesioned and from animals with no lesion; but only a small heteroexchange was found from the external plexiform layer. The beta-alanine heteroexchange was able to deplete the releasable GABA store from the ONL of lesioned animals. In nonlesioned animals and the external plexiform layer, the veratridine-stimulated release of (3H)GABA was not significantly reduced after the beta-alanine heteroexchange. Stimulation of the (3H)GABA release by high concentrations of potassium elicited a higher release rate from axonal terminals than from dendrites or glia. Neurones and glia showed a similar inhibition of (3H)GABA release when a high magnesium concentration was added to a calcium-free solution. When D-600 was used as a calcium-flux blocker no inhibition of the release was observed in glial cells, whereas an almost complete blockage was found in both neuronal preparations (substantia nigra and EPL). These results provide further evidence for differential release mechanisms of GABA from CNS neurones and glial cells.

  2. Development of psychopathology in deployed armed forces in relation to plasma GABA levels.

    Science.gov (United States)

    Schür, Remmelt R; Boks, Marco P; Geuze, Elbert; Prinsen, Hubertus C; Verhoeven-Duif, Nanda M; Joëls, Marian; Kahn, René S; Vermetten, Eric; Vinkers, Christiaan H

    2016-11-01

    The GABA system is pivotal for an adequate response to a stressful environment but has remained largely unexplored in this context. The present study investigated the relationship of prospectively measured plasma GABA levels with psychopathology symptoms in military deployed to Afghanistan at risk for developing psychopathology following trauma exposure during deployment, including posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Plasma GABA levels were measured in military personnel (N=731) one month prior to deployment (T0), and one (T1) and six months (T2) after deployment using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Mental health problems and depressive symptoms were measured with the Dutch revised Symptom Checklist (SCL-90) and PTSD symptoms with the Dutch Self-Rating Inventory for PTSD (SRIP). Six months after deployment increases in GABA concentrations were present in individuals who had developed mental health problems (T2: β=0.06, p=1.6×10 -2 , T1: β=4.7×10 -2 , p=0.13), depressive symptoms (T2: β=0.29, p=7.9×10 -3 , T1: β=0.23, p=0.072) and PTSD symptoms at T2 (T2: β=0.12, p=4.3×10 -2 , T1: β=0.11, p=0.13). Plasma GABA levels prior to and one month after deployment poorly predicted a high level of psychopathology symptoms either one or six months after deployment. The number of previous deployments, trauma experienced during deployment, childhood trauma, age and sex were not significantly associated with plasma GABA levels over time. Exclusion of subjects who either started or stopped smoking, alcohol or medication use between the three time points rendered the association of increasing GABA levels with the emergence of psychopathology symptoms more pronounced (mental health problems at T2: β=0.09, p=4.2×10 -3 ; depressive symptoms at T2: β=0.35, p=3.5×10 -3 , PTSD symptoms at T2: β=0.17, p=1.7×10 -2 ). To our knowledge, this is the first study to provide

  3. Synthesis of γ-amino[4-11C]butyric acid (GABA)

    International Nuclear Information System (INIS)

    Antoni, G.; Laangstroem, B.

    1989-01-01

    A one-pot synthesis of no-carrier added γ-amino[4- 11 C]butyric acid (GABA) starting with hydrogen [ 11 C]cyanide prepared from [ 11 C]carbon dioxide, is presented. Hydrogen [ 11 C]cyanide was trapped in tetrahydrofuran/potassium hydroxide in the presence of the amino polyether Krytofix 2.2.2. A Michael addition with ethyl acrylate followed by a selective reduction and hydrolysis of the resulting amino ester gave [4- 11 C]GABA. The radiochemical purity of GABA was higher than 99% and the decay corrected radiochemical yield was 60-65% based on the amount of H[ 11 C]CN used. The total synthesis time including purification was around 40 min, counted from the start of the Michael addition reaction. (Author)

  4. GABA system in schizophrenia and mood disorders. A mini review on third generation imaging studies

    Directory of Open Access Journals (Sweden)

    Chiara eChiapponi

    2016-04-01

    Full Text Available Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ, bipolar disorder (BD and major depressive disorder (MDD. We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis.In SZ unimodal studies gave mixed results, as increased, decreased or unaltered GABA levels were reported depending on region, disease phase and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients, mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signalling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ.Unimodal studies in BD revealed, again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls, nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate and N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology.Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving

  5. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  6. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus

    International Nuclear Information System (INIS)

    Augood, S.J.; Waldvogel, H.J.; Muenkle, M.C.; Faull, R.L.M.; Emson, P.C.

    1999-01-01

    The distribution of messenger RNA encoding the human GAT-1 (a high-affinity GABA transporter) was investigated in the subthalamic nucleus of 10 neurologically normal human post mortem cases. Further, the distribution of messenger RNA and protein encoding the three neuronally expressed calcium-binding proteins (calbindin D28k, parvalbumin and calretinin) was similarly investigated using in situ hybridization and immunohistochemical techniques. Cellular sites of calbindin D28k, parvalbumin, calretinin and GAT-1 messenger RNA expression were localized using human-specific oligonucleotide probes radiolabelled with [ 35 S]dATP. Sites of protein localization were visualized using specific anti-calbindin D28k, anti-parvalbumin and anti-calretinin antisera. Examination of emulsion-coated tissue sections processed for in situ hybridization revealed an intense signal for GAT-1 messenger RNA within the human subthalamic nucleus, indeed the majority of Methylene Blue-counterstained cells were enriched in this transcript. Further, a marked heterogeneity was noted with regard to the expression of the messenger RNA's encoding the three calcium-binding proteins; this elliptical nucleus was highly enriched in parvalbumin messenger RNA-positive neurons and calretinin mRNA-positive cells but not calbindin messenger RNA-positive cells. Indeed, only an occasional calbindin messenger RNA-positive cell was detected within the mediolateral extent of the nucleus. In marked contrast, numerous parvalbumin messenger RNA-positive cells and calretinin messenger RNA-positive cells were detected and they were topographically distributed; parvalbumin messenger RNA-positive cells were highly enriched in the dorsal subthalamic nucleus extending mediolaterally; calretinin messenger RNA-positive cells were more enriched ventrally although some degree of overlap was apparent. Computer-assisted analysis of the average cross-sectional somatic area of parvalbumin, calretinin and GAT-1 messenger RNA

  7. GABA and glutamate levels in occlusal splint-wearing males with possible bruxism.

    Science.gov (United States)

    Dharmadhikari, Shalmali; Romito, Laura M; Dzemidzic, Mario; Dydak, Ulrike; Xu, Jun; Bodkin, Cynthia L; Manchanda, Shalini; Byrd, Kenneth E

    2015-07-01

    The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the pathophysiology of anxiety behavioural disorders such as panic disorder and post-traumatic stress disorder and is also implicated in the manifestation of tooth-grinding and clenching behaviours generally known as bruxism. In order to test whether the stress-related behaviours of tooth-grinding and clenching share similar underlying mechanisms involving GABA and other metabolites as do anxiety-related behavioural disorders, we performed a Magnetic Resonance Spectroscopy (MRS) study for accurate, in vivo metabolite quantification in anxiety-related brain regions. MRS was performed in the right hippocampus and right thalamus involved in the hypothalamic-pituitary-adrenal axis system, together with a motor planning region (dorsal anterior cingulate cortex/pre-supplementary motor area) and right dorsolateral prefrontal cortex (DLPFC). Eight occlusal splint-wearing men (OCS) with possible tooth-grinding and clenching behaviours and nine male controls (CON) with no such behaviour were studied. Repeated-measures ANOVA showed significant Group×Region interaction for GABA+ (p = 0.001) and glutamate (Glu) (p = 0.031). Between-group post hoc ANOVA showed significantly lower levels of GABA+ (p = 0.003) and higher levels of Glu (p = 0.002) in DLPFC of OCS subjects. These GABA+ and Glu group differences remained significant (GABA+, p = 0.049; Glu, p = 0.039) after the inclusion of anxiety as a covariate. Additionally, GABA and Glu levels in the DLPFC of all subjects were negatively related (Pearson's r = -0.75, p = 0.003). These findings indicate that the oral behaviours of tooth-grinding and clenching, generally known as bruxism, may be associated with disturbances in brain GABAergic and glutamatergic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas.

    Directory of Open Access Journals (Sweden)

    Thomas J Baumgarten

    Full Text Available Neuronal oscillatory activity in the beta band (15-30 Hz is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy and beta oscillations (measured by magnetoencephalography at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex.

  9. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

    Science.gov (United States)

    Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim

    2016-01-01

    Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089

  10. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation.

    Science.gov (United States)

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    Autism and schizophrenia are multi-dimensional spectrum disorders that have substantial phenotypic overlap. This overlap is readily identified in the non-clinical population, and has been conceptualised as Social Disorganisation (SD). This study investigates the balance of excitatory glutamate and inhibitory γ -aminobutyric acid (GABA) concentrations in a non-clinical sample with high and low trait SD, as glutamate and GABA abnormalities are reported across the autism and schizophrenia spectrum disorders. Participants were 18 low (10 females) and 19 high (9 females) SD scorers aged 18 to 40 years who underwent 1 H-MRS for glutamate and GABA+macromolecule (GABA+) concentrations in right and left hemisphere superior temporal (ST) voxels. Reduced GABA+ concentration ( p  = 0.03) and increased glutamate/GABA+ ratio ( p  = 0.003) in the right ST voxel for the high SD group was found, and there was increased GABA+ concentration in the left compared to right ST voxel ( p  = 0.047). Bilateral glutamate concentration was increased for the high SD group ( p  = 0.006); there was no hemisphere by group interaction ( p  = 0.772). Results suggest that a higher expression of the SD phenotype may be associated with increased glutamate/GABA+ ratio in the right ST region, which may affect speech prosody processing, and lead behavioural characteristics that are shared within the autistic and schizotypal spectra.

  11. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats.

    Science.gov (United States)

    Backes, E N; Hemby, S E

    2008-03-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.

  12. Modulatory action of taurine on the release of GABA in cerebellar slices of the guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Namima, M.; Okamoto, K.; Sakai, Y.

    1983-01-01

    For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of (/sup 3/H) gamma-aminobutyric acid ((/sup 3/H)GABA) and L-(/sup 3/H)glutamate in cerebellar slices from guinea pigs were investigated. The release of (/sup 3/H)GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of L-(/sup 3/H)glutamate was little affected by taurine. The release of (/sup 3/H)GABA, was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of (/sup 3/H)GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of (/sup 3/H)GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca/sup 2 +/ into cerebellar tissues was tentatively suggested.

  13. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    Science.gov (United States)

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  14. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis....... Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA...... related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA - glutamine cycle the operation of which...

  15. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    International Nuclear Information System (INIS)

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies

  16. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.

    Science.gov (United States)

    Ebbers, Lena; Weber, Maren; Nothwang, Hans Gerd

    2017-10-26

    In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular

  17. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    Science.gov (United States)

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  18. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain.

    Science.gov (United States)

    Tochitani, Shiro; Kondo, Shigeaki

    2013-01-01

    Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11-E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.

  19. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea.

    Science.gov (United States)

    Zhao, Ming; Ma, Yan; Wei, Zhen-zhen; Yuan, Wen-xia; Li, Ya-li; Zhang, Chun-hua; Xue, Xiao-ting; Zhou, Hong-jie

    2011-04-27

    Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p GABA content decreased during industrial fermentation of pu-erh tea (p GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p GABA-enriched white tea.

  20. GABA shapes the dynamics of bistable perception.

    Science.gov (United States)

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-06

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Practical Microform Materials for Libraries: Silver, Diazo, Vesicular.

    Science.gov (United States)

    Veaner, Allen B.

    1982-01-01

    Remarks on the relative permanence and durability of three types of film in use in library microform reproduction (silver, diazo, and vesicular) and points out some technical and economic facts that govern the choice of microform materials for libraries. A 6-item reference list is included. (Author/JL)

  2. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...... two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290µM and V(max) of 75pmolcm(-2)min(-1) and a low affinity system with a K(m) of approximately 64mM and V(max) of 1.6nmolcm(-2)min(-1). The high...

  3. In vivo quantification of intracerebral GABA by single-voxel {sup 1}H-MRS-How reproducible are the results?

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, W. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: wolfgang@nmr.at; Gruber, S. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: stephan@nmr.at; Doelken, M. [Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: marc.doelken@uk-erlangen.de; Stadlbauer, A. [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: andi@nmr.at; Ganslandt, O. [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: oliver.ganslandt@uk-erlangen.de; Boettcher, U. [Siemens Medical Solution, Karl-Schall Str. 6, D-91052 Erlangen (Germany)], E-mail: uwe.boettcher@siemens.com; Trattnig, S. [MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: siegfried.trattnig@meduniwien.ac.at; Doerfler, A. [Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Austria)], E-mail: a.doerfler@nrad.imed.uni-erlangen.de; Stefan, H. [Center Epilepsy Erlangen (ZEE), Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Germany)], E-mail: Hermann.Stefan@uk-erlangen.de; Hammen, T. [Center Epilepsy Erlangen (ZEE), Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen (Germany)], E-mail: thilo.hammen@uk-erlangen.de

    2010-03-15

    Gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the human brain. It plays a decisive role in a variety of nervous system disorders, such as anxiety disorders, epilepsy, schizophrenia, insomnia, and many others. The reproducibility of GABA quantification results obtained with a single-voxel spectroscopy J-difference editing sequence with Point Resolved Spectroscopy localization (MEGA-PRESS) was determined on a 3.0 Tesla MR scanner in healthy adults. Eleven volunteers were measured in long- and short-term intervals. Intra- and inter-subject reproducibility were evaluated. Internal referencing of GABA+ to total creatine (tCr) and water (H{sub 2}O), as well as two different post-processing methods for the evaluation (signal integration and time-domain fitting) were compared. In all subjects lower coefficient of variation and therefore higher reproducibility can be observed for fitting compared to integration. The GABA+/tCr ratio performs better than the GABA+/H{sub 2}O ratio or GABA+ without internal referencing for both fitting and integration (GABA+/tCr: 13.3% and 17.0%; GABA+/H{sub 2}O: 15.0% and 17.8%; GABA+: 19.2% and 21.7%). Four-day measurements on three subjects showed higher intra- than inter-subject reproducibility (GABA+/tCr {approx}10-12%). With a coefficient of variation of about 13% for inter-subject and 10-12% for intra-subject variability of GABA+/tCr, this technique seems to be a precise tool that can detect GABA confidently. The results of this study show the reproducibility limitations of GABA quantification in vivo, which are necessary for further clinical studies.

  4. Hypoxia treatment on germinating faba bean (Vicia faba L. seeds enhances GABA-related protection against salt stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available The γ-aminobutyric acid (GABA is a non-protein amino acid with some functional properties for human health. Its content is usually lower in plant seeds. Hypoxia or salt (NaCl stress is an effective way for accumulating GABA during seed germination. However, NaCl stress on GABA accumulation under hypoxia is currently infrequent. The effect of NaCl on GABA accumulation in germinating faba bean (Vicia faba L. under hypoxia was therefore investigated in this study. Faba bean seeds were steeped in citric acid buffer (pH 3.5 containing NaCl with a final O2 concentration of 5.5 mg L-1 and germinated for 5 d. Results showed that 60 mmol L-1 NaCl was the optimum concentration for GABA accumulation in germinating faba beans under hypoxia. Germination for 5 d under hypoxia-NaCl stress was less beneficial for GABA accumulation than only hypoxia (control. Polyamine degradation pathway played a more important role for accumulating GABA in germinating faba bean as an adaptive response to NaCl stress. Removing NaCl significantly increased GABA content, while it decreased glutamate decarboxylase (GAD activity. Simultaneously, polyamine was accumulated, which might be related to the enhancement of physiological activity after recovery. When treated with aminoguanidine (AG for 3 d, GABA content decreased by 29.82%. These results indicated that the tolerance ability of GABA shunt to NaCl stress was weaker than that of polyamine degradation pathway. The NaCl treatment for 3 d under hypoxia could raise the contribution ratio of polyamine degradation pathway for GABA accumulation. The contribution ratio of polyamine degradation pathway for GABA formation was 29.82% when treated for at least 3 d

  5. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    Science.gov (United States)

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  6. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    Science.gov (United States)

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  7. Infection of guinea pigs with vesicular stomatitis New Jersey virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J

    2006-05-01

    Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.

  8. Alterations in a Unique Class of Cortical Chandelier Cell Axon Cartridges in Schizophrenia.

    Science.gov (United States)

    Rocco, Brad R; DeDionisio, Adam M; Lewis, David A; Fish, Kenneth N

    2017-07-01

    The axons of chandelier cells (ChCs) target the axon initial segment of pyramidal neurons, forming an array of boutons termed a cartridge. In schizophrenia, the density of cartridges detectable by gamma-aminobutyric acid (GABA) membrane transporter 1 immunoreactivity is lower, whereas the density of axon initial segments detectable by immunoreactivity for the α2 subunit of the GABA A receptor is higher in layers 2/superficial 3 of the prefrontal cortex. These findings were interpreted as compensatory responses to lower GABA levels in ChCs. However, we recently found that in schizophrenia, ChC cartridge boutons contain normal levels of the 67 kDa isoform of glutamic acid decarboxylase (GAD67) protein, the enzyme responsible for GABA synthesis in these boutons. To understand these findings we quantified the densities of ChC cartridges immunoreactive for vesicular GABA transporter (vGAT+), which is present in all cartridge boutons, and the subset of cartridges that contain calbindin (CB+). Prefrontal cortex tissue sections from 20 matched pairs of schizophrenia and unaffected comparison subjects were immunolabeled for vGAT, GAD67, and CB. The mean density of vGAT+/CB+ cartridges was 2.7-fold higher, exclusively in layer 2 of schizophrenia subjects, whereas the density of vGAT+/CB- cartridges did not differ between subject groups. Neither vGAT, CB, or GAD67 protein levels per ChC bouton nor the number of boutons per cartridge differed between subject groups. Our findings of a greater density of CB+ ChC cartridges in prefrontal cortex layer 2 from schizophrenia subjects suggests that the normal developmental pruning of these cartridges is blunted in the illness. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Pre-differentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jeung Woon eLee

    2012-05-01

    Full Text Available Intraspinal quisqualic acid (QUIS injury induce (i mechanical and thermal hyperalgesia, (ii progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI patients. We have reported previously loss of endogenous GABA immunoreactive (IR cells in the superficial dorsal horn of QUIS rats 2 weeks post-injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially-differentiated GABA-IR embryonic neural precursor cells (NPCs were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 hrs prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few co-localized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP-. These results indicate that partially-differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.

  10. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin; Edden, Richard A.E.; Li, Hao; Chen, Weibo; Liu, Xiaohui

    2018-01-01

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  11. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin [Shandong University, Shandong Medical Imaging Research Institute, Jinan (China); Edden, Richard A.E. [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Kennedy Krieger Institute, FM Kirby Center for Functional Brain Imaging, Baltimore, MD (United States); Li, Hao [Air Force General Hospital PLA, Beijing (China); Chen, Weibo [Philips Healthcare, Shanghai (China); Liu, Xiaohui [Shandong Provincial Hospital Affiliated to Shandong University, Department of Neurology, Jinan (China)

    2018-03-15

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  12. The changes in drug binding activity of GABA receptor and animal neural-behavior after gamma irradiation

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Zhao Naikun; Xue Hong; Wang Zihui

    2004-01-01

    Objective: The purpose of this study was to investigate the effect of irradiation on gamma-aminobutyric-acid receptor (GABA-R) as well as behavioral changes after brain 60 Co γ-irradiation. Methods: The mice were irradiated with gamma rays (20 Gy; 10 Gy and 5 Gy) . The drug binding activity of GABA receptor in brain receptor was measured by fluorescence anisotropy (FA) and equilibrium dissociation constants. The behavioral changes were observed by the locomotor activity test, elevated plus-maze test and hole-board test at 1, 10, 24 and 48 hr after irradiation. Results: 1. The drug binding activity of the GABA receptor was decreased and the equilibrium dissociation constant (K d ) was significantly increased compared with the negative control group 2 hr after irradiation, and a spike value appeared at 24 hr. It showed that the irradiation might damage or decrease the binding activity and the bio-activity of GABA receptor. 2. The animal experiment confirmed that the irradiated animal model showed neural-behavioral changes of anxiety or depression. 3. The decreased binding activity of GABA receptor and changes in behavior of irradiated animal were dependent on radiation intensity. 4. The changes of behavior was similar to the blocked GABA receptor group. It suggests the relationship of radiation and GABA receptor. Conclusion: These results suggest that GABA receptor may be involved in radiation injury. The functional changes of GABA receptor may be an induction factor of behavioral disorder. The article also discussed the effect of anxiety and results obtained from the point of view of GABA receptor system involvement in the changes observed after irradiation. (authors)

  13. Pharmacological characterization of homobaclofen on wild type and mutant GABA(B)1b receptors coexpressed with the GABA(B)2 receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Madsen, Bo E.; Krogsgaard-Larsen, P

    2001-01-01

    homogenate and in an assay of electrically induced contractions of guinea pig ileum. The results from the two tissues did, however, not correlate very well, and in order to further investigate these discrepancies, we have pharmacologically characterized these enantiomers on recombinant wild type and mutant...... rat GABA(B)1b receptors coexpressed with rat GABA(B)2 receptors. The results from this study correlate nicely with the binding data from rat brain. (R)-Homobaclofen was shown to act like (R)-baclofen albeit with 20-fold less potency, and (S)-homobaclofen was inactive on the receptor. The discrepancies...

  14. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.

    Science.gov (United States)

    Yoon, Jong H; Maddock, Richard J; Rokem, Ariel; Silver, Michael A; Minzenberg, Michael J; Ragland, J Daniel; Carter, Cameron S

    2010-03-10

    The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n = 16), we found a highly significant positive correlation (r = 0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r = -0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS.

  15. Anterior insula GABA levels correlate with emotional aspects of empathy: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Qianfeng Wang

    Full Text Available Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated.Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI and the anterior cingulate cortex (ACC and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI.Pearson correlation analyses (two-tailed showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05 and the personal distress score (r = 0.538, p<0.05 but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores.Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities.

  16. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  17. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.

    Science.gov (United States)

    Tung, Yi-Ting; Lee, Bao-Hong; Liu, Chin-Feng; Pan, Tzu-Ming

    2011-01-01

    Gamma-aminobutyric acid (GABA) and angiotensin-converting enzyme inhibitor (ACEI) are compounds which can influence hypertension. The goal of this study is to optimize the culture condition for GABA and ACEI production by Lactobacillus plantarum NTU 102 fermented skim milk. In this study, we used 3-factor-3-level Box-Behnken design combining with response surface methodology, where the 3 factors represent the concentration of skim milk, the concentration of monosodium glutamate, and culture temperature. Best conditions for GABA and ACEI production differed. The results indicated that L. plantarum NTU 102 produced the highest combined levels of GABA and ACEI at 37 °C, in milk having 8% to 12% nonfat solids supplemented with 0.6% to 1% MSG. Agitation of the medium during fermentation had no effect on GABA or ACEI production but extended incubation (up to 6 d) increases levels of the bioactive compounds. L. plantarum NTU 102 fermented products may be a potential functional food source for regulating hypertension. © 2011 Institute of Food Technologists®

  18. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    Science.gov (United States)

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  19. Study on flavour volatiles of γ-aminobutyric acid (GABA) green tea ...

    African Journals Online (AJOL)

    The volatile components of γ-aminobutyric acid (GABA) tea produced by two different kinds of technological process separately namely: vacuum and water immersion were studied. It was shown by the sensory evaluation that the color of the soup and the extracted leaves of GABA tea were similar to that of the oolong tea, ...

  20. Self-enhancement of GABA in rice bran using various stress treatments.

    Science.gov (United States)

    Kim, Hyun Soo; Lee, Eun Jung; Lim, Seung-Taik; Han, Jung-Ah

    2015-04-01

    Gamma-aminobutyric acid (GABA) may be synthesized in plant tissues when the organism is under stressful conditions. Rice bran byproduct obtained from the milling of brown rice was treated under anaerobic storage with nitrogen at different temperatures (20-60 °C) and moisture contents (10-50%) up to 12h. For the GABA synthesis, the storage at 30% moisture content and 40 °C appeared optimal. Utilisation of an electrolyzed oxidizing water (EOW, pH 3.3) for moisture adjustment and addition of glutamic acid increased the GABA content in rice bran. The maximum GABA content in rice bran (523 mg/100g) could be achieved by the anaerobic storage at 30% EOW for 5h at 40 °C after an addition of glutamic acid (5mM). This amount was approximately 17 times higher than that in the control (30 mg/100g). The use of EOW also prevented bacterial growth by decreasing the colony counts almost by half. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia

    OpenAIRE

    Rowland, Laura M.; Kontson, Kimberly; West, Jeffrey; Edden, Richard A.; Zhu, He; Wijtenburg, S. Andrea; Holcomb, Henry H.; Barker, Peter B.

    2012-01-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, partic...

  2. GABA content within the ventromedial prefrontal cortex is related to trait anxiety.

    Science.gov (United States)

    Delli Pizzi, Stefano; Padulo, Caterina; Brancucci, Alfredo; Bubbico, Giovanna; Edden, Richard A; Ferretti, Antonio; Franciotti, Raffaella; Manippa, Valerio; Marzoli, Daniele; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Bonanni, Laura

    2016-05-01

    The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study.

    Science.gov (United States)

    Marsman, Anouk; Mandl, René C W; Klomp, Dennis W J; Bohlken, Marc M; Boer, Vincent O; Andreychenko, Anna; Cahn, Wiepke; Kahn, René S; Luijten, Peter R; Hulshoff Pol, Hilleke E

    2014-01-01

    Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

  4. Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development.

    Science.gov (United States)

    Nakamura, Yukihiro; Harada, Harumi; Kamasawa, Naomi; Matsui, Ko; Rothman, Jason S; Shigemoto, Ryuichi; Silver, R Angus; DiGregorio, David A; Takahashi, Tomoyuki

    2015-01-07

    Synaptic efficacy and precision are influenced by the coupling of voltage-gated Ca(2+) channels (VGCCs) to vesicles. But because the topography of VGCCs and their proximity to vesicles is unknown, a quantitative understanding of the determinants of vesicular release at nanometer scale is lacking. To investigate this, we combined freeze-fracture replica immunogold labeling of Cav2.1 channels, local [Ca(2+)] imaging, and patch pipette perfusion of EGTA at the calyx of Held. Between postnatal day 7 and 21, VGCCs formed variable sized clusters and vesicular release became less sensitive to EGTA, whereas fixed Ca(2+) buffer properties remained constant. Experimentally constrained reaction-diffusion simulations suggest that Ca(2+) sensors for vesicular release are located at the perimeter of VGCC clusters (<30 nm) and predict that VGCC number per cluster determines vesicular release probability without altering release time course. This "perimeter release model" provides a unifying framework accounting for developmental changes in both synaptic efficacy and time course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    NARCIS (Netherlands)

    Boonstra, E.; Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S.

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer

  6. Dietary GABA and food selection by rats.

    Science.gov (United States)

    Tews, J K; Repa, J J; Harper, A E

    1986-01-01

    To obtain further information pertaining to amino acid-induced alterations in feeding behavior, studies were performed to examine the food choices made by rats fed low protein diets made more or less aversive by the addition of various amino acids. When rats were allowed to choose between two diets, they preferred a low protein control, threonine-imbalanced or nonprotein diet to one containing 2.5% gamma-aminobutyric acid (GABA). Acceptance increased when GABA content was lowered to 1.5%; rats preferred this diet when the alternative diet was made sufficiently aversive. There were large individual differences among rats selecting from pairs of unacceptable diets. Avoidance of, or preference for, a given diet is clearly affected by the relative aversive qualities of the offered pair of diets.

  7. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  8. Prefrontal cortical GABA modulation of spatial reference and working memory.

    Science.gov (United States)

    Auger, Meagan L; Floresco, Stan B

    2014-10-31

    Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  9. Acupuncture suppresses intravenous methamphetamine self-administration through GABA receptor's mediation.

    Science.gov (United States)

    Choi, Yi Jeong; Kim, Nam Jun; Zhao, Rong Jie; Kim, Da Hye; Yang, Chae Ha; Kim, Hee Young; Gwak, Young S; Jang, Eun Young; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; Lee, Sang Nam; Lim, Sung Chul; Lee, Bong Hyo

    2018-01-01

    Methamphetamine is one of the widely abused drugs. In spite of a number of studies, there is still little successful therapy to suppress the methamphetamine abuse. Acupuncture has shown to attenuate the reinforcing effects of psychostimulant. Based on, the present study investigated if acupuncture could suppress intravenous methamphetamine self-administration behavior. In addition, a possible neuronal mechanism was investigated. Male Sprague-Dawley rats weighing 270-300g were trained to intake food pellet. After catheter implantation, animal was trained to self-administer methamphetamine (0.05mg/kg) intravenously using fixed ratio 1 schedule in daily 2h session during 3 weeks. After training, rats who established baseline (infusion variation less than 20% of the mean for 3 consecutive days) received acupuncture treatment on the next day. Acupuncture was performed at each acupoint manually. In the second experiment, the selective antagonists of GABA A or GABA B receptor were given before acupuncture to investigate the possible neuronal involvement of GABA receptor pathway in the acupuncture effects. C-Fos expression was examined in the nucleus accumbens to support behavioral data. Acupuncture at HT7, but not at control acupoint LI5, reduced the self-administration behavior significantly. Also, the effects of acupuncture were blocked by the GABA receptor antagonists. C-Fos expression was shown to be parallel with the behavioral data. Results of this study have shown that acupuncture at HT7 suppressed methamphetamine self-administration through GABA receptor system, suggesting that acupuncture at HT7 can be a useful therapy for the treatment of methamphetamine abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake.

    Science.gov (United States)

    Stanley, B G; Urstadt, K R; Charles, J R; Kee, T

    2011-07-25

    By the 1990s a convergence of evidence had accumulated to suggest that neurons within the lateral hypothalamus (LH) play important roles in the stimulation of feeding behavior. However, there was little direct evidence demonstrating that neurotransmitters in the LH could, like electrical stimulation, elicit feeding in satiated animals. The present paper is a brief review in honor of Bartley Hoebel's scientific contributions, emphasizing the evidence from my lab that the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma aminobutyric acid (GABA) in the LH mediate feeding stimulation and feeding inhibition respectively. Specifically, we summarize evidence that LH injection of glutamate, or agonists of its N-methyl-D-aspartate (NMDA) and non-NMDA receptors, elicits feeding in satiated rats, that NMDA receptor antagonists block the eating elicited by NMDA and, more importantly, that NMDA blockade suppresses natural feeding and can reduce body weight. Conversely, GABA(A) agonists injected into the LH suppress feeding and can also reduce body weight, while GABA(A) receptor antagonists actually elicit eating when injected into the LH of satiated rats. It is suggested that natural feeding may reflect the moment-to-moment balance in the activity of glutamate and GABA within the LH. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    Directory of Open Access Journals (Sweden)

    E. Popova

    2014-01-01

    Full Text Available In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG. The role of gamma-aminobutyric acid (GABA, acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.

  12. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

    OpenAIRE

    Hashimoto, T; Arion, D; Unger, T; Maldonado-Avilés, JG; Morris, HM; Volk, DW; Mirnics, K; Lewis, DA

    2007-01-01

    In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmis...

  13. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    Science.gov (United States)

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  14. Reconstitution of the fusogenic activity of vesicular stomatitis virus

    NARCIS (Netherlands)

    Metsikkö, K.; van Meer, G.; Simons, K.

    1986-01-01

    Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell

  15. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  16. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    OpenAIRE

    Auger, Meagan L.; Floresco, Stan B.

    2014-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates ...

  17. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  18. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    Science.gov (United States)

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  19. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study.

    Science.gov (United States)

    Tayoshi, Shin'Ya; Nakataki, Masahito; Sumitani, Satsuki; Taniguchi, Kyoko; Shibuya-Tayoshi, Sumiko; Numata, Shusuke; Iga, Jun-ichi; Ueno, Shu-ichi; Harada, Masafumi; Ohmori, Tetsuro

    2010-03-01

    Gamma-amino butyric acid (GABA) is thought to play a role in the pathophysiology of schizophrenia. High magnetic field proton magnetic resonance spectroscopy ((1)H-MRS) provides a reliable measurement of GABA in specific regions of the brain. This study measured GABA concentration in the anterior cingulate cortex (ACC) and in the left basal ganglia (ltBG) in 38 patients with chronic schizophrenia and 29 healthy control subjects. There was no significant difference in GABA concentration between the schizophrenia patients and the healthy controls in either the ACC (1.36+/-0.45 mmol/l in schizophrenia patients and 1.52+/-0.54 mmol/l in control subjects) or the ltBG (1.13+/-0.26 mmol/l in schizophrenia patients and 1.18+/-0.20 mmol/l in control subjects). Among the right handed schizophrenia patients, the GABA concentration in the ltBG was significantly higher in patients taking typical antipsychotics (1.25+/-0.24 mmol/l) than in those taking atypical antipsychotics (1.03+/-0.24 mmol/l, p=0.026). In the ACC, the GABA concentration was negatively correlated with the dose of the antipsychotics (rs=-0.347, p=0.035). In the ltBG, the GABA concentration was positively correlated with the dose of the anticholinergics (rs=0.403, p=0.015). To the best of our knowledge, this is the first study to have directly measured GABA concentrations in schizophrenia patients using (1)H-MRS. Our results suggest that there are no differences in GABA concentrations in the ACC or the ltBG of schizophrenia patients compared to healthy controls. Antipsychotic medication may cause changes in GABA concentration, and atypical and typical antipsychotics may have differing effects. It is possible that medication effects conceal inherent differences in GABA concentrations between schizophrenia patients and healthy controls. (c) 2009 Elsevier B.V. All rights reserved.

  20. Contrast adaptation in cat visual cortex is not mediated by GABA.

    Science.gov (United States)

    DeBruyn, E J; Bonds, A B

    1986-09-24

    The possible involvement of gamma-aminobutyric acid (GABA) in contrast adaptation in single cells in area 17 of the cat was investigated. Iontophoretic application of N-methyl bicuculline increased cell responses, but had no effect on the magnitude of adaptation. These results suggest that contrast adaptation is the result of inhibition through a parallel pathway, but that GABA does not mediate this process.

  1. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  2. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    Science.gov (United States)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  3. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain.

    Directory of Open Access Journals (Sweden)

    Shiro Tochitani

    Full Text Available Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67, both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11-E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.

  4. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  5. Investigation of Gamma-aminobutyric acid (GABA A receptors genes and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ciccodicola Alfredo

    2008-12-01

    Full Text Available Abstract Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ, which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE and type θ (GABRQ genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls examining a set of 3 single nucleotide polymorphisms (SNPs in the coding region (exons 3, 5 and 9 of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05. Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.

  6. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    Science.gov (United States)

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    Science.gov (United States)

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment.

    Science.gov (United States)

    Huang, Dandan; Liu, Dan; Yin, Jianzhong; Qian, Tianyi; Shrestha, Susan; Ni, Hongyan

    2017-07-01

    To explore the changes of glutamate-glutamine (Glx) and gamma-aminobutyric acid (GABA) in the brain in normal old age and cognitive impairment using magnetic resonance spectroscopy (MRS). Seventeen normal young controls (NYC), 15 normal elderly controls (NEC), 21 patients with mild cognitive impairment (MCI) and 17 with Alzheimer disease (AD) patients were included in this study. Glx and GABA+ levels in the anterior cingulate cortex (ACC) and right hippocampus (rHP) were measured by using a MEGA-PRESS sequence. Glx/Cr and GABA+/Cr ratios were compared between NYC and NEC and between the three elderly groups using analysis of covariance (ANCOVA); the tissue fractions of voxels were used as covariates. The relationships between metabolite ratios and cognitive performance were analysed using Spearman correlation coefficients. For NEC and NYC groups, Glx/Cr and GABA+/Cr ratios were lower in NEC in ACC and rHP. For the three elderly groups, Glx/Cr ratio was lower in AD in ACC compared to NEC and MCI; Glx/Cr ratio was lower in AD in rHP compared to NEC. There was no significant decrease for GABA+/Cr ratio. Glx and GABA levels may decrease simultaneously in normal aged, and Glx level decreased predominantly in AD, and it is helpful in the early diagnosis of AD. • Glx and GABA levels may decrease simultaneously in normal aged. • Glx level may decrease predominantly in Alzheimer disease. • The balance in excitatory-inhibitory systems may be broken in AD. • Decreased Glx level may be helpful in early diagnosis of AD.

  9. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Science.gov (United States)

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  10. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik

    2009-01-01

    Relatively little is known on pain-induced neurotransmitter release in the human cerebral cortex. We used proton magnetic resonance spectroscopy (1H-MRS) during tonic painful heat stimulation to test the hypothesis of increases in both glutamate and GABA, two neurotransmitters with a key role...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....... in pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...

  11. Effect of NAD on binding and liberation of 14C-GABA in administration of the convulsion producing drug

    International Nuclear Information System (INIS)

    Fomenko, A.I.; Stepanenko, S.P.; Parkhomets, P.K.; Donchenko, G.V.

    1993-01-01

    Administration of corazole into animals led to a decrease in content of NAD and gamma-aminobutyric acid (GABA) in brain. Under these conditions, binding of 14 C-GABA was increased and its liberation was inhibited in the synaptosomes of the brain cortex. Additional administration of incotinamide, accompanied by considerable increase in content of NAD and GABA, caused a decrease in accumulation of exogenous GABA in the synaptosomes and removed the effects produced by the convulsant agent. Kinetics of 14 C-GABA binding in the presence of NAD demonstrated that the more effective inhibition of the binding occurred in the animals treated with the convulsant drug. NAD appears to affect the GABA-ergic transmission at the postsynaptic level

  12. Vesicular stomatitis virus (indiana 2 serotype as experimental model to study acute encephalitis – morphological features Vírus da estomatite vesicular (sorotipo indiana 2 como modelo experimental para o estudo de encefalite aguda – aspectos morfológicos

    Directory of Open Access Journals (Sweden)

    Florêncio Figueiredo Cavalcanti Neto

    2003-10-01

    Full Text Available The Vesicular Stomatitis Virus (VSV is a Vesiculovirus of the Rhabdoviridae family that infects mammals and causes vesicular lesions similar to those of foot-and-mouth disease. VSV experimental encephalitis can be induced in rodents and the symptoms are similar to those observed in rabies. However, the lesions observed in the animals´ encephalon are different. Inclusion bodies are not observed. There is necrosis, particularly in the region of the olfactory bulb, and, in some cases, ventriculitis. It was observed that the time pattern of VSV dissemination and the morphological aspects of the lesions are similar to those described in literature. The virus seems to be disseminated through the brain ventricles, being multiplied in the ependyma cells and in the neurons, besides using retrograde and anterograde transport. It was noticed that, due to the facility of virus manipulation, this experimental model has been used in innumerable research studies in several fields. If, on the one hand there are plenty of reports on the infection pathogenesis, on the other hand there are many gaps involving, for instance, aspects about virus transmission, recovery of infected animals and participation of glial cells in the acute as well as in the recovery phases.   O vírus da estomatite vesicular (VEV é um Vesiculovírus da família Rhabdoviridae que infecta mamíferos e causa lesões vesiculares semelhantes às observadas na febre aftosa. A encefalite experimental pode ser induzida em roedores e os sintomas são semelhantes aos observados na raiva; entretanto, as lesões observadas no encéfalo dos animais são diferentes. Corpúsculos de inclusão não são observados, há necrose especialmente da região do bulbo olfatório e em alguns casos, ventriculite. Observamos que o padrão temporal de disseminação do VEV e os aspectos morfológicos das lesões são similares aos descritos na literatura. O vírus parece se disseminar através dos ventr

  13. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia.

    Science.gov (United States)

    Lewis, David A; Hashimoto, Takanori; Morris, Harvey M

    2008-10-01

    Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission. Specifically, using a combination of methods, we found that subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding presynaptic regulators of GABA neurotransmission, neuropeptide markers of specific subpopulations of GABA neurons, and certain subunits of the GABA(A) receptor. In particular, alterations in the expression of the neuropeptide somatostatin suggested that GABA neurotransmission is impaired in the Martinotti subset of GABA neurons that target the dendrites of pyramidal cells. In contrast, none of the GABA-related transcripts assessed to date were altered in the DLPFC of monkeys chronically exposed to antipsychotic medications, suggesting that the effects observed in the human studies reflect the disease process and not its treatment. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia may be attributable to altered GABA neurotransmission in specific DLPFC microcircuits.

  14. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  15. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  16. The GAD-given Right of Dentate Gyrus Granule Cells to Become GABAergic

    Science.gov (United States)

    Mody, Istvan

    2002-01-01

    Janus, the ancient Roman God of Gates and Doors had two faces: one looked into the past, and the other, into the future. Do neurons possess a Janus face when it comes to neurotransmitters, or a given neuron is to be forever solely γ-aminobutyric acid (GABA) ergic, glutamatergic, dopaminergic, peptidergic, or YOURPREFERREDTRANSMITTERergic? The answer is that the terminals of many neurons are homes to even more than two neurotransmitters. All this in spite of the “one neuron–one transmitter” usual misinterpretation of Sir Henry Hallett Dale's postulate, originally meant to indicate that a metabolic process taking place in the cell body can influence all processes of the same neuron. A large variety of neurons in the CNS, many of them GABAergic, produce and release chemicals that satisfy some of the criteria used to define neurotransmitters. The usual scenario for a dual-transmitter terminal is that the fast-acting transmitter such as GABA or glutamate is stored in regular synaptic vesicles, whereas a neuropeptide is stored in dense core vesicles 1. The vesicular zinc found in many glutamatergic terminals also may be considered to be a second neurotransmitter, based on its vesicular packaging with the aid of a specific vesicular transporter, and its postsynaptic actions through high-affinity binding sites and permeation through certain channels 2. Whenever a “fast” and a “slow” neurotransmitter are present in the same presynaptic terminal, it is customary to assume that their release can be differentially regulated 1. There is little convincing experimental support for this phenomenon in the mammalian CNS. The coexistence of two “fast” neurotransmitters in the same terminal is less frequent, but not unheard of. In neonatal sympathetic neurons cocultured with cardiac myocytes, norepinephrine and acetylcholine coexist and have opposite actions on the cardiac muscle cells 3. Very recently we learned that brain-derived neurotrophic factor acting at the

  17. Development of psychopathology in deployed armed forces in relation to plasma GABA levels

    NARCIS (Netherlands)

    Schür, Remmelt R; Boks, Marco P; Geuze, Elbert; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Joëls, Marian; Kahn, René S; Vermetten, Eric; Vinkers, Christiaan H

    2016-01-01

    The GABA system is pivotal for an adequate response to a stressful environment but has remained largely unexplored in this context. The present study investigated the relationship of prospectively measured plasma GABA levels with psychopathology symptoms in military deployed to Afghanistan at risk

  18. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy.

    Science.gov (United States)

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A E

    2015-02-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 kHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2 and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm(3) volumes centered on the left and right Heschl's gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = -0.57, p = 0.02), while a similar trend was found in the control group (r = -0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis and suggest a potential treatment target for presbycusis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    Directory of Open Access Journals (Sweden)

    Talitha C Ford

    Full Text Available The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated.A total of 37 adults (19 female, 18 male aged 18-38 years completed the Autism Spectrum Quotient (AQ and Schizotypal Personality Questionnaire (SPQ, and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel.There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (p<0.05, SPQ subscales Social Anxiety, No Close Friend, Constricted Affect, Odd Behaviour, Odd Speech, Ideas of Reference and Suspiciousness, and AQ subscales Social Skills, Communication and Attention Switching (p<0.05; increased glutamate/GABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (p< 0.004. Left superior temporal glutamate/GABA+ ratio reduced with increasing restricted imagination (p<0.05.These findings demonstrate evidence for an association between excitatory/inhibitory neurotransmitter concentrations and symptoms that are shared between the autism and

  1. The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis

    Science.gov (United States)

    Zaprasis, Adrienne; Hoffmann, Tamara; Stannek, Lorena; Gunka, Katrin; Commichau, Fabian M.

    2014-01-01

    PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates. PMID:24142252

  2. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  3. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    Science.gov (United States)

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  4. Quantitative autoradiography of hippocampal GABA/sub B/ and GASA/sub A/ receptor changes in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chu, D C.M.; Penney, Jr, J B; Young, A B

    1987-12-04

    GABA/sub B/ and GABA/sub A/ receptors were examined by quantitative (/sup 3/H) GABA autoradiography in postmortem human hippocampus from 6 histopathologically verified cases of dementia of the Alzheimer type (DAT) and 6 normal controls. Significant decrements in the B/sub max/ for both types of GABA receptors were observed in DAT hippocampus as compared to normal controls. No significant differences in K/sub d/ values were revealed. As compared to controls, DAT hippocampus exhibited fewer GABA/sub B/ receptors in stratum moleculare of the denate gyrus, stratum lacunosum-molecular and stratum pyramidale of CA/sub 1/. Significant loss of GABA/sub A/ receptors in DAT hippocampus was also observed in the CA/sub 1/ pyramidal cell region. These changes could not be correlated with differences in age nor in postmortem delay between the two groups. These findings may reflect the neuronal pathologies in CA/sub 1/ region in dentate gyrus, and in projections from the entorhinal cortex which are associated with the memory impairment of DAT. 29 refs.

  5. The GABA A-Receptor γ2 (GABRG2 Gene in obsessive-compulsive disorder O gene do receptor GABA A- γ2 (GABRG2 no transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Margaret A. Richter

    2009-12-01

    Full Text Available OBJECTIVE: The γ-aminobutyric acid type A (GABA A system may be implicated in obsessive-compulsive disorder, based on its major role in modulation of anxiety and its function as the principal inhibitory neurotransmitter system in the cortex. In addition, glutamatergic/GABAergic mechanisms appear to play a role in the pathophysiology of obsessive-compulsive disorder, making the GABA A receptor-γ2 (GABργ2 gene a good candidate for susceptibility in this disorder. METHOD: 118 probands meeting DSM-IV criteria for primary obsessive-compulsive disorder and their available parents were recruited for participation in this study and informed consent was obtained. An NciI restriction site polymorphism in the second intron was genotyped and data was analyzed using the Transmission Disequilibrium Test. RESULTS: In total, 61 of the participating families were informative (i.e., with at least one heterozygous parent. No biases were observed in the transmission of either of the two alleles (χ2 = 0.016, 1 d.f., p = 0.898 to the affected probands in the total sample. CONCLUSION/DISCUSSION: While these results do not provide support for a major role for the GABA A receptor-γ2 in obsessive-compulsive disorder, further investigations of this gene in larger samples are warranted.OBJETIVO: O sistema gabaérgico tipo A (GABA A pode estar implicado no transtorno obsessivo-compulsivo devido ao seu grande papel na modulação da ansiedade e da sua função como o principal neurotransmissor inibidor no córtex. Além disso, mecanismos glutamatérgicos/gabaérgicos parecem desempenhar um papel na fisiopatologia do transtorno obsessivo-compulsivo, tornando o gene do receptor GABA A-γ2 (GABRG2 um bom gene candidato para a suscetibilidade genética a este transtorno. MÉTODO: 118 probandos que preencheram os critérios do DSM-IV para transtorno obsessivo-compulsivo primário e seus pais (quando disponíveis foram recrutados para a participação neste estudo

  6. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  7. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  8. Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses.

    Science.gov (United States)

    Knych, H K; Steinmetz, S J; McKemie, D S

    2015-04-01

    The anti-anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA-containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC-MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half-life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative-like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent. © 2014 John Wiley & Sons Ltd.

  9. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    Science.gov (United States)

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  10. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABA(B) receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation.

    Science.gov (United States)

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, L A; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, J P; Nilsson, K; Oja, S S; Saransaari, P; von Unge, S

    2012-03-01

    Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABA(B) receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABA(B) receptors. To understand the structure-activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. The compounds were characterized in terms of GABA(B) agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABA(B) receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABA(B) receptor agonism may afford therapeutic effects. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period.

    Science.gov (United States)

    Balázsfi, Diána; Farkas, Lívia; Csikota, Péter; Fodor, Anna; Zsebők, Sándor; Haller, József; Zelena, Dóra

    2016-07-01

    Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.

  13. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  14. Induction of the GABA cell phenotype: an in vitro model for studying neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Sivan Subburaju

    Full Text Available Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD₆₇ (GAD1 expression and may play a role in γ-amino butyric acid (GABA dysfunction in schizophrenia (SZ and bipolar disorder (BD. To obtain a more detailed understanding of how GAD₆₇ regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD₆₇ and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD₆₇-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2 and the post-synaptic density protein 95 (PSD95. The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD₆₇, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of "differentiated" HiB5 neurons. In the presence of Ca²⁺ and K⁺, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD₆₅, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD₆₇ regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD₆₇ regulation in the adult hippocampus.

  15. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    International Nuclear Information System (INIS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-01-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E GABA ). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g GABA-extra ) and experimentally identified, seizure-induced changes in g GABA-extra and E GABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g GABA-extra reduced the frequency and coherence of FS-BC firing when E GABA was shunting (−74 mV), but failed to alter average FS-BC frequency when E GABA

  16. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  17. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    Science.gov (United States)

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical

  18. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  19. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    Science.gov (United States)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  20. Immunocytochemical indications for neuronal co-localization of GABA and aspartate in cultured neocortex explants

    NARCIS (Netherlands)

    de Jong, B. M.; Ruijter, J. M.; Buijs, R. M.

    1989-01-01

    The application of postembedding immunocytochemistry on serial semithin plastic sections, revealed the presence of gamma-aminobutyric acid (GABA)-positive and aspartate-positive neurons in cultured neocortex explants. GABA-positive neurons were found in all layers of the cultured cortex, whereas

  1. Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission

    Directory of Open Access Journals (Sweden)

    David J. Barker

    2017-11-01

    Full Text Available Summary: The lateral habenula (LHb is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO, little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. : Barker et al. show that distinct populations of lateral preoptic area glutamate and GABA neurons synapse together on single lateral habenula neurons and find that this “convergent neurotransmission” allows preoptic area neurons to exert bivalent control over single lateral habenula neurons and drive opposing motivational states. Keywords: preoptic, habenula, reward, aversion, synapse, glutamate, GABA, stress, calcium imaging, optogenetics, electron microscopy

  2. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  3. Regional GABA concentration and [3H]-diazepam binding in rat brain following repeated electroconvulsive shock

    International Nuclear Information System (INIS)

    Bowdler, J.M.; Green, A.R.; Minchin, M.C.W.; Nutt, D.J.

    1983-01-01

    It has been confirmed that 24 hours following a series of electroconvulsive shocks (ECS) given once daily for 10 days (ECS x 10) to rats there is an increase in GABA concentration in the corpus striatum. A similar change was seen after the ECS had been given to rats anaesthetised with halothane, or when 5 ECS were given spread out over 10 days, the rats being anaesthetised during the ECS. A daily convulsion for 10 days elicited by flurothyl exposure resulted in an increased striatal GABA concentration, but also increased the GABA concentration in the hypothalamus, hippocampus and cortex. The increase in striatal GABA concentration was present 24 hours after ECS daily for 5 days or 3 days after ECS daily for 10 days. No change in [ 3 H]-diazepam binding was seen in hippocampus, cortex or corpus striatum 24 hours after the last of 10 once daily ECS. The increase in striatal GABA concentration was therefore seen at all times when enhanced monoaminemediated behaviours have been demonstrated following seizures. (Author)

  4. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    Science.gov (United States)

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH.

  5. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  6. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Wright, S F; Morton, J B; Sworobuk, J E

    1987-09-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains.

  7. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  8. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  9. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  10. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1.

    Science.gov (United States)

    Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel

    2015-03-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  11. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2017-07-01

    The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults. NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were

  12. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    Science.gov (United States)

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  14. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  15. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  16. Subaqueous non-vesicular to poorly-vesicular shards: hydroclastic fragmentation on seamounts and summit calderas

    Science.gov (United States)

    Mueller, W. U.; Dingwell, D. B.; Downey, W. S.; Mastin, L. G.

    2008-12-01

    Recognizing pyroclastic deposits that originate directly from magmatic and phreatomagmatic explosions in a subaqueous setting is based upon sedimentary structures, such as massive, stratified, and graded beds as well as (pyro)clast size. Ideally such deposits form ordered fining-and thinning-upward sequences. Pumice, scoria, glass shards, euhedral and broken crystals, and lithic fragments are constituents that support an explosive heritage. Recent deep-sea ROV and submersible dives have retrieved non-vesicular to vesicle- poor, mm-scale, mafic shards in 5-15 cm-thick massive and/or graded (stratified) deposits, for which a subaqueous explosive origin has been inferred. These sheet hyaloclastites with variable shard shapes were first documented on Seamount 6 as deep-sea Limu O Pele at water depths > 1000 m. We identified in Seamount 6 samples equant to blocky shards with angular to subrounded terminations, but also subordinate hair-like and contorted glassy filaments, warped shards and irregular shards. Shards display internal laminations (flow-banding?) and have local perlitic fractures. Bubble wall shards derived from scoria burst were rare. In combination with all the above and a poor shard vesicularity (tubes and ponded magma in depths > 1000 m. We envision that hydrostatic pressure commensurate with water depth played a significant role. The deposits can be readily explained by a hydroclastic process whereby fragmentation occurred at the milli-second (Limu) to second scale (hyaloclastite). Hence, hyperquenched glass shards or thread-like glass filaments need not require magmatic explosivity. Constant surface interaction between aphyric, low-viscosity, high temperature, magma-lava at depth with seawater causes fragmentation (granulation) that can generate such delicate shards. The transfer of heat to the ambient medium, seawater, favours turbulent convection causing strong water movement that strips glassy rinds and lofts the fine-grained shards and Limu O Pele

  17. Effects of a whole body gamma irradiation on GABA repartition in infant rats cerebellum and hippocampal formation

    International Nuclear Information System (INIS)

    Menetrier, F.; Vernois, Y.; Court, L.

    1992-01-01

    'Full-Text:' Thirteen-day-old rats were exposed to a single dose of 4 or 0,5 Gy of gamma at a dose rate of 0,25 Gy/min and were killed about 5h after. Fixation was achieved in situ using glutaraldehyde. For GABA immunocytochemistry transversal sections were incubated with antiserum against GABA, then with PAP and revealed with diaminobenzidine. Proliferative layers are still observed in the infant rat cerebellum (external granular layer) and hippocampal formation (subgranular layer of the dentate gyrus). When irradiation occurs a high percent of these two layers cells are pycnotic. In the normal cerebellum, no immunostaining is observed in external granular layer cell bodies. The only labelled structures are few cytoplasmic expansions coming from subjacent layers. When irradiated, a strong GABA staining appears around pycnotic cells as a network with labelled meshes. GABA staining and pycnotic cells were more especially important when the irradiation increases. Further studies are needed to specify the nature of labelled meshes. In the normal hippocampal formation, subgranular cells are not GABA stained. Staining occurs in cells which are not granule cells. They are scattered throughout cell layers of the dentate gyrus with predominance in the hilus. After irradiation, GABA repartition is not modified. After a 4 Gy whole body gamma irradiation, the inhibitory GABA system is not injured. Other amino-acid neurotransmitters such as Glutamate could be modified. (author)

  18. Purification of gamma-amino butyric acid (GABA) from fermentation of defatted rice bran extract by using ion exchange resin

    Science.gov (United States)

    Tuan Nha, Vi; Phung, Le Thi Kim; Dat, Lai Quoc

    2017-09-01

    Rice bran is one of the significant byproducts of rice processing with 10 %w/w of constitution of whole rice grain. It is rich in nutrient compounds, including glutamic acid. Thus, it could be utilized for the fermentation with Lactobateria for synthesis of GABA, a valuable bioactive for antihypertensive effects. However, the concentration and purity of GABA in fermentation broth of defatted rice bran extract is low for production of GABA drug. This research focused on the purification of GABA from the fermentation broth of defatted rice bran extract by using cation exchange resin. The results indicate that, the adsorption isotherm of GABA by Purelite C100 showed the good agreement with Freundlich model, with high adsorption capacity. The effects of pH and concentration of NaCl in eluent on the elution were also investigated. The obtained results show that, at the operating conditions of elution as follows: pH 6.5, 0.8 M of NaCl in eluent, 0.43 of bed volume; concentration of GABA in accumulative eluent, the purity and recovery yield of GABA were 743.8 ppm, 44.0% and 84.2%, respectively. Results imply that, it is feasible to apply cation exchange resin for purification of GABA from fermentation broth of defatted rice bran extract.

  19. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    OpenAIRE

    Collins, Ann L.; Ma, Deqiong; Whitehead, Patrice L.; Martin, Eden R.; Wright, Harry H.; Abramson, Ruth K.; Hussman, John P.; Haines, Jonathan L.; Cuccaro, Michael L.; Gilbert, John R.; Pericak-Vance, Margaret A.

    2006-01-01

    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SN...

  20. Pancreatitis aguda grave asociada a gangrena vesicular

    OpenAIRE

    Arroyo-Sánchez, Abel S; Aguirre-Mejía, Rosa Y; Echenique-Martínez, Sergio E

    2014-01-01

    Se presenta el caso un paciente diabético que desarrolló un cuadro de pancreatitis aguda grave asociada a gangrena vesicular, en el que se evaluó la aplicabilidad de los criterios de clasificación y manejo de la hoja de ruta para pancreatitis aguda, así mismo se proponen algunos tópicos que pudieran ser investigados a futuro We present a diabetic patient who developed severe acute pancreatitis associated to gallbladder gangrene, in this case we assessed the applicability of classification ...

  1. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    Science.gov (United States)

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  2. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  3. Hyperalgesic effect induced by barbiturates, midazolam and ethanol: pharmacological evidence for GABA-A receptor involvement

    Directory of Open Access Journals (Sweden)

    M.A.K.F. Tatsuo

    1997-02-01

    Full Text Available The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg, pentobarbital (17-33 mg/kg, and thiopental (7.5-30 mg/kg, of the benzodiazepine midazolam (10 mg/kg or of ethanol (0.4-1.6 g/kg administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP, which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

  4. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  5. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  6. [Ion-dependency of the GABA-potentiating effects of benzodiazepine tranquilizers and harmane].

    Science.gov (United States)

    Abramets, I I; Komissarov, I V

    1984-06-01

    Experiments on an isolated spinal cord of 8-15-day-old rats have shown that one of the possible mechanisms of the GABA-potentiating action of the benzodiazepine tranquilizer, chlorodiazepoxide, may be a decrease in the intraneuronal concentration of Ca2+. This is evidenced by the enhancement of the GABA-potentiating action of chlorodiazepoxide under Ca2+ deficiency in the medium and in the presence of the blockers of the voltage-dependent Ca2+ ionic channels--Mn2+ and Co2+, and by the reduction of the effect in question under Ca2+ excess in the medium and in the presence of the K+ channels blockers--tetraethylammonium and 4-aminopyridine. The GABA-potentiating action of harmane is likely to be related to the blockade of the voltage-dependent K+ channels and elevation of the intracellular concentration of Ca2+.

  7. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  8. The distribution of vesicular-arbuscular mycorrhizal fungi in India.

    Science.gov (United States)

    Rani, R; Mukerji, K G

    1990-01-01

    Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.

  9. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes.

    Science.gov (United States)

    Unichenko, Petr; Myakhar, Olga; Kirischuk, Sergei

    2012-04-01

    Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal. Copyright © 2012 Wiley Periodicals, Inc.

  10. Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats.

    Science.gov (United States)

    Tews, J K; Rogers, Q R; Morris, J G; Harper, A E

    1984-02-01

    GABA at 5%, but not 3%, of a low protein diet depressed food intake and growth of kittens. Adaptation to high protein prevented these effects. When cats adapted to low or high protein were fed a meal containing GABA, plasma GABA concentration after 2 hr was 8-fold higher in the low than in the high protein group; clearance was almost complete within 6 hr. Concentrations of proline, branched-chain, other large neutral and basic (especially ornithine) amino acids increased more when cats were fed a high rather than a low protein meal; glycine decreased. At 6 hr, concentrations had consistently returned to initial levels only in the low protein group. Feeding the high protein diet ad lib increased tissue concentrations of threonine, proline and the branched-chain amino acids. Hepatic or renal GABA-aminotransferase activity was not altered in kittens fed the high protein diet. Kidney activity was 10-fold that of liver, which may contribute to the better tolerance of GABA by cats than by rats.

  11. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs.

    Science.gov (United States)

    Park, Namhyeon; Lee, Tae-Kyung; Nguyen, Thi Thanh Hanh; An, Eun-Bae; Kim, Nahyun M; You, Young-Hyun; Park, Tae-Sub; Kim, Doman

    2017-07-01

    The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. [Effect of stimulation of GABA-ergic structures of the substantia nigra and caudate nucleus on food-getting behavior in the cat].

    Science.gov (United States)

    Shugalev, N P

    1983-01-01

    A study was made of the functional significance of GABA-ergic structures of the substantia nigra (SN) and the caudate nucleus (CN) and their role in food-procuring behaviour of cats. Analysis was made of behavioral and EEG-effects of local GABA and the GABA antagonist, picrotoxin, microinjections into the studied brain structures. Stimulation of the GABA-ergic structures of the SN produced a sedative effect and depression of the cat food-procuring behaviour. Effects of stimulation of the CN GABA-ergic structures were to a great degree reverse. The conclusion has been made that GABA-ergic structures of the SN and the CN play different roles in controlling the CN inhibitory influence upon food-procuring behaviour.

  13. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K.; Kim, Grace E.; Lin, Lawrence; Giacomini, Kathy; Naranjo, Arlene; Van Ryn, Collin; Yanik, Gregory A.; Kreissman, Susan G.; Hogarty, Michael; DuBois, Steven G.

    2016-01-01

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  14. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Rockoff EC

    2014-09-01

    Full Text Available Emily C Rockoff,1 Pooja Balaram,1 Jon H Kaas1,2 1Department of Psychology, 2Department of Cell and Molecular Biology, Vanderbilt University, Nashville, TN, USA Abstract: Blobs are a modular component of the primary visual cortex (area 17 of all primates, but not of other mammals closely related to primates. They are characterized as an even distribution of patches, puffs, or blobs of dense cytochrome oxidase (CO expression in layer III of area 17, and are now known to differ from surrounding, nonblob cortex in thalamic, intrinsic, and extrastriate connections. Previous studies have also recognized a blob-like pattern of myelin-dense patches in layer III of area 17 of primates, and more recently the vesicular glutamate transporter (VGLUT-2 isoform of the VGLUT family has been found to selectively distribute to layer III patches in a similar blob-like pattern. Here, we sought to determine if the blob-like patterns all identify the same modular structures in area 17 of primates by staining alternate brain sections cut parallel to the surface of area 17 of a prosimian primate (Otolemur garnettii for CO, myelin, and VGLUT2. By aligning the sections from the three preparations, we provide clear evidence that the three preparations all identify the same modular blob structures. The results provide a further understanding of the functional nature of the blobs by demonstrating that their higher level of CO activity is related to thalamic inputs from the lateral geniculate nucleus that use VGLUT2 as their main glutamate transporter, and via myelinated axons. Keywords: columns, modules, visual cortex, primates, prosimians

  15. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); Kim, Grace E. [UCSF School of Medicine, Department of Pathology, San Francisco, CA (United States); Lin, Lawrence; Giacomini, Kathy [UCSF School of Pharmacy, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA (United States); Naranjo, Arlene; Van Ryn, Collin [University of Florida, Children' s Oncology Group Statistics and Data Center, Gainesville, FL (United States); Yanik, Gregory A. [University of Michigan, CS Mott Children' s Hospital, Ann Arbor, MI (United States); Kreissman, Susan G. [Duke University Medical Center, Durham, NC (United States); Hogarty, Michael [University of Pennsylvania, Children' s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA (United States); DuBois, Steven G. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); UCSF School of Medicine, San Francisco, CA (United States)

    2016-03-15

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  16. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  17. Chronic prenatal ethanol exposure alters hippocampal GABA(A) receptors and impairs spatial learning in the guinea pig.

    Science.gov (United States)

    Iqbal, U; Dringenberg, H C; Brien, J F; Reynolds, J N

    2004-04-02

    Chronic prenatal ethanol exposure (CPEE) can injure the developing brain, and may lead to the fetal alcohol syndrome (FAS). Previous studies have demonstrated that CPEE upregulates gamma-aminobutyric acid type A (GABA(A)) receptor expression in the cerebral cortex, and decreases functional synaptic plasticity in the hippocampus, in the adult guinea pig. This study tested the hypothesis that CPEE increases GABA(A) receptor expression in the hippocampus of guinea pig offspring that exhibit cognitive deficits in a hippocampal-dependent spatial learning task. Timed, pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight per day), isocaloric-sucrose/pair-feeding, or water throughout gestation. GABA(A) receptor subunit protein expression in the hippocampus was measured at two development ages: near-term fetus and young adult. In young adult guinea pig offspring, CPEE increased spontaneous locomotor activity in the open-field and impaired task acquisition in the Morris water maze. CPEE did not change GABA(A) receptor subunit protein expression in the near-term fetal hippocampus, but increased expression of the beta2/3-subunit of the GABA(A) receptor in the hippocampus of young adult offspring. CPEE did not change either [(3)H]flunitrazepam binding or GABA potentiation of [(3)H]flunitrazepam binding, but decreased the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding, to hippocampal GABA(A) receptors in adult offspring. Correlational analysis revealed a relationship between increased spontaneous locomotor activity and growth restriction in the hippocampus induced by CPEE. Similarly, an inverse relationship was found between performance in the water maze and the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding in the hippocampus. These data suggest that alterations in hippocampal GABA(A) receptor expression and pharmacological properties contribute to hippocampal-related behavioral and cognitive deficits

  18. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  19. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  1. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    Science.gov (United States)

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P nervous system. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate......-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode...... of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines a1T206 and c2T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important a1H101 and the N-methyl group near a1Y159, a1T206, and a1Y209. We present a binding mode...

  3. Contributions of GABA to alcohol responsivity during adolescence: Insights from preclinical and clinical studies

    Science.gov (United States)

    Silveri, Marisa M.

    2015-01-01

    There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol abuse disorders. PMID:24631274

  4. Reserpine-induced Reduction in Norepinephrine Transporter Function Requires Catecholamine Storage Vesicles

    OpenAIRE

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A.

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, res...

  5. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E

    1990-01-01

    The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  6. JST Thesaurus Headwords and Synonyms: vesicular stomatitis virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term vesicular stomatitis virus 名詞 一般 ...* * * * 水疱性口内炎ウイルス スイホウセイコウナイエンウイルス スイホーセイコーナイエンウイルス Thesaurus2015 200906056003651861 C LS07 UNKNOWN_2 vesicular stomatitis virus

  7. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    Science.gov (United States)

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  9. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    Science.gov (United States)

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model.

    Science.gov (United States)

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-04-01

    This study was to investigate the sleep promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), by examining neuronal processes governing mRNA level alterations, as well as assessing neuromodulator concentrations, in a fruit fly model. Behavioral assays were applied to investigate subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep of two amino acids and GABA/5-HTP mixture with caffeine treated flies. Also, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. Subjective nighttime activity and sleep patterns of individual flies significantly decreased with 1% GABA treatment in conjunction with 0.1% 5-HTP treatment (pGABA/5-HTP mixture resulted in significant differences between groups related to sleep patterns (40%, plevels of the GABAB receptor (GABAB-R1) and serotonin receptor (5-HT1A), compared to the control group. In addition, GABA/5-HTP mixture significantly increased GABA levels 1h and 12h following treatment (2.1 fold and 1.2 fold higher than the control, respectively) and also increased 5-HTP levels (0 h: 1.01 μg/protein, 12h: 3.45 μg/protein). In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep to a greater extent than single administration of each amino acid, and that this modulation occurs via GABAergic and serotonergic signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    Science.gov (United States)

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  12. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    Science.gov (United States)

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  13. Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation.

    Science.gov (United States)

    Zhang, Rong; Ashton, John; Horii, Arata; Darlington, Cynthia L; Smith, Paul F

    2005-03-10

    The process of behavioral recovery that occurs following damage to one vestibular labyrinth, vestibular compensation, has been attributed in part to a down-regulation of GABA(B) receptors in the vestibular nucleus complex (VNC) ipsilateral to the lesion, which could potentially reduce commissural inhibition from the contralateral VNC. In this study, we tested the possibility that this occurs through a decrease in the expression of either the GABA(B1) or GABA(B2) subunits of the GABA(B) receptor. We used Western blotting to quantify the expression of these subunits in the VNC at 10 h and 50 h following unilateral vestibular deafferentation (UVD) or sham surgery in rats. We then used immunocytochemistry and stereological counting methods to estimate the number of neurons expressing these subunits in the MVN at 10 h and 2 weeks following UVD or sham surgery. Compared to sham controls, we found no significant changes in either the expression of the two GABA(B) receptor subunits in the VNC or in the number of MVN neurons expressing these GABA(B) receptor subunits post-UVD. These results suggest that GABA(B) receptor expression does not change substantially in the VNC during the process of vestibular compensation.

  14. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    OpenAIRE

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive ?-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of exc...

  15. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Inka Ristow

    Full Text Available A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC and in a control region, the pregenual anterior cingulate cortex (pgACC in pedophilic sex offenders (N = 13 and matched controls (N = 13 using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS. In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04. Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = −0.689. In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control. Keywords: Child sexual abuse, Dorsal anterior cingulate cortex, GABA, Magnetic resonance spectroscopy, Pedophilic sex offenders

  16. Neuropsychiatric Phenotypes Produced by GABA Reduction in Mouse Cortex and Hippocampus.

    Science.gov (United States)

    Kolata, Stefan M; Nakao, Kazuhito; Jeevakumar, Vivek; Farmer-Alroth, Emily L; Fujita, Yuko; Bartley, Aundrea F; Jiang, Sunny Zhihong; Rompala, Gregory R; Sorge, Robert E; Jimenez, Dennisse V; Martinowich, Keri; Mateo, Yolanda; Hashimoto, Kenji; Dobrunz, Lynn E; Nakazawa, Kazu

    2018-05-01

    Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests. Since saccharine preference, progressive ratio responding to food, and learned helplessness task were normal, such avolition-like behavior could not be explained by anhedonia or behavioral despair. In line with the prevailing view that dopamine in anterior cingulate cortex (ACC) plays a role in evaluating effort cost for engaging in actions, we found that tail-suspension triggered dopamine release in ACC of controls, which was severely attenuated in the mutant mice. Conversely, ACC dopamine release by progressive ratio responding to reward, during which animals were allowed to effortlessly perform the nose-poking, was not affected in mutants. These results suggest that cortical GABA reduction preferentially impairs the effort-based behavior which requires much effort with little benefit, through a deficit of ACC dopamine release triggered by high-effort cost behavior, but not by reward-seeking behavior. Collectively, a subset of negative symptoms with a reduced willingness to expend costly effort, often observed in patients with schizophrenia and depression, may be attributed to cortical GABA level reduction.

  17. Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays.

    NARCIS (Netherlands)

    Krumpochova, P; Sapthu, S.; Brouwers, J.F.H.M.; de Haas, M.; de Vos, R.; Borst, P.; van de Wetering, K.

    2013-01-01

    ABSTRACT The ATP-binding cassette (ABC) genes encode the largest family of transmembrane proteins. ABC transporters translocate a wide variety of substrates across membranes, but their physiological function is often incompletely understood. We describe a new method to study the substrate spectrum

  18. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons.

    Science.gov (United States)

    Eastwood, S L; Harrison, P J

    2005-03-01

    Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.

  19. Pharmacological and biochemical properties of the benzodiazepine-GABA receptor in codfish brain in comparison with mammalian brain

    International Nuclear Information System (INIS)

    Deng, L.

    1989-01-01

    The GABA receptor of codfish brain is encoded by an ancestral gene of the mammalian GABA receptor based on phylogenetic studies. The mammalian GABA receptor consists of at least two subunits (β and α) which could be photoaffinity labeled by the GABA agonist [ 3 H]muscimol (57 kDa) and the benzodiazepine (BZ) agonist [ 3 H]flunitrazepam (52 kDa), respectively. In contrast, electrophoresis of codfish GABA receptor photoaffinity labeled by the same ligands showed a single radioactive peak on sodium dodecyl surface polyarcylamide gel, giving rise to a relative molecular weight of 56-57 kDa equivalent to the β subunit of 57 kDa in mammals. The homogeneity of purified receptor using benzodiazepine (Ro 7-1986/1) affinity chromatography was further verified by two-dimensional gel electrophoresis based on isoelectric point and molecular weight, in addition to a single band on a silver stained gel and specific activity. The receptor density and affinity constant for [ 3 H]muscimol and [ 3 H]flunitrazepam are comparable to those in bovine, rate, and human brain

  20. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments.

    Science.gov (United States)

    O'Connor, William T; O'Shea, Sean D

    2015-06-01

    Schizophrenia disease models are necessary to elucidate underlying changes and to establish new therapeutic strategies towards a stage where drug efficacy in schizophrenia (against all classes of symptoms) can be predicted. Here we summarise the evidence for a GABA dysfunction in schizophrenia and review the functional neuroanatomy of five pathways implicated in schizophrenia, namely the mesocortical, mesolimbic, ventral striopallidal, dorsal striopallidal and perforant pathways including the role of local GABA transmission and we describe the effect of clozapine on local neurotransmitter release. This review also evaluates psychotropic drug-induced, neurodevelopmental and environmental disease models including their compatibility with brain microdialysis. The validity of disease models including face, construct, etiological and predictive validity and how these models constitute theories about this illness is also addressed. A disease model based on the effect of the abrupt withdrawal of clozapine on GABA release is also described. The review concludes that while no single animal model is entirely successful in reproducing schizophreniform symptomatology, a disease model based on an ability to prevent and/or reverse the abrupt clozapine discontinuation-induced changes in GABA release in brain regions implicated in schizophrenia may be useful for hypothesis testing and for in vivo screening of novel ligands not limited to a single pharmacological class. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...... in fumigated plots, although both it and P uptake were increased by adding P fertilizer. The possible reasons for this discrepancy are discussed. A supplementary survey on infection development at five other field sites showed that peas are extensively colonized by VAM fungi, even in soils where a standard...

  2. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    Science.gov (United States)

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  3. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo

    2014-01-01

    Swine vesicular disease virus (SVDV) is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal) vesicular disease in pigs. We report a rapid method...... with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence...

  4. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    OpenAIRE

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny...

  5. Reduced parahippocampal and lateral temporal GABA{sub A}-[{sup 11}C]flumazenil binding in major depression: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Klumpers, Ursula M.H. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); GGZ inGeest, partner of VUmc, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Veltman, Dick J. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Drent, Madeleine L. [VU University Medical Center, Department of Endocrinology, Amsterdam (Netherlands); Boellaard, Ronald; Lammertsma, Adriaan A. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Comans, Emile F.I. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Meynen, Gerben [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); Hoogendijk, Witte J.G. [VU University Medical Center, Department of Psychiatry, Amsterdam (Netherlands); VU University Medical Center, Center for Neurogenomics and Cognitive Research, Amsterdam (Netherlands); VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands)

    2010-03-15

    Major depressive disorder (MDD) has been related to both a dysfunctional {gamma}-amino butyric acid (GABA) system and to hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA). Although GABA has been suggested to inhibit HPA axis activity, their relationship has never been studied at the level of the central GABA{sub A}-benzodiazepine receptor in depressed patients or in relation to antidepressant treatment. Eleven depressed outpatients were compared, before and after treatment with citalopram, with nine age-matched healthy controls. The subjects were scanned using the positron emission tomography (PET) tracer [{sup 11}C]flumazenil ([{sup 11}C]FMZ). Parametric voxel-by-voxel Logan plots were compared with methods based on regions of interest (ROI), to provide volume of distribution (V{sub T}) and binding potential (BP{sub ND}) values. Plasma GABA levels were determined and a dexamethasone-corticotropin releasing hormone (DEX-CRH) test was performed. In MDD, parametric voxel-by-voxel Logan plots showed bilateral reduced [{sup 11}C]FMZ binding in the parahippocampal gyrus and right lateral superior temporal gyrus (p uncorrected {<=}0.001). In the temporal area, [{sup 11}C]FMZ binding showed a strong inverse correlation with HPA axis activity. Plasma GABA did not discriminate MDD from controls, but correlated inversely with [{sup 11}C]FMZ binding in the right insula. Following treatment with citalopram, voxel-based analysis revealed reduced binding in the right lateral temporal gyrus and dorsolateral prefrontal cortex. The bilateral reduction in limbic parahippocampal and right temporal [{sup 11}C]FMZ binding found in MDD indicates decreased GABA{sub A}-benzodiazepine receptor complex affinity and/or number. The inverse relationship between GABA{sub A} binding in the temporal lobe and HPA axis activity, suggests that HPA axis hyperactivity is partly due to reduced GABA-ergic inhibition. (orig.)

  6. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A Benzodiazepine Receptor Model

    Directory of Open Access Journals (Sweden)

    Terry Clayton

    2015-01-01

    Full Text Available An updated model of the GABA(A benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1 which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM, SH-053-2′F-R-CH3 (2, has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A receptors.

  7. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  8. The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle

    DEFF Research Database (Denmark)

    Leke, Renata; Schousboe, Arne

    2016-01-01

    in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y(+)LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from...... and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases......, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters...

  9. Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase.

    NARCIS (Netherlands)

    De Jeu, M.T.G.; Pennartz, C.M.A.

    2002-01-01

    Gramicidin-perforated patch-clamp recordings were made from slices of the suprachiasmatic nucleus (SCN) of adult rats to characterize the role of gamma-amino butyric acid (GABA) in the circadian timing system. During the day, activation of GABA(A) receptors hyperpolarized the membrane of SCN

  10. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  11. GABA accumulating neurons are relatively resistant to chronic hypoxia in vitro: An autoradiographic study

    International Nuclear Information System (INIS)

    Sher, P.K.; Hu, S.

    1990-01-01

    Whether there is preferential loss of certain types of nerve cells or specific cellular functions after hypoxic or ischemic insults remains unclear. To evaluate this phenomenon in vitro, the vulnerability of GABAergic neurons to hypoxia was investigated both quantitatively and with autoradiography. Immature neuronal cortical cultures obtained from fetal mice were subjected to chronic hypoxia (5% O2) for 24 h or 48 h and then returned to the normoxic condition for 48 h. The shorter hypoxic exposure resulted in significantly reduced numbers of neurons in comparison to the longer exposure and also to controls (29% and 26%, respectively; p less than 0.001). LDH efflux, a reliable indicator of cell damage, also was higher after the shorter exposure insult. Nevertheless, in these same 24 h hypoxic cultures there was prominent sparing of those neurons which accumulate GABA: by 48 h of recovery GABAergic neurons constituted 29.3 +/- 2.0% of the remaining neuronal population in comparison to 11.6 +/- 0.6 and 14.4 +/- 0.8% for controls and 48 h hypoxia, respectively; (p less than 0.001). Although total GABA uptake per neuron was significantly decreased after both types of insult, there was a concomitant increase in glial GABA uptake (i.e., that which could be displaced by beta-alanine). These observations suggest that certain GABAergic cortical neurons are relatively more resistant to chronic hypoxia than the general neuronal population and that depression of overall neuronal GABA uptake may be associated with enhanced glial GABA uptake

  12. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    Science.gov (United States)

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P sauce production.

  13. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  14. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release

    OpenAIRE

    Rau, Andrew R.; Hentges, Shane T.

    2017-01-01

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA re...

  15. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    Science.gov (United States)

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence From Alcohol

    Directory of Open Access Journals (Sweden)

    Dieter J. Meyerhoff

    2018-03-01

    Full Text Available Gabapentin (GBP, a GABA analog that may also affect glutamate (Glu production, can normalize GABA and Glu tone during early abstinence from alcohol, effectively treating withdrawal symptoms and facilitating recovery. Using in vivo magnetic resonance spectroscopy, we tested the degree to which daily GBP alters regional brain GABA and Glu levels in short-term abstinent alcohol-dependent individuals. Regional metabolite levels were compared between 13 recently abstinent alcohol-dependent individuals who had received daily GBP for at least 1 week (GBP+ and 25 matched alcohol-dependent individuals who had not received GBP (GBP−. Magnetic resonance spectra from up to five different brain regions were analyzed to yield absolute GABA and Glu concentrations. GABA and Glu concentrations in the parieto-occipital cortex were not different between GBP− and GBP+. Glu levels in anterior cingulate cortex, dorsolateral prefrontal cortex, and basal ganglia did not differ between GBP− and GBP+. However, in a subgroup of individuals matched on age, sex, and abstinence duration, GBP+ had markedly lower Glu in the frontal white matter (WM than GBP−, comparable to concentrations found in light/non-drinking controls. Furthermore, lower frontal WM Glu in GBP+ correlated with a higher daily GBP dose. Daily GBP treatment at an average of 1,600 mg/day for at least 1 week was not associated with altered cortical GABA and Glu concentrations during short-term abstinence from alcohol, but with lower Glu in frontal WM. GBP for the treatment of alcohol dependence may work through reducing Glu in WM rather than increasing cortical GABA.

  17. Identification of a Vesicular-Arbuscular Mycorrhizal Fungus by Using Monoclonal Antibodies in an Enzyme-Linked Immunosorbent Assay †

    OpenAIRE

    Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.

    1987-01-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were no...

  18. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia.

    Science.gov (United States)

    Kim, Ju Young; Liu, Cindy Y; Zhang, Fengyu; Duan, Xin; Wen, Zhexing; Song, Juan; Feighery, Emer; Lu, Bai; Rujescu, Dan; St Clair, David; Christian, Kimberly; Callicott, Joseph H; Weinberger, Daniel R; Song, Hongjun; Ming, Guo-li

    2012-03-02

    How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  20. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121